1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 37 char *exec_path; 38 39 int singlestep; 40 const char *filename; 41 const char *argv0; 42 int gdbstub_port; 43 envlist_t *envlist; 44 static const char *cpu_model; 45 unsigned long mmap_min_addr; 46 #if defined(CONFIG_USE_GUEST_BASE) 47 unsigned long guest_base; 48 int have_guest_base; 49 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 50 /* 51 * When running 32-on-64 we should make sure we can fit all of the possible 52 * guest address space into a contiguous chunk of virtual host memory. 53 * 54 * This way we will never overlap with our own libraries or binaries or stack 55 * or anything else that QEMU maps. 56 */ 57 # ifdef TARGET_MIPS 58 /* MIPS only supports 31 bits of virtual address space for user space */ 59 unsigned long reserved_va = 0x77000000; 60 # else 61 unsigned long reserved_va = 0xf7000000; 62 # endif 63 #else 64 unsigned long reserved_va; 65 #endif 66 #endif 67 68 static void usage(void); 69 70 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 71 const char *qemu_uname_release; 72 73 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 74 we allocate a bigger stack. Need a better solution, for example 75 by remapping the process stack directly at the right place */ 76 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 77 78 void gemu_log(const char *fmt, ...) 79 { 80 va_list ap; 81 82 va_start(ap, fmt); 83 vfprintf(stderr, fmt, ap); 84 va_end(ap); 85 } 86 87 #if defined(TARGET_I386) 88 int cpu_get_pic_interrupt(CPUX86State *env) 89 { 90 return -1; 91 } 92 #endif 93 94 /***********************************************************/ 95 /* Helper routines for implementing atomic operations. */ 96 97 /* To implement exclusive operations we force all cpus to syncronise. 98 We don't require a full sync, only that no cpus are executing guest code. 99 The alternative is to map target atomic ops onto host equivalents, 100 which requires quite a lot of per host/target work. */ 101 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 102 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 103 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 104 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 105 static int pending_cpus; 106 107 /* Make sure everything is in a consistent state for calling fork(). */ 108 void fork_start(void) 109 { 110 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 111 pthread_mutex_lock(&exclusive_lock); 112 mmap_fork_start(); 113 } 114 115 void fork_end(int child) 116 { 117 mmap_fork_end(child); 118 if (child) { 119 CPUState *cpu, *next_cpu; 120 /* Child processes created by fork() only have a single thread. 121 Discard information about the parent threads. */ 122 CPU_FOREACH_SAFE(cpu, next_cpu) { 123 if (cpu != thread_cpu) { 124 QTAILQ_REMOVE(&cpus, thread_cpu, node); 125 } 126 } 127 pending_cpus = 0; 128 pthread_mutex_init(&exclusive_lock, NULL); 129 pthread_mutex_init(&cpu_list_mutex, NULL); 130 pthread_cond_init(&exclusive_cond, NULL); 131 pthread_cond_init(&exclusive_resume, NULL); 132 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL); 133 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr); 134 } else { 135 pthread_mutex_unlock(&exclusive_lock); 136 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 137 } 138 } 139 140 /* Wait for pending exclusive operations to complete. The exclusive lock 141 must be held. */ 142 static inline void exclusive_idle(void) 143 { 144 while (pending_cpus) { 145 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 146 } 147 } 148 149 /* Start an exclusive operation. 150 Must only be called from outside cpu_arm_exec. */ 151 static inline void start_exclusive(void) 152 { 153 CPUState *other_cpu; 154 155 pthread_mutex_lock(&exclusive_lock); 156 exclusive_idle(); 157 158 pending_cpus = 1; 159 /* Make all other cpus stop executing. */ 160 CPU_FOREACH(other_cpu) { 161 if (other_cpu->running) { 162 pending_cpus++; 163 cpu_exit(other_cpu); 164 } 165 } 166 if (pending_cpus > 1) { 167 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 168 } 169 } 170 171 /* Finish an exclusive operation. */ 172 static inline void __attribute__((unused)) end_exclusive(void) 173 { 174 pending_cpus = 0; 175 pthread_cond_broadcast(&exclusive_resume); 176 pthread_mutex_unlock(&exclusive_lock); 177 } 178 179 /* Wait for exclusive ops to finish, and begin cpu execution. */ 180 static inline void cpu_exec_start(CPUState *cpu) 181 { 182 pthread_mutex_lock(&exclusive_lock); 183 exclusive_idle(); 184 cpu->running = true; 185 pthread_mutex_unlock(&exclusive_lock); 186 } 187 188 /* Mark cpu as not executing, and release pending exclusive ops. */ 189 static inline void cpu_exec_end(CPUState *cpu) 190 { 191 pthread_mutex_lock(&exclusive_lock); 192 cpu->running = false; 193 if (pending_cpus > 1) { 194 pending_cpus--; 195 if (pending_cpus == 1) { 196 pthread_cond_signal(&exclusive_cond); 197 } 198 } 199 exclusive_idle(); 200 pthread_mutex_unlock(&exclusive_lock); 201 } 202 203 void cpu_list_lock(void) 204 { 205 pthread_mutex_lock(&cpu_list_mutex); 206 } 207 208 void cpu_list_unlock(void) 209 { 210 pthread_mutex_unlock(&cpu_list_mutex); 211 } 212 213 214 #ifdef TARGET_I386 215 /***********************************************************/ 216 /* CPUX86 core interface */ 217 218 void cpu_smm_update(CPUX86State *env) 219 { 220 } 221 222 uint64_t cpu_get_tsc(CPUX86State *env) 223 { 224 return cpu_get_real_ticks(); 225 } 226 227 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 228 int flags) 229 { 230 unsigned int e1, e2; 231 uint32_t *p; 232 e1 = (addr << 16) | (limit & 0xffff); 233 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 234 e2 |= flags; 235 p = ptr; 236 p[0] = tswap32(e1); 237 p[1] = tswap32(e2); 238 } 239 240 static uint64_t *idt_table; 241 #ifdef TARGET_X86_64 242 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 243 uint64_t addr, unsigned int sel) 244 { 245 uint32_t *p, e1, e2; 246 e1 = (addr & 0xffff) | (sel << 16); 247 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 248 p = ptr; 249 p[0] = tswap32(e1); 250 p[1] = tswap32(e2); 251 p[2] = tswap32(addr >> 32); 252 p[3] = 0; 253 } 254 /* only dpl matters as we do only user space emulation */ 255 static void set_idt(int n, unsigned int dpl) 256 { 257 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 258 } 259 #else 260 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 261 uint32_t addr, unsigned int sel) 262 { 263 uint32_t *p, e1, e2; 264 e1 = (addr & 0xffff) | (sel << 16); 265 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 266 p = ptr; 267 p[0] = tswap32(e1); 268 p[1] = tswap32(e2); 269 } 270 271 /* only dpl matters as we do only user space emulation */ 272 static void set_idt(int n, unsigned int dpl) 273 { 274 set_gate(idt_table + n, 0, dpl, 0, 0); 275 } 276 #endif 277 278 void cpu_loop(CPUX86State *env) 279 { 280 CPUState *cs = CPU(x86_env_get_cpu(env)); 281 int trapnr; 282 abi_ulong pc; 283 target_siginfo_t info; 284 285 for(;;) { 286 cpu_exec_start(cs); 287 trapnr = cpu_x86_exec(env); 288 cpu_exec_end(cs); 289 switch(trapnr) { 290 case 0x80: 291 /* linux syscall from int $0x80 */ 292 env->regs[R_EAX] = do_syscall(env, 293 env->regs[R_EAX], 294 env->regs[R_EBX], 295 env->regs[R_ECX], 296 env->regs[R_EDX], 297 env->regs[R_ESI], 298 env->regs[R_EDI], 299 env->regs[R_EBP], 300 0, 0); 301 break; 302 #ifndef TARGET_ABI32 303 case EXCP_SYSCALL: 304 /* linux syscall from syscall instruction */ 305 env->regs[R_EAX] = do_syscall(env, 306 env->regs[R_EAX], 307 env->regs[R_EDI], 308 env->regs[R_ESI], 309 env->regs[R_EDX], 310 env->regs[10], 311 env->regs[8], 312 env->regs[9], 313 0, 0); 314 break; 315 #endif 316 case EXCP0B_NOSEG: 317 case EXCP0C_STACK: 318 info.si_signo = TARGET_SIGBUS; 319 info.si_errno = 0; 320 info.si_code = TARGET_SI_KERNEL; 321 info._sifields._sigfault._addr = 0; 322 queue_signal(env, info.si_signo, &info); 323 break; 324 case EXCP0D_GPF: 325 /* XXX: potential problem if ABI32 */ 326 #ifndef TARGET_X86_64 327 if (env->eflags & VM_MASK) { 328 handle_vm86_fault(env); 329 } else 330 #endif 331 { 332 info.si_signo = TARGET_SIGSEGV; 333 info.si_errno = 0; 334 info.si_code = TARGET_SI_KERNEL; 335 info._sifields._sigfault._addr = 0; 336 queue_signal(env, info.si_signo, &info); 337 } 338 break; 339 case EXCP0E_PAGE: 340 info.si_signo = TARGET_SIGSEGV; 341 info.si_errno = 0; 342 if (!(env->error_code & 1)) 343 info.si_code = TARGET_SEGV_MAPERR; 344 else 345 info.si_code = TARGET_SEGV_ACCERR; 346 info._sifields._sigfault._addr = env->cr[2]; 347 queue_signal(env, info.si_signo, &info); 348 break; 349 case EXCP00_DIVZ: 350 #ifndef TARGET_X86_64 351 if (env->eflags & VM_MASK) { 352 handle_vm86_trap(env, trapnr); 353 } else 354 #endif 355 { 356 /* division by zero */ 357 info.si_signo = TARGET_SIGFPE; 358 info.si_errno = 0; 359 info.si_code = TARGET_FPE_INTDIV; 360 info._sifields._sigfault._addr = env->eip; 361 queue_signal(env, info.si_signo, &info); 362 } 363 break; 364 case EXCP01_DB: 365 case EXCP03_INT3: 366 #ifndef TARGET_X86_64 367 if (env->eflags & VM_MASK) { 368 handle_vm86_trap(env, trapnr); 369 } else 370 #endif 371 { 372 info.si_signo = TARGET_SIGTRAP; 373 info.si_errno = 0; 374 if (trapnr == EXCP01_DB) { 375 info.si_code = TARGET_TRAP_BRKPT; 376 info._sifields._sigfault._addr = env->eip; 377 } else { 378 info.si_code = TARGET_SI_KERNEL; 379 info._sifields._sigfault._addr = 0; 380 } 381 queue_signal(env, info.si_signo, &info); 382 } 383 break; 384 case EXCP04_INTO: 385 case EXCP05_BOUND: 386 #ifndef TARGET_X86_64 387 if (env->eflags & VM_MASK) { 388 handle_vm86_trap(env, trapnr); 389 } else 390 #endif 391 { 392 info.si_signo = TARGET_SIGSEGV; 393 info.si_errno = 0; 394 info.si_code = TARGET_SI_KERNEL; 395 info._sifields._sigfault._addr = 0; 396 queue_signal(env, info.si_signo, &info); 397 } 398 break; 399 case EXCP06_ILLOP: 400 info.si_signo = TARGET_SIGILL; 401 info.si_errno = 0; 402 info.si_code = TARGET_ILL_ILLOPN; 403 info._sifields._sigfault._addr = env->eip; 404 queue_signal(env, info.si_signo, &info); 405 break; 406 case EXCP_INTERRUPT: 407 /* just indicate that signals should be handled asap */ 408 break; 409 case EXCP_DEBUG: 410 { 411 int sig; 412 413 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 414 if (sig) 415 { 416 info.si_signo = sig; 417 info.si_errno = 0; 418 info.si_code = TARGET_TRAP_BRKPT; 419 queue_signal(env, info.si_signo, &info); 420 } 421 } 422 break; 423 default: 424 pc = env->segs[R_CS].base + env->eip; 425 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 426 (long)pc, trapnr); 427 abort(); 428 } 429 process_pending_signals(env); 430 } 431 } 432 #endif 433 434 #ifdef TARGET_ARM 435 436 #define get_user_code_u32(x, gaddr, doswap) \ 437 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 438 if (!__r && (doswap)) { \ 439 (x) = bswap32(x); \ 440 } \ 441 __r; \ 442 }) 443 444 #define get_user_code_u16(x, gaddr, doswap) \ 445 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 446 if (!__r && (doswap)) { \ 447 (x) = bswap16(x); \ 448 } \ 449 __r; \ 450 }) 451 452 #ifdef TARGET_ABI32 453 /* Commpage handling -- there is no commpage for AArch64 */ 454 455 /* 456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 457 * Input: 458 * r0 = pointer to oldval 459 * r1 = pointer to newval 460 * r2 = pointer to target value 461 * 462 * Output: 463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 464 * C set if *ptr was changed, clear if no exchange happened 465 * 466 * Note segv's in kernel helpers are a bit tricky, we can set the 467 * data address sensibly but the PC address is just the entry point. 468 */ 469 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 470 { 471 uint64_t oldval, newval, val; 472 uint32_t addr, cpsr; 473 target_siginfo_t info; 474 475 /* Based on the 32 bit code in do_kernel_trap */ 476 477 /* XXX: This only works between threads, not between processes. 478 It's probably possible to implement this with native host 479 operations. However things like ldrex/strex are much harder so 480 there's not much point trying. */ 481 start_exclusive(); 482 cpsr = cpsr_read(env); 483 addr = env->regs[2]; 484 485 if (get_user_u64(oldval, env->regs[0])) { 486 env->exception.vaddress = env->regs[0]; 487 goto segv; 488 }; 489 490 if (get_user_u64(newval, env->regs[1])) { 491 env->exception.vaddress = env->regs[1]; 492 goto segv; 493 }; 494 495 if (get_user_u64(val, addr)) { 496 env->exception.vaddress = addr; 497 goto segv; 498 } 499 500 if (val == oldval) { 501 val = newval; 502 503 if (put_user_u64(val, addr)) { 504 env->exception.vaddress = addr; 505 goto segv; 506 }; 507 508 env->regs[0] = 0; 509 cpsr |= CPSR_C; 510 } else { 511 env->regs[0] = -1; 512 cpsr &= ~CPSR_C; 513 } 514 cpsr_write(env, cpsr, CPSR_C); 515 end_exclusive(); 516 return; 517 518 segv: 519 end_exclusive(); 520 /* We get the PC of the entry address - which is as good as anything, 521 on a real kernel what you get depends on which mode it uses. */ 522 info.si_signo = TARGET_SIGSEGV; 523 info.si_errno = 0; 524 /* XXX: check env->error_code */ 525 info.si_code = TARGET_SEGV_MAPERR; 526 info._sifields._sigfault._addr = env->exception.vaddress; 527 queue_signal(env, info.si_signo, &info); 528 } 529 530 /* Handle a jump to the kernel code page. */ 531 static int 532 do_kernel_trap(CPUARMState *env) 533 { 534 uint32_t addr; 535 uint32_t cpsr; 536 uint32_t val; 537 538 switch (env->regs[15]) { 539 case 0xffff0fa0: /* __kernel_memory_barrier */ 540 /* ??? No-op. Will need to do better for SMP. */ 541 break; 542 case 0xffff0fc0: /* __kernel_cmpxchg */ 543 /* XXX: This only works between threads, not between processes. 544 It's probably possible to implement this with native host 545 operations. However things like ldrex/strex are much harder so 546 there's not much point trying. */ 547 start_exclusive(); 548 cpsr = cpsr_read(env); 549 addr = env->regs[2]; 550 /* FIXME: This should SEGV if the access fails. */ 551 if (get_user_u32(val, addr)) 552 val = ~env->regs[0]; 553 if (val == env->regs[0]) { 554 val = env->regs[1]; 555 /* FIXME: Check for segfaults. */ 556 put_user_u32(val, addr); 557 env->regs[0] = 0; 558 cpsr |= CPSR_C; 559 } else { 560 env->regs[0] = -1; 561 cpsr &= ~CPSR_C; 562 } 563 cpsr_write(env, cpsr, CPSR_C); 564 end_exclusive(); 565 break; 566 case 0xffff0fe0: /* __kernel_get_tls */ 567 env->regs[0] = cpu_get_tls(env); 568 break; 569 case 0xffff0f60: /* __kernel_cmpxchg64 */ 570 arm_kernel_cmpxchg64_helper(env); 571 break; 572 573 default: 574 return 1; 575 } 576 /* Jump back to the caller. */ 577 addr = env->regs[14]; 578 if (addr & 1) { 579 env->thumb = 1; 580 addr &= ~1; 581 } 582 env->regs[15] = addr; 583 584 return 0; 585 } 586 587 /* Store exclusive handling for AArch32 */ 588 static int do_strex(CPUARMState *env) 589 { 590 uint64_t val; 591 int size; 592 int rc = 1; 593 int segv = 0; 594 uint32_t addr; 595 start_exclusive(); 596 if (env->exclusive_addr != env->exclusive_test) { 597 goto fail; 598 } 599 /* We know we're always AArch32 so the address is in uint32_t range 600 * unless it was the -1 exclusive-monitor-lost value (which won't 601 * match exclusive_test above). 602 */ 603 assert(extract64(env->exclusive_addr, 32, 32) == 0); 604 addr = env->exclusive_addr; 605 size = env->exclusive_info & 0xf; 606 switch (size) { 607 case 0: 608 segv = get_user_u8(val, addr); 609 break; 610 case 1: 611 segv = get_user_u16(val, addr); 612 break; 613 case 2: 614 case 3: 615 segv = get_user_u32(val, addr); 616 break; 617 default: 618 abort(); 619 } 620 if (segv) { 621 env->exception.vaddress = addr; 622 goto done; 623 } 624 if (size == 3) { 625 uint32_t valhi; 626 segv = get_user_u32(valhi, addr + 4); 627 if (segv) { 628 env->exception.vaddress = addr + 4; 629 goto done; 630 } 631 val = deposit64(val, 32, 32, valhi); 632 } 633 if (val != env->exclusive_val) { 634 goto fail; 635 } 636 637 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 638 switch (size) { 639 case 0: 640 segv = put_user_u8(val, addr); 641 break; 642 case 1: 643 segv = put_user_u16(val, addr); 644 break; 645 case 2: 646 case 3: 647 segv = put_user_u32(val, addr); 648 break; 649 } 650 if (segv) { 651 env->exception.vaddress = addr; 652 goto done; 653 } 654 if (size == 3) { 655 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 656 segv = put_user_u32(val, addr + 4); 657 if (segv) { 658 env->exception.vaddress = addr + 4; 659 goto done; 660 } 661 } 662 rc = 0; 663 fail: 664 env->regs[15] += 4; 665 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 666 done: 667 end_exclusive(); 668 return segv; 669 } 670 671 void cpu_loop(CPUARMState *env) 672 { 673 CPUState *cs = CPU(arm_env_get_cpu(env)); 674 int trapnr; 675 unsigned int n, insn; 676 target_siginfo_t info; 677 uint32_t addr; 678 679 for(;;) { 680 cpu_exec_start(cs); 681 trapnr = cpu_arm_exec(env); 682 cpu_exec_end(cs); 683 switch(trapnr) { 684 case EXCP_UDEF: 685 { 686 TaskState *ts = cs->opaque; 687 uint32_t opcode; 688 int rc; 689 690 /* we handle the FPU emulation here, as Linux */ 691 /* we get the opcode */ 692 /* FIXME - what to do if get_user() fails? */ 693 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 694 695 rc = EmulateAll(opcode, &ts->fpa, env); 696 if (rc == 0) { /* illegal instruction */ 697 info.si_signo = TARGET_SIGILL; 698 info.si_errno = 0; 699 info.si_code = TARGET_ILL_ILLOPN; 700 info._sifields._sigfault._addr = env->regs[15]; 701 queue_signal(env, info.si_signo, &info); 702 } else if (rc < 0) { /* FP exception */ 703 int arm_fpe=0; 704 705 /* translate softfloat flags to FPSR flags */ 706 if (-rc & float_flag_invalid) 707 arm_fpe |= BIT_IOC; 708 if (-rc & float_flag_divbyzero) 709 arm_fpe |= BIT_DZC; 710 if (-rc & float_flag_overflow) 711 arm_fpe |= BIT_OFC; 712 if (-rc & float_flag_underflow) 713 arm_fpe |= BIT_UFC; 714 if (-rc & float_flag_inexact) 715 arm_fpe |= BIT_IXC; 716 717 FPSR fpsr = ts->fpa.fpsr; 718 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 719 720 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 721 info.si_signo = TARGET_SIGFPE; 722 info.si_errno = 0; 723 724 /* ordered by priority, least first */ 725 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 726 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 727 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 728 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 729 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 730 731 info._sifields._sigfault._addr = env->regs[15]; 732 queue_signal(env, info.si_signo, &info); 733 } else { 734 env->regs[15] += 4; 735 } 736 737 /* accumulate unenabled exceptions */ 738 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 739 fpsr |= BIT_IXC; 740 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 741 fpsr |= BIT_UFC; 742 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 743 fpsr |= BIT_OFC; 744 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 745 fpsr |= BIT_DZC; 746 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 747 fpsr |= BIT_IOC; 748 ts->fpa.fpsr=fpsr; 749 } else { /* everything OK */ 750 /* increment PC */ 751 env->regs[15] += 4; 752 } 753 } 754 break; 755 case EXCP_SWI: 756 case EXCP_BKPT: 757 { 758 env->eabi = 1; 759 /* system call */ 760 if (trapnr == EXCP_BKPT) { 761 if (env->thumb) { 762 /* FIXME - what to do if get_user() fails? */ 763 get_user_code_u16(insn, env->regs[15], env->bswap_code); 764 n = insn & 0xff; 765 env->regs[15] += 2; 766 } else { 767 /* FIXME - what to do if get_user() fails? */ 768 get_user_code_u32(insn, env->regs[15], env->bswap_code); 769 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 770 env->regs[15] += 4; 771 } 772 } else { 773 if (env->thumb) { 774 /* FIXME - what to do if get_user() fails? */ 775 get_user_code_u16(insn, env->regs[15] - 2, 776 env->bswap_code); 777 n = insn & 0xff; 778 } else { 779 /* FIXME - what to do if get_user() fails? */ 780 get_user_code_u32(insn, env->regs[15] - 4, 781 env->bswap_code); 782 n = insn & 0xffffff; 783 } 784 } 785 786 if (n == ARM_NR_cacheflush) { 787 /* nop */ 788 } else if (n == ARM_NR_semihosting 789 || n == ARM_NR_thumb_semihosting) { 790 env->regs[0] = do_arm_semihosting (env); 791 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 792 /* linux syscall */ 793 if (env->thumb || n == 0) { 794 n = env->regs[7]; 795 } else { 796 n -= ARM_SYSCALL_BASE; 797 env->eabi = 0; 798 } 799 if ( n > ARM_NR_BASE) { 800 switch (n) { 801 case ARM_NR_cacheflush: 802 /* nop */ 803 break; 804 case ARM_NR_set_tls: 805 cpu_set_tls(env, env->regs[0]); 806 env->regs[0] = 0; 807 break; 808 case ARM_NR_breakpoint: 809 env->regs[15] -= env->thumb ? 2 : 4; 810 goto excp_debug; 811 default: 812 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 813 n); 814 env->regs[0] = -TARGET_ENOSYS; 815 break; 816 } 817 } else { 818 env->regs[0] = do_syscall(env, 819 n, 820 env->regs[0], 821 env->regs[1], 822 env->regs[2], 823 env->regs[3], 824 env->regs[4], 825 env->regs[5], 826 0, 0); 827 } 828 } else { 829 goto error; 830 } 831 } 832 break; 833 case EXCP_INTERRUPT: 834 /* just indicate that signals should be handled asap */ 835 break; 836 case EXCP_STREX: 837 if (!do_strex(env)) { 838 break; 839 } 840 /* fall through for segv */ 841 case EXCP_PREFETCH_ABORT: 842 case EXCP_DATA_ABORT: 843 addr = env->exception.vaddress; 844 { 845 info.si_signo = TARGET_SIGSEGV; 846 info.si_errno = 0; 847 /* XXX: check env->error_code */ 848 info.si_code = TARGET_SEGV_MAPERR; 849 info._sifields._sigfault._addr = addr; 850 queue_signal(env, info.si_signo, &info); 851 } 852 break; 853 case EXCP_DEBUG: 854 excp_debug: 855 { 856 int sig; 857 858 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 859 if (sig) 860 { 861 info.si_signo = sig; 862 info.si_errno = 0; 863 info.si_code = TARGET_TRAP_BRKPT; 864 queue_signal(env, info.si_signo, &info); 865 } 866 } 867 break; 868 case EXCP_KERNEL_TRAP: 869 if (do_kernel_trap(env)) 870 goto error; 871 break; 872 default: 873 error: 874 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 875 trapnr); 876 cpu_dump_state(cs, stderr, fprintf, 0); 877 abort(); 878 } 879 process_pending_signals(env); 880 } 881 } 882 883 #else 884 885 /* 886 * Handle AArch64 store-release exclusive 887 * 888 * rs = gets the status result of store exclusive 889 * rt = is the register that is stored 890 * rt2 = is the second register store (in STP) 891 * 892 */ 893 static int do_strex_a64(CPUARMState *env) 894 { 895 uint64_t val; 896 int size; 897 bool is_pair; 898 int rc = 1; 899 int segv = 0; 900 uint64_t addr; 901 int rs, rt, rt2; 902 903 start_exclusive(); 904 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 905 size = extract32(env->exclusive_info, 0, 2); 906 is_pair = extract32(env->exclusive_info, 2, 1); 907 rs = extract32(env->exclusive_info, 4, 5); 908 rt = extract32(env->exclusive_info, 9, 5); 909 rt2 = extract32(env->exclusive_info, 14, 5); 910 911 addr = env->exclusive_addr; 912 913 if (addr != env->exclusive_test) { 914 goto finish; 915 } 916 917 switch (size) { 918 case 0: 919 segv = get_user_u8(val, addr); 920 break; 921 case 1: 922 segv = get_user_u16(val, addr); 923 break; 924 case 2: 925 segv = get_user_u32(val, addr); 926 break; 927 case 3: 928 segv = get_user_u64(val, addr); 929 break; 930 default: 931 abort(); 932 } 933 if (segv) { 934 env->exception.vaddress = addr; 935 goto error; 936 } 937 if (val != env->exclusive_val) { 938 goto finish; 939 } 940 if (is_pair) { 941 if (size == 2) { 942 segv = get_user_u32(val, addr + 4); 943 } else { 944 segv = get_user_u64(val, addr + 8); 945 } 946 if (segv) { 947 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 948 goto error; 949 } 950 if (val != env->exclusive_high) { 951 goto finish; 952 } 953 } 954 /* handle the zero register */ 955 val = rt == 31 ? 0 : env->xregs[rt]; 956 switch (size) { 957 case 0: 958 segv = put_user_u8(val, addr); 959 break; 960 case 1: 961 segv = put_user_u16(val, addr); 962 break; 963 case 2: 964 segv = put_user_u32(val, addr); 965 break; 966 case 3: 967 segv = put_user_u64(val, addr); 968 break; 969 } 970 if (segv) { 971 goto error; 972 } 973 if (is_pair) { 974 /* handle the zero register */ 975 val = rt2 == 31 ? 0 : env->xregs[rt2]; 976 if (size == 2) { 977 segv = put_user_u32(val, addr + 4); 978 } else { 979 segv = put_user_u64(val, addr + 8); 980 } 981 if (segv) { 982 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 983 goto error; 984 } 985 } 986 rc = 0; 987 finish: 988 env->pc += 4; 989 /* rs == 31 encodes a write to the ZR, thus throwing away 990 * the status return. This is rather silly but valid. 991 */ 992 if (rs < 31) { 993 env->xregs[rs] = rc; 994 } 995 error: 996 /* instruction faulted, PC does not advance */ 997 /* either way a strex releases any exclusive lock we have */ 998 env->exclusive_addr = -1; 999 end_exclusive(); 1000 return segv; 1001 } 1002 1003 /* AArch64 main loop */ 1004 void cpu_loop(CPUARMState *env) 1005 { 1006 CPUState *cs = CPU(arm_env_get_cpu(env)); 1007 int trapnr, sig; 1008 target_siginfo_t info; 1009 1010 for (;;) { 1011 cpu_exec_start(cs); 1012 trapnr = cpu_arm_exec(env); 1013 cpu_exec_end(cs); 1014 1015 switch (trapnr) { 1016 case EXCP_SWI: 1017 env->xregs[0] = do_syscall(env, 1018 env->xregs[8], 1019 env->xregs[0], 1020 env->xregs[1], 1021 env->xregs[2], 1022 env->xregs[3], 1023 env->xregs[4], 1024 env->xregs[5], 1025 0, 0); 1026 break; 1027 case EXCP_INTERRUPT: 1028 /* just indicate that signals should be handled asap */ 1029 break; 1030 case EXCP_UDEF: 1031 info.si_signo = TARGET_SIGILL; 1032 info.si_errno = 0; 1033 info.si_code = TARGET_ILL_ILLOPN; 1034 info._sifields._sigfault._addr = env->pc; 1035 queue_signal(env, info.si_signo, &info); 1036 break; 1037 case EXCP_STREX: 1038 if (!do_strex_a64(env)) { 1039 break; 1040 } 1041 /* fall through for segv */ 1042 case EXCP_PREFETCH_ABORT: 1043 case EXCP_DATA_ABORT: 1044 info.si_signo = TARGET_SIGSEGV; 1045 info.si_errno = 0; 1046 /* XXX: check env->error_code */ 1047 info.si_code = TARGET_SEGV_MAPERR; 1048 info._sifields._sigfault._addr = env->exception.vaddress; 1049 queue_signal(env, info.si_signo, &info); 1050 break; 1051 case EXCP_DEBUG: 1052 case EXCP_BKPT: 1053 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1054 if (sig) { 1055 info.si_signo = sig; 1056 info.si_errno = 0; 1057 info.si_code = TARGET_TRAP_BRKPT; 1058 queue_signal(env, info.si_signo, &info); 1059 } 1060 break; 1061 default: 1062 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 1063 trapnr); 1064 cpu_dump_state(cs, stderr, fprintf, 0); 1065 abort(); 1066 } 1067 process_pending_signals(env); 1068 /* Exception return on AArch64 always clears the exclusive monitor, 1069 * so any return to running guest code implies this. 1070 * A strex (successful or otherwise) also clears the monitor, so 1071 * we don't need to specialcase EXCP_STREX. 1072 */ 1073 env->exclusive_addr = -1; 1074 } 1075 } 1076 #endif /* ndef TARGET_ABI32 */ 1077 1078 #endif 1079 1080 #ifdef TARGET_UNICORE32 1081 1082 void cpu_loop(CPUUniCore32State *env) 1083 { 1084 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1085 int trapnr; 1086 unsigned int n, insn; 1087 target_siginfo_t info; 1088 1089 for (;;) { 1090 cpu_exec_start(cs); 1091 trapnr = uc32_cpu_exec(env); 1092 cpu_exec_end(cs); 1093 switch (trapnr) { 1094 case UC32_EXCP_PRIV: 1095 { 1096 /* system call */ 1097 get_user_u32(insn, env->regs[31] - 4); 1098 n = insn & 0xffffff; 1099 1100 if (n >= UC32_SYSCALL_BASE) { 1101 /* linux syscall */ 1102 n -= UC32_SYSCALL_BASE; 1103 if (n == UC32_SYSCALL_NR_set_tls) { 1104 cpu_set_tls(env, env->regs[0]); 1105 env->regs[0] = 0; 1106 } else { 1107 env->regs[0] = do_syscall(env, 1108 n, 1109 env->regs[0], 1110 env->regs[1], 1111 env->regs[2], 1112 env->regs[3], 1113 env->regs[4], 1114 env->regs[5], 1115 0, 0); 1116 } 1117 } else { 1118 goto error; 1119 } 1120 } 1121 break; 1122 case UC32_EXCP_DTRAP: 1123 case UC32_EXCP_ITRAP: 1124 info.si_signo = TARGET_SIGSEGV; 1125 info.si_errno = 0; 1126 /* XXX: check env->error_code */ 1127 info.si_code = TARGET_SEGV_MAPERR; 1128 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1129 queue_signal(env, info.si_signo, &info); 1130 break; 1131 case EXCP_INTERRUPT: 1132 /* just indicate that signals should be handled asap */ 1133 break; 1134 case EXCP_DEBUG: 1135 { 1136 int sig; 1137 1138 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1139 if (sig) { 1140 info.si_signo = sig; 1141 info.si_errno = 0; 1142 info.si_code = TARGET_TRAP_BRKPT; 1143 queue_signal(env, info.si_signo, &info); 1144 } 1145 } 1146 break; 1147 default: 1148 goto error; 1149 } 1150 process_pending_signals(env); 1151 } 1152 1153 error: 1154 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1155 cpu_dump_state(cs, stderr, fprintf, 0); 1156 abort(); 1157 } 1158 #endif 1159 1160 #ifdef TARGET_SPARC 1161 #define SPARC64_STACK_BIAS 2047 1162 1163 //#define DEBUG_WIN 1164 1165 /* WARNING: dealing with register windows _is_ complicated. More info 1166 can be found at http://www.sics.se/~psm/sparcstack.html */ 1167 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1168 { 1169 index = (index + cwp * 16) % (16 * env->nwindows); 1170 /* wrap handling : if cwp is on the last window, then we use the 1171 registers 'after' the end */ 1172 if (index < 8 && env->cwp == env->nwindows - 1) 1173 index += 16 * env->nwindows; 1174 return index; 1175 } 1176 1177 /* save the register window 'cwp1' */ 1178 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1179 { 1180 unsigned int i; 1181 abi_ulong sp_ptr; 1182 1183 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1184 #ifdef TARGET_SPARC64 1185 if (sp_ptr & 3) 1186 sp_ptr += SPARC64_STACK_BIAS; 1187 #endif 1188 #if defined(DEBUG_WIN) 1189 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1190 sp_ptr, cwp1); 1191 #endif 1192 for(i = 0; i < 16; i++) { 1193 /* FIXME - what to do if put_user() fails? */ 1194 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1195 sp_ptr += sizeof(abi_ulong); 1196 } 1197 } 1198 1199 static void save_window(CPUSPARCState *env) 1200 { 1201 #ifndef TARGET_SPARC64 1202 unsigned int new_wim; 1203 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1204 ((1LL << env->nwindows) - 1); 1205 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1206 env->wim = new_wim; 1207 #else 1208 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1209 env->cansave++; 1210 env->canrestore--; 1211 #endif 1212 } 1213 1214 static void restore_window(CPUSPARCState *env) 1215 { 1216 #ifndef TARGET_SPARC64 1217 unsigned int new_wim; 1218 #endif 1219 unsigned int i, cwp1; 1220 abi_ulong sp_ptr; 1221 1222 #ifndef TARGET_SPARC64 1223 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1224 ((1LL << env->nwindows) - 1); 1225 #endif 1226 1227 /* restore the invalid window */ 1228 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1229 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1230 #ifdef TARGET_SPARC64 1231 if (sp_ptr & 3) 1232 sp_ptr += SPARC64_STACK_BIAS; 1233 #endif 1234 #if defined(DEBUG_WIN) 1235 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1236 sp_ptr, cwp1); 1237 #endif 1238 for(i = 0; i < 16; i++) { 1239 /* FIXME - what to do if get_user() fails? */ 1240 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1241 sp_ptr += sizeof(abi_ulong); 1242 } 1243 #ifdef TARGET_SPARC64 1244 env->canrestore++; 1245 if (env->cleanwin < env->nwindows - 1) 1246 env->cleanwin++; 1247 env->cansave--; 1248 #else 1249 env->wim = new_wim; 1250 #endif 1251 } 1252 1253 static void flush_windows(CPUSPARCState *env) 1254 { 1255 int offset, cwp1; 1256 1257 offset = 1; 1258 for(;;) { 1259 /* if restore would invoke restore_window(), then we can stop */ 1260 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1261 #ifndef TARGET_SPARC64 1262 if (env->wim & (1 << cwp1)) 1263 break; 1264 #else 1265 if (env->canrestore == 0) 1266 break; 1267 env->cansave++; 1268 env->canrestore--; 1269 #endif 1270 save_window_offset(env, cwp1); 1271 offset++; 1272 } 1273 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1274 #ifndef TARGET_SPARC64 1275 /* set wim so that restore will reload the registers */ 1276 env->wim = 1 << cwp1; 1277 #endif 1278 #if defined(DEBUG_WIN) 1279 printf("flush_windows: nb=%d\n", offset - 1); 1280 #endif 1281 } 1282 1283 void cpu_loop (CPUSPARCState *env) 1284 { 1285 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1286 int trapnr; 1287 abi_long ret; 1288 target_siginfo_t info; 1289 1290 while (1) { 1291 cpu_exec_start(cs); 1292 trapnr = cpu_sparc_exec (env); 1293 cpu_exec_end(cs); 1294 1295 /* Compute PSR before exposing state. */ 1296 if (env->cc_op != CC_OP_FLAGS) { 1297 cpu_get_psr(env); 1298 } 1299 1300 switch (trapnr) { 1301 #ifndef TARGET_SPARC64 1302 case 0x88: 1303 case 0x90: 1304 #else 1305 case 0x110: 1306 case 0x16d: 1307 #endif 1308 ret = do_syscall (env, env->gregs[1], 1309 env->regwptr[0], env->regwptr[1], 1310 env->regwptr[2], env->regwptr[3], 1311 env->regwptr[4], env->regwptr[5], 1312 0, 0); 1313 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1314 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1315 env->xcc |= PSR_CARRY; 1316 #else 1317 env->psr |= PSR_CARRY; 1318 #endif 1319 ret = -ret; 1320 } else { 1321 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1322 env->xcc &= ~PSR_CARRY; 1323 #else 1324 env->psr &= ~PSR_CARRY; 1325 #endif 1326 } 1327 env->regwptr[0] = ret; 1328 /* next instruction */ 1329 env->pc = env->npc; 1330 env->npc = env->npc + 4; 1331 break; 1332 case 0x83: /* flush windows */ 1333 #ifdef TARGET_ABI32 1334 case 0x103: 1335 #endif 1336 flush_windows(env); 1337 /* next instruction */ 1338 env->pc = env->npc; 1339 env->npc = env->npc + 4; 1340 break; 1341 #ifndef TARGET_SPARC64 1342 case TT_WIN_OVF: /* window overflow */ 1343 save_window(env); 1344 break; 1345 case TT_WIN_UNF: /* window underflow */ 1346 restore_window(env); 1347 break; 1348 case TT_TFAULT: 1349 case TT_DFAULT: 1350 { 1351 info.si_signo = TARGET_SIGSEGV; 1352 info.si_errno = 0; 1353 /* XXX: check env->error_code */ 1354 info.si_code = TARGET_SEGV_MAPERR; 1355 info._sifields._sigfault._addr = env->mmuregs[4]; 1356 queue_signal(env, info.si_signo, &info); 1357 } 1358 break; 1359 #else 1360 case TT_SPILL: /* window overflow */ 1361 save_window(env); 1362 break; 1363 case TT_FILL: /* window underflow */ 1364 restore_window(env); 1365 break; 1366 case TT_TFAULT: 1367 case TT_DFAULT: 1368 { 1369 info.si_signo = TARGET_SIGSEGV; 1370 info.si_errno = 0; 1371 /* XXX: check env->error_code */ 1372 info.si_code = TARGET_SEGV_MAPERR; 1373 if (trapnr == TT_DFAULT) 1374 info._sifields._sigfault._addr = env->dmmuregs[4]; 1375 else 1376 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1377 queue_signal(env, info.si_signo, &info); 1378 } 1379 break; 1380 #ifndef TARGET_ABI32 1381 case 0x16e: 1382 flush_windows(env); 1383 sparc64_get_context(env); 1384 break; 1385 case 0x16f: 1386 flush_windows(env); 1387 sparc64_set_context(env); 1388 break; 1389 #endif 1390 #endif 1391 case EXCP_INTERRUPT: 1392 /* just indicate that signals should be handled asap */ 1393 break; 1394 case TT_ILL_INSN: 1395 { 1396 info.si_signo = TARGET_SIGILL; 1397 info.si_errno = 0; 1398 info.si_code = TARGET_ILL_ILLOPC; 1399 info._sifields._sigfault._addr = env->pc; 1400 queue_signal(env, info.si_signo, &info); 1401 } 1402 break; 1403 case EXCP_DEBUG: 1404 { 1405 int sig; 1406 1407 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1408 if (sig) 1409 { 1410 info.si_signo = sig; 1411 info.si_errno = 0; 1412 info.si_code = TARGET_TRAP_BRKPT; 1413 queue_signal(env, info.si_signo, &info); 1414 } 1415 } 1416 break; 1417 default: 1418 printf ("Unhandled trap: 0x%x\n", trapnr); 1419 cpu_dump_state(cs, stderr, fprintf, 0); 1420 exit (1); 1421 } 1422 process_pending_signals (env); 1423 } 1424 } 1425 1426 #endif 1427 1428 #ifdef TARGET_PPC 1429 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1430 { 1431 /* TO FIX */ 1432 return 0; 1433 } 1434 1435 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1436 { 1437 return cpu_ppc_get_tb(env); 1438 } 1439 1440 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1441 { 1442 return cpu_ppc_get_tb(env) >> 32; 1443 } 1444 1445 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1446 { 1447 return cpu_ppc_get_tb(env); 1448 } 1449 1450 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1451 { 1452 return cpu_ppc_get_tb(env) >> 32; 1453 } 1454 1455 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1456 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1457 1458 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1459 { 1460 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1461 } 1462 1463 /* XXX: to be fixed */ 1464 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1465 { 1466 return -1; 1467 } 1468 1469 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1470 { 1471 return -1; 1472 } 1473 1474 #define EXCP_DUMP(env, fmt, ...) \ 1475 do { \ 1476 CPUState *cs = ENV_GET_CPU(env); \ 1477 fprintf(stderr, fmt , ## __VA_ARGS__); \ 1478 cpu_dump_state(cs, stderr, fprintf, 0); \ 1479 qemu_log(fmt, ## __VA_ARGS__); \ 1480 if (qemu_log_enabled()) { \ 1481 log_cpu_state(cs, 0); \ 1482 } \ 1483 } while (0) 1484 1485 static int do_store_exclusive(CPUPPCState *env) 1486 { 1487 target_ulong addr; 1488 target_ulong page_addr; 1489 target_ulong val, val2 __attribute__((unused)) = 0; 1490 int flags; 1491 int segv = 0; 1492 1493 addr = env->reserve_ea; 1494 page_addr = addr & TARGET_PAGE_MASK; 1495 start_exclusive(); 1496 mmap_lock(); 1497 flags = page_get_flags(page_addr); 1498 if ((flags & PAGE_READ) == 0) { 1499 segv = 1; 1500 } else { 1501 int reg = env->reserve_info & 0x1f; 1502 int size = env->reserve_info >> 5; 1503 int stored = 0; 1504 1505 if (addr == env->reserve_addr) { 1506 switch (size) { 1507 case 1: segv = get_user_u8(val, addr); break; 1508 case 2: segv = get_user_u16(val, addr); break; 1509 case 4: segv = get_user_u32(val, addr); break; 1510 #if defined(TARGET_PPC64) 1511 case 8: segv = get_user_u64(val, addr); break; 1512 case 16: { 1513 segv = get_user_u64(val, addr); 1514 if (!segv) { 1515 segv = get_user_u64(val2, addr + 8); 1516 } 1517 break; 1518 } 1519 #endif 1520 default: abort(); 1521 } 1522 if (!segv && val == env->reserve_val) { 1523 val = env->gpr[reg]; 1524 switch (size) { 1525 case 1: segv = put_user_u8(val, addr); break; 1526 case 2: segv = put_user_u16(val, addr); break; 1527 case 4: segv = put_user_u32(val, addr); break; 1528 #if defined(TARGET_PPC64) 1529 case 8: segv = put_user_u64(val, addr); break; 1530 case 16: { 1531 if (val2 == env->reserve_val2) { 1532 if (msr_le) { 1533 val2 = val; 1534 val = env->gpr[reg+1]; 1535 } else { 1536 val2 = env->gpr[reg+1]; 1537 } 1538 segv = put_user_u64(val, addr); 1539 if (!segv) { 1540 segv = put_user_u64(val2, addr + 8); 1541 } 1542 } 1543 break; 1544 } 1545 #endif 1546 default: abort(); 1547 } 1548 if (!segv) { 1549 stored = 1; 1550 } 1551 } 1552 } 1553 env->crf[0] = (stored << 1) | xer_so; 1554 env->reserve_addr = (target_ulong)-1; 1555 } 1556 if (!segv) { 1557 env->nip += 4; 1558 } 1559 mmap_unlock(); 1560 end_exclusive(); 1561 return segv; 1562 } 1563 1564 void cpu_loop(CPUPPCState *env) 1565 { 1566 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1567 target_siginfo_t info; 1568 int trapnr; 1569 target_ulong ret; 1570 1571 for(;;) { 1572 cpu_exec_start(cs); 1573 trapnr = cpu_ppc_exec(env); 1574 cpu_exec_end(cs); 1575 switch(trapnr) { 1576 case POWERPC_EXCP_NONE: 1577 /* Just go on */ 1578 break; 1579 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1580 cpu_abort(cs, "Critical interrupt while in user mode. " 1581 "Aborting\n"); 1582 break; 1583 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1584 cpu_abort(cs, "Machine check exception while in user mode. " 1585 "Aborting\n"); 1586 break; 1587 case POWERPC_EXCP_DSI: /* Data storage exception */ 1588 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1589 env->spr[SPR_DAR]); 1590 /* XXX: check this. Seems bugged */ 1591 switch (env->error_code & 0xFF000000) { 1592 case 0x40000000: 1593 info.si_signo = TARGET_SIGSEGV; 1594 info.si_errno = 0; 1595 info.si_code = TARGET_SEGV_MAPERR; 1596 break; 1597 case 0x04000000: 1598 info.si_signo = TARGET_SIGILL; 1599 info.si_errno = 0; 1600 info.si_code = TARGET_ILL_ILLADR; 1601 break; 1602 case 0x08000000: 1603 info.si_signo = TARGET_SIGSEGV; 1604 info.si_errno = 0; 1605 info.si_code = TARGET_SEGV_ACCERR; 1606 break; 1607 default: 1608 /* Let's send a regular segfault... */ 1609 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1610 env->error_code); 1611 info.si_signo = TARGET_SIGSEGV; 1612 info.si_errno = 0; 1613 info.si_code = TARGET_SEGV_MAPERR; 1614 break; 1615 } 1616 info._sifields._sigfault._addr = env->nip; 1617 queue_signal(env, info.si_signo, &info); 1618 break; 1619 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1620 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1621 "\n", env->spr[SPR_SRR0]); 1622 /* XXX: check this */ 1623 switch (env->error_code & 0xFF000000) { 1624 case 0x40000000: 1625 info.si_signo = TARGET_SIGSEGV; 1626 info.si_errno = 0; 1627 info.si_code = TARGET_SEGV_MAPERR; 1628 break; 1629 case 0x10000000: 1630 case 0x08000000: 1631 info.si_signo = TARGET_SIGSEGV; 1632 info.si_errno = 0; 1633 info.si_code = TARGET_SEGV_ACCERR; 1634 break; 1635 default: 1636 /* Let's send a regular segfault... */ 1637 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1638 env->error_code); 1639 info.si_signo = TARGET_SIGSEGV; 1640 info.si_errno = 0; 1641 info.si_code = TARGET_SEGV_MAPERR; 1642 break; 1643 } 1644 info._sifields._sigfault._addr = env->nip - 4; 1645 queue_signal(env, info.si_signo, &info); 1646 break; 1647 case POWERPC_EXCP_EXTERNAL: /* External input */ 1648 cpu_abort(cs, "External interrupt while in user mode. " 1649 "Aborting\n"); 1650 break; 1651 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1652 EXCP_DUMP(env, "Unaligned memory access\n"); 1653 /* XXX: check this */ 1654 info.si_signo = TARGET_SIGBUS; 1655 info.si_errno = 0; 1656 info.si_code = TARGET_BUS_ADRALN; 1657 info._sifields._sigfault._addr = env->nip - 4; 1658 queue_signal(env, info.si_signo, &info); 1659 break; 1660 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1661 /* XXX: check this */ 1662 switch (env->error_code & ~0xF) { 1663 case POWERPC_EXCP_FP: 1664 EXCP_DUMP(env, "Floating point program exception\n"); 1665 info.si_signo = TARGET_SIGFPE; 1666 info.si_errno = 0; 1667 switch (env->error_code & 0xF) { 1668 case POWERPC_EXCP_FP_OX: 1669 info.si_code = TARGET_FPE_FLTOVF; 1670 break; 1671 case POWERPC_EXCP_FP_UX: 1672 info.si_code = TARGET_FPE_FLTUND; 1673 break; 1674 case POWERPC_EXCP_FP_ZX: 1675 case POWERPC_EXCP_FP_VXZDZ: 1676 info.si_code = TARGET_FPE_FLTDIV; 1677 break; 1678 case POWERPC_EXCP_FP_XX: 1679 info.si_code = TARGET_FPE_FLTRES; 1680 break; 1681 case POWERPC_EXCP_FP_VXSOFT: 1682 info.si_code = TARGET_FPE_FLTINV; 1683 break; 1684 case POWERPC_EXCP_FP_VXSNAN: 1685 case POWERPC_EXCP_FP_VXISI: 1686 case POWERPC_EXCP_FP_VXIDI: 1687 case POWERPC_EXCP_FP_VXIMZ: 1688 case POWERPC_EXCP_FP_VXVC: 1689 case POWERPC_EXCP_FP_VXSQRT: 1690 case POWERPC_EXCP_FP_VXCVI: 1691 info.si_code = TARGET_FPE_FLTSUB; 1692 break; 1693 default: 1694 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1695 env->error_code); 1696 break; 1697 } 1698 break; 1699 case POWERPC_EXCP_INVAL: 1700 EXCP_DUMP(env, "Invalid instruction\n"); 1701 info.si_signo = TARGET_SIGILL; 1702 info.si_errno = 0; 1703 switch (env->error_code & 0xF) { 1704 case POWERPC_EXCP_INVAL_INVAL: 1705 info.si_code = TARGET_ILL_ILLOPC; 1706 break; 1707 case POWERPC_EXCP_INVAL_LSWX: 1708 info.si_code = TARGET_ILL_ILLOPN; 1709 break; 1710 case POWERPC_EXCP_INVAL_SPR: 1711 info.si_code = TARGET_ILL_PRVREG; 1712 break; 1713 case POWERPC_EXCP_INVAL_FP: 1714 info.si_code = TARGET_ILL_COPROC; 1715 break; 1716 default: 1717 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1718 env->error_code & 0xF); 1719 info.si_code = TARGET_ILL_ILLADR; 1720 break; 1721 } 1722 break; 1723 case POWERPC_EXCP_PRIV: 1724 EXCP_DUMP(env, "Privilege violation\n"); 1725 info.si_signo = TARGET_SIGILL; 1726 info.si_errno = 0; 1727 switch (env->error_code & 0xF) { 1728 case POWERPC_EXCP_PRIV_OPC: 1729 info.si_code = TARGET_ILL_PRVOPC; 1730 break; 1731 case POWERPC_EXCP_PRIV_REG: 1732 info.si_code = TARGET_ILL_PRVREG; 1733 break; 1734 default: 1735 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1736 env->error_code & 0xF); 1737 info.si_code = TARGET_ILL_PRVOPC; 1738 break; 1739 } 1740 break; 1741 case POWERPC_EXCP_TRAP: 1742 cpu_abort(cs, "Tried to call a TRAP\n"); 1743 break; 1744 default: 1745 /* Should not happen ! */ 1746 cpu_abort(cs, "Unknown program exception (%02x)\n", 1747 env->error_code); 1748 break; 1749 } 1750 info._sifields._sigfault._addr = env->nip - 4; 1751 queue_signal(env, info.si_signo, &info); 1752 break; 1753 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1754 EXCP_DUMP(env, "No floating point allowed\n"); 1755 info.si_signo = TARGET_SIGILL; 1756 info.si_errno = 0; 1757 info.si_code = TARGET_ILL_COPROC; 1758 info._sifields._sigfault._addr = env->nip - 4; 1759 queue_signal(env, info.si_signo, &info); 1760 break; 1761 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1762 cpu_abort(cs, "Syscall exception while in user mode. " 1763 "Aborting\n"); 1764 break; 1765 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1766 EXCP_DUMP(env, "No APU instruction allowed\n"); 1767 info.si_signo = TARGET_SIGILL; 1768 info.si_errno = 0; 1769 info.si_code = TARGET_ILL_COPROC; 1770 info._sifields._sigfault._addr = env->nip - 4; 1771 queue_signal(env, info.si_signo, &info); 1772 break; 1773 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1774 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1775 "Aborting\n"); 1776 break; 1777 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1778 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1779 "Aborting\n"); 1780 break; 1781 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1782 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1783 "Aborting\n"); 1784 break; 1785 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1786 cpu_abort(cs, "Data TLB exception while in user mode. " 1787 "Aborting\n"); 1788 break; 1789 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1790 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1791 "Aborting\n"); 1792 break; 1793 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1794 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1795 info.si_signo = TARGET_SIGILL; 1796 info.si_errno = 0; 1797 info.si_code = TARGET_ILL_COPROC; 1798 info._sifields._sigfault._addr = env->nip - 4; 1799 queue_signal(env, info.si_signo, &info); 1800 break; 1801 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1802 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1803 break; 1804 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1805 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1806 break; 1807 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1808 cpu_abort(cs, "Performance monitor exception not handled\n"); 1809 break; 1810 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1811 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1812 "Aborting\n"); 1813 break; 1814 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1815 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1816 "Aborting\n"); 1817 break; 1818 case POWERPC_EXCP_RESET: /* System reset exception */ 1819 cpu_abort(cs, "Reset interrupt while in user mode. " 1820 "Aborting\n"); 1821 break; 1822 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1823 cpu_abort(cs, "Data segment exception while in user mode. " 1824 "Aborting\n"); 1825 break; 1826 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1827 cpu_abort(cs, "Instruction segment exception " 1828 "while in user mode. Aborting\n"); 1829 break; 1830 /* PowerPC 64 with hypervisor mode support */ 1831 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1832 cpu_abort(cs, "Hypervisor decrementer interrupt " 1833 "while in user mode. Aborting\n"); 1834 break; 1835 case POWERPC_EXCP_TRACE: /* Trace exception */ 1836 /* Nothing to do: 1837 * we use this exception to emulate step-by-step execution mode. 1838 */ 1839 break; 1840 /* PowerPC 64 with hypervisor mode support */ 1841 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1842 cpu_abort(cs, "Hypervisor data storage exception " 1843 "while in user mode. Aborting\n"); 1844 break; 1845 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1846 cpu_abort(cs, "Hypervisor instruction storage exception " 1847 "while in user mode. Aborting\n"); 1848 break; 1849 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1850 cpu_abort(cs, "Hypervisor data segment exception " 1851 "while in user mode. Aborting\n"); 1852 break; 1853 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1854 cpu_abort(cs, "Hypervisor instruction segment exception " 1855 "while in user mode. Aborting\n"); 1856 break; 1857 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1858 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1859 info.si_signo = TARGET_SIGILL; 1860 info.si_errno = 0; 1861 info.si_code = TARGET_ILL_COPROC; 1862 info._sifields._sigfault._addr = env->nip - 4; 1863 queue_signal(env, info.si_signo, &info); 1864 break; 1865 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1866 cpu_abort(cs, "Programmable interval timer interrupt " 1867 "while in user mode. Aborting\n"); 1868 break; 1869 case POWERPC_EXCP_IO: /* IO error exception */ 1870 cpu_abort(cs, "IO error exception while in user mode. " 1871 "Aborting\n"); 1872 break; 1873 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1874 cpu_abort(cs, "Run mode exception while in user mode. " 1875 "Aborting\n"); 1876 break; 1877 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1878 cpu_abort(cs, "Emulation trap exception not handled\n"); 1879 break; 1880 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1881 cpu_abort(cs, "Instruction fetch TLB exception " 1882 "while in user-mode. Aborting"); 1883 break; 1884 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1885 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1886 "Aborting"); 1887 break; 1888 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1889 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1890 "Aborting"); 1891 break; 1892 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1893 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1894 break; 1895 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1896 cpu_abort(cs, "Instruction address breakpoint exception " 1897 "not handled\n"); 1898 break; 1899 case POWERPC_EXCP_SMI: /* System management interrupt */ 1900 cpu_abort(cs, "System management interrupt while in user mode. " 1901 "Aborting\n"); 1902 break; 1903 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1904 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1905 "Aborting\n"); 1906 break; 1907 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1908 cpu_abort(cs, "Performance monitor exception not handled\n"); 1909 break; 1910 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1911 cpu_abort(cs, "Vector assist exception not handled\n"); 1912 break; 1913 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1914 cpu_abort(cs, "Soft patch exception not handled\n"); 1915 break; 1916 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1917 cpu_abort(cs, "Maintenance exception while in user mode. " 1918 "Aborting\n"); 1919 break; 1920 case POWERPC_EXCP_STOP: /* stop translation */ 1921 /* We did invalidate the instruction cache. Go on */ 1922 break; 1923 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1924 /* We just stopped because of a branch. Go on */ 1925 break; 1926 case POWERPC_EXCP_SYSCALL_USER: 1927 /* system call in user-mode emulation */ 1928 /* WARNING: 1929 * PPC ABI uses overflow flag in cr0 to signal an error 1930 * in syscalls. 1931 */ 1932 env->crf[0] &= ~0x1; 1933 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1934 env->gpr[5], env->gpr[6], env->gpr[7], 1935 env->gpr[8], 0, 0); 1936 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1937 /* Returning from a successful sigreturn syscall. 1938 Avoid corrupting register state. */ 1939 break; 1940 } 1941 if (ret > (target_ulong)(-515)) { 1942 env->crf[0] |= 0x1; 1943 ret = -ret; 1944 } 1945 env->gpr[3] = ret; 1946 break; 1947 case POWERPC_EXCP_STCX: 1948 if (do_store_exclusive(env)) { 1949 info.si_signo = TARGET_SIGSEGV; 1950 info.si_errno = 0; 1951 info.si_code = TARGET_SEGV_MAPERR; 1952 info._sifields._sigfault._addr = env->nip; 1953 queue_signal(env, info.si_signo, &info); 1954 } 1955 break; 1956 case EXCP_DEBUG: 1957 { 1958 int sig; 1959 1960 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1961 if (sig) { 1962 info.si_signo = sig; 1963 info.si_errno = 0; 1964 info.si_code = TARGET_TRAP_BRKPT; 1965 queue_signal(env, info.si_signo, &info); 1966 } 1967 } 1968 break; 1969 case EXCP_INTERRUPT: 1970 /* just indicate that signals should be handled asap */ 1971 break; 1972 default: 1973 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); 1974 break; 1975 } 1976 process_pending_signals(env); 1977 } 1978 } 1979 #endif 1980 1981 #ifdef TARGET_MIPS 1982 1983 # ifdef TARGET_ABI_MIPSO32 1984 # define MIPS_SYS(name, args) args, 1985 static const uint8_t mips_syscall_args[] = { 1986 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1987 MIPS_SYS(sys_exit , 1) 1988 MIPS_SYS(sys_fork , 0) 1989 MIPS_SYS(sys_read , 3) 1990 MIPS_SYS(sys_write , 3) 1991 MIPS_SYS(sys_open , 3) /* 4005 */ 1992 MIPS_SYS(sys_close , 1) 1993 MIPS_SYS(sys_waitpid , 3) 1994 MIPS_SYS(sys_creat , 2) 1995 MIPS_SYS(sys_link , 2) 1996 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1997 MIPS_SYS(sys_execve , 0) 1998 MIPS_SYS(sys_chdir , 1) 1999 MIPS_SYS(sys_time , 1) 2000 MIPS_SYS(sys_mknod , 3) 2001 MIPS_SYS(sys_chmod , 2) /* 4015 */ 2002 MIPS_SYS(sys_lchown , 3) 2003 MIPS_SYS(sys_ni_syscall , 0) 2004 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 2005 MIPS_SYS(sys_lseek , 3) 2006 MIPS_SYS(sys_getpid , 0) /* 4020 */ 2007 MIPS_SYS(sys_mount , 5) 2008 MIPS_SYS(sys_umount , 1) 2009 MIPS_SYS(sys_setuid , 1) 2010 MIPS_SYS(sys_getuid , 0) 2011 MIPS_SYS(sys_stime , 1) /* 4025 */ 2012 MIPS_SYS(sys_ptrace , 4) 2013 MIPS_SYS(sys_alarm , 1) 2014 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2015 MIPS_SYS(sys_pause , 0) 2016 MIPS_SYS(sys_utime , 2) /* 4030 */ 2017 MIPS_SYS(sys_ni_syscall , 0) 2018 MIPS_SYS(sys_ni_syscall , 0) 2019 MIPS_SYS(sys_access , 2) 2020 MIPS_SYS(sys_nice , 1) 2021 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2022 MIPS_SYS(sys_sync , 0) 2023 MIPS_SYS(sys_kill , 2) 2024 MIPS_SYS(sys_rename , 2) 2025 MIPS_SYS(sys_mkdir , 2) 2026 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2027 MIPS_SYS(sys_dup , 1) 2028 MIPS_SYS(sys_pipe , 0) 2029 MIPS_SYS(sys_times , 1) 2030 MIPS_SYS(sys_ni_syscall , 0) 2031 MIPS_SYS(sys_brk , 1) /* 4045 */ 2032 MIPS_SYS(sys_setgid , 1) 2033 MIPS_SYS(sys_getgid , 0) 2034 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2035 MIPS_SYS(sys_geteuid , 0) 2036 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2037 MIPS_SYS(sys_acct , 0) 2038 MIPS_SYS(sys_umount2 , 2) 2039 MIPS_SYS(sys_ni_syscall , 0) 2040 MIPS_SYS(sys_ioctl , 3) 2041 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2042 MIPS_SYS(sys_ni_syscall , 2) 2043 MIPS_SYS(sys_setpgid , 2) 2044 MIPS_SYS(sys_ni_syscall , 0) 2045 MIPS_SYS(sys_olduname , 1) 2046 MIPS_SYS(sys_umask , 1) /* 4060 */ 2047 MIPS_SYS(sys_chroot , 1) 2048 MIPS_SYS(sys_ustat , 2) 2049 MIPS_SYS(sys_dup2 , 2) 2050 MIPS_SYS(sys_getppid , 0) 2051 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2052 MIPS_SYS(sys_setsid , 0) 2053 MIPS_SYS(sys_sigaction , 3) 2054 MIPS_SYS(sys_sgetmask , 0) 2055 MIPS_SYS(sys_ssetmask , 1) 2056 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2057 MIPS_SYS(sys_setregid , 2) 2058 MIPS_SYS(sys_sigsuspend , 0) 2059 MIPS_SYS(sys_sigpending , 1) 2060 MIPS_SYS(sys_sethostname , 2) 2061 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2062 MIPS_SYS(sys_getrlimit , 2) 2063 MIPS_SYS(sys_getrusage , 2) 2064 MIPS_SYS(sys_gettimeofday, 2) 2065 MIPS_SYS(sys_settimeofday, 2) 2066 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2067 MIPS_SYS(sys_setgroups , 2) 2068 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2069 MIPS_SYS(sys_symlink , 2) 2070 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2071 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2072 MIPS_SYS(sys_uselib , 1) 2073 MIPS_SYS(sys_swapon , 2) 2074 MIPS_SYS(sys_reboot , 3) 2075 MIPS_SYS(old_readdir , 3) 2076 MIPS_SYS(old_mmap , 6) /* 4090 */ 2077 MIPS_SYS(sys_munmap , 2) 2078 MIPS_SYS(sys_truncate , 2) 2079 MIPS_SYS(sys_ftruncate , 2) 2080 MIPS_SYS(sys_fchmod , 2) 2081 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2082 MIPS_SYS(sys_getpriority , 2) 2083 MIPS_SYS(sys_setpriority , 3) 2084 MIPS_SYS(sys_ni_syscall , 0) 2085 MIPS_SYS(sys_statfs , 2) 2086 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2087 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2088 MIPS_SYS(sys_socketcall , 2) 2089 MIPS_SYS(sys_syslog , 3) 2090 MIPS_SYS(sys_setitimer , 3) 2091 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2092 MIPS_SYS(sys_newstat , 2) 2093 MIPS_SYS(sys_newlstat , 2) 2094 MIPS_SYS(sys_newfstat , 2) 2095 MIPS_SYS(sys_uname , 1) 2096 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2097 MIPS_SYS(sys_vhangup , 0) 2098 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2099 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2100 MIPS_SYS(sys_wait4 , 4) 2101 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2102 MIPS_SYS(sys_sysinfo , 1) 2103 MIPS_SYS(sys_ipc , 6) 2104 MIPS_SYS(sys_fsync , 1) 2105 MIPS_SYS(sys_sigreturn , 0) 2106 MIPS_SYS(sys_clone , 6) /* 4120 */ 2107 MIPS_SYS(sys_setdomainname, 2) 2108 MIPS_SYS(sys_newuname , 1) 2109 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2110 MIPS_SYS(sys_adjtimex , 1) 2111 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2112 MIPS_SYS(sys_sigprocmask , 3) 2113 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2114 MIPS_SYS(sys_init_module , 5) 2115 MIPS_SYS(sys_delete_module, 1) 2116 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2117 MIPS_SYS(sys_quotactl , 0) 2118 MIPS_SYS(sys_getpgid , 1) 2119 MIPS_SYS(sys_fchdir , 1) 2120 MIPS_SYS(sys_bdflush , 2) 2121 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2122 MIPS_SYS(sys_personality , 1) 2123 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2124 MIPS_SYS(sys_setfsuid , 1) 2125 MIPS_SYS(sys_setfsgid , 1) 2126 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2127 MIPS_SYS(sys_getdents , 3) 2128 MIPS_SYS(sys_select , 5) 2129 MIPS_SYS(sys_flock , 2) 2130 MIPS_SYS(sys_msync , 3) 2131 MIPS_SYS(sys_readv , 3) /* 4145 */ 2132 MIPS_SYS(sys_writev , 3) 2133 MIPS_SYS(sys_cacheflush , 3) 2134 MIPS_SYS(sys_cachectl , 3) 2135 MIPS_SYS(sys_sysmips , 4) 2136 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2137 MIPS_SYS(sys_getsid , 1) 2138 MIPS_SYS(sys_fdatasync , 0) 2139 MIPS_SYS(sys_sysctl , 1) 2140 MIPS_SYS(sys_mlock , 2) 2141 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2142 MIPS_SYS(sys_mlockall , 1) 2143 MIPS_SYS(sys_munlockall , 0) 2144 MIPS_SYS(sys_sched_setparam, 2) 2145 MIPS_SYS(sys_sched_getparam, 2) 2146 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2147 MIPS_SYS(sys_sched_getscheduler, 1) 2148 MIPS_SYS(sys_sched_yield , 0) 2149 MIPS_SYS(sys_sched_get_priority_max, 1) 2150 MIPS_SYS(sys_sched_get_priority_min, 1) 2151 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2152 MIPS_SYS(sys_nanosleep, 2) 2153 MIPS_SYS(sys_mremap , 5) 2154 MIPS_SYS(sys_accept , 3) 2155 MIPS_SYS(sys_bind , 3) 2156 MIPS_SYS(sys_connect , 3) /* 4170 */ 2157 MIPS_SYS(sys_getpeername , 3) 2158 MIPS_SYS(sys_getsockname , 3) 2159 MIPS_SYS(sys_getsockopt , 5) 2160 MIPS_SYS(sys_listen , 2) 2161 MIPS_SYS(sys_recv , 4) /* 4175 */ 2162 MIPS_SYS(sys_recvfrom , 6) 2163 MIPS_SYS(sys_recvmsg , 3) 2164 MIPS_SYS(sys_send , 4) 2165 MIPS_SYS(sys_sendmsg , 3) 2166 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2167 MIPS_SYS(sys_setsockopt , 5) 2168 MIPS_SYS(sys_shutdown , 2) 2169 MIPS_SYS(sys_socket , 3) 2170 MIPS_SYS(sys_socketpair , 4) 2171 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2172 MIPS_SYS(sys_getresuid , 3) 2173 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2174 MIPS_SYS(sys_poll , 3) 2175 MIPS_SYS(sys_nfsservctl , 3) 2176 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2177 MIPS_SYS(sys_getresgid , 3) 2178 MIPS_SYS(sys_prctl , 5) 2179 MIPS_SYS(sys_rt_sigreturn, 0) 2180 MIPS_SYS(sys_rt_sigaction, 4) 2181 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2182 MIPS_SYS(sys_rt_sigpending, 2) 2183 MIPS_SYS(sys_rt_sigtimedwait, 4) 2184 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2185 MIPS_SYS(sys_rt_sigsuspend, 0) 2186 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2187 MIPS_SYS(sys_pwrite64 , 6) 2188 MIPS_SYS(sys_chown , 3) 2189 MIPS_SYS(sys_getcwd , 2) 2190 MIPS_SYS(sys_capget , 2) 2191 MIPS_SYS(sys_capset , 2) /* 4205 */ 2192 MIPS_SYS(sys_sigaltstack , 2) 2193 MIPS_SYS(sys_sendfile , 4) 2194 MIPS_SYS(sys_ni_syscall , 0) 2195 MIPS_SYS(sys_ni_syscall , 0) 2196 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2197 MIPS_SYS(sys_truncate64 , 4) 2198 MIPS_SYS(sys_ftruncate64 , 4) 2199 MIPS_SYS(sys_stat64 , 2) 2200 MIPS_SYS(sys_lstat64 , 2) 2201 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2202 MIPS_SYS(sys_pivot_root , 2) 2203 MIPS_SYS(sys_mincore , 3) 2204 MIPS_SYS(sys_madvise , 3) 2205 MIPS_SYS(sys_getdents64 , 3) 2206 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2207 MIPS_SYS(sys_ni_syscall , 0) 2208 MIPS_SYS(sys_gettid , 0) 2209 MIPS_SYS(sys_readahead , 5) 2210 MIPS_SYS(sys_setxattr , 5) 2211 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2212 MIPS_SYS(sys_fsetxattr , 5) 2213 MIPS_SYS(sys_getxattr , 4) 2214 MIPS_SYS(sys_lgetxattr , 4) 2215 MIPS_SYS(sys_fgetxattr , 4) 2216 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2217 MIPS_SYS(sys_llistxattr , 3) 2218 MIPS_SYS(sys_flistxattr , 3) 2219 MIPS_SYS(sys_removexattr , 2) 2220 MIPS_SYS(sys_lremovexattr, 2) 2221 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2222 MIPS_SYS(sys_tkill , 2) 2223 MIPS_SYS(sys_sendfile64 , 5) 2224 MIPS_SYS(sys_futex , 6) 2225 MIPS_SYS(sys_sched_setaffinity, 3) 2226 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2227 MIPS_SYS(sys_io_setup , 2) 2228 MIPS_SYS(sys_io_destroy , 1) 2229 MIPS_SYS(sys_io_getevents, 5) 2230 MIPS_SYS(sys_io_submit , 3) 2231 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2232 MIPS_SYS(sys_exit_group , 1) 2233 MIPS_SYS(sys_lookup_dcookie, 3) 2234 MIPS_SYS(sys_epoll_create, 1) 2235 MIPS_SYS(sys_epoll_ctl , 4) 2236 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2237 MIPS_SYS(sys_remap_file_pages, 5) 2238 MIPS_SYS(sys_set_tid_address, 1) 2239 MIPS_SYS(sys_restart_syscall, 0) 2240 MIPS_SYS(sys_fadvise64_64, 7) 2241 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2242 MIPS_SYS(sys_fstatfs64 , 2) 2243 MIPS_SYS(sys_timer_create, 3) 2244 MIPS_SYS(sys_timer_settime, 4) 2245 MIPS_SYS(sys_timer_gettime, 2) 2246 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2247 MIPS_SYS(sys_timer_delete, 1) 2248 MIPS_SYS(sys_clock_settime, 2) 2249 MIPS_SYS(sys_clock_gettime, 2) 2250 MIPS_SYS(sys_clock_getres, 2) 2251 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2252 MIPS_SYS(sys_tgkill , 3) 2253 MIPS_SYS(sys_utimes , 2) 2254 MIPS_SYS(sys_mbind , 4) 2255 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2256 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2257 MIPS_SYS(sys_mq_open , 4) 2258 MIPS_SYS(sys_mq_unlink , 1) 2259 MIPS_SYS(sys_mq_timedsend, 5) 2260 MIPS_SYS(sys_mq_timedreceive, 5) 2261 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2262 MIPS_SYS(sys_mq_getsetattr, 3) 2263 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2264 MIPS_SYS(sys_waitid , 4) 2265 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2266 MIPS_SYS(sys_add_key , 5) 2267 MIPS_SYS(sys_request_key, 4) 2268 MIPS_SYS(sys_keyctl , 5) 2269 MIPS_SYS(sys_set_thread_area, 1) 2270 MIPS_SYS(sys_inotify_init, 0) 2271 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2272 MIPS_SYS(sys_inotify_rm_watch, 2) 2273 MIPS_SYS(sys_migrate_pages, 4) 2274 MIPS_SYS(sys_openat, 4) 2275 MIPS_SYS(sys_mkdirat, 3) 2276 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2277 MIPS_SYS(sys_fchownat, 5) 2278 MIPS_SYS(sys_futimesat, 3) 2279 MIPS_SYS(sys_fstatat64, 4) 2280 MIPS_SYS(sys_unlinkat, 3) 2281 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2282 MIPS_SYS(sys_linkat, 5) 2283 MIPS_SYS(sys_symlinkat, 3) 2284 MIPS_SYS(sys_readlinkat, 4) 2285 MIPS_SYS(sys_fchmodat, 3) 2286 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2287 MIPS_SYS(sys_pselect6, 6) 2288 MIPS_SYS(sys_ppoll, 5) 2289 MIPS_SYS(sys_unshare, 1) 2290 MIPS_SYS(sys_splice, 6) 2291 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2292 MIPS_SYS(sys_tee, 4) 2293 MIPS_SYS(sys_vmsplice, 4) 2294 MIPS_SYS(sys_move_pages, 6) 2295 MIPS_SYS(sys_set_robust_list, 2) 2296 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2297 MIPS_SYS(sys_kexec_load, 4) 2298 MIPS_SYS(sys_getcpu, 3) 2299 MIPS_SYS(sys_epoll_pwait, 6) 2300 MIPS_SYS(sys_ioprio_set, 3) 2301 MIPS_SYS(sys_ioprio_get, 2) 2302 MIPS_SYS(sys_utimensat, 4) 2303 MIPS_SYS(sys_signalfd, 3) 2304 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2305 MIPS_SYS(sys_eventfd, 1) 2306 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2307 MIPS_SYS(sys_timerfd_create, 2) 2308 MIPS_SYS(sys_timerfd_gettime, 2) 2309 MIPS_SYS(sys_timerfd_settime, 4) 2310 MIPS_SYS(sys_signalfd4, 4) 2311 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2312 MIPS_SYS(sys_epoll_create1, 1) 2313 MIPS_SYS(sys_dup3, 3) 2314 MIPS_SYS(sys_pipe2, 2) 2315 MIPS_SYS(sys_inotify_init1, 1) 2316 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2317 MIPS_SYS(sys_pwritev, 6) 2318 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2319 MIPS_SYS(sys_perf_event_open, 5) 2320 MIPS_SYS(sys_accept4, 4) 2321 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2322 MIPS_SYS(sys_fanotify_init, 2) 2323 MIPS_SYS(sys_fanotify_mark, 6) 2324 MIPS_SYS(sys_prlimit64, 4) 2325 MIPS_SYS(sys_name_to_handle_at, 5) 2326 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2327 MIPS_SYS(sys_clock_adjtime, 2) 2328 MIPS_SYS(sys_syncfs, 1) 2329 }; 2330 # undef MIPS_SYS 2331 # endif /* O32 */ 2332 2333 static int do_store_exclusive(CPUMIPSState *env) 2334 { 2335 target_ulong addr; 2336 target_ulong page_addr; 2337 target_ulong val; 2338 int flags; 2339 int segv = 0; 2340 int reg; 2341 int d; 2342 2343 addr = env->lladdr; 2344 page_addr = addr & TARGET_PAGE_MASK; 2345 start_exclusive(); 2346 mmap_lock(); 2347 flags = page_get_flags(page_addr); 2348 if ((flags & PAGE_READ) == 0) { 2349 segv = 1; 2350 } else { 2351 reg = env->llreg & 0x1f; 2352 d = (env->llreg & 0x20) != 0; 2353 if (d) { 2354 segv = get_user_s64(val, addr); 2355 } else { 2356 segv = get_user_s32(val, addr); 2357 } 2358 if (!segv) { 2359 if (val != env->llval) { 2360 env->active_tc.gpr[reg] = 0; 2361 } else { 2362 if (d) { 2363 segv = put_user_u64(env->llnewval, addr); 2364 } else { 2365 segv = put_user_u32(env->llnewval, addr); 2366 } 2367 if (!segv) { 2368 env->active_tc.gpr[reg] = 1; 2369 } 2370 } 2371 } 2372 } 2373 env->lladdr = -1; 2374 if (!segv) { 2375 env->active_tc.PC += 4; 2376 } 2377 mmap_unlock(); 2378 end_exclusive(); 2379 return segv; 2380 } 2381 2382 /* Break codes */ 2383 enum { 2384 BRK_OVERFLOW = 6, 2385 BRK_DIVZERO = 7 2386 }; 2387 2388 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2389 unsigned int code) 2390 { 2391 int ret = -1; 2392 2393 switch (code) { 2394 case BRK_OVERFLOW: 2395 case BRK_DIVZERO: 2396 info->si_signo = TARGET_SIGFPE; 2397 info->si_errno = 0; 2398 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2399 queue_signal(env, info->si_signo, &*info); 2400 ret = 0; 2401 break; 2402 default: 2403 info->si_signo = TARGET_SIGTRAP; 2404 info->si_errno = 0; 2405 queue_signal(env, info->si_signo, &*info); 2406 ret = 0; 2407 break; 2408 } 2409 2410 return ret; 2411 } 2412 2413 void cpu_loop(CPUMIPSState *env) 2414 { 2415 CPUState *cs = CPU(mips_env_get_cpu(env)); 2416 target_siginfo_t info; 2417 int trapnr; 2418 abi_long ret; 2419 # ifdef TARGET_ABI_MIPSO32 2420 unsigned int syscall_num; 2421 # endif 2422 2423 for(;;) { 2424 cpu_exec_start(cs); 2425 trapnr = cpu_mips_exec(env); 2426 cpu_exec_end(cs); 2427 switch(trapnr) { 2428 case EXCP_SYSCALL: 2429 env->active_tc.PC += 4; 2430 # ifdef TARGET_ABI_MIPSO32 2431 syscall_num = env->active_tc.gpr[2] - 4000; 2432 if (syscall_num >= sizeof(mips_syscall_args)) { 2433 ret = -TARGET_ENOSYS; 2434 } else { 2435 int nb_args; 2436 abi_ulong sp_reg; 2437 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2438 2439 nb_args = mips_syscall_args[syscall_num]; 2440 sp_reg = env->active_tc.gpr[29]; 2441 switch (nb_args) { 2442 /* these arguments are taken from the stack */ 2443 case 8: 2444 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2445 goto done_syscall; 2446 } 2447 case 7: 2448 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2449 goto done_syscall; 2450 } 2451 case 6: 2452 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2453 goto done_syscall; 2454 } 2455 case 5: 2456 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2457 goto done_syscall; 2458 } 2459 default: 2460 break; 2461 } 2462 ret = do_syscall(env, env->active_tc.gpr[2], 2463 env->active_tc.gpr[4], 2464 env->active_tc.gpr[5], 2465 env->active_tc.gpr[6], 2466 env->active_tc.gpr[7], 2467 arg5, arg6, arg7, arg8); 2468 } 2469 done_syscall: 2470 # else 2471 ret = do_syscall(env, env->active_tc.gpr[2], 2472 env->active_tc.gpr[4], env->active_tc.gpr[5], 2473 env->active_tc.gpr[6], env->active_tc.gpr[7], 2474 env->active_tc.gpr[8], env->active_tc.gpr[9], 2475 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2476 # endif /* O32 */ 2477 if (ret == -TARGET_QEMU_ESIGRETURN) { 2478 /* Returning from a successful sigreturn syscall. 2479 Avoid clobbering register state. */ 2480 break; 2481 } 2482 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2483 env->active_tc.gpr[7] = 1; /* error flag */ 2484 ret = -ret; 2485 } else { 2486 env->active_tc.gpr[7] = 0; /* error flag */ 2487 } 2488 env->active_tc.gpr[2] = ret; 2489 break; 2490 case EXCP_TLBL: 2491 case EXCP_TLBS: 2492 case EXCP_AdEL: 2493 case EXCP_AdES: 2494 info.si_signo = TARGET_SIGSEGV; 2495 info.si_errno = 0; 2496 /* XXX: check env->error_code */ 2497 info.si_code = TARGET_SEGV_MAPERR; 2498 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2499 queue_signal(env, info.si_signo, &info); 2500 break; 2501 case EXCP_CpU: 2502 case EXCP_RI: 2503 info.si_signo = TARGET_SIGILL; 2504 info.si_errno = 0; 2505 info.si_code = 0; 2506 queue_signal(env, info.si_signo, &info); 2507 break; 2508 case EXCP_INTERRUPT: 2509 /* just indicate that signals should be handled asap */ 2510 break; 2511 case EXCP_DEBUG: 2512 { 2513 int sig; 2514 2515 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2516 if (sig) 2517 { 2518 info.si_signo = sig; 2519 info.si_errno = 0; 2520 info.si_code = TARGET_TRAP_BRKPT; 2521 queue_signal(env, info.si_signo, &info); 2522 } 2523 } 2524 break; 2525 case EXCP_SC: 2526 if (do_store_exclusive(env)) { 2527 info.si_signo = TARGET_SIGSEGV; 2528 info.si_errno = 0; 2529 info.si_code = TARGET_SEGV_MAPERR; 2530 info._sifields._sigfault._addr = env->active_tc.PC; 2531 queue_signal(env, info.si_signo, &info); 2532 } 2533 break; 2534 case EXCP_DSPDIS: 2535 info.si_signo = TARGET_SIGILL; 2536 info.si_errno = 0; 2537 info.si_code = TARGET_ILL_ILLOPC; 2538 queue_signal(env, info.si_signo, &info); 2539 break; 2540 /* The code below was inspired by the MIPS Linux kernel trap 2541 * handling code in arch/mips/kernel/traps.c. 2542 */ 2543 case EXCP_BREAK: 2544 { 2545 abi_ulong trap_instr; 2546 unsigned int code; 2547 2548 if (env->hflags & MIPS_HFLAG_M16) { 2549 if (env->insn_flags & ASE_MICROMIPS) { 2550 /* microMIPS mode */ 2551 ret = get_user_u16(trap_instr, env->active_tc.PC); 2552 if (ret != 0) { 2553 goto error; 2554 } 2555 2556 if ((trap_instr >> 10) == 0x11) { 2557 /* 16-bit instruction */ 2558 code = trap_instr & 0xf; 2559 } else { 2560 /* 32-bit instruction */ 2561 abi_ulong instr_lo; 2562 2563 ret = get_user_u16(instr_lo, 2564 env->active_tc.PC + 2); 2565 if (ret != 0) { 2566 goto error; 2567 } 2568 trap_instr = (trap_instr << 16) | instr_lo; 2569 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2570 /* Unfortunately, microMIPS also suffers from 2571 the old assembler bug... */ 2572 if (code >= (1 << 10)) { 2573 code >>= 10; 2574 } 2575 } 2576 } else { 2577 /* MIPS16e mode */ 2578 ret = get_user_u16(trap_instr, env->active_tc.PC); 2579 if (ret != 0) { 2580 goto error; 2581 } 2582 code = (trap_instr >> 6) & 0x3f; 2583 } 2584 } else { 2585 ret = get_user_ual(trap_instr, env->active_tc.PC); 2586 if (ret != 0) { 2587 goto error; 2588 } 2589 2590 /* As described in the original Linux kernel code, the 2591 * below checks on 'code' are to work around an old 2592 * assembly bug. 2593 */ 2594 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2595 if (code >= (1 << 10)) { 2596 code >>= 10; 2597 } 2598 } 2599 2600 if (do_break(env, &info, code) != 0) { 2601 goto error; 2602 } 2603 } 2604 break; 2605 case EXCP_TRAP: 2606 { 2607 abi_ulong trap_instr; 2608 unsigned int code = 0; 2609 2610 if (env->hflags & MIPS_HFLAG_M16) { 2611 /* microMIPS mode */ 2612 abi_ulong instr[2]; 2613 2614 ret = get_user_u16(instr[0], env->active_tc.PC) || 2615 get_user_u16(instr[1], env->active_tc.PC + 2); 2616 2617 trap_instr = (instr[0] << 16) | instr[1]; 2618 } else { 2619 ret = get_user_ual(trap_instr, env->active_tc.PC); 2620 } 2621 2622 if (ret != 0) { 2623 goto error; 2624 } 2625 2626 /* The immediate versions don't provide a code. */ 2627 if (!(trap_instr & 0xFC000000)) { 2628 if (env->hflags & MIPS_HFLAG_M16) { 2629 /* microMIPS mode */ 2630 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2631 } else { 2632 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2633 } 2634 } 2635 2636 if (do_break(env, &info, code) != 0) { 2637 goto error; 2638 } 2639 } 2640 break; 2641 default: 2642 error: 2643 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2644 trapnr); 2645 cpu_dump_state(cs, stderr, fprintf, 0); 2646 abort(); 2647 } 2648 process_pending_signals(env); 2649 } 2650 } 2651 #endif 2652 2653 #ifdef TARGET_OPENRISC 2654 2655 void cpu_loop(CPUOpenRISCState *env) 2656 { 2657 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2658 int trapnr, gdbsig; 2659 2660 for (;;) { 2661 cpu_exec_start(cs); 2662 trapnr = cpu_exec(env); 2663 cpu_exec_end(cs); 2664 gdbsig = 0; 2665 2666 switch (trapnr) { 2667 case EXCP_RESET: 2668 qemu_log("\nReset request, exit, pc is %#x\n", env->pc); 2669 exit(1); 2670 break; 2671 case EXCP_BUSERR: 2672 qemu_log("\nBus error, exit, pc is %#x\n", env->pc); 2673 gdbsig = TARGET_SIGBUS; 2674 break; 2675 case EXCP_DPF: 2676 case EXCP_IPF: 2677 cpu_dump_state(cs, stderr, fprintf, 0); 2678 gdbsig = TARGET_SIGSEGV; 2679 break; 2680 case EXCP_TICK: 2681 qemu_log("\nTick time interrupt pc is %#x\n", env->pc); 2682 break; 2683 case EXCP_ALIGN: 2684 qemu_log("\nAlignment pc is %#x\n", env->pc); 2685 gdbsig = TARGET_SIGBUS; 2686 break; 2687 case EXCP_ILLEGAL: 2688 qemu_log("\nIllegal instructionpc is %#x\n", env->pc); 2689 gdbsig = TARGET_SIGILL; 2690 break; 2691 case EXCP_INT: 2692 qemu_log("\nExternal interruptpc is %#x\n", env->pc); 2693 break; 2694 case EXCP_DTLBMISS: 2695 case EXCP_ITLBMISS: 2696 qemu_log("\nTLB miss\n"); 2697 break; 2698 case EXCP_RANGE: 2699 qemu_log("\nRange\n"); 2700 gdbsig = TARGET_SIGSEGV; 2701 break; 2702 case EXCP_SYSCALL: 2703 env->pc += 4; /* 0xc00; */ 2704 env->gpr[11] = do_syscall(env, 2705 env->gpr[11], /* return value */ 2706 env->gpr[3], /* r3 - r7 are params */ 2707 env->gpr[4], 2708 env->gpr[5], 2709 env->gpr[6], 2710 env->gpr[7], 2711 env->gpr[8], 0, 0); 2712 break; 2713 case EXCP_FPE: 2714 qemu_log("\nFloating point error\n"); 2715 break; 2716 case EXCP_TRAP: 2717 qemu_log("\nTrap\n"); 2718 gdbsig = TARGET_SIGTRAP; 2719 break; 2720 case EXCP_NR: 2721 qemu_log("\nNR\n"); 2722 break; 2723 default: 2724 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", 2725 trapnr); 2726 cpu_dump_state(cs, stderr, fprintf, 0); 2727 gdbsig = TARGET_SIGILL; 2728 break; 2729 } 2730 if (gdbsig) { 2731 gdb_handlesig(cs, gdbsig); 2732 if (gdbsig != TARGET_SIGTRAP) { 2733 exit(1); 2734 } 2735 } 2736 2737 process_pending_signals(env); 2738 } 2739 } 2740 2741 #endif /* TARGET_OPENRISC */ 2742 2743 #ifdef TARGET_SH4 2744 void cpu_loop(CPUSH4State *env) 2745 { 2746 CPUState *cs = CPU(sh_env_get_cpu(env)); 2747 int trapnr, ret; 2748 target_siginfo_t info; 2749 2750 while (1) { 2751 cpu_exec_start(cs); 2752 trapnr = cpu_sh4_exec (env); 2753 cpu_exec_end(cs); 2754 2755 switch (trapnr) { 2756 case 0x160: 2757 env->pc += 2; 2758 ret = do_syscall(env, 2759 env->gregs[3], 2760 env->gregs[4], 2761 env->gregs[5], 2762 env->gregs[6], 2763 env->gregs[7], 2764 env->gregs[0], 2765 env->gregs[1], 2766 0, 0); 2767 env->gregs[0] = ret; 2768 break; 2769 case EXCP_INTERRUPT: 2770 /* just indicate that signals should be handled asap */ 2771 break; 2772 case EXCP_DEBUG: 2773 { 2774 int sig; 2775 2776 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2777 if (sig) 2778 { 2779 info.si_signo = sig; 2780 info.si_errno = 0; 2781 info.si_code = TARGET_TRAP_BRKPT; 2782 queue_signal(env, info.si_signo, &info); 2783 } 2784 } 2785 break; 2786 case 0xa0: 2787 case 0xc0: 2788 info.si_signo = TARGET_SIGSEGV; 2789 info.si_errno = 0; 2790 info.si_code = TARGET_SEGV_MAPERR; 2791 info._sifields._sigfault._addr = env->tea; 2792 queue_signal(env, info.si_signo, &info); 2793 break; 2794 2795 default: 2796 printf ("Unhandled trap: 0x%x\n", trapnr); 2797 cpu_dump_state(cs, stderr, fprintf, 0); 2798 exit (1); 2799 } 2800 process_pending_signals (env); 2801 } 2802 } 2803 #endif 2804 2805 #ifdef TARGET_CRIS 2806 void cpu_loop(CPUCRISState *env) 2807 { 2808 CPUState *cs = CPU(cris_env_get_cpu(env)); 2809 int trapnr, ret; 2810 target_siginfo_t info; 2811 2812 while (1) { 2813 cpu_exec_start(cs); 2814 trapnr = cpu_cris_exec (env); 2815 cpu_exec_end(cs); 2816 switch (trapnr) { 2817 case 0xaa: 2818 { 2819 info.si_signo = TARGET_SIGSEGV; 2820 info.si_errno = 0; 2821 /* XXX: check env->error_code */ 2822 info.si_code = TARGET_SEGV_MAPERR; 2823 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2824 queue_signal(env, info.si_signo, &info); 2825 } 2826 break; 2827 case EXCP_INTERRUPT: 2828 /* just indicate that signals should be handled asap */ 2829 break; 2830 case EXCP_BREAK: 2831 ret = do_syscall(env, 2832 env->regs[9], 2833 env->regs[10], 2834 env->regs[11], 2835 env->regs[12], 2836 env->regs[13], 2837 env->pregs[7], 2838 env->pregs[11], 2839 0, 0); 2840 env->regs[10] = ret; 2841 break; 2842 case EXCP_DEBUG: 2843 { 2844 int sig; 2845 2846 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2847 if (sig) 2848 { 2849 info.si_signo = sig; 2850 info.si_errno = 0; 2851 info.si_code = TARGET_TRAP_BRKPT; 2852 queue_signal(env, info.si_signo, &info); 2853 } 2854 } 2855 break; 2856 default: 2857 printf ("Unhandled trap: 0x%x\n", trapnr); 2858 cpu_dump_state(cs, stderr, fprintf, 0); 2859 exit (1); 2860 } 2861 process_pending_signals (env); 2862 } 2863 } 2864 #endif 2865 2866 #ifdef TARGET_MICROBLAZE 2867 void cpu_loop(CPUMBState *env) 2868 { 2869 CPUState *cs = CPU(mb_env_get_cpu(env)); 2870 int trapnr, ret; 2871 target_siginfo_t info; 2872 2873 while (1) { 2874 cpu_exec_start(cs); 2875 trapnr = cpu_mb_exec (env); 2876 cpu_exec_end(cs); 2877 switch (trapnr) { 2878 case 0xaa: 2879 { 2880 info.si_signo = TARGET_SIGSEGV; 2881 info.si_errno = 0; 2882 /* XXX: check env->error_code */ 2883 info.si_code = TARGET_SEGV_MAPERR; 2884 info._sifields._sigfault._addr = 0; 2885 queue_signal(env, info.si_signo, &info); 2886 } 2887 break; 2888 case EXCP_INTERRUPT: 2889 /* just indicate that signals should be handled asap */ 2890 break; 2891 case EXCP_BREAK: 2892 /* Return address is 4 bytes after the call. */ 2893 env->regs[14] += 4; 2894 env->sregs[SR_PC] = env->regs[14]; 2895 ret = do_syscall(env, 2896 env->regs[12], 2897 env->regs[5], 2898 env->regs[6], 2899 env->regs[7], 2900 env->regs[8], 2901 env->regs[9], 2902 env->regs[10], 2903 0, 0); 2904 env->regs[3] = ret; 2905 break; 2906 case EXCP_HW_EXCP: 2907 env->regs[17] = env->sregs[SR_PC] + 4; 2908 if (env->iflags & D_FLAG) { 2909 env->sregs[SR_ESR] |= 1 << 12; 2910 env->sregs[SR_PC] -= 4; 2911 /* FIXME: if branch was immed, replay the imm as well. */ 2912 } 2913 2914 env->iflags &= ~(IMM_FLAG | D_FLAG); 2915 2916 switch (env->sregs[SR_ESR] & 31) { 2917 case ESR_EC_DIVZERO: 2918 info.si_signo = TARGET_SIGFPE; 2919 info.si_errno = 0; 2920 info.si_code = TARGET_FPE_FLTDIV; 2921 info._sifields._sigfault._addr = 0; 2922 queue_signal(env, info.si_signo, &info); 2923 break; 2924 case ESR_EC_FPU: 2925 info.si_signo = TARGET_SIGFPE; 2926 info.si_errno = 0; 2927 if (env->sregs[SR_FSR] & FSR_IO) { 2928 info.si_code = TARGET_FPE_FLTINV; 2929 } 2930 if (env->sregs[SR_FSR] & FSR_DZ) { 2931 info.si_code = TARGET_FPE_FLTDIV; 2932 } 2933 info._sifields._sigfault._addr = 0; 2934 queue_signal(env, info.si_signo, &info); 2935 break; 2936 default: 2937 printf ("Unhandled hw-exception: 0x%x\n", 2938 env->sregs[SR_ESR] & ESR_EC_MASK); 2939 cpu_dump_state(cs, stderr, fprintf, 0); 2940 exit (1); 2941 break; 2942 } 2943 break; 2944 case EXCP_DEBUG: 2945 { 2946 int sig; 2947 2948 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2949 if (sig) 2950 { 2951 info.si_signo = sig; 2952 info.si_errno = 0; 2953 info.si_code = TARGET_TRAP_BRKPT; 2954 queue_signal(env, info.si_signo, &info); 2955 } 2956 } 2957 break; 2958 default: 2959 printf ("Unhandled trap: 0x%x\n", trapnr); 2960 cpu_dump_state(cs, stderr, fprintf, 0); 2961 exit (1); 2962 } 2963 process_pending_signals (env); 2964 } 2965 } 2966 #endif 2967 2968 #ifdef TARGET_M68K 2969 2970 void cpu_loop(CPUM68KState *env) 2971 { 2972 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2973 int trapnr; 2974 unsigned int n; 2975 target_siginfo_t info; 2976 TaskState *ts = cs->opaque; 2977 2978 for(;;) { 2979 cpu_exec_start(cs); 2980 trapnr = cpu_m68k_exec(env); 2981 cpu_exec_end(cs); 2982 switch(trapnr) { 2983 case EXCP_ILLEGAL: 2984 { 2985 if (ts->sim_syscalls) { 2986 uint16_t nr; 2987 get_user_u16(nr, env->pc + 2); 2988 env->pc += 4; 2989 do_m68k_simcall(env, nr); 2990 } else { 2991 goto do_sigill; 2992 } 2993 } 2994 break; 2995 case EXCP_HALT_INSN: 2996 /* Semihosing syscall. */ 2997 env->pc += 4; 2998 do_m68k_semihosting(env, env->dregs[0]); 2999 break; 3000 case EXCP_LINEA: 3001 case EXCP_LINEF: 3002 case EXCP_UNSUPPORTED: 3003 do_sigill: 3004 info.si_signo = TARGET_SIGILL; 3005 info.si_errno = 0; 3006 info.si_code = TARGET_ILL_ILLOPN; 3007 info._sifields._sigfault._addr = env->pc; 3008 queue_signal(env, info.si_signo, &info); 3009 break; 3010 case EXCP_TRAP0: 3011 { 3012 ts->sim_syscalls = 0; 3013 n = env->dregs[0]; 3014 env->pc += 2; 3015 env->dregs[0] = do_syscall(env, 3016 n, 3017 env->dregs[1], 3018 env->dregs[2], 3019 env->dregs[3], 3020 env->dregs[4], 3021 env->dregs[5], 3022 env->aregs[0], 3023 0, 0); 3024 } 3025 break; 3026 case EXCP_INTERRUPT: 3027 /* just indicate that signals should be handled asap */ 3028 break; 3029 case EXCP_ACCESS: 3030 { 3031 info.si_signo = TARGET_SIGSEGV; 3032 info.si_errno = 0; 3033 /* XXX: check env->error_code */ 3034 info.si_code = TARGET_SEGV_MAPERR; 3035 info._sifields._sigfault._addr = env->mmu.ar; 3036 queue_signal(env, info.si_signo, &info); 3037 } 3038 break; 3039 case EXCP_DEBUG: 3040 { 3041 int sig; 3042 3043 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3044 if (sig) 3045 { 3046 info.si_signo = sig; 3047 info.si_errno = 0; 3048 info.si_code = TARGET_TRAP_BRKPT; 3049 queue_signal(env, info.si_signo, &info); 3050 } 3051 } 3052 break; 3053 default: 3054 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 3055 trapnr); 3056 cpu_dump_state(cs, stderr, fprintf, 0); 3057 abort(); 3058 } 3059 process_pending_signals(env); 3060 } 3061 } 3062 #endif /* TARGET_M68K */ 3063 3064 #ifdef TARGET_ALPHA 3065 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3066 { 3067 target_ulong addr, val, tmp; 3068 target_siginfo_t info; 3069 int ret = 0; 3070 3071 addr = env->lock_addr; 3072 tmp = env->lock_st_addr; 3073 env->lock_addr = -1; 3074 env->lock_st_addr = 0; 3075 3076 start_exclusive(); 3077 mmap_lock(); 3078 3079 if (addr == tmp) { 3080 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3081 goto do_sigsegv; 3082 } 3083 3084 if (val == env->lock_value) { 3085 tmp = env->ir[reg]; 3086 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3087 goto do_sigsegv; 3088 } 3089 ret = 1; 3090 } 3091 } 3092 env->ir[reg] = ret; 3093 env->pc += 4; 3094 3095 mmap_unlock(); 3096 end_exclusive(); 3097 return; 3098 3099 do_sigsegv: 3100 mmap_unlock(); 3101 end_exclusive(); 3102 3103 info.si_signo = TARGET_SIGSEGV; 3104 info.si_errno = 0; 3105 info.si_code = TARGET_SEGV_MAPERR; 3106 info._sifields._sigfault._addr = addr; 3107 queue_signal(env, TARGET_SIGSEGV, &info); 3108 } 3109 3110 void cpu_loop(CPUAlphaState *env) 3111 { 3112 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3113 int trapnr; 3114 target_siginfo_t info; 3115 abi_long sysret; 3116 3117 while (1) { 3118 cpu_exec_start(cs); 3119 trapnr = cpu_alpha_exec (env); 3120 cpu_exec_end(cs); 3121 3122 /* All of the traps imply a transition through PALcode, which 3123 implies an REI instruction has been executed. Which means 3124 that the intr_flag should be cleared. */ 3125 env->intr_flag = 0; 3126 3127 switch (trapnr) { 3128 case EXCP_RESET: 3129 fprintf(stderr, "Reset requested. Exit\n"); 3130 exit(1); 3131 break; 3132 case EXCP_MCHK: 3133 fprintf(stderr, "Machine check exception. Exit\n"); 3134 exit(1); 3135 break; 3136 case EXCP_SMP_INTERRUPT: 3137 case EXCP_CLK_INTERRUPT: 3138 case EXCP_DEV_INTERRUPT: 3139 fprintf(stderr, "External interrupt. Exit\n"); 3140 exit(1); 3141 break; 3142 case EXCP_MMFAULT: 3143 env->lock_addr = -1; 3144 info.si_signo = TARGET_SIGSEGV; 3145 info.si_errno = 0; 3146 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3147 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3148 info._sifields._sigfault._addr = env->trap_arg0; 3149 queue_signal(env, info.si_signo, &info); 3150 break; 3151 case EXCP_UNALIGN: 3152 env->lock_addr = -1; 3153 info.si_signo = TARGET_SIGBUS; 3154 info.si_errno = 0; 3155 info.si_code = TARGET_BUS_ADRALN; 3156 info._sifields._sigfault._addr = env->trap_arg0; 3157 queue_signal(env, info.si_signo, &info); 3158 break; 3159 case EXCP_OPCDEC: 3160 do_sigill: 3161 env->lock_addr = -1; 3162 info.si_signo = TARGET_SIGILL; 3163 info.si_errno = 0; 3164 info.si_code = TARGET_ILL_ILLOPC; 3165 info._sifields._sigfault._addr = env->pc; 3166 queue_signal(env, info.si_signo, &info); 3167 break; 3168 case EXCP_ARITH: 3169 env->lock_addr = -1; 3170 info.si_signo = TARGET_SIGFPE; 3171 info.si_errno = 0; 3172 info.si_code = TARGET_FPE_FLTINV; 3173 info._sifields._sigfault._addr = env->pc; 3174 queue_signal(env, info.si_signo, &info); 3175 break; 3176 case EXCP_FEN: 3177 /* No-op. Linux simply re-enables the FPU. */ 3178 break; 3179 case EXCP_CALL_PAL: 3180 env->lock_addr = -1; 3181 switch (env->error_code) { 3182 case 0x80: 3183 /* BPT */ 3184 info.si_signo = TARGET_SIGTRAP; 3185 info.si_errno = 0; 3186 info.si_code = TARGET_TRAP_BRKPT; 3187 info._sifields._sigfault._addr = env->pc; 3188 queue_signal(env, info.si_signo, &info); 3189 break; 3190 case 0x81: 3191 /* BUGCHK */ 3192 info.si_signo = TARGET_SIGTRAP; 3193 info.si_errno = 0; 3194 info.si_code = 0; 3195 info._sifields._sigfault._addr = env->pc; 3196 queue_signal(env, info.si_signo, &info); 3197 break; 3198 case 0x83: 3199 /* CALLSYS */ 3200 trapnr = env->ir[IR_V0]; 3201 sysret = do_syscall(env, trapnr, 3202 env->ir[IR_A0], env->ir[IR_A1], 3203 env->ir[IR_A2], env->ir[IR_A3], 3204 env->ir[IR_A4], env->ir[IR_A5], 3205 0, 0); 3206 if (trapnr == TARGET_NR_sigreturn 3207 || trapnr == TARGET_NR_rt_sigreturn) { 3208 break; 3209 } 3210 /* Syscall writes 0 to V0 to bypass error check, similar 3211 to how this is handled internal to Linux kernel. 3212 (Ab)use trapnr temporarily as boolean indicating error. */ 3213 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3214 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3215 env->ir[IR_A3] = trapnr; 3216 break; 3217 case 0x86: 3218 /* IMB */ 3219 /* ??? We can probably elide the code using page_unprotect 3220 that is checking for self-modifying code. Instead we 3221 could simply call tb_flush here. Until we work out the 3222 changes required to turn off the extra write protection, 3223 this can be a no-op. */ 3224 break; 3225 case 0x9E: 3226 /* RDUNIQUE */ 3227 /* Handled in the translator for usermode. */ 3228 abort(); 3229 case 0x9F: 3230 /* WRUNIQUE */ 3231 /* Handled in the translator for usermode. */ 3232 abort(); 3233 case 0xAA: 3234 /* GENTRAP */ 3235 info.si_signo = TARGET_SIGFPE; 3236 switch (env->ir[IR_A0]) { 3237 case TARGET_GEN_INTOVF: 3238 info.si_code = TARGET_FPE_INTOVF; 3239 break; 3240 case TARGET_GEN_INTDIV: 3241 info.si_code = TARGET_FPE_INTDIV; 3242 break; 3243 case TARGET_GEN_FLTOVF: 3244 info.si_code = TARGET_FPE_FLTOVF; 3245 break; 3246 case TARGET_GEN_FLTUND: 3247 info.si_code = TARGET_FPE_FLTUND; 3248 break; 3249 case TARGET_GEN_FLTINV: 3250 info.si_code = TARGET_FPE_FLTINV; 3251 break; 3252 case TARGET_GEN_FLTINE: 3253 info.si_code = TARGET_FPE_FLTRES; 3254 break; 3255 case TARGET_GEN_ROPRAND: 3256 info.si_code = 0; 3257 break; 3258 default: 3259 info.si_signo = TARGET_SIGTRAP; 3260 info.si_code = 0; 3261 break; 3262 } 3263 info.si_errno = 0; 3264 info._sifields._sigfault._addr = env->pc; 3265 queue_signal(env, info.si_signo, &info); 3266 break; 3267 default: 3268 goto do_sigill; 3269 } 3270 break; 3271 case EXCP_DEBUG: 3272 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3273 if (info.si_signo) { 3274 env->lock_addr = -1; 3275 info.si_errno = 0; 3276 info.si_code = TARGET_TRAP_BRKPT; 3277 queue_signal(env, info.si_signo, &info); 3278 } 3279 break; 3280 case EXCP_STL_C: 3281 case EXCP_STQ_C: 3282 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3283 break; 3284 case EXCP_INTERRUPT: 3285 /* Just indicate that signals should be handled asap. */ 3286 break; 3287 default: 3288 printf ("Unhandled trap: 0x%x\n", trapnr); 3289 cpu_dump_state(cs, stderr, fprintf, 0); 3290 exit (1); 3291 } 3292 process_pending_signals (env); 3293 } 3294 } 3295 #endif /* TARGET_ALPHA */ 3296 3297 #ifdef TARGET_S390X 3298 void cpu_loop(CPUS390XState *env) 3299 { 3300 CPUState *cs = CPU(s390_env_get_cpu(env)); 3301 int trapnr, n, sig; 3302 target_siginfo_t info; 3303 target_ulong addr; 3304 3305 while (1) { 3306 cpu_exec_start(cs); 3307 trapnr = cpu_s390x_exec(env); 3308 cpu_exec_end(cs); 3309 switch (trapnr) { 3310 case EXCP_INTERRUPT: 3311 /* Just indicate that signals should be handled asap. */ 3312 break; 3313 3314 case EXCP_SVC: 3315 n = env->int_svc_code; 3316 if (!n) { 3317 /* syscalls > 255 */ 3318 n = env->regs[1]; 3319 } 3320 env->psw.addr += env->int_svc_ilen; 3321 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3322 env->regs[4], env->regs[5], 3323 env->regs[6], env->regs[7], 0, 0); 3324 break; 3325 3326 case EXCP_DEBUG: 3327 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3328 if (sig) { 3329 n = TARGET_TRAP_BRKPT; 3330 goto do_signal_pc; 3331 } 3332 break; 3333 case EXCP_PGM: 3334 n = env->int_pgm_code; 3335 switch (n) { 3336 case PGM_OPERATION: 3337 case PGM_PRIVILEGED: 3338 sig = TARGET_SIGILL; 3339 n = TARGET_ILL_ILLOPC; 3340 goto do_signal_pc; 3341 case PGM_PROTECTION: 3342 case PGM_ADDRESSING: 3343 sig = TARGET_SIGSEGV; 3344 /* XXX: check env->error_code */ 3345 n = TARGET_SEGV_MAPERR; 3346 addr = env->__excp_addr; 3347 goto do_signal; 3348 case PGM_EXECUTE: 3349 case PGM_SPECIFICATION: 3350 case PGM_SPECIAL_OP: 3351 case PGM_OPERAND: 3352 do_sigill_opn: 3353 sig = TARGET_SIGILL; 3354 n = TARGET_ILL_ILLOPN; 3355 goto do_signal_pc; 3356 3357 case PGM_FIXPT_OVERFLOW: 3358 sig = TARGET_SIGFPE; 3359 n = TARGET_FPE_INTOVF; 3360 goto do_signal_pc; 3361 case PGM_FIXPT_DIVIDE: 3362 sig = TARGET_SIGFPE; 3363 n = TARGET_FPE_INTDIV; 3364 goto do_signal_pc; 3365 3366 case PGM_DATA: 3367 n = (env->fpc >> 8) & 0xff; 3368 if (n == 0xff) { 3369 /* compare-and-trap */ 3370 goto do_sigill_opn; 3371 } else { 3372 /* An IEEE exception, simulated or otherwise. */ 3373 if (n & 0x80) { 3374 n = TARGET_FPE_FLTINV; 3375 } else if (n & 0x40) { 3376 n = TARGET_FPE_FLTDIV; 3377 } else if (n & 0x20) { 3378 n = TARGET_FPE_FLTOVF; 3379 } else if (n & 0x10) { 3380 n = TARGET_FPE_FLTUND; 3381 } else if (n & 0x08) { 3382 n = TARGET_FPE_FLTRES; 3383 } else { 3384 /* ??? Quantum exception; BFP, DFP error. */ 3385 goto do_sigill_opn; 3386 } 3387 sig = TARGET_SIGFPE; 3388 goto do_signal_pc; 3389 } 3390 3391 default: 3392 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3393 cpu_dump_state(cs, stderr, fprintf, 0); 3394 exit(1); 3395 } 3396 break; 3397 3398 do_signal_pc: 3399 addr = env->psw.addr; 3400 do_signal: 3401 info.si_signo = sig; 3402 info.si_errno = 0; 3403 info.si_code = n; 3404 info._sifields._sigfault._addr = addr; 3405 queue_signal(env, info.si_signo, &info); 3406 break; 3407 3408 default: 3409 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3410 cpu_dump_state(cs, stderr, fprintf, 0); 3411 exit(1); 3412 } 3413 process_pending_signals (env); 3414 } 3415 } 3416 3417 #endif /* TARGET_S390X */ 3418 3419 THREAD CPUState *thread_cpu; 3420 3421 void task_settid(TaskState *ts) 3422 { 3423 if (ts->ts_tid == 0) { 3424 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3425 } 3426 } 3427 3428 void stop_all_tasks(void) 3429 { 3430 /* 3431 * We trust that when using NPTL, start_exclusive() 3432 * handles thread stopping correctly. 3433 */ 3434 start_exclusive(); 3435 } 3436 3437 /* Assumes contents are already zeroed. */ 3438 void init_task_state(TaskState *ts) 3439 { 3440 int i; 3441 3442 ts->used = 1; 3443 ts->first_free = ts->sigqueue_table; 3444 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3445 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3446 } 3447 ts->sigqueue_table[i].next = NULL; 3448 } 3449 3450 CPUArchState *cpu_copy(CPUArchState *env) 3451 { 3452 CPUState *cpu = ENV_GET_CPU(env); 3453 CPUState *new_cpu = cpu_init(cpu_model); 3454 CPUArchState *new_env = new_cpu->env_ptr; 3455 CPUBreakpoint *bp; 3456 CPUWatchpoint *wp; 3457 3458 /* Reset non arch specific state */ 3459 cpu_reset(new_cpu); 3460 3461 memcpy(new_env, env, sizeof(CPUArchState)); 3462 3463 /* Clone all break/watchpoints. 3464 Note: Once we support ptrace with hw-debug register access, make sure 3465 BP_CPU break/watchpoints are handled correctly on clone. */ 3466 QTAILQ_INIT(&cpu->breakpoints); 3467 QTAILQ_INIT(&cpu->watchpoints); 3468 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3469 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3470 } 3471 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3472 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3473 } 3474 3475 return new_env; 3476 } 3477 3478 static void handle_arg_help(const char *arg) 3479 { 3480 usage(); 3481 } 3482 3483 static void handle_arg_log(const char *arg) 3484 { 3485 int mask; 3486 3487 mask = qemu_str_to_log_mask(arg); 3488 if (!mask) { 3489 qemu_print_log_usage(stdout); 3490 exit(1); 3491 } 3492 qemu_set_log(mask); 3493 } 3494 3495 static void handle_arg_log_filename(const char *arg) 3496 { 3497 qemu_set_log_filename(arg); 3498 } 3499 3500 static void handle_arg_set_env(const char *arg) 3501 { 3502 char *r, *p, *token; 3503 r = p = strdup(arg); 3504 while ((token = strsep(&p, ",")) != NULL) { 3505 if (envlist_setenv(envlist, token) != 0) { 3506 usage(); 3507 } 3508 } 3509 free(r); 3510 } 3511 3512 static void handle_arg_unset_env(const char *arg) 3513 { 3514 char *r, *p, *token; 3515 r = p = strdup(arg); 3516 while ((token = strsep(&p, ",")) != NULL) { 3517 if (envlist_unsetenv(envlist, token) != 0) { 3518 usage(); 3519 } 3520 } 3521 free(r); 3522 } 3523 3524 static void handle_arg_argv0(const char *arg) 3525 { 3526 argv0 = strdup(arg); 3527 } 3528 3529 static void handle_arg_stack_size(const char *arg) 3530 { 3531 char *p; 3532 guest_stack_size = strtoul(arg, &p, 0); 3533 if (guest_stack_size == 0) { 3534 usage(); 3535 } 3536 3537 if (*p == 'M') { 3538 guest_stack_size *= 1024 * 1024; 3539 } else if (*p == 'k' || *p == 'K') { 3540 guest_stack_size *= 1024; 3541 } 3542 } 3543 3544 static void handle_arg_ld_prefix(const char *arg) 3545 { 3546 interp_prefix = strdup(arg); 3547 } 3548 3549 static void handle_arg_pagesize(const char *arg) 3550 { 3551 qemu_host_page_size = atoi(arg); 3552 if (qemu_host_page_size == 0 || 3553 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3554 fprintf(stderr, "page size must be a power of two\n"); 3555 exit(1); 3556 } 3557 } 3558 3559 static void handle_arg_randseed(const char *arg) 3560 { 3561 unsigned long long seed; 3562 3563 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3564 fprintf(stderr, "Invalid seed number: %s\n", arg); 3565 exit(1); 3566 } 3567 srand(seed); 3568 } 3569 3570 static void handle_arg_gdb(const char *arg) 3571 { 3572 gdbstub_port = atoi(arg); 3573 } 3574 3575 static void handle_arg_uname(const char *arg) 3576 { 3577 qemu_uname_release = strdup(arg); 3578 } 3579 3580 static void handle_arg_cpu(const char *arg) 3581 { 3582 cpu_model = strdup(arg); 3583 if (cpu_model == NULL || is_help_option(cpu_model)) { 3584 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3585 #if defined(cpu_list) 3586 cpu_list(stdout, &fprintf); 3587 #endif 3588 exit(1); 3589 } 3590 } 3591 3592 #if defined(CONFIG_USE_GUEST_BASE) 3593 static void handle_arg_guest_base(const char *arg) 3594 { 3595 guest_base = strtol(arg, NULL, 0); 3596 have_guest_base = 1; 3597 } 3598 3599 static void handle_arg_reserved_va(const char *arg) 3600 { 3601 char *p; 3602 int shift = 0; 3603 reserved_va = strtoul(arg, &p, 0); 3604 switch (*p) { 3605 case 'k': 3606 case 'K': 3607 shift = 10; 3608 break; 3609 case 'M': 3610 shift = 20; 3611 break; 3612 case 'G': 3613 shift = 30; 3614 break; 3615 } 3616 if (shift) { 3617 unsigned long unshifted = reserved_va; 3618 p++; 3619 reserved_va <<= shift; 3620 if (((reserved_va >> shift) != unshifted) 3621 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3622 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3623 #endif 3624 ) { 3625 fprintf(stderr, "Reserved virtual address too big\n"); 3626 exit(1); 3627 } 3628 } 3629 if (*p) { 3630 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3631 exit(1); 3632 } 3633 } 3634 #endif 3635 3636 static void handle_arg_singlestep(const char *arg) 3637 { 3638 singlestep = 1; 3639 } 3640 3641 static void handle_arg_strace(const char *arg) 3642 { 3643 do_strace = 1; 3644 } 3645 3646 static void handle_arg_version(const char *arg) 3647 { 3648 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3649 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3650 exit(0); 3651 } 3652 3653 struct qemu_argument { 3654 const char *argv; 3655 const char *env; 3656 bool has_arg; 3657 void (*handle_opt)(const char *arg); 3658 const char *example; 3659 const char *help; 3660 }; 3661 3662 static const struct qemu_argument arg_table[] = { 3663 {"h", "", false, handle_arg_help, 3664 "", "print this help"}, 3665 {"g", "QEMU_GDB", true, handle_arg_gdb, 3666 "port", "wait gdb connection to 'port'"}, 3667 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3668 "path", "set the elf interpreter prefix to 'path'"}, 3669 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3670 "size", "set the stack size to 'size' bytes"}, 3671 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3672 "model", "select CPU (-cpu help for list)"}, 3673 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3674 "var=value", "sets targets environment variable (see below)"}, 3675 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3676 "var", "unsets targets environment variable (see below)"}, 3677 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3678 "argv0", "forces target process argv[0] to be 'argv0'"}, 3679 {"r", "QEMU_UNAME", true, handle_arg_uname, 3680 "uname", "set qemu uname release string to 'uname'"}, 3681 #if defined(CONFIG_USE_GUEST_BASE) 3682 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3683 "address", "set guest_base address to 'address'"}, 3684 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3685 "size", "reserve 'size' bytes for guest virtual address space"}, 3686 #endif 3687 {"d", "QEMU_LOG", true, handle_arg_log, 3688 "item[,...]", "enable logging of specified items " 3689 "(use '-d help' for a list of items)"}, 3690 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3691 "logfile", "write logs to 'logfile' (default stderr)"}, 3692 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3693 "pagesize", "set the host page size to 'pagesize'"}, 3694 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3695 "", "run in singlestep mode"}, 3696 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3697 "", "log system calls"}, 3698 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 3699 "", "Seed for pseudo-random number generator"}, 3700 {"version", "QEMU_VERSION", false, handle_arg_version, 3701 "", "display version information and exit"}, 3702 {NULL, NULL, false, NULL, NULL, NULL} 3703 }; 3704 3705 static void usage(void) 3706 { 3707 const struct qemu_argument *arginfo; 3708 int maxarglen; 3709 int maxenvlen; 3710 3711 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3712 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3713 "\n" 3714 "Options and associated environment variables:\n" 3715 "\n"); 3716 3717 /* Calculate column widths. We must always have at least enough space 3718 * for the column header. 3719 */ 3720 maxarglen = strlen("Argument"); 3721 maxenvlen = strlen("Env-variable"); 3722 3723 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3724 int arglen = strlen(arginfo->argv); 3725 if (arginfo->has_arg) { 3726 arglen += strlen(arginfo->example) + 1; 3727 } 3728 if (strlen(arginfo->env) > maxenvlen) { 3729 maxenvlen = strlen(arginfo->env); 3730 } 3731 if (arglen > maxarglen) { 3732 maxarglen = arglen; 3733 } 3734 } 3735 3736 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3737 maxenvlen, "Env-variable"); 3738 3739 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3740 if (arginfo->has_arg) { 3741 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3742 (int)(maxarglen - strlen(arginfo->argv) - 1), 3743 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3744 } else { 3745 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3746 maxenvlen, arginfo->env, 3747 arginfo->help); 3748 } 3749 } 3750 3751 printf("\n" 3752 "Defaults:\n" 3753 "QEMU_LD_PREFIX = %s\n" 3754 "QEMU_STACK_SIZE = %ld byte\n", 3755 interp_prefix, 3756 guest_stack_size); 3757 3758 printf("\n" 3759 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3760 "QEMU_UNSET_ENV environment variables to set and unset\n" 3761 "environment variables for the target process.\n" 3762 "It is possible to provide several variables by separating them\n" 3763 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3764 "provide the -E and -U options multiple times.\n" 3765 "The following lines are equivalent:\n" 3766 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3767 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3768 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 3769 "Note that if you provide several changes to a single variable\n" 3770 "the last change will stay in effect.\n"); 3771 3772 exit(1); 3773 } 3774 3775 static int parse_args(int argc, char **argv) 3776 { 3777 const char *r; 3778 int optind; 3779 const struct qemu_argument *arginfo; 3780 3781 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3782 if (arginfo->env == NULL) { 3783 continue; 3784 } 3785 3786 r = getenv(arginfo->env); 3787 if (r != NULL) { 3788 arginfo->handle_opt(r); 3789 } 3790 } 3791 3792 optind = 1; 3793 for (;;) { 3794 if (optind >= argc) { 3795 break; 3796 } 3797 r = argv[optind]; 3798 if (r[0] != '-') { 3799 break; 3800 } 3801 optind++; 3802 r++; 3803 if (!strcmp(r, "-")) { 3804 break; 3805 } 3806 3807 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3808 if (!strcmp(r, arginfo->argv)) { 3809 if (arginfo->has_arg) { 3810 if (optind >= argc) { 3811 usage(); 3812 } 3813 arginfo->handle_opt(argv[optind]); 3814 optind++; 3815 } else { 3816 arginfo->handle_opt(NULL); 3817 } 3818 break; 3819 } 3820 } 3821 3822 /* no option matched the current argv */ 3823 if (arginfo->handle_opt == NULL) { 3824 usage(); 3825 } 3826 } 3827 3828 if (optind >= argc) { 3829 usage(); 3830 } 3831 3832 filename = argv[optind]; 3833 exec_path = argv[optind]; 3834 3835 return optind; 3836 } 3837 3838 int main(int argc, char **argv, char **envp) 3839 { 3840 struct target_pt_regs regs1, *regs = ®s1; 3841 struct image_info info1, *info = &info1; 3842 struct linux_binprm bprm; 3843 TaskState *ts; 3844 CPUArchState *env; 3845 CPUState *cpu; 3846 int optind; 3847 char **target_environ, **wrk; 3848 char **target_argv; 3849 int target_argc; 3850 int i; 3851 int ret; 3852 int execfd; 3853 3854 module_call_init(MODULE_INIT_QOM); 3855 3856 if ((envlist = envlist_create()) == NULL) { 3857 (void) fprintf(stderr, "Unable to allocate envlist\n"); 3858 exit(1); 3859 } 3860 3861 /* add current environment into the list */ 3862 for (wrk = environ; *wrk != NULL; wrk++) { 3863 (void) envlist_setenv(envlist, *wrk); 3864 } 3865 3866 /* Read the stack limit from the kernel. If it's "unlimited", 3867 then we can do little else besides use the default. */ 3868 { 3869 struct rlimit lim; 3870 if (getrlimit(RLIMIT_STACK, &lim) == 0 3871 && lim.rlim_cur != RLIM_INFINITY 3872 && lim.rlim_cur == (target_long)lim.rlim_cur) { 3873 guest_stack_size = lim.rlim_cur; 3874 } 3875 } 3876 3877 cpu_model = NULL; 3878 #if defined(cpudef_setup) 3879 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 3880 #endif 3881 3882 srand(time(NULL)); 3883 3884 optind = parse_args(argc, argv); 3885 3886 /* Zero out regs */ 3887 memset(regs, 0, sizeof(struct target_pt_regs)); 3888 3889 /* Zero out image_info */ 3890 memset(info, 0, sizeof(struct image_info)); 3891 3892 memset(&bprm, 0, sizeof (bprm)); 3893 3894 /* Scan interp_prefix dir for replacement files. */ 3895 init_paths(interp_prefix); 3896 3897 init_qemu_uname_release(); 3898 3899 if (cpu_model == NULL) { 3900 #if defined(TARGET_I386) 3901 #ifdef TARGET_X86_64 3902 cpu_model = "qemu64"; 3903 #else 3904 cpu_model = "qemu32"; 3905 #endif 3906 #elif defined(TARGET_ARM) 3907 cpu_model = "any"; 3908 #elif defined(TARGET_UNICORE32) 3909 cpu_model = "any"; 3910 #elif defined(TARGET_M68K) 3911 cpu_model = "any"; 3912 #elif defined(TARGET_SPARC) 3913 #ifdef TARGET_SPARC64 3914 cpu_model = "TI UltraSparc II"; 3915 #else 3916 cpu_model = "Fujitsu MB86904"; 3917 #endif 3918 #elif defined(TARGET_MIPS) 3919 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 3920 cpu_model = "5KEf"; 3921 #else 3922 cpu_model = "24Kf"; 3923 #endif 3924 #elif defined TARGET_OPENRISC 3925 cpu_model = "or1200"; 3926 #elif defined(TARGET_PPC) 3927 # ifdef TARGET_PPC64 3928 cpu_model = "POWER7"; 3929 # else 3930 cpu_model = "750"; 3931 # endif 3932 #else 3933 cpu_model = "any"; 3934 #endif 3935 } 3936 tcg_exec_init(0); 3937 cpu_exec_init_all(); 3938 /* NOTE: we need to init the CPU at this stage to get 3939 qemu_host_page_size */ 3940 cpu = cpu_init(cpu_model); 3941 if (!cpu) { 3942 fprintf(stderr, "Unable to find CPU definition\n"); 3943 exit(1); 3944 } 3945 env = cpu->env_ptr; 3946 cpu_reset(cpu); 3947 3948 thread_cpu = cpu; 3949 3950 if (getenv("QEMU_STRACE")) { 3951 do_strace = 1; 3952 } 3953 3954 if (getenv("QEMU_RAND_SEED")) { 3955 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 3956 } 3957 3958 target_environ = envlist_to_environ(envlist, NULL); 3959 envlist_free(envlist); 3960 3961 #if defined(CONFIG_USE_GUEST_BASE) 3962 /* 3963 * Now that page sizes are configured in cpu_init() we can do 3964 * proper page alignment for guest_base. 3965 */ 3966 guest_base = HOST_PAGE_ALIGN(guest_base); 3967 3968 if (reserved_va || have_guest_base) { 3969 guest_base = init_guest_space(guest_base, reserved_va, 0, 3970 have_guest_base); 3971 if (guest_base == (unsigned long)-1) { 3972 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 3973 "space for use as guest address space (check your virtual " 3974 "memory ulimit setting or reserve less using -R option)\n", 3975 reserved_va); 3976 exit(1); 3977 } 3978 3979 if (reserved_va) { 3980 mmap_next_start = reserved_va; 3981 } 3982 } 3983 #endif /* CONFIG_USE_GUEST_BASE */ 3984 3985 /* 3986 * Read in mmap_min_addr kernel parameter. This value is used 3987 * When loading the ELF image to determine whether guest_base 3988 * is needed. It is also used in mmap_find_vma. 3989 */ 3990 { 3991 FILE *fp; 3992 3993 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 3994 unsigned long tmp; 3995 if (fscanf(fp, "%lu", &tmp) == 1) { 3996 mmap_min_addr = tmp; 3997 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); 3998 } 3999 fclose(fp); 4000 } 4001 } 4002 4003 /* 4004 * Prepare copy of argv vector for target. 4005 */ 4006 target_argc = argc - optind; 4007 target_argv = calloc(target_argc + 1, sizeof (char *)); 4008 if (target_argv == NULL) { 4009 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4010 exit(1); 4011 } 4012 4013 /* 4014 * If argv0 is specified (using '-0' switch) we replace 4015 * argv[0] pointer with the given one. 4016 */ 4017 i = 0; 4018 if (argv0 != NULL) { 4019 target_argv[i++] = strdup(argv0); 4020 } 4021 for (; i < target_argc; i++) { 4022 target_argv[i] = strdup(argv[optind + i]); 4023 } 4024 target_argv[target_argc] = NULL; 4025 4026 ts = g_malloc0 (sizeof(TaskState)); 4027 init_task_state(ts); 4028 /* build Task State */ 4029 ts->info = info; 4030 ts->bprm = &bprm; 4031 cpu->opaque = ts; 4032 task_settid(ts); 4033 4034 execfd = qemu_getauxval(AT_EXECFD); 4035 if (execfd == 0) { 4036 execfd = open(filename, O_RDONLY); 4037 if (execfd < 0) { 4038 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4039 _exit(1); 4040 } 4041 } 4042 4043 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4044 info, &bprm); 4045 if (ret != 0) { 4046 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4047 _exit(1); 4048 } 4049 4050 for (wrk = target_environ; *wrk; wrk++) { 4051 free(*wrk); 4052 } 4053 4054 free(target_environ); 4055 4056 if (qemu_log_enabled()) { 4057 #if defined(CONFIG_USE_GUEST_BASE) 4058 qemu_log("guest_base 0x%lx\n", guest_base); 4059 #endif 4060 log_page_dump(); 4061 4062 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4063 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4064 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4065 info->start_code); 4066 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4067 info->start_data); 4068 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4069 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4070 info->start_stack); 4071 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4072 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4073 } 4074 4075 target_set_brk(info->brk); 4076 syscall_init(); 4077 signal_init(); 4078 4079 #if defined(CONFIG_USE_GUEST_BASE) 4080 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4081 generating the prologue until now so that the prologue can take 4082 the real value of GUEST_BASE into account. */ 4083 tcg_prologue_init(&tcg_ctx); 4084 #endif 4085 4086 #if defined(TARGET_I386) 4087 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4088 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4089 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4090 env->cr[4] |= CR4_OSFXSR_MASK; 4091 env->hflags |= HF_OSFXSR_MASK; 4092 } 4093 #ifndef TARGET_ABI32 4094 /* enable 64 bit mode if possible */ 4095 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4096 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4097 exit(1); 4098 } 4099 env->cr[4] |= CR4_PAE_MASK; 4100 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4101 env->hflags |= HF_LMA_MASK; 4102 #endif 4103 4104 /* flags setup : we activate the IRQs by default as in user mode */ 4105 env->eflags |= IF_MASK; 4106 4107 /* linux register setup */ 4108 #ifndef TARGET_ABI32 4109 env->regs[R_EAX] = regs->rax; 4110 env->regs[R_EBX] = regs->rbx; 4111 env->regs[R_ECX] = regs->rcx; 4112 env->regs[R_EDX] = regs->rdx; 4113 env->regs[R_ESI] = regs->rsi; 4114 env->regs[R_EDI] = regs->rdi; 4115 env->regs[R_EBP] = regs->rbp; 4116 env->regs[R_ESP] = regs->rsp; 4117 env->eip = regs->rip; 4118 #else 4119 env->regs[R_EAX] = regs->eax; 4120 env->regs[R_EBX] = regs->ebx; 4121 env->regs[R_ECX] = regs->ecx; 4122 env->regs[R_EDX] = regs->edx; 4123 env->regs[R_ESI] = regs->esi; 4124 env->regs[R_EDI] = regs->edi; 4125 env->regs[R_EBP] = regs->ebp; 4126 env->regs[R_ESP] = regs->esp; 4127 env->eip = regs->eip; 4128 #endif 4129 4130 /* linux interrupt setup */ 4131 #ifndef TARGET_ABI32 4132 env->idt.limit = 511; 4133 #else 4134 env->idt.limit = 255; 4135 #endif 4136 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4137 PROT_READ|PROT_WRITE, 4138 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4139 idt_table = g2h(env->idt.base); 4140 set_idt(0, 0); 4141 set_idt(1, 0); 4142 set_idt(2, 0); 4143 set_idt(3, 3); 4144 set_idt(4, 3); 4145 set_idt(5, 0); 4146 set_idt(6, 0); 4147 set_idt(7, 0); 4148 set_idt(8, 0); 4149 set_idt(9, 0); 4150 set_idt(10, 0); 4151 set_idt(11, 0); 4152 set_idt(12, 0); 4153 set_idt(13, 0); 4154 set_idt(14, 0); 4155 set_idt(15, 0); 4156 set_idt(16, 0); 4157 set_idt(17, 0); 4158 set_idt(18, 0); 4159 set_idt(19, 0); 4160 set_idt(0x80, 3); 4161 4162 /* linux segment setup */ 4163 { 4164 uint64_t *gdt_table; 4165 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4166 PROT_READ|PROT_WRITE, 4167 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4168 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4169 gdt_table = g2h(env->gdt.base); 4170 #ifdef TARGET_ABI32 4171 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4172 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4173 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4174 #else 4175 /* 64 bit code segment */ 4176 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4177 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4178 DESC_L_MASK | 4179 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4180 #endif 4181 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4182 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4183 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4184 } 4185 cpu_x86_load_seg(env, R_CS, __USER_CS); 4186 cpu_x86_load_seg(env, R_SS, __USER_DS); 4187 #ifdef TARGET_ABI32 4188 cpu_x86_load_seg(env, R_DS, __USER_DS); 4189 cpu_x86_load_seg(env, R_ES, __USER_DS); 4190 cpu_x86_load_seg(env, R_FS, __USER_DS); 4191 cpu_x86_load_seg(env, R_GS, __USER_DS); 4192 /* This hack makes Wine work... */ 4193 env->segs[R_FS].selector = 0; 4194 #else 4195 cpu_x86_load_seg(env, R_DS, 0); 4196 cpu_x86_load_seg(env, R_ES, 0); 4197 cpu_x86_load_seg(env, R_FS, 0); 4198 cpu_x86_load_seg(env, R_GS, 0); 4199 #endif 4200 #elif defined(TARGET_AARCH64) 4201 { 4202 int i; 4203 4204 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4205 fprintf(stderr, 4206 "The selected ARM CPU does not support 64 bit mode\n"); 4207 exit(1); 4208 } 4209 4210 for (i = 0; i < 31; i++) { 4211 env->xregs[i] = regs->regs[i]; 4212 } 4213 env->pc = regs->pc; 4214 env->xregs[31] = regs->sp; 4215 } 4216 #elif defined(TARGET_ARM) 4217 { 4218 int i; 4219 cpsr_write(env, regs->uregs[16], 0xffffffff); 4220 for(i = 0; i < 16; i++) { 4221 env->regs[i] = regs->uregs[i]; 4222 } 4223 /* Enable BE8. */ 4224 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4225 && (info->elf_flags & EF_ARM_BE8)) { 4226 env->bswap_code = 1; 4227 } 4228 } 4229 #elif defined(TARGET_UNICORE32) 4230 { 4231 int i; 4232 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4233 for (i = 0; i < 32; i++) { 4234 env->regs[i] = regs->uregs[i]; 4235 } 4236 } 4237 #elif defined(TARGET_SPARC) 4238 { 4239 int i; 4240 env->pc = regs->pc; 4241 env->npc = regs->npc; 4242 env->y = regs->y; 4243 for(i = 0; i < 8; i++) 4244 env->gregs[i] = regs->u_regs[i]; 4245 for(i = 0; i < 8; i++) 4246 env->regwptr[i] = regs->u_regs[i + 8]; 4247 } 4248 #elif defined(TARGET_PPC) 4249 { 4250 int i; 4251 4252 #if defined(TARGET_PPC64) 4253 #if defined(TARGET_ABI32) 4254 env->msr &= ~((target_ulong)1 << MSR_SF); 4255 #else 4256 env->msr |= (target_ulong)1 << MSR_SF; 4257 #endif 4258 #endif 4259 env->nip = regs->nip; 4260 for(i = 0; i < 32; i++) { 4261 env->gpr[i] = regs->gpr[i]; 4262 } 4263 } 4264 #elif defined(TARGET_M68K) 4265 { 4266 env->pc = regs->pc; 4267 env->dregs[0] = regs->d0; 4268 env->dregs[1] = regs->d1; 4269 env->dregs[2] = regs->d2; 4270 env->dregs[3] = regs->d3; 4271 env->dregs[4] = regs->d4; 4272 env->dregs[5] = regs->d5; 4273 env->dregs[6] = regs->d6; 4274 env->dregs[7] = regs->d7; 4275 env->aregs[0] = regs->a0; 4276 env->aregs[1] = regs->a1; 4277 env->aregs[2] = regs->a2; 4278 env->aregs[3] = regs->a3; 4279 env->aregs[4] = regs->a4; 4280 env->aregs[5] = regs->a5; 4281 env->aregs[6] = regs->a6; 4282 env->aregs[7] = regs->usp; 4283 env->sr = regs->sr; 4284 ts->sim_syscalls = 1; 4285 } 4286 #elif defined(TARGET_MICROBLAZE) 4287 { 4288 env->regs[0] = regs->r0; 4289 env->regs[1] = regs->r1; 4290 env->regs[2] = regs->r2; 4291 env->regs[3] = regs->r3; 4292 env->regs[4] = regs->r4; 4293 env->regs[5] = regs->r5; 4294 env->regs[6] = regs->r6; 4295 env->regs[7] = regs->r7; 4296 env->regs[8] = regs->r8; 4297 env->regs[9] = regs->r9; 4298 env->regs[10] = regs->r10; 4299 env->regs[11] = regs->r11; 4300 env->regs[12] = regs->r12; 4301 env->regs[13] = regs->r13; 4302 env->regs[14] = regs->r14; 4303 env->regs[15] = regs->r15; 4304 env->regs[16] = regs->r16; 4305 env->regs[17] = regs->r17; 4306 env->regs[18] = regs->r18; 4307 env->regs[19] = regs->r19; 4308 env->regs[20] = regs->r20; 4309 env->regs[21] = regs->r21; 4310 env->regs[22] = regs->r22; 4311 env->regs[23] = regs->r23; 4312 env->regs[24] = regs->r24; 4313 env->regs[25] = regs->r25; 4314 env->regs[26] = regs->r26; 4315 env->regs[27] = regs->r27; 4316 env->regs[28] = regs->r28; 4317 env->regs[29] = regs->r29; 4318 env->regs[30] = regs->r30; 4319 env->regs[31] = regs->r31; 4320 env->sregs[SR_PC] = regs->pc; 4321 } 4322 #elif defined(TARGET_MIPS) 4323 { 4324 int i; 4325 4326 for(i = 0; i < 32; i++) { 4327 env->active_tc.gpr[i] = regs->regs[i]; 4328 } 4329 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4330 if (regs->cp0_epc & 1) { 4331 env->hflags |= MIPS_HFLAG_M16; 4332 } 4333 } 4334 #elif defined(TARGET_OPENRISC) 4335 { 4336 int i; 4337 4338 for (i = 0; i < 32; i++) { 4339 env->gpr[i] = regs->gpr[i]; 4340 } 4341 4342 env->sr = regs->sr; 4343 env->pc = regs->pc; 4344 } 4345 #elif defined(TARGET_SH4) 4346 { 4347 int i; 4348 4349 for(i = 0; i < 16; i++) { 4350 env->gregs[i] = regs->regs[i]; 4351 } 4352 env->pc = regs->pc; 4353 } 4354 #elif defined(TARGET_ALPHA) 4355 { 4356 int i; 4357 4358 for(i = 0; i < 28; i++) { 4359 env->ir[i] = ((abi_ulong *)regs)[i]; 4360 } 4361 env->ir[IR_SP] = regs->usp; 4362 env->pc = regs->pc; 4363 } 4364 #elif defined(TARGET_CRIS) 4365 { 4366 env->regs[0] = regs->r0; 4367 env->regs[1] = regs->r1; 4368 env->regs[2] = regs->r2; 4369 env->regs[3] = regs->r3; 4370 env->regs[4] = regs->r4; 4371 env->regs[5] = regs->r5; 4372 env->regs[6] = regs->r6; 4373 env->regs[7] = regs->r7; 4374 env->regs[8] = regs->r8; 4375 env->regs[9] = regs->r9; 4376 env->regs[10] = regs->r10; 4377 env->regs[11] = regs->r11; 4378 env->regs[12] = regs->r12; 4379 env->regs[13] = regs->r13; 4380 env->regs[14] = info->start_stack; 4381 env->regs[15] = regs->acr; 4382 env->pc = regs->erp; 4383 } 4384 #elif defined(TARGET_S390X) 4385 { 4386 int i; 4387 for (i = 0; i < 16; i++) { 4388 env->regs[i] = regs->gprs[i]; 4389 } 4390 env->psw.mask = regs->psw.mask; 4391 env->psw.addr = regs->psw.addr; 4392 } 4393 #else 4394 #error unsupported target CPU 4395 #endif 4396 4397 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4398 ts->stack_base = info->start_stack; 4399 ts->heap_base = info->brk; 4400 /* This will be filled in on the first SYS_HEAPINFO call. */ 4401 ts->heap_limit = 0; 4402 #endif 4403 4404 if (gdbstub_port) { 4405 if (gdbserver_start(gdbstub_port) < 0) { 4406 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4407 gdbstub_port); 4408 exit(1); 4409 } 4410 gdb_handlesig(cpu, 0); 4411 } 4412 cpu_loop(env); 4413 /* never exits */ 4414 return 0; 4415 } 4416