1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 37 char *exec_path; 38 39 int singlestep; 40 static const char *filename; 41 static const char *argv0; 42 static int gdbstub_port; 43 static envlist_t *envlist; 44 static const char *cpu_model; 45 unsigned long mmap_min_addr; 46 unsigned long guest_base; 47 int have_guest_base; 48 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 49 /* 50 * When running 32-on-64 we should make sure we can fit all of the possible 51 * guest address space into a contiguous chunk of virtual host memory. 52 * 53 * This way we will never overlap with our own libraries or binaries or stack 54 * or anything else that QEMU maps. 55 */ 56 # ifdef TARGET_MIPS 57 /* MIPS only supports 31 bits of virtual address space for user space */ 58 unsigned long reserved_va = 0x77000000; 59 # else 60 unsigned long reserved_va = 0xf7000000; 61 # endif 62 #else 63 unsigned long reserved_va; 64 #endif 65 66 static void usage(void); 67 68 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 69 const char *qemu_uname_release; 70 71 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 72 we allocate a bigger stack. Need a better solution, for example 73 by remapping the process stack directly at the right place */ 74 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 75 76 void gemu_log(const char *fmt, ...) 77 { 78 va_list ap; 79 80 va_start(ap, fmt); 81 vfprintf(stderr, fmt, ap); 82 va_end(ap); 83 } 84 85 #if defined(TARGET_I386) 86 int cpu_get_pic_interrupt(CPUX86State *env) 87 { 88 return -1; 89 } 90 #endif 91 92 /***********************************************************/ 93 /* Helper routines for implementing atomic operations. */ 94 95 /* To implement exclusive operations we force all cpus to syncronise. 96 We don't require a full sync, only that no cpus are executing guest code. 97 The alternative is to map target atomic ops onto host equivalents, 98 which requires quite a lot of per host/target work. */ 99 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 100 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 101 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 102 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 103 static int pending_cpus; 104 105 /* Make sure everything is in a consistent state for calling fork(). */ 106 void fork_start(void) 107 { 108 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 109 pthread_mutex_lock(&exclusive_lock); 110 mmap_fork_start(); 111 } 112 113 void fork_end(int child) 114 { 115 mmap_fork_end(child); 116 if (child) { 117 CPUState *cpu, *next_cpu; 118 /* Child processes created by fork() only have a single thread. 119 Discard information about the parent threads. */ 120 CPU_FOREACH_SAFE(cpu, next_cpu) { 121 if (cpu != thread_cpu) { 122 QTAILQ_REMOVE(&cpus, thread_cpu, node); 123 } 124 } 125 pending_cpus = 0; 126 pthread_mutex_init(&exclusive_lock, NULL); 127 pthread_mutex_init(&cpu_list_mutex, NULL); 128 pthread_cond_init(&exclusive_cond, NULL); 129 pthread_cond_init(&exclusive_resume, NULL); 130 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); 131 gdbserver_fork(thread_cpu); 132 } else { 133 pthread_mutex_unlock(&exclusive_lock); 134 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 135 } 136 } 137 138 /* Wait for pending exclusive operations to complete. The exclusive lock 139 must be held. */ 140 static inline void exclusive_idle(void) 141 { 142 while (pending_cpus) { 143 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 144 } 145 } 146 147 /* Start an exclusive operation. 148 Must only be called from outside cpu_arm_exec. */ 149 static inline void start_exclusive(void) 150 { 151 CPUState *other_cpu; 152 153 pthread_mutex_lock(&exclusive_lock); 154 exclusive_idle(); 155 156 pending_cpus = 1; 157 /* Make all other cpus stop executing. */ 158 CPU_FOREACH(other_cpu) { 159 if (other_cpu->running) { 160 pending_cpus++; 161 cpu_exit(other_cpu); 162 } 163 } 164 if (pending_cpus > 1) { 165 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 166 } 167 } 168 169 /* Finish an exclusive operation. */ 170 static inline void __attribute__((unused)) end_exclusive(void) 171 { 172 pending_cpus = 0; 173 pthread_cond_broadcast(&exclusive_resume); 174 pthread_mutex_unlock(&exclusive_lock); 175 } 176 177 /* Wait for exclusive ops to finish, and begin cpu execution. */ 178 static inline void cpu_exec_start(CPUState *cpu) 179 { 180 pthread_mutex_lock(&exclusive_lock); 181 exclusive_idle(); 182 cpu->running = true; 183 pthread_mutex_unlock(&exclusive_lock); 184 } 185 186 /* Mark cpu as not executing, and release pending exclusive ops. */ 187 static inline void cpu_exec_end(CPUState *cpu) 188 { 189 pthread_mutex_lock(&exclusive_lock); 190 cpu->running = false; 191 if (pending_cpus > 1) { 192 pending_cpus--; 193 if (pending_cpus == 1) { 194 pthread_cond_signal(&exclusive_cond); 195 } 196 } 197 exclusive_idle(); 198 pthread_mutex_unlock(&exclusive_lock); 199 } 200 201 void cpu_list_lock(void) 202 { 203 pthread_mutex_lock(&cpu_list_mutex); 204 } 205 206 void cpu_list_unlock(void) 207 { 208 pthread_mutex_unlock(&cpu_list_mutex); 209 } 210 211 212 #ifdef TARGET_I386 213 /***********************************************************/ 214 /* CPUX86 core interface */ 215 216 uint64_t cpu_get_tsc(CPUX86State *env) 217 { 218 return cpu_get_real_ticks(); 219 } 220 221 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 222 int flags) 223 { 224 unsigned int e1, e2; 225 uint32_t *p; 226 e1 = (addr << 16) | (limit & 0xffff); 227 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 228 e2 |= flags; 229 p = ptr; 230 p[0] = tswap32(e1); 231 p[1] = tswap32(e2); 232 } 233 234 static uint64_t *idt_table; 235 #ifdef TARGET_X86_64 236 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 237 uint64_t addr, unsigned int sel) 238 { 239 uint32_t *p, e1, e2; 240 e1 = (addr & 0xffff) | (sel << 16); 241 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 242 p = ptr; 243 p[0] = tswap32(e1); 244 p[1] = tswap32(e2); 245 p[2] = tswap32(addr >> 32); 246 p[3] = 0; 247 } 248 /* only dpl matters as we do only user space emulation */ 249 static void set_idt(int n, unsigned int dpl) 250 { 251 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 252 } 253 #else 254 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 255 uint32_t addr, unsigned int sel) 256 { 257 uint32_t *p, e1, e2; 258 e1 = (addr & 0xffff) | (sel << 16); 259 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 260 p = ptr; 261 p[0] = tswap32(e1); 262 p[1] = tswap32(e2); 263 } 264 265 /* only dpl matters as we do only user space emulation */ 266 static void set_idt(int n, unsigned int dpl) 267 { 268 set_gate(idt_table + n, 0, dpl, 0, 0); 269 } 270 #endif 271 272 void cpu_loop(CPUX86State *env) 273 { 274 CPUState *cs = CPU(x86_env_get_cpu(env)); 275 int trapnr; 276 abi_ulong pc; 277 target_siginfo_t info; 278 279 for(;;) { 280 cpu_exec_start(cs); 281 trapnr = cpu_x86_exec(cs); 282 cpu_exec_end(cs); 283 switch(trapnr) { 284 case 0x80: 285 /* linux syscall from int $0x80 */ 286 env->regs[R_EAX] = do_syscall(env, 287 env->regs[R_EAX], 288 env->regs[R_EBX], 289 env->regs[R_ECX], 290 env->regs[R_EDX], 291 env->regs[R_ESI], 292 env->regs[R_EDI], 293 env->regs[R_EBP], 294 0, 0); 295 break; 296 #ifndef TARGET_ABI32 297 case EXCP_SYSCALL: 298 /* linux syscall from syscall instruction */ 299 env->regs[R_EAX] = do_syscall(env, 300 env->regs[R_EAX], 301 env->regs[R_EDI], 302 env->regs[R_ESI], 303 env->regs[R_EDX], 304 env->regs[10], 305 env->regs[8], 306 env->regs[9], 307 0, 0); 308 break; 309 #endif 310 case EXCP0B_NOSEG: 311 case EXCP0C_STACK: 312 info.si_signo = TARGET_SIGBUS; 313 info.si_errno = 0; 314 info.si_code = TARGET_SI_KERNEL; 315 info._sifields._sigfault._addr = 0; 316 queue_signal(env, info.si_signo, &info); 317 break; 318 case EXCP0D_GPF: 319 /* XXX: potential problem if ABI32 */ 320 #ifndef TARGET_X86_64 321 if (env->eflags & VM_MASK) { 322 handle_vm86_fault(env); 323 } else 324 #endif 325 { 326 info.si_signo = TARGET_SIGSEGV; 327 info.si_errno = 0; 328 info.si_code = TARGET_SI_KERNEL; 329 info._sifields._sigfault._addr = 0; 330 queue_signal(env, info.si_signo, &info); 331 } 332 break; 333 case EXCP0E_PAGE: 334 info.si_signo = TARGET_SIGSEGV; 335 info.si_errno = 0; 336 if (!(env->error_code & 1)) 337 info.si_code = TARGET_SEGV_MAPERR; 338 else 339 info.si_code = TARGET_SEGV_ACCERR; 340 info._sifields._sigfault._addr = env->cr[2]; 341 queue_signal(env, info.si_signo, &info); 342 break; 343 case EXCP00_DIVZ: 344 #ifndef TARGET_X86_64 345 if (env->eflags & VM_MASK) { 346 handle_vm86_trap(env, trapnr); 347 } else 348 #endif 349 { 350 /* division by zero */ 351 info.si_signo = TARGET_SIGFPE; 352 info.si_errno = 0; 353 info.si_code = TARGET_FPE_INTDIV; 354 info._sifields._sigfault._addr = env->eip; 355 queue_signal(env, info.si_signo, &info); 356 } 357 break; 358 case EXCP01_DB: 359 case EXCP03_INT3: 360 #ifndef TARGET_X86_64 361 if (env->eflags & VM_MASK) { 362 handle_vm86_trap(env, trapnr); 363 } else 364 #endif 365 { 366 info.si_signo = TARGET_SIGTRAP; 367 info.si_errno = 0; 368 if (trapnr == EXCP01_DB) { 369 info.si_code = TARGET_TRAP_BRKPT; 370 info._sifields._sigfault._addr = env->eip; 371 } else { 372 info.si_code = TARGET_SI_KERNEL; 373 info._sifields._sigfault._addr = 0; 374 } 375 queue_signal(env, info.si_signo, &info); 376 } 377 break; 378 case EXCP04_INTO: 379 case EXCP05_BOUND: 380 #ifndef TARGET_X86_64 381 if (env->eflags & VM_MASK) { 382 handle_vm86_trap(env, trapnr); 383 } else 384 #endif 385 { 386 info.si_signo = TARGET_SIGSEGV; 387 info.si_errno = 0; 388 info.si_code = TARGET_SI_KERNEL; 389 info._sifields._sigfault._addr = 0; 390 queue_signal(env, info.si_signo, &info); 391 } 392 break; 393 case EXCP06_ILLOP: 394 info.si_signo = TARGET_SIGILL; 395 info.si_errno = 0; 396 info.si_code = TARGET_ILL_ILLOPN; 397 info._sifields._sigfault._addr = env->eip; 398 queue_signal(env, info.si_signo, &info); 399 break; 400 case EXCP_INTERRUPT: 401 /* just indicate that signals should be handled asap */ 402 break; 403 case EXCP_DEBUG: 404 { 405 int sig; 406 407 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 408 if (sig) 409 { 410 info.si_signo = sig; 411 info.si_errno = 0; 412 info.si_code = TARGET_TRAP_BRKPT; 413 queue_signal(env, info.si_signo, &info); 414 } 415 } 416 break; 417 default: 418 pc = env->segs[R_CS].base + env->eip; 419 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 420 (long)pc, trapnr); 421 abort(); 422 } 423 process_pending_signals(env); 424 } 425 } 426 #endif 427 428 #ifdef TARGET_ARM 429 430 #define get_user_code_u32(x, gaddr, doswap) \ 431 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 432 if (!__r && (doswap)) { \ 433 (x) = bswap32(x); \ 434 } \ 435 __r; \ 436 }) 437 438 #define get_user_code_u16(x, gaddr, doswap) \ 439 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 440 if (!__r && (doswap)) { \ 441 (x) = bswap16(x); \ 442 } \ 443 __r; \ 444 }) 445 446 #ifdef TARGET_ABI32 447 /* Commpage handling -- there is no commpage for AArch64 */ 448 449 /* 450 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 451 * Input: 452 * r0 = pointer to oldval 453 * r1 = pointer to newval 454 * r2 = pointer to target value 455 * 456 * Output: 457 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 458 * C set if *ptr was changed, clear if no exchange happened 459 * 460 * Note segv's in kernel helpers are a bit tricky, we can set the 461 * data address sensibly but the PC address is just the entry point. 462 */ 463 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 464 { 465 uint64_t oldval, newval, val; 466 uint32_t addr, cpsr; 467 target_siginfo_t info; 468 469 /* Based on the 32 bit code in do_kernel_trap */ 470 471 /* XXX: This only works between threads, not between processes. 472 It's probably possible to implement this with native host 473 operations. However things like ldrex/strex are much harder so 474 there's not much point trying. */ 475 start_exclusive(); 476 cpsr = cpsr_read(env); 477 addr = env->regs[2]; 478 479 if (get_user_u64(oldval, env->regs[0])) { 480 env->exception.vaddress = env->regs[0]; 481 goto segv; 482 }; 483 484 if (get_user_u64(newval, env->regs[1])) { 485 env->exception.vaddress = env->regs[1]; 486 goto segv; 487 }; 488 489 if (get_user_u64(val, addr)) { 490 env->exception.vaddress = addr; 491 goto segv; 492 } 493 494 if (val == oldval) { 495 val = newval; 496 497 if (put_user_u64(val, addr)) { 498 env->exception.vaddress = addr; 499 goto segv; 500 }; 501 502 env->regs[0] = 0; 503 cpsr |= CPSR_C; 504 } else { 505 env->regs[0] = -1; 506 cpsr &= ~CPSR_C; 507 } 508 cpsr_write(env, cpsr, CPSR_C); 509 end_exclusive(); 510 return; 511 512 segv: 513 end_exclusive(); 514 /* We get the PC of the entry address - which is as good as anything, 515 on a real kernel what you get depends on which mode it uses. */ 516 info.si_signo = TARGET_SIGSEGV; 517 info.si_errno = 0; 518 /* XXX: check env->error_code */ 519 info.si_code = TARGET_SEGV_MAPERR; 520 info._sifields._sigfault._addr = env->exception.vaddress; 521 queue_signal(env, info.si_signo, &info); 522 } 523 524 /* Handle a jump to the kernel code page. */ 525 static int 526 do_kernel_trap(CPUARMState *env) 527 { 528 uint32_t addr; 529 uint32_t cpsr; 530 uint32_t val; 531 532 switch (env->regs[15]) { 533 case 0xffff0fa0: /* __kernel_memory_barrier */ 534 /* ??? No-op. Will need to do better for SMP. */ 535 break; 536 case 0xffff0fc0: /* __kernel_cmpxchg */ 537 /* XXX: This only works between threads, not between processes. 538 It's probably possible to implement this with native host 539 operations. However things like ldrex/strex are much harder so 540 there's not much point trying. */ 541 start_exclusive(); 542 cpsr = cpsr_read(env); 543 addr = env->regs[2]; 544 /* FIXME: This should SEGV if the access fails. */ 545 if (get_user_u32(val, addr)) 546 val = ~env->regs[0]; 547 if (val == env->regs[0]) { 548 val = env->regs[1]; 549 /* FIXME: Check for segfaults. */ 550 put_user_u32(val, addr); 551 env->regs[0] = 0; 552 cpsr |= CPSR_C; 553 } else { 554 env->regs[0] = -1; 555 cpsr &= ~CPSR_C; 556 } 557 cpsr_write(env, cpsr, CPSR_C); 558 end_exclusive(); 559 break; 560 case 0xffff0fe0: /* __kernel_get_tls */ 561 env->regs[0] = cpu_get_tls(env); 562 break; 563 case 0xffff0f60: /* __kernel_cmpxchg64 */ 564 arm_kernel_cmpxchg64_helper(env); 565 break; 566 567 default: 568 return 1; 569 } 570 /* Jump back to the caller. */ 571 addr = env->regs[14]; 572 if (addr & 1) { 573 env->thumb = 1; 574 addr &= ~1; 575 } 576 env->regs[15] = addr; 577 578 return 0; 579 } 580 581 /* Store exclusive handling for AArch32 */ 582 static int do_strex(CPUARMState *env) 583 { 584 uint64_t val; 585 int size; 586 int rc = 1; 587 int segv = 0; 588 uint32_t addr; 589 start_exclusive(); 590 if (env->exclusive_addr != env->exclusive_test) { 591 goto fail; 592 } 593 /* We know we're always AArch32 so the address is in uint32_t range 594 * unless it was the -1 exclusive-monitor-lost value (which won't 595 * match exclusive_test above). 596 */ 597 assert(extract64(env->exclusive_addr, 32, 32) == 0); 598 addr = env->exclusive_addr; 599 size = env->exclusive_info & 0xf; 600 switch (size) { 601 case 0: 602 segv = get_user_u8(val, addr); 603 break; 604 case 1: 605 segv = get_user_u16(val, addr); 606 break; 607 case 2: 608 case 3: 609 segv = get_user_u32(val, addr); 610 break; 611 default: 612 abort(); 613 } 614 if (segv) { 615 env->exception.vaddress = addr; 616 goto done; 617 } 618 if (size == 3) { 619 uint32_t valhi; 620 segv = get_user_u32(valhi, addr + 4); 621 if (segv) { 622 env->exception.vaddress = addr + 4; 623 goto done; 624 } 625 val = deposit64(val, 32, 32, valhi); 626 } 627 if (val != env->exclusive_val) { 628 goto fail; 629 } 630 631 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 632 switch (size) { 633 case 0: 634 segv = put_user_u8(val, addr); 635 break; 636 case 1: 637 segv = put_user_u16(val, addr); 638 break; 639 case 2: 640 case 3: 641 segv = put_user_u32(val, addr); 642 break; 643 } 644 if (segv) { 645 env->exception.vaddress = addr; 646 goto done; 647 } 648 if (size == 3) { 649 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 650 segv = put_user_u32(val, addr + 4); 651 if (segv) { 652 env->exception.vaddress = addr + 4; 653 goto done; 654 } 655 } 656 rc = 0; 657 fail: 658 env->regs[15] += 4; 659 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 660 done: 661 end_exclusive(); 662 return segv; 663 } 664 665 void cpu_loop(CPUARMState *env) 666 { 667 CPUState *cs = CPU(arm_env_get_cpu(env)); 668 int trapnr; 669 unsigned int n, insn; 670 target_siginfo_t info; 671 uint32_t addr; 672 673 for(;;) { 674 cpu_exec_start(cs); 675 trapnr = cpu_arm_exec(cs); 676 cpu_exec_end(cs); 677 switch(trapnr) { 678 case EXCP_UDEF: 679 { 680 TaskState *ts = cs->opaque; 681 uint32_t opcode; 682 int rc; 683 684 /* we handle the FPU emulation here, as Linux */ 685 /* we get the opcode */ 686 /* FIXME - what to do if get_user() fails? */ 687 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 688 689 rc = EmulateAll(opcode, &ts->fpa, env); 690 if (rc == 0) { /* illegal instruction */ 691 info.si_signo = TARGET_SIGILL; 692 info.si_errno = 0; 693 info.si_code = TARGET_ILL_ILLOPN; 694 info._sifields._sigfault._addr = env->regs[15]; 695 queue_signal(env, info.si_signo, &info); 696 } else if (rc < 0) { /* FP exception */ 697 int arm_fpe=0; 698 699 /* translate softfloat flags to FPSR flags */ 700 if (-rc & float_flag_invalid) 701 arm_fpe |= BIT_IOC; 702 if (-rc & float_flag_divbyzero) 703 arm_fpe |= BIT_DZC; 704 if (-rc & float_flag_overflow) 705 arm_fpe |= BIT_OFC; 706 if (-rc & float_flag_underflow) 707 arm_fpe |= BIT_UFC; 708 if (-rc & float_flag_inexact) 709 arm_fpe |= BIT_IXC; 710 711 FPSR fpsr = ts->fpa.fpsr; 712 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 713 714 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 715 info.si_signo = TARGET_SIGFPE; 716 info.si_errno = 0; 717 718 /* ordered by priority, least first */ 719 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 720 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 721 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 722 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 723 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 724 725 info._sifields._sigfault._addr = env->regs[15]; 726 queue_signal(env, info.si_signo, &info); 727 } else { 728 env->regs[15] += 4; 729 } 730 731 /* accumulate unenabled exceptions */ 732 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 733 fpsr |= BIT_IXC; 734 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 735 fpsr |= BIT_UFC; 736 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 737 fpsr |= BIT_OFC; 738 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 739 fpsr |= BIT_DZC; 740 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 741 fpsr |= BIT_IOC; 742 ts->fpa.fpsr=fpsr; 743 } else { /* everything OK */ 744 /* increment PC */ 745 env->regs[15] += 4; 746 } 747 } 748 break; 749 case EXCP_SWI: 750 case EXCP_BKPT: 751 { 752 env->eabi = 1; 753 /* system call */ 754 if (trapnr == EXCP_BKPT) { 755 if (env->thumb) { 756 /* FIXME - what to do if get_user() fails? */ 757 get_user_code_u16(insn, env->regs[15], env->bswap_code); 758 n = insn & 0xff; 759 env->regs[15] += 2; 760 } else { 761 /* FIXME - what to do if get_user() fails? */ 762 get_user_code_u32(insn, env->regs[15], env->bswap_code); 763 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 764 env->regs[15] += 4; 765 } 766 } else { 767 if (env->thumb) { 768 /* FIXME - what to do if get_user() fails? */ 769 get_user_code_u16(insn, env->regs[15] - 2, 770 env->bswap_code); 771 n = insn & 0xff; 772 } else { 773 /* FIXME - what to do if get_user() fails? */ 774 get_user_code_u32(insn, env->regs[15] - 4, 775 env->bswap_code); 776 n = insn & 0xffffff; 777 } 778 } 779 780 if (n == ARM_NR_cacheflush) { 781 /* nop */ 782 } else if (n == ARM_NR_semihosting 783 || n == ARM_NR_thumb_semihosting) { 784 env->regs[0] = do_arm_semihosting (env); 785 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 786 /* linux syscall */ 787 if (env->thumb || n == 0) { 788 n = env->regs[7]; 789 } else { 790 n -= ARM_SYSCALL_BASE; 791 env->eabi = 0; 792 } 793 if ( n > ARM_NR_BASE) { 794 switch (n) { 795 case ARM_NR_cacheflush: 796 /* nop */ 797 break; 798 case ARM_NR_set_tls: 799 cpu_set_tls(env, env->regs[0]); 800 env->regs[0] = 0; 801 break; 802 case ARM_NR_breakpoint: 803 env->regs[15] -= env->thumb ? 2 : 4; 804 goto excp_debug; 805 default: 806 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 807 n); 808 env->regs[0] = -TARGET_ENOSYS; 809 break; 810 } 811 } else { 812 env->regs[0] = do_syscall(env, 813 n, 814 env->regs[0], 815 env->regs[1], 816 env->regs[2], 817 env->regs[3], 818 env->regs[4], 819 env->regs[5], 820 0, 0); 821 } 822 } else { 823 goto error; 824 } 825 } 826 break; 827 case EXCP_INTERRUPT: 828 /* just indicate that signals should be handled asap */ 829 break; 830 case EXCP_STREX: 831 if (!do_strex(env)) { 832 break; 833 } 834 /* fall through for segv */ 835 case EXCP_PREFETCH_ABORT: 836 case EXCP_DATA_ABORT: 837 addr = env->exception.vaddress; 838 { 839 info.si_signo = TARGET_SIGSEGV; 840 info.si_errno = 0; 841 /* XXX: check env->error_code */ 842 info.si_code = TARGET_SEGV_MAPERR; 843 info._sifields._sigfault._addr = addr; 844 queue_signal(env, info.si_signo, &info); 845 } 846 break; 847 case EXCP_DEBUG: 848 excp_debug: 849 { 850 int sig; 851 852 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 853 if (sig) 854 { 855 info.si_signo = sig; 856 info.si_errno = 0; 857 info.si_code = TARGET_TRAP_BRKPT; 858 queue_signal(env, info.si_signo, &info); 859 } 860 } 861 break; 862 case EXCP_KERNEL_TRAP: 863 if (do_kernel_trap(env)) 864 goto error; 865 break; 866 default: 867 error: 868 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 869 trapnr); 870 cpu_dump_state(cs, stderr, fprintf, 0); 871 abort(); 872 } 873 process_pending_signals(env); 874 } 875 } 876 877 #else 878 879 /* 880 * Handle AArch64 store-release exclusive 881 * 882 * rs = gets the status result of store exclusive 883 * rt = is the register that is stored 884 * rt2 = is the second register store (in STP) 885 * 886 */ 887 static int do_strex_a64(CPUARMState *env) 888 { 889 uint64_t val; 890 int size; 891 bool is_pair; 892 int rc = 1; 893 int segv = 0; 894 uint64_t addr; 895 int rs, rt, rt2; 896 897 start_exclusive(); 898 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 899 size = extract32(env->exclusive_info, 0, 2); 900 is_pair = extract32(env->exclusive_info, 2, 1); 901 rs = extract32(env->exclusive_info, 4, 5); 902 rt = extract32(env->exclusive_info, 9, 5); 903 rt2 = extract32(env->exclusive_info, 14, 5); 904 905 addr = env->exclusive_addr; 906 907 if (addr != env->exclusive_test) { 908 goto finish; 909 } 910 911 switch (size) { 912 case 0: 913 segv = get_user_u8(val, addr); 914 break; 915 case 1: 916 segv = get_user_u16(val, addr); 917 break; 918 case 2: 919 segv = get_user_u32(val, addr); 920 break; 921 case 3: 922 segv = get_user_u64(val, addr); 923 break; 924 default: 925 abort(); 926 } 927 if (segv) { 928 env->exception.vaddress = addr; 929 goto error; 930 } 931 if (val != env->exclusive_val) { 932 goto finish; 933 } 934 if (is_pair) { 935 if (size == 2) { 936 segv = get_user_u32(val, addr + 4); 937 } else { 938 segv = get_user_u64(val, addr + 8); 939 } 940 if (segv) { 941 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 942 goto error; 943 } 944 if (val != env->exclusive_high) { 945 goto finish; 946 } 947 } 948 /* handle the zero register */ 949 val = rt == 31 ? 0 : env->xregs[rt]; 950 switch (size) { 951 case 0: 952 segv = put_user_u8(val, addr); 953 break; 954 case 1: 955 segv = put_user_u16(val, addr); 956 break; 957 case 2: 958 segv = put_user_u32(val, addr); 959 break; 960 case 3: 961 segv = put_user_u64(val, addr); 962 break; 963 } 964 if (segv) { 965 goto error; 966 } 967 if (is_pair) { 968 /* handle the zero register */ 969 val = rt2 == 31 ? 0 : env->xregs[rt2]; 970 if (size == 2) { 971 segv = put_user_u32(val, addr + 4); 972 } else { 973 segv = put_user_u64(val, addr + 8); 974 } 975 if (segv) { 976 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 977 goto error; 978 } 979 } 980 rc = 0; 981 finish: 982 env->pc += 4; 983 /* rs == 31 encodes a write to the ZR, thus throwing away 984 * the status return. This is rather silly but valid. 985 */ 986 if (rs < 31) { 987 env->xregs[rs] = rc; 988 } 989 error: 990 /* instruction faulted, PC does not advance */ 991 /* either way a strex releases any exclusive lock we have */ 992 env->exclusive_addr = -1; 993 end_exclusive(); 994 return segv; 995 } 996 997 /* AArch64 main loop */ 998 void cpu_loop(CPUARMState *env) 999 { 1000 CPUState *cs = CPU(arm_env_get_cpu(env)); 1001 int trapnr, sig; 1002 target_siginfo_t info; 1003 1004 for (;;) { 1005 cpu_exec_start(cs); 1006 trapnr = cpu_arm_exec(cs); 1007 cpu_exec_end(cs); 1008 1009 switch (trapnr) { 1010 case EXCP_SWI: 1011 env->xregs[0] = do_syscall(env, 1012 env->xregs[8], 1013 env->xregs[0], 1014 env->xregs[1], 1015 env->xregs[2], 1016 env->xregs[3], 1017 env->xregs[4], 1018 env->xregs[5], 1019 0, 0); 1020 break; 1021 case EXCP_INTERRUPT: 1022 /* just indicate that signals should be handled asap */ 1023 break; 1024 case EXCP_UDEF: 1025 info.si_signo = TARGET_SIGILL; 1026 info.si_errno = 0; 1027 info.si_code = TARGET_ILL_ILLOPN; 1028 info._sifields._sigfault._addr = env->pc; 1029 queue_signal(env, info.si_signo, &info); 1030 break; 1031 case EXCP_STREX: 1032 if (!do_strex_a64(env)) { 1033 break; 1034 } 1035 /* fall through for segv */ 1036 case EXCP_PREFETCH_ABORT: 1037 case EXCP_DATA_ABORT: 1038 info.si_signo = TARGET_SIGSEGV; 1039 info.si_errno = 0; 1040 /* XXX: check env->error_code */ 1041 info.si_code = TARGET_SEGV_MAPERR; 1042 info._sifields._sigfault._addr = env->exception.vaddress; 1043 queue_signal(env, info.si_signo, &info); 1044 break; 1045 case EXCP_DEBUG: 1046 case EXCP_BKPT: 1047 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1048 if (sig) { 1049 info.si_signo = sig; 1050 info.si_errno = 0; 1051 info.si_code = TARGET_TRAP_BRKPT; 1052 queue_signal(env, info.si_signo, &info); 1053 } 1054 break; 1055 case EXCP_SEMIHOST: 1056 env->xregs[0] = do_arm_semihosting(env); 1057 break; 1058 default: 1059 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 1060 trapnr); 1061 cpu_dump_state(cs, stderr, fprintf, 0); 1062 abort(); 1063 } 1064 process_pending_signals(env); 1065 /* Exception return on AArch64 always clears the exclusive monitor, 1066 * so any return to running guest code implies this. 1067 * A strex (successful or otherwise) also clears the monitor, so 1068 * we don't need to specialcase EXCP_STREX. 1069 */ 1070 env->exclusive_addr = -1; 1071 } 1072 } 1073 #endif /* ndef TARGET_ABI32 */ 1074 1075 #endif 1076 1077 #ifdef TARGET_UNICORE32 1078 1079 void cpu_loop(CPUUniCore32State *env) 1080 { 1081 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1082 int trapnr; 1083 unsigned int n, insn; 1084 target_siginfo_t info; 1085 1086 for (;;) { 1087 cpu_exec_start(cs); 1088 trapnr = uc32_cpu_exec(cs); 1089 cpu_exec_end(cs); 1090 switch (trapnr) { 1091 case UC32_EXCP_PRIV: 1092 { 1093 /* system call */ 1094 get_user_u32(insn, env->regs[31] - 4); 1095 n = insn & 0xffffff; 1096 1097 if (n >= UC32_SYSCALL_BASE) { 1098 /* linux syscall */ 1099 n -= UC32_SYSCALL_BASE; 1100 if (n == UC32_SYSCALL_NR_set_tls) { 1101 cpu_set_tls(env, env->regs[0]); 1102 env->regs[0] = 0; 1103 } else { 1104 env->regs[0] = do_syscall(env, 1105 n, 1106 env->regs[0], 1107 env->regs[1], 1108 env->regs[2], 1109 env->regs[3], 1110 env->regs[4], 1111 env->regs[5], 1112 0, 0); 1113 } 1114 } else { 1115 goto error; 1116 } 1117 } 1118 break; 1119 case UC32_EXCP_DTRAP: 1120 case UC32_EXCP_ITRAP: 1121 info.si_signo = TARGET_SIGSEGV; 1122 info.si_errno = 0; 1123 /* XXX: check env->error_code */ 1124 info.si_code = TARGET_SEGV_MAPERR; 1125 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1126 queue_signal(env, info.si_signo, &info); 1127 break; 1128 case EXCP_INTERRUPT: 1129 /* just indicate that signals should be handled asap */ 1130 break; 1131 case EXCP_DEBUG: 1132 { 1133 int sig; 1134 1135 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1136 if (sig) { 1137 info.si_signo = sig; 1138 info.si_errno = 0; 1139 info.si_code = TARGET_TRAP_BRKPT; 1140 queue_signal(env, info.si_signo, &info); 1141 } 1142 } 1143 break; 1144 default: 1145 goto error; 1146 } 1147 process_pending_signals(env); 1148 } 1149 1150 error: 1151 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1152 cpu_dump_state(cs, stderr, fprintf, 0); 1153 abort(); 1154 } 1155 #endif 1156 1157 #ifdef TARGET_SPARC 1158 #define SPARC64_STACK_BIAS 2047 1159 1160 //#define DEBUG_WIN 1161 1162 /* WARNING: dealing with register windows _is_ complicated. More info 1163 can be found at http://www.sics.se/~psm/sparcstack.html */ 1164 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1165 { 1166 index = (index + cwp * 16) % (16 * env->nwindows); 1167 /* wrap handling : if cwp is on the last window, then we use the 1168 registers 'after' the end */ 1169 if (index < 8 && env->cwp == env->nwindows - 1) 1170 index += 16 * env->nwindows; 1171 return index; 1172 } 1173 1174 /* save the register window 'cwp1' */ 1175 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1176 { 1177 unsigned int i; 1178 abi_ulong sp_ptr; 1179 1180 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1181 #ifdef TARGET_SPARC64 1182 if (sp_ptr & 3) 1183 sp_ptr += SPARC64_STACK_BIAS; 1184 #endif 1185 #if defined(DEBUG_WIN) 1186 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1187 sp_ptr, cwp1); 1188 #endif 1189 for(i = 0; i < 16; i++) { 1190 /* FIXME - what to do if put_user() fails? */ 1191 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1192 sp_ptr += sizeof(abi_ulong); 1193 } 1194 } 1195 1196 static void save_window(CPUSPARCState *env) 1197 { 1198 #ifndef TARGET_SPARC64 1199 unsigned int new_wim; 1200 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1201 ((1LL << env->nwindows) - 1); 1202 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1203 env->wim = new_wim; 1204 #else 1205 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1206 env->cansave++; 1207 env->canrestore--; 1208 #endif 1209 } 1210 1211 static void restore_window(CPUSPARCState *env) 1212 { 1213 #ifndef TARGET_SPARC64 1214 unsigned int new_wim; 1215 #endif 1216 unsigned int i, cwp1; 1217 abi_ulong sp_ptr; 1218 1219 #ifndef TARGET_SPARC64 1220 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1221 ((1LL << env->nwindows) - 1); 1222 #endif 1223 1224 /* restore the invalid window */ 1225 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1226 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1227 #ifdef TARGET_SPARC64 1228 if (sp_ptr & 3) 1229 sp_ptr += SPARC64_STACK_BIAS; 1230 #endif 1231 #if defined(DEBUG_WIN) 1232 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1233 sp_ptr, cwp1); 1234 #endif 1235 for(i = 0; i < 16; i++) { 1236 /* FIXME - what to do if get_user() fails? */ 1237 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1238 sp_ptr += sizeof(abi_ulong); 1239 } 1240 #ifdef TARGET_SPARC64 1241 env->canrestore++; 1242 if (env->cleanwin < env->nwindows - 1) 1243 env->cleanwin++; 1244 env->cansave--; 1245 #else 1246 env->wim = new_wim; 1247 #endif 1248 } 1249 1250 static void flush_windows(CPUSPARCState *env) 1251 { 1252 int offset, cwp1; 1253 1254 offset = 1; 1255 for(;;) { 1256 /* if restore would invoke restore_window(), then we can stop */ 1257 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1258 #ifndef TARGET_SPARC64 1259 if (env->wim & (1 << cwp1)) 1260 break; 1261 #else 1262 if (env->canrestore == 0) 1263 break; 1264 env->cansave++; 1265 env->canrestore--; 1266 #endif 1267 save_window_offset(env, cwp1); 1268 offset++; 1269 } 1270 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1271 #ifndef TARGET_SPARC64 1272 /* set wim so that restore will reload the registers */ 1273 env->wim = 1 << cwp1; 1274 #endif 1275 #if defined(DEBUG_WIN) 1276 printf("flush_windows: nb=%d\n", offset - 1); 1277 #endif 1278 } 1279 1280 void cpu_loop (CPUSPARCState *env) 1281 { 1282 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1283 int trapnr; 1284 abi_long ret; 1285 target_siginfo_t info; 1286 1287 while (1) { 1288 cpu_exec_start(cs); 1289 trapnr = cpu_sparc_exec(cs); 1290 cpu_exec_end(cs); 1291 1292 /* Compute PSR before exposing state. */ 1293 if (env->cc_op != CC_OP_FLAGS) { 1294 cpu_get_psr(env); 1295 } 1296 1297 switch (trapnr) { 1298 #ifndef TARGET_SPARC64 1299 case 0x88: 1300 case 0x90: 1301 #else 1302 case 0x110: 1303 case 0x16d: 1304 #endif 1305 ret = do_syscall (env, env->gregs[1], 1306 env->regwptr[0], env->regwptr[1], 1307 env->regwptr[2], env->regwptr[3], 1308 env->regwptr[4], env->regwptr[5], 1309 0, 0); 1310 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1311 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1312 env->xcc |= PSR_CARRY; 1313 #else 1314 env->psr |= PSR_CARRY; 1315 #endif 1316 ret = -ret; 1317 } else { 1318 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1319 env->xcc &= ~PSR_CARRY; 1320 #else 1321 env->psr &= ~PSR_CARRY; 1322 #endif 1323 } 1324 env->regwptr[0] = ret; 1325 /* next instruction */ 1326 env->pc = env->npc; 1327 env->npc = env->npc + 4; 1328 break; 1329 case 0x83: /* flush windows */ 1330 #ifdef TARGET_ABI32 1331 case 0x103: 1332 #endif 1333 flush_windows(env); 1334 /* next instruction */ 1335 env->pc = env->npc; 1336 env->npc = env->npc + 4; 1337 break; 1338 #ifndef TARGET_SPARC64 1339 case TT_WIN_OVF: /* window overflow */ 1340 save_window(env); 1341 break; 1342 case TT_WIN_UNF: /* window underflow */ 1343 restore_window(env); 1344 break; 1345 case TT_TFAULT: 1346 case TT_DFAULT: 1347 { 1348 info.si_signo = TARGET_SIGSEGV; 1349 info.si_errno = 0; 1350 /* XXX: check env->error_code */ 1351 info.si_code = TARGET_SEGV_MAPERR; 1352 info._sifields._sigfault._addr = env->mmuregs[4]; 1353 queue_signal(env, info.si_signo, &info); 1354 } 1355 break; 1356 #else 1357 case TT_SPILL: /* window overflow */ 1358 save_window(env); 1359 break; 1360 case TT_FILL: /* window underflow */ 1361 restore_window(env); 1362 break; 1363 case TT_TFAULT: 1364 case TT_DFAULT: 1365 { 1366 info.si_signo = TARGET_SIGSEGV; 1367 info.si_errno = 0; 1368 /* XXX: check env->error_code */ 1369 info.si_code = TARGET_SEGV_MAPERR; 1370 if (trapnr == TT_DFAULT) 1371 info._sifields._sigfault._addr = env->dmmuregs[4]; 1372 else 1373 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1374 queue_signal(env, info.si_signo, &info); 1375 } 1376 break; 1377 #ifndef TARGET_ABI32 1378 case 0x16e: 1379 flush_windows(env); 1380 sparc64_get_context(env); 1381 break; 1382 case 0x16f: 1383 flush_windows(env); 1384 sparc64_set_context(env); 1385 break; 1386 #endif 1387 #endif 1388 case EXCP_INTERRUPT: 1389 /* just indicate that signals should be handled asap */ 1390 break; 1391 case TT_ILL_INSN: 1392 { 1393 info.si_signo = TARGET_SIGILL; 1394 info.si_errno = 0; 1395 info.si_code = TARGET_ILL_ILLOPC; 1396 info._sifields._sigfault._addr = env->pc; 1397 queue_signal(env, info.si_signo, &info); 1398 } 1399 break; 1400 case EXCP_DEBUG: 1401 { 1402 int sig; 1403 1404 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1405 if (sig) 1406 { 1407 info.si_signo = sig; 1408 info.si_errno = 0; 1409 info.si_code = TARGET_TRAP_BRKPT; 1410 queue_signal(env, info.si_signo, &info); 1411 } 1412 } 1413 break; 1414 default: 1415 printf ("Unhandled trap: 0x%x\n", trapnr); 1416 cpu_dump_state(cs, stderr, fprintf, 0); 1417 exit (1); 1418 } 1419 process_pending_signals (env); 1420 } 1421 } 1422 1423 #endif 1424 1425 #ifdef TARGET_PPC 1426 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1427 { 1428 return cpu_get_real_ticks(); 1429 } 1430 1431 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1432 { 1433 return cpu_ppc_get_tb(env); 1434 } 1435 1436 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1437 { 1438 return cpu_ppc_get_tb(env) >> 32; 1439 } 1440 1441 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1442 { 1443 return cpu_ppc_get_tb(env); 1444 } 1445 1446 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1447 { 1448 return cpu_ppc_get_tb(env) >> 32; 1449 } 1450 1451 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1452 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1453 1454 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1455 { 1456 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1457 } 1458 1459 /* XXX: to be fixed */ 1460 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1461 { 1462 return -1; 1463 } 1464 1465 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1466 { 1467 return -1; 1468 } 1469 1470 #define EXCP_DUMP(env, fmt, ...) \ 1471 do { \ 1472 CPUState *cs = ENV_GET_CPU(env); \ 1473 fprintf(stderr, fmt , ## __VA_ARGS__); \ 1474 cpu_dump_state(cs, stderr, fprintf, 0); \ 1475 qemu_log(fmt, ## __VA_ARGS__); \ 1476 if (qemu_log_enabled()) { \ 1477 log_cpu_state(cs, 0); \ 1478 } \ 1479 } while (0) 1480 1481 static int do_store_exclusive(CPUPPCState *env) 1482 { 1483 target_ulong addr; 1484 target_ulong page_addr; 1485 target_ulong val, val2 __attribute__((unused)) = 0; 1486 int flags; 1487 int segv = 0; 1488 1489 addr = env->reserve_ea; 1490 page_addr = addr & TARGET_PAGE_MASK; 1491 start_exclusive(); 1492 mmap_lock(); 1493 flags = page_get_flags(page_addr); 1494 if ((flags & PAGE_READ) == 0) { 1495 segv = 1; 1496 } else { 1497 int reg = env->reserve_info & 0x1f; 1498 int size = env->reserve_info >> 5; 1499 int stored = 0; 1500 1501 if (addr == env->reserve_addr) { 1502 switch (size) { 1503 case 1: segv = get_user_u8(val, addr); break; 1504 case 2: segv = get_user_u16(val, addr); break; 1505 case 4: segv = get_user_u32(val, addr); break; 1506 #if defined(TARGET_PPC64) 1507 case 8: segv = get_user_u64(val, addr); break; 1508 case 16: { 1509 segv = get_user_u64(val, addr); 1510 if (!segv) { 1511 segv = get_user_u64(val2, addr + 8); 1512 } 1513 break; 1514 } 1515 #endif 1516 default: abort(); 1517 } 1518 if (!segv && val == env->reserve_val) { 1519 val = env->gpr[reg]; 1520 switch (size) { 1521 case 1: segv = put_user_u8(val, addr); break; 1522 case 2: segv = put_user_u16(val, addr); break; 1523 case 4: segv = put_user_u32(val, addr); break; 1524 #if defined(TARGET_PPC64) 1525 case 8: segv = put_user_u64(val, addr); break; 1526 case 16: { 1527 if (val2 == env->reserve_val2) { 1528 if (msr_le) { 1529 val2 = val; 1530 val = env->gpr[reg+1]; 1531 } else { 1532 val2 = env->gpr[reg+1]; 1533 } 1534 segv = put_user_u64(val, addr); 1535 if (!segv) { 1536 segv = put_user_u64(val2, addr + 8); 1537 } 1538 } 1539 break; 1540 } 1541 #endif 1542 default: abort(); 1543 } 1544 if (!segv) { 1545 stored = 1; 1546 } 1547 } 1548 } 1549 env->crf[0] = (stored << 1) | xer_so; 1550 env->reserve_addr = (target_ulong)-1; 1551 } 1552 if (!segv) { 1553 env->nip += 4; 1554 } 1555 mmap_unlock(); 1556 end_exclusive(); 1557 return segv; 1558 } 1559 1560 void cpu_loop(CPUPPCState *env) 1561 { 1562 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1563 target_siginfo_t info; 1564 int trapnr; 1565 target_ulong ret; 1566 1567 for(;;) { 1568 cpu_exec_start(cs); 1569 trapnr = cpu_ppc_exec(cs); 1570 cpu_exec_end(cs); 1571 switch(trapnr) { 1572 case POWERPC_EXCP_NONE: 1573 /* Just go on */ 1574 break; 1575 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1576 cpu_abort(cs, "Critical interrupt while in user mode. " 1577 "Aborting\n"); 1578 break; 1579 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1580 cpu_abort(cs, "Machine check exception while in user mode. " 1581 "Aborting\n"); 1582 break; 1583 case POWERPC_EXCP_DSI: /* Data storage exception */ 1584 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1585 env->spr[SPR_DAR]); 1586 /* XXX: check this. Seems bugged */ 1587 switch (env->error_code & 0xFF000000) { 1588 case 0x40000000: 1589 info.si_signo = TARGET_SIGSEGV; 1590 info.si_errno = 0; 1591 info.si_code = TARGET_SEGV_MAPERR; 1592 break; 1593 case 0x04000000: 1594 info.si_signo = TARGET_SIGILL; 1595 info.si_errno = 0; 1596 info.si_code = TARGET_ILL_ILLADR; 1597 break; 1598 case 0x08000000: 1599 info.si_signo = TARGET_SIGSEGV; 1600 info.si_errno = 0; 1601 info.si_code = TARGET_SEGV_ACCERR; 1602 break; 1603 default: 1604 /* Let's send a regular segfault... */ 1605 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1606 env->error_code); 1607 info.si_signo = TARGET_SIGSEGV; 1608 info.si_errno = 0; 1609 info.si_code = TARGET_SEGV_MAPERR; 1610 break; 1611 } 1612 info._sifields._sigfault._addr = env->nip; 1613 queue_signal(env, info.si_signo, &info); 1614 break; 1615 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1616 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1617 "\n", env->spr[SPR_SRR0]); 1618 /* XXX: check this */ 1619 switch (env->error_code & 0xFF000000) { 1620 case 0x40000000: 1621 info.si_signo = TARGET_SIGSEGV; 1622 info.si_errno = 0; 1623 info.si_code = TARGET_SEGV_MAPERR; 1624 break; 1625 case 0x10000000: 1626 case 0x08000000: 1627 info.si_signo = TARGET_SIGSEGV; 1628 info.si_errno = 0; 1629 info.si_code = TARGET_SEGV_ACCERR; 1630 break; 1631 default: 1632 /* Let's send a regular segfault... */ 1633 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1634 env->error_code); 1635 info.si_signo = TARGET_SIGSEGV; 1636 info.si_errno = 0; 1637 info.si_code = TARGET_SEGV_MAPERR; 1638 break; 1639 } 1640 info._sifields._sigfault._addr = env->nip - 4; 1641 queue_signal(env, info.si_signo, &info); 1642 break; 1643 case POWERPC_EXCP_EXTERNAL: /* External input */ 1644 cpu_abort(cs, "External interrupt while in user mode. " 1645 "Aborting\n"); 1646 break; 1647 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1648 EXCP_DUMP(env, "Unaligned memory access\n"); 1649 /* XXX: check this */ 1650 info.si_signo = TARGET_SIGBUS; 1651 info.si_errno = 0; 1652 info.si_code = TARGET_BUS_ADRALN; 1653 info._sifields._sigfault._addr = env->nip; 1654 queue_signal(env, info.si_signo, &info); 1655 break; 1656 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1657 /* XXX: check this */ 1658 switch (env->error_code & ~0xF) { 1659 case POWERPC_EXCP_FP: 1660 EXCP_DUMP(env, "Floating point program exception\n"); 1661 info.si_signo = TARGET_SIGFPE; 1662 info.si_errno = 0; 1663 switch (env->error_code & 0xF) { 1664 case POWERPC_EXCP_FP_OX: 1665 info.si_code = TARGET_FPE_FLTOVF; 1666 break; 1667 case POWERPC_EXCP_FP_UX: 1668 info.si_code = TARGET_FPE_FLTUND; 1669 break; 1670 case POWERPC_EXCP_FP_ZX: 1671 case POWERPC_EXCP_FP_VXZDZ: 1672 info.si_code = TARGET_FPE_FLTDIV; 1673 break; 1674 case POWERPC_EXCP_FP_XX: 1675 info.si_code = TARGET_FPE_FLTRES; 1676 break; 1677 case POWERPC_EXCP_FP_VXSOFT: 1678 info.si_code = TARGET_FPE_FLTINV; 1679 break; 1680 case POWERPC_EXCP_FP_VXSNAN: 1681 case POWERPC_EXCP_FP_VXISI: 1682 case POWERPC_EXCP_FP_VXIDI: 1683 case POWERPC_EXCP_FP_VXIMZ: 1684 case POWERPC_EXCP_FP_VXVC: 1685 case POWERPC_EXCP_FP_VXSQRT: 1686 case POWERPC_EXCP_FP_VXCVI: 1687 info.si_code = TARGET_FPE_FLTSUB; 1688 break; 1689 default: 1690 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1691 env->error_code); 1692 break; 1693 } 1694 break; 1695 case POWERPC_EXCP_INVAL: 1696 EXCP_DUMP(env, "Invalid instruction\n"); 1697 info.si_signo = TARGET_SIGILL; 1698 info.si_errno = 0; 1699 switch (env->error_code & 0xF) { 1700 case POWERPC_EXCP_INVAL_INVAL: 1701 info.si_code = TARGET_ILL_ILLOPC; 1702 break; 1703 case POWERPC_EXCP_INVAL_LSWX: 1704 info.si_code = TARGET_ILL_ILLOPN; 1705 break; 1706 case POWERPC_EXCP_INVAL_SPR: 1707 info.si_code = TARGET_ILL_PRVREG; 1708 break; 1709 case POWERPC_EXCP_INVAL_FP: 1710 info.si_code = TARGET_ILL_COPROC; 1711 break; 1712 default: 1713 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1714 env->error_code & 0xF); 1715 info.si_code = TARGET_ILL_ILLADR; 1716 break; 1717 } 1718 break; 1719 case POWERPC_EXCP_PRIV: 1720 EXCP_DUMP(env, "Privilege violation\n"); 1721 info.si_signo = TARGET_SIGILL; 1722 info.si_errno = 0; 1723 switch (env->error_code & 0xF) { 1724 case POWERPC_EXCP_PRIV_OPC: 1725 info.si_code = TARGET_ILL_PRVOPC; 1726 break; 1727 case POWERPC_EXCP_PRIV_REG: 1728 info.si_code = TARGET_ILL_PRVREG; 1729 break; 1730 default: 1731 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1732 env->error_code & 0xF); 1733 info.si_code = TARGET_ILL_PRVOPC; 1734 break; 1735 } 1736 break; 1737 case POWERPC_EXCP_TRAP: 1738 cpu_abort(cs, "Tried to call a TRAP\n"); 1739 break; 1740 default: 1741 /* Should not happen ! */ 1742 cpu_abort(cs, "Unknown program exception (%02x)\n", 1743 env->error_code); 1744 break; 1745 } 1746 info._sifields._sigfault._addr = env->nip - 4; 1747 queue_signal(env, info.si_signo, &info); 1748 break; 1749 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1750 EXCP_DUMP(env, "No floating point allowed\n"); 1751 info.si_signo = TARGET_SIGILL; 1752 info.si_errno = 0; 1753 info.si_code = TARGET_ILL_COPROC; 1754 info._sifields._sigfault._addr = env->nip - 4; 1755 queue_signal(env, info.si_signo, &info); 1756 break; 1757 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1758 cpu_abort(cs, "Syscall exception while in user mode. " 1759 "Aborting\n"); 1760 break; 1761 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1762 EXCP_DUMP(env, "No APU instruction allowed\n"); 1763 info.si_signo = TARGET_SIGILL; 1764 info.si_errno = 0; 1765 info.si_code = TARGET_ILL_COPROC; 1766 info._sifields._sigfault._addr = env->nip - 4; 1767 queue_signal(env, info.si_signo, &info); 1768 break; 1769 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1770 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1771 "Aborting\n"); 1772 break; 1773 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1774 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1775 "Aborting\n"); 1776 break; 1777 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1778 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1779 "Aborting\n"); 1780 break; 1781 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1782 cpu_abort(cs, "Data TLB exception while in user mode. " 1783 "Aborting\n"); 1784 break; 1785 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1786 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1787 "Aborting\n"); 1788 break; 1789 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1790 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1791 info.si_signo = TARGET_SIGILL; 1792 info.si_errno = 0; 1793 info.si_code = TARGET_ILL_COPROC; 1794 info._sifields._sigfault._addr = env->nip - 4; 1795 queue_signal(env, info.si_signo, &info); 1796 break; 1797 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1798 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1799 break; 1800 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1801 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1802 break; 1803 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1804 cpu_abort(cs, "Performance monitor exception not handled\n"); 1805 break; 1806 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1807 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1808 "Aborting\n"); 1809 break; 1810 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1811 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1812 "Aborting\n"); 1813 break; 1814 case POWERPC_EXCP_RESET: /* System reset exception */ 1815 cpu_abort(cs, "Reset interrupt while in user mode. " 1816 "Aborting\n"); 1817 break; 1818 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1819 cpu_abort(cs, "Data segment exception while in user mode. " 1820 "Aborting\n"); 1821 break; 1822 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1823 cpu_abort(cs, "Instruction segment exception " 1824 "while in user mode. Aborting\n"); 1825 break; 1826 /* PowerPC 64 with hypervisor mode support */ 1827 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1828 cpu_abort(cs, "Hypervisor decrementer interrupt " 1829 "while in user mode. Aborting\n"); 1830 break; 1831 case POWERPC_EXCP_TRACE: /* Trace exception */ 1832 /* Nothing to do: 1833 * we use this exception to emulate step-by-step execution mode. 1834 */ 1835 break; 1836 /* PowerPC 64 with hypervisor mode support */ 1837 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1838 cpu_abort(cs, "Hypervisor data storage exception " 1839 "while in user mode. Aborting\n"); 1840 break; 1841 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1842 cpu_abort(cs, "Hypervisor instruction storage exception " 1843 "while in user mode. Aborting\n"); 1844 break; 1845 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1846 cpu_abort(cs, "Hypervisor data segment exception " 1847 "while in user mode. Aborting\n"); 1848 break; 1849 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1850 cpu_abort(cs, "Hypervisor instruction segment exception " 1851 "while in user mode. Aborting\n"); 1852 break; 1853 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1854 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1855 info.si_signo = TARGET_SIGILL; 1856 info.si_errno = 0; 1857 info.si_code = TARGET_ILL_COPROC; 1858 info._sifields._sigfault._addr = env->nip - 4; 1859 queue_signal(env, info.si_signo, &info); 1860 break; 1861 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1862 cpu_abort(cs, "Programmable interval timer interrupt " 1863 "while in user mode. Aborting\n"); 1864 break; 1865 case POWERPC_EXCP_IO: /* IO error exception */ 1866 cpu_abort(cs, "IO error exception while in user mode. " 1867 "Aborting\n"); 1868 break; 1869 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1870 cpu_abort(cs, "Run mode exception while in user mode. " 1871 "Aborting\n"); 1872 break; 1873 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1874 cpu_abort(cs, "Emulation trap exception not handled\n"); 1875 break; 1876 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1877 cpu_abort(cs, "Instruction fetch TLB exception " 1878 "while in user-mode. Aborting"); 1879 break; 1880 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1881 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1882 "Aborting"); 1883 break; 1884 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1885 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1886 "Aborting"); 1887 break; 1888 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1889 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1890 break; 1891 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1892 cpu_abort(cs, "Instruction address breakpoint exception " 1893 "not handled\n"); 1894 break; 1895 case POWERPC_EXCP_SMI: /* System management interrupt */ 1896 cpu_abort(cs, "System management interrupt while in user mode. " 1897 "Aborting\n"); 1898 break; 1899 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1900 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1901 "Aborting\n"); 1902 break; 1903 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1904 cpu_abort(cs, "Performance monitor exception not handled\n"); 1905 break; 1906 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1907 cpu_abort(cs, "Vector assist exception not handled\n"); 1908 break; 1909 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1910 cpu_abort(cs, "Soft patch exception not handled\n"); 1911 break; 1912 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1913 cpu_abort(cs, "Maintenance exception while in user mode. " 1914 "Aborting\n"); 1915 break; 1916 case POWERPC_EXCP_STOP: /* stop translation */ 1917 /* We did invalidate the instruction cache. Go on */ 1918 break; 1919 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1920 /* We just stopped because of a branch. Go on */ 1921 break; 1922 case POWERPC_EXCP_SYSCALL_USER: 1923 /* system call in user-mode emulation */ 1924 /* WARNING: 1925 * PPC ABI uses overflow flag in cr0 to signal an error 1926 * in syscalls. 1927 */ 1928 env->crf[0] &= ~0x1; 1929 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1930 env->gpr[5], env->gpr[6], env->gpr[7], 1931 env->gpr[8], 0, 0); 1932 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1933 /* Returning from a successful sigreturn syscall. 1934 Avoid corrupting register state. */ 1935 break; 1936 } 1937 if (ret > (target_ulong)(-515)) { 1938 env->crf[0] |= 0x1; 1939 ret = -ret; 1940 } 1941 env->gpr[3] = ret; 1942 break; 1943 case POWERPC_EXCP_STCX: 1944 if (do_store_exclusive(env)) { 1945 info.si_signo = TARGET_SIGSEGV; 1946 info.si_errno = 0; 1947 info.si_code = TARGET_SEGV_MAPERR; 1948 info._sifields._sigfault._addr = env->nip; 1949 queue_signal(env, info.si_signo, &info); 1950 } 1951 break; 1952 case EXCP_DEBUG: 1953 { 1954 int sig; 1955 1956 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1957 if (sig) { 1958 info.si_signo = sig; 1959 info.si_errno = 0; 1960 info.si_code = TARGET_TRAP_BRKPT; 1961 queue_signal(env, info.si_signo, &info); 1962 } 1963 } 1964 break; 1965 case EXCP_INTERRUPT: 1966 /* just indicate that signals should be handled asap */ 1967 break; 1968 default: 1969 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); 1970 break; 1971 } 1972 process_pending_signals(env); 1973 } 1974 } 1975 #endif 1976 1977 #ifdef TARGET_MIPS 1978 1979 # ifdef TARGET_ABI_MIPSO32 1980 # define MIPS_SYS(name, args) args, 1981 static const uint8_t mips_syscall_args[] = { 1982 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1983 MIPS_SYS(sys_exit , 1) 1984 MIPS_SYS(sys_fork , 0) 1985 MIPS_SYS(sys_read , 3) 1986 MIPS_SYS(sys_write , 3) 1987 MIPS_SYS(sys_open , 3) /* 4005 */ 1988 MIPS_SYS(sys_close , 1) 1989 MIPS_SYS(sys_waitpid , 3) 1990 MIPS_SYS(sys_creat , 2) 1991 MIPS_SYS(sys_link , 2) 1992 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1993 MIPS_SYS(sys_execve , 0) 1994 MIPS_SYS(sys_chdir , 1) 1995 MIPS_SYS(sys_time , 1) 1996 MIPS_SYS(sys_mknod , 3) 1997 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1998 MIPS_SYS(sys_lchown , 3) 1999 MIPS_SYS(sys_ni_syscall , 0) 2000 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 2001 MIPS_SYS(sys_lseek , 3) 2002 MIPS_SYS(sys_getpid , 0) /* 4020 */ 2003 MIPS_SYS(sys_mount , 5) 2004 MIPS_SYS(sys_umount , 1) 2005 MIPS_SYS(sys_setuid , 1) 2006 MIPS_SYS(sys_getuid , 0) 2007 MIPS_SYS(sys_stime , 1) /* 4025 */ 2008 MIPS_SYS(sys_ptrace , 4) 2009 MIPS_SYS(sys_alarm , 1) 2010 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2011 MIPS_SYS(sys_pause , 0) 2012 MIPS_SYS(sys_utime , 2) /* 4030 */ 2013 MIPS_SYS(sys_ni_syscall , 0) 2014 MIPS_SYS(sys_ni_syscall , 0) 2015 MIPS_SYS(sys_access , 2) 2016 MIPS_SYS(sys_nice , 1) 2017 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2018 MIPS_SYS(sys_sync , 0) 2019 MIPS_SYS(sys_kill , 2) 2020 MIPS_SYS(sys_rename , 2) 2021 MIPS_SYS(sys_mkdir , 2) 2022 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2023 MIPS_SYS(sys_dup , 1) 2024 MIPS_SYS(sys_pipe , 0) 2025 MIPS_SYS(sys_times , 1) 2026 MIPS_SYS(sys_ni_syscall , 0) 2027 MIPS_SYS(sys_brk , 1) /* 4045 */ 2028 MIPS_SYS(sys_setgid , 1) 2029 MIPS_SYS(sys_getgid , 0) 2030 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2031 MIPS_SYS(sys_geteuid , 0) 2032 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2033 MIPS_SYS(sys_acct , 0) 2034 MIPS_SYS(sys_umount2 , 2) 2035 MIPS_SYS(sys_ni_syscall , 0) 2036 MIPS_SYS(sys_ioctl , 3) 2037 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2038 MIPS_SYS(sys_ni_syscall , 2) 2039 MIPS_SYS(sys_setpgid , 2) 2040 MIPS_SYS(sys_ni_syscall , 0) 2041 MIPS_SYS(sys_olduname , 1) 2042 MIPS_SYS(sys_umask , 1) /* 4060 */ 2043 MIPS_SYS(sys_chroot , 1) 2044 MIPS_SYS(sys_ustat , 2) 2045 MIPS_SYS(sys_dup2 , 2) 2046 MIPS_SYS(sys_getppid , 0) 2047 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2048 MIPS_SYS(sys_setsid , 0) 2049 MIPS_SYS(sys_sigaction , 3) 2050 MIPS_SYS(sys_sgetmask , 0) 2051 MIPS_SYS(sys_ssetmask , 1) 2052 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2053 MIPS_SYS(sys_setregid , 2) 2054 MIPS_SYS(sys_sigsuspend , 0) 2055 MIPS_SYS(sys_sigpending , 1) 2056 MIPS_SYS(sys_sethostname , 2) 2057 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2058 MIPS_SYS(sys_getrlimit , 2) 2059 MIPS_SYS(sys_getrusage , 2) 2060 MIPS_SYS(sys_gettimeofday, 2) 2061 MIPS_SYS(sys_settimeofday, 2) 2062 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2063 MIPS_SYS(sys_setgroups , 2) 2064 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2065 MIPS_SYS(sys_symlink , 2) 2066 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2067 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2068 MIPS_SYS(sys_uselib , 1) 2069 MIPS_SYS(sys_swapon , 2) 2070 MIPS_SYS(sys_reboot , 3) 2071 MIPS_SYS(old_readdir , 3) 2072 MIPS_SYS(old_mmap , 6) /* 4090 */ 2073 MIPS_SYS(sys_munmap , 2) 2074 MIPS_SYS(sys_truncate , 2) 2075 MIPS_SYS(sys_ftruncate , 2) 2076 MIPS_SYS(sys_fchmod , 2) 2077 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2078 MIPS_SYS(sys_getpriority , 2) 2079 MIPS_SYS(sys_setpriority , 3) 2080 MIPS_SYS(sys_ni_syscall , 0) 2081 MIPS_SYS(sys_statfs , 2) 2082 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2083 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2084 MIPS_SYS(sys_socketcall , 2) 2085 MIPS_SYS(sys_syslog , 3) 2086 MIPS_SYS(sys_setitimer , 3) 2087 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2088 MIPS_SYS(sys_newstat , 2) 2089 MIPS_SYS(sys_newlstat , 2) 2090 MIPS_SYS(sys_newfstat , 2) 2091 MIPS_SYS(sys_uname , 1) 2092 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2093 MIPS_SYS(sys_vhangup , 0) 2094 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2095 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2096 MIPS_SYS(sys_wait4 , 4) 2097 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2098 MIPS_SYS(sys_sysinfo , 1) 2099 MIPS_SYS(sys_ipc , 6) 2100 MIPS_SYS(sys_fsync , 1) 2101 MIPS_SYS(sys_sigreturn , 0) 2102 MIPS_SYS(sys_clone , 6) /* 4120 */ 2103 MIPS_SYS(sys_setdomainname, 2) 2104 MIPS_SYS(sys_newuname , 1) 2105 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2106 MIPS_SYS(sys_adjtimex , 1) 2107 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2108 MIPS_SYS(sys_sigprocmask , 3) 2109 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2110 MIPS_SYS(sys_init_module , 5) 2111 MIPS_SYS(sys_delete_module, 1) 2112 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2113 MIPS_SYS(sys_quotactl , 0) 2114 MIPS_SYS(sys_getpgid , 1) 2115 MIPS_SYS(sys_fchdir , 1) 2116 MIPS_SYS(sys_bdflush , 2) 2117 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2118 MIPS_SYS(sys_personality , 1) 2119 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2120 MIPS_SYS(sys_setfsuid , 1) 2121 MIPS_SYS(sys_setfsgid , 1) 2122 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2123 MIPS_SYS(sys_getdents , 3) 2124 MIPS_SYS(sys_select , 5) 2125 MIPS_SYS(sys_flock , 2) 2126 MIPS_SYS(sys_msync , 3) 2127 MIPS_SYS(sys_readv , 3) /* 4145 */ 2128 MIPS_SYS(sys_writev , 3) 2129 MIPS_SYS(sys_cacheflush , 3) 2130 MIPS_SYS(sys_cachectl , 3) 2131 MIPS_SYS(sys_sysmips , 4) 2132 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2133 MIPS_SYS(sys_getsid , 1) 2134 MIPS_SYS(sys_fdatasync , 0) 2135 MIPS_SYS(sys_sysctl , 1) 2136 MIPS_SYS(sys_mlock , 2) 2137 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2138 MIPS_SYS(sys_mlockall , 1) 2139 MIPS_SYS(sys_munlockall , 0) 2140 MIPS_SYS(sys_sched_setparam, 2) 2141 MIPS_SYS(sys_sched_getparam, 2) 2142 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2143 MIPS_SYS(sys_sched_getscheduler, 1) 2144 MIPS_SYS(sys_sched_yield , 0) 2145 MIPS_SYS(sys_sched_get_priority_max, 1) 2146 MIPS_SYS(sys_sched_get_priority_min, 1) 2147 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2148 MIPS_SYS(sys_nanosleep, 2) 2149 MIPS_SYS(sys_mremap , 5) 2150 MIPS_SYS(sys_accept , 3) 2151 MIPS_SYS(sys_bind , 3) 2152 MIPS_SYS(sys_connect , 3) /* 4170 */ 2153 MIPS_SYS(sys_getpeername , 3) 2154 MIPS_SYS(sys_getsockname , 3) 2155 MIPS_SYS(sys_getsockopt , 5) 2156 MIPS_SYS(sys_listen , 2) 2157 MIPS_SYS(sys_recv , 4) /* 4175 */ 2158 MIPS_SYS(sys_recvfrom , 6) 2159 MIPS_SYS(sys_recvmsg , 3) 2160 MIPS_SYS(sys_send , 4) 2161 MIPS_SYS(sys_sendmsg , 3) 2162 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2163 MIPS_SYS(sys_setsockopt , 5) 2164 MIPS_SYS(sys_shutdown , 2) 2165 MIPS_SYS(sys_socket , 3) 2166 MIPS_SYS(sys_socketpair , 4) 2167 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2168 MIPS_SYS(sys_getresuid , 3) 2169 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2170 MIPS_SYS(sys_poll , 3) 2171 MIPS_SYS(sys_nfsservctl , 3) 2172 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2173 MIPS_SYS(sys_getresgid , 3) 2174 MIPS_SYS(sys_prctl , 5) 2175 MIPS_SYS(sys_rt_sigreturn, 0) 2176 MIPS_SYS(sys_rt_sigaction, 4) 2177 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2178 MIPS_SYS(sys_rt_sigpending, 2) 2179 MIPS_SYS(sys_rt_sigtimedwait, 4) 2180 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2181 MIPS_SYS(sys_rt_sigsuspend, 0) 2182 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2183 MIPS_SYS(sys_pwrite64 , 6) 2184 MIPS_SYS(sys_chown , 3) 2185 MIPS_SYS(sys_getcwd , 2) 2186 MIPS_SYS(sys_capget , 2) 2187 MIPS_SYS(sys_capset , 2) /* 4205 */ 2188 MIPS_SYS(sys_sigaltstack , 2) 2189 MIPS_SYS(sys_sendfile , 4) 2190 MIPS_SYS(sys_ni_syscall , 0) 2191 MIPS_SYS(sys_ni_syscall , 0) 2192 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2193 MIPS_SYS(sys_truncate64 , 4) 2194 MIPS_SYS(sys_ftruncate64 , 4) 2195 MIPS_SYS(sys_stat64 , 2) 2196 MIPS_SYS(sys_lstat64 , 2) 2197 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2198 MIPS_SYS(sys_pivot_root , 2) 2199 MIPS_SYS(sys_mincore , 3) 2200 MIPS_SYS(sys_madvise , 3) 2201 MIPS_SYS(sys_getdents64 , 3) 2202 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2203 MIPS_SYS(sys_ni_syscall , 0) 2204 MIPS_SYS(sys_gettid , 0) 2205 MIPS_SYS(sys_readahead , 5) 2206 MIPS_SYS(sys_setxattr , 5) 2207 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2208 MIPS_SYS(sys_fsetxattr , 5) 2209 MIPS_SYS(sys_getxattr , 4) 2210 MIPS_SYS(sys_lgetxattr , 4) 2211 MIPS_SYS(sys_fgetxattr , 4) 2212 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2213 MIPS_SYS(sys_llistxattr , 3) 2214 MIPS_SYS(sys_flistxattr , 3) 2215 MIPS_SYS(sys_removexattr , 2) 2216 MIPS_SYS(sys_lremovexattr, 2) 2217 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2218 MIPS_SYS(sys_tkill , 2) 2219 MIPS_SYS(sys_sendfile64 , 5) 2220 MIPS_SYS(sys_futex , 6) 2221 MIPS_SYS(sys_sched_setaffinity, 3) 2222 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2223 MIPS_SYS(sys_io_setup , 2) 2224 MIPS_SYS(sys_io_destroy , 1) 2225 MIPS_SYS(sys_io_getevents, 5) 2226 MIPS_SYS(sys_io_submit , 3) 2227 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2228 MIPS_SYS(sys_exit_group , 1) 2229 MIPS_SYS(sys_lookup_dcookie, 3) 2230 MIPS_SYS(sys_epoll_create, 1) 2231 MIPS_SYS(sys_epoll_ctl , 4) 2232 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2233 MIPS_SYS(sys_remap_file_pages, 5) 2234 MIPS_SYS(sys_set_tid_address, 1) 2235 MIPS_SYS(sys_restart_syscall, 0) 2236 MIPS_SYS(sys_fadvise64_64, 7) 2237 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2238 MIPS_SYS(sys_fstatfs64 , 2) 2239 MIPS_SYS(sys_timer_create, 3) 2240 MIPS_SYS(sys_timer_settime, 4) 2241 MIPS_SYS(sys_timer_gettime, 2) 2242 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2243 MIPS_SYS(sys_timer_delete, 1) 2244 MIPS_SYS(sys_clock_settime, 2) 2245 MIPS_SYS(sys_clock_gettime, 2) 2246 MIPS_SYS(sys_clock_getres, 2) 2247 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2248 MIPS_SYS(sys_tgkill , 3) 2249 MIPS_SYS(sys_utimes , 2) 2250 MIPS_SYS(sys_mbind , 4) 2251 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2252 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2253 MIPS_SYS(sys_mq_open , 4) 2254 MIPS_SYS(sys_mq_unlink , 1) 2255 MIPS_SYS(sys_mq_timedsend, 5) 2256 MIPS_SYS(sys_mq_timedreceive, 5) 2257 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2258 MIPS_SYS(sys_mq_getsetattr, 3) 2259 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2260 MIPS_SYS(sys_waitid , 4) 2261 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2262 MIPS_SYS(sys_add_key , 5) 2263 MIPS_SYS(sys_request_key, 4) 2264 MIPS_SYS(sys_keyctl , 5) 2265 MIPS_SYS(sys_set_thread_area, 1) 2266 MIPS_SYS(sys_inotify_init, 0) 2267 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2268 MIPS_SYS(sys_inotify_rm_watch, 2) 2269 MIPS_SYS(sys_migrate_pages, 4) 2270 MIPS_SYS(sys_openat, 4) 2271 MIPS_SYS(sys_mkdirat, 3) 2272 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2273 MIPS_SYS(sys_fchownat, 5) 2274 MIPS_SYS(sys_futimesat, 3) 2275 MIPS_SYS(sys_fstatat64, 4) 2276 MIPS_SYS(sys_unlinkat, 3) 2277 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2278 MIPS_SYS(sys_linkat, 5) 2279 MIPS_SYS(sys_symlinkat, 3) 2280 MIPS_SYS(sys_readlinkat, 4) 2281 MIPS_SYS(sys_fchmodat, 3) 2282 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2283 MIPS_SYS(sys_pselect6, 6) 2284 MIPS_SYS(sys_ppoll, 5) 2285 MIPS_SYS(sys_unshare, 1) 2286 MIPS_SYS(sys_splice, 6) 2287 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2288 MIPS_SYS(sys_tee, 4) 2289 MIPS_SYS(sys_vmsplice, 4) 2290 MIPS_SYS(sys_move_pages, 6) 2291 MIPS_SYS(sys_set_robust_list, 2) 2292 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2293 MIPS_SYS(sys_kexec_load, 4) 2294 MIPS_SYS(sys_getcpu, 3) 2295 MIPS_SYS(sys_epoll_pwait, 6) 2296 MIPS_SYS(sys_ioprio_set, 3) 2297 MIPS_SYS(sys_ioprio_get, 2) 2298 MIPS_SYS(sys_utimensat, 4) 2299 MIPS_SYS(sys_signalfd, 3) 2300 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2301 MIPS_SYS(sys_eventfd, 1) 2302 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2303 MIPS_SYS(sys_timerfd_create, 2) 2304 MIPS_SYS(sys_timerfd_gettime, 2) 2305 MIPS_SYS(sys_timerfd_settime, 4) 2306 MIPS_SYS(sys_signalfd4, 4) 2307 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2308 MIPS_SYS(sys_epoll_create1, 1) 2309 MIPS_SYS(sys_dup3, 3) 2310 MIPS_SYS(sys_pipe2, 2) 2311 MIPS_SYS(sys_inotify_init1, 1) 2312 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2313 MIPS_SYS(sys_pwritev, 6) 2314 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2315 MIPS_SYS(sys_perf_event_open, 5) 2316 MIPS_SYS(sys_accept4, 4) 2317 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2318 MIPS_SYS(sys_fanotify_init, 2) 2319 MIPS_SYS(sys_fanotify_mark, 6) 2320 MIPS_SYS(sys_prlimit64, 4) 2321 MIPS_SYS(sys_name_to_handle_at, 5) 2322 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2323 MIPS_SYS(sys_clock_adjtime, 2) 2324 MIPS_SYS(sys_syncfs, 1) 2325 }; 2326 # undef MIPS_SYS 2327 # endif /* O32 */ 2328 2329 static int do_store_exclusive(CPUMIPSState *env) 2330 { 2331 target_ulong addr; 2332 target_ulong page_addr; 2333 target_ulong val; 2334 int flags; 2335 int segv = 0; 2336 int reg; 2337 int d; 2338 2339 addr = env->lladdr; 2340 page_addr = addr & TARGET_PAGE_MASK; 2341 start_exclusive(); 2342 mmap_lock(); 2343 flags = page_get_flags(page_addr); 2344 if ((flags & PAGE_READ) == 0) { 2345 segv = 1; 2346 } else { 2347 reg = env->llreg & 0x1f; 2348 d = (env->llreg & 0x20) != 0; 2349 if (d) { 2350 segv = get_user_s64(val, addr); 2351 } else { 2352 segv = get_user_s32(val, addr); 2353 } 2354 if (!segv) { 2355 if (val != env->llval) { 2356 env->active_tc.gpr[reg] = 0; 2357 } else { 2358 if (d) { 2359 segv = put_user_u64(env->llnewval, addr); 2360 } else { 2361 segv = put_user_u32(env->llnewval, addr); 2362 } 2363 if (!segv) { 2364 env->active_tc.gpr[reg] = 1; 2365 } 2366 } 2367 } 2368 } 2369 env->lladdr = -1; 2370 if (!segv) { 2371 env->active_tc.PC += 4; 2372 } 2373 mmap_unlock(); 2374 end_exclusive(); 2375 return segv; 2376 } 2377 2378 /* Break codes */ 2379 enum { 2380 BRK_OVERFLOW = 6, 2381 BRK_DIVZERO = 7 2382 }; 2383 2384 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2385 unsigned int code) 2386 { 2387 int ret = -1; 2388 2389 switch (code) { 2390 case BRK_OVERFLOW: 2391 case BRK_DIVZERO: 2392 info->si_signo = TARGET_SIGFPE; 2393 info->si_errno = 0; 2394 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2395 queue_signal(env, info->si_signo, &*info); 2396 ret = 0; 2397 break; 2398 default: 2399 info->si_signo = TARGET_SIGTRAP; 2400 info->si_errno = 0; 2401 queue_signal(env, info->si_signo, &*info); 2402 ret = 0; 2403 break; 2404 } 2405 2406 return ret; 2407 } 2408 2409 void cpu_loop(CPUMIPSState *env) 2410 { 2411 CPUState *cs = CPU(mips_env_get_cpu(env)); 2412 target_siginfo_t info; 2413 int trapnr; 2414 abi_long ret; 2415 # ifdef TARGET_ABI_MIPSO32 2416 unsigned int syscall_num; 2417 # endif 2418 2419 for(;;) { 2420 cpu_exec_start(cs); 2421 trapnr = cpu_mips_exec(cs); 2422 cpu_exec_end(cs); 2423 switch(trapnr) { 2424 case EXCP_SYSCALL: 2425 env->active_tc.PC += 4; 2426 # ifdef TARGET_ABI_MIPSO32 2427 syscall_num = env->active_tc.gpr[2] - 4000; 2428 if (syscall_num >= sizeof(mips_syscall_args)) { 2429 ret = -TARGET_ENOSYS; 2430 } else { 2431 int nb_args; 2432 abi_ulong sp_reg; 2433 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2434 2435 nb_args = mips_syscall_args[syscall_num]; 2436 sp_reg = env->active_tc.gpr[29]; 2437 switch (nb_args) { 2438 /* these arguments are taken from the stack */ 2439 case 8: 2440 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2441 goto done_syscall; 2442 } 2443 case 7: 2444 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2445 goto done_syscall; 2446 } 2447 case 6: 2448 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2449 goto done_syscall; 2450 } 2451 case 5: 2452 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2453 goto done_syscall; 2454 } 2455 default: 2456 break; 2457 } 2458 ret = do_syscall(env, env->active_tc.gpr[2], 2459 env->active_tc.gpr[4], 2460 env->active_tc.gpr[5], 2461 env->active_tc.gpr[6], 2462 env->active_tc.gpr[7], 2463 arg5, arg6, arg7, arg8); 2464 } 2465 done_syscall: 2466 # else 2467 ret = do_syscall(env, env->active_tc.gpr[2], 2468 env->active_tc.gpr[4], env->active_tc.gpr[5], 2469 env->active_tc.gpr[6], env->active_tc.gpr[7], 2470 env->active_tc.gpr[8], env->active_tc.gpr[9], 2471 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2472 # endif /* O32 */ 2473 if (ret == -TARGET_QEMU_ESIGRETURN) { 2474 /* Returning from a successful sigreturn syscall. 2475 Avoid clobbering register state. */ 2476 break; 2477 } 2478 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2479 env->active_tc.gpr[7] = 1; /* error flag */ 2480 ret = -ret; 2481 } else { 2482 env->active_tc.gpr[7] = 0; /* error flag */ 2483 } 2484 env->active_tc.gpr[2] = ret; 2485 break; 2486 case EXCP_TLBL: 2487 case EXCP_TLBS: 2488 case EXCP_AdEL: 2489 case EXCP_AdES: 2490 info.si_signo = TARGET_SIGSEGV; 2491 info.si_errno = 0; 2492 /* XXX: check env->error_code */ 2493 info.si_code = TARGET_SEGV_MAPERR; 2494 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2495 queue_signal(env, info.si_signo, &info); 2496 break; 2497 case EXCP_CpU: 2498 case EXCP_RI: 2499 info.si_signo = TARGET_SIGILL; 2500 info.si_errno = 0; 2501 info.si_code = 0; 2502 queue_signal(env, info.si_signo, &info); 2503 break; 2504 case EXCP_INTERRUPT: 2505 /* just indicate that signals should be handled asap */ 2506 break; 2507 case EXCP_DEBUG: 2508 { 2509 int sig; 2510 2511 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2512 if (sig) 2513 { 2514 info.si_signo = sig; 2515 info.si_errno = 0; 2516 info.si_code = TARGET_TRAP_BRKPT; 2517 queue_signal(env, info.si_signo, &info); 2518 } 2519 } 2520 break; 2521 case EXCP_SC: 2522 if (do_store_exclusive(env)) { 2523 info.si_signo = TARGET_SIGSEGV; 2524 info.si_errno = 0; 2525 info.si_code = TARGET_SEGV_MAPERR; 2526 info._sifields._sigfault._addr = env->active_tc.PC; 2527 queue_signal(env, info.si_signo, &info); 2528 } 2529 break; 2530 case EXCP_DSPDIS: 2531 info.si_signo = TARGET_SIGILL; 2532 info.si_errno = 0; 2533 info.si_code = TARGET_ILL_ILLOPC; 2534 queue_signal(env, info.si_signo, &info); 2535 break; 2536 /* The code below was inspired by the MIPS Linux kernel trap 2537 * handling code in arch/mips/kernel/traps.c. 2538 */ 2539 case EXCP_BREAK: 2540 { 2541 abi_ulong trap_instr; 2542 unsigned int code; 2543 2544 if (env->hflags & MIPS_HFLAG_M16) { 2545 if (env->insn_flags & ASE_MICROMIPS) { 2546 /* microMIPS mode */ 2547 ret = get_user_u16(trap_instr, env->active_tc.PC); 2548 if (ret != 0) { 2549 goto error; 2550 } 2551 2552 if ((trap_instr >> 10) == 0x11) { 2553 /* 16-bit instruction */ 2554 code = trap_instr & 0xf; 2555 } else { 2556 /* 32-bit instruction */ 2557 abi_ulong instr_lo; 2558 2559 ret = get_user_u16(instr_lo, 2560 env->active_tc.PC + 2); 2561 if (ret != 0) { 2562 goto error; 2563 } 2564 trap_instr = (trap_instr << 16) | instr_lo; 2565 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2566 /* Unfortunately, microMIPS also suffers from 2567 the old assembler bug... */ 2568 if (code >= (1 << 10)) { 2569 code >>= 10; 2570 } 2571 } 2572 } else { 2573 /* MIPS16e mode */ 2574 ret = get_user_u16(trap_instr, env->active_tc.PC); 2575 if (ret != 0) { 2576 goto error; 2577 } 2578 code = (trap_instr >> 6) & 0x3f; 2579 } 2580 } else { 2581 ret = get_user_u32(trap_instr, env->active_tc.PC); 2582 if (ret != 0) { 2583 goto error; 2584 } 2585 2586 /* As described in the original Linux kernel code, the 2587 * below checks on 'code' are to work around an old 2588 * assembly bug. 2589 */ 2590 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2591 if (code >= (1 << 10)) { 2592 code >>= 10; 2593 } 2594 } 2595 2596 if (do_break(env, &info, code) != 0) { 2597 goto error; 2598 } 2599 } 2600 break; 2601 case EXCP_TRAP: 2602 { 2603 abi_ulong trap_instr; 2604 unsigned int code = 0; 2605 2606 if (env->hflags & MIPS_HFLAG_M16) { 2607 /* microMIPS mode */ 2608 abi_ulong instr[2]; 2609 2610 ret = get_user_u16(instr[0], env->active_tc.PC) || 2611 get_user_u16(instr[1], env->active_tc.PC + 2); 2612 2613 trap_instr = (instr[0] << 16) | instr[1]; 2614 } else { 2615 ret = get_user_u32(trap_instr, env->active_tc.PC); 2616 } 2617 2618 if (ret != 0) { 2619 goto error; 2620 } 2621 2622 /* The immediate versions don't provide a code. */ 2623 if (!(trap_instr & 0xFC000000)) { 2624 if (env->hflags & MIPS_HFLAG_M16) { 2625 /* microMIPS mode */ 2626 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2627 } else { 2628 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2629 } 2630 } 2631 2632 if (do_break(env, &info, code) != 0) { 2633 goto error; 2634 } 2635 } 2636 break; 2637 default: 2638 error: 2639 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2640 trapnr); 2641 cpu_dump_state(cs, stderr, fprintf, 0); 2642 abort(); 2643 } 2644 process_pending_signals(env); 2645 } 2646 } 2647 #endif 2648 2649 #ifdef TARGET_OPENRISC 2650 2651 void cpu_loop(CPUOpenRISCState *env) 2652 { 2653 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2654 int trapnr, gdbsig; 2655 2656 for (;;) { 2657 cpu_exec_start(cs); 2658 trapnr = cpu_openrisc_exec(cs); 2659 cpu_exec_end(cs); 2660 gdbsig = 0; 2661 2662 switch (trapnr) { 2663 case EXCP_RESET: 2664 qemu_log("\nReset request, exit, pc is %#x\n", env->pc); 2665 exit(1); 2666 break; 2667 case EXCP_BUSERR: 2668 qemu_log("\nBus error, exit, pc is %#x\n", env->pc); 2669 gdbsig = TARGET_SIGBUS; 2670 break; 2671 case EXCP_DPF: 2672 case EXCP_IPF: 2673 cpu_dump_state(cs, stderr, fprintf, 0); 2674 gdbsig = TARGET_SIGSEGV; 2675 break; 2676 case EXCP_TICK: 2677 qemu_log("\nTick time interrupt pc is %#x\n", env->pc); 2678 break; 2679 case EXCP_ALIGN: 2680 qemu_log("\nAlignment pc is %#x\n", env->pc); 2681 gdbsig = TARGET_SIGBUS; 2682 break; 2683 case EXCP_ILLEGAL: 2684 qemu_log("\nIllegal instructionpc is %#x\n", env->pc); 2685 gdbsig = TARGET_SIGILL; 2686 break; 2687 case EXCP_INT: 2688 qemu_log("\nExternal interruptpc is %#x\n", env->pc); 2689 break; 2690 case EXCP_DTLBMISS: 2691 case EXCP_ITLBMISS: 2692 qemu_log("\nTLB miss\n"); 2693 break; 2694 case EXCP_RANGE: 2695 qemu_log("\nRange\n"); 2696 gdbsig = TARGET_SIGSEGV; 2697 break; 2698 case EXCP_SYSCALL: 2699 env->pc += 4; /* 0xc00; */ 2700 env->gpr[11] = do_syscall(env, 2701 env->gpr[11], /* return value */ 2702 env->gpr[3], /* r3 - r7 are params */ 2703 env->gpr[4], 2704 env->gpr[5], 2705 env->gpr[6], 2706 env->gpr[7], 2707 env->gpr[8], 0, 0); 2708 break; 2709 case EXCP_FPE: 2710 qemu_log("\nFloating point error\n"); 2711 break; 2712 case EXCP_TRAP: 2713 qemu_log("\nTrap\n"); 2714 gdbsig = TARGET_SIGTRAP; 2715 break; 2716 case EXCP_NR: 2717 qemu_log("\nNR\n"); 2718 break; 2719 default: 2720 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", 2721 trapnr); 2722 cpu_dump_state(cs, stderr, fprintf, 0); 2723 gdbsig = TARGET_SIGILL; 2724 break; 2725 } 2726 if (gdbsig) { 2727 gdb_handlesig(cs, gdbsig); 2728 if (gdbsig != TARGET_SIGTRAP) { 2729 exit(1); 2730 } 2731 } 2732 2733 process_pending_signals(env); 2734 } 2735 } 2736 2737 #endif /* TARGET_OPENRISC */ 2738 2739 #ifdef TARGET_SH4 2740 void cpu_loop(CPUSH4State *env) 2741 { 2742 CPUState *cs = CPU(sh_env_get_cpu(env)); 2743 int trapnr, ret; 2744 target_siginfo_t info; 2745 2746 while (1) { 2747 cpu_exec_start(cs); 2748 trapnr = cpu_sh4_exec(cs); 2749 cpu_exec_end(cs); 2750 2751 switch (trapnr) { 2752 case 0x160: 2753 env->pc += 2; 2754 ret = do_syscall(env, 2755 env->gregs[3], 2756 env->gregs[4], 2757 env->gregs[5], 2758 env->gregs[6], 2759 env->gregs[7], 2760 env->gregs[0], 2761 env->gregs[1], 2762 0, 0); 2763 env->gregs[0] = ret; 2764 break; 2765 case EXCP_INTERRUPT: 2766 /* just indicate that signals should be handled asap */ 2767 break; 2768 case EXCP_DEBUG: 2769 { 2770 int sig; 2771 2772 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2773 if (sig) 2774 { 2775 info.si_signo = sig; 2776 info.si_errno = 0; 2777 info.si_code = TARGET_TRAP_BRKPT; 2778 queue_signal(env, info.si_signo, &info); 2779 } 2780 } 2781 break; 2782 case 0xa0: 2783 case 0xc0: 2784 info.si_signo = TARGET_SIGSEGV; 2785 info.si_errno = 0; 2786 info.si_code = TARGET_SEGV_MAPERR; 2787 info._sifields._sigfault._addr = env->tea; 2788 queue_signal(env, info.si_signo, &info); 2789 break; 2790 2791 default: 2792 printf ("Unhandled trap: 0x%x\n", trapnr); 2793 cpu_dump_state(cs, stderr, fprintf, 0); 2794 exit (1); 2795 } 2796 process_pending_signals (env); 2797 } 2798 } 2799 #endif 2800 2801 #ifdef TARGET_CRIS 2802 void cpu_loop(CPUCRISState *env) 2803 { 2804 CPUState *cs = CPU(cris_env_get_cpu(env)); 2805 int trapnr, ret; 2806 target_siginfo_t info; 2807 2808 while (1) { 2809 cpu_exec_start(cs); 2810 trapnr = cpu_cris_exec(cs); 2811 cpu_exec_end(cs); 2812 switch (trapnr) { 2813 case 0xaa: 2814 { 2815 info.si_signo = TARGET_SIGSEGV; 2816 info.si_errno = 0; 2817 /* XXX: check env->error_code */ 2818 info.si_code = TARGET_SEGV_MAPERR; 2819 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2820 queue_signal(env, info.si_signo, &info); 2821 } 2822 break; 2823 case EXCP_INTERRUPT: 2824 /* just indicate that signals should be handled asap */ 2825 break; 2826 case EXCP_BREAK: 2827 ret = do_syscall(env, 2828 env->regs[9], 2829 env->regs[10], 2830 env->regs[11], 2831 env->regs[12], 2832 env->regs[13], 2833 env->pregs[7], 2834 env->pregs[11], 2835 0, 0); 2836 env->regs[10] = ret; 2837 break; 2838 case EXCP_DEBUG: 2839 { 2840 int sig; 2841 2842 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2843 if (sig) 2844 { 2845 info.si_signo = sig; 2846 info.si_errno = 0; 2847 info.si_code = TARGET_TRAP_BRKPT; 2848 queue_signal(env, info.si_signo, &info); 2849 } 2850 } 2851 break; 2852 default: 2853 printf ("Unhandled trap: 0x%x\n", trapnr); 2854 cpu_dump_state(cs, stderr, fprintf, 0); 2855 exit (1); 2856 } 2857 process_pending_signals (env); 2858 } 2859 } 2860 #endif 2861 2862 #ifdef TARGET_MICROBLAZE 2863 void cpu_loop(CPUMBState *env) 2864 { 2865 CPUState *cs = CPU(mb_env_get_cpu(env)); 2866 int trapnr, ret; 2867 target_siginfo_t info; 2868 2869 while (1) { 2870 cpu_exec_start(cs); 2871 trapnr = cpu_mb_exec(cs); 2872 cpu_exec_end(cs); 2873 switch (trapnr) { 2874 case 0xaa: 2875 { 2876 info.si_signo = TARGET_SIGSEGV; 2877 info.si_errno = 0; 2878 /* XXX: check env->error_code */ 2879 info.si_code = TARGET_SEGV_MAPERR; 2880 info._sifields._sigfault._addr = 0; 2881 queue_signal(env, info.si_signo, &info); 2882 } 2883 break; 2884 case EXCP_INTERRUPT: 2885 /* just indicate that signals should be handled asap */ 2886 break; 2887 case EXCP_BREAK: 2888 /* Return address is 4 bytes after the call. */ 2889 env->regs[14] += 4; 2890 env->sregs[SR_PC] = env->regs[14]; 2891 ret = do_syscall(env, 2892 env->regs[12], 2893 env->regs[5], 2894 env->regs[6], 2895 env->regs[7], 2896 env->regs[8], 2897 env->regs[9], 2898 env->regs[10], 2899 0, 0); 2900 env->regs[3] = ret; 2901 break; 2902 case EXCP_HW_EXCP: 2903 env->regs[17] = env->sregs[SR_PC] + 4; 2904 if (env->iflags & D_FLAG) { 2905 env->sregs[SR_ESR] |= 1 << 12; 2906 env->sregs[SR_PC] -= 4; 2907 /* FIXME: if branch was immed, replay the imm as well. */ 2908 } 2909 2910 env->iflags &= ~(IMM_FLAG | D_FLAG); 2911 2912 switch (env->sregs[SR_ESR] & 31) { 2913 case ESR_EC_DIVZERO: 2914 info.si_signo = TARGET_SIGFPE; 2915 info.si_errno = 0; 2916 info.si_code = TARGET_FPE_FLTDIV; 2917 info._sifields._sigfault._addr = 0; 2918 queue_signal(env, info.si_signo, &info); 2919 break; 2920 case ESR_EC_FPU: 2921 info.si_signo = TARGET_SIGFPE; 2922 info.si_errno = 0; 2923 if (env->sregs[SR_FSR] & FSR_IO) { 2924 info.si_code = TARGET_FPE_FLTINV; 2925 } 2926 if (env->sregs[SR_FSR] & FSR_DZ) { 2927 info.si_code = TARGET_FPE_FLTDIV; 2928 } 2929 info._sifields._sigfault._addr = 0; 2930 queue_signal(env, info.si_signo, &info); 2931 break; 2932 default: 2933 printf ("Unhandled hw-exception: 0x%x\n", 2934 env->sregs[SR_ESR] & ESR_EC_MASK); 2935 cpu_dump_state(cs, stderr, fprintf, 0); 2936 exit (1); 2937 break; 2938 } 2939 break; 2940 case EXCP_DEBUG: 2941 { 2942 int sig; 2943 2944 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2945 if (sig) 2946 { 2947 info.si_signo = sig; 2948 info.si_errno = 0; 2949 info.si_code = TARGET_TRAP_BRKPT; 2950 queue_signal(env, info.si_signo, &info); 2951 } 2952 } 2953 break; 2954 default: 2955 printf ("Unhandled trap: 0x%x\n", trapnr); 2956 cpu_dump_state(cs, stderr, fprintf, 0); 2957 exit (1); 2958 } 2959 process_pending_signals (env); 2960 } 2961 } 2962 #endif 2963 2964 #ifdef TARGET_M68K 2965 2966 void cpu_loop(CPUM68KState *env) 2967 { 2968 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2969 int trapnr; 2970 unsigned int n; 2971 target_siginfo_t info; 2972 TaskState *ts = cs->opaque; 2973 2974 for(;;) { 2975 cpu_exec_start(cs); 2976 trapnr = cpu_m68k_exec(cs); 2977 cpu_exec_end(cs); 2978 switch(trapnr) { 2979 case EXCP_ILLEGAL: 2980 { 2981 if (ts->sim_syscalls) { 2982 uint16_t nr; 2983 get_user_u16(nr, env->pc + 2); 2984 env->pc += 4; 2985 do_m68k_simcall(env, nr); 2986 } else { 2987 goto do_sigill; 2988 } 2989 } 2990 break; 2991 case EXCP_HALT_INSN: 2992 /* Semihosing syscall. */ 2993 env->pc += 4; 2994 do_m68k_semihosting(env, env->dregs[0]); 2995 break; 2996 case EXCP_LINEA: 2997 case EXCP_LINEF: 2998 case EXCP_UNSUPPORTED: 2999 do_sigill: 3000 info.si_signo = TARGET_SIGILL; 3001 info.si_errno = 0; 3002 info.si_code = TARGET_ILL_ILLOPN; 3003 info._sifields._sigfault._addr = env->pc; 3004 queue_signal(env, info.si_signo, &info); 3005 break; 3006 case EXCP_TRAP0: 3007 { 3008 ts->sim_syscalls = 0; 3009 n = env->dregs[0]; 3010 env->pc += 2; 3011 env->dregs[0] = do_syscall(env, 3012 n, 3013 env->dregs[1], 3014 env->dregs[2], 3015 env->dregs[3], 3016 env->dregs[4], 3017 env->dregs[5], 3018 env->aregs[0], 3019 0, 0); 3020 } 3021 break; 3022 case EXCP_INTERRUPT: 3023 /* just indicate that signals should be handled asap */ 3024 break; 3025 case EXCP_ACCESS: 3026 { 3027 info.si_signo = TARGET_SIGSEGV; 3028 info.si_errno = 0; 3029 /* XXX: check env->error_code */ 3030 info.si_code = TARGET_SEGV_MAPERR; 3031 info._sifields._sigfault._addr = env->mmu.ar; 3032 queue_signal(env, info.si_signo, &info); 3033 } 3034 break; 3035 case EXCP_DEBUG: 3036 { 3037 int sig; 3038 3039 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3040 if (sig) 3041 { 3042 info.si_signo = sig; 3043 info.si_errno = 0; 3044 info.si_code = TARGET_TRAP_BRKPT; 3045 queue_signal(env, info.si_signo, &info); 3046 } 3047 } 3048 break; 3049 default: 3050 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 3051 trapnr); 3052 cpu_dump_state(cs, stderr, fprintf, 0); 3053 abort(); 3054 } 3055 process_pending_signals(env); 3056 } 3057 } 3058 #endif /* TARGET_M68K */ 3059 3060 #ifdef TARGET_ALPHA 3061 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3062 { 3063 target_ulong addr, val, tmp; 3064 target_siginfo_t info; 3065 int ret = 0; 3066 3067 addr = env->lock_addr; 3068 tmp = env->lock_st_addr; 3069 env->lock_addr = -1; 3070 env->lock_st_addr = 0; 3071 3072 start_exclusive(); 3073 mmap_lock(); 3074 3075 if (addr == tmp) { 3076 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3077 goto do_sigsegv; 3078 } 3079 3080 if (val == env->lock_value) { 3081 tmp = env->ir[reg]; 3082 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3083 goto do_sigsegv; 3084 } 3085 ret = 1; 3086 } 3087 } 3088 env->ir[reg] = ret; 3089 env->pc += 4; 3090 3091 mmap_unlock(); 3092 end_exclusive(); 3093 return; 3094 3095 do_sigsegv: 3096 mmap_unlock(); 3097 end_exclusive(); 3098 3099 info.si_signo = TARGET_SIGSEGV; 3100 info.si_errno = 0; 3101 info.si_code = TARGET_SEGV_MAPERR; 3102 info._sifields._sigfault._addr = addr; 3103 queue_signal(env, TARGET_SIGSEGV, &info); 3104 } 3105 3106 void cpu_loop(CPUAlphaState *env) 3107 { 3108 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3109 int trapnr; 3110 target_siginfo_t info; 3111 abi_long sysret; 3112 3113 while (1) { 3114 cpu_exec_start(cs); 3115 trapnr = cpu_alpha_exec(cs); 3116 cpu_exec_end(cs); 3117 3118 /* All of the traps imply a transition through PALcode, which 3119 implies an REI instruction has been executed. Which means 3120 that the intr_flag should be cleared. */ 3121 env->intr_flag = 0; 3122 3123 switch (trapnr) { 3124 case EXCP_RESET: 3125 fprintf(stderr, "Reset requested. Exit\n"); 3126 exit(1); 3127 break; 3128 case EXCP_MCHK: 3129 fprintf(stderr, "Machine check exception. Exit\n"); 3130 exit(1); 3131 break; 3132 case EXCP_SMP_INTERRUPT: 3133 case EXCP_CLK_INTERRUPT: 3134 case EXCP_DEV_INTERRUPT: 3135 fprintf(stderr, "External interrupt. Exit\n"); 3136 exit(1); 3137 break; 3138 case EXCP_MMFAULT: 3139 env->lock_addr = -1; 3140 info.si_signo = TARGET_SIGSEGV; 3141 info.si_errno = 0; 3142 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3143 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3144 info._sifields._sigfault._addr = env->trap_arg0; 3145 queue_signal(env, info.si_signo, &info); 3146 break; 3147 case EXCP_UNALIGN: 3148 env->lock_addr = -1; 3149 info.si_signo = TARGET_SIGBUS; 3150 info.si_errno = 0; 3151 info.si_code = TARGET_BUS_ADRALN; 3152 info._sifields._sigfault._addr = env->trap_arg0; 3153 queue_signal(env, info.si_signo, &info); 3154 break; 3155 case EXCP_OPCDEC: 3156 do_sigill: 3157 env->lock_addr = -1; 3158 info.si_signo = TARGET_SIGILL; 3159 info.si_errno = 0; 3160 info.si_code = TARGET_ILL_ILLOPC; 3161 info._sifields._sigfault._addr = env->pc; 3162 queue_signal(env, info.si_signo, &info); 3163 break; 3164 case EXCP_ARITH: 3165 env->lock_addr = -1; 3166 info.si_signo = TARGET_SIGFPE; 3167 info.si_errno = 0; 3168 info.si_code = TARGET_FPE_FLTINV; 3169 info._sifields._sigfault._addr = env->pc; 3170 queue_signal(env, info.si_signo, &info); 3171 break; 3172 case EXCP_FEN: 3173 /* No-op. Linux simply re-enables the FPU. */ 3174 break; 3175 case EXCP_CALL_PAL: 3176 env->lock_addr = -1; 3177 switch (env->error_code) { 3178 case 0x80: 3179 /* BPT */ 3180 info.si_signo = TARGET_SIGTRAP; 3181 info.si_errno = 0; 3182 info.si_code = TARGET_TRAP_BRKPT; 3183 info._sifields._sigfault._addr = env->pc; 3184 queue_signal(env, info.si_signo, &info); 3185 break; 3186 case 0x81: 3187 /* BUGCHK */ 3188 info.si_signo = TARGET_SIGTRAP; 3189 info.si_errno = 0; 3190 info.si_code = 0; 3191 info._sifields._sigfault._addr = env->pc; 3192 queue_signal(env, info.si_signo, &info); 3193 break; 3194 case 0x83: 3195 /* CALLSYS */ 3196 trapnr = env->ir[IR_V0]; 3197 sysret = do_syscall(env, trapnr, 3198 env->ir[IR_A0], env->ir[IR_A1], 3199 env->ir[IR_A2], env->ir[IR_A3], 3200 env->ir[IR_A4], env->ir[IR_A5], 3201 0, 0); 3202 if (trapnr == TARGET_NR_sigreturn 3203 || trapnr == TARGET_NR_rt_sigreturn) { 3204 break; 3205 } 3206 /* Syscall writes 0 to V0 to bypass error check, similar 3207 to how this is handled internal to Linux kernel. 3208 (Ab)use trapnr temporarily as boolean indicating error. */ 3209 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3210 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3211 env->ir[IR_A3] = trapnr; 3212 break; 3213 case 0x86: 3214 /* IMB */ 3215 /* ??? We can probably elide the code using page_unprotect 3216 that is checking for self-modifying code. Instead we 3217 could simply call tb_flush here. Until we work out the 3218 changes required to turn off the extra write protection, 3219 this can be a no-op. */ 3220 break; 3221 case 0x9E: 3222 /* RDUNIQUE */ 3223 /* Handled in the translator for usermode. */ 3224 abort(); 3225 case 0x9F: 3226 /* WRUNIQUE */ 3227 /* Handled in the translator for usermode. */ 3228 abort(); 3229 case 0xAA: 3230 /* GENTRAP */ 3231 info.si_signo = TARGET_SIGFPE; 3232 switch (env->ir[IR_A0]) { 3233 case TARGET_GEN_INTOVF: 3234 info.si_code = TARGET_FPE_INTOVF; 3235 break; 3236 case TARGET_GEN_INTDIV: 3237 info.si_code = TARGET_FPE_INTDIV; 3238 break; 3239 case TARGET_GEN_FLTOVF: 3240 info.si_code = TARGET_FPE_FLTOVF; 3241 break; 3242 case TARGET_GEN_FLTUND: 3243 info.si_code = TARGET_FPE_FLTUND; 3244 break; 3245 case TARGET_GEN_FLTINV: 3246 info.si_code = TARGET_FPE_FLTINV; 3247 break; 3248 case TARGET_GEN_FLTINE: 3249 info.si_code = TARGET_FPE_FLTRES; 3250 break; 3251 case TARGET_GEN_ROPRAND: 3252 info.si_code = 0; 3253 break; 3254 default: 3255 info.si_signo = TARGET_SIGTRAP; 3256 info.si_code = 0; 3257 break; 3258 } 3259 info.si_errno = 0; 3260 info._sifields._sigfault._addr = env->pc; 3261 queue_signal(env, info.si_signo, &info); 3262 break; 3263 default: 3264 goto do_sigill; 3265 } 3266 break; 3267 case EXCP_DEBUG: 3268 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3269 if (info.si_signo) { 3270 env->lock_addr = -1; 3271 info.si_errno = 0; 3272 info.si_code = TARGET_TRAP_BRKPT; 3273 queue_signal(env, info.si_signo, &info); 3274 } 3275 break; 3276 case EXCP_STL_C: 3277 case EXCP_STQ_C: 3278 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3279 break; 3280 case EXCP_INTERRUPT: 3281 /* Just indicate that signals should be handled asap. */ 3282 break; 3283 default: 3284 printf ("Unhandled trap: 0x%x\n", trapnr); 3285 cpu_dump_state(cs, stderr, fprintf, 0); 3286 exit (1); 3287 } 3288 process_pending_signals (env); 3289 } 3290 } 3291 #endif /* TARGET_ALPHA */ 3292 3293 #ifdef TARGET_S390X 3294 void cpu_loop(CPUS390XState *env) 3295 { 3296 CPUState *cs = CPU(s390_env_get_cpu(env)); 3297 int trapnr, n, sig; 3298 target_siginfo_t info; 3299 target_ulong addr; 3300 3301 while (1) { 3302 cpu_exec_start(cs); 3303 trapnr = cpu_s390x_exec(cs); 3304 cpu_exec_end(cs); 3305 switch (trapnr) { 3306 case EXCP_INTERRUPT: 3307 /* Just indicate that signals should be handled asap. */ 3308 break; 3309 3310 case EXCP_SVC: 3311 n = env->int_svc_code; 3312 if (!n) { 3313 /* syscalls > 255 */ 3314 n = env->regs[1]; 3315 } 3316 env->psw.addr += env->int_svc_ilen; 3317 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3318 env->regs[4], env->regs[5], 3319 env->regs[6], env->regs[7], 0, 0); 3320 break; 3321 3322 case EXCP_DEBUG: 3323 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3324 if (sig) { 3325 n = TARGET_TRAP_BRKPT; 3326 goto do_signal_pc; 3327 } 3328 break; 3329 case EXCP_PGM: 3330 n = env->int_pgm_code; 3331 switch (n) { 3332 case PGM_OPERATION: 3333 case PGM_PRIVILEGED: 3334 sig = TARGET_SIGILL; 3335 n = TARGET_ILL_ILLOPC; 3336 goto do_signal_pc; 3337 case PGM_PROTECTION: 3338 case PGM_ADDRESSING: 3339 sig = TARGET_SIGSEGV; 3340 /* XXX: check env->error_code */ 3341 n = TARGET_SEGV_MAPERR; 3342 addr = env->__excp_addr; 3343 goto do_signal; 3344 case PGM_EXECUTE: 3345 case PGM_SPECIFICATION: 3346 case PGM_SPECIAL_OP: 3347 case PGM_OPERAND: 3348 do_sigill_opn: 3349 sig = TARGET_SIGILL; 3350 n = TARGET_ILL_ILLOPN; 3351 goto do_signal_pc; 3352 3353 case PGM_FIXPT_OVERFLOW: 3354 sig = TARGET_SIGFPE; 3355 n = TARGET_FPE_INTOVF; 3356 goto do_signal_pc; 3357 case PGM_FIXPT_DIVIDE: 3358 sig = TARGET_SIGFPE; 3359 n = TARGET_FPE_INTDIV; 3360 goto do_signal_pc; 3361 3362 case PGM_DATA: 3363 n = (env->fpc >> 8) & 0xff; 3364 if (n == 0xff) { 3365 /* compare-and-trap */ 3366 goto do_sigill_opn; 3367 } else { 3368 /* An IEEE exception, simulated or otherwise. */ 3369 if (n & 0x80) { 3370 n = TARGET_FPE_FLTINV; 3371 } else if (n & 0x40) { 3372 n = TARGET_FPE_FLTDIV; 3373 } else if (n & 0x20) { 3374 n = TARGET_FPE_FLTOVF; 3375 } else if (n & 0x10) { 3376 n = TARGET_FPE_FLTUND; 3377 } else if (n & 0x08) { 3378 n = TARGET_FPE_FLTRES; 3379 } else { 3380 /* ??? Quantum exception; BFP, DFP error. */ 3381 goto do_sigill_opn; 3382 } 3383 sig = TARGET_SIGFPE; 3384 goto do_signal_pc; 3385 } 3386 3387 default: 3388 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3389 cpu_dump_state(cs, stderr, fprintf, 0); 3390 exit(1); 3391 } 3392 break; 3393 3394 do_signal_pc: 3395 addr = env->psw.addr; 3396 do_signal: 3397 info.si_signo = sig; 3398 info.si_errno = 0; 3399 info.si_code = n; 3400 info._sifields._sigfault._addr = addr; 3401 queue_signal(env, info.si_signo, &info); 3402 break; 3403 3404 default: 3405 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3406 cpu_dump_state(cs, stderr, fprintf, 0); 3407 exit(1); 3408 } 3409 process_pending_signals (env); 3410 } 3411 } 3412 3413 #endif /* TARGET_S390X */ 3414 3415 #ifdef TARGET_TILEGX 3416 3417 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3418 { 3419 target_siginfo_t info; 3420 3421 info.si_signo = TARGET_SIGSEGV; 3422 info.si_errno = 0; 3423 info.si_code = TARGET_SEGV_MAPERR; 3424 info._sifields._sigfault._addr = addr; 3425 queue_signal(env, info.si_signo, &info); 3426 } 3427 3428 static void gen_sigill_reg(CPUTLGState *env) 3429 { 3430 target_siginfo_t info; 3431 3432 info.si_signo = TARGET_SIGILL; 3433 info.si_errno = 0; 3434 info.si_code = TARGET_ILL_PRVREG; 3435 info._sifields._sigfault._addr = env->pc; 3436 queue_signal(env, info.si_signo, &info); 3437 } 3438 3439 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3440 { 3441 if (unlikely(reg >= TILEGX_R_COUNT)) { 3442 switch (reg) { 3443 case TILEGX_R_SN: 3444 case TILEGX_R_ZERO: 3445 return; 3446 case TILEGX_R_IDN0: 3447 case TILEGX_R_IDN1: 3448 case TILEGX_R_UDN0: 3449 case TILEGX_R_UDN1: 3450 case TILEGX_R_UDN2: 3451 case TILEGX_R_UDN3: 3452 gen_sigill_reg(env); 3453 return; 3454 default: 3455 g_assert_not_reached(); 3456 } 3457 } 3458 env->regs[reg] = val; 3459 } 3460 3461 /* 3462 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3463 * memory at the address held in the first source register. If the values are 3464 * not equal, then no memory operation is performed. If the values are equal, 3465 * the 8-byte quantity from the second source register is written into memory 3466 * at the address held in the first source register. In either case, the result 3467 * of the instruction is the value read from memory. The compare and write to 3468 * memory are atomic and thus can be used for synchronization purposes. This 3469 * instruction only operates for addresses aligned to a 8-byte boundary. 3470 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3471 * 3472 * Functional Description (64-bit) 3473 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3474 * rf[Dest] = memVal; 3475 * if (memVal == SPR[CmpValueSPR]) 3476 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3477 * 3478 * Functional Description (32-bit) 3479 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3480 * rf[Dest] = memVal; 3481 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3482 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3483 * 3484 * 3485 * This function also processes exch and exch4 which need not process SPR. 3486 */ 3487 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3488 { 3489 target_ulong addr; 3490 target_long val, sprval; 3491 3492 start_exclusive(); 3493 3494 addr = env->atomic_srca; 3495 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3496 goto sigsegv_maperr; 3497 } 3498 3499 if (cmp) { 3500 if (quad) { 3501 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3502 } else { 3503 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3504 } 3505 } 3506 3507 if (!cmp || val == sprval) { 3508 target_long valb = env->atomic_srcb; 3509 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3510 goto sigsegv_maperr; 3511 } 3512 } 3513 3514 set_regval(env, env->atomic_dstr, val); 3515 end_exclusive(); 3516 return; 3517 3518 sigsegv_maperr: 3519 end_exclusive(); 3520 gen_sigsegv_maperr(env, addr); 3521 } 3522 3523 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3524 { 3525 int8_t write = 1; 3526 target_ulong addr; 3527 target_long val, valb; 3528 3529 start_exclusive(); 3530 3531 addr = env->atomic_srca; 3532 valb = env->atomic_srcb; 3533 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3534 goto sigsegv_maperr; 3535 } 3536 3537 switch (trapnr) { 3538 case TILEGX_EXCP_OPCODE_FETCHADD: 3539 case TILEGX_EXCP_OPCODE_FETCHADD4: 3540 valb += val; 3541 break; 3542 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3543 valb += val; 3544 if (valb < 0) { 3545 write = 0; 3546 } 3547 break; 3548 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3549 valb += val; 3550 if ((int32_t)valb < 0) { 3551 write = 0; 3552 } 3553 break; 3554 case TILEGX_EXCP_OPCODE_FETCHAND: 3555 case TILEGX_EXCP_OPCODE_FETCHAND4: 3556 valb &= val; 3557 break; 3558 case TILEGX_EXCP_OPCODE_FETCHOR: 3559 case TILEGX_EXCP_OPCODE_FETCHOR4: 3560 valb |= val; 3561 break; 3562 default: 3563 g_assert_not_reached(); 3564 } 3565 3566 if (write) { 3567 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3568 goto sigsegv_maperr; 3569 } 3570 } 3571 3572 set_regval(env, env->atomic_dstr, val); 3573 end_exclusive(); 3574 return; 3575 3576 sigsegv_maperr: 3577 end_exclusive(); 3578 gen_sigsegv_maperr(env, addr); 3579 } 3580 3581 void cpu_loop(CPUTLGState *env) 3582 { 3583 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3584 int trapnr; 3585 3586 while (1) { 3587 cpu_exec_start(cs); 3588 trapnr = cpu_tilegx_exec(cs); 3589 cpu_exec_end(cs); 3590 switch (trapnr) { 3591 case TILEGX_EXCP_SYSCALL: 3592 env->regs[TILEGX_R_RE] = do_syscall(env, env->regs[TILEGX_R_NR], 3593 env->regs[0], env->regs[1], 3594 env->regs[2], env->regs[3], 3595 env->regs[4], env->regs[5], 3596 env->regs[6], env->regs[7]); 3597 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(env->regs[TILEGX_R_RE]) 3598 ? - env->regs[TILEGX_R_RE] 3599 : 0; 3600 break; 3601 case TILEGX_EXCP_OPCODE_EXCH: 3602 do_exch(env, true, false); 3603 break; 3604 case TILEGX_EXCP_OPCODE_EXCH4: 3605 do_exch(env, false, false); 3606 break; 3607 case TILEGX_EXCP_OPCODE_CMPEXCH: 3608 do_exch(env, true, true); 3609 break; 3610 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3611 do_exch(env, false, true); 3612 break; 3613 case TILEGX_EXCP_OPCODE_FETCHADD: 3614 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3615 case TILEGX_EXCP_OPCODE_FETCHAND: 3616 case TILEGX_EXCP_OPCODE_FETCHOR: 3617 do_fetch(env, trapnr, true); 3618 break; 3619 case TILEGX_EXCP_OPCODE_FETCHADD4: 3620 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3621 case TILEGX_EXCP_OPCODE_FETCHAND4: 3622 case TILEGX_EXCP_OPCODE_FETCHOR4: 3623 do_fetch(env, trapnr, false); 3624 break; 3625 case TILEGX_EXCP_REG_IDN_ACCESS: 3626 case TILEGX_EXCP_REG_UDN_ACCESS: 3627 gen_sigill_reg(env); 3628 break; 3629 case TILEGX_EXCP_SEGV: 3630 gen_sigsegv_maperr(env, env->excaddr); 3631 break; 3632 default: 3633 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3634 g_assert_not_reached(); 3635 } 3636 process_pending_signals(env); 3637 } 3638 } 3639 3640 #endif 3641 3642 THREAD CPUState *thread_cpu; 3643 3644 void task_settid(TaskState *ts) 3645 { 3646 if (ts->ts_tid == 0) { 3647 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3648 } 3649 } 3650 3651 void stop_all_tasks(void) 3652 { 3653 /* 3654 * We trust that when using NPTL, start_exclusive() 3655 * handles thread stopping correctly. 3656 */ 3657 start_exclusive(); 3658 } 3659 3660 /* Assumes contents are already zeroed. */ 3661 void init_task_state(TaskState *ts) 3662 { 3663 int i; 3664 3665 ts->used = 1; 3666 ts->first_free = ts->sigqueue_table; 3667 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3668 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3669 } 3670 ts->sigqueue_table[i].next = NULL; 3671 } 3672 3673 CPUArchState *cpu_copy(CPUArchState *env) 3674 { 3675 CPUState *cpu = ENV_GET_CPU(env); 3676 CPUState *new_cpu = cpu_init(cpu_model); 3677 CPUArchState *new_env = new_cpu->env_ptr; 3678 CPUBreakpoint *bp; 3679 CPUWatchpoint *wp; 3680 3681 /* Reset non arch specific state */ 3682 cpu_reset(new_cpu); 3683 3684 memcpy(new_env, env, sizeof(CPUArchState)); 3685 3686 /* Clone all break/watchpoints. 3687 Note: Once we support ptrace with hw-debug register access, make sure 3688 BP_CPU break/watchpoints are handled correctly on clone. */ 3689 QTAILQ_INIT(&new_cpu->breakpoints); 3690 QTAILQ_INIT(&new_cpu->watchpoints); 3691 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3692 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3693 } 3694 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3695 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3696 } 3697 3698 return new_env; 3699 } 3700 3701 static void handle_arg_help(const char *arg) 3702 { 3703 usage(); 3704 } 3705 3706 static void handle_arg_log(const char *arg) 3707 { 3708 int mask; 3709 3710 mask = qemu_str_to_log_mask(arg); 3711 if (!mask) { 3712 qemu_print_log_usage(stdout); 3713 exit(1); 3714 } 3715 qemu_set_log(mask); 3716 } 3717 3718 static void handle_arg_log_filename(const char *arg) 3719 { 3720 qemu_set_log_filename(arg); 3721 } 3722 3723 static void handle_arg_set_env(const char *arg) 3724 { 3725 char *r, *p, *token; 3726 r = p = strdup(arg); 3727 while ((token = strsep(&p, ",")) != NULL) { 3728 if (envlist_setenv(envlist, token) != 0) { 3729 usage(); 3730 } 3731 } 3732 free(r); 3733 } 3734 3735 static void handle_arg_unset_env(const char *arg) 3736 { 3737 char *r, *p, *token; 3738 r = p = strdup(arg); 3739 while ((token = strsep(&p, ",")) != NULL) { 3740 if (envlist_unsetenv(envlist, token) != 0) { 3741 usage(); 3742 } 3743 } 3744 free(r); 3745 } 3746 3747 static void handle_arg_argv0(const char *arg) 3748 { 3749 argv0 = strdup(arg); 3750 } 3751 3752 static void handle_arg_stack_size(const char *arg) 3753 { 3754 char *p; 3755 guest_stack_size = strtoul(arg, &p, 0); 3756 if (guest_stack_size == 0) { 3757 usage(); 3758 } 3759 3760 if (*p == 'M') { 3761 guest_stack_size *= 1024 * 1024; 3762 } else if (*p == 'k' || *p == 'K') { 3763 guest_stack_size *= 1024; 3764 } 3765 } 3766 3767 static void handle_arg_ld_prefix(const char *arg) 3768 { 3769 interp_prefix = strdup(arg); 3770 } 3771 3772 static void handle_arg_pagesize(const char *arg) 3773 { 3774 qemu_host_page_size = atoi(arg); 3775 if (qemu_host_page_size == 0 || 3776 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3777 fprintf(stderr, "page size must be a power of two\n"); 3778 exit(1); 3779 } 3780 } 3781 3782 static void handle_arg_randseed(const char *arg) 3783 { 3784 unsigned long long seed; 3785 3786 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3787 fprintf(stderr, "Invalid seed number: %s\n", arg); 3788 exit(1); 3789 } 3790 srand(seed); 3791 } 3792 3793 static void handle_arg_gdb(const char *arg) 3794 { 3795 gdbstub_port = atoi(arg); 3796 } 3797 3798 static void handle_arg_uname(const char *arg) 3799 { 3800 qemu_uname_release = strdup(arg); 3801 } 3802 3803 static void handle_arg_cpu(const char *arg) 3804 { 3805 cpu_model = strdup(arg); 3806 if (cpu_model == NULL || is_help_option(cpu_model)) { 3807 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3808 #if defined(cpu_list) 3809 cpu_list(stdout, &fprintf); 3810 #endif 3811 exit(1); 3812 } 3813 } 3814 3815 static void handle_arg_guest_base(const char *arg) 3816 { 3817 guest_base = strtol(arg, NULL, 0); 3818 have_guest_base = 1; 3819 } 3820 3821 static void handle_arg_reserved_va(const char *arg) 3822 { 3823 char *p; 3824 int shift = 0; 3825 reserved_va = strtoul(arg, &p, 0); 3826 switch (*p) { 3827 case 'k': 3828 case 'K': 3829 shift = 10; 3830 break; 3831 case 'M': 3832 shift = 20; 3833 break; 3834 case 'G': 3835 shift = 30; 3836 break; 3837 } 3838 if (shift) { 3839 unsigned long unshifted = reserved_va; 3840 p++; 3841 reserved_va <<= shift; 3842 if (((reserved_va >> shift) != unshifted) 3843 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3844 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3845 #endif 3846 ) { 3847 fprintf(stderr, "Reserved virtual address too big\n"); 3848 exit(1); 3849 } 3850 } 3851 if (*p) { 3852 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3853 exit(1); 3854 } 3855 } 3856 3857 static void handle_arg_singlestep(const char *arg) 3858 { 3859 singlestep = 1; 3860 } 3861 3862 static void handle_arg_strace(const char *arg) 3863 { 3864 do_strace = 1; 3865 } 3866 3867 static void handle_arg_version(const char *arg) 3868 { 3869 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3870 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3871 exit(0); 3872 } 3873 3874 struct qemu_argument { 3875 const char *argv; 3876 const char *env; 3877 bool has_arg; 3878 void (*handle_opt)(const char *arg); 3879 const char *example; 3880 const char *help; 3881 }; 3882 3883 static const struct qemu_argument arg_table[] = { 3884 {"h", "", false, handle_arg_help, 3885 "", "print this help"}, 3886 {"g", "QEMU_GDB", true, handle_arg_gdb, 3887 "port", "wait gdb connection to 'port'"}, 3888 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3889 "path", "set the elf interpreter prefix to 'path'"}, 3890 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3891 "size", "set the stack size to 'size' bytes"}, 3892 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3893 "model", "select CPU (-cpu help for list)"}, 3894 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3895 "var=value", "sets targets environment variable (see below)"}, 3896 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3897 "var", "unsets targets environment variable (see below)"}, 3898 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3899 "argv0", "forces target process argv[0] to be 'argv0'"}, 3900 {"r", "QEMU_UNAME", true, handle_arg_uname, 3901 "uname", "set qemu uname release string to 'uname'"}, 3902 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3903 "address", "set guest_base address to 'address'"}, 3904 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3905 "size", "reserve 'size' bytes for guest virtual address space"}, 3906 {"d", "QEMU_LOG", true, handle_arg_log, 3907 "item[,...]", "enable logging of specified items " 3908 "(use '-d help' for a list of items)"}, 3909 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3910 "logfile", "write logs to 'logfile' (default stderr)"}, 3911 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3912 "pagesize", "set the host page size to 'pagesize'"}, 3913 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3914 "", "run in singlestep mode"}, 3915 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3916 "", "log system calls"}, 3917 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 3918 "", "Seed for pseudo-random number generator"}, 3919 {"version", "QEMU_VERSION", false, handle_arg_version, 3920 "", "display version information and exit"}, 3921 {NULL, NULL, false, NULL, NULL, NULL} 3922 }; 3923 3924 static void usage(void) 3925 { 3926 const struct qemu_argument *arginfo; 3927 int maxarglen; 3928 int maxenvlen; 3929 3930 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3931 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3932 "\n" 3933 "Options and associated environment variables:\n" 3934 "\n"); 3935 3936 /* Calculate column widths. We must always have at least enough space 3937 * for the column header. 3938 */ 3939 maxarglen = strlen("Argument"); 3940 maxenvlen = strlen("Env-variable"); 3941 3942 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3943 int arglen = strlen(arginfo->argv); 3944 if (arginfo->has_arg) { 3945 arglen += strlen(arginfo->example) + 1; 3946 } 3947 if (strlen(arginfo->env) > maxenvlen) { 3948 maxenvlen = strlen(arginfo->env); 3949 } 3950 if (arglen > maxarglen) { 3951 maxarglen = arglen; 3952 } 3953 } 3954 3955 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3956 maxenvlen, "Env-variable"); 3957 3958 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3959 if (arginfo->has_arg) { 3960 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3961 (int)(maxarglen - strlen(arginfo->argv) - 1), 3962 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3963 } else { 3964 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3965 maxenvlen, arginfo->env, 3966 arginfo->help); 3967 } 3968 } 3969 3970 printf("\n" 3971 "Defaults:\n" 3972 "QEMU_LD_PREFIX = %s\n" 3973 "QEMU_STACK_SIZE = %ld byte\n", 3974 interp_prefix, 3975 guest_stack_size); 3976 3977 printf("\n" 3978 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3979 "QEMU_UNSET_ENV environment variables to set and unset\n" 3980 "environment variables for the target process.\n" 3981 "It is possible to provide several variables by separating them\n" 3982 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3983 "provide the -E and -U options multiple times.\n" 3984 "The following lines are equivalent:\n" 3985 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3986 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3987 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 3988 "Note that if you provide several changes to a single variable\n" 3989 "the last change will stay in effect.\n"); 3990 3991 exit(1); 3992 } 3993 3994 static int parse_args(int argc, char **argv) 3995 { 3996 const char *r; 3997 int optind; 3998 const struct qemu_argument *arginfo; 3999 4000 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4001 if (arginfo->env == NULL) { 4002 continue; 4003 } 4004 4005 r = getenv(arginfo->env); 4006 if (r != NULL) { 4007 arginfo->handle_opt(r); 4008 } 4009 } 4010 4011 optind = 1; 4012 for (;;) { 4013 if (optind >= argc) { 4014 break; 4015 } 4016 r = argv[optind]; 4017 if (r[0] != '-') { 4018 break; 4019 } 4020 optind++; 4021 r++; 4022 if (!strcmp(r, "-")) { 4023 break; 4024 } 4025 4026 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4027 if (!strcmp(r, arginfo->argv)) { 4028 if (arginfo->has_arg) { 4029 if (optind >= argc) { 4030 usage(); 4031 } 4032 arginfo->handle_opt(argv[optind]); 4033 optind++; 4034 } else { 4035 arginfo->handle_opt(NULL); 4036 } 4037 break; 4038 } 4039 } 4040 4041 /* no option matched the current argv */ 4042 if (arginfo->handle_opt == NULL) { 4043 usage(); 4044 } 4045 } 4046 4047 if (optind >= argc) { 4048 usage(); 4049 } 4050 4051 filename = argv[optind]; 4052 exec_path = argv[optind]; 4053 4054 return optind; 4055 } 4056 4057 int main(int argc, char **argv, char **envp) 4058 { 4059 struct target_pt_regs regs1, *regs = ®s1; 4060 struct image_info info1, *info = &info1; 4061 struct linux_binprm bprm; 4062 TaskState *ts; 4063 CPUArchState *env; 4064 CPUState *cpu; 4065 int optind; 4066 char **target_environ, **wrk; 4067 char **target_argv; 4068 int target_argc; 4069 int i; 4070 int ret; 4071 int execfd; 4072 4073 module_call_init(MODULE_INIT_QOM); 4074 4075 if ((envlist = envlist_create()) == NULL) { 4076 (void) fprintf(stderr, "Unable to allocate envlist\n"); 4077 exit(1); 4078 } 4079 4080 /* add current environment into the list */ 4081 for (wrk = environ; *wrk != NULL; wrk++) { 4082 (void) envlist_setenv(envlist, *wrk); 4083 } 4084 4085 /* Read the stack limit from the kernel. If it's "unlimited", 4086 then we can do little else besides use the default. */ 4087 { 4088 struct rlimit lim; 4089 if (getrlimit(RLIMIT_STACK, &lim) == 0 4090 && lim.rlim_cur != RLIM_INFINITY 4091 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4092 guest_stack_size = lim.rlim_cur; 4093 } 4094 } 4095 4096 cpu_model = NULL; 4097 #if defined(cpudef_setup) 4098 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 4099 #endif 4100 4101 srand(time(NULL)); 4102 4103 optind = parse_args(argc, argv); 4104 4105 /* Zero out regs */ 4106 memset(regs, 0, sizeof(struct target_pt_regs)); 4107 4108 /* Zero out image_info */ 4109 memset(info, 0, sizeof(struct image_info)); 4110 4111 memset(&bprm, 0, sizeof (bprm)); 4112 4113 /* Scan interp_prefix dir for replacement files. */ 4114 init_paths(interp_prefix); 4115 4116 init_qemu_uname_release(); 4117 4118 if (cpu_model == NULL) { 4119 #if defined(TARGET_I386) 4120 #ifdef TARGET_X86_64 4121 cpu_model = "qemu64"; 4122 #else 4123 cpu_model = "qemu32"; 4124 #endif 4125 #elif defined(TARGET_ARM) 4126 cpu_model = "any"; 4127 #elif defined(TARGET_UNICORE32) 4128 cpu_model = "any"; 4129 #elif defined(TARGET_M68K) 4130 cpu_model = "any"; 4131 #elif defined(TARGET_SPARC) 4132 #ifdef TARGET_SPARC64 4133 cpu_model = "TI UltraSparc II"; 4134 #else 4135 cpu_model = "Fujitsu MB86904"; 4136 #endif 4137 #elif defined(TARGET_MIPS) 4138 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4139 cpu_model = "5KEf"; 4140 #else 4141 cpu_model = "24Kf"; 4142 #endif 4143 #elif defined TARGET_OPENRISC 4144 cpu_model = "or1200"; 4145 #elif defined(TARGET_PPC) 4146 # ifdef TARGET_PPC64 4147 cpu_model = "POWER7"; 4148 # else 4149 cpu_model = "750"; 4150 # endif 4151 #elif defined TARGET_SH4 4152 cpu_model = TYPE_SH7785_CPU; 4153 #else 4154 cpu_model = "any"; 4155 #endif 4156 } 4157 tcg_exec_init(0); 4158 /* NOTE: we need to init the CPU at this stage to get 4159 qemu_host_page_size */ 4160 cpu = cpu_init(cpu_model); 4161 if (!cpu) { 4162 fprintf(stderr, "Unable to find CPU definition\n"); 4163 exit(1); 4164 } 4165 env = cpu->env_ptr; 4166 cpu_reset(cpu); 4167 4168 thread_cpu = cpu; 4169 4170 if (getenv("QEMU_STRACE")) { 4171 do_strace = 1; 4172 } 4173 4174 if (getenv("QEMU_RAND_SEED")) { 4175 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4176 } 4177 4178 target_environ = envlist_to_environ(envlist, NULL); 4179 envlist_free(envlist); 4180 4181 /* 4182 * Now that page sizes are configured in cpu_init() we can do 4183 * proper page alignment for guest_base. 4184 */ 4185 guest_base = HOST_PAGE_ALIGN(guest_base); 4186 4187 if (reserved_va || have_guest_base) { 4188 guest_base = init_guest_space(guest_base, reserved_va, 0, 4189 have_guest_base); 4190 if (guest_base == (unsigned long)-1) { 4191 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4192 "space for use as guest address space (check your virtual " 4193 "memory ulimit setting or reserve less using -R option)\n", 4194 reserved_va); 4195 exit(1); 4196 } 4197 4198 if (reserved_va) { 4199 mmap_next_start = reserved_va; 4200 } 4201 } 4202 4203 /* 4204 * Read in mmap_min_addr kernel parameter. This value is used 4205 * When loading the ELF image to determine whether guest_base 4206 * is needed. It is also used in mmap_find_vma. 4207 */ 4208 { 4209 FILE *fp; 4210 4211 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4212 unsigned long tmp; 4213 if (fscanf(fp, "%lu", &tmp) == 1) { 4214 mmap_min_addr = tmp; 4215 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); 4216 } 4217 fclose(fp); 4218 } 4219 } 4220 4221 /* 4222 * Prepare copy of argv vector for target. 4223 */ 4224 target_argc = argc - optind; 4225 target_argv = calloc(target_argc + 1, sizeof (char *)); 4226 if (target_argv == NULL) { 4227 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4228 exit(1); 4229 } 4230 4231 /* 4232 * If argv0 is specified (using '-0' switch) we replace 4233 * argv[0] pointer with the given one. 4234 */ 4235 i = 0; 4236 if (argv0 != NULL) { 4237 target_argv[i++] = strdup(argv0); 4238 } 4239 for (; i < target_argc; i++) { 4240 target_argv[i] = strdup(argv[optind + i]); 4241 } 4242 target_argv[target_argc] = NULL; 4243 4244 ts = g_malloc0 (sizeof(TaskState)); 4245 init_task_state(ts); 4246 /* build Task State */ 4247 ts->info = info; 4248 ts->bprm = &bprm; 4249 cpu->opaque = ts; 4250 task_settid(ts); 4251 4252 execfd = qemu_getauxval(AT_EXECFD); 4253 if (execfd == 0) { 4254 execfd = open(filename, O_RDONLY); 4255 if (execfd < 0) { 4256 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4257 _exit(1); 4258 } 4259 } 4260 4261 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4262 info, &bprm); 4263 if (ret != 0) { 4264 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4265 _exit(1); 4266 } 4267 4268 for (wrk = target_environ; *wrk; wrk++) { 4269 free(*wrk); 4270 } 4271 4272 free(target_environ); 4273 4274 if (qemu_log_enabled()) { 4275 qemu_log("guest_base 0x%lx\n", guest_base); 4276 log_page_dump(); 4277 4278 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4279 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4280 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4281 info->start_code); 4282 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4283 info->start_data); 4284 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4285 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4286 info->start_stack); 4287 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4288 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4289 } 4290 4291 target_set_brk(info->brk); 4292 syscall_init(); 4293 signal_init(); 4294 4295 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4296 generating the prologue until now so that the prologue can take 4297 the real value of GUEST_BASE into account. */ 4298 tcg_prologue_init(&tcg_ctx); 4299 4300 #if defined(TARGET_I386) 4301 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4302 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4303 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4304 env->cr[4] |= CR4_OSFXSR_MASK; 4305 env->hflags |= HF_OSFXSR_MASK; 4306 } 4307 #ifndef TARGET_ABI32 4308 /* enable 64 bit mode if possible */ 4309 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4310 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4311 exit(1); 4312 } 4313 env->cr[4] |= CR4_PAE_MASK; 4314 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4315 env->hflags |= HF_LMA_MASK; 4316 #endif 4317 4318 /* flags setup : we activate the IRQs by default as in user mode */ 4319 env->eflags |= IF_MASK; 4320 4321 /* linux register setup */ 4322 #ifndef TARGET_ABI32 4323 env->regs[R_EAX] = regs->rax; 4324 env->regs[R_EBX] = regs->rbx; 4325 env->regs[R_ECX] = regs->rcx; 4326 env->regs[R_EDX] = regs->rdx; 4327 env->regs[R_ESI] = regs->rsi; 4328 env->regs[R_EDI] = regs->rdi; 4329 env->regs[R_EBP] = regs->rbp; 4330 env->regs[R_ESP] = regs->rsp; 4331 env->eip = regs->rip; 4332 #else 4333 env->regs[R_EAX] = regs->eax; 4334 env->regs[R_EBX] = regs->ebx; 4335 env->regs[R_ECX] = regs->ecx; 4336 env->regs[R_EDX] = regs->edx; 4337 env->regs[R_ESI] = regs->esi; 4338 env->regs[R_EDI] = regs->edi; 4339 env->regs[R_EBP] = regs->ebp; 4340 env->regs[R_ESP] = regs->esp; 4341 env->eip = regs->eip; 4342 #endif 4343 4344 /* linux interrupt setup */ 4345 #ifndef TARGET_ABI32 4346 env->idt.limit = 511; 4347 #else 4348 env->idt.limit = 255; 4349 #endif 4350 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4351 PROT_READ|PROT_WRITE, 4352 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4353 idt_table = g2h(env->idt.base); 4354 set_idt(0, 0); 4355 set_idt(1, 0); 4356 set_idt(2, 0); 4357 set_idt(3, 3); 4358 set_idt(4, 3); 4359 set_idt(5, 0); 4360 set_idt(6, 0); 4361 set_idt(7, 0); 4362 set_idt(8, 0); 4363 set_idt(9, 0); 4364 set_idt(10, 0); 4365 set_idt(11, 0); 4366 set_idt(12, 0); 4367 set_idt(13, 0); 4368 set_idt(14, 0); 4369 set_idt(15, 0); 4370 set_idt(16, 0); 4371 set_idt(17, 0); 4372 set_idt(18, 0); 4373 set_idt(19, 0); 4374 set_idt(0x80, 3); 4375 4376 /* linux segment setup */ 4377 { 4378 uint64_t *gdt_table; 4379 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4380 PROT_READ|PROT_WRITE, 4381 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4382 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4383 gdt_table = g2h(env->gdt.base); 4384 #ifdef TARGET_ABI32 4385 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4386 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4387 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4388 #else 4389 /* 64 bit code segment */ 4390 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4391 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4392 DESC_L_MASK | 4393 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4394 #endif 4395 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4396 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4397 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4398 } 4399 cpu_x86_load_seg(env, R_CS, __USER_CS); 4400 cpu_x86_load_seg(env, R_SS, __USER_DS); 4401 #ifdef TARGET_ABI32 4402 cpu_x86_load_seg(env, R_DS, __USER_DS); 4403 cpu_x86_load_seg(env, R_ES, __USER_DS); 4404 cpu_x86_load_seg(env, R_FS, __USER_DS); 4405 cpu_x86_load_seg(env, R_GS, __USER_DS); 4406 /* This hack makes Wine work... */ 4407 env->segs[R_FS].selector = 0; 4408 #else 4409 cpu_x86_load_seg(env, R_DS, 0); 4410 cpu_x86_load_seg(env, R_ES, 0); 4411 cpu_x86_load_seg(env, R_FS, 0); 4412 cpu_x86_load_seg(env, R_GS, 0); 4413 #endif 4414 #elif defined(TARGET_AARCH64) 4415 { 4416 int i; 4417 4418 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4419 fprintf(stderr, 4420 "The selected ARM CPU does not support 64 bit mode\n"); 4421 exit(1); 4422 } 4423 4424 for (i = 0; i < 31; i++) { 4425 env->xregs[i] = regs->regs[i]; 4426 } 4427 env->pc = regs->pc; 4428 env->xregs[31] = regs->sp; 4429 } 4430 #elif defined(TARGET_ARM) 4431 { 4432 int i; 4433 cpsr_write(env, regs->uregs[16], 0xffffffff); 4434 for(i = 0; i < 16; i++) { 4435 env->regs[i] = regs->uregs[i]; 4436 } 4437 /* Enable BE8. */ 4438 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4439 && (info->elf_flags & EF_ARM_BE8)) { 4440 env->bswap_code = 1; 4441 } 4442 } 4443 #elif defined(TARGET_UNICORE32) 4444 { 4445 int i; 4446 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4447 for (i = 0; i < 32; i++) { 4448 env->regs[i] = regs->uregs[i]; 4449 } 4450 } 4451 #elif defined(TARGET_SPARC) 4452 { 4453 int i; 4454 env->pc = regs->pc; 4455 env->npc = regs->npc; 4456 env->y = regs->y; 4457 for(i = 0; i < 8; i++) 4458 env->gregs[i] = regs->u_regs[i]; 4459 for(i = 0; i < 8; i++) 4460 env->regwptr[i] = regs->u_regs[i + 8]; 4461 } 4462 #elif defined(TARGET_PPC) 4463 { 4464 int i; 4465 4466 #if defined(TARGET_PPC64) 4467 #if defined(TARGET_ABI32) 4468 env->msr &= ~((target_ulong)1 << MSR_SF); 4469 #else 4470 env->msr |= (target_ulong)1 << MSR_SF; 4471 #endif 4472 #endif 4473 env->nip = regs->nip; 4474 for(i = 0; i < 32; i++) { 4475 env->gpr[i] = regs->gpr[i]; 4476 } 4477 } 4478 #elif defined(TARGET_M68K) 4479 { 4480 env->pc = regs->pc; 4481 env->dregs[0] = regs->d0; 4482 env->dregs[1] = regs->d1; 4483 env->dregs[2] = regs->d2; 4484 env->dregs[3] = regs->d3; 4485 env->dregs[4] = regs->d4; 4486 env->dregs[5] = regs->d5; 4487 env->dregs[6] = regs->d6; 4488 env->dregs[7] = regs->d7; 4489 env->aregs[0] = regs->a0; 4490 env->aregs[1] = regs->a1; 4491 env->aregs[2] = regs->a2; 4492 env->aregs[3] = regs->a3; 4493 env->aregs[4] = regs->a4; 4494 env->aregs[5] = regs->a5; 4495 env->aregs[6] = regs->a6; 4496 env->aregs[7] = regs->usp; 4497 env->sr = regs->sr; 4498 ts->sim_syscalls = 1; 4499 } 4500 #elif defined(TARGET_MICROBLAZE) 4501 { 4502 env->regs[0] = regs->r0; 4503 env->regs[1] = regs->r1; 4504 env->regs[2] = regs->r2; 4505 env->regs[3] = regs->r3; 4506 env->regs[4] = regs->r4; 4507 env->regs[5] = regs->r5; 4508 env->regs[6] = regs->r6; 4509 env->regs[7] = regs->r7; 4510 env->regs[8] = regs->r8; 4511 env->regs[9] = regs->r9; 4512 env->regs[10] = regs->r10; 4513 env->regs[11] = regs->r11; 4514 env->regs[12] = regs->r12; 4515 env->regs[13] = regs->r13; 4516 env->regs[14] = regs->r14; 4517 env->regs[15] = regs->r15; 4518 env->regs[16] = regs->r16; 4519 env->regs[17] = regs->r17; 4520 env->regs[18] = regs->r18; 4521 env->regs[19] = regs->r19; 4522 env->regs[20] = regs->r20; 4523 env->regs[21] = regs->r21; 4524 env->regs[22] = regs->r22; 4525 env->regs[23] = regs->r23; 4526 env->regs[24] = regs->r24; 4527 env->regs[25] = regs->r25; 4528 env->regs[26] = regs->r26; 4529 env->regs[27] = regs->r27; 4530 env->regs[28] = regs->r28; 4531 env->regs[29] = regs->r29; 4532 env->regs[30] = regs->r30; 4533 env->regs[31] = regs->r31; 4534 env->sregs[SR_PC] = regs->pc; 4535 } 4536 #elif defined(TARGET_MIPS) 4537 { 4538 int i; 4539 4540 for(i = 0; i < 32; i++) { 4541 env->active_tc.gpr[i] = regs->regs[i]; 4542 } 4543 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4544 if (regs->cp0_epc & 1) { 4545 env->hflags |= MIPS_HFLAG_M16; 4546 } 4547 } 4548 #elif defined(TARGET_OPENRISC) 4549 { 4550 int i; 4551 4552 for (i = 0; i < 32; i++) { 4553 env->gpr[i] = regs->gpr[i]; 4554 } 4555 4556 env->sr = regs->sr; 4557 env->pc = regs->pc; 4558 } 4559 #elif defined(TARGET_SH4) 4560 { 4561 int i; 4562 4563 for(i = 0; i < 16; i++) { 4564 env->gregs[i] = regs->regs[i]; 4565 } 4566 env->pc = regs->pc; 4567 } 4568 #elif defined(TARGET_ALPHA) 4569 { 4570 int i; 4571 4572 for(i = 0; i < 28; i++) { 4573 env->ir[i] = ((abi_ulong *)regs)[i]; 4574 } 4575 env->ir[IR_SP] = regs->usp; 4576 env->pc = regs->pc; 4577 } 4578 #elif defined(TARGET_CRIS) 4579 { 4580 env->regs[0] = regs->r0; 4581 env->regs[1] = regs->r1; 4582 env->regs[2] = regs->r2; 4583 env->regs[3] = regs->r3; 4584 env->regs[4] = regs->r4; 4585 env->regs[5] = regs->r5; 4586 env->regs[6] = regs->r6; 4587 env->regs[7] = regs->r7; 4588 env->regs[8] = regs->r8; 4589 env->regs[9] = regs->r9; 4590 env->regs[10] = regs->r10; 4591 env->regs[11] = regs->r11; 4592 env->regs[12] = regs->r12; 4593 env->regs[13] = regs->r13; 4594 env->regs[14] = info->start_stack; 4595 env->regs[15] = regs->acr; 4596 env->pc = regs->erp; 4597 } 4598 #elif defined(TARGET_S390X) 4599 { 4600 int i; 4601 for (i = 0; i < 16; i++) { 4602 env->regs[i] = regs->gprs[i]; 4603 } 4604 env->psw.mask = regs->psw.mask; 4605 env->psw.addr = regs->psw.addr; 4606 } 4607 #elif defined(TARGET_TILEGX) 4608 { 4609 int i; 4610 for (i = 0; i < TILEGX_R_COUNT; i++) { 4611 env->regs[i] = regs->regs[i]; 4612 } 4613 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4614 env->spregs[i] = 0; 4615 } 4616 env->pc = regs->pc; 4617 } 4618 #else 4619 #error unsupported target CPU 4620 #endif 4621 4622 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4623 ts->stack_base = info->start_stack; 4624 ts->heap_base = info->brk; 4625 /* This will be filled in on the first SYS_HEAPINFO call. */ 4626 ts->heap_limit = 0; 4627 #endif 4628 4629 if (gdbstub_port) { 4630 if (gdbserver_start(gdbstub_port) < 0) { 4631 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4632 gdbstub_port); 4633 exit(1); 4634 } 4635 gdb_handlesig(cpu, 0); 4636 } 4637 cpu_loop(env); 4638 /* never exits */ 4639 return 0; 4640 } 4641