1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "qemu/cache-utils.h" 32 #include "cpu.h" 33 #include "tcg.h" 34 #include "qemu/timer.h" 35 #include "qemu/envlist.h" 36 #include "elf.h" 37 38 char *exec_path; 39 40 int singlestep; 41 const char *filename; 42 const char *argv0; 43 int gdbstub_port; 44 envlist_t *envlist; 45 static const char *cpu_model; 46 unsigned long mmap_min_addr; 47 #if defined(CONFIG_USE_GUEST_BASE) 48 unsigned long guest_base; 49 int have_guest_base; 50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 51 /* 52 * When running 32-on-64 we should make sure we can fit all of the possible 53 * guest address space into a contiguous chunk of virtual host memory. 54 * 55 * This way we will never overlap with our own libraries or binaries or stack 56 * or anything else that QEMU maps. 57 */ 58 # ifdef TARGET_MIPS 59 /* MIPS only supports 31 bits of virtual address space for user space */ 60 unsigned long reserved_va = 0x77000000; 61 # else 62 unsigned long reserved_va = 0xf7000000; 63 # endif 64 #else 65 unsigned long reserved_va; 66 #endif 67 #endif 68 69 static void usage(void); 70 71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 72 const char *qemu_uname_release; 73 74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 75 we allocate a bigger stack. Need a better solution, for example 76 by remapping the process stack directly at the right place */ 77 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 78 79 void gemu_log(const char *fmt, ...) 80 { 81 va_list ap; 82 83 va_start(ap, fmt); 84 vfprintf(stderr, fmt, ap); 85 va_end(ap); 86 } 87 88 #if defined(TARGET_I386) 89 int cpu_get_pic_interrupt(CPUX86State *env) 90 { 91 return -1; 92 } 93 #endif 94 95 /***********************************************************/ 96 /* Helper routines for implementing atomic operations. */ 97 98 /* To implement exclusive operations we force all cpus to syncronise. 99 We don't require a full sync, only that no cpus are executing guest code. 100 The alternative is to map target atomic ops onto host equivalents, 101 which requires quite a lot of per host/target work. */ 102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 106 static int pending_cpus; 107 108 /* Make sure everything is in a consistent state for calling fork(). */ 109 void fork_start(void) 110 { 111 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 112 pthread_mutex_lock(&exclusive_lock); 113 mmap_fork_start(); 114 } 115 116 void fork_end(int child) 117 { 118 mmap_fork_end(child); 119 if (child) { 120 CPUState *cpu, *next_cpu; 121 /* Child processes created by fork() only have a single thread. 122 Discard information about the parent threads. */ 123 CPU_FOREACH_SAFE(cpu, next_cpu) { 124 if (cpu != thread_cpu) { 125 QTAILQ_REMOVE(&cpus, thread_cpu, node); 126 } 127 } 128 pending_cpus = 0; 129 pthread_mutex_init(&exclusive_lock, NULL); 130 pthread_mutex_init(&cpu_list_mutex, NULL); 131 pthread_cond_init(&exclusive_cond, NULL); 132 pthread_cond_init(&exclusive_resume, NULL); 133 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL); 134 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr); 135 } else { 136 pthread_mutex_unlock(&exclusive_lock); 137 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 138 } 139 } 140 141 /* Wait for pending exclusive operations to complete. The exclusive lock 142 must be held. */ 143 static inline void exclusive_idle(void) 144 { 145 while (pending_cpus) { 146 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 147 } 148 } 149 150 /* Start an exclusive operation. 151 Must only be called from outside cpu_arm_exec. */ 152 static inline void start_exclusive(void) 153 { 154 CPUState *other_cpu; 155 156 pthread_mutex_lock(&exclusive_lock); 157 exclusive_idle(); 158 159 pending_cpus = 1; 160 /* Make all other cpus stop executing. */ 161 CPU_FOREACH(other_cpu) { 162 if (other_cpu->running) { 163 pending_cpus++; 164 cpu_exit(other_cpu); 165 } 166 } 167 if (pending_cpus > 1) { 168 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 169 } 170 } 171 172 /* Finish an exclusive operation. */ 173 static inline void end_exclusive(void) 174 { 175 pending_cpus = 0; 176 pthread_cond_broadcast(&exclusive_resume); 177 pthread_mutex_unlock(&exclusive_lock); 178 } 179 180 /* Wait for exclusive ops to finish, and begin cpu execution. */ 181 static inline void cpu_exec_start(CPUState *cpu) 182 { 183 pthread_mutex_lock(&exclusive_lock); 184 exclusive_idle(); 185 cpu->running = true; 186 pthread_mutex_unlock(&exclusive_lock); 187 } 188 189 /* Mark cpu as not executing, and release pending exclusive ops. */ 190 static inline void cpu_exec_end(CPUState *cpu) 191 { 192 pthread_mutex_lock(&exclusive_lock); 193 cpu->running = false; 194 if (pending_cpus > 1) { 195 pending_cpus--; 196 if (pending_cpus == 1) { 197 pthread_cond_signal(&exclusive_cond); 198 } 199 } 200 exclusive_idle(); 201 pthread_mutex_unlock(&exclusive_lock); 202 } 203 204 void cpu_list_lock(void) 205 { 206 pthread_mutex_lock(&cpu_list_mutex); 207 } 208 209 void cpu_list_unlock(void) 210 { 211 pthread_mutex_unlock(&cpu_list_mutex); 212 } 213 214 215 #ifdef TARGET_I386 216 /***********************************************************/ 217 /* CPUX86 core interface */ 218 219 void cpu_smm_update(CPUX86State *env) 220 { 221 } 222 223 uint64_t cpu_get_tsc(CPUX86State *env) 224 { 225 return cpu_get_real_ticks(); 226 } 227 228 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 229 int flags) 230 { 231 unsigned int e1, e2; 232 uint32_t *p; 233 e1 = (addr << 16) | (limit & 0xffff); 234 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 235 e2 |= flags; 236 p = ptr; 237 p[0] = tswap32(e1); 238 p[1] = tswap32(e2); 239 } 240 241 static uint64_t *idt_table; 242 #ifdef TARGET_X86_64 243 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 244 uint64_t addr, unsigned int sel) 245 { 246 uint32_t *p, e1, e2; 247 e1 = (addr & 0xffff) | (sel << 16); 248 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 249 p = ptr; 250 p[0] = tswap32(e1); 251 p[1] = tswap32(e2); 252 p[2] = tswap32(addr >> 32); 253 p[3] = 0; 254 } 255 /* only dpl matters as we do only user space emulation */ 256 static void set_idt(int n, unsigned int dpl) 257 { 258 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 259 } 260 #else 261 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 262 uint32_t addr, unsigned int sel) 263 { 264 uint32_t *p, e1, e2; 265 e1 = (addr & 0xffff) | (sel << 16); 266 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 267 p = ptr; 268 p[0] = tswap32(e1); 269 p[1] = tswap32(e2); 270 } 271 272 /* only dpl matters as we do only user space emulation */ 273 static void set_idt(int n, unsigned int dpl) 274 { 275 set_gate(idt_table + n, 0, dpl, 0, 0); 276 } 277 #endif 278 279 void cpu_loop(CPUX86State *env) 280 { 281 CPUState *cs = CPU(x86_env_get_cpu(env)); 282 int trapnr; 283 abi_ulong pc; 284 target_siginfo_t info; 285 286 for(;;) { 287 trapnr = cpu_x86_exec(env); 288 switch(trapnr) { 289 case 0x80: 290 /* linux syscall from int $0x80 */ 291 env->regs[R_EAX] = do_syscall(env, 292 env->regs[R_EAX], 293 env->regs[R_EBX], 294 env->regs[R_ECX], 295 env->regs[R_EDX], 296 env->regs[R_ESI], 297 env->regs[R_EDI], 298 env->regs[R_EBP], 299 0, 0); 300 break; 301 #ifndef TARGET_ABI32 302 case EXCP_SYSCALL: 303 /* linux syscall from syscall instruction */ 304 env->regs[R_EAX] = do_syscall(env, 305 env->regs[R_EAX], 306 env->regs[R_EDI], 307 env->regs[R_ESI], 308 env->regs[R_EDX], 309 env->regs[10], 310 env->regs[8], 311 env->regs[9], 312 0, 0); 313 env->eip = env->exception_next_eip; 314 break; 315 #endif 316 case EXCP0B_NOSEG: 317 case EXCP0C_STACK: 318 info.si_signo = SIGBUS; 319 info.si_errno = 0; 320 info.si_code = TARGET_SI_KERNEL; 321 info._sifields._sigfault._addr = 0; 322 queue_signal(env, info.si_signo, &info); 323 break; 324 case EXCP0D_GPF: 325 /* XXX: potential problem if ABI32 */ 326 #ifndef TARGET_X86_64 327 if (env->eflags & VM_MASK) { 328 handle_vm86_fault(env); 329 } else 330 #endif 331 { 332 info.si_signo = SIGSEGV; 333 info.si_errno = 0; 334 info.si_code = TARGET_SI_KERNEL; 335 info._sifields._sigfault._addr = 0; 336 queue_signal(env, info.si_signo, &info); 337 } 338 break; 339 case EXCP0E_PAGE: 340 info.si_signo = SIGSEGV; 341 info.si_errno = 0; 342 if (!(env->error_code & 1)) 343 info.si_code = TARGET_SEGV_MAPERR; 344 else 345 info.si_code = TARGET_SEGV_ACCERR; 346 info._sifields._sigfault._addr = env->cr[2]; 347 queue_signal(env, info.si_signo, &info); 348 break; 349 case EXCP00_DIVZ: 350 #ifndef TARGET_X86_64 351 if (env->eflags & VM_MASK) { 352 handle_vm86_trap(env, trapnr); 353 } else 354 #endif 355 { 356 /* division by zero */ 357 info.si_signo = SIGFPE; 358 info.si_errno = 0; 359 info.si_code = TARGET_FPE_INTDIV; 360 info._sifields._sigfault._addr = env->eip; 361 queue_signal(env, info.si_signo, &info); 362 } 363 break; 364 case EXCP01_DB: 365 case EXCP03_INT3: 366 #ifndef TARGET_X86_64 367 if (env->eflags & VM_MASK) { 368 handle_vm86_trap(env, trapnr); 369 } else 370 #endif 371 { 372 info.si_signo = SIGTRAP; 373 info.si_errno = 0; 374 if (trapnr == EXCP01_DB) { 375 info.si_code = TARGET_TRAP_BRKPT; 376 info._sifields._sigfault._addr = env->eip; 377 } else { 378 info.si_code = TARGET_SI_KERNEL; 379 info._sifields._sigfault._addr = 0; 380 } 381 queue_signal(env, info.si_signo, &info); 382 } 383 break; 384 case EXCP04_INTO: 385 case EXCP05_BOUND: 386 #ifndef TARGET_X86_64 387 if (env->eflags & VM_MASK) { 388 handle_vm86_trap(env, trapnr); 389 } else 390 #endif 391 { 392 info.si_signo = SIGSEGV; 393 info.si_errno = 0; 394 info.si_code = TARGET_SI_KERNEL; 395 info._sifields._sigfault._addr = 0; 396 queue_signal(env, info.si_signo, &info); 397 } 398 break; 399 case EXCP06_ILLOP: 400 info.si_signo = SIGILL; 401 info.si_errno = 0; 402 info.si_code = TARGET_ILL_ILLOPN; 403 info._sifields._sigfault._addr = env->eip; 404 queue_signal(env, info.si_signo, &info); 405 break; 406 case EXCP_INTERRUPT: 407 /* just indicate that signals should be handled asap */ 408 break; 409 case EXCP_DEBUG: 410 { 411 int sig; 412 413 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 414 if (sig) 415 { 416 info.si_signo = sig; 417 info.si_errno = 0; 418 info.si_code = TARGET_TRAP_BRKPT; 419 queue_signal(env, info.si_signo, &info); 420 } 421 } 422 break; 423 default: 424 pc = env->segs[R_CS].base + env->eip; 425 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 426 (long)pc, trapnr); 427 abort(); 428 } 429 process_pending_signals(env); 430 } 431 } 432 #endif 433 434 #ifdef TARGET_ARM 435 436 #define get_user_code_u32(x, gaddr, doswap) \ 437 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 438 if (!__r && (doswap)) { \ 439 (x) = bswap32(x); \ 440 } \ 441 __r; \ 442 }) 443 444 #define get_user_code_u16(x, gaddr, doswap) \ 445 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 446 if (!__r && (doswap)) { \ 447 (x) = bswap16(x); \ 448 } \ 449 __r; \ 450 }) 451 452 #ifdef TARGET_ABI32 453 /* Commpage handling -- there is no commpage for AArch64 */ 454 455 /* 456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 457 * Input: 458 * r0 = pointer to oldval 459 * r1 = pointer to newval 460 * r2 = pointer to target value 461 * 462 * Output: 463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 464 * C set if *ptr was changed, clear if no exchange happened 465 * 466 * Note segv's in kernel helpers are a bit tricky, we can set the 467 * data address sensibly but the PC address is just the entry point. 468 */ 469 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 470 { 471 uint64_t oldval, newval, val; 472 uint32_t addr, cpsr; 473 target_siginfo_t info; 474 475 /* Based on the 32 bit code in do_kernel_trap */ 476 477 /* XXX: This only works between threads, not between processes. 478 It's probably possible to implement this with native host 479 operations. However things like ldrex/strex are much harder so 480 there's not much point trying. */ 481 start_exclusive(); 482 cpsr = cpsr_read(env); 483 addr = env->regs[2]; 484 485 if (get_user_u64(oldval, env->regs[0])) { 486 env->exception.vaddress = env->regs[0]; 487 goto segv; 488 }; 489 490 if (get_user_u64(newval, env->regs[1])) { 491 env->exception.vaddress = env->regs[1]; 492 goto segv; 493 }; 494 495 if (get_user_u64(val, addr)) { 496 env->exception.vaddress = addr; 497 goto segv; 498 } 499 500 if (val == oldval) { 501 val = newval; 502 503 if (put_user_u64(val, addr)) { 504 env->exception.vaddress = addr; 505 goto segv; 506 }; 507 508 env->regs[0] = 0; 509 cpsr |= CPSR_C; 510 } else { 511 env->regs[0] = -1; 512 cpsr &= ~CPSR_C; 513 } 514 cpsr_write(env, cpsr, CPSR_C); 515 end_exclusive(); 516 return; 517 518 segv: 519 end_exclusive(); 520 /* We get the PC of the entry address - which is as good as anything, 521 on a real kernel what you get depends on which mode it uses. */ 522 info.si_signo = SIGSEGV; 523 info.si_errno = 0; 524 /* XXX: check env->error_code */ 525 info.si_code = TARGET_SEGV_MAPERR; 526 info._sifields._sigfault._addr = env->exception.vaddress; 527 queue_signal(env, info.si_signo, &info); 528 529 end_exclusive(); 530 } 531 532 /* Handle a jump to the kernel code page. */ 533 static int 534 do_kernel_trap(CPUARMState *env) 535 { 536 uint32_t addr; 537 uint32_t cpsr; 538 uint32_t val; 539 540 switch (env->regs[15]) { 541 case 0xffff0fa0: /* __kernel_memory_barrier */ 542 /* ??? No-op. Will need to do better for SMP. */ 543 break; 544 case 0xffff0fc0: /* __kernel_cmpxchg */ 545 /* XXX: This only works between threads, not between processes. 546 It's probably possible to implement this with native host 547 operations. However things like ldrex/strex are much harder so 548 there's not much point trying. */ 549 start_exclusive(); 550 cpsr = cpsr_read(env); 551 addr = env->regs[2]; 552 /* FIXME: This should SEGV if the access fails. */ 553 if (get_user_u32(val, addr)) 554 val = ~env->regs[0]; 555 if (val == env->regs[0]) { 556 val = env->regs[1]; 557 /* FIXME: Check for segfaults. */ 558 put_user_u32(val, addr); 559 env->regs[0] = 0; 560 cpsr |= CPSR_C; 561 } else { 562 env->regs[0] = -1; 563 cpsr &= ~CPSR_C; 564 } 565 cpsr_write(env, cpsr, CPSR_C); 566 end_exclusive(); 567 break; 568 case 0xffff0fe0: /* __kernel_get_tls */ 569 env->regs[0] = env->cp15.tpidrro_el0; 570 break; 571 case 0xffff0f60: /* __kernel_cmpxchg64 */ 572 arm_kernel_cmpxchg64_helper(env); 573 break; 574 575 default: 576 return 1; 577 } 578 /* Jump back to the caller. */ 579 addr = env->regs[14]; 580 if (addr & 1) { 581 env->thumb = 1; 582 addr &= ~1; 583 } 584 env->regs[15] = addr; 585 586 return 0; 587 } 588 589 /* Store exclusive handling for AArch32 */ 590 static int do_strex(CPUARMState *env) 591 { 592 uint64_t val; 593 int size; 594 int rc = 1; 595 int segv = 0; 596 uint32_t addr; 597 start_exclusive(); 598 if (env->exclusive_addr != env->exclusive_test) { 599 goto fail; 600 } 601 /* We know we're always AArch32 so the address is in uint32_t range 602 * unless it was the -1 exclusive-monitor-lost value (which won't 603 * match exclusive_test above). 604 */ 605 assert(extract64(env->exclusive_addr, 32, 32) == 0); 606 addr = env->exclusive_addr; 607 size = env->exclusive_info & 0xf; 608 switch (size) { 609 case 0: 610 segv = get_user_u8(val, addr); 611 break; 612 case 1: 613 segv = get_user_u16(val, addr); 614 break; 615 case 2: 616 case 3: 617 segv = get_user_u32(val, addr); 618 break; 619 default: 620 abort(); 621 } 622 if (segv) { 623 env->exception.vaddress = addr; 624 goto done; 625 } 626 if (size == 3) { 627 uint32_t valhi; 628 segv = get_user_u32(valhi, addr + 4); 629 if (segv) { 630 env->exception.vaddress = addr + 4; 631 goto done; 632 } 633 val = deposit64(val, 32, 32, valhi); 634 } 635 if (val != env->exclusive_val) { 636 goto fail; 637 } 638 639 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 640 switch (size) { 641 case 0: 642 segv = put_user_u8(val, addr); 643 break; 644 case 1: 645 segv = put_user_u16(val, addr); 646 break; 647 case 2: 648 case 3: 649 segv = put_user_u32(val, addr); 650 break; 651 } 652 if (segv) { 653 env->exception.vaddress = addr; 654 goto done; 655 } 656 if (size == 3) { 657 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 658 segv = put_user_u32(val, addr + 4); 659 if (segv) { 660 env->exception.vaddress = addr + 4; 661 goto done; 662 } 663 } 664 rc = 0; 665 fail: 666 env->regs[15] += 4; 667 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 668 done: 669 end_exclusive(); 670 return segv; 671 } 672 673 void cpu_loop(CPUARMState *env) 674 { 675 CPUState *cs = CPU(arm_env_get_cpu(env)); 676 int trapnr; 677 unsigned int n, insn; 678 target_siginfo_t info; 679 uint32_t addr; 680 681 for(;;) { 682 cpu_exec_start(cs); 683 trapnr = cpu_arm_exec(env); 684 cpu_exec_end(cs); 685 switch(trapnr) { 686 case EXCP_UDEF: 687 { 688 TaskState *ts = cs->opaque; 689 uint32_t opcode; 690 int rc; 691 692 /* we handle the FPU emulation here, as Linux */ 693 /* we get the opcode */ 694 /* FIXME - what to do if get_user() fails? */ 695 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 696 697 rc = EmulateAll(opcode, &ts->fpa, env); 698 if (rc == 0) { /* illegal instruction */ 699 info.si_signo = SIGILL; 700 info.si_errno = 0; 701 info.si_code = TARGET_ILL_ILLOPN; 702 info._sifields._sigfault._addr = env->regs[15]; 703 queue_signal(env, info.si_signo, &info); 704 } else if (rc < 0) { /* FP exception */ 705 int arm_fpe=0; 706 707 /* translate softfloat flags to FPSR flags */ 708 if (-rc & float_flag_invalid) 709 arm_fpe |= BIT_IOC; 710 if (-rc & float_flag_divbyzero) 711 arm_fpe |= BIT_DZC; 712 if (-rc & float_flag_overflow) 713 arm_fpe |= BIT_OFC; 714 if (-rc & float_flag_underflow) 715 arm_fpe |= BIT_UFC; 716 if (-rc & float_flag_inexact) 717 arm_fpe |= BIT_IXC; 718 719 FPSR fpsr = ts->fpa.fpsr; 720 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 721 722 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 723 info.si_signo = SIGFPE; 724 info.si_errno = 0; 725 726 /* ordered by priority, least first */ 727 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 728 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 729 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 730 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 731 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 732 733 info._sifields._sigfault._addr = env->regs[15]; 734 queue_signal(env, info.si_signo, &info); 735 } else { 736 env->regs[15] += 4; 737 } 738 739 /* accumulate unenabled exceptions */ 740 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 741 fpsr |= BIT_IXC; 742 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 743 fpsr |= BIT_UFC; 744 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 745 fpsr |= BIT_OFC; 746 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 747 fpsr |= BIT_DZC; 748 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 749 fpsr |= BIT_IOC; 750 ts->fpa.fpsr=fpsr; 751 } else { /* everything OK */ 752 /* increment PC */ 753 env->regs[15] += 4; 754 } 755 } 756 break; 757 case EXCP_SWI: 758 case EXCP_BKPT: 759 { 760 env->eabi = 1; 761 /* system call */ 762 if (trapnr == EXCP_BKPT) { 763 if (env->thumb) { 764 /* FIXME - what to do if get_user() fails? */ 765 get_user_code_u16(insn, env->regs[15], env->bswap_code); 766 n = insn & 0xff; 767 env->regs[15] += 2; 768 } else { 769 /* FIXME - what to do if get_user() fails? */ 770 get_user_code_u32(insn, env->regs[15], env->bswap_code); 771 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 772 env->regs[15] += 4; 773 } 774 } else { 775 if (env->thumb) { 776 /* FIXME - what to do if get_user() fails? */ 777 get_user_code_u16(insn, env->regs[15] - 2, 778 env->bswap_code); 779 n = insn & 0xff; 780 } else { 781 /* FIXME - what to do if get_user() fails? */ 782 get_user_code_u32(insn, env->regs[15] - 4, 783 env->bswap_code); 784 n = insn & 0xffffff; 785 } 786 } 787 788 if (n == ARM_NR_cacheflush) { 789 /* nop */ 790 } else if (n == ARM_NR_semihosting 791 || n == ARM_NR_thumb_semihosting) { 792 env->regs[0] = do_arm_semihosting (env); 793 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 794 /* linux syscall */ 795 if (env->thumb || n == 0) { 796 n = env->regs[7]; 797 } else { 798 n -= ARM_SYSCALL_BASE; 799 env->eabi = 0; 800 } 801 if ( n > ARM_NR_BASE) { 802 switch (n) { 803 case ARM_NR_cacheflush: 804 /* nop */ 805 break; 806 case ARM_NR_set_tls: 807 cpu_set_tls(env, env->regs[0]); 808 env->regs[0] = 0; 809 break; 810 default: 811 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 812 n); 813 env->regs[0] = -TARGET_ENOSYS; 814 break; 815 } 816 } else { 817 env->regs[0] = do_syscall(env, 818 n, 819 env->regs[0], 820 env->regs[1], 821 env->regs[2], 822 env->regs[3], 823 env->regs[4], 824 env->regs[5], 825 0, 0); 826 } 827 } else { 828 goto error; 829 } 830 } 831 break; 832 case EXCP_INTERRUPT: 833 /* just indicate that signals should be handled asap */ 834 break; 835 case EXCP_STREX: 836 if (!do_strex(env)) { 837 break; 838 } 839 /* fall through for segv */ 840 case EXCP_PREFETCH_ABORT: 841 case EXCP_DATA_ABORT: 842 addr = env->exception.vaddress; 843 { 844 info.si_signo = SIGSEGV; 845 info.si_errno = 0; 846 /* XXX: check env->error_code */ 847 info.si_code = TARGET_SEGV_MAPERR; 848 info._sifields._sigfault._addr = addr; 849 queue_signal(env, info.si_signo, &info); 850 } 851 break; 852 case EXCP_DEBUG: 853 { 854 int sig; 855 856 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 857 if (sig) 858 { 859 info.si_signo = sig; 860 info.si_errno = 0; 861 info.si_code = TARGET_TRAP_BRKPT; 862 queue_signal(env, info.si_signo, &info); 863 } 864 } 865 break; 866 case EXCP_KERNEL_TRAP: 867 if (do_kernel_trap(env)) 868 goto error; 869 break; 870 default: 871 error: 872 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 873 trapnr); 874 cpu_dump_state(cs, stderr, fprintf, 0); 875 abort(); 876 } 877 process_pending_signals(env); 878 } 879 } 880 881 #else 882 883 /* 884 * Handle AArch64 store-release exclusive 885 * 886 * rs = gets the status result of store exclusive 887 * rt = is the register that is stored 888 * rt2 = is the second register store (in STP) 889 * 890 */ 891 static int do_strex_a64(CPUARMState *env) 892 { 893 uint64_t val; 894 int size; 895 bool is_pair; 896 int rc = 1; 897 int segv = 0; 898 uint64_t addr; 899 int rs, rt, rt2; 900 901 start_exclusive(); 902 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 903 size = extract32(env->exclusive_info, 0, 2); 904 is_pair = extract32(env->exclusive_info, 2, 1); 905 rs = extract32(env->exclusive_info, 4, 5); 906 rt = extract32(env->exclusive_info, 9, 5); 907 rt2 = extract32(env->exclusive_info, 14, 5); 908 909 addr = env->exclusive_addr; 910 911 if (addr != env->exclusive_test) { 912 goto finish; 913 } 914 915 switch (size) { 916 case 0: 917 segv = get_user_u8(val, addr); 918 break; 919 case 1: 920 segv = get_user_u16(val, addr); 921 break; 922 case 2: 923 segv = get_user_u32(val, addr); 924 break; 925 case 3: 926 segv = get_user_u64(val, addr); 927 break; 928 default: 929 abort(); 930 } 931 if (segv) { 932 env->exception.vaddress = addr; 933 goto error; 934 } 935 if (val != env->exclusive_val) { 936 goto finish; 937 } 938 if (is_pair) { 939 if (size == 2) { 940 segv = get_user_u32(val, addr + 4); 941 } else { 942 segv = get_user_u64(val, addr + 8); 943 } 944 if (segv) { 945 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 946 goto error; 947 } 948 if (val != env->exclusive_high) { 949 goto finish; 950 } 951 } 952 /* handle the zero register */ 953 val = rt == 31 ? 0 : env->xregs[rt]; 954 switch (size) { 955 case 0: 956 segv = put_user_u8(val, addr); 957 break; 958 case 1: 959 segv = put_user_u16(val, addr); 960 break; 961 case 2: 962 segv = put_user_u32(val, addr); 963 break; 964 case 3: 965 segv = put_user_u64(val, addr); 966 break; 967 } 968 if (segv) { 969 goto error; 970 } 971 if (is_pair) { 972 /* handle the zero register */ 973 val = rt2 == 31 ? 0 : env->xregs[rt2]; 974 if (size == 2) { 975 segv = put_user_u32(val, addr + 4); 976 } else { 977 segv = put_user_u64(val, addr + 8); 978 } 979 if (segv) { 980 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 981 goto error; 982 } 983 } 984 rc = 0; 985 finish: 986 env->pc += 4; 987 /* rs == 31 encodes a write to the ZR, thus throwing away 988 * the status return. This is rather silly but valid. 989 */ 990 if (rs < 31) { 991 env->xregs[rs] = rc; 992 } 993 error: 994 /* instruction faulted, PC does not advance */ 995 /* either way a strex releases any exclusive lock we have */ 996 env->exclusive_addr = -1; 997 end_exclusive(); 998 return segv; 999 } 1000 1001 /* AArch64 main loop */ 1002 void cpu_loop(CPUARMState *env) 1003 { 1004 CPUState *cs = CPU(arm_env_get_cpu(env)); 1005 int trapnr, sig; 1006 target_siginfo_t info; 1007 uint32_t addr; 1008 1009 for (;;) { 1010 cpu_exec_start(cs); 1011 trapnr = cpu_arm_exec(env); 1012 cpu_exec_end(cs); 1013 1014 switch (trapnr) { 1015 case EXCP_SWI: 1016 env->xregs[0] = do_syscall(env, 1017 env->xregs[8], 1018 env->xregs[0], 1019 env->xregs[1], 1020 env->xregs[2], 1021 env->xregs[3], 1022 env->xregs[4], 1023 env->xregs[5], 1024 0, 0); 1025 break; 1026 case EXCP_INTERRUPT: 1027 /* just indicate that signals should be handled asap */ 1028 break; 1029 case EXCP_UDEF: 1030 info.si_signo = SIGILL; 1031 info.si_errno = 0; 1032 info.si_code = TARGET_ILL_ILLOPN; 1033 info._sifields._sigfault._addr = env->pc; 1034 queue_signal(env, info.si_signo, &info); 1035 break; 1036 case EXCP_STREX: 1037 if (!do_strex_a64(env)) { 1038 break; 1039 } 1040 /* fall through for segv */ 1041 case EXCP_PREFETCH_ABORT: 1042 case EXCP_DATA_ABORT: 1043 addr = env->exception.vaddress; 1044 info.si_signo = SIGSEGV; 1045 info.si_errno = 0; 1046 /* XXX: check env->error_code */ 1047 info.si_code = TARGET_SEGV_MAPERR; 1048 info._sifields._sigfault._addr = addr; 1049 queue_signal(env, info.si_signo, &info); 1050 break; 1051 case EXCP_DEBUG: 1052 case EXCP_BKPT: 1053 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1054 if (sig) { 1055 info.si_signo = sig; 1056 info.si_errno = 0; 1057 info.si_code = TARGET_TRAP_BRKPT; 1058 queue_signal(env, info.si_signo, &info); 1059 } 1060 break; 1061 default: 1062 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 1063 trapnr); 1064 cpu_dump_state(cs, stderr, fprintf, 0); 1065 abort(); 1066 } 1067 process_pending_signals(env); 1068 /* Exception return on AArch64 always clears the exclusive monitor, 1069 * so any return to running guest code implies this. 1070 * A strex (successful or otherwise) also clears the monitor, so 1071 * we don't need to specialcase EXCP_STREX. 1072 */ 1073 env->exclusive_addr = -1; 1074 } 1075 } 1076 #endif /* ndef TARGET_ABI32 */ 1077 1078 #endif 1079 1080 #ifdef TARGET_UNICORE32 1081 1082 void cpu_loop(CPUUniCore32State *env) 1083 { 1084 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1085 int trapnr; 1086 unsigned int n, insn; 1087 target_siginfo_t info; 1088 1089 for (;;) { 1090 cpu_exec_start(cs); 1091 trapnr = uc32_cpu_exec(env); 1092 cpu_exec_end(cs); 1093 switch (trapnr) { 1094 case UC32_EXCP_PRIV: 1095 { 1096 /* system call */ 1097 get_user_u32(insn, env->regs[31] - 4); 1098 n = insn & 0xffffff; 1099 1100 if (n >= UC32_SYSCALL_BASE) { 1101 /* linux syscall */ 1102 n -= UC32_SYSCALL_BASE; 1103 if (n == UC32_SYSCALL_NR_set_tls) { 1104 cpu_set_tls(env, env->regs[0]); 1105 env->regs[0] = 0; 1106 } else { 1107 env->regs[0] = do_syscall(env, 1108 n, 1109 env->regs[0], 1110 env->regs[1], 1111 env->regs[2], 1112 env->regs[3], 1113 env->regs[4], 1114 env->regs[5], 1115 0, 0); 1116 } 1117 } else { 1118 goto error; 1119 } 1120 } 1121 break; 1122 case UC32_EXCP_DTRAP: 1123 case UC32_EXCP_ITRAP: 1124 info.si_signo = SIGSEGV; 1125 info.si_errno = 0; 1126 /* XXX: check env->error_code */ 1127 info.si_code = TARGET_SEGV_MAPERR; 1128 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1129 queue_signal(env, info.si_signo, &info); 1130 break; 1131 case EXCP_INTERRUPT: 1132 /* just indicate that signals should be handled asap */ 1133 break; 1134 case EXCP_DEBUG: 1135 { 1136 int sig; 1137 1138 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1139 if (sig) { 1140 info.si_signo = sig; 1141 info.si_errno = 0; 1142 info.si_code = TARGET_TRAP_BRKPT; 1143 queue_signal(env, info.si_signo, &info); 1144 } 1145 } 1146 break; 1147 default: 1148 goto error; 1149 } 1150 process_pending_signals(env); 1151 } 1152 1153 error: 1154 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1155 cpu_dump_state(cs, stderr, fprintf, 0); 1156 abort(); 1157 } 1158 #endif 1159 1160 #ifdef TARGET_SPARC 1161 #define SPARC64_STACK_BIAS 2047 1162 1163 //#define DEBUG_WIN 1164 1165 /* WARNING: dealing with register windows _is_ complicated. More info 1166 can be found at http://www.sics.se/~psm/sparcstack.html */ 1167 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1168 { 1169 index = (index + cwp * 16) % (16 * env->nwindows); 1170 /* wrap handling : if cwp is on the last window, then we use the 1171 registers 'after' the end */ 1172 if (index < 8 && env->cwp == env->nwindows - 1) 1173 index += 16 * env->nwindows; 1174 return index; 1175 } 1176 1177 /* save the register window 'cwp1' */ 1178 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1179 { 1180 unsigned int i; 1181 abi_ulong sp_ptr; 1182 1183 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1184 #ifdef TARGET_SPARC64 1185 if (sp_ptr & 3) 1186 sp_ptr += SPARC64_STACK_BIAS; 1187 #endif 1188 #if defined(DEBUG_WIN) 1189 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1190 sp_ptr, cwp1); 1191 #endif 1192 for(i = 0; i < 16; i++) { 1193 /* FIXME - what to do if put_user() fails? */ 1194 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1195 sp_ptr += sizeof(abi_ulong); 1196 } 1197 } 1198 1199 static void save_window(CPUSPARCState *env) 1200 { 1201 #ifndef TARGET_SPARC64 1202 unsigned int new_wim; 1203 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1204 ((1LL << env->nwindows) - 1); 1205 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1206 env->wim = new_wim; 1207 #else 1208 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1209 env->cansave++; 1210 env->canrestore--; 1211 #endif 1212 } 1213 1214 static void restore_window(CPUSPARCState *env) 1215 { 1216 #ifndef TARGET_SPARC64 1217 unsigned int new_wim; 1218 #endif 1219 unsigned int i, cwp1; 1220 abi_ulong sp_ptr; 1221 1222 #ifndef TARGET_SPARC64 1223 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1224 ((1LL << env->nwindows) - 1); 1225 #endif 1226 1227 /* restore the invalid window */ 1228 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1229 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1230 #ifdef TARGET_SPARC64 1231 if (sp_ptr & 3) 1232 sp_ptr += SPARC64_STACK_BIAS; 1233 #endif 1234 #if defined(DEBUG_WIN) 1235 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1236 sp_ptr, cwp1); 1237 #endif 1238 for(i = 0; i < 16; i++) { 1239 /* FIXME - what to do if get_user() fails? */ 1240 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1241 sp_ptr += sizeof(abi_ulong); 1242 } 1243 #ifdef TARGET_SPARC64 1244 env->canrestore++; 1245 if (env->cleanwin < env->nwindows - 1) 1246 env->cleanwin++; 1247 env->cansave--; 1248 #else 1249 env->wim = new_wim; 1250 #endif 1251 } 1252 1253 static void flush_windows(CPUSPARCState *env) 1254 { 1255 int offset, cwp1; 1256 1257 offset = 1; 1258 for(;;) { 1259 /* if restore would invoke restore_window(), then we can stop */ 1260 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1261 #ifndef TARGET_SPARC64 1262 if (env->wim & (1 << cwp1)) 1263 break; 1264 #else 1265 if (env->canrestore == 0) 1266 break; 1267 env->cansave++; 1268 env->canrestore--; 1269 #endif 1270 save_window_offset(env, cwp1); 1271 offset++; 1272 } 1273 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1274 #ifndef TARGET_SPARC64 1275 /* set wim so that restore will reload the registers */ 1276 env->wim = 1 << cwp1; 1277 #endif 1278 #if defined(DEBUG_WIN) 1279 printf("flush_windows: nb=%d\n", offset - 1); 1280 #endif 1281 } 1282 1283 void cpu_loop (CPUSPARCState *env) 1284 { 1285 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1286 int trapnr; 1287 abi_long ret; 1288 target_siginfo_t info; 1289 1290 while (1) { 1291 trapnr = cpu_sparc_exec (env); 1292 1293 /* Compute PSR before exposing state. */ 1294 if (env->cc_op != CC_OP_FLAGS) { 1295 cpu_get_psr(env); 1296 } 1297 1298 switch (trapnr) { 1299 #ifndef TARGET_SPARC64 1300 case 0x88: 1301 case 0x90: 1302 #else 1303 case 0x110: 1304 case 0x16d: 1305 #endif 1306 ret = do_syscall (env, env->gregs[1], 1307 env->regwptr[0], env->regwptr[1], 1308 env->regwptr[2], env->regwptr[3], 1309 env->regwptr[4], env->regwptr[5], 1310 0, 0); 1311 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1312 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1313 env->xcc |= PSR_CARRY; 1314 #else 1315 env->psr |= PSR_CARRY; 1316 #endif 1317 ret = -ret; 1318 } else { 1319 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1320 env->xcc &= ~PSR_CARRY; 1321 #else 1322 env->psr &= ~PSR_CARRY; 1323 #endif 1324 } 1325 env->regwptr[0] = ret; 1326 /* next instruction */ 1327 env->pc = env->npc; 1328 env->npc = env->npc + 4; 1329 break; 1330 case 0x83: /* flush windows */ 1331 #ifdef TARGET_ABI32 1332 case 0x103: 1333 #endif 1334 flush_windows(env); 1335 /* next instruction */ 1336 env->pc = env->npc; 1337 env->npc = env->npc + 4; 1338 break; 1339 #ifndef TARGET_SPARC64 1340 case TT_WIN_OVF: /* window overflow */ 1341 save_window(env); 1342 break; 1343 case TT_WIN_UNF: /* window underflow */ 1344 restore_window(env); 1345 break; 1346 case TT_TFAULT: 1347 case TT_DFAULT: 1348 { 1349 info.si_signo = TARGET_SIGSEGV; 1350 info.si_errno = 0; 1351 /* XXX: check env->error_code */ 1352 info.si_code = TARGET_SEGV_MAPERR; 1353 info._sifields._sigfault._addr = env->mmuregs[4]; 1354 queue_signal(env, info.si_signo, &info); 1355 } 1356 break; 1357 #else 1358 case TT_SPILL: /* window overflow */ 1359 save_window(env); 1360 break; 1361 case TT_FILL: /* window underflow */ 1362 restore_window(env); 1363 break; 1364 case TT_TFAULT: 1365 case TT_DFAULT: 1366 { 1367 info.si_signo = TARGET_SIGSEGV; 1368 info.si_errno = 0; 1369 /* XXX: check env->error_code */ 1370 info.si_code = TARGET_SEGV_MAPERR; 1371 if (trapnr == TT_DFAULT) 1372 info._sifields._sigfault._addr = env->dmmuregs[4]; 1373 else 1374 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1375 queue_signal(env, info.si_signo, &info); 1376 } 1377 break; 1378 #ifndef TARGET_ABI32 1379 case 0x16e: 1380 flush_windows(env); 1381 sparc64_get_context(env); 1382 break; 1383 case 0x16f: 1384 flush_windows(env); 1385 sparc64_set_context(env); 1386 break; 1387 #endif 1388 #endif 1389 case EXCP_INTERRUPT: 1390 /* just indicate that signals should be handled asap */ 1391 break; 1392 case TT_ILL_INSN: 1393 { 1394 info.si_signo = TARGET_SIGILL; 1395 info.si_errno = 0; 1396 info.si_code = TARGET_ILL_ILLOPC; 1397 info._sifields._sigfault._addr = env->pc; 1398 queue_signal(env, info.si_signo, &info); 1399 } 1400 break; 1401 case EXCP_DEBUG: 1402 { 1403 int sig; 1404 1405 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1406 if (sig) 1407 { 1408 info.si_signo = sig; 1409 info.si_errno = 0; 1410 info.si_code = TARGET_TRAP_BRKPT; 1411 queue_signal(env, info.si_signo, &info); 1412 } 1413 } 1414 break; 1415 default: 1416 printf ("Unhandled trap: 0x%x\n", trapnr); 1417 cpu_dump_state(cs, stderr, fprintf, 0); 1418 exit (1); 1419 } 1420 process_pending_signals (env); 1421 } 1422 } 1423 1424 #endif 1425 1426 #ifdef TARGET_PPC 1427 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1428 { 1429 /* TO FIX */ 1430 return 0; 1431 } 1432 1433 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1434 { 1435 return cpu_ppc_get_tb(env); 1436 } 1437 1438 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1439 { 1440 return cpu_ppc_get_tb(env) >> 32; 1441 } 1442 1443 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1444 { 1445 return cpu_ppc_get_tb(env); 1446 } 1447 1448 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1449 { 1450 return cpu_ppc_get_tb(env) >> 32; 1451 } 1452 1453 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1454 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1455 1456 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1457 { 1458 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1459 } 1460 1461 /* XXX: to be fixed */ 1462 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1463 { 1464 return -1; 1465 } 1466 1467 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1468 { 1469 return -1; 1470 } 1471 1472 #define EXCP_DUMP(env, fmt, ...) \ 1473 do { \ 1474 CPUState *cs = ENV_GET_CPU(env); \ 1475 fprintf(stderr, fmt , ## __VA_ARGS__); \ 1476 cpu_dump_state(cs, stderr, fprintf, 0); \ 1477 qemu_log(fmt, ## __VA_ARGS__); \ 1478 if (qemu_log_enabled()) { \ 1479 log_cpu_state(cs, 0); \ 1480 } \ 1481 } while (0) 1482 1483 static int do_store_exclusive(CPUPPCState *env) 1484 { 1485 target_ulong addr; 1486 target_ulong page_addr; 1487 target_ulong val, val2 __attribute__((unused)); 1488 int flags; 1489 int segv = 0; 1490 1491 addr = env->reserve_ea; 1492 page_addr = addr & TARGET_PAGE_MASK; 1493 start_exclusive(); 1494 mmap_lock(); 1495 flags = page_get_flags(page_addr); 1496 if ((flags & PAGE_READ) == 0) { 1497 segv = 1; 1498 } else { 1499 int reg = env->reserve_info & 0x1f; 1500 int size = (env->reserve_info >> 5) & 0xf; 1501 int stored = 0; 1502 1503 if (addr == env->reserve_addr) { 1504 switch (size) { 1505 case 1: segv = get_user_u8(val, addr); break; 1506 case 2: segv = get_user_u16(val, addr); break; 1507 case 4: segv = get_user_u32(val, addr); break; 1508 #if defined(TARGET_PPC64) 1509 case 8: segv = get_user_u64(val, addr); break; 1510 case 16: { 1511 segv = get_user_u64(val, addr); 1512 if (!segv) { 1513 segv = get_user_u64(val2, addr + 8); 1514 } 1515 break; 1516 } 1517 #endif 1518 default: abort(); 1519 } 1520 if (!segv && val == env->reserve_val) { 1521 val = env->gpr[reg]; 1522 switch (size) { 1523 case 1: segv = put_user_u8(val, addr); break; 1524 case 2: segv = put_user_u16(val, addr); break; 1525 case 4: segv = put_user_u32(val, addr); break; 1526 #if defined(TARGET_PPC64) 1527 case 8: segv = put_user_u64(val, addr); break; 1528 case 16: { 1529 if (val2 == env->reserve_val2) { 1530 segv = put_user_u64(val, addr); 1531 if (!segv) { 1532 segv = put_user_u64(val2, addr + 8); 1533 } 1534 } 1535 break; 1536 } 1537 #endif 1538 default: abort(); 1539 } 1540 if (!segv) { 1541 stored = 1; 1542 } 1543 } 1544 } 1545 env->crf[0] = (stored << 1) | xer_so; 1546 env->reserve_addr = (target_ulong)-1; 1547 } 1548 if (!segv) { 1549 env->nip += 4; 1550 } 1551 mmap_unlock(); 1552 end_exclusive(); 1553 return segv; 1554 } 1555 1556 void cpu_loop(CPUPPCState *env) 1557 { 1558 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1559 target_siginfo_t info; 1560 int trapnr; 1561 target_ulong ret; 1562 1563 for(;;) { 1564 cpu_exec_start(cs); 1565 trapnr = cpu_ppc_exec(env); 1566 cpu_exec_end(cs); 1567 switch(trapnr) { 1568 case POWERPC_EXCP_NONE: 1569 /* Just go on */ 1570 break; 1571 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1572 cpu_abort(cs, "Critical interrupt while in user mode. " 1573 "Aborting\n"); 1574 break; 1575 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1576 cpu_abort(cs, "Machine check exception while in user mode. " 1577 "Aborting\n"); 1578 break; 1579 case POWERPC_EXCP_DSI: /* Data storage exception */ 1580 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1581 env->spr[SPR_DAR]); 1582 /* XXX: check this. Seems bugged */ 1583 switch (env->error_code & 0xFF000000) { 1584 case 0x40000000: 1585 info.si_signo = TARGET_SIGSEGV; 1586 info.si_errno = 0; 1587 info.si_code = TARGET_SEGV_MAPERR; 1588 break; 1589 case 0x04000000: 1590 info.si_signo = TARGET_SIGILL; 1591 info.si_errno = 0; 1592 info.si_code = TARGET_ILL_ILLADR; 1593 break; 1594 case 0x08000000: 1595 info.si_signo = TARGET_SIGSEGV; 1596 info.si_errno = 0; 1597 info.si_code = TARGET_SEGV_ACCERR; 1598 break; 1599 default: 1600 /* Let's send a regular segfault... */ 1601 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1602 env->error_code); 1603 info.si_signo = TARGET_SIGSEGV; 1604 info.si_errno = 0; 1605 info.si_code = TARGET_SEGV_MAPERR; 1606 break; 1607 } 1608 info._sifields._sigfault._addr = env->nip; 1609 queue_signal(env, info.si_signo, &info); 1610 break; 1611 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1612 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1613 "\n", env->spr[SPR_SRR0]); 1614 /* XXX: check this */ 1615 switch (env->error_code & 0xFF000000) { 1616 case 0x40000000: 1617 info.si_signo = TARGET_SIGSEGV; 1618 info.si_errno = 0; 1619 info.si_code = TARGET_SEGV_MAPERR; 1620 break; 1621 case 0x10000000: 1622 case 0x08000000: 1623 info.si_signo = TARGET_SIGSEGV; 1624 info.si_errno = 0; 1625 info.si_code = TARGET_SEGV_ACCERR; 1626 break; 1627 default: 1628 /* Let's send a regular segfault... */ 1629 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1630 env->error_code); 1631 info.si_signo = TARGET_SIGSEGV; 1632 info.si_errno = 0; 1633 info.si_code = TARGET_SEGV_MAPERR; 1634 break; 1635 } 1636 info._sifields._sigfault._addr = env->nip - 4; 1637 queue_signal(env, info.si_signo, &info); 1638 break; 1639 case POWERPC_EXCP_EXTERNAL: /* External input */ 1640 cpu_abort(cs, "External interrupt while in user mode. " 1641 "Aborting\n"); 1642 break; 1643 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1644 EXCP_DUMP(env, "Unaligned memory access\n"); 1645 /* XXX: check this */ 1646 info.si_signo = TARGET_SIGBUS; 1647 info.si_errno = 0; 1648 info.si_code = TARGET_BUS_ADRALN; 1649 info._sifields._sigfault._addr = env->nip - 4; 1650 queue_signal(env, info.si_signo, &info); 1651 break; 1652 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1653 /* XXX: check this */ 1654 switch (env->error_code & ~0xF) { 1655 case POWERPC_EXCP_FP: 1656 EXCP_DUMP(env, "Floating point program exception\n"); 1657 info.si_signo = TARGET_SIGFPE; 1658 info.si_errno = 0; 1659 switch (env->error_code & 0xF) { 1660 case POWERPC_EXCP_FP_OX: 1661 info.si_code = TARGET_FPE_FLTOVF; 1662 break; 1663 case POWERPC_EXCP_FP_UX: 1664 info.si_code = TARGET_FPE_FLTUND; 1665 break; 1666 case POWERPC_EXCP_FP_ZX: 1667 case POWERPC_EXCP_FP_VXZDZ: 1668 info.si_code = TARGET_FPE_FLTDIV; 1669 break; 1670 case POWERPC_EXCP_FP_XX: 1671 info.si_code = TARGET_FPE_FLTRES; 1672 break; 1673 case POWERPC_EXCP_FP_VXSOFT: 1674 info.si_code = TARGET_FPE_FLTINV; 1675 break; 1676 case POWERPC_EXCP_FP_VXSNAN: 1677 case POWERPC_EXCP_FP_VXISI: 1678 case POWERPC_EXCP_FP_VXIDI: 1679 case POWERPC_EXCP_FP_VXIMZ: 1680 case POWERPC_EXCP_FP_VXVC: 1681 case POWERPC_EXCP_FP_VXSQRT: 1682 case POWERPC_EXCP_FP_VXCVI: 1683 info.si_code = TARGET_FPE_FLTSUB; 1684 break; 1685 default: 1686 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1687 env->error_code); 1688 break; 1689 } 1690 break; 1691 case POWERPC_EXCP_INVAL: 1692 EXCP_DUMP(env, "Invalid instruction\n"); 1693 info.si_signo = TARGET_SIGILL; 1694 info.si_errno = 0; 1695 switch (env->error_code & 0xF) { 1696 case POWERPC_EXCP_INVAL_INVAL: 1697 info.si_code = TARGET_ILL_ILLOPC; 1698 break; 1699 case POWERPC_EXCP_INVAL_LSWX: 1700 info.si_code = TARGET_ILL_ILLOPN; 1701 break; 1702 case POWERPC_EXCP_INVAL_SPR: 1703 info.si_code = TARGET_ILL_PRVREG; 1704 break; 1705 case POWERPC_EXCP_INVAL_FP: 1706 info.si_code = TARGET_ILL_COPROC; 1707 break; 1708 default: 1709 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1710 env->error_code & 0xF); 1711 info.si_code = TARGET_ILL_ILLADR; 1712 break; 1713 } 1714 break; 1715 case POWERPC_EXCP_PRIV: 1716 EXCP_DUMP(env, "Privilege violation\n"); 1717 info.si_signo = TARGET_SIGILL; 1718 info.si_errno = 0; 1719 switch (env->error_code & 0xF) { 1720 case POWERPC_EXCP_PRIV_OPC: 1721 info.si_code = TARGET_ILL_PRVOPC; 1722 break; 1723 case POWERPC_EXCP_PRIV_REG: 1724 info.si_code = TARGET_ILL_PRVREG; 1725 break; 1726 default: 1727 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1728 env->error_code & 0xF); 1729 info.si_code = TARGET_ILL_PRVOPC; 1730 break; 1731 } 1732 break; 1733 case POWERPC_EXCP_TRAP: 1734 cpu_abort(cs, "Tried to call a TRAP\n"); 1735 break; 1736 default: 1737 /* Should not happen ! */ 1738 cpu_abort(cs, "Unknown program exception (%02x)\n", 1739 env->error_code); 1740 break; 1741 } 1742 info._sifields._sigfault._addr = env->nip - 4; 1743 queue_signal(env, info.si_signo, &info); 1744 break; 1745 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1746 EXCP_DUMP(env, "No floating point allowed\n"); 1747 info.si_signo = TARGET_SIGILL; 1748 info.si_errno = 0; 1749 info.si_code = TARGET_ILL_COPROC; 1750 info._sifields._sigfault._addr = env->nip - 4; 1751 queue_signal(env, info.si_signo, &info); 1752 break; 1753 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1754 cpu_abort(cs, "Syscall exception while in user mode. " 1755 "Aborting\n"); 1756 break; 1757 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1758 EXCP_DUMP(env, "No APU instruction allowed\n"); 1759 info.si_signo = TARGET_SIGILL; 1760 info.si_errno = 0; 1761 info.si_code = TARGET_ILL_COPROC; 1762 info._sifields._sigfault._addr = env->nip - 4; 1763 queue_signal(env, info.si_signo, &info); 1764 break; 1765 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1766 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1767 "Aborting\n"); 1768 break; 1769 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1770 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1771 "Aborting\n"); 1772 break; 1773 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1774 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1775 "Aborting\n"); 1776 break; 1777 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1778 cpu_abort(cs, "Data TLB exception while in user mode. " 1779 "Aborting\n"); 1780 break; 1781 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1782 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1783 "Aborting\n"); 1784 break; 1785 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1786 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1787 info.si_signo = TARGET_SIGILL; 1788 info.si_errno = 0; 1789 info.si_code = TARGET_ILL_COPROC; 1790 info._sifields._sigfault._addr = env->nip - 4; 1791 queue_signal(env, info.si_signo, &info); 1792 break; 1793 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1794 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1795 break; 1796 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1797 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1798 break; 1799 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1800 cpu_abort(cs, "Performance monitor exception not handled\n"); 1801 break; 1802 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1803 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1804 "Aborting\n"); 1805 break; 1806 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1807 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1808 "Aborting\n"); 1809 break; 1810 case POWERPC_EXCP_RESET: /* System reset exception */ 1811 cpu_abort(cs, "Reset interrupt while in user mode. " 1812 "Aborting\n"); 1813 break; 1814 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1815 cpu_abort(cs, "Data segment exception while in user mode. " 1816 "Aborting\n"); 1817 break; 1818 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1819 cpu_abort(cs, "Instruction segment exception " 1820 "while in user mode. Aborting\n"); 1821 break; 1822 /* PowerPC 64 with hypervisor mode support */ 1823 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1824 cpu_abort(cs, "Hypervisor decrementer interrupt " 1825 "while in user mode. Aborting\n"); 1826 break; 1827 case POWERPC_EXCP_TRACE: /* Trace exception */ 1828 /* Nothing to do: 1829 * we use this exception to emulate step-by-step execution mode. 1830 */ 1831 break; 1832 /* PowerPC 64 with hypervisor mode support */ 1833 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1834 cpu_abort(cs, "Hypervisor data storage exception " 1835 "while in user mode. Aborting\n"); 1836 break; 1837 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1838 cpu_abort(cs, "Hypervisor instruction storage exception " 1839 "while in user mode. Aborting\n"); 1840 break; 1841 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1842 cpu_abort(cs, "Hypervisor data segment exception " 1843 "while in user mode. Aborting\n"); 1844 break; 1845 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1846 cpu_abort(cs, "Hypervisor instruction segment exception " 1847 "while in user mode. Aborting\n"); 1848 break; 1849 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1850 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1851 info.si_signo = TARGET_SIGILL; 1852 info.si_errno = 0; 1853 info.si_code = TARGET_ILL_COPROC; 1854 info._sifields._sigfault._addr = env->nip - 4; 1855 queue_signal(env, info.si_signo, &info); 1856 break; 1857 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1858 cpu_abort(cs, "Programmable interval timer interrupt " 1859 "while in user mode. Aborting\n"); 1860 break; 1861 case POWERPC_EXCP_IO: /* IO error exception */ 1862 cpu_abort(cs, "IO error exception while in user mode. " 1863 "Aborting\n"); 1864 break; 1865 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1866 cpu_abort(cs, "Run mode exception while in user mode. " 1867 "Aborting\n"); 1868 break; 1869 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1870 cpu_abort(cs, "Emulation trap exception not handled\n"); 1871 break; 1872 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1873 cpu_abort(cs, "Instruction fetch TLB exception " 1874 "while in user-mode. Aborting"); 1875 break; 1876 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1877 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1878 "Aborting"); 1879 break; 1880 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1881 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1882 "Aborting"); 1883 break; 1884 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1885 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1886 break; 1887 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1888 cpu_abort(cs, "Instruction address breakpoint exception " 1889 "not handled\n"); 1890 break; 1891 case POWERPC_EXCP_SMI: /* System management interrupt */ 1892 cpu_abort(cs, "System management interrupt while in user mode. " 1893 "Aborting\n"); 1894 break; 1895 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1896 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1897 "Aborting\n"); 1898 break; 1899 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1900 cpu_abort(cs, "Performance monitor exception not handled\n"); 1901 break; 1902 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1903 cpu_abort(cs, "Vector assist exception not handled\n"); 1904 break; 1905 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1906 cpu_abort(cs, "Soft patch exception not handled\n"); 1907 break; 1908 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1909 cpu_abort(cs, "Maintenance exception while in user mode. " 1910 "Aborting\n"); 1911 break; 1912 case POWERPC_EXCP_STOP: /* stop translation */ 1913 /* We did invalidate the instruction cache. Go on */ 1914 break; 1915 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1916 /* We just stopped because of a branch. Go on */ 1917 break; 1918 case POWERPC_EXCP_SYSCALL_USER: 1919 /* system call in user-mode emulation */ 1920 /* WARNING: 1921 * PPC ABI uses overflow flag in cr0 to signal an error 1922 * in syscalls. 1923 */ 1924 env->crf[0] &= ~0x1; 1925 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1926 env->gpr[5], env->gpr[6], env->gpr[7], 1927 env->gpr[8], 0, 0); 1928 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1929 /* Returning from a successful sigreturn syscall. 1930 Avoid corrupting register state. */ 1931 break; 1932 } 1933 if (ret > (target_ulong)(-515)) { 1934 env->crf[0] |= 0x1; 1935 ret = -ret; 1936 } 1937 env->gpr[3] = ret; 1938 break; 1939 case POWERPC_EXCP_STCX: 1940 if (do_store_exclusive(env)) { 1941 info.si_signo = TARGET_SIGSEGV; 1942 info.si_errno = 0; 1943 info.si_code = TARGET_SEGV_MAPERR; 1944 info._sifields._sigfault._addr = env->nip; 1945 queue_signal(env, info.si_signo, &info); 1946 } 1947 break; 1948 case EXCP_DEBUG: 1949 { 1950 int sig; 1951 1952 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1953 if (sig) { 1954 info.si_signo = sig; 1955 info.si_errno = 0; 1956 info.si_code = TARGET_TRAP_BRKPT; 1957 queue_signal(env, info.si_signo, &info); 1958 } 1959 } 1960 break; 1961 case EXCP_INTERRUPT: 1962 /* just indicate that signals should be handled asap */ 1963 break; 1964 default: 1965 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); 1966 break; 1967 } 1968 process_pending_signals(env); 1969 } 1970 } 1971 #endif 1972 1973 #ifdef TARGET_MIPS 1974 1975 # ifdef TARGET_ABI_MIPSO32 1976 # define MIPS_SYS(name, args) args, 1977 static const uint8_t mips_syscall_args[] = { 1978 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1979 MIPS_SYS(sys_exit , 1) 1980 MIPS_SYS(sys_fork , 0) 1981 MIPS_SYS(sys_read , 3) 1982 MIPS_SYS(sys_write , 3) 1983 MIPS_SYS(sys_open , 3) /* 4005 */ 1984 MIPS_SYS(sys_close , 1) 1985 MIPS_SYS(sys_waitpid , 3) 1986 MIPS_SYS(sys_creat , 2) 1987 MIPS_SYS(sys_link , 2) 1988 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1989 MIPS_SYS(sys_execve , 0) 1990 MIPS_SYS(sys_chdir , 1) 1991 MIPS_SYS(sys_time , 1) 1992 MIPS_SYS(sys_mknod , 3) 1993 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1994 MIPS_SYS(sys_lchown , 3) 1995 MIPS_SYS(sys_ni_syscall , 0) 1996 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1997 MIPS_SYS(sys_lseek , 3) 1998 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1999 MIPS_SYS(sys_mount , 5) 2000 MIPS_SYS(sys_umount , 1) 2001 MIPS_SYS(sys_setuid , 1) 2002 MIPS_SYS(sys_getuid , 0) 2003 MIPS_SYS(sys_stime , 1) /* 4025 */ 2004 MIPS_SYS(sys_ptrace , 4) 2005 MIPS_SYS(sys_alarm , 1) 2006 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2007 MIPS_SYS(sys_pause , 0) 2008 MIPS_SYS(sys_utime , 2) /* 4030 */ 2009 MIPS_SYS(sys_ni_syscall , 0) 2010 MIPS_SYS(sys_ni_syscall , 0) 2011 MIPS_SYS(sys_access , 2) 2012 MIPS_SYS(sys_nice , 1) 2013 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2014 MIPS_SYS(sys_sync , 0) 2015 MIPS_SYS(sys_kill , 2) 2016 MIPS_SYS(sys_rename , 2) 2017 MIPS_SYS(sys_mkdir , 2) 2018 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2019 MIPS_SYS(sys_dup , 1) 2020 MIPS_SYS(sys_pipe , 0) 2021 MIPS_SYS(sys_times , 1) 2022 MIPS_SYS(sys_ni_syscall , 0) 2023 MIPS_SYS(sys_brk , 1) /* 4045 */ 2024 MIPS_SYS(sys_setgid , 1) 2025 MIPS_SYS(sys_getgid , 0) 2026 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2027 MIPS_SYS(sys_geteuid , 0) 2028 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2029 MIPS_SYS(sys_acct , 0) 2030 MIPS_SYS(sys_umount2 , 2) 2031 MIPS_SYS(sys_ni_syscall , 0) 2032 MIPS_SYS(sys_ioctl , 3) 2033 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2034 MIPS_SYS(sys_ni_syscall , 2) 2035 MIPS_SYS(sys_setpgid , 2) 2036 MIPS_SYS(sys_ni_syscall , 0) 2037 MIPS_SYS(sys_olduname , 1) 2038 MIPS_SYS(sys_umask , 1) /* 4060 */ 2039 MIPS_SYS(sys_chroot , 1) 2040 MIPS_SYS(sys_ustat , 2) 2041 MIPS_SYS(sys_dup2 , 2) 2042 MIPS_SYS(sys_getppid , 0) 2043 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2044 MIPS_SYS(sys_setsid , 0) 2045 MIPS_SYS(sys_sigaction , 3) 2046 MIPS_SYS(sys_sgetmask , 0) 2047 MIPS_SYS(sys_ssetmask , 1) 2048 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2049 MIPS_SYS(sys_setregid , 2) 2050 MIPS_SYS(sys_sigsuspend , 0) 2051 MIPS_SYS(sys_sigpending , 1) 2052 MIPS_SYS(sys_sethostname , 2) 2053 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2054 MIPS_SYS(sys_getrlimit , 2) 2055 MIPS_SYS(sys_getrusage , 2) 2056 MIPS_SYS(sys_gettimeofday, 2) 2057 MIPS_SYS(sys_settimeofday, 2) 2058 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2059 MIPS_SYS(sys_setgroups , 2) 2060 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2061 MIPS_SYS(sys_symlink , 2) 2062 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2063 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2064 MIPS_SYS(sys_uselib , 1) 2065 MIPS_SYS(sys_swapon , 2) 2066 MIPS_SYS(sys_reboot , 3) 2067 MIPS_SYS(old_readdir , 3) 2068 MIPS_SYS(old_mmap , 6) /* 4090 */ 2069 MIPS_SYS(sys_munmap , 2) 2070 MIPS_SYS(sys_truncate , 2) 2071 MIPS_SYS(sys_ftruncate , 2) 2072 MIPS_SYS(sys_fchmod , 2) 2073 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2074 MIPS_SYS(sys_getpriority , 2) 2075 MIPS_SYS(sys_setpriority , 3) 2076 MIPS_SYS(sys_ni_syscall , 0) 2077 MIPS_SYS(sys_statfs , 2) 2078 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2079 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2080 MIPS_SYS(sys_socketcall , 2) 2081 MIPS_SYS(sys_syslog , 3) 2082 MIPS_SYS(sys_setitimer , 3) 2083 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2084 MIPS_SYS(sys_newstat , 2) 2085 MIPS_SYS(sys_newlstat , 2) 2086 MIPS_SYS(sys_newfstat , 2) 2087 MIPS_SYS(sys_uname , 1) 2088 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2089 MIPS_SYS(sys_vhangup , 0) 2090 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2091 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2092 MIPS_SYS(sys_wait4 , 4) 2093 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2094 MIPS_SYS(sys_sysinfo , 1) 2095 MIPS_SYS(sys_ipc , 6) 2096 MIPS_SYS(sys_fsync , 1) 2097 MIPS_SYS(sys_sigreturn , 0) 2098 MIPS_SYS(sys_clone , 6) /* 4120 */ 2099 MIPS_SYS(sys_setdomainname, 2) 2100 MIPS_SYS(sys_newuname , 1) 2101 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2102 MIPS_SYS(sys_adjtimex , 1) 2103 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2104 MIPS_SYS(sys_sigprocmask , 3) 2105 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2106 MIPS_SYS(sys_init_module , 5) 2107 MIPS_SYS(sys_delete_module, 1) 2108 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2109 MIPS_SYS(sys_quotactl , 0) 2110 MIPS_SYS(sys_getpgid , 1) 2111 MIPS_SYS(sys_fchdir , 1) 2112 MIPS_SYS(sys_bdflush , 2) 2113 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2114 MIPS_SYS(sys_personality , 1) 2115 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2116 MIPS_SYS(sys_setfsuid , 1) 2117 MIPS_SYS(sys_setfsgid , 1) 2118 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2119 MIPS_SYS(sys_getdents , 3) 2120 MIPS_SYS(sys_select , 5) 2121 MIPS_SYS(sys_flock , 2) 2122 MIPS_SYS(sys_msync , 3) 2123 MIPS_SYS(sys_readv , 3) /* 4145 */ 2124 MIPS_SYS(sys_writev , 3) 2125 MIPS_SYS(sys_cacheflush , 3) 2126 MIPS_SYS(sys_cachectl , 3) 2127 MIPS_SYS(sys_sysmips , 4) 2128 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2129 MIPS_SYS(sys_getsid , 1) 2130 MIPS_SYS(sys_fdatasync , 0) 2131 MIPS_SYS(sys_sysctl , 1) 2132 MIPS_SYS(sys_mlock , 2) 2133 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2134 MIPS_SYS(sys_mlockall , 1) 2135 MIPS_SYS(sys_munlockall , 0) 2136 MIPS_SYS(sys_sched_setparam, 2) 2137 MIPS_SYS(sys_sched_getparam, 2) 2138 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2139 MIPS_SYS(sys_sched_getscheduler, 1) 2140 MIPS_SYS(sys_sched_yield , 0) 2141 MIPS_SYS(sys_sched_get_priority_max, 1) 2142 MIPS_SYS(sys_sched_get_priority_min, 1) 2143 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2144 MIPS_SYS(sys_nanosleep, 2) 2145 MIPS_SYS(sys_mremap , 5) 2146 MIPS_SYS(sys_accept , 3) 2147 MIPS_SYS(sys_bind , 3) 2148 MIPS_SYS(sys_connect , 3) /* 4170 */ 2149 MIPS_SYS(sys_getpeername , 3) 2150 MIPS_SYS(sys_getsockname , 3) 2151 MIPS_SYS(sys_getsockopt , 5) 2152 MIPS_SYS(sys_listen , 2) 2153 MIPS_SYS(sys_recv , 4) /* 4175 */ 2154 MIPS_SYS(sys_recvfrom , 6) 2155 MIPS_SYS(sys_recvmsg , 3) 2156 MIPS_SYS(sys_send , 4) 2157 MIPS_SYS(sys_sendmsg , 3) 2158 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2159 MIPS_SYS(sys_setsockopt , 5) 2160 MIPS_SYS(sys_shutdown , 2) 2161 MIPS_SYS(sys_socket , 3) 2162 MIPS_SYS(sys_socketpair , 4) 2163 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2164 MIPS_SYS(sys_getresuid , 3) 2165 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2166 MIPS_SYS(sys_poll , 3) 2167 MIPS_SYS(sys_nfsservctl , 3) 2168 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2169 MIPS_SYS(sys_getresgid , 3) 2170 MIPS_SYS(sys_prctl , 5) 2171 MIPS_SYS(sys_rt_sigreturn, 0) 2172 MIPS_SYS(sys_rt_sigaction, 4) 2173 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2174 MIPS_SYS(sys_rt_sigpending, 2) 2175 MIPS_SYS(sys_rt_sigtimedwait, 4) 2176 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2177 MIPS_SYS(sys_rt_sigsuspend, 0) 2178 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2179 MIPS_SYS(sys_pwrite64 , 6) 2180 MIPS_SYS(sys_chown , 3) 2181 MIPS_SYS(sys_getcwd , 2) 2182 MIPS_SYS(sys_capget , 2) 2183 MIPS_SYS(sys_capset , 2) /* 4205 */ 2184 MIPS_SYS(sys_sigaltstack , 2) 2185 MIPS_SYS(sys_sendfile , 4) 2186 MIPS_SYS(sys_ni_syscall , 0) 2187 MIPS_SYS(sys_ni_syscall , 0) 2188 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2189 MIPS_SYS(sys_truncate64 , 4) 2190 MIPS_SYS(sys_ftruncate64 , 4) 2191 MIPS_SYS(sys_stat64 , 2) 2192 MIPS_SYS(sys_lstat64 , 2) 2193 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2194 MIPS_SYS(sys_pivot_root , 2) 2195 MIPS_SYS(sys_mincore , 3) 2196 MIPS_SYS(sys_madvise , 3) 2197 MIPS_SYS(sys_getdents64 , 3) 2198 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2199 MIPS_SYS(sys_ni_syscall , 0) 2200 MIPS_SYS(sys_gettid , 0) 2201 MIPS_SYS(sys_readahead , 5) 2202 MIPS_SYS(sys_setxattr , 5) 2203 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2204 MIPS_SYS(sys_fsetxattr , 5) 2205 MIPS_SYS(sys_getxattr , 4) 2206 MIPS_SYS(sys_lgetxattr , 4) 2207 MIPS_SYS(sys_fgetxattr , 4) 2208 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2209 MIPS_SYS(sys_llistxattr , 3) 2210 MIPS_SYS(sys_flistxattr , 3) 2211 MIPS_SYS(sys_removexattr , 2) 2212 MIPS_SYS(sys_lremovexattr, 2) 2213 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2214 MIPS_SYS(sys_tkill , 2) 2215 MIPS_SYS(sys_sendfile64 , 5) 2216 MIPS_SYS(sys_futex , 6) 2217 MIPS_SYS(sys_sched_setaffinity, 3) 2218 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2219 MIPS_SYS(sys_io_setup , 2) 2220 MIPS_SYS(sys_io_destroy , 1) 2221 MIPS_SYS(sys_io_getevents, 5) 2222 MIPS_SYS(sys_io_submit , 3) 2223 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2224 MIPS_SYS(sys_exit_group , 1) 2225 MIPS_SYS(sys_lookup_dcookie, 3) 2226 MIPS_SYS(sys_epoll_create, 1) 2227 MIPS_SYS(sys_epoll_ctl , 4) 2228 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2229 MIPS_SYS(sys_remap_file_pages, 5) 2230 MIPS_SYS(sys_set_tid_address, 1) 2231 MIPS_SYS(sys_restart_syscall, 0) 2232 MIPS_SYS(sys_fadvise64_64, 7) 2233 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2234 MIPS_SYS(sys_fstatfs64 , 2) 2235 MIPS_SYS(sys_timer_create, 3) 2236 MIPS_SYS(sys_timer_settime, 4) 2237 MIPS_SYS(sys_timer_gettime, 2) 2238 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2239 MIPS_SYS(sys_timer_delete, 1) 2240 MIPS_SYS(sys_clock_settime, 2) 2241 MIPS_SYS(sys_clock_gettime, 2) 2242 MIPS_SYS(sys_clock_getres, 2) 2243 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2244 MIPS_SYS(sys_tgkill , 3) 2245 MIPS_SYS(sys_utimes , 2) 2246 MIPS_SYS(sys_mbind , 4) 2247 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2248 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2249 MIPS_SYS(sys_mq_open , 4) 2250 MIPS_SYS(sys_mq_unlink , 1) 2251 MIPS_SYS(sys_mq_timedsend, 5) 2252 MIPS_SYS(sys_mq_timedreceive, 5) 2253 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2254 MIPS_SYS(sys_mq_getsetattr, 3) 2255 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2256 MIPS_SYS(sys_waitid , 4) 2257 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2258 MIPS_SYS(sys_add_key , 5) 2259 MIPS_SYS(sys_request_key, 4) 2260 MIPS_SYS(sys_keyctl , 5) 2261 MIPS_SYS(sys_set_thread_area, 1) 2262 MIPS_SYS(sys_inotify_init, 0) 2263 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2264 MIPS_SYS(sys_inotify_rm_watch, 2) 2265 MIPS_SYS(sys_migrate_pages, 4) 2266 MIPS_SYS(sys_openat, 4) 2267 MIPS_SYS(sys_mkdirat, 3) 2268 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2269 MIPS_SYS(sys_fchownat, 5) 2270 MIPS_SYS(sys_futimesat, 3) 2271 MIPS_SYS(sys_fstatat64, 4) 2272 MIPS_SYS(sys_unlinkat, 3) 2273 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2274 MIPS_SYS(sys_linkat, 5) 2275 MIPS_SYS(sys_symlinkat, 3) 2276 MIPS_SYS(sys_readlinkat, 4) 2277 MIPS_SYS(sys_fchmodat, 3) 2278 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2279 MIPS_SYS(sys_pselect6, 6) 2280 MIPS_SYS(sys_ppoll, 5) 2281 MIPS_SYS(sys_unshare, 1) 2282 MIPS_SYS(sys_splice, 6) 2283 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2284 MIPS_SYS(sys_tee, 4) 2285 MIPS_SYS(sys_vmsplice, 4) 2286 MIPS_SYS(sys_move_pages, 6) 2287 MIPS_SYS(sys_set_robust_list, 2) 2288 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2289 MIPS_SYS(sys_kexec_load, 4) 2290 MIPS_SYS(sys_getcpu, 3) 2291 MIPS_SYS(sys_epoll_pwait, 6) 2292 MIPS_SYS(sys_ioprio_set, 3) 2293 MIPS_SYS(sys_ioprio_get, 2) 2294 MIPS_SYS(sys_utimensat, 4) 2295 MIPS_SYS(sys_signalfd, 3) 2296 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2297 MIPS_SYS(sys_eventfd, 1) 2298 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2299 MIPS_SYS(sys_timerfd_create, 2) 2300 MIPS_SYS(sys_timerfd_gettime, 2) 2301 MIPS_SYS(sys_timerfd_settime, 4) 2302 MIPS_SYS(sys_signalfd4, 4) 2303 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2304 MIPS_SYS(sys_epoll_create1, 1) 2305 MIPS_SYS(sys_dup3, 3) 2306 MIPS_SYS(sys_pipe2, 2) 2307 MIPS_SYS(sys_inotify_init1, 1) 2308 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2309 MIPS_SYS(sys_pwritev, 6) 2310 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2311 MIPS_SYS(sys_perf_event_open, 5) 2312 MIPS_SYS(sys_accept4, 4) 2313 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2314 MIPS_SYS(sys_fanotify_init, 2) 2315 MIPS_SYS(sys_fanotify_mark, 6) 2316 MIPS_SYS(sys_prlimit64, 4) 2317 MIPS_SYS(sys_name_to_handle_at, 5) 2318 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2319 MIPS_SYS(sys_clock_adjtime, 2) 2320 MIPS_SYS(sys_syncfs, 1) 2321 }; 2322 # undef MIPS_SYS 2323 # endif /* O32 */ 2324 2325 static int do_store_exclusive(CPUMIPSState *env) 2326 { 2327 target_ulong addr; 2328 target_ulong page_addr; 2329 target_ulong val; 2330 int flags; 2331 int segv = 0; 2332 int reg; 2333 int d; 2334 2335 addr = env->lladdr; 2336 page_addr = addr & TARGET_PAGE_MASK; 2337 start_exclusive(); 2338 mmap_lock(); 2339 flags = page_get_flags(page_addr); 2340 if ((flags & PAGE_READ) == 0) { 2341 segv = 1; 2342 } else { 2343 reg = env->llreg & 0x1f; 2344 d = (env->llreg & 0x20) != 0; 2345 if (d) { 2346 segv = get_user_s64(val, addr); 2347 } else { 2348 segv = get_user_s32(val, addr); 2349 } 2350 if (!segv) { 2351 if (val != env->llval) { 2352 env->active_tc.gpr[reg] = 0; 2353 } else { 2354 if (d) { 2355 segv = put_user_u64(env->llnewval, addr); 2356 } else { 2357 segv = put_user_u32(env->llnewval, addr); 2358 } 2359 if (!segv) { 2360 env->active_tc.gpr[reg] = 1; 2361 } 2362 } 2363 } 2364 } 2365 env->lladdr = -1; 2366 if (!segv) { 2367 env->active_tc.PC += 4; 2368 } 2369 mmap_unlock(); 2370 end_exclusive(); 2371 return segv; 2372 } 2373 2374 /* Break codes */ 2375 enum { 2376 BRK_OVERFLOW = 6, 2377 BRK_DIVZERO = 7 2378 }; 2379 2380 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2381 unsigned int code) 2382 { 2383 int ret = -1; 2384 2385 switch (code) { 2386 case BRK_OVERFLOW: 2387 case BRK_DIVZERO: 2388 info->si_signo = TARGET_SIGFPE; 2389 info->si_errno = 0; 2390 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2391 queue_signal(env, info->si_signo, &*info); 2392 ret = 0; 2393 break; 2394 default: 2395 info->si_signo = TARGET_SIGTRAP; 2396 info->si_errno = 0; 2397 queue_signal(env, info->si_signo, &*info); 2398 ret = 0; 2399 break; 2400 } 2401 2402 return ret; 2403 } 2404 2405 void cpu_loop(CPUMIPSState *env) 2406 { 2407 CPUState *cs = CPU(mips_env_get_cpu(env)); 2408 target_siginfo_t info; 2409 int trapnr; 2410 abi_long ret; 2411 # ifdef TARGET_ABI_MIPSO32 2412 unsigned int syscall_num; 2413 # endif 2414 2415 for(;;) { 2416 cpu_exec_start(cs); 2417 trapnr = cpu_mips_exec(env); 2418 cpu_exec_end(cs); 2419 switch(trapnr) { 2420 case EXCP_SYSCALL: 2421 env->active_tc.PC += 4; 2422 # ifdef TARGET_ABI_MIPSO32 2423 syscall_num = env->active_tc.gpr[2] - 4000; 2424 if (syscall_num >= sizeof(mips_syscall_args)) { 2425 ret = -TARGET_ENOSYS; 2426 } else { 2427 int nb_args; 2428 abi_ulong sp_reg; 2429 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2430 2431 nb_args = mips_syscall_args[syscall_num]; 2432 sp_reg = env->active_tc.gpr[29]; 2433 switch (nb_args) { 2434 /* these arguments are taken from the stack */ 2435 case 8: 2436 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2437 goto done_syscall; 2438 } 2439 case 7: 2440 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2441 goto done_syscall; 2442 } 2443 case 6: 2444 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2445 goto done_syscall; 2446 } 2447 case 5: 2448 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2449 goto done_syscall; 2450 } 2451 default: 2452 break; 2453 } 2454 ret = do_syscall(env, env->active_tc.gpr[2], 2455 env->active_tc.gpr[4], 2456 env->active_tc.gpr[5], 2457 env->active_tc.gpr[6], 2458 env->active_tc.gpr[7], 2459 arg5, arg6, arg7, arg8); 2460 } 2461 done_syscall: 2462 # else 2463 ret = do_syscall(env, env->active_tc.gpr[2], 2464 env->active_tc.gpr[4], env->active_tc.gpr[5], 2465 env->active_tc.gpr[6], env->active_tc.gpr[7], 2466 env->active_tc.gpr[8], env->active_tc.gpr[9], 2467 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2468 # endif /* O32 */ 2469 if (ret == -TARGET_QEMU_ESIGRETURN) { 2470 /* Returning from a successful sigreturn syscall. 2471 Avoid clobbering register state. */ 2472 break; 2473 } 2474 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2475 env->active_tc.gpr[7] = 1; /* error flag */ 2476 ret = -ret; 2477 } else { 2478 env->active_tc.gpr[7] = 0; /* error flag */ 2479 } 2480 env->active_tc.gpr[2] = ret; 2481 break; 2482 case EXCP_TLBL: 2483 case EXCP_TLBS: 2484 case EXCP_AdEL: 2485 case EXCP_AdES: 2486 info.si_signo = TARGET_SIGSEGV; 2487 info.si_errno = 0; 2488 /* XXX: check env->error_code */ 2489 info.si_code = TARGET_SEGV_MAPERR; 2490 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2491 queue_signal(env, info.si_signo, &info); 2492 break; 2493 case EXCP_CpU: 2494 case EXCP_RI: 2495 info.si_signo = TARGET_SIGILL; 2496 info.si_errno = 0; 2497 info.si_code = 0; 2498 queue_signal(env, info.si_signo, &info); 2499 break; 2500 case EXCP_INTERRUPT: 2501 /* just indicate that signals should be handled asap */ 2502 break; 2503 case EXCP_DEBUG: 2504 { 2505 int sig; 2506 2507 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2508 if (sig) 2509 { 2510 info.si_signo = sig; 2511 info.si_errno = 0; 2512 info.si_code = TARGET_TRAP_BRKPT; 2513 queue_signal(env, info.si_signo, &info); 2514 } 2515 } 2516 break; 2517 case EXCP_SC: 2518 if (do_store_exclusive(env)) { 2519 info.si_signo = TARGET_SIGSEGV; 2520 info.si_errno = 0; 2521 info.si_code = TARGET_SEGV_MAPERR; 2522 info._sifields._sigfault._addr = env->active_tc.PC; 2523 queue_signal(env, info.si_signo, &info); 2524 } 2525 break; 2526 case EXCP_DSPDIS: 2527 info.si_signo = TARGET_SIGILL; 2528 info.si_errno = 0; 2529 info.si_code = TARGET_ILL_ILLOPC; 2530 queue_signal(env, info.si_signo, &info); 2531 break; 2532 /* The code below was inspired by the MIPS Linux kernel trap 2533 * handling code in arch/mips/kernel/traps.c. 2534 */ 2535 case EXCP_BREAK: 2536 { 2537 abi_ulong trap_instr; 2538 unsigned int code; 2539 2540 if (env->hflags & MIPS_HFLAG_M16) { 2541 if (env->insn_flags & ASE_MICROMIPS) { 2542 /* microMIPS mode */ 2543 ret = get_user_u16(trap_instr, env->active_tc.PC); 2544 if (ret != 0) { 2545 goto error; 2546 } 2547 2548 if ((trap_instr >> 10) == 0x11) { 2549 /* 16-bit instruction */ 2550 code = trap_instr & 0xf; 2551 } else { 2552 /* 32-bit instruction */ 2553 abi_ulong instr_lo; 2554 2555 ret = get_user_u16(instr_lo, 2556 env->active_tc.PC + 2); 2557 if (ret != 0) { 2558 goto error; 2559 } 2560 trap_instr = (trap_instr << 16) | instr_lo; 2561 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2562 /* Unfortunately, microMIPS also suffers from 2563 the old assembler bug... */ 2564 if (code >= (1 << 10)) { 2565 code >>= 10; 2566 } 2567 } 2568 } else { 2569 /* MIPS16e mode */ 2570 ret = get_user_u16(trap_instr, env->active_tc.PC); 2571 if (ret != 0) { 2572 goto error; 2573 } 2574 code = (trap_instr >> 6) & 0x3f; 2575 } 2576 } else { 2577 ret = get_user_ual(trap_instr, env->active_tc.PC); 2578 if (ret != 0) { 2579 goto error; 2580 } 2581 2582 /* As described in the original Linux kernel code, the 2583 * below checks on 'code' are to work around an old 2584 * assembly bug. 2585 */ 2586 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2587 if (code >= (1 << 10)) { 2588 code >>= 10; 2589 } 2590 } 2591 2592 if (do_break(env, &info, code) != 0) { 2593 goto error; 2594 } 2595 } 2596 break; 2597 case EXCP_TRAP: 2598 { 2599 abi_ulong trap_instr; 2600 unsigned int code = 0; 2601 2602 if (env->hflags & MIPS_HFLAG_M16) { 2603 /* microMIPS mode */ 2604 abi_ulong instr[2]; 2605 2606 ret = get_user_u16(instr[0], env->active_tc.PC) || 2607 get_user_u16(instr[1], env->active_tc.PC + 2); 2608 2609 trap_instr = (instr[0] << 16) | instr[1]; 2610 } else { 2611 ret = get_user_ual(trap_instr, env->active_tc.PC); 2612 } 2613 2614 if (ret != 0) { 2615 goto error; 2616 } 2617 2618 /* The immediate versions don't provide a code. */ 2619 if (!(trap_instr & 0xFC000000)) { 2620 if (env->hflags & MIPS_HFLAG_M16) { 2621 /* microMIPS mode */ 2622 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2623 } else { 2624 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2625 } 2626 } 2627 2628 if (do_break(env, &info, code) != 0) { 2629 goto error; 2630 } 2631 } 2632 break; 2633 default: 2634 error: 2635 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2636 trapnr); 2637 cpu_dump_state(cs, stderr, fprintf, 0); 2638 abort(); 2639 } 2640 process_pending_signals(env); 2641 } 2642 } 2643 #endif 2644 2645 #ifdef TARGET_OPENRISC 2646 2647 void cpu_loop(CPUOpenRISCState *env) 2648 { 2649 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2650 int trapnr, gdbsig; 2651 2652 for (;;) { 2653 trapnr = cpu_exec(env); 2654 gdbsig = 0; 2655 2656 switch (trapnr) { 2657 case EXCP_RESET: 2658 qemu_log("\nReset request, exit, pc is %#x\n", env->pc); 2659 exit(1); 2660 break; 2661 case EXCP_BUSERR: 2662 qemu_log("\nBus error, exit, pc is %#x\n", env->pc); 2663 gdbsig = SIGBUS; 2664 break; 2665 case EXCP_DPF: 2666 case EXCP_IPF: 2667 cpu_dump_state(cs, stderr, fprintf, 0); 2668 gdbsig = TARGET_SIGSEGV; 2669 break; 2670 case EXCP_TICK: 2671 qemu_log("\nTick time interrupt pc is %#x\n", env->pc); 2672 break; 2673 case EXCP_ALIGN: 2674 qemu_log("\nAlignment pc is %#x\n", env->pc); 2675 gdbsig = SIGBUS; 2676 break; 2677 case EXCP_ILLEGAL: 2678 qemu_log("\nIllegal instructionpc is %#x\n", env->pc); 2679 gdbsig = SIGILL; 2680 break; 2681 case EXCP_INT: 2682 qemu_log("\nExternal interruptpc is %#x\n", env->pc); 2683 break; 2684 case EXCP_DTLBMISS: 2685 case EXCP_ITLBMISS: 2686 qemu_log("\nTLB miss\n"); 2687 break; 2688 case EXCP_RANGE: 2689 qemu_log("\nRange\n"); 2690 gdbsig = SIGSEGV; 2691 break; 2692 case EXCP_SYSCALL: 2693 env->pc += 4; /* 0xc00; */ 2694 env->gpr[11] = do_syscall(env, 2695 env->gpr[11], /* return value */ 2696 env->gpr[3], /* r3 - r7 are params */ 2697 env->gpr[4], 2698 env->gpr[5], 2699 env->gpr[6], 2700 env->gpr[7], 2701 env->gpr[8], 0, 0); 2702 break; 2703 case EXCP_FPE: 2704 qemu_log("\nFloating point error\n"); 2705 break; 2706 case EXCP_TRAP: 2707 qemu_log("\nTrap\n"); 2708 gdbsig = SIGTRAP; 2709 break; 2710 case EXCP_NR: 2711 qemu_log("\nNR\n"); 2712 break; 2713 default: 2714 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", 2715 trapnr); 2716 cpu_dump_state(cs, stderr, fprintf, 0); 2717 gdbsig = TARGET_SIGILL; 2718 break; 2719 } 2720 if (gdbsig) { 2721 gdb_handlesig(cs, gdbsig); 2722 if (gdbsig != TARGET_SIGTRAP) { 2723 exit(1); 2724 } 2725 } 2726 2727 process_pending_signals(env); 2728 } 2729 } 2730 2731 #endif /* TARGET_OPENRISC */ 2732 2733 #ifdef TARGET_SH4 2734 void cpu_loop(CPUSH4State *env) 2735 { 2736 CPUState *cs = CPU(sh_env_get_cpu(env)); 2737 int trapnr, ret; 2738 target_siginfo_t info; 2739 2740 while (1) { 2741 trapnr = cpu_sh4_exec (env); 2742 2743 switch (trapnr) { 2744 case 0x160: 2745 env->pc += 2; 2746 ret = do_syscall(env, 2747 env->gregs[3], 2748 env->gregs[4], 2749 env->gregs[5], 2750 env->gregs[6], 2751 env->gregs[7], 2752 env->gregs[0], 2753 env->gregs[1], 2754 0, 0); 2755 env->gregs[0] = ret; 2756 break; 2757 case EXCP_INTERRUPT: 2758 /* just indicate that signals should be handled asap */ 2759 break; 2760 case EXCP_DEBUG: 2761 { 2762 int sig; 2763 2764 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2765 if (sig) 2766 { 2767 info.si_signo = sig; 2768 info.si_errno = 0; 2769 info.si_code = TARGET_TRAP_BRKPT; 2770 queue_signal(env, info.si_signo, &info); 2771 } 2772 } 2773 break; 2774 case 0xa0: 2775 case 0xc0: 2776 info.si_signo = SIGSEGV; 2777 info.si_errno = 0; 2778 info.si_code = TARGET_SEGV_MAPERR; 2779 info._sifields._sigfault._addr = env->tea; 2780 queue_signal(env, info.si_signo, &info); 2781 break; 2782 2783 default: 2784 printf ("Unhandled trap: 0x%x\n", trapnr); 2785 cpu_dump_state(cs, stderr, fprintf, 0); 2786 exit (1); 2787 } 2788 process_pending_signals (env); 2789 } 2790 } 2791 #endif 2792 2793 #ifdef TARGET_CRIS 2794 void cpu_loop(CPUCRISState *env) 2795 { 2796 CPUState *cs = CPU(cris_env_get_cpu(env)); 2797 int trapnr, ret; 2798 target_siginfo_t info; 2799 2800 while (1) { 2801 trapnr = cpu_cris_exec (env); 2802 switch (trapnr) { 2803 case 0xaa: 2804 { 2805 info.si_signo = SIGSEGV; 2806 info.si_errno = 0; 2807 /* XXX: check env->error_code */ 2808 info.si_code = TARGET_SEGV_MAPERR; 2809 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2810 queue_signal(env, info.si_signo, &info); 2811 } 2812 break; 2813 case EXCP_INTERRUPT: 2814 /* just indicate that signals should be handled asap */ 2815 break; 2816 case EXCP_BREAK: 2817 ret = do_syscall(env, 2818 env->regs[9], 2819 env->regs[10], 2820 env->regs[11], 2821 env->regs[12], 2822 env->regs[13], 2823 env->pregs[7], 2824 env->pregs[11], 2825 0, 0); 2826 env->regs[10] = ret; 2827 break; 2828 case EXCP_DEBUG: 2829 { 2830 int sig; 2831 2832 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2833 if (sig) 2834 { 2835 info.si_signo = sig; 2836 info.si_errno = 0; 2837 info.si_code = TARGET_TRAP_BRKPT; 2838 queue_signal(env, info.si_signo, &info); 2839 } 2840 } 2841 break; 2842 default: 2843 printf ("Unhandled trap: 0x%x\n", trapnr); 2844 cpu_dump_state(cs, stderr, fprintf, 0); 2845 exit (1); 2846 } 2847 process_pending_signals (env); 2848 } 2849 } 2850 #endif 2851 2852 #ifdef TARGET_MICROBLAZE 2853 void cpu_loop(CPUMBState *env) 2854 { 2855 CPUState *cs = CPU(mb_env_get_cpu(env)); 2856 int trapnr, ret; 2857 target_siginfo_t info; 2858 2859 while (1) { 2860 trapnr = cpu_mb_exec (env); 2861 switch (trapnr) { 2862 case 0xaa: 2863 { 2864 info.si_signo = SIGSEGV; 2865 info.si_errno = 0; 2866 /* XXX: check env->error_code */ 2867 info.si_code = TARGET_SEGV_MAPERR; 2868 info._sifields._sigfault._addr = 0; 2869 queue_signal(env, info.si_signo, &info); 2870 } 2871 break; 2872 case EXCP_INTERRUPT: 2873 /* just indicate that signals should be handled asap */ 2874 break; 2875 case EXCP_BREAK: 2876 /* Return address is 4 bytes after the call. */ 2877 env->regs[14] += 4; 2878 env->sregs[SR_PC] = env->regs[14]; 2879 ret = do_syscall(env, 2880 env->regs[12], 2881 env->regs[5], 2882 env->regs[6], 2883 env->regs[7], 2884 env->regs[8], 2885 env->regs[9], 2886 env->regs[10], 2887 0, 0); 2888 env->regs[3] = ret; 2889 break; 2890 case EXCP_HW_EXCP: 2891 env->regs[17] = env->sregs[SR_PC] + 4; 2892 if (env->iflags & D_FLAG) { 2893 env->sregs[SR_ESR] |= 1 << 12; 2894 env->sregs[SR_PC] -= 4; 2895 /* FIXME: if branch was immed, replay the imm as well. */ 2896 } 2897 2898 env->iflags &= ~(IMM_FLAG | D_FLAG); 2899 2900 switch (env->sregs[SR_ESR] & 31) { 2901 case ESR_EC_DIVZERO: 2902 info.si_signo = SIGFPE; 2903 info.si_errno = 0; 2904 info.si_code = TARGET_FPE_FLTDIV; 2905 info._sifields._sigfault._addr = 0; 2906 queue_signal(env, info.si_signo, &info); 2907 break; 2908 case ESR_EC_FPU: 2909 info.si_signo = SIGFPE; 2910 info.si_errno = 0; 2911 if (env->sregs[SR_FSR] & FSR_IO) { 2912 info.si_code = TARGET_FPE_FLTINV; 2913 } 2914 if (env->sregs[SR_FSR] & FSR_DZ) { 2915 info.si_code = TARGET_FPE_FLTDIV; 2916 } 2917 info._sifields._sigfault._addr = 0; 2918 queue_signal(env, info.si_signo, &info); 2919 break; 2920 default: 2921 printf ("Unhandled hw-exception: 0x%x\n", 2922 env->sregs[SR_ESR] & ESR_EC_MASK); 2923 cpu_dump_state(cs, stderr, fprintf, 0); 2924 exit (1); 2925 break; 2926 } 2927 break; 2928 case EXCP_DEBUG: 2929 { 2930 int sig; 2931 2932 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2933 if (sig) 2934 { 2935 info.si_signo = sig; 2936 info.si_errno = 0; 2937 info.si_code = TARGET_TRAP_BRKPT; 2938 queue_signal(env, info.si_signo, &info); 2939 } 2940 } 2941 break; 2942 default: 2943 printf ("Unhandled trap: 0x%x\n", trapnr); 2944 cpu_dump_state(cs, stderr, fprintf, 0); 2945 exit (1); 2946 } 2947 process_pending_signals (env); 2948 } 2949 } 2950 #endif 2951 2952 #ifdef TARGET_M68K 2953 2954 void cpu_loop(CPUM68KState *env) 2955 { 2956 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2957 int trapnr; 2958 unsigned int n; 2959 target_siginfo_t info; 2960 TaskState *ts = cs->opaque; 2961 2962 for(;;) { 2963 trapnr = cpu_m68k_exec(env); 2964 switch(trapnr) { 2965 case EXCP_ILLEGAL: 2966 { 2967 if (ts->sim_syscalls) { 2968 uint16_t nr; 2969 nr = lduw(env->pc + 2); 2970 env->pc += 4; 2971 do_m68k_simcall(env, nr); 2972 } else { 2973 goto do_sigill; 2974 } 2975 } 2976 break; 2977 case EXCP_HALT_INSN: 2978 /* Semihosing syscall. */ 2979 env->pc += 4; 2980 do_m68k_semihosting(env, env->dregs[0]); 2981 break; 2982 case EXCP_LINEA: 2983 case EXCP_LINEF: 2984 case EXCP_UNSUPPORTED: 2985 do_sigill: 2986 info.si_signo = SIGILL; 2987 info.si_errno = 0; 2988 info.si_code = TARGET_ILL_ILLOPN; 2989 info._sifields._sigfault._addr = env->pc; 2990 queue_signal(env, info.si_signo, &info); 2991 break; 2992 case EXCP_TRAP0: 2993 { 2994 ts->sim_syscalls = 0; 2995 n = env->dregs[0]; 2996 env->pc += 2; 2997 env->dregs[0] = do_syscall(env, 2998 n, 2999 env->dregs[1], 3000 env->dregs[2], 3001 env->dregs[3], 3002 env->dregs[4], 3003 env->dregs[5], 3004 env->aregs[0], 3005 0, 0); 3006 } 3007 break; 3008 case EXCP_INTERRUPT: 3009 /* just indicate that signals should be handled asap */ 3010 break; 3011 case EXCP_ACCESS: 3012 { 3013 info.si_signo = SIGSEGV; 3014 info.si_errno = 0; 3015 /* XXX: check env->error_code */ 3016 info.si_code = TARGET_SEGV_MAPERR; 3017 info._sifields._sigfault._addr = env->mmu.ar; 3018 queue_signal(env, info.si_signo, &info); 3019 } 3020 break; 3021 case EXCP_DEBUG: 3022 { 3023 int sig; 3024 3025 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3026 if (sig) 3027 { 3028 info.si_signo = sig; 3029 info.si_errno = 0; 3030 info.si_code = TARGET_TRAP_BRKPT; 3031 queue_signal(env, info.si_signo, &info); 3032 } 3033 } 3034 break; 3035 default: 3036 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 3037 trapnr); 3038 cpu_dump_state(cs, stderr, fprintf, 0); 3039 abort(); 3040 } 3041 process_pending_signals(env); 3042 } 3043 } 3044 #endif /* TARGET_M68K */ 3045 3046 #ifdef TARGET_ALPHA 3047 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3048 { 3049 target_ulong addr, val, tmp; 3050 target_siginfo_t info; 3051 int ret = 0; 3052 3053 addr = env->lock_addr; 3054 tmp = env->lock_st_addr; 3055 env->lock_addr = -1; 3056 env->lock_st_addr = 0; 3057 3058 start_exclusive(); 3059 mmap_lock(); 3060 3061 if (addr == tmp) { 3062 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3063 goto do_sigsegv; 3064 } 3065 3066 if (val == env->lock_value) { 3067 tmp = env->ir[reg]; 3068 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3069 goto do_sigsegv; 3070 } 3071 ret = 1; 3072 } 3073 } 3074 env->ir[reg] = ret; 3075 env->pc += 4; 3076 3077 mmap_unlock(); 3078 end_exclusive(); 3079 return; 3080 3081 do_sigsegv: 3082 mmap_unlock(); 3083 end_exclusive(); 3084 3085 info.si_signo = TARGET_SIGSEGV; 3086 info.si_errno = 0; 3087 info.si_code = TARGET_SEGV_MAPERR; 3088 info._sifields._sigfault._addr = addr; 3089 queue_signal(env, TARGET_SIGSEGV, &info); 3090 } 3091 3092 void cpu_loop(CPUAlphaState *env) 3093 { 3094 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3095 int trapnr; 3096 target_siginfo_t info; 3097 abi_long sysret; 3098 3099 while (1) { 3100 trapnr = cpu_alpha_exec (env); 3101 3102 /* All of the traps imply a transition through PALcode, which 3103 implies an REI instruction has been executed. Which means 3104 that the intr_flag should be cleared. */ 3105 env->intr_flag = 0; 3106 3107 switch (trapnr) { 3108 case EXCP_RESET: 3109 fprintf(stderr, "Reset requested. Exit\n"); 3110 exit(1); 3111 break; 3112 case EXCP_MCHK: 3113 fprintf(stderr, "Machine check exception. Exit\n"); 3114 exit(1); 3115 break; 3116 case EXCP_SMP_INTERRUPT: 3117 case EXCP_CLK_INTERRUPT: 3118 case EXCP_DEV_INTERRUPT: 3119 fprintf(stderr, "External interrupt. Exit\n"); 3120 exit(1); 3121 break; 3122 case EXCP_MMFAULT: 3123 env->lock_addr = -1; 3124 info.si_signo = TARGET_SIGSEGV; 3125 info.si_errno = 0; 3126 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3127 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3128 info._sifields._sigfault._addr = env->trap_arg0; 3129 queue_signal(env, info.si_signo, &info); 3130 break; 3131 case EXCP_UNALIGN: 3132 env->lock_addr = -1; 3133 info.si_signo = TARGET_SIGBUS; 3134 info.si_errno = 0; 3135 info.si_code = TARGET_BUS_ADRALN; 3136 info._sifields._sigfault._addr = env->trap_arg0; 3137 queue_signal(env, info.si_signo, &info); 3138 break; 3139 case EXCP_OPCDEC: 3140 do_sigill: 3141 env->lock_addr = -1; 3142 info.si_signo = TARGET_SIGILL; 3143 info.si_errno = 0; 3144 info.si_code = TARGET_ILL_ILLOPC; 3145 info._sifields._sigfault._addr = env->pc; 3146 queue_signal(env, info.si_signo, &info); 3147 break; 3148 case EXCP_ARITH: 3149 env->lock_addr = -1; 3150 info.si_signo = TARGET_SIGFPE; 3151 info.si_errno = 0; 3152 info.si_code = TARGET_FPE_FLTINV; 3153 info._sifields._sigfault._addr = env->pc; 3154 queue_signal(env, info.si_signo, &info); 3155 break; 3156 case EXCP_FEN: 3157 /* No-op. Linux simply re-enables the FPU. */ 3158 break; 3159 case EXCP_CALL_PAL: 3160 env->lock_addr = -1; 3161 switch (env->error_code) { 3162 case 0x80: 3163 /* BPT */ 3164 info.si_signo = TARGET_SIGTRAP; 3165 info.si_errno = 0; 3166 info.si_code = TARGET_TRAP_BRKPT; 3167 info._sifields._sigfault._addr = env->pc; 3168 queue_signal(env, info.si_signo, &info); 3169 break; 3170 case 0x81: 3171 /* BUGCHK */ 3172 info.si_signo = TARGET_SIGTRAP; 3173 info.si_errno = 0; 3174 info.si_code = 0; 3175 info._sifields._sigfault._addr = env->pc; 3176 queue_signal(env, info.si_signo, &info); 3177 break; 3178 case 0x83: 3179 /* CALLSYS */ 3180 trapnr = env->ir[IR_V0]; 3181 sysret = do_syscall(env, trapnr, 3182 env->ir[IR_A0], env->ir[IR_A1], 3183 env->ir[IR_A2], env->ir[IR_A3], 3184 env->ir[IR_A4], env->ir[IR_A5], 3185 0, 0); 3186 if (trapnr == TARGET_NR_sigreturn 3187 || trapnr == TARGET_NR_rt_sigreturn) { 3188 break; 3189 } 3190 /* Syscall writes 0 to V0 to bypass error check, similar 3191 to how this is handled internal to Linux kernel. 3192 (Ab)use trapnr temporarily as boolean indicating error. */ 3193 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3194 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3195 env->ir[IR_A3] = trapnr; 3196 break; 3197 case 0x86: 3198 /* IMB */ 3199 /* ??? We can probably elide the code using page_unprotect 3200 that is checking for self-modifying code. Instead we 3201 could simply call tb_flush here. Until we work out the 3202 changes required to turn off the extra write protection, 3203 this can be a no-op. */ 3204 break; 3205 case 0x9E: 3206 /* RDUNIQUE */ 3207 /* Handled in the translator for usermode. */ 3208 abort(); 3209 case 0x9F: 3210 /* WRUNIQUE */ 3211 /* Handled in the translator for usermode. */ 3212 abort(); 3213 case 0xAA: 3214 /* GENTRAP */ 3215 info.si_signo = TARGET_SIGFPE; 3216 switch (env->ir[IR_A0]) { 3217 case TARGET_GEN_INTOVF: 3218 info.si_code = TARGET_FPE_INTOVF; 3219 break; 3220 case TARGET_GEN_INTDIV: 3221 info.si_code = TARGET_FPE_INTDIV; 3222 break; 3223 case TARGET_GEN_FLTOVF: 3224 info.si_code = TARGET_FPE_FLTOVF; 3225 break; 3226 case TARGET_GEN_FLTUND: 3227 info.si_code = TARGET_FPE_FLTUND; 3228 break; 3229 case TARGET_GEN_FLTINV: 3230 info.si_code = TARGET_FPE_FLTINV; 3231 break; 3232 case TARGET_GEN_FLTINE: 3233 info.si_code = TARGET_FPE_FLTRES; 3234 break; 3235 case TARGET_GEN_ROPRAND: 3236 info.si_code = 0; 3237 break; 3238 default: 3239 info.si_signo = TARGET_SIGTRAP; 3240 info.si_code = 0; 3241 break; 3242 } 3243 info.si_errno = 0; 3244 info._sifields._sigfault._addr = env->pc; 3245 queue_signal(env, info.si_signo, &info); 3246 break; 3247 default: 3248 goto do_sigill; 3249 } 3250 break; 3251 case EXCP_DEBUG: 3252 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3253 if (info.si_signo) { 3254 env->lock_addr = -1; 3255 info.si_errno = 0; 3256 info.si_code = TARGET_TRAP_BRKPT; 3257 queue_signal(env, info.si_signo, &info); 3258 } 3259 break; 3260 case EXCP_STL_C: 3261 case EXCP_STQ_C: 3262 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3263 break; 3264 case EXCP_INTERRUPT: 3265 /* Just indicate that signals should be handled asap. */ 3266 break; 3267 default: 3268 printf ("Unhandled trap: 0x%x\n", trapnr); 3269 cpu_dump_state(cs, stderr, fprintf, 0); 3270 exit (1); 3271 } 3272 process_pending_signals (env); 3273 } 3274 } 3275 #endif /* TARGET_ALPHA */ 3276 3277 #ifdef TARGET_S390X 3278 void cpu_loop(CPUS390XState *env) 3279 { 3280 CPUState *cs = CPU(s390_env_get_cpu(env)); 3281 int trapnr, n, sig; 3282 target_siginfo_t info; 3283 target_ulong addr; 3284 3285 while (1) { 3286 trapnr = cpu_s390x_exec(env); 3287 switch (trapnr) { 3288 case EXCP_INTERRUPT: 3289 /* Just indicate that signals should be handled asap. */ 3290 break; 3291 3292 case EXCP_SVC: 3293 n = env->int_svc_code; 3294 if (!n) { 3295 /* syscalls > 255 */ 3296 n = env->regs[1]; 3297 } 3298 env->psw.addr += env->int_svc_ilen; 3299 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3300 env->regs[4], env->regs[5], 3301 env->regs[6], env->regs[7], 0, 0); 3302 break; 3303 3304 case EXCP_DEBUG: 3305 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3306 if (sig) { 3307 n = TARGET_TRAP_BRKPT; 3308 goto do_signal_pc; 3309 } 3310 break; 3311 case EXCP_PGM: 3312 n = env->int_pgm_code; 3313 switch (n) { 3314 case PGM_OPERATION: 3315 case PGM_PRIVILEGED: 3316 sig = SIGILL; 3317 n = TARGET_ILL_ILLOPC; 3318 goto do_signal_pc; 3319 case PGM_PROTECTION: 3320 case PGM_ADDRESSING: 3321 sig = SIGSEGV; 3322 /* XXX: check env->error_code */ 3323 n = TARGET_SEGV_MAPERR; 3324 addr = env->__excp_addr; 3325 goto do_signal; 3326 case PGM_EXECUTE: 3327 case PGM_SPECIFICATION: 3328 case PGM_SPECIAL_OP: 3329 case PGM_OPERAND: 3330 do_sigill_opn: 3331 sig = SIGILL; 3332 n = TARGET_ILL_ILLOPN; 3333 goto do_signal_pc; 3334 3335 case PGM_FIXPT_OVERFLOW: 3336 sig = SIGFPE; 3337 n = TARGET_FPE_INTOVF; 3338 goto do_signal_pc; 3339 case PGM_FIXPT_DIVIDE: 3340 sig = SIGFPE; 3341 n = TARGET_FPE_INTDIV; 3342 goto do_signal_pc; 3343 3344 case PGM_DATA: 3345 n = (env->fpc >> 8) & 0xff; 3346 if (n == 0xff) { 3347 /* compare-and-trap */ 3348 goto do_sigill_opn; 3349 } else { 3350 /* An IEEE exception, simulated or otherwise. */ 3351 if (n & 0x80) { 3352 n = TARGET_FPE_FLTINV; 3353 } else if (n & 0x40) { 3354 n = TARGET_FPE_FLTDIV; 3355 } else if (n & 0x20) { 3356 n = TARGET_FPE_FLTOVF; 3357 } else if (n & 0x10) { 3358 n = TARGET_FPE_FLTUND; 3359 } else if (n & 0x08) { 3360 n = TARGET_FPE_FLTRES; 3361 } else { 3362 /* ??? Quantum exception; BFP, DFP error. */ 3363 goto do_sigill_opn; 3364 } 3365 sig = SIGFPE; 3366 goto do_signal_pc; 3367 } 3368 3369 default: 3370 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3371 cpu_dump_state(cs, stderr, fprintf, 0); 3372 exit(1); 3373 } 3374 break; 3375 3376 do_signal_pc: 3377 addr = env->psw.addr; 3378 do_signal: 3379 info.si_signo = sig; 3380 info.si_errno = 0; 3381 info.si_code = n; 3382 info._sifields._sigfault._addr = addr; 3383 queue_signal(env, info.si_signo, &info); 3384 break; 3385 3386 default: 3387 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3388 cpu_dump_state(cs, stderr, fprintf, 0); 3389 exit(1); 3390 } 3391 process_pending_signals (env); 3392 } 3393 } 3394 3395 #endif /* TARGET_S390X */ 3396 3397 THREAD CPUState *thread_cpu; 3398 3399 void task_settid(TaskState *ts) 3400 { 3401 if (ts->ts_tid == 0) { 3402 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3403 } 3404 } 3405 3406 void stop_all_tasks(void) 3407 { 3408 /* 3409 * We trust that when using NPTL, start_exclusive() 3410 * handles thread stopping correctly. 3411 */ 3412 start_exclusive(); 3413 } 3414 3415 /* Assumes contents are already zeroed. */ 3416 void init_task_state(TaskState *ts) 3417 { 3418 int i; 3419 3420 ts->used = 1; 3421 ts->first_free = ts->sigqueue_table; 3422 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3423 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3424 } 3425 ts->sigqueue_table[i].next = NULL; 3426 } 3427 3428 CPUArchState *cpu_copy(CPUArchState *env) 3429 { 3430 CPUState *cpu = ENV_GET_CPU(env); 3431 CPUArchState *new_env = cpu_init(cpu_model); 3432 CPUState *new_cpu = ENV_GET_CPU(new_env); 3433 #if defined(TARGET_HAS_ICE) 3434 CPUBreakpoint *bp; 3435 CPUWatchpoint *wp; 3436 #endif 3437 3438 /* Reset non arch specific state */ 3439 cpu_reset(new_cpu); 3440 3441 memcpy(new_env, env, sizeof(CPUArchState)); 3442 3443 /* Clone all break/watchpoints. 3444 Note: Once we support ptrace with hw-debug register access, make sure 3445 BP_CPU break/watchpoints are handled correctly on clone. */ 3446 QTAILQ_INIT(&cpu->breakpoints); 3447 QTAILQ_INIT(&cpu->watchpoints); 3448 #if defined(TARGET_HAS_ICE) 3449 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3450 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3451 } 3452 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3453 cpu_watchpoint_insert(new_cpu, wp->vaddr, (~wp->len_mask) + 1, 3454 wp->flags, NULL); 3455 } 3456 #endif 3457 3458 return new_env; 3459 } 3460 3461 static void handle_arg_help(const char *arg) 3462 { 3463 usage(); 3464 } 3465 3466 static void handle_arg_log(const char *arg) 3467 { 3468 int mask; 3469 3470 mask = qemu_str_to_log_mask(arg); 3471 if (!mask) { 3472 qemu_print_log_usage(stdout); 3473 exit(1); 3474 } 3475 qemu_set_log(mask); 3476 } 3477 3478 static void handle_arg_log_filename(const char *arg) 3479 { 3480 qemu_set_log_filename(arg); 3481 } 3482 3483 static void handle_arg_set_env(const char *arg) 3484 { 3485 char *r, *p, *token; 3486 r = p = strdup(arg); 3487 while ((token = strsep(&p, ",")) != NULL) { 3488 if (envlist_setenv(envlist, token) != 0) { 3489 usage(); 3490 } 3491 } 3492 free(r); 3493 } 3494 3495 static void handle_arg_unset_env(const char *arg) 3496 { 3497 char *r, *p, *token; 3498 r = p = strdup(arg); 3499 while ((token = strsep(&p, ",")) != NULL) { 3500 if (envlist_unsetenv(envlist, token) != 0) { 3501 usage(); 3502 } 3503 } 3504 free(r); 3505 } 3506 3507 static void handle_arg_argv0(const char *arg) 3508 { 3509 argv0 = strdup(arg); 3510 } 3511 3512 static void handle_arg_stack_size(const char *arg) 3513 { 3514 char *p; 3515 guest_stack_size = strtoul(arg, &p, 0); 3516 if (guest_stack_size == 0) { 3517 usage(); 3518 } 3519 3520 if (*p == 'M') { 3521 guest_stack_size *= 1024 * 1024; 3522 } else if (*p == 'k' || *p == 'K') { 3523 guest_stack_size *= 1024; 3524 } 3525 } 3526 3527 static void handle_arg_ld_prefix(const char *arg) 3528 { 3529 interp_prefix = strdup(arg); 3530 } 3531 3532 static void handle_arg_pagesize(const char *arg) 3533 { 3534 qemu_host_page_size = atoi(arg); 3535 if (qemu_host_page_size == 0 || 3536 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3537 fprintf(stderr, "page size must be a power of two\n"); 3538 exit(1); 3539 } 3540 } 3541 3542 static void handle_arg_gdb(const char *arg) 3543 { 3544 gdbstub_port = atoi(arg); 3545 } 3546 3547 static void handle_arg_uname(const char *arg) 3548 { 3549 qemu_uname_release = strdup(arg); 3550 } 3551 3552 static void handle_arg_cpu(const char *arg) 3553 { 3554 cpu_model = strdup(arg); 3555 if (cpu_model == NULL || is_help_option(cpu_model)) { 3556 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3557 #if defined(cpu_list) 3558 cpu_list(stdout, &fprintf); 3559 #endif 3560 exit(1); 3561 } 3562 } 3563 3564 #if defined(CONFIG_USE_GUEST_BASE) 3565 static void handle_arg_guest_base(const char *arg) 3566 { 3567 guest_base = strtol(arg, NULL, 0); 3568 have_guest_base = 1; 3569 } 3570 3571 static void handle_arg_reserved_va(const char *arg) 3572 { 3573 char *p; 3574 int shift = 0; 3575 reserved_va = strtoul(arg, &p, 0); 3576 switch (*p) { 3577 case 'k': 3578 case 'K': 3579 shift = 10; 3580 break; 3581 case 'M': 3582 shift = 20; 3583 break; 3584 case 'G': 3585 shift = 30; 3586 break; 3587 } 3588 if (shift) { 3589 unsigned long unshifted = reserved_va; 3590 p++; 3591 reserved_va <<= shift; 3592 if (((reserved_va >> shift) != unshifted) 3593 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3594 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3595 #endif 3596 ) { 3597 fprintf(stderr, "Reserved virtual address too big\n"); 3598 exit(1); 3599 } 3600 } 3601 if (*p) { 3602 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3603 exit(1); 3604 } 3605 } 3606 #endif 3607 3608 static void handle_arg_singlestep(const char *arg) 3609 { 3610 singlestep = 1; 3611 } 3612 3613 static void handle_arg_strace(const char *arg) 3614 { 3615 do_strace = 1; 3616 } 3617 3618 static void handle_arg_version(const char *arg) 3619 { 3620 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3621 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3622 exit(0); 3623 } 3624 3625 struct qemu_argument { 3626 const char *argv; 3627 const char *env; 3628 bool has_arg; 3629 void (*handle_opt)(const char *arg); 3630 const char *example; 3631 const char *help; 3632 }; 3633 3634 static const struct qemu_argument arg_table[] = { 3635 {"h", "", false, handle_arg_help, 3636 "", "print this help"}, 3637 {"g", "QEMU_GDB", true, handle_arg_gdb, 3638 "port", "wait gdb connection to 'port'"}, 3639 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3640 "path", "set the elf interpreter prefix to 'path'"}, 3641 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3642 "size", "set the stack size to 'size' bytes"}, 3643 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3644 "model", "select CPU (-cpu help for list)"}, 3645 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3646 "var=value", "sets targets environment variable (see below)"}, 3647 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3648 "var", "unsets targets environment variable (see below)"}, 3649 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3650 "argv0", "forces target process argv[0] to be 'argv0'"}, 3651 {"r", "QEMU_UNAME", true, handle_arg_uname, 3652 "uname", "set qemu uname release string to 'uname'"}, 3653 #if defined(CONFIG_USE_GUEST_BASE) 3654 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3655 "address", "set guest_base address to 'address'"}, 3656 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3657 "size", "reserve 'size' bytes for guest virtual address space"}, 3658 #endif 3659 {"d", "QEMU_LOG", true, handle_arg_log, 3660 "item[,...]", "enable logging of specified items " 3661 "(use '-d help' for a list of items)"}, 3662 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3663 "logfile", "write logs to 'logfile' (default stderr)"}, 3664 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3665 "pagesize", "set the host page size to 'pagesize'"}, 3666 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3667 "", "run in singlestep mode"}, 3668 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3669 "", "log system calls"}, 3670 {"version", "QEMU_VERSION", false, handle_arg_version, 3671 "", "display version information and exit"}, 3672 {NULL, NULL, false, NULL, NULL, NULL} 3673 }; 3674 3675 static void usage(void) 3676 { 3677 const struct qemu_argument *arginfo; 3678 int maxarglen; 3679 int maxenvlen; 3680 3681 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3682 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3683 "\n" 3684 "Options and associated environment variables:\n" 3685 "\n"); 3686 3687 /* Calculate column widths. We must always have at least enough space 3688 * for the column header. 3689 */ 3690 maxarglen = strlen("Argument"); 3691 maxenvlen = strlen("Env-variable"); 3692 3693 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3694 int arglen = strlen(arginfo->argv); 3695 if (arginfo->has_arg) { 3696 arglen += strlen(arginfo->example) + 1; 3697 } 3698 if (strlen(arginfo->env) > maxenvlen) { 3699 maxenvlen = strlen(arginfo->env); 3700 } 3701 if (arglen > maxarglen) { 3702 maxarglen = arglen; 3703 } 3704 } 3705 3706 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3707 maxenvlen, "Env-variable"); 3708 3709 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3710 if (arginfo->has_arg) { 3711 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3712 (int)(maxarglen - strlen(arginfo->argv) - 1), 3713 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3714 } else { 3715 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3716 maxenvlen, arginfo->env, 3717 arginfo->help); 3718 } 3719 } 3720 3721 printf("\n" 3722 "Defaults:\n" 3723 "QEMU_LD_PREFIX = %s\n" 3724 "QEMU_STACK_SIZE = %ld byte\n", 3725 interp_prefix, 3726 guest_stack_size); 3727 3728 printf("\n" 3729 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3730 "QEMU_UNSET_ENV environment variables to set and unset\n" 3731 "environment variables for the target process.\n" 3732 "It is possible to provide several variables by separating them\n" 3733 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3734 "provide the -E and -U options multiple times.\n" 3735 "The following lines are equivalent:\n" 3736 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3737 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3738 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 3739 "Note that if you provide several changes to a single variable\n" 3740 "the last change will stay in effect.\n"); 3741 3742 exit(1); 3743 } 3744 3745 static int parse_args(int argc, char **argv) 3746 { 3747 const char *r; 3748 int optind; 3749 const struct qemu_argument *arginfo; 3750 3751 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3752 if (arginfo->env == NULL) { 3753 continue; 3754 } 3755 3756 r = getenv(arginfo->env); 3757 if (r != NULL) { 3758 arginfo->handle_opt(r); 3759 } 3760 } 3761 3762 optind = 1; 3763 for (;;) { 3764 if (optind >= argc) { 3765 break; 3766 } 3767 r = argv[optind]; 3768 if (r[0] != '-') { 3769 break; 3770 } 3771 optind++; 3772 r++; 3773 if (!strcmp(r, "-")) { 3774 break; 3775 } 3776 3777 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3778 if (!strcmp(r, arginfo->argv)) { 3779 if (arginfo->has_arg) { 3780 if (optind >= argc) { 3781 usage(); 3782 } 3783 arginfo->handle_opt(argv[optind]); 3784 optind++; 3785 } else { 3786 arginfo->handle_opt(NULL); 3787 } 3788 break; 3789 } 3790 } 3791 3792 /* no option matched the current argv */ 3793 if (arginfo->handle_opt == NULL) { 3794 usage(); 3795 } 3796 } 3797 3798 if (optind >= argc) { 3799 usage(); 3800 } 3801 3802 filename = argv[optind]; 3803 exec_path = argv[optind]; 3804 3805 return optind; 3806 } 3807 3808 int main(int argc, char **argv, char **envp) 3809 { 3810 struct target_pt_regs regs1, *regs = ®s1; 3811 struct image_info info1, *info = &info1; 3812 struct linux_binprm bprm; 3813 TaskState *ts; 3814 CPUArchState *env; 3815 CPUState *cpu; 3816 int optind; 3817 char **target_environ, **wrk; 3818 char **target_argv; 3819 int target_argc; 3820 int i; 3821 int ret; 3822 int execfd; 3823 3824 module_call_init(MODULE_INIT_QOM); 3825 3826 qemu_init_auxval(envp); 3827 qemu_cache_utils_init(); 3828 3829 if ((envlist = envlist_create()) == NULL) { 3830 (void) fprintf(stderr, "Unable to allocate envlist\n"); 3831 exit(1); 3832 } 3833 3834 /* add current environment into the list */ 3835 for (wrk = environ; *wrk != NULL; wrk++) { 3836 (void) envlist_setenv(envlist, *wrk); 3837 } 3838 3839 /* Read the stack limit from the kernel. If it's "unlimited", 3840 then we can do little else besides use the default. */ 3841 { 3842 struct rlimit lim; 3843 if (getrlimit(RLIMIT_STACK, &lim) == 0 3844 && lim.rlim_cur != RLIM_INFINITY 3845 && lim.rlim_cur == (target_long)lim.rlim_cur) { 3846 guest_stack_size = lim.rlim_cur; 3847 } 3848 } 3849 3850 cpu_model = NULL; 3851 #if defined(cpudef_setup) 3852 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 3853 #endif 3854 3855 optind = parse_args(argc, argv); 3856 3857 /* Zero out regs */ 3858 memset(regs, 0, sizeof(struct target_pt_regs)); 3859 3860 /* Zero out image_info */ 3861 memset(info, 0, sizeof(struct image_info)); 3862 3863 memset(&bprm, 0, sizeof (bprm)); 3864 3865 /* Scan interp_prefix dir for replacement files. */ 3866 init_paths(interp_prefix); 3867 3868 init_qemu_uname_release(); 3869 3870 if (cpu_model == NULL) { 3871 #if defined(TARGET_I386) 3872 #ifdef TARGET_X86_64 3873 cpu_model = "qemu64"; 3874 #else 3875 cpu_model = "qemu32"; 3876 #endif 3877 #elif defined(TARGET_ARM) 3878 cpu_model = "any"; 3879 #elif defined(TARGET_UNICORE32) 3880 cpu_model = "any"; 3881 #elif defined(TARGET_M68K) 3882 cpu_model = "any"; 3883 #elif defined(TARGET_SPARC) 3884 #ifdef TARGET_SPARC64 3885 cpu_model = "TI UltraSparc II"; 3886 #else 3887 cpu_model = "Fujitsu MB86904"; 3888 #endif 3889 #elif defined(TARGET_MIPS) 3890 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 3891 cpu_model = "20Kc"; 3892 #else 3893 cpu_model = "24Kf"; 3894 #endif 3895 #elif defined TARGET_OPENRISC 3896 cpu_model = "or1200"; 3897 #elif defined(TARGET_PPC) 3898 #ifdef TARGET_PPC64 3899 cpu_model = "970fx"; 3900 #else 3901 cpu_model = "750"; 3902 #endif 3903 #else 3904 cpu_model = "any"; 3905 #endif 3906 } 3907 tcg_exec_init(0); 3908 cpu_exec_init_all(); 3909 /* NOTE: we need to init the CPU at this stage to get 3910 qemu_host_page_size */ 3911 env = cpu_init(cpu_model); 3912 if (!env) { 3913 fprintf(stderr, "Unable to find CPU definition\n"); 3914 exit(1); 3915 } 3916 cpu = ENV_GET_CPU(env); 3917 cpu_reset(cpu); 3918 3919 thread_cpu = cpu; 3920 3921 if (getenv("QEMU_STRACE")) { 3922 do_strace = 1; 3923 } 3924 3925 target_environ = envlist_to_environ(envlist, NULL); 3926 envlist_free(envlist); 3927 3928 #if defined(CONFIG_USE_GUEST_BASE) 3929 /* 3930 * Now that page sizes are configured in cpu_init() we can do 3931 * proper page alignment for guest_base. 3932 */ 3933 guest_base = HOST_PAGE_ALIGN(guest_base); 3934 3935 if (reserved_va || have_guest_base) { 3936 guest_base = init_guest_space(guest_base, reserved_va, 0, 3937 have_guest_base); 3938 if (guest_base == (unsigned long)-1) { 3939 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 3940 "space for use as guest address space (check your virtual " 3941 "memory ulimit setting or reserve less using -R option)\n", 3942 reserved_va); 3943 exit(1); 3944 } 3945 3946 if (reserved_va) { 3947 mmap_next_start = reserved_va; 3948 } 3949 } 3950 #endif /* CONFIG_USE_GUEST_BASE */ 3951 3952 /* 3953 * Read in mmap_min_addr kernel parameter. This value is used 3954 * When loading the ELF image to determine whether guest_base 3955 * is needed. It is also used in mmap_find_vma. 3956 */ 3957 { 3958 FILE *fp; 3959 3960 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 3961 unsigned long tmp; 3962 if (fscanf(fp, "%lu", &tmp) == 1) { 3963 mmap_min_addr = tmp; 3964 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); 3965 } 3966 fclose(fp); 3967 } 3968 } 3969 3970 /* 3971 * Prepare copy of argv vector for target. 3972 */ 3973 target_argc = argc - optind; 3974 target_argv = calloc(target_argc + 1, sizeof (char *)); 3975 if (target_argv == NULL) { 3976 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 3977 exit(1); 3978 } 3979 3980 /* 3981 * If argv0 is specified (using '-0' switch) we replace 3982 * argv[0] pointer with the given one. 3983 */ 3984 i = 0; 3985 if (argv0 != NULL) { 3986 target_argv[i++] = strdup(argv0); 3987 } 3988 for (; i < target_argc; i++) { 3989 target_argv[i] = strdup(argv[optind + i]); 3990 } 3991 target_argv[target_argc] = NULL; 3992 3993 ts = g_malloc0 (sizeof(TaskState)); 3994 init_task_state(ts); 3995 /* build Task State */ 3996 ts->info = info; 3997 ts->bprm = &bprm; 3998 cpu->opaque = ts; 3999 task_settid(ts); 4000 4001 execfd = qemu_getauxval(AT_EXECFD); 4002 if (execfd == 0) { 4003 execfd = open(filename, O_RDONLY); 4004 if (execfd < 0) { 4005 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4006 _exit(1); 4007 } 4008 } 4009 4010 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4011 info, &bprm); 4012 if (ret != 0) { 4013 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4014 _exit(1); 4015 } 4016 4017 for (wrk = target_environ; *wrk; wrk++) { 4018 free(*wrk); 4019 } 4020 4021 free(target_environ); 4022 4023 if (qemu_log_enabled()) { 4024 #if defined(CONFIG_USE_GUEST_BASE) 4025 qemu_log("guest_base 0x%lx\n", guest_base); 4026 #endif 4027 log_page_dump(); 4028 4029 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4030 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4031 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4032 info->start_code); 4033 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4034 info->start_data); 4035 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4036 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4037 info->start_stack); 4038 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4039 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4040 } 4041 4042 target_set_brk(info->brk); 4043 syscall_init(); 4044 signal_init(); 4045 4046 #if defined(CONFIG_USE_GUEST_BASE) 4047 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4048 generating the prologue until now so that the prologue can take 4049 the real value of GUEST_BASE into account. */ 4050 tcg_prologue_init(&tcg_ctx); 4051 #endif 4052 4053 #if defined(TARGET_I386) 4054 cpu_x86_set_cpl(env, 3); 4055 4056 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4057 env->hflags |= HF_PE_MASK; 4058 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4059 env->cr[4] |= CR4_OSFXSR_MASK; 4060 env->hflags |= HF_OSFXSR_MASK; 4061 } 4062 #ifndef TARGET_ABI32 4063 /* enable 64 bit mode if possible */ 4064 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4065 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4066 exit(1); 4067 } 4068 env->cr[4] |= CR4_PAE_MASK; 4069 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4070 env->hflags |= HF_LMA_MASK; 4071 #endif 4072 4073 /* flags setup : we activate the IRQs by default as in user mode */ 4074 env->eflags |= IF_MASK; 4075 4076 /* linux register setup */ 4077 #ifndef TARGET_ABI32 4078 env->regs[R_EAX] = regs->rax; 4079 env->regs[R_EBX] = regs->rbx; 4080 env->regs[R_ECX] = regs->rcx; 4081 env->regs[R_EDX] = regs->rdx; 4082 env->regs[R_ESI] = regs->rsi; 4083 env->regs[R_EDI] = regs->rdi; 4084 env->regs[R_EBP] = regs->rbp; 4085 env->regs[R_ESP] = regs->rsp; 4086 env->eip = regs->rip; 4087 #else 4088 env->regs[R_EAX] = regs->eax; 4089 env->regs[R_EBX] = regs->ebx; 4090 env->regs[R_ECX] = regs->ecx; 4091 env->regs[R_EDX] = regs->edx; 4092 env->regs[R_ESI] = regs->esi; 4093 env->regs[R_EDI] = regs->edi; 4094 env->regs[R_EBP] = regs->ebp; 4095 env->regs[R_ESP] = regs->esp; 4096 env->eip = regs->eip; 4097 #endif 4098 4099 /* linux interrupt setup */ 4100 #ifndef TARGET_ABI32 4101 env->idt.limit = 511; 4102 #else 4103 env->idt.limit = 255; 4104 #endif 4105 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4106 PROT_READ|PROT_WRITE, 4107 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4108 idt_table = g2h(env->idt.base); 4109 set_idt(0, 0); 4110 set_idt(1, 0); 4111 set_idt(2, 0); 4112 set_idt(3, 3); 4113 set_idt(4, 3); 4114 set_idt(5, 0); 4115 set_idt(6, 0); 4116 set_idt(7, 0); 4117 set_idt(8, 0); 4118 set_idt(9, 0); 4119 set_idt(10, 0); 4120 set_idt(11, 0); 4121 set_idt(12, 0); 4122 set_idt(13, 0); 4123 set_idt(14, 0); 4124 set_idt(15, 0); 4125 set_idt(16, 0); 4126 set_idt(17, 0); 4127 set_idt(18, 0); 4128 set_idt(19, 0); 4129 set_idt(0x80, 3); 4130 4131 /* linux segment setup */ 4132 { 4133 uint64_t *gdt_table; 4134 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4135 PROT_READ|PROT_WRITE, 4136 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4137 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4138 gdt_table = g2h(env->gdt.base); 4139 #ifdef TARGET_ABI32 4140 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4141 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4142 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4143 #else 4144 /* 64 bit code segment */ 4145 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4146 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4147 DESC_L_MASK | 4148 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4149 #endif 4150 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4151 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4152 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4153 } 4154 cpu_x86_load_seg(env, R_CS, __USER_CS); 4155 cpu_x86_load_seg(env, R_SS, __USER_DS); 4156 #ifdef TARGET_ABI32 4157 cpu_x86_load_seg(env, R_DS, __USER_DS); 4158 cpu_x86_load_seg(env, R_ES, __USER_DS); 4159 cpu_x86_load_seg(env, R_FS, __USER_DS); 4160 cpu_x86_load_seg(env, R_GS, __USER_DS); 4161 /* This hack makes Wine work... */ 4162 env->segs[R_FS].selector = 0; 4163 #else 4164 cpu_x86_load_seg(env, R_DS, 0); 4165 cpu_x86_load_seg(env, R_ES, 0); 4166 cpu_x86_load_seg(env, R_FS, 0); 4167 cpu_x86_load_seg(env, R_GS, 0); 4168 #endif 4169 #elif defined(TARGET_AARCH64) 4170 { 4171 int i; 4172 4173 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4174 fprintf(stderr, 4175 "The selected ARM CPU does not support 64 bit mode\n"); 4176 exit(1); 4177 } 4178 4179 for (i = 0; i < 31; i++) { 4180 env->xregs[i] = regs->regs[i]; 4181 } 4182 env->pc = regs->pc; 4183 env->xregs[31] = regs->sp; 4184 } 4185 #elif defined(TARGET_ARM) 4186 { 4187 int i; 4188 cpsr_write(env, regs->uregs[16], 0xffffffff); 4189 for(i = 0; i < 16; i++) { 4190 env->regs[i] = regs->uregs[i]; 4191 } 4192 /* Enable BE8. */ 4193 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4194 && (info->elf_flags & EF_ARM_BE8)) { 4195 env->bswap_code = 1; 4196 } 4197 } 4198 #elif defined(TARGET_UNICORE32) 4199 { 4200 int i; 4201 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4202 for (i = 0; i < 32; i++) { 4203 env->regs[i] = regs->uregs[i]; 4204 } 4205 } 4206 #elif defined(TARGET_SPARC) 4207 { 4208 int i; 4209 env->pc = regs->pc; 4210 env->npc = regs->npc; 4211 env->y = regs->y; 4212 for(i = 0; i < 8; i++) 4213 env->gregs[i] = regs->u_regs[i]; 4214 for(i = 0; i < 8; i++) 4215 env->regwptr[i] = regs->u_regs[i + 8]; 4216 } 4217 #elif defined(TARGET_PPC) 4218 { 4219 int i; 4220 4221 #if defined(TARGET_PPC64) 4222 #if defined(TARGET_ABI32) 4223 env->msr &= ~((target_ulong)1 << MSR_SF); 4224 #else 4225 env->msr |= (target_ulong)1 << MSR_SF; 4226 #endif 4227 #endif 4228 env->nip = regs->nip; 4229 for(i = 0; i < 32; i++) { 4230 env->gpr[i] = regs->gpr[i]; 4231 } 4232 } 4233 #elif defined(TARGET_M68K) 4234 { 4235 env->pc = regs->pc; 4236 env->dregs[0] = regs->d0; 4237 env->dregs[1] = regs->d1; 4238 env->dregs[2] = regs->d2; 4239 env->dregs[3] = regs->d3; 4240 env->dregs[4] = regs->d4; 4241 env->dregs[5] = regs->d5; 4242 env->dregs[6] = regs->d6; 4243 env->dregs[7] = regs->d7; 4244 env->aregs[0] = regs->a0; 4245 env->aregs[1] = regs->a1; 4246 env->aregs[2] = regs->a2; 4247 env->aregs[3] = regs->a3; 4248 env->aregs[4] = regs->a4; 4249 env->aregs[5] = regs->a5; 4250 env->aregs[6] = regs->a6; 4251 env->aregs[7] = regs->usp; 4252 env->sr = regs->sr; 4253 ts->sim_syscalls = 1; 4254 } 4255 #elif defined(TARGET_MICROBLAZE) 4256 { 4257 env->regs[0] = regs->r0; 4258 env->regs[1] = regs->r1; 4259 env->regs[2] = regs->r2; 4260 env->regs[3] = regs->r3; 4261 env->regs[4] = regs->r4; 4262 env->regs[5] = regs->r5; 4263 env->regs[6] = regs->r6; 4264 env->regs[7] = regs->r7; 4265 env->regs[8] = regs->r8; 4266 env->regs[9] = regs->r9; 4267 env->regs[10] = regs->r10; 4268 env->regs[11] = regs->r11; 4269 env->regs[12] = regs->r12; 4270 env->regs[13] = regs->r13; 4271 env->regs[14] = regs->r14; 4272 env->regs[15] = regs->r15; 4273 env->regs[16] = regs->r16; 4274 env->regs[17] = regs->r17; 4275 env->regs[18] = regs->r18; 4276 env->regs[19] = regs->r19; 4277 env->regs[20] = regs->r20; 4278 env->regs[21] = regs->r21; 4279 env->regs[22] = regs->r22; 4280 env->regs[23] = regs->r23; 4281 env->regs[24] = regs->r24; 4282 env->regs[25] = regs->r25; 4283 env->regs[26] = regs->r26; 4284 env->regs[27] = regs->r27; 4285 env->regs[28] = regs->r28; 4286 env->regs[29] = regs->r29; 4287 env->regs[30] = regs->r30; 4288 env->regs[31] = regs->r31; 4289 env->sregs[SR_PC] = regs->pc; 4290 } 4291 #elif defined(TARGET_MIPS) 4292 { 4293 int i; 4294 4295 for(i = 0; i < 32; i++) { 4296 env->active_tc.gpr[i] = regs->regs[i]; 4297 } 4298 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4299 if (regs->cp0_epc & 1) { 4300 env->hflags |= MIPS_HFLAG_M16; 4301 } 4302 } 4303 #elif defined(TARGET_OPENRISC) 4304 { 4305 int i; 4306 4307 for (i = 0; i < 32; i++) { 4308 env->gpr[i] = regs->gpr[i]; 4309 } 4310 4311 env->sr = regs->sr; 4312 env->pc = regs->pc; 4313 } 4314 #elif defined(TARGET_SH4) 4315 { 4316 int i; 4317 4318 for(i = 0; i < 16; i++) { 4319 env->gregs[i] = regs->regs[i]; 4320 } 4321 env->pc = regs->pc; 4322 } 4323 #elif defined(TARGET_ALPHA) 4324 { 4325 int i; 4326 4327 for(i = 0; i < 28; i++) { 4328 env->ir[i] = ((abi_ulong *)regs)[i]; 4329 } 4330 env->ir[IR_SP] = regs->usp; 4331 env->pc = regs->pc; 4332 } 4333 #elif defined(TARGET_CRIS) 4334 { 4335 env->regs[0] = regs->r0; 4336 env->regs[1] = regs->r1; 4337 env->regs[2] = regs->r2; 4338 env->regs[3] = regs->r3; 4339 env->regs[4] = regs->r4; 4340 env->regs[5] = regs->r5; 4341 env->regs[6] = regs->r6; 4342 env->regs[7] = regs->r7; 4343 env->regs[8] = regs->r8; 4344 env->regs[9] = regs->r9; 4345 env->regs[10] = regs->r10; 4346 env->regs[11] = regs->r11; 4347 env->regs[12] = regs->r12; 4348 env->regs[13] = regs->r13; 4349 env->regs[14] = info->start_stack; 4350 env->regs[15] = regs->acr; 4351 env->pc = regs->erp; 4352 } 4353 #elif defined(TARGET_S390X) 4354 { 4355 int i; 4356 for (i = 0; i < 16; i++) { 4357 env->regs[i] = regs->gprs[i]; 4358 } 4359 env->psw.mask = regs->psw.mask; 4360 env->psw.addr = regs->psw.addr; 4361 } 4362 #else 4363 #error unsupported target CPU 4364 #endif 4365 4366 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4367 ts->stack_base = info->start_stack; 4368 ts->heap_base = info->brk; 4369 /* This will be filled in on the first SYS_HEAPINFO call. */ 4370 ts->heap_limit = 0; 4371 #endif 4372 4373 if (gdbstub_port) { 4374 if (gdbserver_start(gdbstub_port) < 0) { 4375 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4376 gdbstub_port); 4377 exit(1); 4378 } 4379 gdb_handlesig(cpu, 0); 4380 } 4381 cpu_loop(env); 4382 /* never exits */ 4383 return 0; 4384 } 4385