1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <sys/syscall.h> 22 #include <sys/resource.h> 23 24 #include "qapi/error.h" 25 #include "qemu.h" 26 #include "qemu/path.h" 27 #include "qemu/config-file.h" 28 #include "qemu/cutils.h" 29 #include "qemu/help_option.h" 30 #include "cpu.h" 31 #include "exec/exec-all.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 #include "exec/log.h" 37 #include "trace/control.h" 38 #include "glib-compat.h" 39 40 char *exec_path; 41 42 int singlestep; 43 static const char *filename; 44 static const char *argv0; 45 static int gdbstub_port; 46 static envlist_t *envlist; 47 static const char *cpu_model; 48 unsigned long mmap_min_addr; 49 unsigned long guest_base; 50 int have_guest_base; 51 52 #define EXCP_DUMP(env, fmt, ...) \ 53 do { \ 54 CPUState *cs = ENV_GET_CPU(env); \ 55 fprintf(stderr, fmt , ## __VA_ARGS__); \ 56 cpu_dump_state(cs, stderr, fprintf, 0); \ 57 if (qemu_log_separate()) { \ 58 qemu_log(fmt, ## __VA_ARGS__); \ 59 log_cpu_state(cs, 0); \ 60 } \ 61 } while (0) 62 63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 64 /* 65 * When running 32-on-64 we should make sure we can fit all of the possible 66 * guest address space into a contiguous chunk of virtual host memory. 67 * 68 * This way we will never overlap with our own libraries or binaries or stack 69 * or anything else that QEMU maps. 70 */ 71 # if defined(TARGET_MIPS) || defined(TARGET_NIOS2) 72 /* 73 * MIPS only supports 31 bits of virtual address space for user space. 74 * Nios2 also only supports 31 bits. 75 */ 76 unsigned long reserved_va = 0x77000000; 77 # else 78 unsigned long reserved_va = 0xf7000000; 79 # endif 80 #else 81 unsigned long reserved_va; 82 #endif 83 84 static void usage(int exitcode); 85 86 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 87 const char *qemu_uname_release; 88 89 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 90 we allocate a bigger stack. Need a better solution, for example 91 by remapping the process stack directly at the right place */ 92 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 93 94 void gemu_log(const char *fmt, ...) 95 { 96 va_list ap; 97 98 va_start(ap, fmt); 99 vfprintf(stderr, fmt, ap); 100 va_end(ap); 101 } 102 103 #if defined(TARGET_I386) 104 int cpu_get_pic_interrupt(CPUX86State *env) 105 { 106 return -1; 107 } 108 #endif 109 110 /***********************************************************/ 111 /* Helper routines for implementing atomic operations. */ 112 113 /* Make sure everything is in a consistent state for calling fork(). */ 114 void fork_start(void) 115 { 116 cpu_list_lock(); 117 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 118 mmap_fork_start(); 119 } 120 121 void fork_end(int child) 122 { 123 mmap_fork_end(child); 124 if (child) { 125 CPUState *cpu, *next_cpu; 126 /* Child processes created by fork() only have a single thread. 127 Discard information about the parent threads. */ 128 CPU_FOREACH_SAFE(cpu, next_cpu) { 129 if (cpu != thread_cpu) { 130 QTAILQ_REMOVE(&cpus, cpu, node); 131 } 132 } 133 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); 134 qemu_init_cpu_list(); 135 gdbserver_fork(thread_cpu); 136 } else { 137 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 138 cpu_list_unlock(); 139 } 140 } 141 142 #ifdef TARGET_I386 143 /***********************************************************/ 144 /* CPUX86 core interface */ 145 146 uint64_t cpu_get_tsc(CPUX86State *env) 147 { 148 return cpu_get_host_ticks(); 149 } 150 151 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 152 int flags) 153 { 154 unsigned int e1, e2; 155 uint32_t *p; 156 e1 = (addr << 16) | (limit & 0xffff); 157 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 158 e2 |= flags; 159 p = ptr; 160 p[0] = tswap32(e1); 161 p[1] = tswap32(e2); 162 } 163 164 static uint64_t *idt_table; 165 #ifdef TARGET_X86_64 166 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 167 uint64_t addr, unsigned int sel) 168 { 169 uint32_t *p, e1, e2; 170 e1 = (addr & 0xffff) | (sel << 16); 171 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 172 p = ptr; 173 p[0] = tswap32(e1); 174 p[1] = tswap32(e2); 175 p[2] = tswap32(addr >> 32); 176 p[3] = 0; 177 } 178 /* only dpl matters as we do only user space emulation */ 179 static void set_idt(int n, unsigned int dpl) 180 { 181 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 182 } 183 #else 184 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 185 uint32_t addr, unsigned int sel) 186 { 187 uint32_t *p, e1, e2; 188 e1 = (addr & 0xffff) | (sel << 16); 189 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 190 p = ptr; 191 p[0] = tswap32(e1); 192 p[1] = tswap32(e2); 193 } 194 195 /* only dpl matters as we do only user space emulation */ 196 static void set_idt(int n, unsigned int dpl) 197 { 198 set_gate(idt_table + n, 0, dpl, 0, 0); 199 } 200 #endif 201 202 void cpu_loop(CPUX86State *env) 203 { 204 CPUState *cs = CPU(x86_env_get_cpu(env)); 205 int trapnr; 206 abi_ulong pc; 207 abi_ulong ret; 208 target_siginfo_t info; 209 210 for(;;) { 211 cpu_exec_start(cs); 212 trapnr = cpu_exec(cs); 213 cpu_exec_end(cs); 214 process_queued_cpu_work(cs); 215 216 switch(trapnr) { 217 case 0x80: 218 /* linux syscall from int $0x80 */ 219 ret = do_syscall(env, 220 env->regs[R_EAX], 221 env->regs[R_EBX], 222 env->regs[R_ECX], 223 env->regs[R_EDX], 224 env->regs[R_ESI], 225 env->regs[R_EDI], 226 env->regs[R_EBP], 227 0, 0); 228 if (ret == -TARGET_ERESTARTSYS) { 229 env->eip -= 2; 230 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 231 env->regs[R_EAX] = ret; 232 } 233 break; 234 #ifndef TARGET_ABI32 235 case EXCP_SYSCALL: 236 /* linux syscall from syscall instruction */ 237 ret = do_syscall(env, 238 env->regs[R_EAX], 239 env->regs[R_EDI], 240 env->regs[R_ESI], 241 env->regs[R_EDX], 242 env->regs[10], 243 env->regs[8], 244 env->regs[9], 245 0, 0); 246 if (ret == -TARGET_ERESTARTSYS) { 247 env->eip -= 2; 248 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 249 env->regs[R_EAX] = ret; 250 } 251 break; 252 #endif 253 case EXCP0B_NOSEG: 254 case EXCP0C_STACK: 255 info.si_signo = TARGET_SIGBUS; 256 info.si_errno = 0; 257 info.si_code = TARGET_SI_KERNEL; 258 info._sifields._sigfault._addr = 0; 259 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 260 break; 261 case EXCP0D_GPF: 262 /* XXX: potential problem if ABI32 */ 263 #ifndef TARGET_X86_64 264 if (env->eflags & VM_MASK) { 265 handle_vm86_fault(env); 266 } else 267 #endif 268 { 269 info.si_signo = TARGET_SIGSEGV; 270 info.si_errno = 0; 271 info.si_code = TARGET_SI_KERNEL; 272 info._sifields._sigfault._addr = 0; 273 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 274 } 275 break; 276 case EXCP0E_PAGE: 277 info.si_signo = TARGET_SIGSEGV; 278 info.si_errno = 0; 279 if (!(env->error_code & 1)) 280 info.si_code = TARGET_SEGV_MAPERR; 281 else 282 info.si_code = TARGET_SEGV_ACCERR; 283 info._sifields._sigfault._addr = env->cr[2]; 284 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 285 break; 286 case EXCP00_DIVZ: 287 #ifndef TARGET_X86_64 288 if (env->eflags & VM_MASK) { 289 handle_vm86_trap(env, trapnr); 290 } else 291 #endif 292 { 293 /* division by zero */ 294 info.si_signo = TARGET_SIGFPE; 295 info.si_errno = 0; 296 info.si_code = TARGET_FPE_INTDIV; 297 info._sifields._sigfault._addr = env->eip; 298 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 299 } 300 break; 301 case EXCP01_DB: 302 case EXCP03_INT3: 303 #ifndef TARGET_X86_64 304 if (env->eflags & VM_MASK) { 305 handle_vm86_trap(env, trapnr); 306 } else 307 #endif 308 { 309 info.si_signo = TARGET_SIGTRAP; 310 info.si_errno = 0; 311 if (trapnr == EXCP01_DB) { 312 info.si_code = TARGET_TRAP_BRKPT; 313 info._sifields._sigfault._addr = env->eip; 314 } else { 315 info.si_code = TARGET_SI_KERNEL; 316 info._sifields._sigfault._addr = 0; 317 } 318 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 319 } 320 break; 321 case EXCP04_INTO: 322 case EXCP05_BOUND: 323 #ifndef TARGET_X86_64 324 if (env->eflags & VM_MASK) { 325 handle_vm86_trap(env, trapnr); 326 } else 327 #endif 328 { 329 info.si_signo = TARGET_SIGSEGV; 330 info.si_errno = 0; 331 info.si_code = TARGET_SI_KERNEL; 332 info._sifields._sigfault._addr = 0; 333 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 334 } 335 break; 336 case EXCP06_ILLOP: 337 info.si_signo = TARGET_SIGILL; 338 info.si_errno = 0; 339 info.si_code = TARGET_ILL_ILLOPN; 340 info._sifields._sigfault._addr = env->eip; 341 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 342 break; 343 case EXCP_INTERRUPT: 344 /* just indicate that signals should be handled asap */ 345 break; 346 case EXCP_DEBUG: 347 { 348 int sig; 349 350 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 351 if (sig) 352 { 353 info.si_signo = sig; 354 info.si_errno = 0; 355 info.si_code = TARGET_TRAP_BRKPT; 356 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 357 } 358 } 359 break; 360 case EXCP_ATOMIC: 361 cpu_exec_step_atomic(cs); 362 break; 363 default: 364 pc = env->segs[R_CS].base + env->eip; 365 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 366 (long)pc, trapnr); 367 abort(); 368 } 369 process_pending_signals(env); 370 } 371 } 372 #endif 373 374 #ifdef TARGET_ARM 375 376 #define get_user_code_u32(x, gaddr, env) \ 377 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 378 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 379 (x) = bswap32(x); \ 380 } \ 381 __r; \ 382 }) 383 384 #define get_user_code_u16(x, gaddr, env) \ 385 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 386 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 387 (x) = bswap16(x); \ 388 } \ 389 __r; \ 390 }) 391 392 #define get_user_data_u32(x, gaddr, env) \ 393 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 394 if (!__r && arm_cpu_bswap_data(env)) { \ 395 (x) = bswap32(x); \ 396 } \ 397 __r; \ 398 }) 399 400 #define get_user_data_u16(x, gaddr, env) \ 401 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 402 if (!__r && arm_cpu_bswap_data(env)) { \ 403 (x) = bswap16(x); \ 404 } \ 405 __r; \ 406 }) 407 408 #define put_user_data_u32(x, gaddr, env) \ 409 ({ typeof(x) __x = (x); \ 410 if (arm_cpu_bswap_data(env)) { \ 411 __x = bswap32(__x); \ 412 } \ 413 put_user_u32(__x, (gaddr)); \ 414 }) 415 416 #define put_user_data_u16(x, gaddr, env) \ 417 ({ typeof(x) __x = (x); \ 418 if (arm_cpu_bswap_data(env)) { \ 419 __x = bswap16(__x); \ 420 } \ 421 put_user_u16(__x, (gaddr)); \ 422 }) 423 424 #ifdef TARGET_ABI32 425 /* Commpage handling -- there is no commpage for AArch64 */ 426 427 /* 428 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 429 * Input: 430 * r0 = pointer to oldval 431 * r1 = pointer to newval 432 * r2 = pointer to target value 433 * 434 * Output: 435 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 436 * C set if *ptr was changed, clear if no exchange happened 437 * 438 * Note segv's in kernel helpers are a bit tricky, we can set the 439 * data address sensibly but the PC address is just the entry point. 440 */ 441 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 442 { 443 uint64_t oldval, newval, val; 444 uint32_t addr, cpsr; 445 target_siginfo_t info; 446 447 /* Based on the 32 bit code in do_kernel_trap */ 448 449 /* XXX: This only works between threads, not between processes. 450 It's probably possible to implement this with native host 451 operations. However things like ldrex/strex are much harder so 452 there's not much point trying. */ 453 start_exclusive(); 454 cpsr = cpsr_read(env); 455 addr = env->regs[2]; 456 457 if (get_user_u64(oldval, env->regs[0])) { 458 env->exception.vaddress = env->regs[0]; 459 goto segv; 460 }; 461 462 if (get_user_u64(newval, env->regs[1])) { 463 env->exception.vaddress = env->regs[1]; 464 goto segv; 465 }; 466 467 if (get_user_u64(val, addr)) { 468 env->exception.vaddress = addr; 469 goto segv; 470 } 471 472 if (val == oldval) { 473 val = newval; 474 475 if (put_user_u64(val, addr)) { 476 env->exception.vaddress = addr; 477 goto segv; 478 }; 479 480 env->regs[0] = 0; 481 cpsr |= CPSR_C; 482 } else { 483 env->regs[0] = -1; 484 cpsr &= ~CPSR_C; 485 } 486 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 487 end_exclusive(); 488 return; 489 490 segv: 491 end_exclusive(); 492 /* We get the PC of the entry address - which is as good as anything, 493 on a real kernel what you get depends on which mode it uses. */ 494 info.si_signo = TARGET_SIGSEGV; 495 info.si_errno = 0; 496 /* XXX: check env->error_code */ 497 info.si_code = TARGET_SEGV_MAPERR; 498 info._sifields._sigfault._addr = env->exception.vaddress; 499 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 500 } 501 502 /* Handle a jump to the kernel code page. */ 503 static int 504 do_kernel_trap(CPUARMState *env) 505 { 506 uint32_t addr; 507 uint32_t cpsr; 508 uint32_t val; 509 510 switch (env->regs[15]) { 511 case 0xffff0fa0: /* __kernel_memory_barrier */ 512 /* ??? No-op. Will need to do better for SMP. */ 513 break; 514 case 0xffff0fc0: /* __kernel_cmpxchg */ 515 /* XXX: This only works between threads, not between processes. 516 It's probably possible to implement this with native host 517 operations. However things like ldrex/strex are much harder so 518 there's not much point trying. */ 519 start_exclusive(); 520 cpsr = cpsr_read(env); 521 addr = env->regs[2]; 522 /* FIXME: This should SEGV if the access fails. */ 523 if (get_user_u32(val, addr)) 524 val = ~env->regs[0]; 525 if (val == env->regs[0]) { 526 val = env->regs[1]; 527 /* FIXME: Check for segfaults. */ 528 put_user_u32(val, addr); 529 env->regs[0] = 0; 530 cpsr |= CPSR_C; 531 } else { 532 env->regs[0] = -1; 533 cpsr &= ~CPSR_C; 534 } 535 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 536 end_exclusive(); 537 break; 538 case 0xffff0fe0: /* __kernel_get_tls */ 539 env->regs[0] = cpu_get_tls(env); 540 break; 541 case 0xffff0f60: /* __kernel_cmpxchg64 */ 542 arm_kernel_cmpxchg64_helper(env); 543 break; 544 545 default: 546 return 1; 547 } 548 /* Jump back to the caller. */ 549 addr = env->regs[14]; 550 if (addr & 1) { 551 env->thumb = 1; 552 addr &= ~1; 553 } 554 env->regs[15] = addr; 555 556 return 0; 557 } 558 559 void cpu_loop(CPUARMState *env) 560 { 561 CPUState *cs = CPU(arm_env_get_cpu(env)); 562 int trapnr; 563 unsigned int n, insn; 564 target_siginfo_t info; 565 uint32_t addr; 566 abi_ulong ret; 567 568 for(;;) { 569 cpu_exec_start(cs); 570 trapnr = cpu_exec(cs); 571 cpu_exec_end(cs); 572 process_queued_cpu_work(cs); 573 574 switch(trapnr) { 575 case EXCP_UDEF: 576 case EXCP_NOCP: 577 { 578 TaskState *ts = cs->opaque; 579 uint32_t opcode; 580 int rc; 581 582 /* we handle the FPU emulation here, as Linux */ 583 /* we get the opcode */ 584 /* FIXME - what to do if get_user() fails? */ 585 get_user_code_u32(opcode, env->regs[15], env); 586 587 rc = EmulateAll(opcode, &ts->fpa, env); 588 if (rc == 0) { /* illegal instruction */ 589 info.si_signo = TARGET_SIGILL; 590 info.si_errno = 0; 591 info.si_code = TARGET_ILL_ILLOPN; 592 info._sifields._sigfault._addr = env->regs[15]; 593 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 594 } else if (rc < 0) { /* FP exception */ 595 int arm_fpe=0; 596 597 /* translate softfloat flags to FPSR flags */ 598 if (-rc & float_flag_invalid) 599 arm_fpe |= BIT_IOC; 600 if (-rc & float_flag_divbyzero) 601 arm_fpe |= BIT_DZC; 602 if (-rc & float_flag_overflow) 603 arm_fpe |= BIT_OFC; 604 if (-rc & float_flag_underflow) 605 arm_fpe |= BIT_UFC; 606 if (-rc & float_flag_inexact) 607 arm_fpe |= BIT_IXC; 608 609 FPSR fpsr = ts->fpa.fpsr; 610 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 611 612 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 613 info.si_signo = TARGET_SIGFPE; 614 info.si_errno = 0; 615 616 /* ordered by priority, least first */ 617 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 618 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 619 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 620 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 621 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 622 623 info._sifields._sigfault._addr = env->regs[15]; 624 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 625 } else { 626 env->regs[15] += 4; 627 } 628 629 /* accumulate unenabled exceptions */ 630 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 631 fpsr |= BIT_IXC; 632 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 633 fpsr |= BIT_UFC; 634 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 635 fpsr |= BIT_OFC; 636 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 637 fpsr |= BIT_DZC; 638 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 639 fpsr |= BIT_IOC; 640 ts->fpa.fpsr=fpsr; 641 } else { /* everything OK */ 642 /* increment PC */ 643 env->regs[15] += 4; 644 } 645 } 646 break; 647 case EXCP_SWI: 648 case EXCP_BKPT: 649 { 650 env->eabi = 1; 651 /* system call */ 652 if (trapnr == EXCP_BKPT) { 653 if (env->thumb) { 654 /* FIXME - what to do if get_user() fails? */ 655 get_user_code_u16(insn, env->regs[15], env); 656 n = insn & 0xff; 657 env->regs[15] += 2; 658 } else { 659 /* FIXME - what to do if get_user() fails? */ 660 get_user_code_u32(insn, env->regs[15], env); 661 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 662 env->regs[15] += 4; 663 } 664 } else { 665 if (env->thumb) { 666 /* FIXME - what to do if get_user() fails? */ 667 get_user_code_u16(insn, env->regs[15] - 2, env); 668 n = insn & 0xff; 669 } else { 670 /* FIXME - what to do if get_user() fails? */ 671 get_user_code_u32(insn, env->regs[15] - 4, env); 672 n = insn & 0xffffff; 673 } 674 } 675 676 if (n == ARM_NR_cacheflush) { 677 /* nop */ 678 } else if (n == ARM_NR_semihosting 679 || n == ARM_NR_thumb_semihosting) { 680 env->regs[0] = do_arm_semihosting (env); 681 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 682 /* linux syscall */ 683 if (env->thumb || n == 0) { 684 n = env->regs[7]; 685 } else { 686 n -= ARM_SYSCALL_BASE; 687 env->eabi = 0; 688 } 689 if ( n > ARM_NR_BASE) { 690 switch (n) { 691 case ARM_NR_cacheflush: 692 /* nop */ 693 break; 694 case ARM_NR_set_tls: 695 cpu_set_tls(env, env->regs[0]); 696 env->regs[0] = 0; 697 break; 698 case ARM_NR_breakpoint: 699 env->regs[15] -= env->thumb ? 2 : 4; 700 goto excp_debug; 701 default: 702 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 703 n); 704 env->regs[0] = -TARGET_ENOSYS; 705 break; 706 } 707 } else { 708 ret = do_syscall(env, 709 n, 710 env->regs[0], 711 env->regs[1], 712 env->regs[2], 713 env->regs[3], 714 env->regs[4], 715 env->regs[5], 716 0, 0); 717 if (ret == -TARGET_ERESTARTSYS) { 718 env->regs[15] -= env->thumb ? 2 : 4; 719 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 720 env->regs[0] = ret; 721 } 722 } 723 } else { 724 goto error; 725 } 726 } 727 break; 728 case EXCP_SEMIHOST: 729 env->regs[0] = do_arm_semihosting(env); 730 break; 731 case EXCP_INTERRUPT: 732 /* just indicate that signals should be handled asap */ 733 break; 734 case EXCP_PREFETCH_ABORT: 735 case EXCP_DATA_ABORT: 736 addr = env->exception.vaddress; 737 { 738 info.si_signo = TARGET_SIGSEGV; 739 info.si_errno = 0; 740 /* XXX: check env->error_code */ 741 info.si_code = TARGET_SEGV_MAPERR; 742 info._sifields._sigfault._addr = addr; 743 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 744 } 745 break; 746 case EXCP_DEBUG: 747 excp_debug: 748 { 749 int sig; 750 751 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 752 if (sig) 753 { 754 info.si_signo = sig; 755 info.si_errno = 0; 756 info.si_code = TARGET_TRAP_BRKPT; 757 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 758 } 759 } 760 break; 761 case EXCP_KERNEL_TRAP: 762 if (do_kernel_trap(env)) 763 goto error; 764 break; 765 case EXCP_YIELD: 766 /* nothing to do here for user-mode, just resume guest code */ 767 break; 768 case EXCP_ATOMIC: 769 cpu_exec_step_atomic(cs); 770 break; 771 default: 772 error: 773 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 774 abort(); 775 } 776 process_pending_signals(env); 777 } 778 } 779 780 #else 781 782 /* AArch64 main loop */ 783 void cpu_loop(CPUARMState *env) 784 { 785 CPUState *cs = CPU(arm_env_get_cpu(env)); 786 int trapnr, sig; 787 abi_long ret; 788 target_siginfo_t info; 789 790 for (;;) { 791 cpu_exec_start(cs); 792 trapnr = cpu_exec(cs); 793 cpu_exec_end(cs); 794 process_queued_cpu_work(cs); 795 796 switch (trapnr) { 797 case EXCP_SWI: 798 ret = do_syscall(env, 799 env->xregs[8], 800 env->xregs[0], 801 env->xregs[1], 802 env->xregs[2], 803 env->xregs[3], 804 env->xregs[4], 805 env->xregs[5], 806 0, 0); 807 if (ret == -TARGET_ERESTARTSYS) { 808 env->pc -= 4; 809 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 810 env->xregs[0] = ret; 811 } 812 break; 813 case EXCP_INTERRUPT: 814 /* just indicate that signals should be handled asap */ 815 break; 816 case EXCP_UDEF: 817 info.si_signo = TARGET_SIGILL; 818 info.si_errno = 0; 819 info.si_code = TARGET_ILL_ILLOPN; 820 info._sifields._sigfault._addr = env->pc; 821 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 822 break; 823 case EXCP_PREFETCH_ABORT: 824 case EXCP_DATA_ABORT: 825 info.si_signo = TARGET_SIGSEGV; 826 info.si_errno = 0; 827 /* XXX: check env->error_code */ 828 info.si_code = TARGET_SEGV_MAPERR; 829 info._sifields._sigfault._addr = env->exception.vaddress; 830 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 831 break; 832 case EXCP_DEBUG: 833 case EXCP_BKPT: 834 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 835 if (sig) { 836 info.si_signo = sig; 837 info.si_errno = 0; 838 info.si_code = TARGET_TRAP_BRKPT; 839 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 840 } 841 break; 842 case EXCP_SEMIHOST: 843 env->xregs[0] = do_arm_semihosting(env); 844 break; 845 case EXCP_YIELD: 846 /* nothing to do here for user-mode, just resume guest code */ 847 break; 848 case EXCP_ATOMIC: 849 cpu_exec_step_atomic(cs); 850 break; 851 default: 852 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 853 abort(); 854 } 855 process_pending_signals(env); 856 /* Exception return on AArch64 always clears the exclusive monitor, 857 * so any return to running guest code implies this. 858 */ 859 env->exclusive_addr = -1; 860 } 861 } 862 #endif /* ndef TARGET_ABI32 */ 863 864 #endif 865 866 #ifdef TARGET_UNICORE32 867 868 void cpu_loop(CPUUniCore32State *env) 869 { 870 CPUState *cs = CPU(uc32_env_get_cpu(env)); 871 int trapnr; 872 unsigned int n, insn; 873 target_siginfo_t info; 874 875 for (;;) { 876 cpu_exec_start(cs); 877 trapnr = cpu_exec(cs); 878 cpu_exec_end(cs); 879 process_queued_cpu_work(cs); 880 881 switch (trapnr) { 882 case UC32_EXCP_PRIV: 883 { 884 /* system call */ 885 get_user_u32(insn, env->regs[31] - 4); 886 n = insn & 0xffffff; 887 888 if (n >= UC32_SYSCALL_BASE) { 889 /* linux syscall */ 890 n -= UC32_SYSCALL_BASE; 891 if (n == UC32_SYSCALL_NR_set_tls) { 892 cpu_set_tls(env, env->regs[0]); 893 env->regs[0] = 0; 894 } else { 895 abi_long ret = do_syscall(env, 896 n, 897 env->regs[0], 898 env->regs[1], 899 env->regs[2], 900 env->regs[3], 901 env->regs[4], 902 env->regs[5], 903 0, 0); 904 if (ret == -TARGET_ERESTARTSYS) { 905 env->regs[31] -= 4; 906 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 907 env->regs[0] = ret; 908 } 909 } 910 } else { 911 goto error; 912 } 913 } 914 break; 915 case UC32_EXCP_DTRAP: 916 case UC32_EXCP_ITRAP: 917 info.si_signo = TARGET_SIGSEGV; 918 info.si_errno = 0; 919 /* XXX: check env->error_code */ 920 info.si_code = TARGET_SEGV_MAPERR; 921 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 922 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 923 break; 924 case EXCP_INTERRUPT: 925 /* just indicate that signals should be handled asap */ 926 break; 927 case EXCP_DEBUG: 928 { 929 int sig; 930 931 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 932 if (sig) { 933 info.si_signo = sig; 934 info.si_errno = 0; 935 info.si_code = TARGET_TRAP_BRKPT; 936 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 937 } 938 } 939 break; 940 case EXCP_ATOMIC: 941 cpu_exec_step_atomic(cs); 942 break; 943 default: 944 goto error; 945 } 946 process_pending_signals(env); 947 } 948 949 error: 950 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 951 abort(); 952 } 953 #endif 954 955 #ifdef TARGET_SPARC 956 #define SPARC64_STACK_BIAS 2047 957 958 //#define DEBUG_WIN 959 960 /* WARNING: dealing with register windows _is_ complicated. More info 961 can be found at http://www.sics.se/~psm/sparcstack.html */ 962 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 963 { 964 index = (index + cwp * 16) % (16 * env->nwindows); 965 /* wrap handling : if cwp is on the last window, then we use the 966 registers 'after' the end */ 967 if (index < 8 && env->cwp == env->nwindows - 1) 968 index += 16 * env->nwindows; 969 return index; 970 } 971 972 /* save the register window 'cwp1' */ 973 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 974 { 975 unsigned int i; 976 abi_ulong sp_ptr; 977 978 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 979 #ifdef TARGET_SPARC64 980 if (sp_ptr & 3) 981 sp_ptr += SPARC64_STACK_BIAS; 982 #endif 983 #if defined(DEBUG_WIN) 984 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 985 sp_ptr, cwp1); 986 #endif 987 for(i = 0; i < 16; i++) { 988 /* FIXME - what to do if put_user() fails? */ 989 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 990 sp_ptr += sizeof(abi_ulong); 991 } 992 } 993 994 static void save_window(CPUSPARCState *env) 995 { 996 #ifndef TARGET_SPARC64 997 unsigned int new_wim; 998 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 999 ((1LL << env->nwindows) - 1); 1000 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1001 env->wim = new_wim; 1002 #else 1003 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1004 env->cansave++; 1005 env->canrestore--; 1006 #endif 1007 } 1008 1009 static void restore_window(CPUSPARCState *env) 1010 { 1011 #ifndef TARGET_SPARC64 1012 unsigned int new_wim; 1013 #endif 1014 unsigned int i, cwp1; 1015 abi_ulong sp_ptr; 1016 1017 #ifndef TARGET_SPARC64 1018 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1019 ((1LL << env->nwindows) - 1); 1020 #endif 1021 1022 /* restore the invalid window */ 1023 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1024 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1025 #ifdef TARGET_SPARC64 1026 if (sp_ptr & 3) 1027 sp_ptr += SPARC64_STACK_BIAS; 1028 #endif 1029 #if defined(DEBUG_WIN) 1030 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1031 sp_ptr, cwp1); 1032 #endif 1033 for(i = 0; i < 16; i++) { 1034 /* FIXME - what to do if get_user() fails? */ 1035 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1036 sp_ptr += sizeof(abi_ulong); 1037 } 1038 #ifdef TARGET_SPARC64 1039 env->canrestore++; 1040 if (env->cleanwin < env->nwindows - 1) 1041 env->cleanwin++; 1042 env->cansave--; 1043 #else 1044 env->wim = new_wim; 1045 #endif 1046 } 1047 1048 static void flush_windows(CPUSPARCState *env) 1049 { 1050 int offset, cwp1; 1051 1052 offset = 1; 1053 for(;;) { 1054 /* if restore would invoke restore_window(), then we can stop */ 1055 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1056 #ifndef TARGET_SPARC64 1057 if (env->wim & (1 << cwp1)) 1058 break; 1059 #else 1060 if (env->canrestore == 0) 1061 break; 1062 env->cansave++; 1063 env->canrestore--; 1064 #endif 1065 save_window_offset(env, cwp1); 1066 offset++; 1067 } 1068 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1069 #ifndef TARGET_SPARC64 1070 /* set wim so that restore will reload the registers */ 1071 env->wim = 1 << cwp1; 1072 #endif 1073 #if defined(DEBUG_WIN) 1074 printf("flush_windows: nb=%d\n", offset - 1); 1075 #endif 1076 } 1077 1078 void cpu_loop (CPUSPARCState *env) 1079 { 1080 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1081 int trapnr; 1082 abi_long ret; 1083 target_siginfo_t info; 1084 1085 while (1) { 1086 cpu_exec_start(cs); 1087 trapnr = cpu_exec(cs); 1088 cpu_exec_end(cs); 1089 process_queued_cpu_work(cs); 1090 1091 /* Compute PSR before exposing state. */ 1092 if (env->cc_op != CC_OP_FLAGS) { 1093 cpu_get_psr(env); 1094 } 1095 1096 switch (trapnr) { 1097 #ifndef TARGET_SPARC64 1098 case 0x88: 1099 case 0x90: 1100 #else 1101 case 0x110: 1102 case 0x16d: 1103 #endif 1104 ret = do_syscall (env, env->gregs[1], 1105 env->regwptr[0], env->regwptr[1], 1106 env->regwptr[2], env->regwptr[3], 1107 env->regwptr[4], env->regwptr[5], 1108 0, 0); 1109 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) { 1110 break; 1111 } 1112 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1113 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1114 env->xcc |= PSR_CARRY; 1115 #else 1116 env->psr |= PSR_CARRY; 1117 #endif 1118 ret = -ret; 1119 } else { 1120 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1121 env->xcc &= ~PSR_CARRY; 1122 #else 1123 env->psr &= ~PSR_CARRY; 1124 #endif 1125 } 1126 env->regwptr[0] = ret; 1127 /* next instruction */ 1128 env->pc = env->npc; 1129 env->npc = env->npc + 4; 1130 break; 1131 case 0x83: /* flush windows */ 1132 #ifdef TARGET_ABI32 1133 case 0x103: 1134 #endif 1135 flush_windows(env); 1136 /* next instruction */ 1137 env->pc = env->npc; 1138 env->npc = env->npc + 4; 1139 break; 1140 #ifndef TARGET_SPARC64 1141 case TT_WIN_OVF: /* window overflow */ 1142 save_window(env); 1143 break; 1144 case TT_WIN_UNF: /* window underflow */ 1145 restore_window(env); 1146 break; 1147 case TT_TFAULT: 1148 case TT_DFAULT: 1149 { 1150 info.si_signo = TARGET_SIGSEGV; 1151 info.si_errno = 0; 1152 /* XXX: check env->error_code */ 1153 info.si_code = TARGET_SEGV_MAPERR; 1154 info._sifields._sigfault._addr = env->mmuregs[4]; 1155 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1156 } 1157 break; 1158 #else 1159 case TT_SPILL: /* window overflow */ 1160 save_window(env); 1161 break; 1162 case TT_FILL: /* window underflow */ 1163 restore_window(env); 1164 break; 1165 case TT_TFAULT: 1166 case TT_DFAULT: 1167 { 1168 info.si_signo = TARGET_SIGSEGV; 1169 info.si_errno = 0; 1170 /* XXX: check env->error_code */ 1171 info.si_code = TARGET_SEGV_MAPERR; 1172 if (trapnr == TT_DFAULT) 1173 info._sifields._sigfault._addr = env->dmmu.mmuregs[4]; 1174 else 1175 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1176 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1177 } 1178 break; 1179 #ifndef TARGET_ABI32 1180 case 0x16e: 1181 flush_windows(env); 1182 sparc64_get_context(env); 1183 break; 1184 case 0x16f: 1185 flush_windows(env); 1186 sparc64_set_context(env); 1187 break; 1188 #endif 1189 #endif 1190 case EXCP_INTERRUPT: 1191 /* just indicate that signals should be handled asap */ 1192 break; 1193 case TT_ILL_INSN: 1194 { 1195 info.si_signo = TARGET_SIGILL; 1196 info.si_errno = 0; 1197 info.si_code = TARGET_ILL_ILLOPC; 1198 info._sifields._sigfault._addr = env->pc; 1199 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1200 } 1201 break; 1202 case EXCP_DEBUG: 1203 { 1204 int sig; 1205 1206 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1207 if (sig) 1208 { 1209 info.si_signo = sig; 1210 info.si_errno = 0; 1211 info.si_code = TARGET_TRAP_BRKPT; 1212 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1213 } 1214 } 1215 break; 1216 case EXCP_ATOMIC: 1217 cpu_exec_step_atomic(cs); 1218 break; 1219 default: 1220 printf ("Unhandled trap: 0x%x\n", trapnr); 1221 cpu_dump_state(cs, stderr, fprintf, 0); 1222 exit(EXIT_FAILURE); 1223 } 1224 process_pending_signals (env); 1225 } 1226 } 1227 1228 #endif 1229 1230 #ifdef TARGET_PPC 1231 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1232 { 1233 return cpu_get_host_ticks(); 1234 } 1235 1236 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1237 { 1238 return cpu_ppc_get_tb(env); 1239 } 1240 1241 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1242 { 1243 return cpu_ppc_get_tb(env) >> 32; 1244 } 1245 1246 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1247 { 1248 return cpu_ppc_get_tb(env); 1249 } 1250 1251 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1252 { 1253 return cpu_ppc_get_tb(env) >> 32; 1254 } 1255 1256 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1257 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1258 1259 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1260 { 1261 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1262 } 1263 1264 /* XXX: to be fixed */ 1265 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1266 { 1267 return -1; 1268 } 1269 1270 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1271 { 1272 return -1; 1273 } 1274 1275 static int do_store_exclusive(CPUPPCState *env) 1276 { 1277 target_ulong addr; 1278 target_ulong page_addr; 1279 target_ulong val, val2 __attribute__((unused)) = 0; 1280 int flags; 1281 int segv = 0; 1282 1283 addr = env->reserve_ea; 1284 page_addr = addr & TARGET_PAGE_MASK; 1285 start_exclusive(); 1286 mmap_lock(); 1287 flags = page_get_flags(page_addr); 1288 if ((flags & PAGE_READ) == 0) { 1289 segv = 1; 1290 } else { 1291 int reg = env->reserve_info & 0x1f; 1292 int size = env->reserve_info >> 5; 1293 int stored = 0; 1294 1295 if (addr == env->reserve_addr) { 1296 switch (size) { 1297 case 1: segv = get_user_u8(val, addr); break; 1298 case 2: segv = get_user_u16(val, addr); break; 1299 case 4: segv = get_user_u32(val, addr); break; 1300 #if defined(TARGET_PPC64) 1301 case 8: segv = get_user_u64(val, addr); break; 1302 case 16: { 1303 segv = get_user_u64(val, addr); 1304 if (!segv) { 1305 segv = get_user_u64(val2, addr + 8); 1306 } 1307 break; 1308 } 1309 #endif 1310 default: abort(); 1311 } 1312 if (!segv && val == env->reserve_val) { 1313 val = env->gpr[reg]; 1314 switch (size) { 1315 case 1: segv = put_user_u8(val, addr); break; 1316 case 2: segv = put_user_u16(val, addr); break; 1317 case 4: segv = put_user_u32(val, addr); break; 1318 #if defined(TARGET_PPC64) 1319 case 8: segv = put_user_u64(val, addr); break; 1320 case 16: { 1321 if (val2 == env->reserve_val2) { 1322 if (msr_le) { 1323 val2 = val; 1324 val = env->gpr[reg+1]; 1325 } else { 1326 val2 = env->gpr[reg+1]; 1327 } 1328 segv = put_user_u64(val, addr); 1329 if (!segv) { 1330 segv = put_user_u64(val2, addr + 8); 1331 } 1332 } 1333 break; 1334 } 1335 #endif 1336 default: abort(); 1337 } 1338 if (!segv) { 1339 stored = 1; 1340 } 1341 } 1342 } 1343 env->crf[0] = (stored << 1) | xer_so; 1344 env->reserve_addr = (target_ulong)-1; 1345 } 1346 if (!segv) { 1347 env->nip += 4; 1348 } 1349 mmap_unlock(); 1350 end_exclusive(); 1351 return segv; 1352 } 1353 1354 void cpu_loop(CPUPPCState *env) 1355 { 1356 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1357 target_siginfo_t info; 1358 int trapnr; 1359 target_ulong ret; 1360 1361 for(;;) { 1362 cpu_exec_start(cs); 1363 trapnr = cpu_exec(cs); 1364 cpu_exec_end(cs); 1365 process_queued_cpu_work(cs); 1366 1367 switch(trapnr) { 1368 case POWERPC_EXCP_NONE: 1369 /* Just go on */ 1370 break; 1371 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1372 cpu_abort(cs, "Critical interrupt while in user mode. " 1373 "Aborting\n"); 1374 break; 1375 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1376 cpu_abort(cs, "Machine check exception while in user mode. " 1377 "Aborting\n"); 1378 break; 1379 case POWERPC_EXCP_DSI: /* Data storage exception */ 1380 /* XXX: check this. Seems bugged */ 1381 switch (env->error_code & 0xFF000000) { 1382 case 0x40000000: 1383 case 0x42000000: 1384 info.si_signo = TARGET_SIGSEGV; 1385 info.si_errno = 0; 1386 info.si_code = TARGET_SEGV_MAPERR; 1387 break; 1388 case 0x04000000: 1389 info.si_signo = TARGET_SIGILL; 1390 info.si_errno = 0; 1391 info.si_code = TARGET_ILL_ILLADR; 1392 break; 1393 case 0x08000000: 1394 info.si_signo = TARGET_SIGSEGV; 1395 info.si_errno = 0; 1396 info.si_code = TARGET_SEGV_ACCERR; 1397 break; 1398 default: 1399 /* Let's send a regular segfault... */ 1400 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1401 env->error_code); 1402 info.si_signo = TARGET_SIGSEGV; 1403 info.si_errno = 0; 1404 info.si_code = TARGET_SEGV_MAPERR; 1405 break; 1406 } 1407 info._sifields._sigfault._addr = env->nip; 1408 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1409 break; 1410 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1411 /* XXX: check this */ 1412 switch (env->error_code & 0xFF000000) { 1413 case 0x40000000: 1414 info.si_signo = TARGET_SIGSEGV; 1415 info.si_errno = 0; 1416 info.si_code = TARGET_SEGV_MAPERR; 1417 break; 1418 case 0x10000000: 1419 case 0x08000000: 1420 info.si_signo = TARGET_SIGSEGV; 1421 info.si_errno = 0; 1422 info.si_code = TARGET_SEGV_ACCERR; 1423 break; 1424 default: 1425 /* Let's send a regular segfault... */ 1426 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1427 env->error_code); 1428 info.si_signo = TARGET_SIGSEGV; 1429 info.si_errno = 0; 1430 info.si_code = TARGET_SEGV_MAPERR; 1431 break; 1432 } 1433 info._sifields._sigfault._addr = env->nip - 4; 1434 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1435 break; 1436 case POWERPC_EXCP_EXTERNAL: /* External input */ 1437 cpu_abort(cs, "External interrupt while in user mode. " 1438 "Aborting\n"); 1439 break; 1440 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1441 /* XXX: check this */ 1442 info.si_signo = TARGET_SIGBUS; 1443 info.si_errno = 0; 1444 info.si_code = TARGET_BUS_ADRALN; 1445 info._sifields._sigfault._addr = env->nip; 1446 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1447 break; 1448 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1449 case POWERPC_EXCP_HV_EMU: /* HV emulation */ 1450 /* XXX: check this */ 1451 switch (env->error_code & ~0xF) { 1452 case POWERPC_EXCP_FP: 1453 info.si_signo = TARGET_SIGFPE; 1454 info.si_errno = 0; 1455 switch (env->error_code & 0xF) { 1456 case POWERPC_EXCP_FP_OX: 1457 info.si_code = TARGET_FPE_FLTOVF; 1458 break; 1459 case POWERPC_EXCP_FP_UX: 1460 info.si_code = TARGET_FPE_FLTUND; 1461 break; 1462 case POWERPC_EXCP_FP_ZX: 1463 case POWERPC_EXCP_FP_VXZDZ: 1464 info.si_code = TARGET_FPE_FLTDIV; 1465 break; 1466 case POWERPC_EXCP_FP_XX: 1467 info.si_code = TARGET_FPE_FLTRES; 1468 break; 1469 case POWERPC_EXCP_FP_VXSOFT: 1470 info.si_code = TARGET_FPE_FLTINV; 1471 break; 1472 case POWERPC_EXCP_FP_VXSNAN: 1473 case POWERPC_EXCP_FP_VXISI: 1474 case POWERPC_EXCP_FP_VXIDI: 1475 case POWERPC_EXCP_FP_VXIMZ: 1476 case POWERPC_EXCP_FP_VXVC: 1477 case POWERPC_EXCP_FP_VXSQRT: 1478 case POWERPC_EXCP_FP_VXCVI: 1479 info.si_code = TARGET_FPE_FLTSUB; 1480 break; 1481 default: 1482 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1483 env->error_code); 1484 break; 1485 } 1486 break; 1487 case POWERPC_EXCP_INVAL: 1488 info.si_signo = TARGET_SIGILL; 1489 info.si_errno = 0; 1490 switch (env->error_code & 0xF) { 1491 case POWERPC_EXCP_INVAL_INVAL: 1492 info.si_code = TARGET_ILL_ILLOPC; 1493 break; 1494 case POWERPC_EXCP_INVAL_LSWX: 1495 info.si_code = TARGET_ILL_ILLOPN; 1496 break; 1497 case POWERPC_EXCP_INVAL_SPR: 1498 info.si_code = TARGET_ILL_PRVREG; 1499 break; 1500 case POWERPC_EXCP_INVAL_FP: 1501 info.si_code = TARGET_ILL_COPROC; 1502 break; 1503 default: 1504 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1505 env->error_code & 0xF); 1506 info.si_code = TARGET_ILL_ILLADR; 1507 break; 1508 } 1509 break; 1510 case POWERPC_EXCP_PRIV: 1511 info.si_signo = TARGET_SIGILL; 1512 info.si_errno = 0; 1513 switch (env->error_code & 0xF) { 1514 case POWERPC_EXCP_PRIV_OPC: 1515 info.si_code = TARGET_ILL_PRVOPC; 1516 break; 1517 case POWERPC_EXCP_PRIV_REG: 1518 info.si_code = TARGET_ILL_PRVREG; 1519 break; 1520 default: 1521 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1522 env->error_code & 0xF); 1523 info.si_code = TARGET_ILL_PRVOPC; 1524 break; 1525 } 1526 break; 1527 case POWERPC_EXCP_TRAP: 1528 cpu_abort(cs, "Tried to call a TRAP\n"); 1529 break; 1530 default: 1531 /* Should not happen ! */ 1532 cpu_abort(cs, "Unknown program exception (%02x)\n", 1533 env->error_code); 1534 break; 1535 } 1536 info._sifields._sigfault._addr = env->nip; 1537 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1538 break; 1539 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1540 info.si_signo = TARGET_SIGILL; 1541 info.si_errno = 0; 1542 info.si_code = TARGET_ILL_COPROC; 1543 info._sifields._sigfault._addr = env->nip; 1544 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1545 break; 1546 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1547 cpu_abort(cs, "Syscall exception while in user mode. " 1548 "Aborting\n"); 1549 break; 1550 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1551 info.si_signo = TARGET_SIGILL; 1552 info.si_errno = 0; 1553 info.si_code = TARGET_ILL_COPROC; 1554 info._sifields._sigfault._addr = env->nip; 1555 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1556 break; 1557 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1558 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1559 "Aborting\n"); 1560 break; 1561 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1562 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1563 "Aborting\n"); 1564 break; 1565 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1566 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1567 "Aborting\n"); 1568 break; 1569 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1570 cpu_abort(cs, "Data TLB exception while in user mode. " 1571 "Aborting\n"); 1572 break; 1573 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1574 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1575 "Aborting\n"); 1576 break; 1577 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1578 info.si_signo = TARGET_SIGILL; 1579 info.si_errno = 0; 1580 info.si_code = TARGET_ILL_COPROC; 1581 info._sifields._sigfault._addr = env->nip; 1582 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1583 break; 1584 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1585 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1586 break; 1587 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1588 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1589 break; 1590 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1591 cpu_abort(cs, "Performance monitor exception not handled\n"); 1592 break; 1593 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1594 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1595 "Aborting\n"); 1596 break; 1597 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1598 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1599 "Aborting\n"); 1600 break; 1601 case POWERPC_EXCP_RESET: /* System reset exception */ 1602 cpu_abort(cs, "Reset interrupt while in user mode. " 1603 "Aborting\n"); 1604 break; 1605 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1606 cpu_abort(cs, "Data segment exception while in user mode. " 1607 "Aborting\n"); 1608 break; 1609 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1610 cpu_abort(cs, "Instruction segment exception " 1611 "while in user mode. Aborting\n"); 1612 break; 1613 /* PowerPC 64 with hypervisor mode support */ 1614 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1615 cpu_abort(cs, "Hypervisor decrementer interrupt " 1616 "while in user mode. Aborting\n"); 1617 break; 1618 case POWERPC_EXCP_TRACE: /* Trace exception */ 1619 /* Nothing to do: 1620 * we use this exception to emulate step-by-step execution mode. 1621 */ 1622 break; 1623 /* PowerPC 64 with hypervisor mode support */ 1624 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1625 cpu_abort(cs, "Hypervisor data storage exception " 1626 "while in user mode. Aborting\n"); 1627 break; 1628 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1629 cpu_abort(cs, "Hypervisor instruction storage exception " 1630 "while in user mode. Aborting\n"); 1631 break; 1632 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1633 cpu_abort(cs, "Hypervisor data segment exception " 1634 "while in user mode. Aborting\n"); 1635 break; 1636 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1637 cpu_abort(cs, "Hypervisor instruction segment exception " 1638 "while in user mode. Aborting\n"); 1639 break; 1640 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1641 info.si_signo = TARGET_SIGILL; 1642 info.si_errno = 0; 1643 info.si_code = TARGET_ILL_COPROC; 1644 info._sifields._sigfault._addr = env->nip; 1645 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1646 break; 1647 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1648 cpu_abort(cs, "Programmable interval timer interrupt " 1649 "while in user mode. Aborting\n"); 1650 break; 1651 case POWERPC_EXCP_IO: /* IO error exception */ 1652 cpu_abort(cs, "IO error exception while in user mode. " 1653 "Aborting\n"); 1654 break; 1655 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1656 cpu_abort(cs, "Run mode exception while in user mode. " 1657 "Aborting\n"); 1658 break; 1659 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1660 cpu_abort(cs, "Emulation trap exception not handled\n"); 1661 break; 1662 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1663 cpu_abort(cs, "Instruction fetch TLB exception " 1664 "while in user-mode. Aborting"); 1665 break; 1666 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1667 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1668 "Aborting"); 1669 break; 1670 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1671 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1672 "Aborting"); 1673 break; 1674 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1675 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1676 break; 1677 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1678 cpu_abort(cs, "Instruction address breakpoint exception " 1679 "not handled\n"); 1680 break; 1681 case POWERPC_EXCP_SMI: /* System management interrupt */ 1682 cpu_abort(cs, "System management interrupt while in user mode. " 1683 "Aborting\n"); 1684 break; 1685 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1686 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1687 "Aborting\n"); 1688 break; 1689 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1690 cpu_abort(cs, "Performance monitor exception not handled\n"); 1691 break; 1692 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1693 cpu_abort(cs, "Vector assist exception not handled\n"); 1694 break; 1695 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1696 cpu_abort(cs, "Soft patch exception not handled\n"); 1697 break; 1698 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1699 cpu_abort(cs, "Maintenance exception while in user mode. " 1700 "Aborting\n"); 1701 break; 1702 case POWERPC_EXCP_STOP: /* stop translation */ 1703 /* We did invalidate the instruction cache. Go on */ 1704 break; 1705 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1706 /* We just stopped because of a branch. Go on */ 1707 break; 1708 case POWERPC_EXCP_SYSCALL_USER: 1709 /* system call in user-mode emulation */ 1710 /* WARNING: 1711 * PPC ABI uses overflow flag in cr0 to signal an error 1712 * in syscalls. 1713 */ 1714 env->crf[0] &= ~0x1; 1715 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1716 env->gpr[5], env->gpr[6], env->gpr[7], 1717 env->gpr[8], 0, 0); 1718 if (ret == -TARGET_ERESTARTSYS) { 1719 break; 1720 } 1721 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1722 /* Returning from a successful sigreturn syscall. 1723 Avoid corrupting register state. */ 1724 break; 1725 } 1726 env->nip += 4; 1727 if (ret > (target_ulong)(-515)) { 1728 env->crf[0] |= 0x1; 1729 ret = -ret; 1730 } 1731 env->gpr[3] = ret; 1732 break; 1733 case POWERPC_EXCP_STCX: 1734 if (do_store_exclusive(env)) { 1735 info.si_signo = TARGET_SIGSEGV; 1736 info.si_errno = 0; 1737 info.si_code = TARGET_SEGV_MAPERR; 1738 info._sifields._sigfault._addr = env->nip; 1739 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1740 } 1741 break; 1742 case EXCP_DEBUG: 1743 { 1744 int sig; 1745 1746 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1747 if (sig) { 1748 info.si_signo = sig; 1749 info.si_errno = 0; 1750 info.si_code = TARGET_TRAP_BRKPT; 1751 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1752 } 1753 } 1754 break; 1755 case EXCP_INTERRUPT: 1756 /* just indicate that signals should be handled asap */ 1757 break; 1758 case EXCP_ATOMIC: 1759 cpu_exec_step_atomic(cs); 1760 break; 1761 default: 1762 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr); 1763 break; 1764 } 1765 process_pending_signals(env); 1766 } 1767 } 1768 #endif 1769 1770 #ifdef TARGET_MIPS 1771 1772 # ifdef TARGET_ABI_MIPSO32 1773 # define MIPS_SYS(name, args) args, 1774 static const uint8_t mips_syscall_args[] = { 1775 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1776 MIPS_SYS(sys_exit , 1) 1777 MIPS_SYS(sys_fork , 0) 1778 MIPS_SYS(sys_read , 3) 1779 MIPS_SYS(sys_write , 3) 1780 MIPS_SYS(sys_open , 3) /* 4005 */ 1781 MIPS_SYS(sys_close , 1) 1782 MIPS_SYS(sys_waitpid , 3) 1783 MIPS_SYS(sys_creat , 2) 1784 MIPS_SYS(sys_link , 2) 1785 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1786 MIPS_SYS(sys_execve , 0) 1787 MIPS_SYS(sys_chdir , 1) 1788 MIPS_SYS(sys_time , 1) 1789 MIPS_SYS(sys_mknod , 3) 1790 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1791 MIPS_SYS(sys_lchown , 3) 1792 MIPS_SYS(sys_ni_syscall , 0) 1793 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1794 MIPS_SYS(sys_lseek , 3) 1795 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1796 MIPS_SYS(sys_mount , 5) 1797 MIPS_SYS(sys_umount , 1) 1798 MIPS_SYS(sys_setuid , 1) 1799 MIPS_SYS(sys_getuid , 0) 1800 MIPS_SYS(sys_stime , 1) /* 4025 */ 1801 MIPS_SYS(sys_ptrace , 4) 1802 MIPS_SYS(sys_alarm , 1) 1803 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 1804 MIPS_SYS(sys_pause , 0) 1805 MIPS_SYS(sys_utime , 2) /* 4030 */ 1806 MIPS_SYS(sys_ni_syscall , 0) 1807 MIPS_SYS(sys_ni_syscall , 0) 1808 MIPS_SYS(sys_access , 2) 1809 MIPS_SYS(sys_nice , 1) 1810 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 1811 MIPS_SYS(sys_sync , 0) 1812 MIPS_SYS(sys_kill , 2) 1813 MIPS_SYS(sys_rename , 2) 1814 MIPS_SYS(sys_mkdir , 2) 1815 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 1816 MIPS_SYS(sys_dup , 1) 1817 MIPS_SYS(sys_pipe , 0) 1818 MIPS_SYS(sys_times , 1) 1819 MIPS_SYS(sys_ni_syscall , 0) 1820 MIPS_SYS(sys_brk , 1) /* 4045 */ 1821 MIPS_SYS(sys_setgid , 1) 1822 MIPS_SYS(sys_getgid , 0) 1823 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 1824 MIPS_SYS(sys_geteuid , 0) 1825 MIPS_SYS(sys_getegid , 0) /* 4050 */ 1826 MIPS_SYS(sys_acct , 0) 1827 MIPS_SYS(sys_umount2 , 2) 1828 MIPS_SYS(sys_ni_syscall , 0) 1829 MIPS_SYS(sys_ioctl , 3) 1830 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 1831 MIPS_SYS(sys_ni_syscall , 2) 1832 MIPS_SYS(sys_setpgid , 2) 1833 MIPS_SYS(sys_ni_syscall , 0) 1834 MIPS_SYS(sys_olduname , 1) 1835 MIPS_SYS(sys_umask , 1) /* 4060 */ 1836 MIPS_SYS(sys_chroot , 1) 1837 MIPS_SYS(sys_ustat , 2) 1838 MIPS_SYS(sys_dup2 , 2) 1839 MIPS_SYS(sys_getppid , 0) 1840 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 1841 MIPS_SYS(sys_setsid , 0) 1842 MIPS_SYS(sys_sigaction , 3) 1843 MIPS_SYS(sys_sgetmask , 0) 1844 MIPS_SYS(sys_ssetmask , 1) 1845 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 1846 MIPS_SYS(sys_setregid , 2) 1847 MIPS_SYS(sys_sigsuspend , 0) 1848 MIPS_SYS(sys_sigpending , 1) 1849 MIPS_SYS(sys_sethostname , 2) 1850 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 1851 MIPS_SYS(sys_getrlimit , 2) 1852 MIPS_SYS(sys_getrusage , 2) 1853 MIPS_SYS(sys_gettimeofday, 2) 1854 MIPS_SYS(sys_settimeofday, 2) 1855 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 1856 MIPS_SYS(sys_setgroups , 2) 1857 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 1858 MIPS_SYS(sys_symlink , 2) 1859 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 1860 MIPS_SYS(sys_readlink , 3) /* 4085 */ 1861 MIPS_SYS(sys_uselib , 1) 1862 MIPS_SYS(sys_swapon , 2) 1863 MIPS_SYS(sys_reboot , 3) 1864 MIPS_SYS(old_readdir , 3) 1865 MIPS_SYS(old_mmap , 6) /* 4090 */ 1866 MIPS_SYS(sys_munmap , 2) 1867 MIPS_SYS(sys_truncate , 2) 1868 MIPS_SYS(sys_ftruncate , 2) 1869 MIPS_SYS(sys_fchmod , 2) 1870 MIPS_SYS(sys_fchown , 3) /* 4095 */ 1871 MIPS_SYS(sys_getpriority , 2) 1872 MIPS_SYS(sys_setpriority , 3) 1873 MIPS_SYS(sys_ni_syscall , 0) 1874 MIPS_SYS(sys_statfs , 2) 1875 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 1876 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 1877 MIPS_SYS(sys_socketcall , 2) 1878 MIPS_SYS(sys_syslog , 3) 1879 MIPS_SYS(sys_setitimer , 3) 1880 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 1881 MIPS_SYS(sys_newstat , 2) 1882 MIPS_SYS(sys_newlstat , 2) 1883 MIPS_SYS(sys_newfstat , 2) 1884 MIPS_SYS(sys_uname , 1) 1885 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 1886 MIPS_SYS(sys_vhangup , 0) 1887 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 1888 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 1889 MIPS_SYS(sys_wait4 , 4) 1890 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 1891 MIPS_SYS(sys_sysinfo , 1) 1892 MIPS_SYS(sys_ipc , 6) 1893 MIPS_SYS(sys_fsync , 1) 1894 MIPS_SYS(sys_sigreturn , 0) 1895 MIPS_SYS(sys_clone , 6) /* 4120 */ 1896 MIPS_SYS(sys_setdomainname, 2) 1897 MIPS_SYS(sys_newuname , 1) 1898 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 1899 MIPS_SYS(sys_adjtimex , 1) 1900 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 1901 MIPS_SYS(sys_sigprocmask , 3) 1902 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 1903 MIPS_SYS(sys_init_module , 5) 1904 MIPS_SYS(sys_delete_module, 1) 1905 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 1906 MIPS_SYS(sys_quotactl , 0) 1907 MIPS_SYS(sys_getpgid , 1) 1908 MIPS_SYS(sys_fchdir , 1) 1909 MIPS_SYS(sys_bdflush , 2) 1910 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 1911 MIPS_SYS(sys_personality , 1) 1912 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 1913 MIPS_SYS(sys_setfsuid , 1) 1914 MIPS_SYS(sys_setfsgid , 1) 1915 MIPS_SYS(sys_llseek , 5) /* 4140 */ 1916 MIPS_SYS(sys_getdents , 3) 1917 MIPS_SYS(sys_select , 5) 1918 MIPS_SYS(sys_flock , 2) 1919 MIPS_SYS(sys_msync , 3) 1920 MIPS_SYS(sys_readv , 3) /* 4145 */ 1921 MIPS_SYS(sys_writev , 3) 1922 MIPS_SYS(sys_cacheflush , 3) 1923 MIPS_SYS(sys_cachectl , 3) 1924 MIPS_SYS(sys_sysmips , 4) 1925 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 1926 MIPS_SYS(sys_getsid , 1) 1927 MIPS_SYS(sys_fdatasync , 0) 1928 MIPS_SYS(sys_sysctl , 1) 1929 MIPS_SYS(sys_mlock , 2) 1930 MIPS_SYS(sys_munlock , 2) /* 4155 */ 1931 MIPS_SYS(sys_mlockall , 1) 1932 MIPS_SYS(sys_munlockall , 0) 1933 MIPS_SYS(sys_sched_setparam, 2) 1934 MIPS_SYS(sys_sched_getparam, 2) 1935 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 1936 MIPS_SYS(sys_sched_getscheduler, 1) 1937 MIPS_SYS(sys_sched_yield , 0) 1938 MIPS_SYS(sys_sched_get_priority_max, 1) 1939 MIPS_SYS(sys_sched_get_priority_min, 1) 1940 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 1941 MIPS_SYS(sys_nanosleep, 2) 1942 MIPS_SYS(sys_mremap , 5) 1943 MIPS_SYS(sys_accept , 3) 1944 MIPS_SYS(sys_bind , 3) 1945 MIPS_SYS(sys_connect , 3) /* 4170 */ 1946 MIPS_SYS(sys_getpeername , 3) 1947 MIPS_SYS(sys_getsockname , 3) 1948 MIPS_SYS(sys_getsockopt , 5) 1949 MIPS_SYS(sys_listen , 2) 1950 MIPS_SYS(sys_recv , 4) /* 4175 */ 1951 MIPS_SYS(sys_recvfrom , 6) 1952 MIPS_SYS(sys_recvmsg , 3) 1953 MIPS_SYS(sys_send , 4) 1954 MIPS_SYS(sys_sendmsg , 3) 1955 MIPS_SYS(sys_sendto , 6) /* 4180 */ 1956 MIPS_SYS(sys_setsockopt , 5) 1957 MIPS_SYS(sys_shutdown , 2) 1958 MIPS_SYS(sys_socket , 3) 1959 MIPS_SYS(sys_socketpair , 4) 1960 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 1961 MIPS_SYS(sys_getresuid , 3) 1962 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 1963 MIPS_SYS(sys_poll , 3) 1964 MIPS_SYS(sys_nfsservctl , 3) 1965 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 1966 MIPS_SYS(sys_getresgid , 3) 1967 MIPS_SYS(sys_prctl , 5) 1968 MIPS_SYS(sys_rt_sigreturn, 0) 1969 MIPS_SYS(sys_rt_sigaction, 4) 1970 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 1971 MIPS_SYS(sys_rt_sigpending, 2) 1972 MIPS_SYS(sys_rt_sigtimedwait, 4) 1973 MIPS_SYS(sys_rt_sigqueueinfo, 3) 1974 MIPS_SYS(sys_rt_sigsuspend, 0) 1975 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 1976 MIPS_SYS(sys_pwrite64 , 6) 1977 MIPS_SYS(sys_chown , 3) 1978 MIPS_SYS(sys_getcwd , 2) 1979 MIPS_SYS(sys_capget , 2) 1980 MIPS_SYS(sys_capset , 2) /* 4205 */ 1981 MIPS_SYS(sys_sigaltstack , 2) 1982 MIPS_SYS(sys_sendfile , 4) 1983 MIPS_SYS(sys_ni_syscall , 0) 1984 MIPS_SYS(sys_ni_syscall , 0) 1985 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 1986 MIPS_SYS(sys_truncate64 , 4) 1987 MIPS_SYS(sys_ftruncate64 , 4) 1988 MIPS_SYS(sys_stat64 , 2) 1989 MIPS_SYS(sys_lstat64 , 2) 1990 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 1991 MIPS_SYS(sys_pivot_root , 2) 1992 MIPS_SYS(sys_mincore , 3) 1993 MIPS_SYS(sys_madvise , 3) 1994 MIPS_SYS(sys_getdents64 , 3) 1995 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 1996 MIPS_SYS(sys_ni_syscall , 0) 1997 MIPS_SYS(sys_gettid , 0) 1998 MIPS_SYS(sys_readahead , 5) 1999 MIPS_SYS(sys_setxattr , 5) 2000 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2001 MIPS_SYS(sys_fsetxattr , 5) 2002 MIPS_SYS(sys_getxattr , 4) 2003 MIPS_SYS(sys_lgetxattr , 4) 2004 MIPS_SYS(sys_fgetxattr , 4) 2005 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2006 MIPS_SYS(sys_llistxattr , 3) 2007 MIPS_SYS(sys_flistxattr , 3) 2008 MIPS_SYS(sys_removexattr , 2) 2009 MIPS_SYS(sys_lremovexattr, 2) 2010 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2011 MIPS_SYS(sys_tkill , 2) 2012 MIPS_SYS(sys_sendfile64 , 5) 2013 MIPS_SYS(sys_futex , 6) 2014 MIPS_SYS(sys_sched_setaffinity, 3) 2015 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2016 MIPS_SYS(sys_io_setup , 2) 2017 MIPS_SYS(sys_io_destroy , 1) 2018 MIPS_SYS(sys_io_getevents, 5) 2019 MIPS_SYS(sys_io_submit , 3) 2020 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2021 MIPS_SYS(sys_exit_group , 1) 2022 MIPS_SYS(sys_lookup_dcookie, 3) 2023 MIPS_SYS(sys_epoll_create, 1) 2024 MIPS_SYS(sys_epoll_ctl , 4) 2025 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2026 MIPS_SYS(sys_remap_file_pages, 5) 2027 MIPS_SYS(sys_set_tid_address, 1) 2028 MIPS_SYS(sys_restart_syscall, 0) 2029 MIPS_SYS(sys_fadvise64_64, 7) 2030 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2031 MIPS_SYS(sys_fstatfs64 , 2) 2032 MIPS_SYS(sys_timer_create, 3) 2033 MIPS_SYS(sys_timer_settime, 4) 2034 MIPS_SYS(sys_timer_gettime, 2) 2035 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2036 MIPS_SYS(sys_timer_delete, 1) 2037 MIPS_SYS(sys_clock_settime, 2) 2038 MIPS_SYS(sys_clock_gettime, 2) 2039 MIPS_SYS(sys_clock_getres, 2) 2040 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2041 MIPS_SYS(sys_tgkill , 3) 2042 MIPS_SYS(sys_utimes , 2) 2043 MIPS_SYS(sys_mbind , 4) 2044 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2045 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2046 MIPS_SYS(sys_mq_open , 4) 2047 MIPS_SYS(sys_mq_unlink , 1) 2048 MIPS_SYS(sys_mq_timedsend, 5) 2049 MIPS_SYS(sys_mq_timedreceive, 5) 2050 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2051 MIPS_SYS(sys_mq_getsetattr, 3) 2052 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2053 MIPS_SYS(sys_waitid , 4) 2054 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2055 MIPS_SYS(sys_add_key , 5) 2056 MIPS_SYS(sys_request_key, 4) 2057 MIPS_SYS(sys_keyctl , 5) 2058 MIPS_SYS(sys_set_thread_area, 1) 2059 MIPS_SYS(sys_inotify_init, 0) 2060 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2061 MIPS_SYS(sys_inotify_rm_watch, 2) 2062 MIPS_SYS(sys_migrate_pages, 4) 2063 MIPS_SYS(sys_openat, 4) 2064 MIPS_SYS(sys_mkdirat, 3) 2065 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2066 MIPS_SYS(sys_fchownat, 5) 2067 MIPS_SYS(sys_futimesat, 3) 2068 MIPS_SYS(sys_fstatat64, 4) 2069 MIPS_SYS(sys_unlinkat, 3) 2070 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2071 MIPS_SYS(sys_linkat, 5) 2072 MIPS_SYS(sys_symlinkat, 3) 2073 MIPS_SYS(sys_readlinkat, 4) 2074 MIPS_SYS(sys_fchmodat, 3) 2075 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2076 MIPS_SYS(sys_pselect6, 6) 2077 MIPS_SYS(sys_ppoll, 5) 2078 MIPS_SYS(sys_unshare, 1) 2079 MIPS_SYS(sys_splice, 6) 2080 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2081 MIPS_SYS(sys_tee, 4) 2082 MIPS_SYS(sys_vmsplice, 4) 2083 MIPS_SYS(sys_move_pages, 6) 2084 MIPS_SYS(sys_set_robust_list, 2) 2085 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2086 MIPS_SYS(sys_kexec_load, 4) 2087 MIPS_SYS(sys_getcpu, 3) 2088 MIPS_SYS(sys_epoll_pwait, 6) 2089 MIPS_SYS(sys_ioprio_set, 3) 2090 MIPS_SYS(sys_ioprio_get, 2) 2091 MIPS_SYS(sys_utimensat, 4) 2092 MIPS_SYS(sys_signalfd, 3) 2093 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2094 MIPS_SYS(sys_eventfd, 1) 2095 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2096 MIPS_SYS(sys_timerfd_create, 2) 2097 MIPS_SYS(sys_timerfd_gettime, 2) 2098 MIPS_SYS(sys_timerfd_settime, 4) 2099 MIPS_SYS(sys_signalfd4, 4) 2100 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2101 MIPS_SYS(sys_epoll_create1, 1) 2102 MIPS_SYS(sys_dup3, 3) 2103 MIPS_SYS(sys_pipe2, 2) 2104 MIPS_SYS(sys_inotify_init1, 1) 2105 MIPS_SYS(sys_preadv, 5) /* 4330 */ 2106 MIPS_SYS(sys_pwritev, 5) 2107 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2108 MIPS_SYS(sys_perf_event_open, 5) 2109 MIPS_SYS(sys_accept4, 4) 2110 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2111 MIPS_SYS(sys_fanotify_init, 2) 2112 MIPS_SYS(sys_fanotify_mark, 6) 2113 MIPS_SYS(sys_prlimit64, 4) 2114 MIPS_SYS(sys_name_to_handle_at, 5) 2115 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2116 MIPS_SYS(sys_clock_adjtime, 2) 2117 MIPS_SYS(sys_syncfs, 1) 2118 MIPS_SYS(sys_sendmmsg, 4) 2119 MIPS_SYS(sys_setns, 2) 2120 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */ 2121 MIPS_SYS(sys_process_vm_writev, 6) 2122 MIPS_SYS(sys_kcmp, 5) 2123 MIPS_SYS(sys_finit_module, 3) 2124 MIPS_SYS(sys_sched_setattr, 2) 2125 MIPS_SYS(sys_sched_getattr, 3) /* 350 */ 2126 MIPS_SYS(sys_renameat2, 5) 2127 MIPS_SYS(sys_seccomp, 3) 2128 MIPS_SYS(sys_getrandom, 3) 2129 MIPS_SYS(sys_memfd_create, 2) 2130 MIPS_SYS(sys_bpf, 3) /* 355 */ 2131 MIPS_SYS(sys_execveat, 5) 2132 MIPS_SYS(sys_userfaultfd, 1) 2133 MIPS_SYS(sys_membarrier, 2) 2134 MIPS_SYS(sys_mlock2, 3) 2135 MIPS_SYS(sys_copy_file_range, 6) /* 360 */ 2136 MIPS_SYS(sys_preadv2, 6) 2137 MIPS_SYS(sys_pwritev2, 6) 2138 }; 2139 # undef MIPS_SYS 2140 # endif /* O32 */ 2141 2142 static int do_store_exclusive(CPUMIPSState *env) 2143 { 2144 target_ulong addr; 2145 target_ulong page_addr; 2146 target_ulong val; 2147 int flags; 2148 int segv = 0; 2149 int reg; 2150 int d; 2151 2152 addr = env->lladdr; 2153 page_addr = addr & TARGET_PAGE_MASK; 2154 start_exclusive(); 2155 mmap_lock(); 2156 flags = page_get_flags(page_addr); 2157 if ((flags & PAGE_READ) == 0) { 2158 segv = 1; 2159 } else { 2160 reg = env->llreg & 0x1f; 2161 d = (env->llreg & 0x20) != 0; 2162 if (d) { 2163 segv = get_user_s64(val, addr); 2164 } else { 2165 segv = get_user_s32(val, addr); 2166 } 2167 if (!segv) { 2168 if (val != env->llval) { 2169 env->active_tc.gpr[reg] = 0; 2170 } else { 2171 if (d) { 2172 segv = put_user_u64(env->llnewval, addr); 2173 } else { 2174 segv = put_user_u32(env->llnewval, addr); 2175 } 2176 if (!segv) { 2177 env->active_tc.gpr[reg] = 1; 2178 } 2179 } 2180 } 2181 } 2182 env->lladdr = -1; 2183 if (!segv) { 2184 env->active_tc.PC += 4; 2185 } 2186 mmap_unlock(); 2187 end_exclusive(); 2188 return segv; 2189 } 2190 2191 /* Break codes */ 2192 enum { 2193 BRK_OVERFLOW = 6, 2194 BRK_DIVZERO = 7 2195 }; 2196 2197 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2198 unsigned int code) 2199 { 2200 int ret = -1; 2201 2202 switch (code) { 2203 case BRK_OVERFLOW: 2204 case BRK_DIVZERO: 2205 info->si_signo = TARGET_SIGFPE; 2206 info->si_errno = 0; 2207 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2208 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2209 ret = 0; 2210 break; 2211 default: 2212 info->si_signo = TARGET_SIGTRAP; 2213 info->si_errno = 0; 2214 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2215 ret = 0; 2216 break; 2217 } 2218 2219 return ret; 2220 } 2221 2222 void cpu_loop(CPUMIPSState *env) 2223 { 2224 CPUState *cs = CPU(mips_env_get_cpu(env)); 2225 target_siginfo_t info; 2226 int trapnr; 2227 abi_long ret; 2228 # ifdef TARGET_ABI_MIPSO32 2229 unsigned int syscall_num; 2230 # endif 2231 2232 for(;;) { 2233 cpu_exec_start(cs); 2234 trapnr = cpu_exec(cs); 2235 cpu_exec_end(cs); 2236 process_queued_cpu_work(cs); 2237 2238 switch(trapnr) { 2239 case EXCP_SYSCALL: 2240 env->active_tc.PC += 4; 2241 # ifdef TARGET_ABI_MIPSO32 2242 syscall_num = env->active_tc.gpr[2] - 4000; 2243 if (syscall_num >= sizeof(mips_syscall_args)) { 2244 ret = -TARGET_ENOSYS; 2245 } else { 2246 int nb_args; 2247 abi_ulong sp_reg; 2248 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2249 2250 nb_args = mips_syscall_args[syscall_num]; 2251 sp_reg = env->active_tc.gpr[29]; 2252 switch (nb_args) { 2253 /* these arguments are taken from the stack */ 2254 case 8: 2255 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2256 goto done_syscall; 2257 } 2258 case 7: 2259 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2260 goto done_syscall; 2261 } 2262 case 6: 2263 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2264 goto done_syscall; 2265 } 2266 case 5: 2267 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2268 goto done_syscall; 2269 } 2270 default: 2271 break; 2272 } 2273 ret = do_syscall(env, env->active_tc.gpr[2], 2274 env->active_tc.gpr[4], 2275 env->active_tc.gpr[5], 2276 env->active_tc.gpr[6], 2277 env->active_tc.gpr[7], 2278 arg5, arg6, arg7, arg8); 2279 } 2280 done_syscall: 2281 # else 2282 ret = do_syscall(env, env->active_tc.gpr[2], 2283 env->active_tc.gpr[4], env->active_tc.gpr[5], 2284 env->active_tc.gpr[6], env->active_tc.gpr[7], 2285 env->active_tc.gpr[8], env->active_tc.gpr[9], 2286 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2287 # endif /* O32 */ 2288 if (ret == -TARGET_ERESTARTSYS) { 2289 env->active_tc.PC -= 4; 2290 break; 2291 } 2292 if (ret == -TARGET_QEMU_ESIGRETURN) { 2293 /* Returning from a successful sigreturn syscall. 2294 Avoid clobbering register state. */ 2295 break; 2296 } 2297 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2298 env->active_tc.gpr[7] = 1; /* error flag */ 2299 ret = -ret; 2300 } else { 2301 env->active_tc.gpr[7] = 0; /* error flag */ 2302 } 2303 env->active_tc.gpr[2] = ret; 2304 break; 2305 case EXCP_TLBL: 2306 case EXCP_TLBS: 2307 case EXCP_AdEL: 2308 case EXCP_AdES: 2309 info.si_signo = TARGET_SIGSEGV; 2310 info.si_errno = 0; 2311 /* XXX: check env->error_code */ 2312 info.si_code = TARGET_SEGV_MAPERR; 2313 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2314 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2315 break; 2316 case EXCP_CpU: 2317 case EXCP_RI: 2318 info.si_signo = TARGET_SIGILL; 2319 info.si_errno = 0; 2320 info.si_code = 0; 2321 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2322 break; 2323 case EXCP_INTERRUPT: 2324 /* just indicate that signals should be handled asap */ 2325 break; 2326 case EXCP_DEBUG: 2327 { 2328 int sig; 2329 2330 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2331 if (sig) 2332 { 2333 info.si_signo = sig; 2334 info.si_errno = 0; 2335 info.si_code = TARGET_TRAP_BRKPT; 2336 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2337 } 2338 } 2339 break; 2340 case EXCP_SC: 2341 if (do_store_exclusive(env)) { 2342 info.si_signo = TARGET_SIGSEGV; 2343 info.si_errno = 0; 2344 info.si_code = TARGET_SEGV_MAPERR; 2345 info._sifields._sigfault._addr = env->active_tc.PC; 2346 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2347 } 2348 break; 2349 case EXCP_DSPDIS: 2350 info.si_signo = TARGET_SIGILL; 2351 info.si_errno = 0; 2352 info.si_code = TARGET_ILL_ILLOPC; 2353 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2354 break; 2355 /* The code below was inspired by the MIPS Linux kernel trap 2356 * handling code in arch/mips/kernel/traps.c. 2357 */ 2358 case EXCP_BREAK: 2359 { 2360 abi_ulong trap_instr; 2361 unsigned int code; 2362 2363 if (env->hflags & MIPS_HFLAG_M16) { 2364 if (env->insn_flags & ASE_MICROMIPS) { 2365 /* microMIPS mode */ 2366 ret = get_user_u16(trap_instr, env->active_tc.PC); 2367 if (ret != 0) { 2368 goto error; 2369 } 2370 2371 if ((trap_instr >> 10) == 0x11) { 2372 /* 16-bit instruction */ 2373 code = trap_instr & 0xf; 2374 } else { 2375 /* 32-bit instruction */ 2376 abi_ulong instr_lo; 2377 2378 ret = get_user_u16(instr_lo, 2379 env->active_tc.PC + 2); 2380 if (ret != 0) { 2381 goto error; 2382 } 2383 trap_instr = (trap_instr << 16) | instr_lo; 2384 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2385 /* Unfortunately, microMIPS also suffers from 2386 the old assembler bug... */ 2387 if (code >= (1 << 10)) { 2388 code >>= 10; 2389 } 2390 } 2391 } else { 2392 /* MIPS16e mode */ 2393 ret = get_user_u16(trap_instr, env->active_tc.PC); 2394 if (ret != 0) { 2395 goto error; 2396 } 2397 code = (trap_instr >> 6) & 0x3f; 2398 } 2399 } else { 2400 ret = get_user_u32(trap_instr, env->active_tc.PC); 2401 if (ret != 0) { 2402 goto error; 2403 } 2404 2405 /* As described in the original Linux kernel code, the 2406 * below checks on 'code' are to work around an old 2407 * assembly bug. 2408 */ 2409 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2410 if (code >= (1 << 10)) { 2411 code >>= 10; 2412 } 2413 } 2414 2415 if (do_break(env, &info, code) != 0) { 2416 goto error; 2417 } 2418 } 2419 break; 2420 case EXCP_TRAP: 2421 { 2422 abi_ulong trap_instr; 2423 unsigned int code = 0; 2424 2425 if (env->hflags & MIPS_HFLAG_M16) { 2426 /* microMIPS mode */ 2427 abi_ulong instr[2]; 2428 2429 ret = get_user_u16(instr[0], env->active_tc.PC) || 2430 get_user_u16(instr[1], env->active_tc.PC + 2); 2431 2432 trap_instr = (instr[0] << 16) | instr[1]; 2433 } else { 2434 ret = get_user_u32(trap_instr, env->active_tc.PC); 2435 } 2436 2437 if (ret != 0) { 2438 goto error; 2439 } 2440 2441 /* The immediate versions don't provide a code. */ 2442 if (!(trap_instr & 0xFC000000)) { 2443 if (env->hflags & MIPS_HFLAG_M16) { 2444 /* microMIPS mode */ 2445 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2446 } else { 2447 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2448 } 2449 } 2450 2451 if (do_break(env, &info, code) != 0) { 2452 goto error; 2453 } 2454 } 2455 break; 2456 case EXCP_ATOMIC: 2457 cpu_exec_step_atomic(cs); 2458 break; 2459 default: 2460 error: 2461 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2462 abort(); 2463 } 2464 process_pending_signals(env); 2465 } 2466 } 2467 #endif 2468 2469 #ifdef TARGET_NIOS2 2470 2471 void cpu_loop(CPUNios2State *env) 2472 { 2473 CPUState *cs = ENV_GET_CPU(env); 2474 Nios2CPU *cpu = NIOS2_CPU(cs); 2475 target_siginfo_t info; 2476 int trapnr, gdbsig, ret; 2477 2478 for (;;) { 2479 cpu_exec_start(cs); 2480 trapnr = cpu_exec(cs); 2481 cpu_exec_end(cs); 2482 gdbsig = 0; 2483 2484 switch (trapnr) { 2485 case EXCP_INTERRUPT: 2486 /* just indicate that signals should be handled asap */ 2487 break; 2488 case EXCP_TRAP: 2489 if (env->regs[R_AT] == 0) { 2490 abi_long ret; 2491 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n"); 2492 2493 ret = do_syscall(env, env->regs[2], 2494 env->regs[4], env->regs[5], env->regs[6], 2495 env->regs[7], env->regs[8], env->regs[9], 2496 0, 0); 2497 2498 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */ 2499 ret = 0; 2500 } 2501 2502 env->regs[2] = abs(ret); 2503 /* Return value is 0..4096 */ 2504 env->regs[7] = (ret > 0xfffffffffffff000ULL); 2505 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2506 env->regs[CR_STATUS] &= ~0x3; 2507 env->regs[R_EA] = env->regs[R_PC] + 4; 2508 env->regs[R_PC] += 4; 2509 break; 2510 } else { 2511 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2512 2513 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2514 env->regs[CR_STATUS] &= ~0x3; 2515 env->regs[R_EA] = env->regs[R_PC] + 4; 2516 env->regs[R_PC] = cpu->exception_addr; 2517 2518 gdbsig = TARGET_SIGTRAP; 2519 break; 2520 } 2521 case 0xaa: 2522 switch (env->regs[R_PC]) { 2523 /*case 0x1000:*/ /* TODO:__kuser_helper_version */ 2524 case 0x1004: /* __kuser_cmpxchg */ 2525 start_exclusive(); 2526 if (env->regs[4] & 0x3) { 2527 goto kuser_fail; 2528 } 2529 ret = get_user_u32(env->regs[2], env->regs[4]); 2530 if (ret) { 2531 end_exclusive(); 2532 goto kuser_fail; 2533 } 2534 env->regs[2] -= env->regs[5]; 2535 if (env->regs[2] == 0) { 2536 put_user_u32(env->regs[6], env->regs[4]); 2537 } 2538 end_exclusive(); 2539 env->regs[R_PC] = env->regs[R_RA]; 2540 break; 2541 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */ 2542 default: 2543 ; 2544 kuser_fail: 2545 info.si_signo = TARGET_SIGSEGV; 2546 info.si_errno = 0; 2547 /* TODO: check env->error_code */ 2548 info.si_code = TARGET_SEGV_MAPERR; 2549 info._sifields._sigfault._addr = env->regs[R_PC]; 2550 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2551 } 2552 break; 2553 default: 2554 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2555 trapnr); 2556 gdbsig = TARGET_SIGILL; 2557 break; 2558 } 2559 if (gdbsig) { 2560 gdb_handlesig(cs, gdbsig); 2561 if (gdbsig != TARGET_SIGTRAP) { 2562 exit(EXIT_FAILURE); 2563 } 2564 } 2565 2566 process_pending_signals(env); 2567 } 2568 } 2569 2570 #endif /* TARGET_NIOS2 */ 2571 2572 #ifdef TARGET_OPENRISC 2573 2574 void cpu_loop(CPUOpenRISCState *env) 2575 { 2576 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2577 int trapnr, gdbsig; 2578 abi_long ret; 2579 2580 for (;;) { 2581 cpu_exec_start(cs); 2582 trapnr = cpu_exec(cs); 2583 cpu_exec_end(cs); 2584 process_queued_cpu_work(cs); 2585 gdbsig = 0; 2586 2587 switch (trapnr) { 2588 case EXCP_RESET: 2589 qemu_log_mask(CPU_LOG_INT, "\nReset request, exit, pc is %#x\n", env->pc); 2590 exit(EXIT_FAILURE); 2591 break; 2592 case EXCP_BUSERR: 2593 qemu_log_mask(CPU_LOG_INT, "\nBus error, exit, pc is %#x\n", env->pc); 2594 gdbsig = TARGET_SIGBUS; 2595 break; 2596 case EXCP_DPF: 2597 case EXCP_IPF: 2598 cpu_dump_state(cs, stderr, fprintf, 0); 2599 gdbsig = TARGET_SIGSEGV; 2600 break; 2601 case EXCP_TICK: 2602 qemu_log_mask(CPU_LOG_INT, "\nTick time interrupt pc is %#x\n", env->pc); 2603 break; 2604 case EXCP_ALIGN: 2605 qemu_log_mask(CPU_LOG_INT, "\nAlignment pc is %#x\n", env->pc); 2606 gdbsig = TARGET_SIGBUS; 2607 break; 2608 case EXCP_ILLEGAL: 2609 qemu_log_mask(CPU_LOG_INT, "\nIllegal instructionpc is %#x\n", env->pc); 2610 gdbsig = TARGET_SIGILL; 2611 break; 2612 case EXCP_INT: 2613 qemu_log_mask(CPU_LOG_INT, "\nExternal interruptpc is %#x\n", env->pc); 2614 break; 2615 case EXCP_DTLBMISS: 2616 case EXCP_ITLBMISS: 2617 qemu_log_mask(CPU_LOG_INT, "\nTLB miss\n"); 2618 break; 2619 case EXCP_RANGE: 2620 qemu_log_mask(CPU_LOG_INT, "\nRange\n"); 2621 gdbsig = TARGET_SIGSEGV; 2622 break; 2623 case EXCP_SYSCALL: 2624 env->pc += 4; /* 0xc00; */ 2625 ret = do_syscall(env, 2626 env->gpr[11], /* return value */ 2627 env->gpr[3], /* r3 - r7 are params */ 2628 env->gpr[4], 2629 env->gpr[5], 2630 env->gpr[6], 2631 env->gpr[7], 2632 env->gpr[8], 0, 0); 2633 if (ret == -TARGET_ERESTARTSYS) { 2634 env->pc -= 4; 2635 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2636 env->gpr[11] = ret; 2637 } 2638 break; 2639 case EXCP_FPE: 2640 qemu_log_mask(CPU_LOG_INT, "\nFloating point error\n"); 2641 break; 2642 case EXCP_TRAP: 2643 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2644 gdbsig = TARGET_SIGTRAP; 2645 break; 2646 case EXCP_NR: 2647 qemu_log_mask(CPU_LOG_INT, "\nNR\n"); 2648 break; 2649 case EXCP_ATOMIC: 2650 cpu_exec_step_atomic(cs); 2651 break; 2652 default: 2653 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2654 trapnr); 2655 gdbsig = TARGET_SIGILL; 2656 break; 2657 } 2658 if (gdbsig) { 2659 gdb_handlesig(cs, gdbsig); 2660 if (gdbsig != TARGET_SIGTRAP) { 2661 exit(EXIT_FAILURE); 2662 } 2663 } 2664 2665 process_pending_signals(env); 2666 } 2667 } 2668 2669 #endif /* TARGET_OPENRISC */ 2670 2671 #ifdef TARGET_SH4 2672 void cpu_loop(CPUSH4State *env) 2673 { 2674 CPUState *cs = CPU(sh_env_get_cpu(env)); 2675 int trapnr, ret; 2676 target_siginfo_t info; 2677 2678 while (1) { 2679 cpu_exec_start(cs); 2680 trapnr = cpu_exec(cs); 2681 cpu_exec_end(cs); 2682 process_queued_cpu_work(cs); 2683 2684 switch (trapnr) { 2685 case 0x160: 2686 env->pc += 2; 2687 ret = do_syscall(env, 2688 env->gregs[3], 2689 env->gregs[4], 2690 env->gregs[5], 2691 env->gregs[6], 2692 env->gregs[7], 2693 env->gregs[0], 2694 env->gregs[1], 2695 0, 0); 2696 if (ret == -TARGET_ERESTARTSYS) { 2697 env->pc -= 2; 2698 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2699 env->gregs[0] = ret; 2700 } 2701 break; 2702 case EXCP_INTERRUPT: 2703 /* just indicate that signals should be handled asap */ 2704 break; 2705 case EXCP_DEBUG: 2706 { 2707 int sig; 2708 2709 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2710 if (sig) 2711 { 2712 info.si_signo = sig; 2713 info.si_errno = 0; 2714 info.si_code = TARGET_TRAP_BRKPT; 2715 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2716 } 2717 } 2718 break; 2719 case 0xa0: 2720 case 0xc0: 2721 info.si_signo = TARGET_SIGSEGV; 2722 info.si_errno = 0; 2723 info.si_code = TARGET_SEGV_MAPERR; 2724 info._sifields._sigfault._addr = env->tea; 2725 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2726 break; 2727 2728 case EXCP_ATOMIC: 2729 cpu_exec_step_atomic(cs); 2730 break; 2731 default: 2732 printf ("Unhandled trap: 0x%x\n", trapnr); 2733 cpu_dump_state(cs, stderr, fprintf, 0); 2734 exit(EXIT_FAILURE); 2735 } 2736 process_pending_signals (env); 2737 } 2738 } 2739 #endif 2740 2741 #ifdef TARGET_CRIS 2742 void cpu_loop(CPUCRISState *env) 2743 { 2744 CPUState *cs = CPU(cris_env_get_cpu(env)); 2745 int trapnr, ret; 2746 target_siginfo_t info; 2747 2748 while (1) { 2749 cpu_exec_start(cs); 2750 trapnr = cpu_exec(cs); 2751 cpu_exec_end(cs); 2752 process_queued_cpu_work(cs); 2753 2754 switch (trapnr) { 2755 case 0xaa: 2756 { 2757 info.si_signo = TARGET_SIGSEGV; 2758 info.si_errno = 0; 2759 /* XXX: check env->error_code */ 2760 info.si_code = TARGET_SEGV_MAPERR; 2761 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2762 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2763 } 2764 break; 2765 case EXCP_INTERRUPT: 2766 /* just indicate that signals should be handled asap */ 2767 break; 2768 case EXCP_BREAK: 2769 ret = do_syscall(env, 2770 env->regs[9], 2771 env->regs[10], 2772 env->regs[11], 2773 env->regs[12], 2774 env->regs[13], 2775 env->pregs[7], 2776 env->pregs[11], 2777 0, 0); 2778 if (ret == -TARGET_ERESTARTSYS) { 2779 env->pc -= 2; 2780 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2781 env->regs[10] = ret; 2782 } 2783 break; 2784 case EXCP_DEBUG: 2785 { 2786 int sig; 2787 2788 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2789 if (sig) 2790 { 2791 info.si_signo = sig; 2792 info.si_errno = 0; 2793 info.si_code = TARGET_TRAP_BRKPT; 2794 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2795 } 2796 } 2797 break; 2798 case EXCP_ATOMIC: 2799 cpu_exec_step_atomic(cs); 2800 break; 2801 default: 2802 printf ("Unhandled trap: 0x%x\n", trapnr); 2803 cpu_dump_state(cs, stderr, fprintf, 0); 2804 exit(EXIT_FAILURE); 2805 } 2806 process_pending_signals (env); 2807 } 2808 } 2809 #endif 2810 2811 #ifdef TARGET_MICROBLAZE 2812 void cpu_loop(CPUMBState *env) 2813 { 2814 CPUState *cs = CPU(mb_env_get_cpu(env)); 2815 int trapnr, ret; 2816 target_siginfo_t info; 2817 2818 while (1) { 2819 cpu_exec_start(cs); 2820 trapnr = cpu_exec(cs); 2821 cpu_exec_end(cs); 2822 process_queued_cpu_work(cs); 2823 2824 switch (trapnr) { 2825 case 0xaa: 2826 { 2827 info.si_signo = TARGET_SIGSEGV; 2828 info.si_errno = 0; 2829 /* XXX: check env->error_code */ 2830 info.si_code = TARGET_SEGV_MAPERR; 2831 info._sifields._sigfault._addr = 0; 2832 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2833 } 2834 break; 2835 case EXCP_INTERRUPT: 2836 /* just indicate that signals should be handled asap */ 2837 break; 2838 case EXCP_BREAK: 2839 /* Return address is 4 bytes after the call. */ 2840 env->regs[14] += 4; 2841 env->sregs[SR_PC] = env->regs[14]; 2842 ret = do_syscall(env, 2843 env->regs[12], 2844 env->regs[5], 2845 env->regs[6], 2846 env->regs[7], 2847 env->regs[8], 2848 env->regs[9], 2849 env->regs[10], 2850 0, 0); 2851 if (ret == -TARGET_ERESTARTSYS) { 2852 /* Wind back to before the syscall. */ 2853 env->sregs[SR_PC] -= 4; 2854 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2855 env->regs[3] = ret; 2856 } 2857 /* All syscall exits result in guest r14 being equal to the 2858 * PC we return to, because the kernel syscall exit "rtbd" does 2859 * this. (This is true even for sigreturn(); note that r14 is 2860 * not a userspace-usable register, as the kernel may clobber it 2861 * at any point.) 2862 */ 2863 env->regs[14] = env->sregs[SR_PC]; 2864 break; 2865 case EXCP_HW_EXCP: 2866 env->regs[17] = env->sregs[SR_PC] + 4; 2867 if (env->iflags & D_FLAG) { 2868 env->sregs[SR_ESR] |= 1 << 12; 2869 env->sregs[SR_PC] -= 4; 2870 /* FIXME: if branch was immed, replay the imm as well. */ 2871 } 2872 2873 env->iflags &= ~(IMM_FLAG | D_FLAG); 2874 2875 switch (env->sregs[SR_ESR] & 31) { 2876 case ESR_EC_DIVZERO: 2877 info.si_signo = TARGET_SIGFPE; 2878 info.si_errno = 0; 2879 info.si_code = TARGET_FPE_FLTDIV; 2880 info._sifields._sigfault._addr = 0; 2881 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2882 break; 2883 case ESR_EC_FPU: 2884 info.si_signo = TARGET_SIGFPE; 2885 info.si_errno = 0; 2886 if (env->sregs[SR_FSR] & FSR_IO) { 2887 info.si_code = TARGET_FPE_FLTINV; 2888 } 2889 if (env->sregs[SR_FSR] & FSR_DZ) { 2890 info.si_code = TARGET_FPE_FLTDIV; 2891 } 2892 info._sifields._sigfault._addr = 0; 2893 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2894 break; 2895 default: 2896 printf ("Unhandled hw-exception: 0x%x\n", 2897 env->sregs[SR_ESR] & ESR_EC_MASK); 2898 cpu_dump_state(cs, stderr, fprintf, 0); 2899 exit(EXIT_FAILURE); 2900 break; 2901 } 2902 break; 2903 case EXCP_DEBUG: 2904 { 2905 int sig; 2906 2907 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2908 if (sig) 2909 { 2910 info.si_signo = sig; 2911 info.si_errno = 0; 2912 info.si_code = TARGET_TRAP_BRKPT; 2913 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2914 } 2915 } 2916 break; 2917 case EXCP_ATOMIC: 2918 cpu_exec_step_atomic(cs); 2919 break; 2920 default: 2921 printf ("Unhandled trap: 0x%x\n", trapnr); 2922 cpu_dump_state(cs, stderr, fprintf, 0); 2923 exit(EXIT_FAILURE); 2924 } 2925 process_pending_signals (env); 2926 } 2927 } 2928 #endif 2929 2930 #ifdef TARGET_M68K 2931 2932 void cpu_loop(CPUM68KState *env) 2933 { 2934 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2935 int trapnr; 2936 unsigned int n; 2937 target_siginfo_t info; 2938 TaskState *ts = cs->opaque; 2939 2940 for(;;) { 2941 cpu_exec_start(cs); 2942 trapnr = cpu_exec(cs); 2943 cpu_exec_end(cs); 2944 process_queued_cpu_work(cs); 2945 2946 switch(trapnr) { 2947 case EXCP_ILLEGAL: 2948 { 2949 if (ts->sim_syscalls) { 2950 uint16_t nr; 2951 get_user_u16(nr, env->pc + 2); 2952 env->pc += 4; 2953 do_m68k_simcall(env, nr); 2954 } else { 2955 goto do_sigill; 2956 } 2957 } 2958 break; 2959 case EXCP_HALT_INSN: 2960 /* Semihosing syscall. */ 2961 env->pc += 4; 2962 do_m68k_semihosting(env, env->dregs[0]); 2963 break; 2964 case EXCP_LINEA: 2965 case EXCP_LINEF: 2966 case EXCP_UNSUPPORTED: 2967 do_sigill: 2968 info.si_signo = TARGET_SIGILL; 2969 info.si_errno = 0; 2970 info.si_code = TARGET_ILL_ILLOPN; 2971 info._sifields._sigfault._addr = env->pc; 2972 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2973 break; 2974 case EXCP_DIV0: 2975 info.si_signo = TARGET_SIGFPE; 2976 info.si_errno = 0; 2977 info.si_code = TARGET_FPE_INTDIV; 2978 info._sifields._sigfault._addr = env->pc; 2979 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2980 break; 2981 case EXCP_TRAP0: 2982 { 2983 abi_long ret; 2984 ts->sim_syscalls = 0; 2985 n = env->dregs[0]; 2986 env->pc += 2; 2987 ret = do_syscall(env, 2988 n, 2989 env->dregs[1], 2990 env->dregs[2], 2991 env->dregs[3], 2992 env->dregs[4], 2993 env->dregs[5], 2994 env->aregs[0], 2995 0, 0); 2996 if (ret == -TARGET_ERESTARTSYS) { 2997 env->pc -= 2; 2998 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2999 env->dregs[0] = ret; 3000 } 3001 } 3002 break; 3003 case EXCP_INTERRUPT: 3004 /* just indicate that signals should be handled asap */ 3005 break; 3006 case EXCP_ACCESS: 3007 { 3008 info.si_signo = TARGET_SIGSEGV; 3009 info.si_errno = 0; 3010 /* XXX: check env->error_code */ 3011 info.si_code = TARGET_SEGV_MAPERR; 3012 info._sifields._sigfault._addr = env->mmu.ar; 3013 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3014 } 3015 break; 3016 case EXCP_DEBUG: 3017 { 3018 int sig; 3019 3020 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3021 if (sig) 3022 { 3023 info.si_signo = sig; 3024 info.si_errno = 0; 3025 info.si_code = TARGET_TRAP_BRKPT; 3026 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3027 } 3028 } 3029 break; 3030 case EXCP_ATOMIC: 3031 cpu_exec_step_atomic(cs); 3032 break; 3033 default: 3034 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3035 abort(); 3036 } 3037 process_pending_signals(env); 3038 } 3039 } 3040 #endif /* TARGET_M68K */ 3041 3042 #ifdef TARGET_ALPHA 3043 void cpu_loop(CPUAlphaState *env) 3044 { 3045 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3046 int trapnr; 3047 target_siginfo_t info; 3048 abi_long sysret; 3049 3050 while (1) { 3051 cpu_exec_start(cs); 3052 trapnr = cpu_exec(cs); 3053 cpu_exec_end(cs); 3054 process_queued_cpu_work(cs); 3055 3056 /* All of the traps imply a transition through PALcode, which 3057 implies an REI instruction has been executed. Which means 3058 that the intr_flag should be cleared. */ 3059 env->intr_flag = 0; 3060 3061 switch (trapnr) { 3062 case EXCP_RESET: 3063 fprintf(stderr, "Reset requested. Exit\n"); 3064 exit(EXIT_FAILURE); 3065 break; 3066 case EXCP_MCHK: 3067 fprintf(stderr, "Machine check exception. Exit\n"); 3068 exit(EXIT_FAILURE); 3069 break; 3070 case EXCP_SMP_INTERRUPT: 3071 case EXCP_CLK_INTERRUPT: 3072 case EXCP_DEV_INTERRUPT: 3073 fprintf(stderr, "External interrupt. Exit\n"); 3074 exit(EXIT_FAILURE); 3075 break; 3076 case EXCP_MMFAULT: 3077 env->lock_addr = -1; 3078 info.si_signo = TARGET_SIGSEGV; 3079 info.si_errno = 0; 3080 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3081 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3082 info._sifields._sigfault._addr = env->trap_arg0; 3083 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3084 break; 3085 case EXCP_UNALIGN: 3086 env->lock_addr = -1; 3087 info.si_signo = TARGET_SIGBUS; 3088 info.si_errno = 0; 3089 info.si_code = TARGET_BUS_ADRALN; 3090 info._sifields._sigfault._addr = env->trap_arg0; 3091 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3092 break; 3093 case EXCP_OPCDEC: 3094 do_sigill: 3095 env->lock_addr = -1; 3096 info.si_signo = TARGET_SIGILL; 3097 info.si_errno = 0; 3098 info.si_code = TARGET_ILL_ILLOPC; 3099 info._sifields._sigfault._addr = env->pc; 3100 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3101 break; 3102 case EXCP_ARITH: 3103 env->lock_addr = -1; 3104 info.si_signo = TARGET_SIGFPE; 3105 info.si_errno = 0; 3106 info.si_code = TARGET_FPE_FLTINV; 3107 info._sifields._sigfault._addr = env->pc; 3108 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3109 break; 3110 case EXCP_FEN: 3111 /* No-op. Linux simply re-enables the FPU. */ 3112 break; 3113 case EXCP_CALL_PAL: 3114 env->lock_addr = -1; 3115 switch (env->error_code) { 3116 case 0x80: 3117 /* BPT */ 3118 info.si_signo = TARGET_SIGTRAP; 3119 info.si_errno = 0; 3120 info.si_code = TARGET_TRAP_BRKPT; 3121 info._sifields._sigfault._addr = env->pc; 3122 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3123 break; 3124 case 0x81: 3125 /* BUGCHK */ 3126 info.si_signo = TARGET_SIGTRAP; 3127 info.si_errno = 0; 3128 info.si_code = 0; 3129 info._sifields._sigfault._addr = env->pc; 3130 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3131 break; 3132 case 0x83: 3133 /* CALLSYS */ 3134 trapnr = env->ir[IR_V0]; 3135 sysret = do_syscall(env, trapnr, 3136 env->ir[IR_A0], env->ir[IR_A1], 3137 env->ir[IR_A2], env->ir[IR_A3], 3138 env->ir[IR_A4], env->ir[IR_A5], 3139 0, 0); 3140 if (sysret == -TARGET_ERESTARTSYS) { 3141 env->pc -= 4; 3142 break; 3143 } 3144 if (sysret == -TARGET_QEMU_ESIGRETURN) { 3145 break; 3146 } 3147 /* Syscall writes 0 to V0 to bypass error check, similar 3148 to how this is handled internal to Linux kernel. 3149 (Ab)use trapnr temporarily as boolean indicating error. */ 3150 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3151 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3152 env->ir[IR_A3] = trapnr; 3153 break; 3154 case 0x86: 3155 /* IMB */ 3156 /* ??? We can probably elide the code using page_unprotect 3157 that is checking for self-modifying code. Instead we 3158 could simply call tb_flush here. Until we work out the 3159 changes required to turn off the extra write protection, 3160 this can be a no-op. */ 3161 break; 3162 case 0x9E: 3163 /* RDUNIQUE */ 3164 /* Handled in the translator for usermode. */ 3165 abort(); 3166 case 0x9F: 3167 /* WRUNIQUE */ 3168 /* Handled in the translator for usermode. */ 3169 abort(); 3170 case 0xAA: 3171 /* GENTRAP */ 3172 info.si_signo = TARGET_SIGFPE; 3173 switch (env->ir[IR_A0]) { 3174 case TARGET_GEN_INTOVF: 3175 info.si_code = TARGET_FPE_INTOVF; 3176 break; 3177 case TARGET_GEN_INTDIV: 3178 info.si_code = TARGET_FPE_INTDIV; 3179 break; 3180 case TARGET_GEN_FLTOVF: 3181 info.si_code = TARGET_FPE_FLTOVF; 3182 break; 3183 case TARGET_GEN_FLTUND: 3184 info.si_code = TARGET_FPE_FLTUND; 3185 break; 3186 case TARGET_GEN_FLTINV: 3187 info.si_code = TARGET_FPE_FLTINV; 3188 break; 3189 case TARGET_GEN_FLTINE: 3190 info.si_code = TARGET_FPE_FLTRES; 3191 break; 3192 case TARGET_GEN_ROPRAND: 3193 info.si_code = 0; 3194 break; 3195 default: 3196 info.si_signo = TARGET_SIGTRAP; 3197 info.si_code = 0; 3198 break; 3199 } 3200 info.si_errno = 0; 3201 info._sifields._sigfault._addr = env->pc; 3202 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3203 break; 3204 default: 3205 goto do_sigill; 3206 } 3207 break; 3208 case EXCP_DEBUG: 3209 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3210 if (info.si_signo) { 3211 env->lock_addr = -1; 3212 info.si_errno = 0; 3213 info.si_code = TARGET_TRAP_BRKPT; 3214 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3215 } 3216 break; 3217 case EXCP_INTERRUPT: 3218 /* Just indicate that signals should be handled asap. */ 3219 break; 3220 case EXCP_ATOMIC: 3221 cpu_exec_step_atomic(cs); 3222 break; 3223 default: 3224 printf ("Unhandled trap: 0x%x\n", trapnr); 3225 cpu_dump_state(cs, stderr, fprintf, 0); 3226 exit(EXIT_FAILURE); 3227 } 3228 process_pending_signals (env); 3229 } 3230 } 3231 #endif /* TARGET_ALPHA */ 3232 3233 #ifdef TARGET_S390X 3234 void cpu_loop(CPUS390XState *env) 3235 { 3236 CPUState *cs = CPU(s390_env_get_cpu(env)); 3237 int trapnr, n, sig; 3238 target_siginfo_t info; 3239 target_ulong addr; 3240 abi_long ret; 3241 3242 while (1) { 3243 cpu_exec_start(cs); 3244 trapnr = cpu_exec(cs); 3245 cpu_exec_end(cs); 3246 process_queued_cpu_work(cs); 3247 3248 switch (trapnr) { 3249 case EXCP_INTERRUPT: 3250 /* Just indicate that signals should be handled asap. */ 3251 break; 3252 3253 case EXCP_SVC: 3254 n = env->int_svc_code; 3255 if (!n) { 3256 /* syscalls > 255 */ 3257 n = env->regs[1]; 3258 } 3259 env->psw.addr += env->int_svc_ilen; 3260 ret = do_syscall(env, n, env->regs[2], env->regs[3], 3261 env->regs[4], env->regs[5], 3262 env->regs[6], env->regs[7], 0, 0); 3263 if (ret == -TARGET_ERESTARTSYS) { 3264 env->psw.addr -= env->int_svc_ilen; 3265 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3266 env->regs[2] = ret; 3267 } 3268 break; 3269 3270 case EXCP_DEBUG: 3271 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3272 if (sig) { 3273 n = TARGET_TRAP_BRKPT; 3274 goto do_signal_pc; 3275 } 3276 break; 3277 case EXCP_PGM: 3278 n = env->int_pgm_code; 3279 switch (n) { 3280 case PGM_OPERATION: 3281 case PGM_PRIVILEGED: 3282 sig = TARGET_SIGILL; 3283 n = TARGET_ILL_ILLOPC; 3284 goto do_signal_pc; 3285 case PGM_PROTECTION: 3286 case PGM_ADDRESSING: 3287 sig = TARGET_SIGSEGV; 3288 /* XXX: check env->error_code */ 3289 n = TARGET_SEGV_MAPERR; 3290 addr = env->__excp_addr; 3291 goto do_signal; 3292 case PGM_EXECUTE: 3293 case PGM_SPECIFICATION: 3294 case PGM_SPECIAL_OP: 3295 case PGM_OPERAND: 3296 do_sigill_opn: 3297 sig = TARGET_SIGILL; 3298 n = TARGET_ILL_ILLOPN; 3299 goto do_signal_pc; 3300 3301 case PGM_FIXPT_OVERFLOW: 3302 sig = TARGET_SIGFPE; 3303 n = TARGET_FPE_INTOVF; 3304 goto do_signal_pc; 3305 case PGM_FIXPT_DIVIDE: 3306 sig = TARGET_SIGFPE; 3307 n = TARGET_FPE_INTDIV; 3308 goto do_signal_pc; 3309 3310 case PGM_DATA: 3311 n = (env->fpc >> 8) & 0xff; 3312 if (n == 0xff) { 3313 /* compare-and-trap */ 3314 goto do_sigill_opn; 3315 } else { 3316 /* An IEEE exception, simulated or otherwise. */ 3317 if (n & 0x80) { 3318 n = TARGET_FPE_FLTINV; 3319 } else if (n & 0x40) { 3320 n = TARGET_FPE_FLTDIV; 3321 } else if (n & 0x20) { 3322 n = TARGET_FPE_FLTOVF; 3323 } else if (n & 0x10) { 3324 n = TARGET_FPE_FLTUND; 3325 } else if (n & 0x08) { 3326 n = TARGET_FPE_FLTRES; 3327 } else { 3328 /* ??? Quantum exception; BFP, DFP error. */ 3329 goto do_sigill_opn; 3330 } 3331 sig = TARGET_SIGFPE; 3332 goto do_signal_pc; 3333 } 3334 3335 default: 3336 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3337 cpu_dump_state(cs, stderr, fprintf, 0); 3338 exit(EXIT_FAILURE); 3339 } 3340 break; 3341 3342 do_signal_pc: 3343 addr = env->psw.addr; 3344 do_signal: 3345 info.si_signo = sig; 3346 info.si_errno = 0; 3347 info.si_code = n; 3348 info._sifields._sigfault._addr = addr; 3349 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3350 break; 3351 3352 case EXCP_ATOMIC: 3353 cpu_exec_step_atomic(cs); 3354 break; 3355 default: 3356 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3357 cpu_dump_state(cs, stderr, fprintf, 0); 3358 exit(EXIT_FAILURE); 3359 } 3360 process_pending_signals (env); 3361 } 3362 } 3363 3364 #endif /* TARGET_S390X */ 3365 3366 #ifdef TARGET_TILEGX 3367 3368 static void gen_sigill_reg(CPUTLGState *env) 3369 { 3370 target_siginfo_t info; 3371 3372 info.si_signo = TARGET_SIGILL; 3373 info.si_errno = 0; 3374 info.si_code = TARGET_ILL_PRVREG; 3375 info._sifields._sigfault._addr = env->pc; 3376 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3377 } 3378 3379 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3380 { 3381 target_siginfo_t info; 3382 3383 info.si_signo = signo; 3384 info.si_errno = 0; 3385 info._sifields._sigfault._addr = env->pc; 3386 3387 if (signo == TARGET_SIGSEGV) { 3388 /* The passed in sigcode is a dummy; check for a page mapping 3389 and pass either MAPERR or ACCERR. */ 3390 target_ulong addr = env->excaddr; 3391 info._sifields._sigfault._addr = addr; 3392 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3393 sigcode = TARGET_SEGV_MAPERR; 3394 } else { 3395 sigcode = TARGET_SEGV_ACCERR; 3396 } 3397 } 3398 info.si_code = sigcode; 3399 3400 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3401 } 3402 3403 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3404 { 3405 env->excaddr = addr; 3406 do_signal(env, TARGET_SIGSEGV, 0); 3407 } 3408 3409 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3410 { 3411 if (unlikely(reg >= TILEGX_R_COUNT)) { 3412 switch (reg) { 3413 case TILEGX_R_SN: 3414 case TILEGX_R_ZERO: 3415 return; 3416 case TILEGX_R_IDN0: 3417 case TILEGX_R_IDN1: 3418 case TILEGX_R_UDN0: 3419 case TILEGX_R_UDN1: 3420 case TILEGX_R_UDN2: 3421 case TILEGX_R_UDN3: 3422 gen_sigill_reg(env); 3423 return; 3424 default: 3425 g_assert_not_reached(); 3426 } 3427 } 3428 env->regs[reg] = val; 3429 } 3430 3431 /* 3432 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3433 * memory at the address held in the first source register. If the values are 3434 * not equal, then no memory operation is performed. If the values are equal, 3435 * the 8-byte quantity from the second source register is written into memory 3436 * at the address held in the first source register. In either case, the result 3437 * of the instruction is the value read from memory. The compare and write to 3438 * memory are atomic and thus can be used for synchronization purposes. This 3439 * instruction only operates for addresses aligned to a 8-byte boundary. 3440 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3441 * 3442 * Functional Description (64-bit) 3443 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3444 * rf[Dest] = memVal; 3445 * if (memVal == SPR[CmpValueSPR]) 3446 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3447 * 3448 * Functional Description (32-bit) 3449 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3450 * rf[Dest] = memVal; 3451 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3452 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3453 * 3454 * 3455 * This function also processes exch and exch4 which need not process SPR. 3456 */ 3457 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3458 { 3459 target_ulong addr; 3460 target_long val, sprval; 3461 3462 start_exclusive(); 3463 3464 addr = env->atomic_srca; 3465 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3466 goto sigsegv_maperr; 3467 } 3468 3469 if (cmp) { 3470 if (quad) { 3471 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3472 } else { 3473 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3474 } 3475 } 3476 3477 if (!cmp || val == sprval) { 3478 target_long valb = env->atomic_srcb; 3479 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3480 goto sigsegv_maperr; 3481 } 3482 } 3483 3484 set_regval(env, env->atomic_dstr, val); 3485 end_exclusive(); 3486 return; 3487 3488 sigsegv_maperr: 3489 end_exclusive(); 3490 gen_sigsegv_maperr(env, addr); 3491 } 3492 3493 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3494 { 3495 int8_t write = 1; 3496 target_ulong addr; 3497 target_long val, valb; 3498 3499 start_exclusive(); 3500 3501 addr = env->atomic_srca; 3502 valb = env->atomic_srcb; 3503 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3504 goto sigsegv_maperr; 3505 } 3506 3507 switch (trapnr) { 3508 case TILEGX_EXCP_OPCODE_FETCHADD: 3509 case TILEGX_EXCP_OPCODE_FETCHADD4: 3510 valb += val; 3511 break; 3512 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3513 valb += val; 3514 if (valb < 0) { 3515 write = 0; 3516 } 3517 break; 3518 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3519 valb += val; 3520 if ((int32_t)valb < 0) { 3521 write = 0; 3522 } 3523 break; 3524 case TILEGX_EXCP_OPCODE_FETCHAND: 3525 case TILEGX_EXCP_OPCODE_FETCHAND4: 3526 valb &= val; 3527 break; 3528 case TILEGX_EXCP_OPCODE_FETCHOR: 3529 case TILEGX_EXCP_OPCODE_FETCHOR4: 3530 valb |= val; 3531 break; 3532 default: 3533 g_assert_not_reached(); 3534 } 3535 3536 if (write) { 3537 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3538 goto sigsegv_maperr; 3539 } 3540 } 3541 3542 set_regval(env, env->atomic_dstr, val); 3543 end_exclusive(); 3544 return; 3545 3546 sigsegv_maperr: 3547 end_exclusive(); 3548 gen_sigsegv_maperr(env, addr); 3549 } 3550 3551 void cpu_loop(CPUTLGState *env) 3552 { 3553 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3554 int trapnr; 3555 3556 while (1) { 3557 cpu_exec_start(cs); 3558 trapnr = cpu_exec(cs); 3559 cpu_exec_end(cs); 3560 process_queued_cpu_work(cs); 3561 3562 switch (trapnr) { 3563 case TILEGX_EXCP_SYSCALL: 3564 { 3565 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], 3566 env->regs[0], env->regs[1], 3567 env->regs[2], env->regs[3], 3568 env->regs[4], env->regs[5], 3569 env->regs[6], env->regs[7]); 3570 if (ret == -TARGET_ERESTARTSYS) { 3571 env->pc -= 8; 3572 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3573 env->regs[TILEGX_R_RE] = ret; 3574 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; 3575 } 3576 break; 3577 } 3578 case TILEGX_EXCP_OPCODE_EXCH: 3579 do_exch(env, true, false); 3580 break; 3581 case TILEGX_EXCP_OPCODE_EXCH4: 3582 do_exch(env, false, false); 3583 break; 3584 case TILEGX_EXCP_OPCODE_CMPEXCH: 3585 do_exch(env, true, true); 3586 break; 3587 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3588 do_exch(env, false, true); 3589 break; 3590 case TILEGX_EXCP_OPCODE_FETCHADD: 3591 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3592 case TILEGX_EXCP_OPCODE_FETCHAND: 3593 case TILEGX_EXCP_OPCODE_FETCHOR: 3594 do_fetch(env, trapnr, true); 3595 break; 3596 case TILEGX_EXCP_OPCODE_FETCHADD4: 3597 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3598 case TILEGX_EXCP_OPCODE_FETCHAND4: 3599 case TILEGX_EXCP_OPCODE_FETCHOR4: 3600 do_fetch(env, trapnr, false); 3601 break; 3602 case TILEGX_EXCP_SIGNAL: 3603 do_signal(env, env->signo, env->sigcode); 3604 break; 3605 case TILEGX_EXCP_REG_IDN_ACCESS: 3606 case TILEGX_EXCP_REG_UDN_ACCESS: 3607 gen_sigill_reg(env); 3608 break; 3609 case EXCP_ATOMIC: 3610 cpu_exec_step_atomic(cs); 3611 break; 3612 default: 3613 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3614 g_assert_not_reached(); 3615 } 3616 process_pending_signals(env); 3617 } 3618 } 3619 3620 #endif 3621 3622 #ifdef TARGET_HPPA 3623 3624 static abi_ulong hppa_lws(CPUHPPAState *env) 3625 { 3626 uint32_t which = env->gr[20]; 3627 abi_ulong addr = env->gr[26]; 3628 abi_ulong old = env->gr[25]; 3629 abi_ulong new = env->gr[24]; 3630 abi_ulong size, ret; 3631 3632 switch (which) { 3633 default: 3634 return -TARGET_ENOSYS; 3635 3636 case 0: /* elf32 atomic 32bit cmpxchg */ 3637 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) { 3638 return -TARGET_EFAULT; 3639 } 3640 old = tswap32(old); 3641 new = tswap32(new); 3642 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3643 ret = tswap32(ret); 3644 break; 3645 3646 case 2: /* elf32 atomic "new" cmpxchg */ 3647 size = env->gr[23]; 3648 if (size >= 4) { 3649 return -TARGET_ENOSYS; 3650 } 3651 if (((addr | old | new) & ((1 << size) - 1)) 3652 || !access_ok(VERIFY_WRITE, addr, 1 << size) 3653 || !access_ok(VERIFY_READ, old, 1 << size) 3654 || !access_ok(VERIFY_READ, new, 1 << size)) { 3655 return -TARGET_EFAULT; 3656 } 3657 /* Note that below we use host-endian loads so that the cmpxchg 3658 can be host-endian as well. */ 3659 switch (size) { 3660 case 0: 3661 old = *(uint8_t *)g2h(old); 3662 new = *(uint8_t *)g2h(new); 3663 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new); 3664 ret = ret != old; 3665 break; 3666 case 1: 3667 old = *(uint16_t *)g2h(old); 3668 new = *(uint16_t *)g2h(new); 3669 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new); 3670 ret = ret != old; 3671 break; 3672 case 2: 3673 old = *(uint32_t *)g2h(old); 3674 new = *(uint32_t *)g2h(new); 3675 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3676 ret = ret != old; 3677 break; 3678 case 3: 3679 { 3680 uint64_t o64, n64, r64; 3681 o64 = *(uint64_t *)g2h(old); 3682 n64 = *(uint64_t *)g2h(new); 3683 #ifdef CONFIG_ATOMIC64 3684 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64); 3685 ret = r64 != o64; 3686 #else 3687 start_exclusive(); 3688 r64 = *(uint64_t *)g2h(addr); 3689 ret = 1; 3690 if (r64 == o64) { 3691 *(uint64_t *)g2h(addr) = n64; 3692 ret = 0; 3693 } 3694 end_exclusive(); 3695 #endif 3696 } 3697 break; 3698 } 3699 break; 3700 } 3701 3702 env->gr[28] = ret; 3703 return 0; 3704 } 3705 3706 void cpu_loop(CPUHPPAState *env) 3707 { 3708 CPUState *cs = CPU(hppa_env_get_cpu(env)); 3709 target_siginfo_t info; 3710 abi_ulong ret; 3711 int trapnr; 3712 3713 while (1) { 3714 cpu_exec_start(cs); 3715 trapnr = cpu_exec(cs); 3716 cpu_exec_end(cs); 3717 process_queued_cpu_work(cs); 3718 3719 switch (trapnr) { 3720 case EXCP_SYSCALL: 3721 ret = do_syscall(env, env->gr[20], 3722 env->gr[26], env->gr[25], 3723 env->gr[24], env->gr[23], 3724 env->gr[22], env->gr[21], 0, 0); 3725 switch (ret) { 3726 default: 3727 env->gr[28] = ret; 3728 /* We arrived here by faking the gateway page. Return. */ 3729 env->iaoq_f = env->gr[31]; 3730 env->iaoq_b = env->gr[31] + 4; 3731 break; 3732 case -TARGET_ERESTARTSYS: 3733 case -TARGET_QEMU_ESIGRETURN: 3734 break; 3735 } 3736 break; 3737 case EXCP_SYSCALL_LWS: 3738 env->gr[21] = hppa_lws(env); 3739 /* We arrived here by faking the gateway page. Return. */ 3740 env->iaoq_f = env->gr[31]; 3741 env->iaoq_b = env->gr[31] + 4; 3742 break; 3743 case EXCP_SIGSEGV: 3744 info.si_signo = TARGET_SIGSEGV; 3745 info.si_errno = 0; 3746 info.si_code = TARGET_SEGV_ACCERR; 3747 info._sifields._sigfault._addr = env->ior; 3748 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3749 break; 3750 case EXCP_SIGILL: 3751 info.si_signo = TARGET_SIGILL; 3752 info.si_errno = 0; 3753 info.si_code = TARGET_ILL_ILLOPN; 3754 info._sifields._sigfault._addr = env->iaoq_f; 3755 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3756 break; 3757 case EXCP_SIGFPE: 3758 info.si_signo = TARGET_SIGFPE; 3759 info.si_errno = 0; 3760 info.si_code = 0; 3761 info._sifields._sigfault._addr = env->iaoq_f; 3762 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3763 break; 3764 case EXCP_DEBUG: 3765 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 3766 if (trapnr) { 3767 info.si_signo = trapnr; 3768 info.si_errno = 0; 3769 info.si_code = TARGET_TRAP_BRKPT; 3770 queue_signal(env, trapnr, QEMU_SI_FAULT, &info); 3771 } 3772 break; 3773 case EXCP_INTERRUPT: 3774 /* just indicate that signals should be handled asap */ 3775 break; 3776 default: 3777 g_assert_not_reached(); 3778 } 3779 process_pending_signals(env); 3780 } 3781 } 3782 3783 #endif /* TARGET_HPPA */ 3784 3785 THREAD CPUState *thread_cpu; 3786 3787 bool qemu_cpu_is_self(CPUState *cpu) 3788 { 3789 return thread_cpu == cpu; 3790 } 3791 3792 void qemu_cpu_kick(CPUState *cpu) 3793 { 3794 cpu_exit(cpu); 3795 } 3796 3797 void task_settid(TaskState *ts) 3798 { 3799 if (ts->ts_tid == 0) { 3800 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3801 } 3802 } 3803 3804 void stop_all_tasks(void) 3805 { 3806 /* 3807 * We trust that when using NPTL, start_exclusive() 3808 * handles thread stopping correctly. 3809 */ 3810 start_exclusive(); 3811 } 3812 3813 /* Assumes contents are already zeroed. */ 3814 void init_task_state(TaskState *ts) 3815 { 3816 ts->used = 1; 3817 } 3818 3819 CPUArchState *cpu_copy(CPUArchState *env) 3820 { 3821 CPUState *cpu = ENV_GET_CPU(env); 3822 CPUState *new_cpu = cpu_init(cpu_model); 3823 CPUArchState *new_env = new_cpu->env_ptr; 3824 CPUBreakpoint *bp; 3825 CPUWatchpoint *wp; 3826 3827 /* Reset non arch specific state */ 3828 cpu_reset(new_cpu); 3829 3830 memcpy(new_env, env, sizeof(CPUArchState)); 3831 3832 /* Clone all break/watchpoints. 3833 Note: Once we support ptrace with hw-debug register access, make sure 3834 BP_CPU break/watchpoints are handled correctly on clone. */ 3835 QTAILQ_INIT(&new_cpu->breakpoints); 3836 QTAILQ_INIT(&new_cpu->watchpoints); 3837 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3838 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3839 } 3840 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3841 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3842 } 3843 3844 return new_env; 3845 } 3846 3847 static void handle_arg_help(const char *arg) 3848 { 3849 usage(EXIT_SUCCESS); 3850 } 3851 3852 static void handle_arg_log(const char *arg) 3853 { 3854 int mask; 3855 3856 mask = qemu_str_to_log_mask(arg); 3857 if (!mask) { 3858 qemu_print_log_usage(stdout); 3859 exit(EXIT_FAILURE); 3860 } 3861 qemu_log_needs_buffers(); 3862 qemu_set_log(mask); 3863 } 3864 3865 static void handle_arg_log_filename(const char *arg) 3866 { 3867 qemu_set_log_filename(arg, &error_fatal); 3868 } 3869 3870 static void handle_arg_set_env(const char *arg) 3871 { 3872 char *r, *p, *token; 3873 r = p = strdup(arg); 3874 while ((token = strsep(&p, ",")) != NULL) { 3875 if (envlist_setenv(envlist, token) != 0) { 3876 usage(EXIT_FAILURE); 3877 } 3878 } 3879 free(r); 3880 } 3881 3882 static void handle_arg_unset_env(const char *arg) 3883 { 3884 char *r, *p, *token; 3885 r = p = strdup(arg); 3886 while ((token = strsep(&p, ",")) != NULL) { 3887 if (envlist_unsetenv(envlist, token) != 0) { 3888 usage(EXIT_FAILURE); 3889 } 3890 } 3891 free(r); 3892 } 3893 3894 static void handle_arg_argv0(const char *arg) 3895 { 3896 argv0 = strdup(arg); 3897 } 3898 3899 static void handle_arg_stack_size(const char *arg) 3900 { 3901 char *p; 3902 guest_stack_size = strtoul(arg, &p, 0); 3903 if (guest_stack_size == 0) { 3904 usage(EXIT_FAILURE); 3905 } 3906 3907 if (*p == 'M') { 3908 guest_stack_size *= 1024 * 1024; 3909 } else if (*p == 'k' || *p == 'K') { 3910 guest_stack_size *= 1024; 3911 } 3912 } 3913 3914 static void handle_arg_ld_prefix(const char *arg) 3915 { 3916 interp_prefix = strdup(arg); 3917 } 3918 3919 static void handle_arg_pagesize(const char *arg) 3920 { 3921 qemu_host_page_size = atoi(arg); 3922 if (qemu_host_page_size == 0 || 3923 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3924 fprintf(stderr, "page size must be a power of two\n"); 3925 exit(EXIT_FAILURE); 3926 } 3927 } 3928 3929 static void handle_arg_randseed(const char *arg) 3930 { 3931 unsigned long long seed; 3932 3933 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3934 fprintf(stderr, "Invalid seed number: %s\n", arg); 3935 exit(EXIT_FAILURE); 3936 } 3937 srand(seed); 3938 } 3939 3940 static void handle_arg_gdb(const char *arg) 3941 { 3942 gdbstub_port = atoi(arg); 3943 } 3944 3945 static void handle_arg_uname(const char *arg) 3946 { 3947 qemu_uname_release = strdup(arg); 3948 } 3949 3950 static void handle_arg_cpu(const char *arg) 3951 { 3952 cpu_model = strdup(arg); 3953 if (cpu_model == NULL || is_help_option(cpu_model)) { 3954 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3955 #if defined(cpu_list) 3956 cpu_list(stdout, &fprintf); 3957 #endif 3958 exit(EXIT_FAILURE); 3959 } 3960 } 3961 3962 static void handle_arg_guest_base(const char *arg) 3963 { 3964 guest_base = strtol(arg, NULL, 0); 3965 have_guest_base = 1; 3966 } 3967 3968 static void handle_arg_reserved_va(const char *arg) 3969 { 3970 char *p; 3971 int shift = 0; 3972 reserved_va = strtoul(arg, &p, 0); 3973 switch (*p) { 3974 case 'k': 3975 case 'K': 3976 shift = 10; 3977 break; 3978 case 'M': 3979 shift = 20; 3980 break; 3981 case 'G': 3982 shift = 30; 3983 break; 3984 } 3985 if (shift) { 3986 unsigned long unshifted = reserved_va; 3987 p++; 3988 reserved_va <<= shift; 3989 if (((reserved_va >> shift) != unshifted) 3990 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3991 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3992 #endif 3993 ) { 3994 fprintf(stderr, "Reserved virtual address too big\n"); 3995 exit(EXIT_FAILURE); 3996 } 3997 } 3998 if (*p) { 3999 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 4000 exit(EXIT_FAILURE); 4001 } 4002 } 4003 4004 static void handle_arg_singlestep(const char *arg) 4005 { 4006 singlestep = 1; 4007 } 4008 4009 static void handle_arg_strace(const char *arg) 4010 { 4011 do_strace = 1; 4012 } 4013 4014 static void handle_arg_version(const char *arg) 4015 { 4016 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 4017 "\n" QEMU_COPYRIGHT "\n"); 4018 exit(EXIT_SUCCESS); 4019 } 4020 4021 static char *trace_file; 4022 static void handle_arg_trace(const char *arg) 4023 { 4024 g_free(trace_file); 4025 trace_file = trace_opt_parse(arg); 4026 } 4027 4028 struct qemu_argument { 4029 const char *argv; 4030 const char *env; 4031 bool has_arg; 4032 void (*handle_opt)(const char *arg); 4033 const char *example; 4034 const char *help; 4035 }; 4036 4037 static const struct qemu_argument arg_table[] = { 4038 {"h", "", false, handle_arg_help, 4039 "", "print this help"}, 4040 {"help", "", false, handle_arg_help, 4041 "", ""}, 4042 {"g", "QEMU_GDB", true, handle_arg_gdb, 4043 "port", "wait gdb connection to 'port'"}, 4044 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 4045 "path", "set the elf interpreter prefix to 'path'"}, 4046 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 4047 "size", "set the stack size to 'size' bytes"}, 4048 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 4049 "model", "select CPU (-cpu help for list)"}, 4050 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 4051 "var=value", "sets targets environment variable (see below)"}, 4052 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 4053 "var", "unsets targets environment variable (see below)"}, 4054 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 4055 "argv0", "forces target process argv[0] to be 'argv0'"}, 4056 {"r", "QEMU_UNAME", true, handle_arg_uname, 4057 "uname", "set qemu uname release string to 'uname'"}, 4058 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 4059 "address", "set guest_base address to 'address'"}, 4060 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 4061 "size", "reserve 'size' bytes for guest virtual address space"}, 4062 {"d", "QEMU_LOG", true, handle_arg_log, 4063 "item[,...]", "enable logging of specified items " 4064 "(use '-d help' for a list of items)"}, 4065 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 4066 "logfile", "write logs to 'logfile' (default stderr)"}, 4067 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 4068 "pagesize", "set the host page size to 'pagesize'"}, 4069 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 4070 "", "run in singlestep mode"}, 4071 {"strace", "QEMU_STRACE", false, handle_arg_strace, 4072 "", "log system calls"}, 4073 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 4074 "", "Seed for pseudo-random number generator"}, 4075 {"trace", "QEMU_TRACE", true, handle_arg_trace, 4076 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"}, 4077 {"version", "QEMU_VERSION", false, handle_arg_version, 4078 "", "display version information and exit"}, 4079 {NULL, NULL, false, NULL, NULL, NULL} 4080 }; 4081 4082 static void usage(int exitcode) 4083 { 4084 const struct qemu_argument *arginfo; 4085 int maxarglen; 4086 int maxenvlen; 4087 4088 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 4089 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 4090 "\n" 4091 "Options and associated environment variables:\n" 4092 "\n"); 4093 4094 /* Calculate column widths. We must always have at least enough space 4095 * for the column header. 4096 */ 4097 maxarglen = strlen("Argument"); 4098 maxenvlen = strlen("Env-variable"); 4099 4100 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4101 int arglen = strlen(arginfo->argv); 4102 if (arginfo->has_arg) { 4103 arglen += strlen(arginfo->example) + 1; 4104 } 4105 if (strlen(arginfo->env) > maxenvlen) { 4106 maxenvlen = strlen(arginfo->env); 4107 } 4108 if (arglen > maxarglen) { 4109 maxarglen = arglen; 4110 } 4111 } 4112 4113 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 4114 maxenvlen, "Env-variable"); 4115 4116 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4117 if (arginfo->has_arg) { 4118 printf("-%s %-*s %-*s %s\n", arginfo->argv, 4119 (int)(maxarglen - strlen(arginfo->argv) - 1), 4120 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 4121 } else { 4122 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 4123 maxenvlen, arginfo->env, 4124 arginfo->help); 4125 } 4126 } 4127 4128 printf("\n" 4129 "Defaults:\n" 4130 "QEMU_LD_PREFIX = %s\n" 4131 "QEMU_STACK_SIZE = %ld byte\n", 4132 interp_prefix, 4133 guest_stack_size); 4134 4135 printf("\n" 4136 "You can use -E and -U options or the QEMU_SET_ENV and\n" 4137 "QEMU_UNSET_ENV environment variables to set and unset\n" 4138 "environment variables for the target process.\n" 4139 "It is possible to provide several variables by separating them\n" 4140 "by commas in getsubopt(3) style. Additionally it is possible to\n" 4141 "provide the -E and -U options multiple times.\n" 4142 "The following lines are equivalent:\n" 4143 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 4144 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 4145 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4146 "Note that if you provide several changes to a single variable\n" 4147 "the last change will stay in effect.\n"); 4148 4149 exit(exitcode); 4150 } 4151 4152 static int parse_args(int argc, char **argv) 4153 { 4154 const char *r; 4155 int optind; 4156 const struct qemu_argument *arginfo; 4157 4158 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4159 if (arginfo->env == NULL) { 4160 continue; 4161 } 4162 4163 r = getenv(arginfo->env); 4164 if (r != NULL) { 4165 arginfo->handle_opt(r); 4166 } 4167 } 4168 4169 optind = 1; 4170 for (;;) { 4171 if (optind >= argc) { 4172 break; 4173 } 4174 r = argv[optind]; 4175 if (r[0] != '-') { 4176 break; 4177 } 4178 optind++; 4179 r++; 4180 if (!strcmp(r, "-")) { 4181 break; 4182 } 4183 /* Treat --foo the same as -foo. */ 4184 if (r[0] == '-') { 4185 r++; 4186 } 4187 4188 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4189 if (!strcmp(r, arginfo->argv)) { 4190 if (arginfo->has_arg) { 4191 if (optind >= argc) { 4192 (void) fprintf(stderr, 4193 "qemu: missing argument for option '%s'\n", r); 4194 exit(EXIT_FAILURE); 4195 } 4196 arginfo->handle_opt(argv[optind]); 4197 optind++; 4198 } else { 4199 arginfo->handle_opt(NULL); 4200 } 4201 break; 4202 } 4203 } 4204 4205 /* no option matched the current argv */ 4206 if (arginfo->handle_opt == NULL) { 4207 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4208 exit(EXIT_FAILURE); 4209 } 4210 } 4211 4212 if (optind >= argc) { 4213 (void) fprintf(stderr, "qemu: no user program specified\n"); 4214 exit(EXIT_FAILURE); 4215 } 4216 4217 filename = argv[optind]; 4218 exec_path = argv[optind]; 4219 4220 return optind; 4221 } 4222 4223 int main(int argc, char **argv, char **envp) 4224 { 4225 struct target_pt_regs regs1, *regs = ®s1; 4226 struct image_info info1, *info = &info1; 4227 struct linux_binprm bprm; 4228 TaskState *ts; 4229 CPUArchState *env; 4230 CPUState *cpu; 4231 int optind; 4232 char **target_environ, **wrk; 4233 char **target_argv; 4234 int target_argc; 4235 int i; 4236 int ret; 4237 int execfd; 4238 4239 module_call_init(MODULE_INIT_TRACE); 4240 qemu_init_cpu_list(); 4241 module_call_init(MODULE_INIT_QOM); 4242 4243 if ((envlist = envlist_create()) == NULL) { 4244 (void) fprintf(stderr, "Unable to allocate envlist\n"); 4245 exit(EXIT_FAILURE); 4246 } 4247 4248 /* add current environment into the list */ 4249 for (wrk = environ; *wrk != NULL; wrk++) { 4250 (void) envlist_setenv(envlist, *wrk); 4251 } 4252 4253 /* Read the stack limit from the kernel. If it's "unlimited", 4254 then we can do little else besides use the default. */ 4255 { 4256 struct rlimit lim; 4257 if (getrlimit(RLIMIT_STACK, &lim) == 0 4258 && lim.rlim_cur != RLIM_INFINITY 4259 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4260 guest_stack_size = lim.rlim_cur; 4261 } 4262 } 4263 4264 cpu_model = NULL; 4265 4266 srand(time(NULL)); 4267 4268 qemu_add_opts(&qemu_trace_opts); 4269 4270 optind = parse_args(argc, argv); 4271 4272 if (!trace_init_backends()) { 4273 exit(1); 4274 } 4275 trace_init_file(trace_file); 4276 4277 /* Zero out regs */ 4278 memset(regs, 0, sizeof(struct target_pt_regs)); 4279 4280 /* Zero out image_info */ 4281 memset(info, 0, sizeof(struct image_info)); 4282 4283 memset(&bprm, 0, sizeof (bprm)); 4284 4285 /* Scan interp_prefix dir for replacement files. */ 4286 init_paths(interp_prefix); 4287 4288 init_qemu_uname_release(); 4289 4290 if (cpu_model == NULL) { 4291 #if defined(TARGET_I386) 4292 #ifdef TARGET_X86_64 4293 cpu_model = "qemu64"; 4294 #else 4295 cpu_model = "qemu32"; 4296 #endif 4297 #elif defined(TARGET_ARM) 4298 cpu_model = "any"; 4299 #elif defined(TARGET_UNICORE32) 4300 cpu_model = "any"; 4301 #elif defined(TARGET_M68K) 4302 cpu_model = "any"; 4303 #elif defined(TARGET_SPARC) 4304 #ifdef TARGET_SPARC64 4305 cpu_model = "TI UltraSparc II"; 4306 #else 4307 cpu_model = "Fujitsu MB86904"; 4308 #endif 4309 #elif defined(TARGET_MIPS) 4310 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4311 cpu_model = "5KEf"; 4312 #else 4313 cpu_model = "24Kf"; 4314 #endif 4315 #elif defined TARGET_OPENRISC 4316 cpu_model = "or1200"; 4317 #elif defined(TARGET_PPC) 4318 # ifdef TARGET_PPC64 4319 cpu_model = "POWER8"; 4320 # else 4321 cpu_model = "750"; 4322 # endif 4323 #elif defined TARGET_SH4 4324 cpu_model = TYPE_SH7785_CPU; 4325 #elif defined TARGET_S390X 4326 cpu_model = "qemu"; 4327 #else 4328 cpu_model = "any"; 4329 #endif 4330 } 4331 tcg_exec_init(0); 4332 /* NOTE: we need to init the CPU at this stage to get 4333 qemu_host_page_size */ 4334 cpu = cpu_init(cpu_model); 4335 if (!cpu) { 4336 fprintf(stderr, "Unable to find CPU definition\n"); 4337 exit(EXIT_FAILURE); 4338 } 4339 env = cpu->env_ptr; 4340 cpu_reset(cpu); 4341 4342 thread_cpu = cpu; 4343 4344 if (getenv("QEMU_STRACE")) { 4345 do_strace = 1; 4346 } 4347 4348 if (getenv("QEMU_RAND_SEED")) { 4349 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4350 } 4351 4352 target_environ = envlist_to_environ(envlist, NULL); 4353 envlist_free(envlist); 4354 4355 /* 4356 * Now that page sizes are configured in cpu_init() we can do 4357 * proper page alignment for guest_base. 4358 */ 4359 guest_base = HOST_PAGE_ALIGN(guest_base); 4360 4361 if (reserved_va || have_guest_base) { 4362 guest_base = init_guest_space(guest_base, reserved_va, 0, 4363 have_guest_base); 4364 if (guest_base == (unsigned long)-1) { 4365 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4366 "space for use as guest address space (check your virtual " 4367 "memory ulimit setting or reserve less using -R option)\n", 4368 reserved_va); 4369 exit(EXIT_FAILURE); 4370 } 4371 4372 if (reserved_va) { 4373 mmap_next_start = reserved_va; 4374 } 4375 } 4376 4377 /* 4378 * Read in mmap_min_addr kernel parameter. This value is used 4379 * When loading the ELF image to determine whether guest_base 4380 * is needed. It is also used in mmap_find_vma. 4381 */ 4382 { 4383 FILE *fp; 4384 4385 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4386 unsigned long tmp; 4387 if (fscanf(fp, "%lu", &tmp) == 1) { 4388 mmap_min_addr = tmp; 4389 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4390 } 4391 fclose(fp); 4392 } 4393 } 4394 4395 /* 4396 * Prepare copy of argv vector for target. 4397 */ 4398 target_argc = argc - optind; 4399 target_argv = calloc(target_argc + 1, sizeof (char *)); 4400 if (target_argv == NULL) { 4401 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4402 exit(EXIT_FAILURE); 4403 } 4404 4405 /* 4406 * If argv0 is specified (using '-0' switch) we replace 4407 * argv[0] pointer with the given one. 4408 */ 4409 i = 0; 4410 if (argv0 != NULL) { 4411 target_argv[i++] = strdup(argv0); 4412 } 4413 for (; i < target_argc; i++) { 4414 target_argv[i] = strdup(argv[optind + i]); 4415 } 4416 target_argv[target_argc] = NULL; 4417 4418 ts = g_new0(TaskState, 1); 4419 init_task_state(ts); 4420 /* build Task State */ 4421 ts->info = info; 4422 ts->bprm = &bprm; 4423 cpu->opaque = ts; 4424 task_settid(ts); 4425 4426 execfd = qemu_getauxval(AT_EXECFD); 4427 if (execfd == 0) { 4428 execfd = open(filename, O_RDONLY); 4429 if (execfd < 0) { 4430 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4431 _exit(EXIT_FAILURE); 4432 } 4433 } 4434 4435 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4436 info, &bprm); 4437 if (ret != 0) { 4438 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4439 _exit(EXIT_FAILURE); 4440 } 4441 4442 for (wrk = target_environ; *wrk; wrk++) { 4443 free(*wrk); 4444 } 4445 4446 free(target_environ); 4447 4448 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4449 qemu_log("guest_base 0x%lx\n", guest_base); 4450 log_page_dump(); 4451 4452 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4453 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4454 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); 4455 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); 4456 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4457 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); 4458 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4459 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4460 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start); 4461 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n", 4462 info->arg_end + (abi_ulong)sizeof(abi_ulong)); 4463 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv); 4464 } 4465 4466 target_set_brk(info->brk); 4467 syscall_init(); 4468 signal_init(); 4469 4470 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4471 generating the prologue until now so that the prologue can take 4472 the real value of GUEST_BASE into account. */ 4473 tcg_prologue_init(&tcg_ctx); 4474 4475 #if defined(TARGET_I386) 4476 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4477 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4478 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4479 env->cr[4] |= CR4_OSFXSR_MASK; 4480 env->hflags |= HF_OSFXSR_MASK; 4481 } 4482 #ifndef TARGET_ABI32 4483 /* enable 64 bit mode if possible */ 4484 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4485 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4486 exit(EXIT_FAILURE); 4487 } 4488 env->cr[4] |= CR4_PAE_MASK; 4489 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4490 env->hflags |= HF_LMA_MASK; 4491 #endif 4492 4493 /* flags setup : we activate the IRQs by default as in user mode */ 4494 env->eflags |= IF_MASK; 4495 4496 /* linux register setup */ 4497 #ifndef TARGET_ABI32 4498 env->regs[R_EAX] = regs->rax; 4499 env->regs[R_EBX] = regs->rbx; 4500 env->regs[R_ECX] = regs->rcx; 4501 env->regs[R_EDX] = regs->rdx; 4502 env->regs[R_ESI] = regs->rsi; 4503 env->regs[R_EDI] = regs->rdi; 4504 env->regs[R_EBP] = regs->rbp; 4505 env->regs[R_ESP] = regs->rsp; 4506 env->eip = regs->rip; 4507 #else 4508 env->regs[R_EAX] = regs->eax; 4509 env->regs[R_EBX] = regs->ebx; 4510 env->regs[R_ECX] = regs->ecx; 4511 env->regs[R_EDX] = regs->edx; 4512 env->regs[R_ESI] = regs->esi; 4513 env->regs[R_EDI] = regs->edi; 4514 env->regs[R_EBP] = regs->ebp; 4515 env->regs[R_ESP] = regs->esp; 4516 env->eip = regs->eip; 4517 #endif 4518 4519 /* linux interrupt setup */ 4520 #ifndef TARGET_ABI32 4521 env->idt.limit = 511; 4522 #else 4523 env->idt.limit = 255; 4524 #endif 4525 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4526 PROT_READ|PROT_WRITE, 4527 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4528 idt_table = g2h(env->idt.base); 4529 set_idt(0, 0); 4530 set_idt(1, 0); 4531 set_idt(2, 0); 4532 set_idt(3, 3); 4533 set_idt(4, 3); 4534 set_idt(5, 0); 4535 set_idt(6, 0); 4536 set_idt(7, 0); 4537 set_idt(8, 0); 4538 set_idt(9, 0); 4539 set_idt(10, 0); 4540 set_idt(11, 0); 4541 set_idt(12, 0); 4542 set_idt(13, 0); 4543 set_idt(14, 0); 4544 set_idt(15, 0); 4545 set_idt(16, 0); 4546 set_idt(17, 0); 4547 set_idt(18, 0); 4548 set_idt(19, 0); 4549 set_idt(0x80, 3); 4550 4551 /* linux segment setup */ 4552 { 4553 uint64_t *gdt_table; 4554 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4555 PROT_READ|PROT_WRITE, 4556 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4557 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4558 gdt_table = g2h(env->gdt.base); 4559 #ifdef TARGET_ABI32 4560 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4561 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4562 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4563 #else 4564 /* 64 bit code segment */ 4565 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4566 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4567 DESC_L_MASK | 4568 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4569 #endif 4570 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4571 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4572 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4573 } 4574 cpu_x86_load_seg(env, R_CS, __USER_CS); 4575 cpu_x86_load_seg(env, R_SS, __USER_DS); 4576 #ifdef TARGET_ABI32 4577 cpu_x86_load_seg(env, R_DS, __USER_DS); 4578 cpu_x86_load_seg(env, R_ES, __USER_DS); 4579 cpu_x86_load_seg(env, R_FS, __USER_DS); 4580 cpu_x86_load_seg(env, R_GS, __USER_DS); 4581 /* This hack makes Wine work... */ 4582 env->segs[R_FS].selector = 0; 4583 #else 4584 cpu_x86_load_seg(env, R_DS, 0); 4585 cpu_x86_load_seg(env, R_ES, 0); 4586 cpu_x86_load_seg(env, R_FS, 0); 4587 cpu_x86_load_seg(env, R_GS, 0); 4588 #endif 4589 #elif defined(TARGET_AARCH64) 4590 { 4591 int i; 4592 4593 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4594 fprintf(stderr, 4595 "The selected ARM CPU does not support 64 bit mode\n"); 4596 exit(EXIT_FAILURE); 4597 } 4598 4599 for (i = 0; i < 31; i++) { 4600 env->xregs[i] = regs->regs[i]; 4601 } 4602 env->pc = regs->pc; 4603 env->xregs[31] = regs->sp; 4604 } 4605 #elif defined(TARGET_ARM) 4606 { 4607 int i; 4608 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, 4609 CPSRWriteByInstr); 4610 for(i = 0; i < 16; i++) { 4611 env->regs[i] = regs->uregs[i]; 4612 } 4613 #ifdef TARGET_WORDS_BIGENDIAN 4614 /* Enable BE8. */ 4615 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4616 && (info->elf_flags & EF_ARM_BE8)) { 4617 env->uncached_cpsr |= CPSR_E; 4618 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4619 } else { 4620 env->cp15.sctlr_el[1] |= SCTLR_B; 4621 } 4622 #endif 4623 } 4624 #elif defined(TARGET_UNICORE32) 4625 { 4626 int i; 4627 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4628 for (i = 0; i < 32; i++) { 4629 env->regs[i] = regs->uregs[i]; 4630 } 4631 } 4632 #elif defined(TARGET_SPARC) 4633 { 4634 int i; 4635 env->pc = regs->pc; 4636 env->npc = regs->npc; 4637 env->y = regs->y; 4638 for(i = 0; i < 8; i++) 4639 env->gregs[i] = regs->u_regs[i]; 4640 for(i = 0; i < 8; i++) 4641 env->regwptr[i] = regs->u_regs[i + 8]; 4642 } 4643 #elif defined(TARGET_PPC) 4644 { 4645 int i; 4646 4647 #if defined(TARGET_PPC64) 4648 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; 4649 #if defined(TARGET_ABI32) 4650 env->msr &= ~((target_ulong)1 << flag); 4651 #else 4652 env->msr |= (target_ulong)1 << flag; 4653 #endif 4654 #endif 4655 env->nip = regs->nip; 4656 for(i = 0; i < 32; i++) { 4657 env->gpr[i] = regs->gpr[i]; 4658 } 4659 } 4660 #elif defined(TARGET_M68K) 4661 { 4662 env->pc = regs->pc; 4663 env->dregs[0] = regs->d0; 4664 env->dregs[1] = regs->d1; 4665 env->dregs[2] = regs->d2; 4666 env->dregs[3] = regs->d3; 4667 env->dregs[4] = regs->d4; 4668 env->dregs[5] = regs->d5; 4669 env->dregs[6] = regs->d6; 4670 env->dregs[7] = regs->d7; 4671 env->aregs[0] = regs->a0; 4672 env->aregs[1] = regs->a1; 4673 env->aregs[2] = regs->a2; 4674 env->aregs[3] = regs->a3; 4675 env->aregs[4] = regs->a4; 4676 env->aregs[5] = regs->a5; 4677 env->aregs[6] = regs->a6; 4678 env->aregs[7] = regs->usp; 4679 env->sr = regs->sr; 4680 ts->sim_syscalls = 1; 4681 } 4682 #elif defined(TARGET_MICROBLAZE) 4683 { 4684 env->regs[0] = regs->r0; 4685 env->regs[1] = regs->r1; 4686 env->regs[2] = regs->r2; 4687 env->regs[3] = regs->r3; 4688 env->regs[4] = regs->r4; 4689 env->regs[5] = regs->r5; 4690 env->regs[6] = regs->r6; 4691 env->regs[7] = regs->r7; 4692 env->regs[8] = regs->r8; 4693 env->regs[9] = regs->r9; 4694 env->regs[10] = regs->r10; 4695 env->regs[11] = regs->r11; 4696 env->regs[12] = regs->r12; 4697 env->regs[13] = regs->r13; 4698 env->regs[14] = regs->r14; 4699 env->regs[15] = regs->r15; 4700 env->regs[16] = regs->r16; 4701 env->regs[17] = regs->r17; 4702 env->regs[18] = regs->r18; 4703 env->regs[19] = regs->r19; 4704 env->regs[20] = regs->r20; 4705 env->regs[21] = regs->r21; 4706 env->regs[22] = regs->r22; 4707 env->regs[23] = regs->r23; 4708 env->regs[24] = regs->r24; 4709 env->regs[25] = regs->r25; 4710 env->regs[26] = regs->r26; 4711 env->regs[27] = regs->r27; 4712 env->regs[28] = regs->r28; 4713 env->regs[29] = regs->r29; 4714 env->regs[30] = regs->r30; 4715 env->regs[31] = regs->r31; 4716 env->sregs[SR_PC] = regs->pc; 4717 } 4718 #elif defined(TARGET_MIPS) 4719 { 4720 int i; 4721 4722 for(i = 0; i < 32; i++) { 4723 env->active_tc.gpr[i] = regs->regs[i]; 4724 } 4725 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4726 if (regs->cp0_epc & 1) { 4727 env->hflags |= MIPS_HFLAG_M16; 4728 } 4729 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != 4730 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { 4731 if ((env->active_fpu.fcr31_rw_bitmask & 4732 (1 << FCR31_NAN2008)) == 0) { 4733 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); 4734 exit(1); 4735 } 4736 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { 4737 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); 4738 } else { 4739 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); 4740 } 4741 restore_snan_bit_mode(env); 4742 } 4743 } 4744 #elif defined(TARGET_NIOS2) 4745 { 4746 env->regs[0] = 0; 4747 env->regs[1] = regs->r1; 4748 env->regs[2] = regs->r2; 4749 env->regs[3] = regs->r3; 4750 env->regs[4] = regs->r4; 4751 env->regs[5] = regs->r5; 4752 env->regs[6] = regs->r6; 4753 env->regs[7] = regs->r7; 4754 env->regs[8] = regs->r8; 4755 env->regs[9] = regs->r9; 4756 env->regs[10] = regs->r10; 4757 env->regs[11] = regs->r11; 4758 env->regs[12] = regs->r12; 4759 env->regs[13] = regs->r13; 4760 env->regs[14] = regs->r14; 4761 env->regs[15] = regs->r15; 4762 /* TODO: unsigned long orig_r2; */ 4763 env->regs[R_RA] = regs->ra; 4764 env->regs[R_FP] = regs->fp; 4765 env->regs[R_SP] = regs->sp; 4766 env->regs[R_GP] = regs->gp; 4767 env->regs[CR_ESTATUS] = regs->estatus; 4768 env->regs[R_EA] = regs->ea; 4769 /* TODO: unsigned long orig_r7; */ 4770 4771 /* Emulate eret when starting thread. */ 4772 env->regs[R_PC] = regs->ea; 4773 } 4774 #elif defined(TARGET_OPENRISC) 4775 { 4776 int i; 4777 4778 for (i = 0; i < 32; i++) { 4779 env->gpr[i] = regs->gpr[i]; 4780 } 4781 4782 env->sr = regs->sr; 4783 env->pc = regs->pc; 4784 } 4785 #elif defined(TARGET_SH4) 4786 { 4787 int i; 4788 4789 for(i = 0; i < 16; i++) { 4790 env->gregs[i] = regs->regs[i]; 4791 } 4792 env->pc = regs->pc; 4793 } 4794 #elif defined(TARGET_ALPHA) 4795 { 4796 int i; 4797 4798 for(i = 0; i < 28; i++) { 4799 env->ir[i] = ((abi_ulong *)regs)[i]; 4800 } 4801 env->ir[IR_SP] = regs->usp; 4802 env->pc = regs->pc; 4803 } 4804 #elif defined(TARGET_CRIS) 4805 { 4806 env->regs[0] = regs->r0; 4807 env->regs[1] = regs->r1; 4808 env->regs[2] = regs->r2; 4809 env->regs[3] = regs->r3; 4810 env->regs[4] = regs->r4; 4811 env->regs[5] = regs->r5; 4812 env->regs[6] = regs->r6; 4813 env->regs[7] = regs->r7; 4814 env->regs[8] = regs->r8; 4815 env->regs[9] = regs->r9; 4816 env->regs[10] = regs->r10; 4817 env->regs[11] = regs->r11; 4818 env->regs[12] = regs->r12; 4819 env->regs[13] = regs->r13; 4820 env->regs[14] = info->start_stack; 4821 env->regs[15] = regs->acr; 4822 env->pc = regs->erp; 4823 } 4824 #elif defined(TARGET_S390X) 4825 { 4826 int i; 4827 for (i = 0; i < 16; i++) { 4828 env->regs[i] = regs->gprs[i]; 4829 } 4830 env->psw.mask = regs->psw.mask; 4831 env->psw.addr = regs->psw.addr; 4832 } 4833 #elif defined(TARGET_TILEGX) 4834 { 4835 int i; 4836 for (i = 0; i < TILEGX_R_COUNT; i++) { 4837 env->regs[i] = regs->regs[i]; 4838 } 4839 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4840 env->spregs[i] = 0; 4841 } 4842 env->pc = regs->pc; 4843 } 4844 #elif defined(TARGET_HPPA) 4845 { 4846 int i; 4847 for (i = 1; i < 32; i++) { 4848 env->gr[i] = regs->gr[i]; 4849 } 4850 env->iaoq_f = regs->iaoq[0]; 4851 env->iaoq_b = regs->iaoq[1]; 4852 } 4853 #else 4854 #error unsupported target CPU 4855 #endif 4856 4857 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4858 ts->stack_base = info->start_stack; 4859 ts->heap_base = info->brk; 4860 /* This will be filled in on the first SYS_HEAPINFO call. */ 4861 ts->heap_limit = 0; 4862 #endif 4863 4864 if (gdbstub_port) { 4865 if (gdbserver_start(gdbstub_port) < 0) { 4866 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4867 gdbstub_port); 4868 exit(EXIT_FAILURE); 4869 } 4870 gdb_handlesig(cpu, 0); 4871 } 4872 cpu_loop(env); 4873 /* never exits */ 4874 return 0; 4875 } 4876