1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 37 char *exec_path; 38 39 int singlestep; 40 static const char *filename; 41 static const char *argv0; 42 static int gdbstub_port; 43 static envlist_t *envlist; 44 static const char *cpu_model; 45 unsigned long mmap_min_addr; 46 unsigned long guest_base; 47 int have_guest_base; 48 49 #define EXCP_DUMP(env, fmt, ...) \ 50 do { \ 51 CPUState *cs = ENV_GET_CPU(env); \ 52 fprintf(stderr, fmt , ## __VA_ARGS__); \ 53 cpu_dump_state(cs, stderr, fprintf, 0); \ 54 if (qemu_log_separate()) { \ 55 qemu_log(fmt, ## __VA_ARGS__); \ 56 log_cpu_state(cs, 0); \ 57 } \ 58 } while (0) 59 60 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 61 /* 62 * When running 32-on-64 we should make sure we can fit all of the possible 63 * guest address space into a contiguous chunk of virtual host memory. 64 * 65 * This way we will never overlap with our own libraries or binaries or stack 66 * or anything else that QEMU maps. 67 */ 68 # ifdef TARGET_MIPS 69 /* MIPS only supports 31 bits of virtual address space for user space */ 70 unsigned long reserved_va = 0x77000000; 71 # else 72 unsigned long reserved_va = 0xf7000000; 73 # endif 74 #else 75 unsigned long reserved_va; 76 #endif 77 78 static void usage(int exitcode); 79 80 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 81 const char *qemu_uname_release; 82 83 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 84 we allocate a bigger stack. Need a better solution, for example 85 by remapping the process stack directly at the right place */ 86 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 87 88 void gemu_log(const char *fmt, ...) 89 { 90 va_list ap; 91 92 va_start(ap, fmt); 93 vfprintf(stderr, fmt, ap); 94 va_end(ap); 95 } 96 97 #if defined(TARGET_I386) 98 int cpu_get_pic_interrupt(CPUX86State *env) 99 { 100 return -1; 101 } 102 #endif 103 104 /***********************************************************/ 105 /* Helper routines for implementing atomic operations. */ 106 107 /* To implement exclusive operations we force all cpus to syncronise. 108 We don't require a full sync, only that no cpus are executing guest code. 109 The alternative is to map target atomic ops onto host equivalents, 110 which requires quite a lot of per host/target work. */ 111 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 112 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 113 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 114 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 115 static int pending_cpus; 116 117 /* Make sure everything is in a consistent state for calling fork(). */ 118 void fork_start(void) 119 { 120 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 121 pthread_mutex_lock(&exclusive_lock); 122 mmap_fork_start(); 123 } 124 125 void fork_end(int child) 126 { 127 mmap_fork_end(child); 128 if (child) { 129 CPUState *cpu, *next_cpu; 130 /* Child processes created by fork() only have a single thread. 131 Discard information about the parent threads. */ 132 CPU_FOREACH_SAFE(cpu, next_cpu) { 133 if (cpu != thread_cpu) { 134 QTAILQ_REMOVE(&cpus, thread_cpu, node); 135 } 136 } 137 pending_cpus = 0; 138 pthread_mutex_init(&exclusive_lock, NULL); 139 pthread_mutex_init(&cpu_list_mutex, NULL); 140 pthread_cond_init(&exclusive_cond, NULL); 141 pthread_cond_init(&exclusive_resume, NULL); 142 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); 143 gdbserver_fork(thread_cpu); 144 } else { 145 pthread_mutex_unlock(&exclusive_lock); 146 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 147 } 148 } 149 150 /* Wait for pending exclusive operations to complete. The exclusive lock 151 must be held. */ 152 static inline void exclusive_idle(void) 153 { 154 while (pending_cpus) { 155 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 156 } 157 } 158 159 /* Start an exclusive operation. 160 Must only be called from outside cpu_arm_exec. */ 161 static inline void start_exclusive(void) 162 { 163 CPUState *other_cpu; 164 165 pthread_mutex_lock(&exclusive_lock); 166 exclusive_idle(); 167 168 pending_cpus = 1; 169 /* Make all other cpus stop executing. */ 170 CPU_FOREACH(other_cpu) { 171 if (other_cpu->running) { 172 pending_cpus++; 173 cpu_exit(other_cpu); 174 } 175 } 176 if (pending_cpus > 1) { 177 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 178 } 179 } 180 181 /* Finish an exclusive operation. */ 182 static inline void __attribute__((unused)) end_exclusive(void) 183 { 184 pending_cpus = 0; 185 pthread_cond_broadcast(&exclusive_resume); 186 pthread_mutex_unlock(&exclusive_lock); 187 } 188 189 /* Wait for exclusive ops to finish, and begin cpu execution. */ 190 static inline void cpu_exec_start(CPUState *cpu) 191 { 192 pthread_mutex_lock(&exclusive_lock); 193 exclusive_idle(); 194 cpu->running = true; 195 pthread_mutex_unlock(&exclusive_lock); 196 } 197 198 /* Mark cpu as not executing, and release pending exclusive ops. */ 199 static inline void cpu_exec_end(CPUState *cpu) 200 { 201 pthread_mutex_lock(&exclusive_lock); 202 cpu->running = false; 203 if (pending_cpus > 1) { 204 pending_cpus--; 205 if (pending_cpus == 1) { 206 pthread_cond_signal(&exclusive_cond); 207 } 208 } 209 exclusive_idle(); 210 pthread_mutex_unlock(&exclusive_lock); 211 } 212 213 void cpu_list_lock(void) 214 { 215 pthread_mutex_lock(&cpu_list_mutex); 216 } 217 218 void cpu_list_unlock(void) 219 { 220 pthread_mutex_unlock(&cpu_list_mutex); 221 } 222 223 224 #ifdef TARGET_I386 225 /***********************************************************/ 226 /* CPUX86 core interface */ 227 228 uint64_t cpu_get_tsc(CPUX86State *env) 229 { 230 return cpu_get_host_ticks(); 231 } 232 233 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 234 int flags) 235 { 236 unsigned int e1, e2; 237 uint32_t *p; 238 e1 = (addr << 16) | (limit & 0xffff); 239 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 240 e2 |= flags; 241 p = ptr; 242 p[0] = tswap32(e1); 243 p[1] = tswap32(e2); 244 } 245 246 static uint64_t *idt_table; 247 #ifdef TARGET_X86_64 248 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 249 uint64_t addr, unsigned int sel) 250 { 251 uint32_t *p, e1, e2; 252 e1 = (addr & 0xffff) | (sel << 16); 253 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 254 p = ptr; 255 p[0] = tswap32(e1); 256 p[1] = tswap32(e2); 257 p[2] = tswap32(addr >> 32); 258 p[3] = 0; 259 } 260 /* only dpl matters as we do only user space emulation */ 261 static void set_idt(int n, unsigned int dpl) 262 { 263 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 264 } 265 #else 266 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 267 uint32_t addr, unsigned int sel) 268 { 269 uint32_t *p, e1, e2; 270 e1 = (addr & 0xffff) | (sel << 16); 271 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 272 p = ptr; 273 p[0] = tswap32(e1); 274 p[1] = tswap32(e2); 275 } 276 277 /* only dpl matters as we do only user space emulation */ 278 static void set_idt(int n, unsigned int dpl) 279 { 280 set_gate(idt_table + n, 0, dpl, 0, 0); 281 } 282 #endif 283 284 void cpu_loop(CPUX86State *env) 285 { 286 CPUState *cs = CPU(x86_env_get_cpu(env)); 287 int trapnr; 288 abi_ulong pc; 289 target_siginfo_t info; 290 291 for(;;) { 292 cpu_exec_start(cs); 293 trapnr = cpu_x86_exec(cs); 294 cpu_exec_end(cs); 295 switch(trapnr) { 296 case 0x80: 297 /* linux syscall from int $0x80 */ 298 env->regs[R_EAX] = do_syscall(env, 299 env->regs[R_EAX], 300 env->regs[R_EBX], 301 env->regs[R_ECX], 302 env->regs[R_EDX], 303 env->regs[R_ESI], 304 env->regs[R_EDI], 305 env->regs[R_EBP], 306 0, 0); 307 break; 308 #ifndef TARGET_ABI32 309 case EXCP_SYSCALL: 310 /* linux syscall from syscall instruction */ 311 env->regs[R_EAX] = do_syscall(env, 312 env->regs[R_EAX], 313 env->regs[R_EDI], 314 env->regs[R_ESI], 315 env->regs[R_EDX], 316 env->regs[10], 317 env->regs[8], 318 env->regs[9], 319 0, 0); 320 break; 321 #endif 322 case EXCP0B_NOSEG: 323 case EXCP0C_STACK: 324 info.si_signo = TARGET_SIGBUS; 325 info.si_errno = 0; 326 info.si_code = TARGET_SI_KERNEL; 327 info._sifields._sigfault._addr = 0; 328 queue_signal(env, info.si_signo, &info); 329 break; 330 case EXCP0D_GPF: 331 /* XXX: potential problem if ABI32 */ 332 #ifndef TARGET_X86_64 333 if (env->eflags & VM_MASK) { 334 handle_vm86_fault(env); 335 } else 336 #endif 337 { 338 info.si_signo = TARGET_SIGSEGV; 339 info.si_errno = 0; 340 info.si_code = TARGET_SI_KERNEL; 341 info._sifields._sigfault._addr = 0; 342 queue_signal(env, info.si_signo, &info); 343 } 344 break; 345 case EXCP0E_PAGE: 346 info.si_signo = TARGET_SIGSEGV; 347 info.si_errno = 0; 348 if (!(env->error_code & 1)) 349 info.si_code = TARGET_SEGV_MAPERR; 350 else 351 info.si_code = TARGET_SEGV_ACCERR; 352 info._sifields._sigfault._addr = env->cr[2]; 353 queue_signal(env, info.si_signo, &info); 354 break; 355 case EXCP00_DIVZ: 356 #ifndef TARGET_X86_64 357 if (env->eflags & VM_MASK) { 358 handle_vm86_trap(env, trapnr); 359 } else 360 #endif 361 { 362 /* division by zero */ 363 info.si_signo = TARGET_SIGFPE; 364 info.si_errno = 0; 365 info.si_code = TARGET_FPE_INTDIV; 366 info._sifields._sigfault._addr = env->eip; 367 queue_signal(env, info.si_signo, &info); 368 } 369 break; 370 case EXCP01_DB: 371 case EXCP03_INT3: 372 #ifndef TARGET_X86_64 373 if (env->eflags & VM_MASK) { 374 handle_vm86_trap(env, trapnr); 375 } else 376 #endif 377 { 378 info.si_signo = TARGET_SIGTRAP; 379 info.si_errno = 0; 380 if (trapnr == EXCP01_DB) { 381 info.si_code = TARGET_TRAP_BRKPT; 382 info._sifields._sigfault._addr = env->eip; 383 } else { 384 info.si_code = TARGET_SI_KERNEL; 385 info._sifields._sigfault._addr = 0; 386 } 387 queue_signal(env, info.si_signo, &info); 388 } 389 break; 390 case EXCP04_INTO: 391 case EXCP05_BOUND: 392 #ifndef TARGET_X86_64 393 if (env->eflags & VM_MASK) { 394 handle_vm86_trap(env, trapnr); 395 } else 396 #endif 397 { 398 info.si_signo = TARGET_SIGSEGV; 399 info.si_errno = 0; 400 info.si_code = TARGET_SI_KERNEL; 401 info._sifields._sigfault._addr = 0; 402 queue_signal(env, info.si_signo, &info); 403 } 404 break; 405 case EXCP06_ILLOP: 406 info.si_signo = TARGET_SIGILL; 407 info.si_errno = 0; 408 info.si_code = TARGET_ILL_ILLOPN; 409 info._sifields._sigfault._addr = env->eip; 410 queue_signal(env, info.si_signo, &info); 411 break; 412 case EXCP_INTERRUPT: 413 /* just indicate that signals should be handled asap */ 414 break; 415 case EXCP_DEBUG: 416 { 417 int sig; 418 419 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 420 if (sig) 421 { 422 info.si_signo = sig; 423 info.si_errno = 0; 424 info.si_code = TARGET_TRAP_BRKPT; 425 queue_signal(env, info.si_signo, &info); 426 } 427 } 428 break; 429 default: 430 pc = env->segs[R_CS].base + env->eip; 431 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 432 (long)pc, trapnr); 433 abort(); 434 } 435 process_pending_signals(env); 436 } 437 } 438 #endif 439 440 #ifdef TARGET_ARM 441 442 #define get_user_code_u32(x, gaddr, doswap) \ 443 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 444 if (!__r && (doswap)) { \ 445 (x) = bswap32(x); \ 446 } \ 447 __r; \ 448 }) 449 450 #define get_user_code_u16(x, gaddr, doswap) \ 451 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 452 if (!__r && (doswap)) { \ 453 (x) = bswap16(x); \ 454 } \ 455 __r; \ 456 }) 457 458 #ifdef TARGET_ABI32 459 /* Commpage handling -- there is no commpage for AArch64 */ 460 461 /* 462 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 463 * Input: 464 * r0 = pointer to oldval 465 * r1 = pointer to newval 466 * r2 = pointer to target value 467 * 468 * Output: 469 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 470 * C set if *ptr was changed, clear if no exchange happened 471 * 472 * Note segv's in kernel helpers are a bit tricky, we can set the 473 * data address sensibly but the PC address is just the entry point. 474 */ 475 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 476 { 477 uint64_t oldval, newval, val; 478 uint32_t addr, cpsr; 479 target_siginfo_t info; 480 481 /* Based on the 32 bit code in do_kernel_trap */ 482 483 /* XXX: This only works between threads, not between processes. 484 It's probably possible to implement this with native host 485 operations. However things like ldrex/strex are much harder so 486 there's not much point trying. */ 487 start_exclusive(); 488 cpsr = cpsr_read(env); 489 addr = env->regs[2]; 490 491 if (get_user_u64(oldval, env->regs[0])) { 492 env->exception.vaddress = env->regs[0]; 493 goto segv; 494 }; 495 496 if (get_user_u64(newval, env->regs[1])) { 497 env->exception.vaddress = env->regs[1]; 498 goto segv; 499 }; 500 501 if (get_user_u64(val, addr)) { 502 env->exception.vaddress = addr; 503 goto segv; 504 } 505 506 if (val == oldval) { 507 val = newval; 508 509 if (put_user_u64(val, addr)) { 510 env->exception.vaddress = addr; 511 goto segv; 512 }; 513 514 env->regs[0] = 0; 515 cpsr |= CPSR_C; 516 } else { 517 env->regs[0] = -1; 518 cpsr &= ~CPSR_C; 519 } 520 cpsr_write(env, cpsr, CPSR_C); 521 end_exclusive(); 522 return; 523 524 segv: 525 end_exclusive(); 526 /* We get the PC of the entry address - which is as good as anything, 527 on a real kernel what you get depends on which mode it uses. */ 528 info.si_signo = TARGET_SIGSEGV; 529 info.si_errno = 0; 530 /* XXX: check env->error_code */ 531 info.si_code = TARGET_SEGV_MAPERR; 532 info._sifields._sigfault._addr = env->exception.vaddress; 533 queue_signal(env, info.si_signo, &info); 534 } 535 536 /* Handle a jump to the kernel code page. */ 537 static int 538 do_kernel_trap(CPUARMState *env) 539 { 540 uint32_t addr; 541 uint32_t cpsr; 542 uint32_t val; 543 544 switch (env->regs[15]) { 545 case 0xffff0fa0: /* __kernel_memory_barrier */ 546 /* ??? No-op. Will need to do better for SMP. */ 547 break; 548 case 0xffff0fc0: /* __kernel_cmpxchg */ 549 /* XXX: This only works between threads, not between processes. 550 It's probably possible to implement this with native host 551 operations. However things like ldrex/strex are much harder so 552 there's not much point trying. */ 553 start_exclusive(); 554 cpsr = cpsr_read(env); 555 addr = env->regs[2]; 556 /* FIXME: This should SEGV if the access fails. */ 557 if (get_user_u32(val, addr)) 558 val = ~env->regs[0]; 559 if (val == env->regs[0]) { 560 val = env->regs[1]; 561 /* FIXME: Check for segfaults. */ 562 put_user_u32(val, addr); 563 env->regs[0] = 0; 564 cpsr |= CPSR_C; 565 } else { 566 env->regs[0] = -1; 567 cpsr &= ~CPSR_C; 568 } 569 cpsr_write(env, cpsr, CPSR_C); 570 end_exclusive(); 571 break; 572 case 0xffff0fe0: /* __kernel_get_tls */ 573 env->regs[0] = cpu_get_tls(env); 574 break; 575 case 0xffff0f60: /* __kernel_cmpxchg64 */ 576 arm_kernel_cmpxchg64_helper(env); 577 break; 578 579 default: 580 return 1; 581 } 582 /* Jump back to the caller. */ 583 addr = env->regs[14]; 584 if (addr & 1) { 585 env->thumb = 1; 586 addr &= ~1; 587 } 588 env->regs[15] = addr; 589 590 return 0; 591 } 592 593 /* Store exclusive handling for AArch32 */ 594 static int do_strex(CPUARMState *env) 595 { 596 uint64_t val; 597 int size; 598 int rc = 1; 599 int segv = 0; 600 uint32_t addr; 601 start_exclusive(); 602 if (env->exclusive_addr != env->exclusive_test) { 603 goto fail; 604 } 605 /* We know we're always AArch32 so the address is in uint32_t range 606 * unless it was the -1 exclusive-monitor-lost value (which won't 607 * match exclusive_test above). 608 */ 609 assert(extract64(env->exclusive_addr, 32, 32) == 0); 610 addr = env->exclusive_addr; 611 size = env->exclusive_info & 0xf; 612 switch (size) { 613 case 0: 614 segv = get_user_u8(val, addr); 615 break; 616 case 1: 617 segv = get_user_u16(val, addr); 618 break; 619 case 2: 620 case 3: 621 segv = get_user_u32(val, addr); 622 break; 623 default: 624 abort(); 625 } 626 if (segv) { 627 env->exception.vaddress = addr; 628 goto done; 629 } 630 if (size == 3) { 631 uint32_t valhi; 632 segv = get_user_u32(valhi, addr + 4); 633 if (segv) { 634 env->exception.vaddress = addr + 4; 635 goto done; 636 } 637 val = deposit64(val, 32, 32, valhi); 638 } 639 if (val != env->exclusive_val) { 640 goto fail; 641 } 642 643 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 644 switch (size) { 645 case 0: 646 segv = put_user_u8(val, addr); 647 break; 648 case 1: 649 segv = put_user_u16(val, addr); 650 break; 651 case 2: 652 case 3: 653 segv = put_user_u32(val, addr); 654 break; 655 } 656 if (segv) { 657 env->exception.vaddress = addr; 658 goto done; 659 } 660 if (size == 3) { 661 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 662 segv = put_user_u32(val, addr + 4); 663 if (segv) { 664 env->exception.vaddress = addr + 4; 665 goto done; 666 } 667 } 668 rc = 0; 669 fail: 670 env->regs[15] += 4; 671 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 672 done: 673 end_exclusive(); 674 return segv; 675 } 676 677 void cpu_loop(CPUARMState *env) 678 { 679 CPUState *cs = CPU(arm_env_get_cpu(env)); 680 int trapnr; 681 unsigned int n, insn; 682 target_siginfo_t info; 683 uint32_t addr; 684 685 for(;;) { 686 cpu_exec_start(cs); 687 trapnr = cpu_arm_exec(cs); 688 cpu_exec_end(cs); 689 switch(trapnr) { 690 case EXCP_UDEF: 691 { 692 TaskState *ts = cs->opaque; 693 uint32_t opcode; 694 int rc; 695 696 /* we handle the FPU emulation here, as Linux */ 697 /* we get the opcode */ 698 /* FIXME - what to do if get_user() fails? */ 699 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 700 701 rc = EmulateAll(opcode, &ts->fpa, env); 702 if (rc == 0) { /* illegal instruction */ 703 info.si_signo = TARGET_SIGILL; 704 info.si_errno = 0; 705 info.si_code = TARGET_ILL_ILLOPN; 706 info._sifields._sigfault._addr = env->regs[15]; 707 queue_signal(env, info.si_signo, &info); 708 } else if (rc < 0) { /* FP exception */ 709 int arm_fpe=0; 710 711 /* translate softfloat flags to FPSR flags */ 712 if (-rc & float_flag_invalid) 713 arm_fpe |= BIT_IOC; 714 if (-rc & float_flag_divbyzero) 715 arm_fpe |= BIT_DZC; 716 if (-rc & float_flag_overflow) 717 arm_fpe |= BIT_OFC; 718 if (-rc & float_flag_underflow) 719 arm_fpe |= BIT_UFC; 720 if (-rc & float_flag_inexact) 721 arm_fpe |= BIT_IXC; 722 723 FPSR fpsr = ts->fpa.fpsr; 724 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 725 726 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 727 info.si_signo = TARGET_SIGFPE; 728 info.si_errno = 0; 729 730 /* ordered by priority, least first */ 731 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 732 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 733 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 734 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 735 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 736 737 info._sifields._sigfault._addr = env->regs[15]; 738 queue_signal(env, info.si_signo, &info); 739 } else { 740 env->regs[15] += 4; 741 } 742 743 /* accumulate unenabled exceptions */ 744 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 745 fpsr |= BIT_IXC; 746 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 747 fpsr |= BIT_UFC; 748 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 749 fpsr |= BIT_OFC; 750 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 751 fpsr |= BIT_DZC; 752 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 753 fpsr |= BIT_IOC; 754 ts->fpa.fpsr=fpsr; 755 } else { /* everything OK */ 756 /* increment PC */ 757 env->regs[15] += 4; 758 } 759 } 760 break; 761 case EXCP_SWI: 762 case EXCP_BKPT: 763 { 764 env->eabi = 1; 765 /* system call */ 766 if (trapnr == EXCP_BKPT) { 767 if (env->thumb) { 768 /* FIXME - what to do if get_user() fails? */ 769 get_user_code_u16(insn, env->regs[15], env->bswap_code); 770 n = insn & 0xff; 771 env->regs[15] += 2; 772 } else { 773 /* FIXME - what to do if get_user() fails? */ 774 get_user_code_u32(insn, env->regs[15], env->bswap_code); 775 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 776 env->regs[15] += 4; 777 } 778 } else { 779 if (env->thumb) { 780 /* FIXME - what to do if get_user() fails? */ 781 get_user_code_u16(insn, env->regs[15] - 2, 782 env->bswap_code); 783 n = insn & 0xff; 784 } else { 785 /* FIXME - what to do if get_user() fails? */ 786 get_user_code_u32(insn, env->regs[15] - 4, 787 env->bswap_code); 788 n = insn & 0xffffff; 789 } 790 } 791 792 if (n == ARM_NR_cacheflush) { 793 /* nop */ 794 } else if (n == ARM_NR_semihosting 795 || n == ARM_NR_thumb_semihosting) { 796 env->regs[0] = do_arm_semihosting (env); 797 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 798 /* linux syscall */ 799 if (env->thumb || n == 0) { 800 n = env->regs[7]; 801 } else { 802 n -= ARM_SYSCALL_BASE; 803 env->eabi = 0; 804 } 805 if ( n > ARM_NR_BASE) { 806 switch (n) { 807 case ARM_NR_cacheflush: 808 /* nop */ 809 break; 810 case ARM_NR_set_tls: 811 cpu_set_tls(env, env->regs[0]); 812 env->regs[0] = 0; 813 break; 814 case ARM_NR_breakpoint: 815 env->regs[15] -= env->thumb ? 2 : 4; 816 goto excp_debug; 817 default: 818 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 819 n); 820 env->regs[0] = -TARGET_ENOSYS; 821 break; 822 } 823 } else { 824 env->regs[0] = do_syscall(env, 825 n, 826 env->regs[0], 827 env->regs[1], 828 env->regs[2], 829 env->regs[3], 830 env->regs[4], 831 env->regs[5], 832 0, 0); 833 } 834 } else { 835 goto error; 836 } 837 } 838 break; 839 case EXCP_INTERRUPT: 840 /* just indicate that signals should be handled asap */ 841 break; 842 case EXCP_STREX: 843 if (!do_strex(env)) { 844 break; 845 } 846 /* fall through for segv */ 847 case EXCP_PREFETCH_ABORT: 848 case EXCP_DATA_ABORT: 849 addr = env->exception.vaddress; 850 { 851 info.si_signo = TARGET_SIGSEGV; 852 info.si_errno = 0; 853 /* XXX: check env->error_code */ 854 info.si_code = TARGET_SEGV_MAPERR; 855 info._sifields._sigfault._addr = addr; 856 queue_signal(env, info.si_signo, &info); 857 } 858 break; 859 case EXCP_DEBUG: 860 excp_debug: 861 { 862 int sig; 863 864 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 865 if (sig) 866 { 867 info.si_signo = sig; 868 info.si_errno = 0; 869 info.si_code = TARGET_TRAP_BRKPT; 870 queue_signal(env, info.si_signo, &info); 871 } 872 } 873 break; 874 case EXCP_KERNEL_TRAP: 875 if (do_kernel_trap(env)) 876 goto error; 877 break; 878 default: 879 error: 880 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 881 abort(); 882 } 883 process_pending_signals(env); 884 } 885 } 886 887 #else 888 889 /* 890 * Handle AArch64 store-release exclusive 891 * 892 * rs = gets the status result of store exclusive 893 * rt = is the register that is stored 894 * rt2 = is the second register store (in STP) 895 * 896 */ 897 static int do_strex_a64(CPUARMState *env) 898 { 899 uint64_t val; 900 int size; 901 bool is_pair; 902 int rc = 1; 903 int segv = 0; 904 uint64_t addr; 905 int rs, rt, rt2; 906 907 start_exclusive(); 908 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 909 size = extract32(env->exclusive_info, 0, 2); 910 is_pair = extract32(env->exclusive_info, 2, 1); 911 rs = extract32(env->exclusive_info, 4, 5); 912 rt = extract32(env->exclusive_info, 9, 5); 913 rt2 = extract32(env->exclusive_info, 14, 5); 914 915 addr = env->exclusive_addr; 916 917 if (addr != env->exclusive_test) { 918 goto finish; 919 } 920 921 switch (size) { 922 case 0: 923 segv = get_user_u8(val, addr); 924 break; 925 case 1: 926 segv = get_user_u16(val, addr); 927 break; 928 case 2: 929 segv = get_user_u32(val, addr); 930 break; 931 case 3: 932 segv = get_user_u64(val, addr); 933 break; 934 default: 935 abort(); 936 } 937 if (segv) { 938 env->exception.vaddress = addr; 939 goto error; 940 } 941 if (val != env->exclusive_val) { 942 goto finish; 943 } 944 if (is_pair) { 945 if (size == 2) { 946 segv = get_user_u32(val, addr + 4); 947 } else { 948 segv = get_user_u64(val, addr + 8); 949 } 950 if (segv) { 951 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 952 goto error; 953 } 954 if (val != env->exclusive_high) { 955 goto finish; 956 } 957 } 958 /* handle the zero register */ 959 val = rt == 31 ? 0 : env->xregs[rt]; 960 switch (size) { 961 case 0: 962 segv = put_user_u8(val, addr); 963 break; 964 case 1: 965 segv = put_user_u16(val, addr); 966 break; 967 case 2: 968 segv = put_user_u32(val, addr); 969 break; 970 case 3: 971 segv = put_user_u64(val, addr); 972 break; 973 } 974 if (segv) { 975 goto error; 976 } 977 if (is_pair) { 978 /* handle the zero register */ 979 val = rt2 == 31 ? 0 : env->xregs[rt2]; 980 if (size == 2) { 981 segv = put_user_u32(val, addr + 4); 982 } else { 983 segv = put_user_u64(val, addr + 8); 984 } 985 if (segv) { 986 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 987 goto error; 988 } 989 } 990 rc = 0; 991 finish: 992 env->pc += 4; 993 /* rs == 31 encodes a write to the ZR, thus throwing away 994 * the status return. This is rather silly but valid. 995 */ 996 if (rs < 31) { 997 env->xregs[rs] = rc; 998 } 999 error: 1000 /* instruction faulted, PC does not advance */ 1001 /* either way a strex releases any exclusive lock we have */ 1002 env->exclusive_addr = -1; 1003 end_exclusive(); 1004 return segv; 1005 } 1006 1007 /* AArch64 main loop */ 1008 void cpu_loop(CPUARMState *env) 1009 { 1010 CPUState *cs = CPU(arm_env_get_cpu(env)); 1011 int trapnr, sig; 1012 target_siginfo_t info; 1013 1014 for (;;) { 1015 cpu_exec_start(cs); 1016 trapnr = cpu_arm_exec(cs); 1017 cpu_exec_end(cs); 1018 1019 switch (trapnr) { 1020 case EXCP_SWI: 1021 env->xregs[0] = do_syscall(env, 1022 env->xregs[8], 1023 env->xregs[0], 1024 env->xregs[1], 1025 env->xregs[2], 1026 env->xregs[3], 1027 env->xregs[4], 1028 env->xregs[5], 1029 0, 0); 1030 break; 1031 case EXCP_INTERRUPT: 1032 /* just indicate that signals should be handled asap */ 1033 break; 1034 case EXCP_UDEF: 1035 info.si_signo = TARGET_SIGILL; 1036 info.si_errno = 0; 1037 info.si_code = TARGET_ILL_ILLOPN; 1038 info._sifields._sigfault._addr = env->pc; 1039 queue_signal(env, info.si_signo, &info); 1040 break; 1041 case EXCP_STREX: 1042 if (!do_strex_a64(env)) { 1043 break; 1044 } 1045 /* fall through for segv */ 1046 case EXCP_PREFETCH_ABORT: 1047 case EXCP_DATA_ABORT: 1048 info.si_signo = TARGET_SIGSEGV; 1049 info.si_errno = 0; 1050 /* XXX: check env->error_code */ 1051 info.si_code = TARGET_SEGV_MAPERR; 1052 info._sifields._sigfault._addr = env->exception.vaddress; 1053 queue_signal(env, info.si_signo, &info); 1054 break; 1055 case EXCP_DEBUG: 1056 case EXCP_BKPT: 1057 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1058 if (sig) { 1059 info.si_signo = sig; 1060 info.si_errno = 0; 1061 info.si_code = TARGET_TRAP_BRKPT; 1062 queue_signal(env, info.si_signo, &info); 1063 } 1064 break; 1065 case EXCP_SEMIHOST: 1066 env->xregs[0] = do_arm_semihosting(env); 1067 break; 1068 default: 1069 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1070 abort(); 1071 } 1072 process_pending_signals(env); 1073 /* Exception return on AArch64 always clears the exclusive monitor, 1074 * so any return to running guest code implies this. 1075 * A strex (successful or otherwise) also clears the monitor, so 1076 * we don't need to specialcase EXCP_STREX. 1077 */ 1078 env->exclusive_addr = -1; 1079 } 1080 } 1081 #endif /* ndef TARGET_ABI32 */ 1082 1083 #endif 1084 1085 #ifdef TARGET_UNICORE32 1086 1087 void cpu_loop(CPUUniCore32State *env) 1088 { 1089 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1090 int trapnr; 1091 unsigned int n, insn; 1092 target_siginfo_t info; 1093 1094 for (;;) { 1095 cpu_exec_start(cs); 1096 trapnr = uc32_cpu_exec(cs); 1097 cpu_exec_end(cs); 1098 switch (trapnr) { 1099 case UC32_EXCP_PRIV: 1100 { 1101 /* system call */ 1102 get_user_u32(insn, env->regs[31] - 4); 1103 n = insn & 0xffffff; 1104 1105 if (n >= UC32_SYSCALL_BASE) { 1106 /* linux syscall */ 1107 n -= UC32_SYSCALL_BASE; 1108 if (n == UC32_SYSCALL_NR_set_tls) { 1109 cpu_set_tls(env, env->regs[0]); 1110 env->regs[0] = 0; 1111 } else { 1112 env->regs[0] = do_syscall(env, 1113 n, 1114 env->regs[0], 1115 env->regs[1], 1116 env->regs[2], 1117 env->regs[3], 1118 env->regs[4], 1119 env->regs[5], 1120 0, 0); 1121 } 1122 } else { 1123 goto error; 1124 } 1125 } 1126 break; 1127 case UC32_EXCP_DTRAP: 1128 case UC32_EXCP_ITRAP: 1129 info.si_signo = TARGET_SIGSEGV; 1130 info.si_errno = 0; 1131 /* XXX: check env->error_code */ 1132 info.si_code = TARGET_SEGV_MAPERR; 1133 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1134 queue_signal(env, info.si_signo, &info); 1135 break; 1136 case EXCP_INTERRUPT: 1137 /* just indicate that signals should be handled asap */ 1138 break; 1139 case EXCP_DEBUG: 1140 { 1141 int sig; 1142 1143 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1144 if (sig) { 1145 info.si_signo = sig; 1146 info.si_errno = 0; 1147 info.si_code = TARGET_TRAP_BRKPT; 1148 queue_signal(env, info.si_signo, &info); 1149 } 1150 } 1151 break; 1152 default: 1153 goto error; 1154 } 1155 process_pending_signals(env); 1156 } 1157 1158 error: 1159 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1160 abort(); 1161 } 1162 #endif 1163 1164 #ifdef TARGET_SPARC 1165 #define SPARC64_STACK_BIAS 2047 1166 1167 //#define DEBUG_WIN 1168 1169 /* WARNING: dealing with register windows _is_ complicated. More info 1170 can be found at http://www.sics.se/~psm/sparcstack.html */ 1171 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1172 { 1173 index = (index + cwp * 16) % (16 * env->nwindows); 1174 /* wrap handling : if cwp is on the last window, then we use the 1175 registers 'after' the end */ 1176 if (index < 8 && env->cwp == env->nwindows - 1) 1177 index += 16 * env->nwindows; 1178 return index; 1179 } 1180 1181 /* save the register window 'cwp1' */ 1182 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1183 { 1184 unsigned int i; 1185 abi_ulong sp_ptr; 1186 1187 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1188 #ifdef TARGET_SPARC64 1189 if (sp_ptr & 3) 1190 sp_ptr += SPARC64_STACK_BIAS; 1191 #endif 1192 #if defined(DEBUG_WIN) 1193 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1194 sp_ptr, cwp1); 1195 #endif 1196 for(i = 0; i < 16; i++) { 1197 /* FIXME - what to do if put_user() fails? */ 1198 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1199 sp_ptr += sizeof(abi_ulong); 1200 } 1201 } 1202 1203 static void save_window(CPUSPARCState *env) 1204 { 1205 #ifndef TARGET_SPARC64 1206 unsigned int new_wim; 1207 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1208 ((1LL << env->nwindows) - 1); 1209 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1210 env->wim = new_wim; 1211 #else 1212 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1213 env->cansave++; 1214 env->canrestore--; 1215 #endif 1216 } 1217 1218 static void restore_window(CPUSPARCState *env) 1219 { 1220 #ifndef TARGET_SPARC64 1221 unsigned int new_wim; 1222 #endif 1223 unsigned int i, cwp1; 1224 abi_ulong sp_ptr; 1225 1226 #ifndef TARGET_SPARC64 1227 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1228 ((1LL << env->nwindows) - 1); 1229 #endif 1230 1231 /* restore the invalid window */ 1232 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1233 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1234 #ifdef TARGET_SPARC64 1235 if (sp_ptr & 3) 1236 sp_ptr += SPARC64_STACK_BIAS; 1237 #endif 1238 #if defined(DEBUG_WIN) 1239 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1240 sp_ptr, cwp1); 1241 #endif 1242 for(i = 0; i < 16; i++) { 1243 /* FIXME - what to do if get_user() fails? */ 1244 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1245 sp_ptr += sizeof(abi_ulong); 1246 } 1247 #ifdef TARGET_SPARC64 1248 env->canrestore++; 1249 if (env->cleanwin < env->nwindows - 1) 1250 env->cleanwin++; 1251 env->cansave--; 1252 #else 1253 env->wim = new_wim; 1254 #endif 1255 } 1256 1257 static void flush_windows(CPUSPARCState *env) 1258 { 1259 int offset, cwp1; 1260 1261 offset = 1; 1262 for(;;) { 1263 /* if restore would invoke restore_window(), then we can stop */ 1264 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1265 #ifndef TARGET_SPARC64 1266 if (env->wim & (1 << cwp1)) 1267 break; 1268 #else 1269 if (env->canrestore == 0) 1270 break; 1271 env->cansave++; 1272 env->canrestore--; 1273 #endif 1274 save_window_offset(env, cwp1); 1275 offset++; 1276 } 1277 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1278 #ifndef TARGET_SPARC64 1279 /* set wim so that restore will reload the registers */ 1280 env->wim = 1 << cwp1; 1281 #endif 1282 #if defined(DEBUG_WIN) 1283 printf("flush_windows: nb=%d\n", offset - 1); 1284 #endif 1285 } 1286 1287 void cpu_loop (CPUSPARCState *env) 1288 { 1289 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1290 int trapnr; 1291 abi_long ret; 1292 target_siginfo_t info; 1293 1294 while (1) { 1295 cpu_exec_start(cs); 1296 trapnr = cpu_sparc_exec(cs); 1297 cpu_exec_end(cs); 1298 1299 /* Compute PSR before exposing state. */ 1300 if (env->cc_op != CC_OP_FLAGS) { 1301 cpu_get_psr(env); 1302 } 1303 1304 switch (trapnr) { 1305 #ifndef TARGET_SPARC64 1306 case 0x88: 1307 case 0x90: 1308 #else 1309 case 0x110: 1310 case 0x16d: 1311 #endif 1312 ret = do_syscall (env, env->gregs[1], 1313 env->regwptr[0], env->regwptr[1], 1314 env->regwptr[2], env->regwptr[3], 1315 env->regwptr[4], env->regwptr[5], 1316 0, 0); 1317 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1318 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1319 env->xcc |= PSR_CARRY; 1320 #else 1321 env->psr |= PSR_CARRY; 1322 #endif 1323 ret = -ret; 1324 } else { 1325 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1326 env->xcc &= ~PSR_CARRY; 1327 #else 1328 env->psr &= ~PSR_CARRY; 1329 #endif 1330 } 1331 env->regwptr[0] = ret; 1332 /* next instruction */ 1333 env->pc = env->npc; 1334 env->npc = env->npc + 4; 1335 break; 1336 case 0x83: /* flush windows */ 1337 #ifdef TARGET_ABI32 1338 case 0x103: 1339 #endif 1340 flush_windows(env); 1341 /* next instruction */ 1342 env->pc = env->npc; 1343 env->npc = env->npc + 4; 1344 break; 1345 #ifndef TARGET_SPARC64 1346 case TT_WIN_OVF: /* window overflow */ 1347 save_window(env); 1348 break; 1349 case TT_WIN_UNF: /* window underflow */ 1350 restore_window(env); 1351 break; 1352 case TT_TFAULT: 1353 case TT_DFAULT: 1354 { 1355 info.si_signo = TARGET_SIGSEGV; 1356 info.si_errno = 0; 1357 /* XXX: check env->error_code */ 1358 info.si_code = TARGET_SEGV_MAPERR; 1359 info._sifields._sigfault._addr = env->mmuregs[4]; 1360 queue_signal(env, info.si_signo, &info); 1361 } 1362 break; 1363 #else 1364 case TT_SPILL: /* window overflow */ 1365 save_window(env); 1366 break; 1367 case TT_FILL: /* window underflow */ 1368 restore_window(env); 1369 break; 1370 case TT_TFAULT: 1371 case TT_DFAULT: 1372 { 1373 info.si_signo = TARGET_SIGSEGV; 1374 info.si_errno = 0; 1375 /* XXX: check env->error_code */ 1376 info.si_code = TARGET_SEGV_MAPERR; 1377 if (trapnr == TT_DFAULT) 1378 info._sifields._sigfault._addr = env->dmmuregs[4]; 1379 else 1380 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1381 queue_signal(env, info.si_signo, &info); 1382 } 1383 break; 1384 #ifndef TARGET_ABI32 1385 case 0x16e: 1386 flush_windows(env); 1387 sparc64_get_context(env); 1388 break; 1389 case 0x16f: 1390 flush_windows(env); 1391 sparc64_set_context(env); 1392 break; 1393 #endif 1394 #endif 1395 case EXCP_INTERRUPT: 1396 /* just indicate that signals should be handled asap */ 1397 break; 1398 case TT_ILL_INSN: 1399 { 1400 info.si_signo = TARGET_SIGILL; 1401 info.si_errno = 0; 1402 info.si_code = TARGET_ILL_ILLOPC; 1403 info._sifields._sigfault._addr = env->pc; 1404 queue_signal(env, info.si_signo, &info); 1405 } 1406 break; 1407 case EXCP_DEBUG: 1408 { 1409 int sig; 1410 1411 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1412 if (sig) 1413 { 1414 info.si_signo = sig; 1415 info.si_errno = 0; 1416 info.si_code = TARGET_TRAP_BRKPT; 1417 queue_signal(env, info.si_signo, &info); 1418 } 1419 } 1420 break; 1421 default: 1422 printf ("Unhandled trap: 0x%x\n", trapnr); 1423 cpu_dump_state(cs, stderr, fprintf, 0); 1424 exit(EXIT_FAILURE); 1425 } 1426 process_pending_signals (env); 1427 } 1428 } 1429 1430 #endif 1431 1432 #ifdef TARGET_PPC 1433 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1434 { 1435 return cpu_get_host_ticks(); 1436 } 1437 1438 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1439 { 1440 return cpu_ppc_get_tb(env); 1441 } 1442 1443 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1444 { 1445 return cpu_ppc_get_tb(env) >> 32; 1446 } 1447 1448 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1449 { 1450 return cpu_ppc_get_tb(env); 1451 } 1452 1453 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1454 { 1455 return cpu_ppc_get_tb(env) >> 32; 1456 } 1457 1458 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1459 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1460 1461 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1462 { 1463 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1464 } 1465 1466 /* XXX: to be fixed */ 1467 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1468 { 1469 return -1; 1470 } 1471 1472 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1473 { 1474 return -1; 1475 } 1476 1477 static int do_store_exclusive(CPUPPCState *env) 1478 { 1479 target_ulong addr; 1480 target_ulong page_addr; 1481 target_ulong val, val2 __attribute__((unused)) = 0; 1482 int flags; 1483 int segv = 0; 1484 1485 addr = env->reserve_ea; 1486 page_addr = addr & TARGET_PAGE_MASK; 1487 start_exclusive(); 1488 mmap_lock(); 1489 flags = page_get_flags(page_addr); 1490 if ((flags & PAGE_READ) == 0) { 1491 segv = 1; 1492 } else { 1493 int reg = env->reserve_info & 0x1f; 1494 int size = env->reserve_info >> 5; 1495 int stored = 0; 1496 1497 if (addr == env->reserve_addr) { 1498 switch (size) { 1499 case 1: segv = get_user_u8(val, addr); break; 1500 case 2: segv = get_user_u16(val, addr); break; 1501 case 4: segv = get_user_u32(val, addr); break; 1502 #if defined(TARGET_PPC64) 1503 case 8: segv = get_user_u64(val, addr); break; 1504 case 16: { 1505 segv = get_user_u64(val, addr); 1506 if (!segv) { 1507 segv = get_user_u64(val2, addr + 8); 1508 } 1509 break; 1510 } 1511 #endif 1512 default: abort(); 1513 } 1514 if (!segv && val == env->reserve_val) { 1515 val = env->gpr[reg]; 1516 switch (size) { 1517 case 1: segv = put_user_u8(val, addr); break; 1518 case 2: segv = put_user_u16(val, addr); break; 1519 case 4: segv = put_user_u32(val, addr); break; 1520 #if defined(TARGET_PPC64) 1521 case 8: segv = put_user_u64(val, addr); break; 1522 case 16: { 1523 if (val2 == env->reserve_val2) { 1524 if (msr_le) { 1525 val2 = val; 1526 val = env->gpr[reg+1]; 1527 } else { 1528 val2 = env->gpr[reg+1]; 1529 } 1530 segv = put_user_u64(val, addr); 1531 if (!segv) { 1532 segv = put_user_u64(val2, addr + 8); 1533 } 1534 } 1535 break; 1536 } 1537 #endif 1538 default: abort(); 1539 } 1540 if (!segv) { 1541 stored = 1; 1542 } 1543 } 1544 } 1545 env->crf[0] = (stored << 1) | xer_so; 1546 env->reserve_addr = (target_ulong)-1; 1547 } 1548 if (!segv) { 1549 env->nip += 4; 1550 } 1551 mmap_unlock(); 1552 end_exclusive(); 1553 return segv; 1554 } 1555 1556 void cpu_loop(CPUPPCState *env) 1557 { 1558 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1559 target_siginfo_t info; 1560 int trapnr; 1561 target_ulong ret; 1562 1563 for(;;) { 1564 cpu_exec_start(cs); 1565 trapnr = cpu_ppc_exec(cs); 1566 cpu_exec_end(cs); 1567 switch(trapnr) { 1568 case POWERPC_EXCP_NONE: 1569 /* Just go on */ 1570 break; 1571 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1572 cpu_abort(cs, "Critical interrupt while in user mode. " 1573 "Aborting\n"); 1574 break; 1575 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1576 cpu_abort(cs, "Machine check exception while in user mode. " 1577 "Aborting\n"); 1578 break; 1579 case POWERPC_EXCP_DSI: /* Data storage exception */ 1580 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1581 env->spr[SPR_DAR]); 1582 /* XXX: check this. Seems bugged */ 1583 switch (env->error_code & 0xFF000000) { 1584 case 0x40000000: 1585 info.si_signo = TARGET_SIGSEGV; 1586 info.si_errno = 0; 1587 info.si_code = TARGET_SEGV_MAPERR; 1588 break; 1589 case 0x04000000: 1590 info.si_signo = TARGET_SIGILL; 1591 info.si_errno = 0; 1592 info.si_code = TARGET_ILL_ILLADR; 1593 break; 1594 case 0x08000000: 1595 info.si_signo = TARGET_SIGSEGV; 1596 info.si_errno = 0; 1597 info.si_code = TARGET_SEGV_ACCERR; 1598 break; 1599 default: 1600 /* Let's send a regular segfault... */ 1601 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1602 env->error_code); 1603 info.si_signo = TARGET_SIGSEGV; 1604 info.si_errno = 0; 1605 info.si_code = TARGET_SEGV_MAPERR; 1606 break; 1607 } 1608 info._sifields._sigfault._addr = env->nip; 1609 queue_signal(env, info.si_signo, &info); 1610 break; 1611 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1612 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1613 "\n", env->spr[SPR_SRR0]); 1614 /* XXX: check this */ 1615 switch (env->error_code & 0xFF000000) { 1616 case 0x40000000: 1617 info.si_signo = TARGET_SIGSEGV; 1618 info.si_errno = 0; 1619 info.si_code = TARGET_SEGV_MAPERR; 1620 break; 1621 case 0x10000000: 1622 case 0x08000000: 1623 info.si_signo = TARGET_SIGSEGV; 1624 info.si_errno = 0; 1625 info.si_code = TARGET_SEGV_ACCERR; 1626 break; 1627 default: 1628 /* Let's send a regular segfault... */ 1629 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1630 env->error_code); 1631 info.si_signo = TARGET_SIGSEGV; 1632 info.si_errno = 0; 1633 info.si_code = TARGET_SEGV_MAPERR; 1634 break; 1635 } 1636 info._sifields._sigfault._addr = env->nip - 4; 1637 queue_signal(env, info.si_signo, &info); 1638 break; 1639 case POWERPC_EXCP_EXTERNAL: /* External input */ 1640 cpu_abort(cs, "External interrupt while in user mode. " 1641 "Aborting\n"); 1642 break; 1643 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1644 EXCP_DUMP(env, "Unaligned memory access\n"); 1645 /* XXX: check this */ 1646 info.si_signo = TARGET_SIGBUS; 1647 info.si_errno = 0; 1648 info.si_code = TARGET_BUS_ADRALN; 1649 info._sifields._sigfault._addr = env->nip; 1650 queue_signal(env, info.si_signo, &info); 1651 break; 1652 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1653 /* XXX: check this */ 1654 switch (env->error_code & ~0xF) { 1655 case POWERPC_EXCP_FP: 1656 EXCP_DUMP(env, "Floating point program exception\n"); 1657 info.si_signo = TARGET_SIGFPE; 1658 info.si_errno = 0; 1659 switch (env->error_code & 0xF) { 1660 case POWERPC_EXCP_FP_OX: 1661 info.si_code = TARGET_FPE_FLTOVF; 1662 break; 1663 case POWERPC_EXCP_FP_UX: 1664 info.si_code = TARGET_FPE_FLTUND; 1665 break; 1666 case POWERPC_EXCP_FP_ZX: 1667 case POWERPC_EXCP_FP_VXZDZ: 1668 info.si_code = TARGET_FPE_FLTDIV; 1669 break; 1670 case POWERPC_EXCP_FP_XX: 1671 info.si_code = TARGET_FPE_FLTRES; 1672 break; 1673 case POWERPC_EXCP_FP_VXSOFT: 1674 info.si_code = TARGET_FPE_FLTINV; 1675 break; 1676 case POWERPC_EXCP_FP_VXSNAN: 1677 case POWERPC_EXCP_FP_VXISI: 1678 case POWERPC_EXCP_FP_VXIDI: 1679 case POWERPC_EXCP_FP_VXIMZ: 1680 case POWERPC_EXCP_FP_VXVC: 1681 case POWERPC_EXCP_FP_VXSQRT: 1682 case POWERPC_EXCP_FP_VXCVI: 1683 info.si_code = TARGET_FPE_FLTSUB; 1684 break; 1685 default: 1686 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1687 env->error_code); 1688 break; 1689 } 1690 break; 1691 case POWERPC_EXCP_INVAL: 1692 EXCP_DUMP(env, "Invalid instruction\n"); 1693 info.si_signo = TARGET_SIGILL; 1694 info.si_errno = 0; 1695 switch (env->error_code & 0xF) { 1696 case POWERPC_EXCP_INVAL_INVAL: 1697 info.si_code = TARGET_ILL_ILLOPC; 1698 break; 1699 case POWERPC_EXCP_INVAL_LSWX: 1700 info.si_code = TARGET_ILL_ILLOPN; 1701 break; 1702 case POWERPC_EXCP_INVAL_SPR: 1703 info.si_code = TARGET_ILL_PRVREG; 1704 break; 1705 case POWERPC_EXCP_INVAL_FP: 1706 info.si_code = TARGET_ILL_COPROC; 1707 break; 1708 default: 1709 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1710 env->error_code & 0xF); 1711 info.si_code = TARGET_ILL_ILLADR; 1712 break; 1713 } 1714 break; 1715 case POWERPC_EXCP_PRIV: 1716 EXCP_DUMP(env, "Privilege violation\n"); 1717 info.si_signo = TARGET_SIGILL; 1718 info.si_errno = 0; 1719 switch (env->error_code & 0xF) { 1720 case POWERPC_EXCP_PRIV_OPC: 1721 info.si_code = TARGET_ILL_PRVOPC; 1722 break; 1723 case POWERPC_EXCP_PRIV_REG: 1724 info.si_code = TARGET_ILL_PRVREG; 1725 break; 1726 default: 1727 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1728 env->error_code & 0xF); 1729 info.si_code = TARGET_ILL_PRVOPC; 1730 break; 1731 } 1732 break; 1733 case POWERPC_EXCP_TRAP: 1734 cpu_abort(cs, "Tried to call a TRAP\n"); 1735 break; 1736 default: 1737 /* Should not happen ! */ 1738 cpu_abort(cs, "Unknown program exception (%02x)\n", 1739 env->error_code); 1740 break; 1741 } 1742 info._sifields._sigfault._addr = env->nip - 4; 1743 queue_signal(env, info.si_signo, &info); 1744 break; 1745 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1746 EXCP_DUMP(env, "No floating point allowed\n"); 1747 info.si_signo = TARGET_SIGILL; 1748 info.si_errno = 0; 1749 info.si_code = TARGET_ILL_COPROC; 1750 info._sifields._sigfault._addr = env->nip - 4; 1751 queue_signal(env, info.si_signo, &info); 1752 break; 1753 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1754 cpu_abort(cs, "Syscall exception while in user mode. " 1755 "Aborting\n"); 1756 break; 1757 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1758 EXCP_DUMP(env, "No APU instruction allowed\n"); 1759 info.si_signo = TARGET_SIGILL; 1760 info.si_errno = 0; 1761 info.si_code = TARGET_ILL_COPROC; 1762 info._sifields._sigfault._addr = env->nip - 4; 1763 queue_signal(env, info.si_signo, &info); 1764 break; 1765 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1766 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1767 "Aborting\n"); 1768 break; 1769 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1770 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1771 "Aborting\n"); 1772 break; 1773 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1774 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1775 "Aborting\n"); 1776 break; 1777 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1778 cpu_abort(cs, "Data TLB exception while in user mode. " 1779 "Aborting\n"); 1780 break; 1781 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1782 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1783 "Aborting\n"); 1784 break; 1785 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1786 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1787 info.si_signo = TARGET_SIGILL; 1788 info.si_errno = 0; 1789 info.si_code = TARGET_ILL_COPROC; 1790 info._sifields._sigfault._addr = env->nip - 4; 1791 queue_signal(env, info.si_signo, &info); 1792 break; 1793 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1794 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1795 break; 1796 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1797 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1798 break; 1799 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1800 cpu_abort(cs, "Performance monitor exception not handled\n"); 1801 break; 1802 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1803 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1804 "Aborting\n"); 1805 break; 1806 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1807 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1808 "Aborting\n"); 1809 break; 1810 case POWERPC_EXCP_RESET: /* System reset exception */ 1811 cpu_abort(cs, "Reset interrupt while in user mode. " 1812 "Aborting\n"); 1813 break; 1814 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1815 cpu_abort(cs, "Data segment exception while in user mode. " 1816 "Aborting\n"); 1817 break; 1818 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1819 cpu_abort(cs, "Instruction segment exception " 1820 "while in user mode. Aborting\n"); 1821 break; 1822 /* PowerPC 64 with hypervisor mode support */ 1823 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1824 cpu_abort(cs, "Hypervisor decrementer interrupt " 1825 "while in user mode. Aborting\n"); 1826 break; 1827 case POWERPC_EXCP_TRACE: /* Trace exception */ 1828 /* Nothing to do: 1829 * we use this exception to emulate step-by-step execution mode. 1830 */ 1831 break; 1832 /* PowerPC 64 with hypervisor mode support */ 1833 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1834 cpu_abort(cs, "Hypervisor data storage exception " 1835 "while in user mode. Aborting\n"); 1836 break; 1837 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1838 cpu_abort(cs, "Hypervisor instruction storage exception " 1839 "while in user mode. Aborting\n"); 1840 break; 1841 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1842 cpu_abort(cs, "Hypervisor data segment exception " 1843 "while in user mode. Aborting\n"); 1844 break; 1845 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1846 cpu_abort(cs, "Hypervisor instruction segment exception " 1847 "while in user mode. Aborting\n"); 1848 break; 1849 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1850 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1851 info.si_signo = TARGET_SIGILL; 1852 info.si_errno = 0; 1853 info.si_code = TARGET_ILL_COPROC; 1854 info._sifields._sigfault._addr = env->nip - 4; 1855 queue_signal(env, info.si_signo, &info); 1856 break; 1857 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1858 cpu_abort(cs, "Programmable interval timer interrupt " 1859 "while in user mode. Aborting\n"); 1860 break; 1861 case POWERPC_EXCP_IO: /* IO error exception */ 1862 cpu_abort(cs, "IO error exception while in user mode. " 1863 "Aborting\n"); 1864 break; 1865 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1866 cpu_abort(cs, "Run mode exception while in user mode. " 1867 "Aborting\n"); 1868 break; 1869 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1870 cpu_abort(cs, "Emulation trap exception not handled\n"); 1871 break; 1872 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1873 cpu_abort(cs, "Instruction fetch TLB exception " 1874 "while in user-mode. Aborting"); 1875 break; 1876 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1877 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1878 "Aborting"); 1879 break; 1880 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1881 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1882 "Aborting"); 1883 break; 1884 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1885 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1886 break; 1887 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1888 cpu_abort(cs, "Instruction address breakpoint exception " 1889 "not handled\n"); 1890 break; 1891 case POWERPC_EXCP_SMI: /* System management interrupt */ 1892 cpu_abort(cs, "System management interrupt while in user mode. " 1893 "Aborting\n"); 1894 break; 1895 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1896 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1897 "Aborting\n"); 1898 break; 1899 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1900 cpu_abort(cs, "Performance monitor exception not handled\n"); 1901 break; 1902 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1903 cpu_abort(cs, "Vector assist exception not handled\n"); 1904 break; 1905 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1906 cpu_abort(cs, "Soft patch exception not handled\n"); 1907 break; 1908 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1909 cpu_abort(cs, "Maintenance exception while in user mode. " 1910 "Aborting\n"); 1911 break; 1912 case POWERPC_EXCP_STOP: /* stop translation */ 1913 /* We did invalidate the instruction cache. Go on */ 1914 break; 1915 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1916 /* We just stopped because of a branch. Go on */ 1917 break; 1918 case POWERPC_EXCP_SYSCALL_USER: 1919 /* system call in user-mode emulation */ 1920 /* WARNING: 1921 * PPC ABI uses overflow flag in cr0 to signal an error 1922 * in syscalls. 1923 */ 1924 env->crf[0] &= ~0x1; 1925 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1926 env->gpr[5], env->gpr[6], env->gpr[7], 1927 env->gpr[8], 0, 0); 1928 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1929 /* Returning from a successful sigreturn syscall. 1930 Avoid corrupting register state. */ 1931 break; 1932 } 1933 if (ret > (target_ulong)(-515)) { 1934 env->crf[0] |= 0x1; 1935 ret = -ret; 1936 } 1937 env->gpr[3] = ret; 1938 break; 1939 case POWERPC_EXCP_STCX: 1940 if (do_store_exclusive(env)) { 1941 info.si_signo = TARGET_SIGSEGV; 1942 info.si_errno = 0; 1943 info.si_code = TARGET_SEGV_MAPERR; 1944 info._sifields._sigfault._addr = env->nip; 1945 queue_signal(env, info.si_signo, &info); 1946 } 1947 break; 1948 case EXCP_DEBUG: 1949 { 1950 int sig; 1951 1952 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1953 if (sig) { 1954 info.si_signo = sig; 1955 info.si_errno = 0; 1956 info.si_code = TARGET_TRAP_BRKPT; 1957 queue_signal(env, info.si_signo, &info); 1958 } 1959 } 1960 break; 1961 case EXCP_INTERRUPT: 1962 /* just indicate that signals should be handled asap */ 1963 break; 1964 default: 1965 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); 1966 break; 1967 } 1968 process_pending_signals(env); 1969 } 1970 } 1971 #endif 1972 1973 #ifdef TARGET_MIPS 1974 1975 # ifdef TARGET_ABI_MIPSO32 1976 # define MIPS_SYS(name, args) args, 1977 static const uint8_t mips_syscall_args[] = { 1978 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1979 MIPS_SYS(sys_exit , 1) 1980 MIPS_SYS(sys_fork , 0) 1981 MIPS_SYS(sys_read , 3) 1982 MIPS_SYS(sys_write , 3) 1983 MIPS_SYS(sys_open , 3) /* 4005 */ 1984 MIPS_SYS(sys_close , 1) 1985 MIPS_SYS(sys_waitpid , 3) 1986 MIPS_SYS(sys_creat , 2) 1987 MIPS_SYS(sys_link , 2) 1988 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1989 MIPS_SYS(sys_execve , 0) 1990 MIPS_SYS(sys_chdir , 1) 1991 MIPS_SYS(sys_time , 1) 1992 MIPS_SYS(sys_mknod , 3) 1993 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1994 MIPS_SYS(sys_lchown , 3) 1995 MIPS_SYS(sys_ni_syscall , 0) 1996 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1997 MIPS_SYS(sys_lseek , 3) 1998 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1999 MIPS_SYS(sys_mount , 5) 2000 MIPS_SYS(sys_umount , 1) 2001 MIPS_SYS(sys_setuid , 1) 2002 MIPS_SYS(sys_getuid , 0) 2003 MIPS_SYS(sys_stime , 1) /* 4025 */ 2004 MIPS_SYS(sys_ptrace , 4) 2005 MIPS_SYS(sys_alarm , 1) 2006 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2007 MIPS_SYS(sys_pause , 0) 2008 MIPS_SYS(sys_utime , 2) /* 4030 */ 2009 MIPS_SYS(sys_ni_syscall , 0) 2010 MIPS_SYS(sys_ni_syscall , 0) 2011 MIPS_SYS(sys_access , 2) 2012 MIPS_SYS(sys_nice , 1) 2013 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2014 MIPS_SYS(sys_sync , 0) 2015 MIPS_SYS(sys_kill , 2) 2016 MIPS_SYS(sys_rename , 2) 2017 MIPS_SYS(sys_mkdir , 2) 2018 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2019 MIPS_SYS(sys_dup , 1) 2020 MIPS_SYS(sys_pipe , 0) 2021 MIPS_SYS(sys_times , 1) 2022 MIPS_SYS(sys_ni_syscall , 0) 2023 MIPS_SYS(sys_brk , 1) /* 4045 */ 2024 MIPS_SYS(sys_setgid , 1) 2025 MIPS_SYS(sys_getgid , 0) 2026 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2027 MIPS_SYS(sys_geteuid , 0) 2028 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2029 MIPS_SYS(sys_acct , 0) 2030 MIPS_SYS(sys_umount2 , 2) 2031 MIPS_SYS(sys_ni_syscall , 0) 2032 MIPS_SYS(sys_ioctl , 3) 2033 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2034 MIPS_SYS(sys_ni_syscall , 2) 2035 MIPS_SYS(sys_setpgid , 2) 2036 MIPS_SYS(sys_ni_syscall , 0) 2037 MIPS_SYS(sys_olduname , 1) 2038 MIPS_SYS(sys_umask , 1) /* 4060 */ 2039 MIPS_SYS(sys_chroot , 1) 2040 MIPS_SYS(sys_ustat , 2) 2041 MIPS_SYS(sys_dup2 , 2) 2042 MIPS_SYS(sys_getppid , 0) 2043 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2044 MIPS_SYS(sys_setsid , 0) 2045 MIPS_SYS(sys_sigaction , 3) 2046 MIPS_SYS(sys_sgetmask , 0) 2047 MIPS_SYS(sys_ssetmask , 1) 2048 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2049 MIPS_SYS(sys_setregid , 2) 2050 MIPS_SYS(sys_sigsuspend , 0) 2051 MIPS_SYS(sys_sigpending , 1) 2052 MIPS_SYS(sys_sethostname , 2) 2053 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2054 MIPS_SYS(sys_getrlimit , 2) 2055 MIPS_SYS(sys_getrusage , 2) 2056 MIPS_SYS(sys_gettimeofday, 2) 2057 MIPS_SYS(sys_settimeofday, 2) 2058 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2059 MIPS_SYS(sys_setgroups , 2) 2060 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2061 MIPS_SYS(sys_symlink , 2) 2062 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2063 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2064 MIPS_SYS(sys_uselib , 1) 2065 MIPS_SYS(sys_swapon , 2) 2066 MIPS_SYS(sys_reboot , 3) 2067 MIPS_SYS(old_readdir , 3) 2068 MIPS_SYS(old_mmap , 6) /* 4090 */ 2069 MIPS_SYS(sys_munmap , 2) 2070 MIPS_SYS(sys_truncate , 2) 2071 MIPS_SYS(sys_ftruncate , 2) 2072 MIPS_SYS(sys_fchmod , 2) 2073 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2074 MIPS_SYS(sys_getpriority , 2) 2075 MIPS_SYS(sys_setpriority , 3) 2076 MIPS_SYS(sys_ni_syscall , 0) 2077 MIPS_SYS(sys_statfs , 2) 2078 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2079 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2080 MIPS_SYS(sys_socketcall , 2) 2081 MIPS_SYS(sys_syslog , 3) 2082 MIPS_SYS(sys_setitimer , 3) 2083 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2084 MIPS_SYS(sys_newstat , 2) 2085 MIPS_SYS(sys_newlstat , 2) 2086 MIPS_SYS(sys_newfstat , 2) 2087 MIPS_SYS(sys_uname , 1) 2088 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2089 MIPS_SYS(sys_vhangup , 0) 2090 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2091 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2092 MIPS_SYS(sys_wait4 , 4) 2093 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2094 MIPS_SYS(sys_sysinfo , 1) 2095 MIPS_SYS(sys_ipc , 6) 2096 MIPS_SYS(sys_fsync , 1) 2097 MIPS_SYS(sys_sigreturn , 0) 2098 MIPS_SYS(sys_clone , 6) /* 4120 */ 2099 MIPS_SYS(sys_setdomainname, 2) 2100 MIPS_SYS(sys_newuname , 1) 2101 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2102 MIPS_SYS(sys_adjtimex , 1) 2103 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2104 MIPS_SYS(sys_sigprocmask , 3) 2105 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2106 MIPS_SYS(sys_init_module , 5) 2107 MIPS_SYS(sys_delete_module, 1) 2108 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2109 MIPS_SYS(sys_quotactl , 0) 2110 MIPS_SYS(sys_getpgid , 1) 2111 MIPS_SYS(sys_fchdir , 1) 2112 MIPS_SYS(sys_bdflush , 2) 2113 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2114 MIPS_SYS(sys_personality , 1) 2115 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2116 MIPS_SYS(sys_setfsuid , 1) 2117 MIPS_SYS(sys_setfsgid , 1) 2118 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2119 MIPS_SYS(sys_getdents , 3) 2120 MIPS_SYS(sys_select , 5) 2121 MIPS_SYS(sys_flock , 2) 2122 MIPS_SYS(sys_msync , 3) 2123 MIPS_SYS(sys_readv , 3) /* 4145 */ 2124 MIPS_SYS(sys_writev , 3) 2125 MIPS_SYS(sys_cacheflush , 3) 2126 MIPS_SYS(sys_cachectl , 3) 2127 MIPS_SYS(sys_sysmips , 4) 2128 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2129 MIPS_SYS(sys_getsid , 1) 2130 MIPS_SYS(sys_fdatasync , 0) 2131 MIPS_SYS(sys_sysctl , 1) 2132 MIPS_SYS(sys_mlock , 2) 2133 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2134 MIPS_SYS(sys_mlockall , 1) 2135 MIPS_SYS(sys_munlockall , 0) 2136 MIPS_SYS(sys_sched_setparam, 2) 2137 MIPS_SYS(sys_sched_getparam, 2) 2138 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2139 MIPS_SYS(sys_sched_getscheduler, 1) 2140 MIPS_SYS(sys_sched_yield , 0) 2141 MIPS_SYS(sys_sched_get_priority_max, 1) 2142 MIPS_SYS(sys_sched_get_priority_min, 1) 2143 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2144 MIPS_SYS(sys_nanosleep, 2) 2145 MIPS_SYS(sys_mremap , 5) 2146 MIPS_SYS(sys_accept , 3) 2147 MIPS_SYS(sys_bind , 3) 2148 MIPS_SYS(sys_connect , 3) /* 4170 */ 2149 MIPS_SYS(sys_getpeername , 3) 2150 MIPS_SYS(sys_getsockname , 3) 2151 MIPS_SYS(sys_getsockopt , 5) 2152 MIPS_SYS(sys_listen , 2) 2153 MIPS_SYS(sys_recv , 4) /* 4175 */ 2154 MIPS_SYS(sys_recvfrom , 6) 2155 MIPS_SYS(sys_recvmsg , 3) 2156 MIPS_SYS(sys_send , 4) 2157 MIPS_SYS(sys_sendmsg , 3) 2158 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2159 MIPS_SYS(sys_setsockopt , 5) 2160 MIPS_SYS(sys_shutdown , 2) 2161 MIPS_SYS(sys_socket , 3) 2162 MIPS_SYS(sys_socketpair , 4) 2163 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2164 MIPS_SYS(sys_getresuid , 3) 2165 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2166 MIPS_SYS(sys_poll , 3) 2167 MIPS_SYS(sys_nfsservctl , 3) 2168 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2169 MIPS_SYS(sys_getresgid , 3) 2170 MIPS_SYS(sys_prctl , 5) 2171 MIPS_SYS(sys_rt_sigreturn, 0) 2172 MIPS_SYS(sys_rt_sigaction, 4) 2173 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2174 MIPS_SYS(sys_rt_sigpending, 2) 2175 MIPS_SYS(sys_rt_sigtimedwait, 4) 2176 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2177 MIPS_SYS(sys_rt_sigsuspend, 0) 2178 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2179 MIPS_SYS(sys_pwrite64 , 6) 2180 MIPS_SYS(sys_chown , 3) 2181 MIPS_SYS(sys_getcwd , 2) 2182 MIPS_SYS(sys_capget , 2) 2183 MIPS_SYS(sys_capset , 2) /* 4205 */ 2184 MIPS_SYS(sys_sigaltstack , 2) 2185 MIPS_SYS(sys_sendfile , 4) 2186 MIPS_SYS(sys_ni_syscall , 0) 2187 MIPS_SYS(sys_ni_syscall , 0) 2188 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2189 MIPS_SYS(sys_truncate64 , 4) 2190 MIPS_SYS(sys_ftruncate64 , 4) 2191 MIPS_SYS(sys_stat64 , 2) 2192 MIPS_SYS(sys_lstat64 , 2) 2193 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2194 MIPS_SYS(sys_pivot_root , 2) 2195 MIPS_SYS(sys_mincore , 3) 2196 MIPS_SYS(sys_madvise , 3) 2197 MIPS_SYS(sys_getdents64 , 3) 2198 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2199 MIPS_SYS(sys_ni_syscall , 0) 2200 MIPS_SYS(sys_gettid , 0) 2201 MIPS_SYS(sys_readahead , 5) 2202 MIPS_SYS(sys_setxattr , 5) 2203 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2204 MIPS_SYS(sys_fsetxattr , 5) 2205 MIPS_SYS(sys_getxattr , 4) 2206 MIPS_SYS(sys_lgetxattr , 4) 2207 MIPS_SYS(sys_fgetxattr , 4) 2208 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2209 MIPS_SYS(sys_llistxattr , 3) 2210 MIPS_SYS(sys_flistxattr , 3) 2211 MIPS_SYS(sys_removexattr , 2) 2212 MIPS_SYS(sys_lremovexattr, 2) 2213 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2214 MIPS_SYS(sys_tkill , 2) 2215 MIPS_SYS(sys_sendfile64 , 5) 2216 MIPS_SYS(sys_futex , 6) 2217 MIPS_SYS(sys_sched_setaffinity, 3) 2218 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2219 MIPS_SYS(sys_io_setup , 2) 2220 MIPS_SYS(sys_io_destroy , 1) 2221 MIPS_SYS(sys_io_getevents, 5) 2222 MIPS_SYS(sys_io_submit , 3) 2223 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2224 MIPS_SYS(sys_exit_group , 1) 2225 MIPS_SYS(sys_lookup_dcookie, 3) 2226 MIPS_SYS(sys_epoll_create, 1) 2227 MIPS_SYS(sys_epoll_ctl , 4) 2228 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2229 MIPS_SYS(sys_remap_file_pages, 5) 2230 MIPS_SYS(sys_set_tid_address, 1) 2231 MIPS_SYS(sys_restart_syscall, 0) 2232 MIPS_SYS(sys_fadvise64_64, 7) 2233 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2234 MIPS_SYS(sys_fstatfs64 , 2) 2235 MIPS_SYS(sys_timer_create, 3) 2236 MIPS_SYS(sys_timer_settime, 4) 2237 MIPS_SYS(sys_timer_gettime, 2) 2238 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2239 MIPS_SYS(sys_timer_delete, 1) 2240 MIPS_SYS(sys_clock_settime, 2) 2241 MIPS_SYS(sys_clock_gettime, 2) 2242 MIPS_SYS(sys_clock_getres, 2) 2243 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2244 MIPS_SYS(sys_tgkill , 3) 2245 MIPS_SYS(sys_utimes , 2) 2246 MIPS_SYS(sys_mbind , 4) 2247 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2248 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2249 MIPS_SYS(sys_mq_open , 4) 2250 MIPS_SYS(sys_mq_unlink , 1) 2251 MIPS_SYS(sys_mq_timedsend, 5) 2252 MIPS_SYS(sys_mq_timedreceive, 5) 2253 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2254 MIPS_SYS(sys_mq_getsetattr, 3) 2255 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2256 MIPS_SYS(sys_waitid , 4) 2257 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2258 MIPS_SYS(sys_add_key , 5) 2259 MIPS_SYS(sys_request_key, 4) 2260 MIPS_SYS(sys_keyctl , 5) 2261 MIPS_SYS(sys_set_thread_area, 1) 2262 MIPS_SYS(sys_inotify_init, 0) 2263 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2264 MIPS_SYS(sys_inotify_rm_watch, 2) 2265 MIPS_SYS(sys_migrate_pages, 4) 2266 MIPS_SYS(sys_openat, 4) 2267 MIPS_SYS(sys_mkdirat, 3) 2268 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2269 MIPS_SYS(sys_fchownat, 5) 2270 MIPS_SYS(sys_futimesat, 3) 2271 MIPS_SYS(sys_fstatat64, 4) 2272 MIPS_SYS(sys_unlinkat, 3) 2273 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2274 MIPS_SYS(sys_linkat, 5) 2275 MIPS_SYS(sys_symlinkat, 3) 2276 MIPS_SYS(sys_readlinkat, 4) 2277 MIPS_SYS(sys_fchmodat, 3) 2278 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2279 MIPS_SYS(sys_pselect6, 6) 2280 MIPS_SYS(sys_ppoll, 5) 2281 MIPS_SYS(sys_unshare, 1) 2282 MIPS_SYS(sys_splice, 6) 2283 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2284 MIPS_SYS(sys_tee, 4) 2285 MIPS_SYS(sys_vmsplice, 4) 2286 MIPS_SYS(sys_move_pages, 6) 2287 MIPS_SYS(sys_set_robust_list, 2) 2288 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2289 MIPS_SYS(sys_kexec_load, 4) 2290 MIPS_SYS(sys_getcpu, 3) 2291 MIPS_SYS(sys_epoll_pwait, 6) 2292 MIPS_SYS(sys_ioprio_set, 3) 2293 MIPS_SYS(sys_ioprio_get, 2) 2294 MIPS_SYS(sys_utimensat, 4) 2295 MIPS_SYS(sys_signalfd, 3) 2296 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2297 MIPS_SYS(sys_eventfd, 1) 2298 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2299 MIPS_SYS(sys_timerfd_create, 2) 2300 MIPS_SYS(sys_timerfd_gettime, 2) 2301 MIPS_SYS(sys_timerfd_settime, 4) 2302 MIPS_SYS(sys_signalfd4, 4) 2303 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2304 MIPS_SYS(sys_epoll_create1, 1) 2305 MIPS_SYS(sys_dup3, 3) 2306 MIPS_SYS(sys_pipe2, 2) 2307 MIPS_SYS(sys_inotify_init1, 1) 2308 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2309 MIPS_SYS(sys_pwritev, 6) 2310 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2311 MIPS_SYS(sys_perf_event_open, 5) 2312 MIPS_SYS(sys_accept4, 4) 2313 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2314 MIPS_SYS(sys_fanotify_init, 2) 2315 MIPS_SYS(sys_fanotify_mark, 6) 2316 MIPS_SYS(sys_prlimit64, 4) 2317 MIPS_SYS(sys_name_to_handle_at, 5) 2318 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2319 MIPS_SYS(sys_clock_adjtime, 2) 2320 MIPS_SYS(sys_syncfs, 1) 2321 }; 2322 # undef MIPS_SYS 2323 # endif /* O32 */ 2324 2325 static int do_store_exclusive(CPUMIPSState *env) 2326 { 2327 target_ulong addr; 2328 target_ulong page_addr; 2329 target_ulong val; 2330 int flags; 2331 int segv = 0; 2332 int reg; 2333 int d; 2334 2335 addr = env->lladdr; 2336 page_addr = addr & TARGET_PAGE_MASK; 2337 start_exclusive(); 2338 mmap_lock(); 2339 flags = page_get_flags(page_addr); 2340 if ((flags & PAGE_READ) == 0) { 2341 segv = 1; 2342 } else { 2343 reg = env->llreg & 0x1f; 2344 d = (env->llreg & 0x20) != 0; 2345 if (d) { 2346 segv = get_user_s64(val, addr); 2347 } else { 2348 segv = get_user_s32(val, addr); 2349 } 2350 if (!segv) { 2351 if (val != env->llval) { 2352 env->active_tc.gpr[reg] = 0; 2353 } else { 2354 if (d) { 2355 segv = put_user_u64(env->llnewval, addr); 2356 } else { 2357 segv = put_user_u32(env->llnewval, addr); 2358 } 2359 if (!segv) { 2360 env->active_tc.gpr[reg] = 1; 2361 } 2362 } 2363 } 2364 } 2365 env->lladdr = -1; 2366 if (!segv) { 2367 env->active_tc.PC += 4; 2368 } 2369 mmap_unlock(); 2370 end_exclusive(); 2371 return segv; 2372 } 2373 2374 /* Break codes */ 2375 enum { 2376 BRK_OVERFLOW = 6, 2377 BRK_DIVZERO = 7 2378 }; 2379 2380 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2381 unsigned int code) 2382 { 2383 int ret = -1; 2384 2385 switch (code) { 2386 case BRK_OVERFLOW: 2387 case BRK_DIVZERO: 2388 info->si_signo = TARGET_SIGFPE; 2389 info->si_errno = 0; 2390 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2391 queue_signal(env, info->si_signo, &*info); 2392 ret = 0; 2393 break; 2394 default: 2395 info->si_signo = TARGET_SIGTRAP; 2396 info->si_errno = 0; 2397 queue_signal(env, info->si_signo, &*info); 2398 ret = 0; 2399 break; 2400 } 2401 2402 return ret; 2403 } 2404 2405 void cpu_loop(CPUMIPSState *env) 2406 { 2407 CPUState *cs = CPU(mips_env_get_cpu(env)); 2408 target_siginfo_t info; 2409 int trapnr; 2410 abi_long ret; 2411 # ifdef TARGET_ABI_MIPSO32 2412 unsigned int syscall_num; 2413 # endif 2414 2415 for(;;) { 2416 cpu_exec_start(cs); 2417 trapnr = cpu_mips_exec(cs); 2418 cpu_exec_end(cs); 2419 switch(trapnr) { 2420 case EXCP_SYSCALL: 2421 env->active_tc.PC += 4; 2422 # ifdef TARGET_ABI_MIPSO32 2423 syscall_num = env->active_tc.gpr[2] - 4000; 2424 if (syscall_num >= sizeof(mips_syscall_args)) { 2425 ret = -TARGET_ENOSYS; 2426 } else { 2427 int nb_args; 2428 abi_ulong sp_reg; 2429 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2430 2431 nb_args = mips_syscall_args[syscall_num]; 2432 sp_reg = env->active_tc.gpr[29]; 2433 switch (nb_args) { 2434 /* these arguments are taken from the stack */ 2435 case 8: 2436 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2437 goto done_syscall; 2438 } 2439 case 7: 2440 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2441 goto done_syscall; 2442 } 2443 case 6: 2444 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2445 goto done_syscall; 2446 } 2447 case 5: 2448 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2449 goto done_syscall; 2450 } 2451 default: 2452 break; 2453 } 2454 ret = do_syscall(env, env->active_tc.gpr[2], 2455 env->active_tc.gpr[4], 2456 env->active_tc.gpr[5], 2457 env->active_tc.gpr[6], 2458 env->active_tc.gpr[7], 2459 arg5, arg6, arg7, arg8); 2460 } 2461 done_syscall: 2462 # else 2463 ret = do_syscall(env, env->active_tc.gpr[2], 2464 env->active_tc.gpr[4], env->active_tc.gpr[5], 2465 env->active_tc.gpr[6], env->active_tc.gpr[7], 2466 env->active_tc.gpr[8], env->active_tc.gpr[9], 2467 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2468 # endif /* O32 */ 2469 if (ret == -TARGET_QEMU_ESIGRETURN) { 2470 /* Returning from a successful sigreturn syscall. 2471 Avoid clobbering register state. */ 2472 break; 2473 } 2474 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2475 env->active_tc.gpr[7] = 1; /* error flag */ 2476 ret = -ret; 2477 } else { 2478 env->active_tc.gpr[7] = 0; /* error flag */ 2479 } 2480 env->active_tc.gpr[2] = ret; 2481 break; 2482 case EXCP_TLBL: 2483 case EXCP_TLBS: 2484 case EXCP_AdEL: 2485 case EXCP_AdES: 2486 info.si_signo = TARGET_SIGSEGV; 2487 info.si_errno = 0; 2488 /* XXX: check env->error_code */ 2489 info.si_code = TARGET_SEGV_MAPERR; 2490 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2491 queue_signal(env, info.si_signo, &info); 2492 break; 2493 case EXCP_CpU: 2494 case EXCP_RI: 2495 info.si_signo = TARGET_SIGILL; 2496 info.si_errno = 0; 2497 info.si_code = 0; 2498 queue_signal(env, info.si_signo, &info); 2499 break; 2500 case EXCP_INTERRUPT: 2501 /* just indicate that signals should be handled asap */ 2502 break; 2503 case EXCP_DEBUG: 2504 { 2505 int sig; 2506 2507 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2508 if (sig) 2509 { 2510 info.si_signo = sig; 2511 info.si_errno = 0; 2512 info.si_code = TARGET_TRAP_BRKPT; 2513 queue_signal(env, info.si_signo, &info); 2514 } 2515 } 2516 break; 2517 case EXCP_SC: 2518 if (do_store_exclusive(env)) { 2519 info.si_signo = TARGET_SIGSEGV; 2520 info.si_errno = 0; 2521 info.si_code = TARGET_SEGV_MAPERR; 2522 info._sifields._sigfault._addr = env->active_tc.PC; 2523 queue_signal(env, info.si_signo, &info); 2524 } 2525 break; 2526 case EXCP_DSPDIS: 2527 info.si_signo = TARGET_SIGILL; 2528 info.si_errno = 0; 2529 info.si_code = TARGET_ILL_ILLOPC; 2530 queue_signal(env, info.si_signo, &info); 2531 break; 2532 /* The code below was inspired by the MIPS Linux kernel trap 2533 * handling code in arch/mips/kernel/traps.c. 2534 */ 2535 case EXCP_BREAK: 2536 { 2537 abi_ulong trap_instr; 2538 unsigned int code; 2539 2540 if (env->hflags & MIPS_HFLAG_M16) { 2541 if (env->insn_flags & ASE_MICROMIPS) { 2542 /* microMIPS mode */ 2543 ret = get_user_u16(trap_instr, env->active_tc.PC); 2544 if (ret != 0) { 2545 goto error; 2546 } 2547 2548 if ((trap_instr >> 10) == 0x11) { 2549 /* 16-bit instruction */ 2550 code = trap_instr & 0xf; 2551 } else { 2552 /* 32-bit instruction */ 2553 abi_ulong instr_lo; 2554 2555 ret = get_user_u16(instr_lo, 2556 env->active_tc.PC + 2); 2557 if (ret != 0) { 2558 goto error; 2559 } 2560 trap_instr = (trap_instr << 16) | instr_lo; 2561 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2562 /* Unfortunately, microMIPS also suffers from 2563 the old assembler bug... */ 2564 if (code >= (1 << 10)) { 2565 code >>= 10; 2566 } 2567 } 2568 } else { 2569 /* MIPS16e mode */ 2570 ret = get_user_u16(trap_instr, env->active_tc.PC); 2571 if (ret != 0) { 2572 goto error; 2573 } 2574 code = (trap_instr >> 6) & 0x3f; 2575 } 2576 } else { 2577 ret = get_user_u32(trap_instr, env->active_tc.PC); 2578 if (ret != 0) { 2579 goto error; 2580 } 2581 2582 /* As described in the original Linux kernel code, the 2583 * below checks on 'code' are to work around an old 2584 * assembly bug. 2585 */ 2586 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2587 if (code >= (1 << 10)) { 2588 code >>= 10; 2589 } 2590 } 2591 2592 if (do_break(env, &info, code) != 0) { 2593 goto error; 2594 } 2595 } 2596 break; 2597 case EXCP_TRAP: 2598 { 2599 abi_ulong trap_instr; 2600 unsigned int code = 0; 2601 2602 if (env->hflags & MIPS_HFLAG_M16) { 2603 /* microMIPS mode */ 2604 abi_ulong instr[2]; 2605 2606 ret = get_user_u16(instr[0], env->active_tc.PC) || 2607 get_user_u16(instr[1], env->active_tc.PC + 2); 2608 2609 trap_instr = (instr[0] << 16) | instr[1]; 2610 } else { 2611 ret = get_user_u32(trap_instr, env->active_tc.PC); 2612 } 2613 2614 if (ret != 0) { 2615 goto error; 2616 } 2617 2618 /* The immediate versions don't provide a code. */ 2619 if (!(trap_instr & 0xFC000000)) { 2620 if (env->hflags & MIPS_HFLAG_M16) { 2621 /* microMIPS mode */ 2622 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2623 } else { 2624 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2625 } 2626 } 2627 2628 if (do_break(env, &info, code) != 0) { 2629 goto error; 2630 } 2631 } 2632 break; 2633 default: 2634 error: 2635 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2636 abort(); 2637 } 2638 process_pending_signals(env); 2639 } 2640 } 2641 #endif 2642 2643 #ifdef TARGET_OPENRISC 2644 2645 void cpu_loop(CPUOpenRISCState *env) 2646 { 2647 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2648 int trapnr, gdbsig; 2649 2650 for (;;) { 2651 cpu_exec_start(cs); 2652 trapnr = cpu_openrisc_exec(cs); 2653 cpu_exec_end(cs); 2654 gdbsig = 0; 2655 2656 switch (trapnr) { 2657 case EXCP_RESET: 2658 qemu_log_mask(CPU_LOG_INT, "\nReset request, exit, pc is %#x\n", env->pc); 2659 exit(EXIT_FAILURE); 2660 break; 2661 case EXCP_BUSERR: 2662 qemu_log_mask(CPU_LOG_INT, "\nBus error, exit, pc is %#x\n", env->pc); 2663 gdbsig = TARGET_SIGBUS; 2664 break; 2665 case EXCP_DPF: 2666 case EXCP_IPF: 2667 cpu_dump_state(cs, stderr, fprintf, 0); 2668 gdbsig = TARGET_SIGSEGV; 2669 break; 2670 case EXCP_TICK: 2671 qemu_log_mask(CPU_LOG_INT, "\nTick time interrupt pc is %#x\n", env->pc); 2672 break; 2673 case EXCP_ALIGN: 2674 qemu_log_mask(CPU_LOG_INT, "\nAlignment pc is %#x\n", env->pc); 2675 gdbsig = TARGET_SIGBUS; 2676 break; 2677 case EXCP_ILLEGAL: 2678 qemu_log_mask(CPU_LOG_INT, "\nIllegal instructionpc is %#x\n", env->pc); 2679 gdbsig = TARGET_SIGILL; 2680 break; 2681 case EXCP_INT: 2682 qemu_log_mask(CPU_LOG_INT, "\nExternal interruptpc is %#x\n", env->pc); 2683 break; 2684 case EXCP_DTLBMISS: 2685 case EXCP_ITLBMISS: 2686 qemu_log_mask(CPU_LOG_INT, "\nTLB miss\n"); 2687 break; 2688 case EXCP_RANGE: 2689 qemu_log_mask(CPU_LOG_INT, "\nRange\n"); 2690 gdbsig = TARGET_SIGSEGV; 2691 break; 2692 case EXCP_SYSCALL: 2693 env->pc += 4; /* 0xc00; */ 2694 env->gpr[11] = do_syscall(env, 2695 env->gpr[11], /* return value */ 2696 env->gpr[3], /* r3 - r7 are params */ 2697 env->gpr[4], 2698 env->gpr[5], 2699 env->gpr[6], 2700 env->gpr[7], 2701 env->gpr[8], 0, 0); 2702 break; 2703 case EXCP_FPE: 2704 qemu_log_mask(CPU_LOG_INT, "\nFloating point error\n"); 2705 break; 2706 case EXCP_TRAP: 2707 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2708 gdbsig = TARGET_SIGTRAP; 2709 break; 2710 case EXCP_NR: 2711 qemu_log_mask(CPU_LOG_INT, "\nNR\n"); 2712 break; 2713 default: 2714 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2715 trapnr); 2716 gdbsig = TARGET_SIGILL; 2717 break; 2718 } 2719 if (gdbsig) { 2720 gdb_handlesig(cs, gdbsig); 2721 if (gdbsig != TARGET_SIGTRAP) { 2722 exit(EXIT_FAILURE); 2723 } 2724 } 2725 2726 process_pending_signals(env); 2727 } 2728 } 2729 2730 #endif /* TARGET_OPENRISC */ 2731 2732 #ifdef TARGET_SH4 2733 void cpu_loop(CPUSH4State *env) 2734 { 2735 CPUState *cs = CPU(sh_env_get_cpu(env)); 2736 int trapnr, ret; 2737 target_siginfo_t info; 2738 2739 while (1) { 2740 cpu_exec_start(cs); 2741 trapnr = cpu_sh4_exec(cs); 2742 cpu_exec_end(cs); 2743 2744 switch (trapnr) { 2745 case 0x160: 2746 env->pc += 2; 2747 ret = do_syscall(env, 2748 env->gregs[3], 2749 env->gregs[4], 2750 env->gregs[5], 2751 env->gregs[6], 2752 env->gregs[7], 2753 env->gregs[0], 2754 env->gregs[1], 2755 0, 0); 2756 env->gregs[0] = ret; 2757 break; 2758 case EXCP_INTERRUPT: 2759 /* just indicate that signals should be handled asap */ 2760 break; 2761 case EXCP_DEBUG: 2762 { 2763 int sig; 2764 2765 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2766 if (sig) 2767 { 2768 info.si_signo = sig; 2769 info.si_errno = 0; 2770 info.si_code = TARGET_TRAP_BRKPT; 2771 queue_signal(env, info.si_signo, &info); 2772 } 2773 } 2774 break; 2775 case 0xa0: 2776 case 0xc0: 2777 info.si_signo = TARGET_SIGSEGV; 2778 info.si_errno = 0; 2779 info.si_code = TARGET_SEGV_MAPERR; 2780 info._sifields._sigfault._addr = env->tea; 2781 queue_signal(env, info.si_signo, &info); 2782 break; 2783 2784 default: 2785 printf ("Unhandled trap: 0x%x\n", trapnr); 2786 cpu_dump_state(cs, stderr, fprintf, 0); 2787 exit(EXIT_FAILURE); 2788 } 2789 process_pending_signals (env); 2790 } 2791 } 2792 #endif 2793 2794 #ifdef TARGET_CRIS 2795 void cpu_loop(CPUCRISState *env) 2796 { 2797 CPUState *cs = CPU(cris_env_get_cpu(env)); 2798 int trapnr, ret; 2799 target_siginfo_t info; 2800 2801 while (1) { 2802 cpu_exec_start(cs); 2803 trapnr = cpu_cris_exec(cs); 2804 cpu_exec_end(cs); 2805 switch (trapnr) { 2806 case 0xaa: 2807 { 2808 info.si_signo = TARGET_SIGSEGV; 2809 info.si_errno = 0; 2810 /* XXX: check env->error_code */ 2811 info.si_code = TARGET_SEGV_MAPERR; 2812 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2813 queue_signal(env, info.si_signo, &info); 2814 } 2815 break; 2816 case EXCP_INTERRUPT: 2817 /* just indicate that signals should be handled asap */ 2818 break; 2819 case EXCP_BREAK: 2820 ret = do_syscall(env, 2821 env->regs[9], 2822 env->regs[10], 2823 env->regs[11], 2824 env->regs[12], 2825 env->regs[13], 2826 env->pregs[7], 2827 env->pregs[11], 2828 0, 0); 2829 env->regs[10] = ret; 2830 break; 2831 case EXCP_DEBUG: 2832 { 2833 int sig; 2834 2835 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2836 if (sig) 2837 { 2838 info.si_signo = sig; 2839 info.si_errno = 0; 2840 info.si_code = TARGET_TRAP_BRKPT; 2841 queue_signal(env, info.si_signo, &info); 2842 } 2843 } 2844 break; 2845 default: 2846 printf ("Unhandled trap: 0x%x\n", trapnr); 2847 cpu_dump_state(cs, stderr, fprintf, 0); 2848 exit(EXIT_FAILURE); 2849 } 2850 process_pending_signals (env); 2851 } 2852 } 2853 #endif 2854 2855 #ifdef TARGET_MICROBLAZE 2856 void cpu_loop(CPUMBState *env) 2857 { 2858 CPUState *cs = CPU(mb_env_get_cpu(env)); 2859 int trapnr, ret; 2860 target_siginfo_t info; 2861 2862 while (1) { 2863 cpu_exec_start(cs); 2864 trapnr = cpu_mb_exec(cs); 2865 cpu_exec_end(cs); 2866 switch (trapnr) { 2867 case 0xaa: 2868 { 2869 info.si_signo = TARGET_SIGSEGV; 2870 info.si_errno = 0; 2871 /* XXX: check env->error_code */ 2872 info.si_code = TARGET_SEGV_MAPERR; 2873 info._sifields._sigfault._addr = 0; 2874 queue_signal(env, info.si_signo, &info); 2875 } 2876 break; 2877 case EXCP_INTERRUPT: 2878 /* just indicate that signals should be handled asap */ 2879 break; 2880 case EXCP_BREAK: 2881 /* Return address is 4 bytes after the call. */ 2882 env->regs[14] += 4; 2883 env->sregs[SR_PC] = env->regs[14]; 2884 ret = do_syscall(env, 2885 env->regs[12], 2886 env->regs[5], 2887 env->regs[6], 2888 env->regs[7], 2889 env->regs[8], 2890 env->regs[9], 2891 env->regs[10], 2892 0, 0); 2893 env->regs[3] = ret; 2894 break; 2895 case EXCP_HW_EXCP: 2896 env->regs[17] = env->sregs[SR_PC] + 4; 2897 if (env->iflags & D_FLAG) { 2898 env->sregs[SR_ESR] |= 1 << 12; 2899 env->sregs[SR_PC] -= 4; 2900 /* FIXME: if branch was immed, replay the imm as well. */ 2901 } 2902 2903 env->iflags &= ~(IMM_FLAG | D_FLAG); 2904 2905 switch (env->sregs[SR_ESR] & 31) { 2906 case ESR_EC_DIVZERO: 2907 info.si_signo = TARGET_SIGFPE; 2908 info.si_errno = 0; 2909 info.si_code = TARGET_FPE_FLTDIV; 2910 info._sifields._sigfault._addr = 0; 2911 queue_signal(env, info.si_signo, &info); 2912 break; 2913 case ESR_EC_FPU: 2914 info.si_signo = TARGET_SIGFPE; 2915 info.si_errno = 0; 2916 if (env->sregs[SR_FSR] & FSR_IO) { 2917 info.si_code = TARGET_FPE_FLTINV; 2918 } 2919 if (env->sregs[SR_FSR] & FSR_DZ) { 2920 info.si_code = TARGET_FPE_FLTDIV; 2921 } 2922 info._sifields._sigfault._addr = 0; 2923 queue_signal(env, info.si_signo, &info); 2924 break; 2925 default: 2926 printf ("Unhandled hw-exception: 0x%x\n", 2927 env->sregs[SR_ESR] & ESR_EC_MASK); 2928 cpu_dump_state(cs, stderr, fprintf, 0); 2929 exit(EXIT_FAILURE); 2930 break; 2931 } 2932 break; 2933 case EXCP_DEBUG: 2934 { 2935 int sig; 2936 2937 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2938 if (sig) 2939 { 2940 info.si_signo = sig; 2941 info.si_errno = 0; 2942 info.si_code = TARGET_TRAP_BRKPT; 2943 queue_signal(env, info.si_signo, &info); 2944 } 2945 } 2946 break; 2947 default: 2948 printf ("Unhandled trap: 0x%x\n", trapnr); 2949 cpu_dump_state(cs, stderr, fprintf, 0); 2950 exit(EXIT_FAILURE); 2951 } 2952 process_pending_signals (env); 2953 } 2954 } 2955 #endif 2956 2957 #ifdef TARGET_M68K 2958 2959 void cpu_loop(CPUM68KState *env) 2960 { 2961 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2962 int trapnr; 2963 unsigned int n; 2964 target_siginfo_t info; 2965 TaskState *ts = cs->opaque; 2966 2967 for(;;) { 2968 cpu_exec_start(cs); 2969 trapnr = cpu_m68k_exec(cs); 2970 cpu_exec_end(cs); 2971 switch(trapnr) { 2972 case EXCP_ILLEGAL: 2973 { 2974 if (ts->sim_syscalls) { 2975 uint16_t nr; 2976 get_user_u16(nr, env->pc + 2); 2977 env->pc += 4; 2978 do_m68k_simcall(env, nr); 2979 } else { 2980 goto do_sigill; 2981 } 2982 } 2983 break; 2984 case EXCP_HALT_INSN: 2985 /* Semihosing syscall. */ 2986 env->pc += 4; 2987 do_m68k_semihosting(env, env->dregs[0]); 2988 break; 2989 case EXCP_LINEA: 2990 case EXCP_LINEF: 2991 case EXCP_UNSUPPORTED: 2992 do_sigill: 2993 info.si_signo = TARGET_SIGILL; 2994 info.si_errno = 0; 2995 info.si_code = TARGET_ILL_ILLOPN; 2996 info._sifields._sigfault._addr = env->pc; 2997 queue_signal(env, info.si_signo, &info); 2998 break; 2999 case EXCP_TRAP0: 3000 { 3001 ts->sim_syscalls = 0; 3002 n = env->dregs[0]; 3003 env->pc += 2; 3004 env->dregs[0] = do_syscall(env, 3005 n, 3006 env->dregs[1], 3007 env->dregs[2], 3008 env->dregs[3], 3009 env->dregs[4], 3010 env->dregs[5], 3011 env->aregs[0], 3012 0, 0); 3013 } 3014 break; 3015 case EXCP_INTERRUPT: 3016 /* just indicate that signals should be handled asap */ 3017 break; 3018 case EXCP_ACCESS: 3019 { 3020 info.si_signo = TARGET_SIGSEGV; 3021 info.si_errno = 0; 3022 /* XXX: check env->error_code */ 3023 info.si_code = TARGET_SEGV_MAPERR; 3024 info._sifields._sigfault._addr = env->mmu.ar; 3025 queue_signal(env, info.si_signo, &info); 3026 } 3027 break; 3028 case EXCP_DEBUG: 3029 { 3030 int sig; 3031 3032 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3033 if (sig) 3034 { 3035 info.si_signo = sig; 3036 info.si_errno = 0; 3037 info.si_code = TARGET_TRAP_BRKPT; 3038 queue_signal(env, info.si_signo, &info); 3039 } 3040 } 3041 break; 3042 default: 3043 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3044 abort(); 3045 } 3046 process_pending_signals(env); 3047 } 3048 } 3049 #endif /* TARGET_M68K */ 3050 3051 #ifdef TARGET_ALPHA 3052 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3053 { 3054 target_ulong addr, val, tmp; 3055 target_siginfo_t info; 3056 int ret = 0; 3057 3058 addr = env->lock_addr; 3059 tmp = env->lock_st_addr; 3060 env->lock_addr = -1; 3061 env->lock_st_addr = 0; 3062 3063 start_exclusive(); 3064 mmap_lock(); 3065 3066 if (addr == tmp) { 3067 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3068 goto do_sigsegv; 3069 } 3070 3071 if (val == env->lock_value) { 3072 tmp = env->ir[reg]; 3073 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3074 goto do_sigsegv; 3075 } 3076 ret = 1; 3077 } 3078 } 3079 env->ir[reg] = ret; 3080 env->pc += 4; 3081 3082 mmap_unlock(); 3083 end_exclusive(); 3084 return; 3085 3086 do_sigsegv: 3087 mmap_unlock(); 3088 end_exclusive(); 3089 3090 info.si_signo = TARGET_SIGSEGV; 3091 info.si_errno = 0; 3092 info.si_code = TARGET_SEGV_MAPERR; 3093 info._sifields._sigfault._addr = addr; 3094 queue_signal(env, TARGET_SIGSEGV, &info); 3095 } 3096 3097 void cpu_loop(CPUAlphaState *env) 3098 { 3099 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3100 int trapnr; 3101 target_siginfo_t info; 3102 abi_long sysret; 3103 3104 while (1) { 3105 cpu_exec_start(cs); 3106 trapnr = cpu_alpha_exec(cs); 3107 cpu_exec_end(cs); 3108 3109 /* All of the traps imply a transition through PALcode, which 3110 implies an REI instruction has been executed. Which means 3111 that the intr_flag should be cleared. */ 3112 env->intr_flag = 0; 3113 3114 switch (trapnr) { 3115 case EXCP_RESET: 3116 fprintf(stderr, "Reset requested. Exit\n"); 3117 exit(EXIT_FAILURE); 3118 break; 3119 case EXCP_MCHK: 3120 fprintf(stderr, "Machine check exception. Exit\n"); 3121 exit(EXIT_FAILURE); 3122 break; 3123 case EXCP_SMP_INTERRUPT: 3124 case EXCP_CLK_INTERRUPT: 3125 case EXCP_DEV_INTERRUPT: 3126 fprintf(stderr, "External interrupt. Exit\n"); 3127 exit(EXIT_FAILURE); 3128 break; 3129 case EXCP_MMFAULT: 3130 env->lock_addr = -1; 3131 info.si_signo = TARGET_SIGSEGV; 3132 info.si_errno = 0; 3133 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3134 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3135 info._sifields._sigfault._addr = env->trap_arg0; 3136 queue_signal(env, info.si_signo, &info); 3137 break; 3138 case EXCP_UNALIGN: 3139 env->lock_addr = -1; 3140 info.si_signo = TARGET_SIGBUS; 3141 info.si_errno = 0; 3142 info.si_code = TARGET_BUS_ADRALN; 3143 info._sifields._sigfault._addr = env->trap_arg0; 3144 queue_signal(env, info.si_signo, &info); 3145 break; 3146 case EXCP_OPCDEC: 3147 do_sigill: 3148 env->lock_addr = -1; 3149 info.si_signo = TARGET_SIGILL; 3150 info.si_errno = 0; 3151 info.si_code = TARGET_ILL_ILLOPC; 3152 info._sifields._sigfault._addr = env->pc; 3153 queue_signal(env, info.si_signo, &info); 3154 break; 3155 case EXCP_ARITH: 3156 env->lock_addr = -1; 3157 info.si_signo = TARGET_SIGFPE; 3158 info.si_errno = 0; 3159 info.si_code = TARGET_FPE_FLTINV; 3160 info._sifields._sigfault._addr = env->pc; 3161 queue_signal(env, info.si_signo, &info); 3162 break; 3163 case EXCP_FEN: 3164 /* No-op. Linux simply re-enables the FPU. */ 3165 break; 3166 case EXCP_CALL_PAL: 3167 env->lock_addr = -1; 3168 switch (env->error_code) { 3169 case 0x80: 3170 /* BPT */ 3171 info.si_signo = TARGET_SIGTRAP; 3172 info.si_errno = 0; 3173 info.si_code = TARGET_TRAP_BRKPT; 3174 info._sifields._sigfault._addr = env->pc; 3175 queue_signal(env, info.si_signo, &info); 3176 break; 3177 case 0x81: 3178 /* BUGCHK */ 3179 info.si_signo = TARGET_SIGTRAP; 3180 info.si_errno = 0; 3181 info.si_code = 0; 3182 info._sifields._sigfault._addr = env->pc; 3183 queue_signal(env, info.si_signo, &info); 3184 break; 3185 case 0x83: 3186 /* CALLSYS */ 3187 trapnr = env->ir[IR_V0]; 3188 sysret = do_syscall(env, trapnr, 3189 env->ir[IR_A0], env->ir[IR_A1], 3190 env->ir[IR_A2], env->ir[IR_A3], 3191 env->ir[IR_A4], env->ir[IR_A5], 3192 0, 0); 3193 if (trapnr == TARGET_NR_sigreturn 3194 || trapnr == TARGET_NR_rt_sigreturn) { 3195 break; 3196 } 3197 /* Syscall writes 0 to V0 to bypass error check, similar 3198 to how this is handled internal to Linux kernel. 3199 (Ab)use trapnr temporarily as boolean indicating error. */ 3200 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3201 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3202 env->ir[IR_A3] = trapnr; 3203 break; 3204 case 0x86: 3205 /* IMB */ 3206 /* ??? We can probably elide the code using page_unprotect 3207 that is checking for self-modifying code. Instead we 3208 could simply call tb_flush here. Until we work out the 3209 changes required to turn off the extra write protection, 3210 this can be a no-op. */ 3211 break; 3212 case 0x9E: 3213 /* RDUNIQUE */ 3214 /* Handled in the translator for usermode. */ 3215 abort(); 3216 case 0x9F: 3217 /* WRUNIQUE */ 3218 /* Handled in the translator for usermode. */ 3219 abort(); 3220 case 0xAA: 3221 /* GENTRAP */ 3222 info.si_signo = TARGET_SIGFPE; 3223 switch (env->ir[IR_A0]) { 3224 case TARGET_GEN_INTOVF: 3225 info.si_code = TARGET_FPE_INTOVF; 3226 break; 3227 case TARGET_GEN_INTDIV: 3228 info.si_code = TARGET_FPE_INTDIV; 3229 break; 3230 case TARGET_GEN_FLTOVF: 3231 info.si_code = TARGET_FPE_FLTOVF; 3232 break; 3233 case TARGET_GEN_FLTUND: 3234 info.si_code = TARGET_FPE_FLTUND; 3235 break; 3236 case TARGET_GEN_FLTINV: 3237 info.si_code = TARGET_FPE_FLTINV; 3238 break; 3239 case TARGET_GEN_FLTINE: 3240 info.si_code = TARGET_FPE_FLTRES; 3241 break; 3242 case TARGET_GEN_ROPRAND: 3243 info.si_code = 0; 3244 break; 3245 default: 3246 info.si_signo = TARGET_SIGTRAP; 3247 info.si_code = 0; 3248 break; 3249 } 3250 info.si_errno = 0; 3251 info._sifields._sigfault._addr = env->pc; 3252 queue_signal(env, info.si_signo, &info); 3253 break; 3254 default: 3255 goto do_sigill; 3256 } 3257 break; 3258 case EXCP_DEBUG: 3259 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3260 if (info.si_signo) { 3261 env->lock_addr = -1; 3262 info.si_errno = 0; 3263 info.si_code = TARGET_TRAP_BRKPT; 3264 queue_signal(env, info.si_signo, &info); 3265 } 3266 break; 3267 case EXCP_STL_C: 3268 case EXCP_STQ_C: 3269 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3270 break; 3271 case EXCP_INTERRUPT: 3272 /* Just indicate that signals should be handled asap. */ 3273 break; 3274 default: 3275 printf ("Unhandled trap: 0x%x\n", trapnr); 3276 cpu_dump_state(cs, stderr, fprintf, 0); 3277 exit(EXIT_FAILURE); 3278 } 3279 process_pending_signals (env); 3280 } 3281 } 3282 #endif /* TARGET_ALPHA */ 3283 3284 #ifdef TARGET_S390X 3285 void cpu_loop(CPUS390XState *env) 3286 { 3287 CPUState *cs = CPU(s390_env_get_cpu(env)); 3288 int trapnr, n, sig; 3289 target_siginfo_t info; 3290 target_ulong addr; 3291 3292 while (1) { 3293 cpu_exec_start(cs); 3294 trapnr = cpu_s390x_exec(cs); 3295 cpu_exec_end(cs); 3296 switch (trapnr) { 3297 case EXCP_INTERRUPT: 3298 /* Just indicate that signals should be handled asap. */ 3299 break; 3300 3301 case EXCP_SVC: 3302 n = env->int_svc_code; 3303 if (!n) { 3304 /* syscalls > 255 */ 3305 n = env->regs[1]; 3306 } 3307 env->psw.addr += env->int_svc_ilen; 3308 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3309 env->regs[4], env->regs[5], 3310 env->regs[6], env->regs[7], 0, 0); 3311 break; 3312 3313 case EXCP_DEBUG: 3314 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3315 if (sig) { 3316 n = TARGET_TRAP_BRKPT; 3317 goto do_signal_pc; 3318 } 3319 break; 3320 case EXCP_PGM: 3321 n = env->int_pgm_code; 3322 switch (n) { 3323 case PGM_OPERATION: 3324 case PGM_PRIVILEGED: 3325 sig = TARGET_SIGILL; 3326 n = TARGET_ILL_ILLOPC; 3327 goto do_signal_pc; 3328 case PGM_PROTECTION: 3329 case PGM_ADDRESSING: 3330 sig = TARGET_SIGSEGV; 3331 /* XXX: check env->error_code */ 3332 n = TARGET_SEGV_MAPERR; 3333 addr = env->__excp_addr; 3334 goto do_signal; 3335 case PGM_EXECUTE: 3336 case PGM_SPECIFICATION: 3337 case PGM_SPECIAL_OP: 3338 case PGM_OPERAND: 3339 do_sigill_opn: 3340 sig = TARGET_SIGILL; 3341 n = TARGET_ILL_ILLOPN; 3342 goto do_signal_pc; 3343 3344 case PGM_FIXPT_OVERFLOW: 3345 sig = TARGET_SIGFPE; 3346 n = TARGET_FPE_INTOVF; 3347 goto do_signal_pc; 3348 case PGM_FIXPT_DIVIDE: 3349 sig = TARGET_SIGFPE; 3350 n = TARGET_FPE_INTDIV; 3351 goto do_signal_pc; 3352 3353 case PGM_DATA: 3354 n = (env->fpc >> 8) & 0xff; 3355 if (n == 0xff) { 3356 /* compare-and-trap */ 3357 goto do_sigill_opn; 3358 } else { 3359 /* An IEEE exception, simulated or otherwise. */ 3360 if (n & 0x80) { 3361 n = TARGET_FPE_FLTINV; 3362 } else if (n & 0x40) { 3363 n = TARGET_FPE_FLTDIV; 3364 } else if (n & 0x20) { 3365 n = TARGET_FPE_FLTOVF; 3366 } else if (n & 0x10) { 3367 n = TARGET_FPE_FLTUND; 3368 } else if (n & 0x08) { 3369 n = TARGET_FPE_FLTRES; 3370 } else { 3371 /* ??? Quantum exception; BFP, DFP error. */ 3372 goto do_sigill_opn; 3373 } 3374 sig = TARGET_SIGFPE; 3375 goto do_signal_pc; 3376 } 3377 3378 default: 3379 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3380 cpu_dump_state(cs, stderr, fprintf, 0); 3381 exit(EXIT_FAILURE); 3382 } 3383 break; 3384 3385 do_signal_pc: 3386 addr = env->psw.addr; 3387 do_signal: 3388 info.si_signo = sig; 3389 info.si_errno = 0; 3390 info.si_code = n; 3391 info._sifields._sigfault._addr = addr; 3392 queue_signal(env, info.si_signo, &info); 3393 break; 3394 3395 default: 3396 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3397 cpu_dump_state(cs, stderr, fprintf, 0); 3398 exit(EXIT_FAILURE); 3399 } 3400 process_pending_signals (env); 3401 } 3402 } 3403 3404 #endif /* TARGET_S390X */ 3405 3406 #ifdef TARGET_TILEGX 3407 3408 static void gen_sigill_reg(CPUTLGState *env) 3409 { 3410 target_siginfo_t info; 3411 3412 info.si_signo = TARGET_SIGILL; 3413 info.si_errno = 0; 3414 info.si_code = TARGET_ILL_PRVREG; 3415 info._sifields._sigfault._addr = env->pc; 3416 queue_signal(env, info.si_signo, &info); 3417 } 3418 3419 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3420 { 3421 target_siginfo_t info; 3422 3423 info.si_signo = signo; 3424 info.si_errno = 0; 3425 info._sifields._sigfault._addr = env->pc; 3426 3427 if (signo == TARGET_SIGSEGV) { 3428 /* The passed in sigcode is a dummy; check for a page mapping 3429 and pass either MAPERR or ACCERR. */ 3430 target_ulong addr = env->excaddr; 3431 info._sifields._sigfault._addr = addr; 3432 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3433 sigcode = TARGET_SEGV_MAPERR; 3434 } else { 3435 sigcode = TARGET_SEGV_ACCERR; 3436 } 3437 } 3438 info.si_code = sigcode; 3439 3440 queue_signal(env, info.si_signo, &info); 3441 } 3442 3443 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3444 { 3445 env->excaddr = addr; 3446 do_signal(env, TARGET_SIGSEGV, 0); 3447 } 3448 3449 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3450 { 3451 if (unlikely(reg >= TILEGX_R_COUNT)) { 3452 switch (reg) { 3453 case TILEGX_R_SN: 3454 case TILEGX_R_ZERO: 3455 return; 3456 case TILEGX_R_IDN0: 3457 case TILEGX_R_IDN1: 3458 case TILEGX_R_UDN0: 3459 case TILEGX_R_UDN1: 3460 case TILEGX_R_UDN2: 3461 case TILEGX_R_UDN3: 3462 gen_sigill_reg(env); 3463 return; 3464 default: 3465 g_assert_not_reached(); 3466 } 3467 } 3468 env->regs[reg] = val; 3469 } 3470 3471 /* 3472 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3473 * memory at the address held in the first source register. If the values are 3474 * not equal, then no memory operation is performed. If the values are equal, 3475 * the 8-byte quantity from the second source register is written into memory 3476 * at the address held in the first source register. In either case, the result 3477 * of the instruction is the value read from memory. The compare and write to 3478 * memory are atomic and thus can be used for synchronization purposes. This 3479 * instruction only operates for addresses aligned to a 8-byte boundary. 3480 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3481 * 3482 * Functional Description (64-bit) 3483 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3484 * rf[Dest] = memVal; 3485 * if (memVal == SPR[CmpValueSPR]) 3486 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3487 * 3488 * Functional Description (32-bit) 3489 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3490 * rf[Dest] = memVal; 3491 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3492 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3493 * 3494 * 3495 * This function also processes exch and exch4 which need not process SPR. 3496 */ 3497 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3498 { 3499 target_ulong addr; 3500 target_long val, sprval; 3501 3502 start_exclusive(); 3503 3504 addr = env->atomic_srca; 3505 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3506 goto sigsegv_maperr; 3507 } 3508 3509 if (cmp) { 3510 if (quad) { 3511 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3512 } else { 3513 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3514 } 3515 } 3516 3517 if (!cmp || val == sprval) { 3518 target_long valb = env->atomic_srcb; 3519 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3520 goto sigsegv_maperr; 3521 } 3522 } 3523 3524 set_regval(env, env->atomic_dstr, val); 3525 end_exclusive(); 3526 return; 3527 3528 sigsegv_maperr: 3529 end_exclusive(); 3530 gen_sigsegv_maperr(env, addr); 3531 } 3532 3533 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3534 { 3535 int8_t write = 1; 3536 target_ulong addr; 3537 target_long val, valb; 3538 3539 start_exclusive(); 3540 3541 addr = env->atomic_srca; 3542 valb = env->atomic_srcb; 3543 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3544 goto sigsegv_maperr; 3545 } 3546 3547 switch (trapnr) { 3548 case TILEGX_EXCP_OPCODE_FETCHADD: 3549 case TILEGX_EXCP_OPCODE_FETCHADD4: 3550 valb += val; 3551 break; 3552 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3553 valb += val; 3554 if (valb < 0) { 3555 write = 0; 3556 } 3557 break; 3558 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3559 valb += val; 3560 if ((int32_t)valb < 0) { 3561 write = 0; 3562 } 3563 break; 3564 case TILEGX_EXCP_OPCODE_FETCHAND: 3565 case TILEGX_EXCP_OPCODE_FETCHAND4: 3566 valb &= val; 3567 break; 3568 case TILEGX_EXCP_OPCODE_FETCHOR: 3569 case TILEGX_EXCP_OPCODE_FETCHOR4: 3570 valb |= val; 3571 break; 3572 default: 3573 g_assert_not_reached(); 3574 } 3575 3576 if (write) { 3577 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3578 goto sigsegv_maperr; 3579 } 3580 } 3581 3582 set_regval(env, env->atomic_dstr, val); 3583 end_exclusive(); 3584 return; 3585 3586 sigsegv_maperr: 3587 end_exclusive(); 3588 gen_sigsegv_maperr(env, addr); 3589 } 3590 3591 void cpu_loop(CPUTLGState *env) 3592 { 3593 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3594 int trapnr; 3595 3596 while (1) { 3597 cpu_exec_start(cs); 3598 trapnr = cpu_tilegx_exec(cs); 3599 cpu_exec_end(cs); 3600 switch (trapnr) { 3601 case TILEGX_EXCP_SYSCALL: 3602 env->regs[TILEGX_R_RE] = do_syscall(env, env->regs[TILEGX_R_NR], 3603 env->regs[0], env->regs[1], 3604 env->regs[2], env->regs[3], 3605 env->regs[4], env->regs[5], 3606 env->regs[6], env->regs[7]); 3607 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(env->regs[TILEGX_R_RE]) 3608 ? - env->regs[TILEGX_R_RE] 3609 : 0; 3610 break; 3611 case TILEGX_EXCP_OPCODE_EXCH: 3612 do_exch(env, true, false); 3613 break; 3614 case TILEGX_EXCP_OPCODE_EXCH4: 3615 do_exch(env, false, false); 3616 break; 3617 case TILEGX_EXCP_OPCODE_CMPEXCH: 3618 do_exch(env, true, true); 3619 break; 3620 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3621 do_exch(env, false, true); 3622 break; 3623 case TILEGX_EXCP_OPCODE_FETCHADD: 3624 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3625 case TILEGX_EXCP_OPCODE_FETCHAND: 3626 case TILEGX_EXCP_OPCODE_FETCHOR: 3627 do_fetch(env, trapnr, true); 3628 break; 3629 case TILEGX_EXCP_OPCODE_FETCHADD4: 3630 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3631 case TILEGX_EXCP_OPCODE_FETCHAND4: 3632 case TILEGX_EXCP_OPCODE_FETCHOR4: 3633 do_fetch(env, trapnr, false); 3634 break; 3635 case TILEGX_EXCP_SIGNAL: 3636 do_signal(env, env->signo, env->sigcode); 3637 break; 3638 case TILEGX_EXCP_REG_IDN_ACCESS: 3639 case TILEGX_EXCP_REG_UDN_ACCESS: 3640 gen_sigill_reg(env); 3641 break; 3642 default: 3643 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3644 g_assert_not_reached(); 3645 } 3646 process_pending_signals(env); 3647 } 3648 } 3649 3650 #endif 3651 3652 THREAD CPUState *thread_cpu; 3653 3654 void task_settid(TaskState *ts) 3655 { 3656 if (ts->ts_tid == 0) { 3657 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3658 } 3659 } 3660 3661 void stop_all_tasks(void) 3662 { 3663 /* 3664 * We trust that when using NPTL, start_exclusive() 3665 * handles thread stopping correctly. 3666 */ 3667 start_exclusive(); 3668 } 3669 3670 /* Assumes contents are already zeroed. */ 3671 void init_task_state(TaskState *ts) 3672 { 3673 int i; 3674 3675 ts->used = 1; 3676 ts->first_free = ts->sigqueue_table; 3677 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3678 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3679 } 3680 ts->sigqueue_table[i].next = NULL; 3681 } 3682 3683 CPUArchState *cpu_copy(CPUArchState *env) 3684 { 3685 CPUState *cpu = ENV_GET_CPU(env); 3686 CPUState *new_cpu = cpu_init(cpu_model); 3687 CPUArchState *new_env = new_cpu->env_ptr; 3688 CPUBreakpoint *bp; 3689 CPUWatchpoint *wp; 3690 3691 /* Reset non arch specific state */ 3692 cpu_reset(new_cpu); 3693 3694 memcpy(new_env, env, sizeof(CPUArchState)); 3695 3696 /* Clone all break/watchpoints. 3697 Note: Once we support ptrace with hw-debug register access, make sure 3698 BP_CPU break/watchpoints are handled correctly on clone. */ 3699 QTAILQ_INIT(&new_cpu->breakpoints); 3700 QTAILQ_INIT(&new_cpu->watchpoints); 3701 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3702 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3703 } 3704 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3705 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3706 } 3707 3708 return new_env; 3709 } 3710 3711 static void handle_arg_help(const char *arg) 3712 { 3713 usage(EXIT_SUCCESS); 3714 } 3715 3716 static void handle_arg_log(const char *arg) 3717 { 3718 int mask; 3719 3720 mask = qemu_str_to_log_mask(arg); 3721 if (!mask) { 3722 qemu_print_log_usage(stdout); 3723 exit(EXIT_FAILURE); 3724 } 3725 qemu_set_log(mask); 3726 } 3727 3728 static void handle_arg_log_filename(const char *arg) 3729 { 3730 qemu_set_log_filename(arg); 3731 } 3732 3733 static void handle_arg_set_env(const char *arg) 3734 { 3735 char *r, *p, *token; 3736 r = p = strdup(arg); 3737 while ((token = strsep(&p, ",")) != NULL) { 3738 if (envlist_setenv(envlist, token) != 0) { 3739 usage(EXIT_FAILURE); 3740 } 3741 } 3742 free(r); 3743 } 3744 3745 static void handle_arg_unset_env(const char *arg) 3746 { 3747 char *r, *p, *token; 3748 r = p = strdup(arg); 3749 while ((token = strsep(&p, ",")) != NULL) { 3750 if (envlist_unsetenv(envlist, token) != 0) { 3751 usage(EXIT_FAILURE); 3752 } 3753 } 3754 free(r); 3755 } 3756 3757 static void handle_arg_argv0(const char *arg) 3758 { 3759 argv0 = strdup(arg); 3760 } 3761 3762 static void handle_arg_stack_size(const char *arg) 3763 { 3764 char *p; 3765 guest_stack_size = strtoul(arg, &p, 0); 3766 if (guest_stack_size == 0) { 3767 usage(EXIT_FAILURE); 3768 } 3769 3770 if (*p == 'M') { 3771 guest_stack_size *= 1024 * 1024; 3772 } else if (*p == 'k' || *p == 'K') { 3773 guest_stack_size *= 1024; 3774 } 3775 } 3776 3777 static void handle_arg_ld_prefix(const char *arg) 3778 { 3779 interp_prefix = strdup(arg); 3780 } 3781 3782 static void handle_arg_pagesize(const char *arg) 3783 { 3784 qemu_host_page_size = atoi(arg); 3785 if (qemu_host_page_size == 0 || 3786 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3787 fprintf(stderr, "page size must be a power of two\n"); 3788 exit(EXIT_FAILURE); 3789 } 3790 } 3791 3792 static void handle_arg_randseed(const char *arg) 3793 { 3794 unsigned long long seed; 3795 3796 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3797 fprintf(stderr, "Invalid seed number: %s\n", arg); 3798 exit(EXIT_FAILURE); 3799 } 3800 srand(seed); 3801 } 3802 3803 static void handle_arg_gdb(const char *arg) 3804 { 3805 gdbstub_port = atoi(arg); 3806 } 3807 3808 static void handle_arg_uname(const char *arg) 3809 { 3810 qemu_uname_release = strdup(arg); 3811 } 3812 3813 static void handle_arg_cpu(const char *arg) 3814 { 3815 cpu_model = strdup(arg); 3816 if (cpu_model == NULL || is_help_option(cpu_model)) { 3817 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3818 #if defined(cpu_list) 3819 cpu_list(stdout, &fprintf); 3820 #endif 3821 exit(EXIT_FAILURE); 3822 } 3823 } 3824 3825 static void handle_arg_guest_base(const char *arg) 3826 { 3827 guest_base = strtol(arg, NULL, 0); 3828 have_guest_base = 1; 3829 } 3830 3831 static void handle_arg_reserved_va(const char *arg) 3832 { 3833 char *p; 3834 int shift = 0; 3835 reserved_va = strtoul(arg, &p, 0); 3836 switch (*p) { 3837 case 'k': 3838 case 'K': 3839 shift = 10; 3840 break; 3841 case 'M': 3842 shift = 20; 3843 break; 3844 case 'G': 3845 shift = 30; 3846 break; 3847 } 3848 if (shift) { 3849 unsigned long unshifted = reserved_va; 3850 p++; 3851 reserved_va <<= shift; 3852 if (((reserved_va >> shift) != unshifted) 3853 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3854 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3855 #endif 3856 ) { 3857 fprintf(stderr, "Reserved virtual address too big\n"); 3858 exit(EXIT_FAILURE); 3859 } 3860 } 3861 if (*p) { 3862 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3863 exit(EXIT_FAILURE); 3864 } 3865 } 3866 3867 static void handle_arg_singlestep(const char *arg) 3868 { 3869 singlestep = 1; 3870 } 3871 3872 static void handle_arg_strace(const char *arg) 3873 { 3874 do_strace = 1; 3875 } 3876 3877 static void handle_arg_version(const char *arg) 3878 { 3879 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3880 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3881 exit(EXIT_SUCCESS); 3882 } 3883 3884 struct qemu_argument { 3885 const char *argv; 3886 const char *env; 3887 bool has_arg; 3888 void (*handle_opt)(const char *arg); 3889 const char *example; 3890 const char *help; 3891 }; 3892 3893 static const struct qemu_argument arg_table[] = { 3894 {"h", "", false, handle_arg_help, 3895 "", "print this help"}, 3896 {"help", "", false, handle_arg_help, 3897 "", ""}, 3898 {"g", "QEMU_GDB", true, handle_arg_gdb, 3899 "port", "wait gdb connection to 'port'"}, 3900 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3901 "path", "set the elf interpreter prefix to 'path'"}, 3902 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3903 "size", "set the stack size to 'size' bytes"}, 3904 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3905 "model", "select CPU (-cpu help for list)"}, 3906 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3907 "var=value", "sets targets environment variable (see below)"}, 3908 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3909 "var", "unsets targets environment variable (see below)"}, 3910 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3911 "argv0", "forces target process argv[0] to be 'argv0'"}, 3912 {"r", "QEMU_UNAME", true, handle_arg_uname, 3913 "uname", "set qemu uname release string to 'uname'"}, 3914 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3915 "address", "set guest_base address to 'address'"}, 3916 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3917 "size", "reserve 'size' bytes for guest virtual address space"}, 3918 {"d", "QEMU_LOG", true, handle_arg_log, 3919 "item[,...]", "enable logging of specified items " 3920 "(use '-d help' for a list of items)"}, 3921 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3922 "logfile", "write logs to 'logfile' (default stderr)"}, 3923 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3924 "pagesize", "set the host page size to 'pagesize'"}, 3925 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3926 "", "run in singlestep mode"}, 3927 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3928 "", "log system calls"}, 3929 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 3930 "", "Seed for pseudo-random number generator"}, 3931 {"version", "QEMU_VERSION", false, handle_arg_version, 3932 "", "display version information and exit"}, 3933 {NULL, NULL, false, NULL, NULL, NULL} 3934 }; 3935 3936 static void usage(int exitcode) 3937 { 3938 const struct qemu_argument *arginfo; 3939 int maxarglen; 3940 int maxenvlen; 3941 3942 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3943 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3944 "\n" 3945 "Options and associated environment variables:\n" 3946 "\n"); 3947 3948 /* Calculate column widths. We must always have at least enough space 3949 * for the column header. 3950 */ 3951 maxarglen = strlen("Argument"); 3952 maxenvlen = strlen("Env-variable"); 3953 3954 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3955 int arglen = strlen(arginfo->argv); 3956 if (arginfo->has_arg) { 3957 arglen += strlen(arginfo->example) + 1; 3958 } 3959 if (strlen(arginfo->env) > maxenvlen) { 3960 maxenvlen = strlen(arginfo->env); 3961 } 3962 if (arglen > maxarglen) { 3963 maxarglen = arglen; 3964 } 3965 } 3966 3967 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3968 maxenvlen, "Env-variable"); 3969 3970 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3971 if (arginfo->has_arg) { 3972 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3973 (int)(maxarglen - strlen(arginfo->argv) - 1), 3974 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3975 } else { 3976 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3977 maxenvlen, arginfo->env, 3978 arginfo->help); 3979 } 3980 } 3981 3982 printf("\n" 3983 "Defaults:\n" 3984 "QEMU_LD_PREFIX = %s\n" 3985 "QEMU_STACK_SIZE = %ld byte\n", 3986 interp_prefix, 3987 guest_stack_size); 3988 3989 printf("\n" 3990 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3991 "QEMU_UNSET_ENV environment variables to set and unset\n" 3992 "environment variables for the target process.\n" 3993 "It is possible to provide several variables by separating them\n" 3994 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3995 "provide the -E and -U options multiple times.\n" 3996 "The following lines are equivalent:\n" 3997 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3998 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3999 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4000 "Note that if you provide several changes to a single variable\n" 4001 "the last change will stay in effect.\n"); 4002 4003 exit(exitcode); 4004 } 4005 4006 static int parse_args(int argc, char **argv) 4007 { 4008 const char *r; 4009 int optind; 4010 const struct qemu_argument *arginfo; 4011 4012 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4013 if (arginfo->env == NULL) { 4014 continue; 4015 } 4016 4017 r = getenv(arginfo->env); 4018 if (r != NULL) { 4019 arginfo->handle_opt(r); 4020 } 4021 } 4022 4023 optind = 1; 4024 for (;;) { 4025 if (optind >= argc) { 4026 break; 4027 } 4028 r = argv[optind]; 4029 if (r[0] != '-') { 4030 break; 4031 } 4032 optind++; 4033 r++; 4034 if (!strcmp(r, "-")) { 4035 break; 4036 } 4037 /* Treat --foo the same as -foo. */ 4038 if (r[0] == '-') { 4039 r++; 4040 } 4041 4042 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4043 if (!strcmp(r, arginfo->argv)) { 4044 if (arginfo->has_arg) { 4045 if (optind >= argc) { 4046 (void) fprintf(stderr, 4047 "qemu: missing argument for option '%s'\n", r); 4048 exit(EXIT_FAILURE); 4049 } 4050 arginfo->handle_opt(argv[optind]); 4051 optind++; 4052 } else { 4053 arginfo->handle_opt(NULL); 4054 } 4055 break; 4056 } 4057 } 4058 4059 /* no option matched the current argv */ 4060 if (arginfo->handle_opt == NULL) { 4061 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4062 exit(EXIT_FAILURE); 4063 } 4064 } 4065 4066 if (optind >= argc) { 4067 (void) fprintf(stderr, "qemu: no user program specified\n"); 4068 exit(EXIT_FAILURE); 4069 } 4070 4071 filename = argv[optind]; 4072 exec_path = argv[optind]; 4073 4074 return optind; 4075 } 4076 4077 int main(int argc, char **argv, char **envp) 4078 { 4079 struct target_pt_regs regs1, *regs = ®s1; 4080 struct image_info info1, *info = &info1; 4081 struct linux_binprm bprm; 4082 TaskState *ts; 4083 CPUArchState *env; 4084 CPUState *cpu; 4085 int optind; 4086 char **target_environ, **wrk; 4087 char **target_argv; 4088 int target_argc; 4089 int i; 4090 int ret; 4091 int execfd; 4092 4093 module_call_init(MODULE_INIT_QOM); 4094 4095 if ((envlist = envlist_create()) == NULL) { 4096 (void) fprintf(stderr, "Unable to allocate envlist\n"); 4097 exit(EXIT_FAILURE); 4098 } 4099 4100 /* add current environment into the list */ 4101 for (wrk = environ; *wrk != NULL; wrk++) { 4102 (void) envlist_setenv(envlist, *wrk); 4103 } 4104 4105 /* Read the stack limit from the kernel. If it's "unlimited", 4106 then we can do little else besides use the default. */ 4107 { 4108 struct rlimit lim; 4109 if (getrlimit(RLIMIT_STACK, &lim) == 0 4110 && lim.rlim_cur != RLIM_INFINITY 4111 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4112 guest_stack_size = lim.rlim_cur; 4113 } 4114 } 4115 4116 cpu_model = NULL; 4117 #if defined(cpudef_setup) 4118 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 4119 #endif 4120 4121 srand(time(NULL)); 4122 4123 optind = parse_args(argc, argv); 4124 4125 /* Zero out regs */ 4126 memset(regs, 0, sizeof(struct target_pt_regs)); 4127 4128 /* Zero out image_info */ 4129 memset(info, 0, sizeof(struct image_info)); 4130 4131 memset(&bprm, 0, sizeof (bprm)); 4132 4133 /* Scan interp_prefix dir for replacement files. */ 4134 init_paths(interp_prefix); 4135 4136 init_qemu_uname_release(); 4137 4138 if (cpu_model == NULL) { 4139 #if defined(TARGET_I386) 4140 #ifdef TARGET_X86_64 4141 cpu_model = "qemu64"; 4142 #else 4143 cpu_model = "qemu32"; 4144 #endif 4145 #elif defined(TARGET_ARM) 4146 cpu_model = "any"; 4147 #elif defined(TARGET_UNICORE32) 4148 cpu_model = "any"; 4149 #elif defined(TARGET_M68K) 4150 cpu_model = "any"; 4151 #elif defined(TARGET_SPARC) 4152 #ifdef TARGET_SPARC64 4153 cpu_model = "TI UltraSparc II"; 4154 #else 4155 cpu_model = "Fujitsu MB86904"; 4156 #endif 4157 #elif defined(TARGET_MIPS) 4158 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4159 cpu_model = "5KEf"; 4160 #else 4161 cpu_model = "24Kf"; 4162 #endif 4163 #elif defined TARGET_OPENRISC 4164 cpu_model = "or1200"; 4165 #elif defined(TARGET_PPC) 4166 # ifdef TARGET_PPC64 4167 cpu_model = "POWER7"; 4168 # else 4169 cpu_model = "750"; 4170 # endif 4171 #elif defined TARGET_SH4 4172 cpu_model = TYPE_SH7785_CPU; 4173 #else 4174 cpu_model = "any"; 4175 #endif 4176 } 4177 tcg_exec_init(0); 4178 /* NOTE: we need to init the CPU at this stage to get 4179 qemu_host_page_size */ 4180 cpu = cpu_init(cpu_model); 4181 if (!cpu) { 4182 fprintf(stderr, "Unable to find CPU definition\n"); 4183 exit(EXIT_FAILURE); 4184 } 4185 env = cpu->env_ptr; 4186 cpu_reset(cpu); 4187 4188 thread_cpu = cpu; 4189 4190 if (getenv("QEMU_STRACE")) { 4191 do_strace = 1; 4192 } 4193 4194 if (getenv("QEMU_RAND_SEED")) { 4195 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4196 } 4197 4198 target_environ = envlist_to_environ(envlist, NULL); 4199 envlist_free(envlist); 4200 4201 /* 4202 * Now that page sizes are configured in cpu_init() we can do 4203 * proper page alignment for guest_base. 4204 */ 4205 guest_base = HOST_PAGE_ALIGN(guest_base); 4206 4207 if (reserved_va || have_guest_base) { 4208 guest_base = init_guest_space(guest_base, reserved_va, 0, 4209 have_guest_base); 4210 if (guest_base == (unsigned long)-1) { 4211 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4212 "space for use as guest address space (check your virtual " 4213 "memory ulimit setting or reserve less using -R option)\n", 4214 reserved_va); 4215 exit(EXIT_FAILURE); 4216 } 4217 4218 if (reserved_va) { 4219 mmap_next_start = reserved_va; 4220 } 4221 } 4222 4223 /* 4224 * Read in mmap_min_addr kernel parameter. This value is used 4225 * When loading the ELF image to determine whether guest_base 4226 * is needed. It is also used in mmap_find_vma. 4227 */ 4228 { 4229 FILE *fp; 4230 4231 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4232 unsigned long tmp; 4233 if (fscanf(fp, "%lu", &tmp) == 1) { 4234 mmap_min_addr = tmp; 4235 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4236 } 4237 fclose(fp); 4238 } 4239 } 4240 4241 /* 4242 * Prepare copy of argv vector for target. 4243 */ 4244 target_argc = argc - optind; 4245 target_argv = calloc(target_argc + 1, sizeof (char *)); 4246 if (target_argv == NULL) { 4247 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4248 exit(EXIT_FAILURE); 4249 } 4250 4251 /* 4252 * If argv0 is specified (using '-0' switch) we replace 4253 * argv[0] pointer with the given one. 4254 */ 4255 i = 0; 4256 if (argv0 != NULL) { 4257 target_argv[i++] = strdup(argv0); 4258 } 4259 for (; i < target_argc; i++) { 4260 target_argv[i] = strdup(argv[optind + i]); 4261 } 4262 target_argv[target_argc] = NULL; 4263 4264 ts = g_new0(TaskState, 1); 4265 init_task_state(ts); 4266 /* build Task State */ 4267 ts->info = info; 4268 ts->bprm = &bprm; 4269 cpu->opaque = ts; 4270 task_settid(ts); 4271 4272 execfd = qemu_getauxval(AT_EXECFD); 4273 if (execfd == 0) { 4274 execfd = open(filename, O_RDONLY); 4275 if (execfd < 0) { 4276 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4277 _exit(EXIT_FAILURE); 4278 } 4279 } 4280 4281 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4282 info, &bprm); 4283 if (ret != 0) { 4284 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4285 _exit(EXIT_FAILURE); 4286 } 4287 4288 for (wrk = target_environ; *wrk; wrk++) { 4289 free(*wrk); 4290 } 4291 4292 free(target_environ); 4293 4294 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4295 qemu_log("guest_base 0x%lx\n", guest_base); 4296 log_page_dump(); 4297 4298 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4299 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4300 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4301 info->start_code); 4302 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4303 info->start_data); 4304 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4305 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4306 info->start_stack); 4307 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4308 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4309 } 4310 4311 target_set_brk(info->brk); 4312 syscall_init(); 4313 signal_init(); 4314 4315 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4316 generating the prologue until now so that the prologue can take 4317 the real value of GUEST_BASE into account. */ 4318 tcg_prologue_init(&tcg_ctx); 4319 4320 #if defined(TARGET_I386) 4321 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4322 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4323 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4324 env->cr[4] |= CR4_OSFXSR_MASK; 4325 env->hflags |= HF_OSFXSR_MASK; 4326 } 4327 #ifndef TARGET_ABI32 4328 /* enable 64 bit mode if possible */ 4329 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4330 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4331 exit(EXIT_FAILURE); 4332 } 4333 env->cr[4] |= CR4_PAE_MASK; 4334 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4335 env->hflags |= HF_LMA_MASK; 4336 #endif 4337 4338 /* flags setup : we activate the IRQs by default as in user mode */ 4339 env->eflags |= IF_MASK; 4340 4341 /* linux register setup */ 4342 #ifndef TARGET_ABI32 4343 env->regs[R_EAX] = regs->rax; 4344 env->regs[R_EBX] = regs->rbx; 4345 env->regs[R_ECX] = regs->rcx; 4346 env->regs[R_EDX] = regs->rdx; 4347 env->regs[R_ESI] = regs->rsi; 4348 env->regs[R_EDI] = regs->rdi; 4349 env->regs[R_EBP] = regs->rbp; 4350 env->regs[R_ESP] = regs->rsp; 4351 env->eip = regs->rip; 4352 #else 4353 env->regs[R_EAX] = regs->eax; 4354 env->regs[R_EBX] = regs->ebx; 4355 env->regs[R_ECX] = regs->ecx; 4356 env->regs[R_EDX] = regs->edx; 4357 env->regs[R_ESI] = regs->esi; 4358 env->regs[R_EDI] = regs->edi; 4359 env->regs[R_EBP] = regs->ebp; 4360 env->regs[R_ESP] = regs->esp; 4361 env->eip = regs->eip; 4362 #endif 4363 4364 /* linux interrupt setup */ 4365 #ifndef TARGET_ABI32 4366 env->idt.limit = 511; 4367 #else 4368 env->idt.limit = 255; 4369 #endif 4370 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4371 PROT_READ|PROT_WRITE, 4372 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4373 idt_table = g2h(env->idt.base); 4374 set_idt(0, 0); 4375 set_idt(1, 0); 4376 set_idt(2, 0); 4377 set_idt(3, 3); 4378 set_idt(4, 3); 4379 set_idt(5, 0); 4380 set_idt(6, 0); 4381 set_idt(7, 0); 4382 set_idt(8, 0); 4383 set_idt(9, 0); 4384 set_idt(10, 0); 4385 set_idt(11, 0); 4386 set_idt(12, 0); 4387 set_idt(13, 0); 4388 set_idt(14, 0); 4389 set_idt(15, 0); 4390 set_idt(16, 0); 4391 set_idt(17, 0); 4392 set_idt(18, 0); 4393 set_idt(19, 0); 4394 set_idt(0x80, 3); 4395 4396 /* linux segment setup */ 4397 { 4398 uint64_t *gdt_table; 4399 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4400 PROT_READ|PROT_WRITE, 4401 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4402 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4403 gdt_table = g2h(env->gdt.base); 4404 #ifdef TARGET_ABI32 4405 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4406 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4407 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4408 #else 4409 /* 64 bit code segment */ 4410 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4411 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4412 DESC_L_MASK | 4413 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4414 #endif 4415 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4416 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4417 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4418 } 4419 cpu_x86_load_seg(env, R_CS, __USER_CS); 4420 cpu_x86_load_seg(env, R_SS, __USER_DS); 4421 #ifdef TARGET_ABI32 4422 cpu_x86_load_seg(env, R_DS, __USER_DS); 4423 cpu_x86_load_seg(env, R_ES, __USER_DS); 4424 cpu_x86_load_seg(env, R_FS, __USER_DS); 4425 cpu_x86_load_seg(env, R_GS, __USER_DS); 4426 /* This hack makes Wine work... */ 4427 env->segs[R_FS].selector = 0; 4428 #else 4429 cpu_x86_load_seg(env, R_DS, 0); 4430 cpu_x86_load_seg(env, R_ES, 0); 4431 cpu_x86_load_seg(env, R_FS, 0); 4432 cpu_x86_load_seg(env, R_GS, 0); 4433 #endif 4434 #elif defined(TARGET_AARCH64) 4435 { 4436 int i; 4437 4438 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4439 fprintf(stderr, 4440 "The selected ARM CPU does not support 64 bit mode\n"); 4441 exit(EXIT_FAILURE); 4442 } 4443 4444 for (i = 0; i < 31; i++) { 4445 env->xregs[i] = regs->regs[i]; 4446 } 4447 env->pc = regs->pc; 4448 env->xregs[31] = regs->sp; 4449 } 4450 #elif defined(TARGET_ARM) 4451 { 4452 int i; 4453 cpsr_write(env, regs->uregs[16], 0xffffffff); 4454 for(i = 0; i < 16; i++) { 4455 env->regs[i] = regs->uregs[i]; 4456 } 4457 /* Enable BE8. */ 4458 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4459 && (info->elf_flags & EF_ARM_BE8)) { 4460 env->bswap_code = 1; 4461 } 4462 } 4463 #elif defined(TARGET_UNICORE32) 4464 { 4465 int i; 4466 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4467 for (i = 0; i < 32; i++) { 4468 env->regs[i] = regs->uregs[i]; 4469 } 4470 } 4471 #elif defined(TARGET_SPARC) 4472 { 4473 int i; 4474 env->pc = regs->pc; 4475 env->npc = regs->npc; 4476 env->y = regs->y; 4477 for(i = 0; i < 8; i++) 4478 env->gregs[i] = regs->u_regs[i]; 4479 for(i = 0; i < 8; i++) 4480 env->regwptr[i] = regs->u_regs[i + 8]; 4481 } 4482 #elif defined(TARGET_PPC) 4483 { 4484 int i; 4485 4486 #if defined(TARGET_PPC64) 4487 #if defined(TARGET_ABI32) 4488 env->msr &= ~((target_ulong)1 << MSR_SF); 4489 #else 4490 env->msr |= (target_ulong)1 << MSR_SF; 4491 #endif 4492 #endif 4493 env->nip = regs->nip; 4494 for(i = 0; i < 32; i++) { 4495 env->gpr[i] = regs->gpr[i]; 4496 } 4497 } 4498 #elif defined(TARGET_M68K) 4499 { 4500 env->pc = regs->pc; 4501 env->dregs[0] = regs->d0; 4502 env->dregs[1] = regs->d1; 4503 env->dregs[2] = regs->d2; 4504 env->dregs[3] = regs->d3; 4505 env->dregs[4] = regs->d4; 4506 env->dregs[5] = regs->d5; 4507 env->dregs[6] = regs->d6; 4508 env->dregs[7] = regs->d7; 4509 env->aregs[0] = regs->a0; 4510 env->aregs[1] = regs->a1; 4511 env->aregs[2] = regs->a2; 4512 env->aregs[3] = regs->a3; 4513 env->aregs[4] = regs->a4; 4514 env->aregs[5] = regs->a5; 4515 env->aregs[6] = regs->a6; 4516 env->aregs[7] = regs->usp; 4517 env->sr = regs->sr; 4518 ts->sim_syscalls = 1; 4519 } 4520 #elif defined(TARGET_MICROBLAZE) 4521 { 4522 env->regs[0] = regs->r0; 4523 env->regs[1] = regs->r1; 4524 env->regs[2] = regs->r2; 4525 env->regs[3] = regs->r3; 4526 env->regs[4] = regs->r4; 4527 env->regs[5] = regs->r5; 4528 env->regs[6] = regs->r6; 4529 env->regs[7] = regs->r7; 4530 env->regs[8] = regs->r8; 4531 env->regs[9] = regs->r9; 4532 env->regs[10] = regs->r10; 4533 env->regs[11] = regs->r11; 4534 env->regs[12] = regs->r12; 4535 env->regs[13] = regs->r13; 4536 env->regs[14] = regs->r14; 4537 env->regs[15] = regs->r15; 4538 env->regs[16] = regs->r16; 4539 env->regs[17] = regs->r17; 4540 env->regs[18] = regs->r18; 4541 env->regs[19] = regs->r19; 4542 env->regs[20] = regs->r20; 4543 env->regs[21] = regs->r21; 4544 env->regs[22] = regs->r22; 4545 env->regs[23] = regs->r23; 4546 env->regs[24] = regs->r24; 4547 env->regs[25] = regs->r25; 4548 env->regs[26] = regs->r26; 4549 env->regs[27] = regs->r27; 4550 env->regs[28] = regs->r28; 4551 env->regs[29] = regs->r29; 4552 env->regs[30] = regs->r30; 4553 env->regs[31] = regs->r31; 4554 env->sregs[SR_PC] = regs->pc; 4555 } 4556 #elif defined(TARGET_MIPS) 4557 { 4558 int i; 4559 4560 for(i = 0; i < 32; i++) { 4561 env->active_tc.gpr[i] = regs->regs[i]; 4562 } 4563 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4564 if (regs->cp0_epc & 1) { 4565 env->hflags |= MIPS_HFLAG_M16; 4566 } 4567 } 4568 #elif defined(TARGET_OPENRISC) 4569 { 4570 int i; 4571 4572 for (i = 0; i < 32; i++) { 4573 env->gpr[i] = regs->gpr[i]; 4574 } 4575 4576 env->sr = regs->sr; 4577 env->pc = regs->pc; 4578 } 4579 #elif defined(TARGET_SH4) 4580 { 4581 int i; 4582 4583 for(i = 0; i < 16; i++) { 4584 env->gregs[i] = regs->regs[i]; 4585 } 4586 env->pc = regs->pc; 4587 } 4588 #elif defined(TARGET_ALPHA) 4589 { 4590 int i; 4591 4592 for(i = 0; i < 28; i++) { 4593 env->ir[i] = ((abi_ulong *)regs)[i]; 4594 } 4595 env->ir[IR_SP] = regs->usp; 4596 env->pc = regs->pc; 4597 } 4598 #elif defined(TARGET_CRIS) 4599 { 4600 env->regs[0] = regs->r0; 4601 env->regs[1] = regs->r1; 4602 env->regs[2] = regs->r2; 4603 env->regs[3] = regs->r3; 4604 env->regs[4] = regs->r4; 4605 env->regs[5] = regs->r5; 4606 env->regs[6] = regs->r6; 4607 env->regs[7] = regs->r7; 4608 env->regs[8] = regs->r8; 4609 env->regs[9] = regs->r9; 4610 env->regs[10] = regs->r10; 4611 env->regs[11] = regs->r11; 4612 env->regs[12] = regs->r12; 4613 env->regs[13] = regs->r13; 4614 env->regs[14] = info->start_stack; 4615 env->regs[15] = regs->acr; 4616 env->pc = regs->erp; 4617 } 4618 #elif defined(TARGET_S390X) 4619 { 4620 int i; 4621 for (i = 0; i < 16; i++) { 4622 env->regs[i] = regs->gprs[i]; 4623 } 4624 env->psw.mask = regs->psw.mask; 4625 env->psw.addr = regs->psw.addr; 4626 } 4627 #elif defined(TARGET_TILEGX) 4628 { 4629 int i; 4630 for (i = 0; i < TILEGX_R_COUNT; i++) { 4631 env->regs[i] = regs->regs[i]; 4632 } 4633 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4634 env->spregs[i] = 0; 4635 } 4636 env->pc = regs->pc; 4637 } 4638 #else 4639 #error unsupported target CPU 4640 #endif 4641 4642 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4643 ts->stack_base = info->start_stack; 4644 ts->heap_base = info->brk; 4645 /* This will be filled in on the first SYS_HEAPINFO call. */ 4646 ts->heap_limit = 0; 4647 #endif 4648 4649 if (gdbstub_port) { 4650 if (gdbserver_start(gdbstub_port) < 0) { 4651 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4652 gdbstub_port); 4653 exit(EXIT_FAILURE); 4654 } 4655 gdb_handlesig(cpu, 0); 4656 } 4657 cpu_loop(env); 4658 /* never exits */ 4659 return 0; 4660 } 4661