1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <sys/syscall.h> 22 #include <sys/resource.h> 23 24 #include "qapi/error.h" 25 #include "qemu.h" 26 #include "qemu/path.h" 27 #include "qemu/config-file.h" 28 #include "qemu/cutils.h" 29 #include "qemu/help_option.h" 30 #include "cpu.h" 31 #include "exec/exec-all.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 #include "exec/log.h" 37 #include "trace/control.h" 38 39 char *exec_path; 40 41 int singlestep; 42 static const char *filename; 43 static const char *argv0; 44 static int gdbstub_port; 45 static envlist_t *envlist; 46 static const char *cpu_model; 47 unsigned long mmap_min_addr; 48 unsigned long guest_base; 49 int have_guest_base; 50 51 #define EXCP_DUMP(env, fmt, ...) \ 52 do { \ 53 CPUState *cs = ENV_GET_CPU(env); \ 54 fprintf(stderr, fmt , ## __VA_ARGS__); \ 55 cpu_dump_state(cs, stderr, fprintf, 0); \ 56 if (qemu_log_separate()) { \ 57 qemu_log(fmt, ## __VA_ARGS__); \ 58 log_cpu_state(cs, 0); \ 59 } \ 60 } while (0) 61 62 /* 63 * When running 32-on-64 we should make sure we can fit all of the possible 64 * guest address space into a contiguous chunk of virtual host memory. 65 * 66 * This way we will never overlap with our own libraries or binaries or stack 67 * or anything else that QEMU maps. 68 * 69 * Many cpus reserve the high bit (or more than one for some 64-bit cpus) 70 * of the address for the kernel. Some cpus rely on this and user space 71 * uses the high bit(s) for pointer tagging and the like. For them, we 72 * must preserve the expected address space. 73 */ 74 #ifndef MAX_RESERVED_VA 75 # if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 76 # if TARGET_VIRT_ADDR_SPACE_BITS == 32 && \ 77 (TARGET_LONG_BITS == 32 || defined(TARGET_ABI32)) 78 /* There are a number of places where we assign reserved_va to a variable 79 of type abi_ulong and expect it to fit. Avoid the last page. */ 80 # define MAX_RESERVED_VA (0xfffffffful & TARGET_PAGE_MASK) 81 # else 82 # define MAX_RESERVED_VA (1ul << TARGET_VIRT_ADDR_SPACE_BITS) 83 # endif 84 # else 85 # define MAX_RESERVED_VA 0 86 # endif 87 #endif 88 89 /* That said, reserving *too* much vm space via mmap can run into problems 90 with rlimits, oom due to page table creation, etc. We will still try it, 91 if directed by the command-line option, but not by default. */ 92 #if HOST_LONG_BITS == 64 && TARGET_VIRT_ADDR_SPACE_BITS <= 32 93 unsigned long reserved_va = MAX_RESERVED_VA; 94 #else 95 unsigned long reserved_va; 96 #endif 97 98 static void usage(int exitcode); 99 100 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 101 const char *qemu_uname_release; 102 103 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 104 we allocate a bigger stack. Need a better solution, for example 105 by remapping the process stack directly at the right place */ 106 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 107 108 void gemu_log(const char *fmt, ...) 109 { 110 va_list ap; 111 112 va_start(ap, fmt); 113 vfprintf(stderr, fmt, ap); 114 va_end(ap); 115 } 116 117 #if defined(TARGET_I386) 118 int cpu_get_pic_interrupt(CPUX86State *env) 119 { 120 return -1; 121 } 122 #endif 123 124 /***********************************************************/ 125 /* Helper routines for implementing atomic operations. */ 126 127 /* Make sure everything is in a consistent state for calling fork(). */ 128 void fork_start(void) 129 { 130 cpu_list_lock(); 131 qemu_mutex_lock(&tb_ctx.tb_lock); 132 mmap_fork_start(); 133 } 134 135 void fork_end(int child) 136 { 137 mmap_fork_end(child); 138 if (child) { 139 CPUState *cpu, *next_cpu; 140 /* Child processes created by fork() only have a single thread. 141 Discard information about the parent threads. */ 142 CPU_FOREACH_SAFE(cpu, next_cpu) { 143 if (cpu != thread_cpu) { 144 QTAILQ_REMOVE(&cpus, cpu, node); 145 } 146 } 147 qemu_mutex_init(&tb_ctx.tb_lock); 148 qemu_init_cpu_list(); 149 gdbserver_fork(thread_cpu); 150 } else { 151 qemu_mutex_unlock(&tb_ctx.tb_lock); 152 cpu_list_unlock(); 153 } 154 } 155 156 #ifdef TARGET_I386 157 /***********************************************************/ 158 /* CPUX86 core interface */ 159 160 uint64_t cpu_get_tsc(CPUX86State *env) 161 { 162 return cpu_get_host_ticks(); 163 } 164 165 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 166 int flags) 167 { 168 unsigned int e1, e2; 169 uint32_t *p; 170 e1 = (addr << 16) | (limit & 0xffff); 171 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 172 e2 |= flags; 173 p = ptr; 174 p[0] = tswap32(e1); 175 p[1] = tswap32(e2); 176 } 177 178 static uint64_t *idt_table; 179 #ifdef TARGET_X86_64 180 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 181 uint64_t addr, unsigned int sel) 182 { 183 uint32_t *p, e1, e2; 184 e1 = (addr & 0xffff) | (sel << 16); 185 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 186 p = ptr; 187 p[0] = tswap32(e1); 188 p[1] = tswap32(e2); 189 p[2] = tswap32(addr >> 32); 190 p[3] = 0; 191 } 192 /* only dpl matters as we do only user space emulation */ 193 static void set_idt(int n, unsigned int dpl) 194 { 195 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 196 } 197 #else 198 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 199 uint32_t addr, unsigned int sel) 200 { 201 uint32_t *p, e1, e2; 202 e1 = (addr & 0xffff) | (sel << 16); 203 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 204 p = ptr; 205 p[0] = tswap32(e1); 206 p[1] = tswap32(e2); 207 } 208 209 /* only dpl matters as we do only user space emulation */ 210 static void set_idt(int n, unsigned int dpl) 211 { 212 set_gate(idt_table + n, 0, dpl, 0, 0); 213 } 214 #endif 215 216 void cpu_loop(CPUX86State *env) 217 { 218 CPUState *cs = CPU(x86_env_get_cpu(env)); 219 int trapnr; 220 abi_ulong pc; 221 abi_ulong ret; 222 target_siginfo_t info; 223 224 for(;;) { 225 cpu_exec_start(cs); 226 trapnr = cpu_exec(cs); 227 cpu_exec_end(cs); 228 process_queued_cpu_work(cs); 229 230 switch(trapnr) { 231 case 0x80: 232 /* linux syscall from int $0x80 */ 233 ret = do_syscall(env, 234 env->regs[R_EAX], 235 env->regs[R_EBX], 236 env->regs[R_ECX], 237 env->regs[R_EDX], 238 env->regs[R_ESI], 239 env->regs[R_EDI], 240 env->regs[R_EBP], 241 0, 0); 242 if (ret == -TARGET_ERESTARTSYS) { 243 env->eip -= 2; 244 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 245 env->regs[R_EAX] = ret; 246 } 247 break; 248 #ifndef TARGET_ABI32 249 case EXCP_SYSCALL: 250 /* linux syscall from syscall instruction */ 251 ret = do_syscall(env, 252 env->regs[R_EAX], 253 env->regs[R_EDI], 254 env->regs[R_ESI], 255 env->regs[R_EDX], 256 env->regs[10], 257 env->regs[8], 258 env->regs[9], 259 0, 0); 260 if (ret == -TARGET_ERESTARTSYS) { 261 env->eip -= 2; 262 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 263 env->regs[R_EAX] = ret; 264 } 265 break; 266 #endif 267 case EXCP0B_NOSEG: 268 case EXCP0C_STACK: 269 info.si_signo = TARGET_SIGBUS; 270 info.si_errno = 0; 271 info.si_code = TARGET_SI_KERNEL; 272 info._sifields._sigfault._addr = 0; 273 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 274 break; 275 case EXCP0D_GPF: 276 /* XXX: potential problem if ABI32 */ 277 #ifndef TARGET_X86_64 278 if (env->eflags & VM_MASK) { 279 handle_vm86_fault(env); 280 } else 281 #endif 282 { 283 info.si_signo = TARGET_SIGSEGV; 284 info.si_errno = 0; 285 info.si_code = TARGET_SI_KERNEL; 286 info._sifields._sigfault._addr = 0; 287 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 288 } 289 break; 290 case EXCP0E_PAGE: 291 info.si_signo = TARGET_SIGSEGV; 292 info.si_errno = 0; 293 if (!(env->error_code & 1)) 294 info.si_code = TARGET_SEGV_MAPERR; 295 else 296 info.si_code = TARGET_SEGV_ACCERR; 297 info._sifields._sigfault._addr = env->cr[2]; 298 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 299 break; 300 case EXCP00_DIVZ: 301 #ifndef TARGET_X86_64 302 if (env->eflags & VM_MASK) { 303 handle_vm86_trap(env, trapnr); 304 } else 305 #endif 306 { 307 /* division by zero */ 308 info.si_signo = TARGET_SIGFPE; 309 info.si_errno = 0; 310 info.si_code = TARGET_FPE_INTDIV; 311 info._sifields._sigfault._addr = env->eip; 312 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 313 } 314 break; 315 case EXCP01_DB: 316 case EXCP03_INT3: 317 #ifndef TARGET_X86_64 318 if (env->eflags & VM_MASK) { 319 handle_vm86_trap(env, trapnr); 320 } else 321 #endif 322 { 323 info.si_signo = TARGET_SIGTRAP; 324 info.si_errno = 0; 325 if (trapnr == EXCP01_DB) { 326 info.si_code = TARGET_TRAP_BRKPT; 327 info._sifields._sigfault._addr = env->eip; 328 } else { 329 info.si_code = TARGET_SI_KERNEL; 330 info._sifields._sigfault._addr = 0; 331 } 332 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 333 } 334 break; 335 case EXCP04_INTO: 336 case EXCP05_BOUND: 337 #ifndef TARGET_X86_64 338 if (env->eflags & VM_MASK) { 339 handle_vm86_trap(env, trapnr); 340 } else 341 #endif 342 { 343 info.si_signo = TARGET_SIGSEGV; 344 info.si_errno = 0; 345 info.si_code = TARGET_SI_KERNEL; 346 info._sifields._sigfault._addr = 0; 347 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 348 } 349 break; 350 case EXCP06_ILLOP: 351 info.si_signo = TARGET_SIGILL; 352 info.si_errno = 0; 353 info.si_code = TARGET_ILL_ILLOPN; 354 info._sifields._sigfault._addr = env->eip; 355 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 356 break; 357 case EXCP_INTERRUPT: 358 /* just indicate that signals should be handled asap */ 359 break; 360 case EXCP_DEBUG: 361 { 362 int sig; 363 364 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 365 if (sig) 366 { 367 info.si_signo = sig; 368 info.si_errno = 0; 369 info.si_code = TARGET_TRAP_BRKPT; 370 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 371 } 372 } 373 break; 374 case EXCP_ATOMIC: 375 cpu_exec_step_atomic(cs); 376 break; 377 default: 378 pc = env->segs[R_CS].base + env->eip; 379 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 380 (long)pc, trapnr); 381 abort(); 382 } 383 process_pending_signals(env); 384 } 385 } 386 #endif 387 388 #ifdef TARGET_ARM 389 390 #define get_user_code_u32(x, gaddr, env) \ 391 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 392 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 393 (x) = bswap32(x); \ 394 } \ 395 __r; \ 396 }) 397 398 #define get_user_code_u16(x, gaddr, env) \ 399 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 400 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 401 (x) = bswap16(x); \ 402 } \ 403 __r; \ 404 }) 405 406 #define get_user_data_u32(x, gaddr, env) \ 407 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 408 if (!__r && arm_cpu_bswap_data(env)) { \ 409 (x) = bswap32(x); \ 410 } \ 411 __r; \ 412 }) 413 414 #define get_user_data_u16(x, gaddr, env) \ 415 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 416 if (!__r && arm_cpu_bswap_data(env)) { \ 417 (x) = bswap16(x); \ 418 } \ 419 __r; \ 420 }) 421 422 #define put_user_data_u32(x, gaddr, env) \ 423 ({ typeof(x) __x = (x); \ 424 if (arm_cpu_bswap_data(env)) { \ 425 __x = bswap32(__x); \ 426 } \ 427 put_user_u32(__x, (gaddr)); \ 428 }) 429 430 #define put_user_data_u16(x, gaddr, env) \ 431 ({ typeof(x) __x = (x); \ 432 if (arm_cpu_bswap_data(env)) { \ 433 __x = bswap16(__x); \ 434 } \ 435 put_user_u16(__x, (gaddr)); \ 436 }) 437 438 #ifdef TARGET_ABI32 439 /* Commpage handling -- there is no commpage for AArch64 */ 440 441 /* 442 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 443 * Input: 444 * r0 = pointer to oldval 445 * r1 = pointer to newval 446 * r2 = pointer to target value 447 * 448 * Output: 449 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 450 * C set if *ptr was changed, clear if no exchange happened 451 * 452 * Note segv's in kernel helpers are a bit tricky, we can set the 453 * data address sensibly but the PC address is just the entry point. 454 */ 455 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 456 { 457 uint64_t oldval, newval, val; 458 uint32_t addr, cpsr; 459 target_siginfo_t info; 460 461 /* Based on the 32 bit code in do_kernel_trap */ 462 463 /* XXX: This only works between threads, not between processes. 464 It's probably possible to implement this with native host 465 operations. However things like ldrex/strex are much harder so 466 there's not much point trying. */ 467 start_exclusive(); 468 cpsr = cpsr_read(env); 469 addr = env->regs[2]; 470 471 if (get_user_u64(oldval, env->regs[0])) { 472 env->exception.vaddress = env->regs[0]; 473 goto segv; 474 }; 475 476 if (get_user_u64(newval, env->regs[1])) { 477 env->exception.vaddress = env->regs[1]; 478 goto segv; 479 }; 480 481 if (get_user_u64(val, addr)) { 482 env->exception.vaddress = addr; 483 goto segv; 484 } 485 486 if (val == oldval) { 487 val = newval; 488 489 if (put_user_u64(val, addr)) { 490 env->exception.vaddress = addr; 491 goto segv; 492 }; 493 494 env->regs[0] = 0; 495 cpsr |= CPSR_C; 496 } else { 497 env->regs[0] = -1; 498 cpsr &= ~CPSR_C; 499 } 500 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 501 end_exclusive(); 502 return; 503 504 segv: 505 end_exclusive(); 506 /* We get the PC of the entry address - which is as good as anything, 507 on a real kernel what you get depends on which mode it uses. */ 508 info.si_signo = TARGET_SIGSEGV; 509 info.si_errno = 0; 510 /* XXX: check env->error_code */ 511 info.si_code = TARGET_SEGV_MAPERR; 512 info._sifields._sigfault._addr = env->exception.vaddress; 513 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 514 } 515 516 /* Handle a jump to the kernel code page. */ 517 static int 518 do_kernel_trap(CPUARMState *env) 519 { 520 uint32_t addr; 521 uint32_t cpsr; 522 uint32_t val; 523 524 switch (env->regs[15]) { 525 case 0xffff0fa0: /* __kernel_memory_barrier */ 526 /* ??? No-op. Will need to do better for SMP. */ 527 break; 528 case 0xffff0fc0: /* __kernel_cmpxchg */ 529 /* XXX: This only works between threads, not between processes. 530 It's probably possible to implement this with native host 531 operations. However things like ldrex/strex are much harder so 532 there's not much point trying. */ 533 start_exclusive(); 534 cpsr = cpsr_read(env); 535 addr = env->regs[2]; 536 /* FIXME: This should SEGV if the access fails. */ 537 if (get_user_u32(val, addr)) 538 val = ~env->regs[0]; 539 if (val == env->regs[0]) { 540 val = env->regs[1]; 541 /* FIXME: Check for segfaults. */ 542 put_user_u32(val, addr); 543 env->regs[0] = 0; 544 cpsr |= CPSR_C; 545 } else { 546 env->regs[0] = -1; 547 cpsr &= ~CPSR_C; 548 } 549 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 550 end_exclusive(); 551 break; 552 case 0xffff0fe0: /* __kernel_get_tls */ 553 env->regs[0] = cpu_get_tls(env); 554 break; 555 case 0xffff0f60: /* __kernel_cmpxchg64 */ 556 arm_kernel_cmpxchg64_helper(env); 557 break; 558 559 default: 560 return 1; 561 } 562 /* Jump back to the caller. */ 563 addr = env->regs[14]; 564 if (addr & 1) { 565 env->thumb = 1; 566 addr &= ~1; 567 } 568 env->regs[15] = addr; 569 570 return 0; 571 } 572 573 void cpu_loop(CPUARMState *env) 574 { 575 CPUState *cs = CPU(arm_env_get_cpu(env)); 576 int trapnr; 577 unsigned int n, insn; 578 target_siginfo_t info; 579 uint32_t addr; 580 abi_ulong ret; 581 582 for(;;) { 583 cpu_exec_start(cs); 584 trapnr = cpu_exec(cs); 585 cpu_exec_end(cs); 586 process_queued_cpu_work(cs); 587 588 switch(trapnr) { 589 case EXCP_UDEF: 590 case EXCP_NOCP: 591 case EXCP_INVSTATE: 592 { 593 TaskState *ts = cs->opaque; 594 uint32_t opcode; 595 int rc; 596 597 /* we handle the FPU emulation here, as Linux */ 598 /* we get the opcode */ 599 /* FIXME - what to do if get_user() fails? */ 600 get_user_code_u32(opcode, env->regs[15], env); 601 602 rc = EmulateAll(opcode, &ts->fpa, env); 603 if (rc == 0) { /* illegal instruction */ 604 info.si_signo = TARGET_SIGILL; 605 info.si_errno = 0; 606 info.si_code = TARGET_ILL_ILLOPN; 607 info._sifields._sigfault._addr = env->regs[15]; 608 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 609 } else if (rc < 0) { /* FP exception */ 610 int arm_fpe=0; 611 612 /* translate softfloat flags to FPSR flags */ 613 if (-rc & float_flag_invalid) 614 arm_fpe |= BIT_IOC; 615 if (-rc & float_flag_divbyzero) 616 arm_fpe |= BIT_DZC; 617 if (-rc & float_flag_overflow) 618 arm_fpe |= BIT_OFC; 619 if (-rc & float_flag_underflow) 620 arm_fpe |= BIT_UFC; 621 if (-rc & float_flag_inexact) 622 arm_fpe |= BIT_IXC; 623 624 FPSR fpsr = ts->fpa.fpsr; 625 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 626 627 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 628 info.si_signo = TARGET_SIGFPE; 629 info.si_errno = 0; 630 631 /* ordered by priority, least first */ 632 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 633 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 634 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 635 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 636 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 637 638 info._sifields._sigfault._addr = env->regs[15]; 639 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 640 } else { 641 env->regs[15] += 4; 642 } 643 644 /* accumulate unenabled exceptions */ 645 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 646 fpsr |= BIT_IXC; 647 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 648 fpsr |= BIT_UFC; 649 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 650 fpsr |= BIT_OFC; 651 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 652 fpsr |= BIT_DZC; 653 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 654 fpsr |= BIT_IOC; 655 ts->fpa.fpsr=fpsr; 656 } else { /* everything OK */ 657 /* increment PC */ 658 env->regs[15] += 4; 659 } 660 } 661 break; 662 case EXCP_SWI: 663 case EXCP_BKPT: 664 { 665 env->eabi = 1; 666 /* system call */ 667 if (trapnr == EXCP_BKPT) { 668 if (env->thumb) { 669 /* FIXME - what to do if get_user() fails? */ 670 get_user_code_u16(insn, env->regs[15], env); 671 n = insn & 0xff; 672 env->regs[15] += 2; 673 } else { 674 /* FIXME - what to do if get_user() fails? */ 675 get_user_code_u32(insn, env->regs[15], env); 676 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 677 env->regs[15] += 4; 678 } 679 } else { 680 if (env->thumb) { 681 /* FIXME - what to do if get_user() fails? */ 682 get_user_code_u16(insn, env->regs[15] - 2, env); 683 n = insn & 0xff; 684 } else { 685 /* FIXME - what to do if get_user() fails? */ 686 get_user_code_u32(insn, env->regs[15] - 4, env); 687 n = insn & 0xffffff; 688 } 689 } 690 691 if (n == ARM_NR_cacheflush) { 692 /* nop */ 693 } else if (n == ARM_NR_semihosting 694 || n == ARM_NR_thumb_semihosting) { 695 env->regs[0] = do_arm_semihosting (env); 696 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 697 /* linux syscall */ 698 if (env->thumb || n == 0) { 699 n = env->regs[7]; 700 } else { 701 n -= ARM_SYSCALL_BASE; 702 env->eabi = 0; 703 } 704 if ( n > ARM_NR_BASE) { 705 switch (n) { 706 case ARM_NR_cacheflush: 707 /* nop */ 708 break; 709 case ARM_NR_set_tls: 710 cpu_set_tls(env, env->regs[0]); 711 env->regs[0] = 0; 712 break; 713 case ARM_NR_breakpoint: 714 env->regs[15] -= env->thumb ? 2 : 4; 715 goto excp_debug; 716 default: 717 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 718 n); 719 env->regs[0] = -TARGET_ENOSYS; 720 break; 721 } 722 } else { 723 ret = do_syscall(env, 724 n, 725 env->regs[0], 726 env->regs[1], 727 env->regs[2], 728 env->regs[3], 729 env->regs[4], 730 env->regs[5], 731 0, 0); 732 if (ret == -TARGET_ERESTARTSYS) { 733 env->regs[15] -= env->thumb ? 2 : 4; 734 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 735 env->regs[0] = ret; 736 } 737 } 738 } else { 739 goto error; 740 } 741 } 742 break; 743 case EXCP_SEMIHOST: 744 env->regs[0] = do_arm_semihosting(env); 745 break; 746 case EXCP_INTERRUPT: 747 /* just indicate that signals should be handled asap */ 748 break; 749 case EXCP_PREFETCH_ABORT: 750 case EXCP_DATA_ABORT: 751 addr = env->exception.vaddress; 752 { 753 info.si_signo = TARGET_SIGSEGV; 754 info.si_errno = 0; 755 /* XXX: check env->error_code */ 756 info.si_code = TARGET_SEGV_MAPERR; 757 info._sifields._sigfault._addr = addr; 758 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 759 } 760 break; 761 case EXCP_DEBUG: 762 excp_debug: 763 { 764 int sig; 765 766 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 767 if (sig) 768 { 769 info.si_signo = sig; 770 info.si_errno = 0; 771 info.si_code = TARGET_TRAP_BRKPT; 772 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 773 } 774 } 775 break; 776 case EXCP_KERNEL_TRAP: 777 if (do_kernel_trap(env)) 778 goto error; 779 break; 780 case EXCP_YIELD: 781 /* nothing to do here for user-mode, just resume guest code */ 782 break; 783 case EXCP_ATOMIC: 784 cpu_exec_step_atomic(cs); 785 break; 786 default: 787 error: 788 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 789 abort(); 790 } 791 process_pending_signals(env); 792 } 793 } 794 795 #else 796 797 /* AArch64 main loop */ 798 void cpu_loop(CPUARMState *env) 799 { 800 CPUState *cs = CPU(arm_env_get_cpu(env)); 801 int trapnr, sig; 802 abi_long ret; 803 target_siginfo_t info; 804 805 for (;;) { 806 cpu_exec_start(cs); 807 trapnr = cpu_exec(cs); 808 cpu_exec_end(cs); 809 process_queued_cpu_work(cs); 810 811 switch (trapnr) { 812 case EXCP_SWI: 813 ret = do_syscall(env, 814 env->xregs[8], 815 env->xregs[0], 816 env->xregs[1], 817 env->xregs[2], 818 env->xregs[3], 819 env->xregs[4], 820 env->xregs[5], 821 0, 0); 822 if (ret == -TARGET_ERESTARTSYS) { 823 env->pc -= 4; 824 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 825 env->xregs[0] = ret; 826 } 827 break; 828 case EXCP_INTERRUPT: 829 /* just indicate that signals should be handled asap */ 830 break; 831 case EXCP_UDEF: 832 info.si_signo = TARGET_SIGILL; 833 info.si_errno = 0; 834 info.si_code = TARGET_ILL_ILLOPN; 835 info._sifields._sigfault._addr = env->pc; 836 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 837 break; 838 case EXCP_PREFETCH_ABORT: 839 case EXCP_DATA_ABORT: 840 info.si_signo = TARGET_SIGSEGV; 841 info.si_errno = 0; 842 /* XXX: check env->error_code */ 843 info.si_code = TARGET_SEGV_MAPERR; 844 info._sifields._sigfault._addr = env->exception.vaddress; 845 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 846 break; 847 case EXCP_DEBUG: 848 case EXCP_BKPT: 849 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 850 if (sig) { 851 info.si_signo = sig; 852 info.si_errno = 0; 853 info.si_code = TARGET_TRAP_BRKPT; 854 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 855 } 856 break; 857 case EXCP_SEMIHOST: 858 env->xregs[0] = do_arm_semihosting(env); 859 break; 860 case EXCP_YIELD: 861 /* nothing to do here for user-mode, just resume guest code */ 862 break; 863 case EXCP_ATOMIC: 864 cpu_exec_step_atomic(cs); 865 break; 866 default: 867 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 868 abort(); 869 } 870 process_pending_signals(env); 871 /* Exception return on AArch64 always clears the exclusive monitor, 872 * so any return to running guest code implies this. 873 */ 874 env->exclusive_addr = -1; 875 } 876 } 877 #endif /* ndef TARGET_ABI32 */ 878 879 #endif 880 881 #ifdef TARGET_UNICORE32 882 883 void cpu_loop(CPUUniCore32State *env) 884 { 885 CPUState *cs = CPU(uc32_env_get_cpu(env)); 886 int trapnr; 887 unsigned int n, insn; 888 target_siginfo_t info; 889 890 for (;;) { 891 cpu_exec_start(cs); 892 trapnr = cpu_exec(cs); 893 cpu_exec_end(cs); 894 process_queued_cpu_work(cs); 895 896 switch (trapnr) { 897 case UC32_EXCP_PRIV: 898 { 899 /* system call */ 900 get_user_u32(insn, env->regs[31] - 4); 901 n = insn & 0xffffff; 902 903 if (n >= UC32_SYSCALL_BASE) { 904 /* linux syscall */ 905 n -= UC32_SYSCALL_BASE; 906 if (n == UC32_SYSCALL_NR_set_tls) { 907 cpu_set_tls(env, env->regs[0]); 908 env->regs[0] = 0; 909 } else { 910 abi_long ret = do_syscall(env, 911 n, 912 env->regs[0], 913 env->regs[1], 914 env->regs[2], 915 env->regs[3], 916 env->regs[4], 917 env->regs[5], 918 0, 0); 919 if (ret == -TARGET_ERESTARTSYS) { 920 env->regs[31] -= 4; 921 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 922 env->regs[0] = ret; 923 } 924 } 925 } else { 926 goto error; 927 } 928 } 929 break; 930 case UC32_EXCP_DTRAP: 931 case UC32_EXCP_ITRAP: 932 info.si_signo = TARGET_SIGSEGV; 933 info.si_errno = 0; 934 /* XXX: check env->error_code */ 935 info.si_code = TARGET_SEGV_MAPERR; 936 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 937 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 938 break; 939 case EXCP_INTERRUPT: 940 /* just indicate that signals should be handled asap */ 941 break; 942 case EXCP_DEBUG: 943 { 944 int sig; 945 946 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 947 if (sig) { 948 info.si_signo = sig; 949 info.si_errno = 0; 950 info.si_code = TARGET_TRAP_BRKPT; 951 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 952 } 953 } 954 break; 955 case EXCP_ATOMIC: 956 cpu_exec_step_atomic(cs); 957 break; 958 default: 959 goto error; 960 } 961 process_pending_signals(env); 962 } 963 964 error: 965 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 966 abort(); 967 } 968 #endif 969 970 #ifdef TARGET_SPARC 971 #define SPARC64_STACK_BIAS 2047 972 973 //#define DEBUG_WIN 974 975 /* WARNING: dealing with register windows _is_ complicated. More info 976 can be found at http://www.sics.se/~psm/sparcstack.html */ 977 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 978 { 979 index = (index + cwp * 16) % (16 * env->nwindows); 980 /* wrap handling : if cwp is on the last window, then we use the 981 registers 'after' the end */ 982 if (index < 8 && env->cwp == env->nwindows - 1) 983 index += 16 * env->nwindows; 984 return index; 985 } 986 987 /* save the register window 'cwp1' */ 988 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 989 { 990 unsigned int i; 991 abi_ulong sp_ptr; 992 993 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 994 #ifdef TARGET_SPARC64 995 if (sp_ptr & 3) 996 sp_ptr += SPARC64_STACK_BIAS; 997 #endif 998 #if defined(DEBUG_WIN) 999 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1000 sp_ptr, cwp1); 1001 #endif 1002 for(i = 0; i < 16; i++) { 1003 /* FIXME - what to do if put_user() fails? */ 1004 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1005 sp_ptr += sizeof(abi_ulong); 1006 } 1007 } 1008 1009 static void save_window(CPUSPARCState *env) 1010 { 1011 #ifndef TARGET_SPARC64 1012 unsigned int new_wim; 1013 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1014 ((1LL << env->nwindows) - 1); 1015 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1016 env->wim = new_wim; 1017 #else 1018 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1019 env->cansave++; 1020 env->canrestore--; 1021 #endif 1022 } 1023 1024 static void restore_window(CPUSPARCState *env) 1025 { 1026 #ifndef TARGET_SPARC64 1027 unsigned int new_wim; 1028 #endif 1029 unsigned int i, cwp1; 1030 abi_ulong sp_ptr; 1031 1032 #ifndef TARGET_SPARC64 1033 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1034 ((1LL << env->nwindows) - 1); 1035 #endif 1036 1037 /* restore the invalid window */ 1038 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1039 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1040 #ifdef TARGET_SPARC64 1041 if (sp_ptr & 3) 1042 sp_ptr += SPARC64_STACK_BIAS; 1043 #endif 1044 #if defined(DEBUG_WIN) 1045 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1046 sp_ptr, cwp1); 1047 #endif 1048 for(i = 0; i < 16; i++) { 1049 /* FIXME - what to do if get_user() fails? */ 1050 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1051 sp_ptr += sizeof(abi_ulong); 1052 } 1053 #ifdef TARGET_SPARC64 1054 env->canrestore++; 1055 if (env->cleanwin < env->nwindows - 1) 1056 env->cleanwin++; 1057 env->cansave--; 1058 #else 1059 env->wim = new_wim; 1060 #endif 1061 } 1062 1063 static void flush_windows(CPUSPARCState *env) 1064 { 1065 int offset, cwp1; 1066 1067 offset = 1; 1068 for(;;) { 1069 /* if restore would invoke restore_window(), then we can stop */ 1070 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1071 #ifndef TARGET_SPARC64 1072 if (env->wim & (1 << cwp1)) 1073 break; 1074 #else 1075 if (env->canrestore == 0) 1076 break; 1077 env->cansave++; 1078 env->canrestore--; 1079 #endif 1080 save_window_offset(env, cwp1); 1081 offset++; 1082 } 1083 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1084 #ifndef TARGET_SPARC64 1085 /* set wim so that restore will reload the registers */ 1086 env->wim = 1 << cwp1; 1087 #endif 1088 #if defined(DEBUG_WIN) 1089 printf("flush_windows: nb=%d\n", offset - 1); 1090 #endif 1091 } 1092 1093 void cpu_loop (CPUSPARCState *env) 1094 { 1095 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1096 int trapnr; 1097 abi_long ret; 1098 target_siginfo_t info; 1099 1100 while (1) { 1101 cpu_exec_start(cs); 1102 trapnr = cpu_exec(cs); 1103 cpu_exec_end(cs); 1104 process_queued_cpu_work(cs); 1105 1106 /* Compute PSR before exposing state. */ 1107 if (env->cc_op != CC_OP_FLAGS) { 1108 cpu_get_psr(env); 1109 } 1110 1111 switch (trapnr) { 1112 #ifndef TARGET_SPARC64 1113 case 0x88: 1114 case 0x90: 1115 #else 1116 case 0x110: 1117 case 0x16d: 1118 #endif 1119 ret = do_syscall (env, env->gregs[1], 1120 env->regwptr[0], env->regwptr[1], 1121 env->regwptr[2], env->regwptr[3], 1122 env->regwptr[4], env->regwptr[5], 1123 0, 0); 1124 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) { 1125 break; 1126 } 1127 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1128 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1129 env->xcc |= PSR_CARRY; 1130 #else 1131 env->psr |= PSR_CARRY; 1132 #endif 1133 ret = -ret; 1134 } else { 1135 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1136 env->xcc &= ~PSR_CARRY; 1137 #else 1138 env->psr &= ~PSR_CARRY; 1139 #endif 1140 } 1141 env->regwptr[0] = ret; 1142 /* next instruction */ 1143 env->pc = env->npc; 1144 env->npc = env->npc + 4; 1145 break; 1146 case 0x83: /* flush windows */ 1147 #ifdef TARGET_ABI32 1148 case 0x103: 1149 #endif 1150 flush_windows(env); 1151 /* next instruction */ 1152 env->pc = env->npc; 1153 env->npc = env->npc + 4; 1154 break; 1155 #ifndef TARGET_SPARC64 1156 case TT_WIN_OVF: /* window overflow */ 1157 save_window(env); 1158 break; 1159 case TT_WIN_UNF: /* window underflow */ 1160 restore_window(env); 1161 break; 1162 case TT_TFAULT: 1163 case TT_DFAULT: 1164 { 1165 info.si_signo = TARGET_SIGSEGV; 1166 info.si_errno = 0; 1167 /* XXX: check env->error_code */ 1168 info.si_code = TARGET_SEGV_MAPERR; 1169 info._sifields._sigfault._addr = env->mmuregs[4]; 1170 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1171 } 1172 break; 1173 #else 1174 case TT_SPILL: /* window overflow */ 1175 save_window(env); 1176 break; 1177 case TT_FILL: /* window underflow */ 1178 restore_window(env); 1179 break; 1180 case TT_TFAULT: 1181 case TT_DFAULT: 1182 { 1183 info.si_signo = TARGET_SIGSEGV; 1184 info.si_errno = 0; 1185 /* XXX: check env->error_code */ 1186 info.si_code = TARGET_SEGV_MAPERR; 1187 if (trapnr == TT_DFAULT) 1188 info._sifields._sigfault._addr = env->dmmu.mmuregs[4]; 1189 else 1190 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1191 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1192 } 1193 break; 1194 #ifndef TARGET_ABI32 1195 case 0x16e: 1196 flush_windows(env); 1197 sparc64_get_context(env); 1198 break; 1199 case 0x16f: 1200 flush_windows(env); 1201 sparc64_set_context(env); 1202 break; 1203 #endif 1204 #endif 1205 case EXCP_INTERRUPT: 1206 /* just indicate that signals should be handled asap */ 1207 break; 1208 case TT_ILL_INSN: 1209 { 1210 info.si_signo = TARGET_SIGILL; 1211 info.si_errno = 0; 1212 info.si_code = TARGET_ILL_ILLOPC; 1213 info._sifields._sigfault._addr = env->pc; 1214 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1215 } 1216 break; 1217 case EXCP_DEBUG: 1218 { 1219 int sig; 1220 1221 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1222 if (sig) 1223 { 1224 info.si_signo = sig; 1225 info.si_errno = 0; 1226 info.si_code = TARGET_TRAP_BRKPT; 1227 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1228 } 1229 } 1230 break; 1231 case EXCP_ATOMIC: 1232 cpu_exec_step_atomic(cs); 1233 break; 1234 default: 1235 printf ("Unhandled trap: 0x%x\n", trapnr); 1236 cpu_dump_state(cs, stderr, fprintf, 0); 1237 exit(EXIT_FAILURE); 1238 } 1239 process_pending_signals (env); 1240 } 1241 } 1242 1243 #endif 1244 1245 #ifdef TARGET_PPC 1246 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1247 { 1248 return cpu_get_host_ticks(); 1249 } 1250 1251 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1252 { 1253 return cpu_ppc_get_tb(env); 1254 } 1255 1256 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1257 { 1258 return cpu_ppc_get_tb(env) >> 32; 1259 } 1260 1261 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1262 { 1263 return cpu_ppc_get_tb(env); 1264 } 1265 1266 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1267 { 1268 return cpu_ppc_get_tb(env) >> 32; 1269 } 1270 1271 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1272 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1273 1274 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1275 { 1276 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1277 } 1278 1279 /* XXX: to be fixed */ 1280 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1281 { 1282 return -1; 1283 } 1284 1285 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1286 { 1287 return -1; 1288 } 1289 1290 static int do_store_exclusive(CPUPPCState *env) 1291 { 1292 target_ulong addr; 1293 target_ulong page_addr; 1294 target_ulong val, val2 __attribute__((unused)) = 0; 1295 int flags; 1296 int segv = 0; 1297 1298 addr = env->reserve_ea; 1299 page_addr = addr & TARGET_PAGE_MASK; 1300 start_exclusive(); 1301 mmap_lock(); 1302 flags = page_get_flags(page_addr); 1303 if ((flags & PAGE_READ) == 0) { 1304 segv = 1; 1305 } else { 1306 int reg = env->reserve_info & 0x1f; 1307 int size = env->reserve_info >> 5; 1308 int stored = 0; 1309 1310 if (addr == env->reserve_addr) { 1311 switch (size) { 1312 case 1: segv = get_user_u8(val, addr); break; 1313 case 2: segv = get_user_u16(val, addr); break; 1314 case 4: segv = get_user_u32(val, addr); break; 1315 #if defined(TARGET_PPC64) 1316 case 8: segv = get_user_u64(val, addr); break; 1317 case 16: { 1318 segv = get_user_u64(val, addr); 1319 if (!segv) { 1320 segv = get_user_u64(val2, addr + 8); 1321 } 1322 break; 1323 } 1324 #endif 1325 default: abort(); 1326 } 1327 if (!segv && val == env->reserve_val) { 1328 val = env->gpr[reg]; 1329 switch (size) { 1330 case 1: segv = put_user_u8(val, addr); break; 1331 case 2: segv = put_user_u16(val, addr); break; 1332 case 4: segv = put_user_u32(val, addr); break; 1333 #if defined(TARGET_PPC64) 1334 case 8: segv = put_user_u64(val, addr); break; 1335 case 16: { 1336 if (val2 == env->reserve_val2) { 1337 if (msr_le) { 1338 val2 = val; 1339 val = env->gpr[reg+1]; 1340 } else { 1341 val2 = env->gpr[reg+1]; 1342 } 1343 segv = put_user_u64(val, addr); 1344 if (!segv) { 1345 segv = put_user_u64(val2, addr + 8); 1346 } 1347 } 1348 break; 1349 } 1350 #endif 1351 default: abort(); 1352 } 1353 if (!segv) { 1354 stored = 1; 1355 } 1356 } 1357 } 1358 env->crf[0] = (stored << 1) | xer_so; 1359 env->reserve_addr = (target_ulong)-1; 1360 } 1361 if (!segv) { 1362 env->nip += 4; 1363 } 1364 mmap_unlock(); 1365 end_exclusive(); 1366 return segv; 1367 } 1368 1369 void cpu_loop(CPUPPCState *env) 1370 { 1371 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1372 target_siginfo_t info; 1373 int trapnr; 1374 target_ulong ret; 1375 1376 for(;;) { 1377 cpu_exec_start(cs); 1378 trapnr = cpu_exec(cs); 1379 cpu_exec_end(cs); 1380 process_queued_cpu_work(cs); 1381 1382 switch(trapnr) { 1383 case POWERPC_EXCP_NONE: 1384 /* Just go on */ 1385 break; 1386 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1387 cpu_abort(cs, "Critical interrupt while in user mode. " 1388 "Aborting\n"); 1389 break; 1390 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1391 cpu_abort(cs, "Machine check exception while in user mode. " 1392 "Aborting\n"); 1393 break; 1394 case POWERPC_EXCP_DSI: /* Data storage exception */ 1395 /* XXX: check this. Seems bugged */ 1396 switch (env->error_code & 0xFF000000) { 1397 case 0x40000000: 1398 case 0x42000000: 1399 info.si_signo = TARGET_SIGSEGV; 1400 info.si_errno = 0; 1401 info.si_code = TARGET_SEGV_MAPERR; 1402 break; 1403 case 0x04000000: 1404 info.si_signo = TARGET_SIGILL; 1405 info.si_errno = 0; 1406 info.si_code = TARGET_ILL_ILLADR; 1407 break; 1408 case 0x08000000: 1409 info.si_signo = TARGET_SIGSEGV; 1410 info.si_errno = 0; 1411 info.si_code = TARGET_SEGV_ACCERR; 1412 break; 1413 default: 1414 /* Let's send a regular segfault... */ 1415 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1416 env->error_code); 1417 info.si_signo = TARGET_SIGSEGV; 1418 info.si_errno = 0; 1419 info.si_code = TARGET_SEGV_MAPERR; 1420 break; 1421 } 1422 info._sifields._sigfault._addr = env->spr[SPR_DAR]; 1423 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1424 break; 1425 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1426 /* XXX: check this */ 1427 switch (env->error_code & 0xFF000000) { 1428 case 0x40000000: 1429 info.si_signo = TARGET_SIGSEGV; 1430 info.si_errno = 0; 1431 info.si_code = TARGET_SEGV_MAPERR; 1432 break; 1433 case 0x10000000: 1434 case 0x08000000: 1435 info.si_signo = TARGET_SIGSEGV; 1436 info.si_errno = 0; 1437 info.si_code = TARGET_SEGV_ACCERR; 1438 break; 1439 default: 1440 /* Let's send a regular segfault... */ 1441 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1442 env->error_code); 1443 info.si_signo = TARGET_SIGSEGV; 1444 info.si_errno = 0; 1445 info.si_code = TARGET_SEGV_MAPERR; 1446 break; 1447 } 1448 info._sifields._sigfault._addr = env->nip - 4; 1449 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1450 break; 1451 case POWERPC_EXCP_EXTERNAL: /* External input */ 1452 cpu_abort(cs, "External interrupt while in user mode. " 1453 "Aborting\n"); 1454 break; 1455 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1456 /* XXX: check this */ 1457 info.si_signo = TARGET_SIGBUS; 1458 info.si_errno = 0; 1459 info.si_code = TARGET_BUS_ADRALN; 1460 info._sifields._sigfault._addr = env->nip; 1461 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1462 break; 1463 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1464 case POWERPC_EXCP_HV_EMU: /* HV emulation */ 1465 /* XXX: check this */ 1466 switch (env->error_code & ~0xF) { 1467 case POWERPC_EXCP_FP: 1468 info.si_signo = TARGET_SIGFPE; 1469 info.si_errno = 0; 1470 switch (env->error_code & 0xF) { 1471 case POWERPC_EXCP_FP_OX: 1472 info.si_code = TARGET_FPE_FLTOVF; 1473 break; 1474 case POWERPC_EXCP_FP_UX: 1475 info.si_code = TARGET_FPE_FLTUND; 1476 break; 1477 case POWERPC_EXCP_FP_ZX: 1478 case POWERPC_EXCP_FP_VXZDZ: 1479 info.si_code = TARGET_FPE_FLTDIV; 1480 break; 1481 case POWERPC_EXCP_FP_XX: 1482 info.si_code = TARGET_FPE_FLTRES; 1483 break; 1484 case POWERPC_EXCP_FP_VXSOFT: 1485 info.si_code = TARGET_FPE_FLTINV; 1486 break; 1487 case POWERPC_EXCP_FP_VXSNAN: 1488 case POWERPC_EXCP_FP_VXISI: 1489 case POWERPC_EXCP_FP_VXIDI: 1490 case POWERPC_EXCP_FP_VXIMZ: 1491 case POWERPC_EXCP_FP_VXVC: 1492 case POWERPC_EXCP_FP_VXSQRT: 1493 case POWERPC_EXCP_FP_VXCVI: 1494 info.si_code = TARGET_FPE_FLTSUB; 1495 break; 1496 default: 1497 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1498 env->error_code); 1499 break; 1500 } 1501 break; 1502 case POWERPC_EXCP_INVAL: 1503 info.si_signo = TARGET_SIGILL; 1504 info.si_errno = 0; 1505 switch (env->error_code & 0xF) { 1506 case POWERPC_EXCP_INVAL_INVAL: 1507 info.si_code = TARGET_ILL_ILLOPC; 1508 break; 1509 case POWERPC_EXCP_INVAL_LSWX: 1510 info.si_code = TARGET_ILL_ILLOPN; 1511 break; 1512 case POWERPC_EXCP_INVAL_SPR: 1513 info.si_code = TARGET_ILL_PRVREG; 1514 break; 1515 case POWERPC_EXCP_INVAL_FP: 1516 info.si_code = TARGET_ILL_COPROC; 1517 break; 1518 default: 1519 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1520 env->error_code & 0xF); 1521 info.si_code = TARGET_ILL_ILLADR; 1522 break; 1523 } 1524 break; 1525 case POWERPC_EXCP_PRIV: 1526 info.si_signo = TARGET_SIGILL; 1527 info.si_errno = 0; 1528 switch (env->error_code & 0xF) { 1529 case POWERPC_EXCP_PRIV_OPC: 1530 info.si_code = TARGET_ILL_PRVOPC; 1531 break; 1532 case POWERPC_EXCP_PRIV_REG: 1533 info.si_code = TARGET_ILL_PRVREG; 1534 break; 1535 default: 1536 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1537 env->error_code & 0xF); 1538 info.si_code = TARGET_ILL_PRVOPC; 1539 break; 1540 } 1541 break; 1542 case POWERPC_EXCP_TRAP: 1543 cpu_abort(cs, "Tried to call a TRAP\n"); 1544 break; 1545 default: 1546 /* Should not happen ! */ 1547 cpu_abort(cs, "Unknown program exception (%02x)\n", 1548 env->error_code); 1549 break; 1550 } 1551 info._sifields._sigfault._addr = env->nip; 1552 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1553 break; 1554 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1555 info.si_signo = TARGET_SIGILL; 1556 info.si_errno = 0; 1557 info.si_code = TARGET_ILL_COPROC; 1558 info._sifields._sigfault._addr = env->nip; 1559 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1560 break; 1561 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1562 cpu_abort(cs, "Syscall exception while in user mode. " 1563 "Aborting\n"); 1564 break; 1565 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1566 info.si_signo = TARGET_SIGILL; 1567 info.si_errno = 0; 1568 info.si_code = TARGET_ILL_COPROC; 1569 info._sifields._sigfault._addr = env->nip; 1570 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1571 break; 1572 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1573 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1574 "Aborting\n"); 1575 break; 1576 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1577 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1578 "Aborting\n"); 1579 break; 1580 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1581 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1582 "Aborting\n"); 1583 break; 1584 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1585 cpu_abort(cs, "Data TLB exception while in user mode. " 1586 "Aborting\n"); 1587 break; 1588 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1589 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1590 "Aborting\n"); 1591 break; 1592 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1593 info.si_signo = TARGET_SIGILL; 1594 info.si_errno = 0; 1595 info.si_code = TARGET_ILL_COPROC; 1596 info._sifields._sigfault._addr = env->nip; 1597 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1598 break; 1599 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1600 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1601 break; 1602 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1603 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1604 break; 1605 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1606 cpu_abort(cs, "Performance monitor exception not handled\n"); 1607 break; 1608 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1609 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1610 "Aborting\n"); 1611 break; 1612 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1613 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1614 "Aborting\n"); 1615 break; 1616 case POWERPC_EXCP_RESET: /* System reset exception */ 1617 cpu_abort(cs, "Reset interrupt while in user mode. " 1618 "Aborting\n"); 1619 break; 1620 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1621 cpu_abort(cs, "Data segment exception while in user mode. " 1622 "Aborting\n"); 1623 break; 1624 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1625 cpu_abort(cs, "Instruction segment exception " 1626 "while in user mode. Aborting\n"); 1627 break; 1628 /* PowerPC 64 with hypervisor mode support */ 1629 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1630 cpu_abort(cs, "Hypervisor decrementer interrupt " 1631 "while in user mode. Aborting\n"); 1632 break; 1633 case POWERPC_EXCP_TRACE: /* Trace exception */ 1634 /* Nothing to do: 1635 * we use this exception to emulate step-by-step execution mode. 1636 */ 1637 break; 1638 /* PowerPC 64 with hypervisor mode support */ 1639 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1640 cpu_abort(cs, "Hypervisor data storage exception " 1641 "while in user mode. Aborting\n"); 1642 break; 1643 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1644 cpu_abort(cs, "Hypervisor instruction storage exception " 1645 "while in user mode. Aborting\n"); 1646 break; 1647 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1648 cpu_abort(cs, "Hypervisor data segment exception " 1649 "while in user mode. Aborting\n"); 1650 break; 1651 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1652 cpu_abort(cs, "Hypervisor instruction segment exception " 1653 "while in user mode. Aborting\n"); 1654 break; 1655 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1656 info.si_signo = TARGET_SIGILL; 1657 info.si_errno = 0; 1658 info.si_code = TARGET_ILL_COPROC; 1659 info._sifields._sigfault._addr = env->nip; 1660 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1661 break; 1662 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1663 cpu_abort(cs, "Programmable interval timer interrupt " 1664 "while in user mode. Aborting\n"); 1665 break; 1666 case POWERPC_EXCP_IO: /* IO error exception */ 1667 cpu_abort(cs, "IO error exception while in user mode. " 1668 "Aborting\n"); 1669 break; 1670 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1671 cpu_abort(cs, "Run mode exception while in user mode. " 1672 "Aborting\n"); 1673 break; 1674 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1675 cpu_abort(cs, "Emulation trap exception not handled\n"); 1676 break; 1677 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1678 cpu_abort(cs, "Instruction fetch TLB exception " 1679 "while in user-mode. Aborting"); 1680 break; 1681 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1682 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1683 "Aborting"); 1684 break; 1685 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1686 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1687 "Aborting"); 1688 break; 1689 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1690 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1691 break; 1692 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1693 cpu_abort(cs, "Instruction address breakpoint exception " 1694 "not handled\n"); 1695 break; 1696 case POWERPC_EXCP_SMI: /* System management interrupt */ 1697 cpu_abort(cs, "System management interrupt while in user mode. " 1698 "Aborting\n"); 1699 break; 1700 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1701 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1702 "Aborting\n"); 1703 break; 1704 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1705 cpu_abort(cs, "Performance monitor exception not handled\n"); 1706 break; 1707 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1708 cpu_abort(cs, "Vector assist exception not handled\n"); 1709 break; 1710 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1711 cpu_abort(cs, "Soft patch exception not handled\n"); 1712 break; 1713 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1714 cpu_abort(cs, "Maintenance exception while in user mode. " 1715 "Aborting\n"); 1716 break; 1717 case POWERPC_EXCP_STOP: /* stop translation */ 1718 /* We did invalidate the instruction cache. Go on */ 1719 break; 1720 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1721 /* We just stopped because of a branch. Go on */ 1722 break; 1723 case POWERPC_EXCP_SYSCALL_USER: 1724 /* system call in user-mode emulation */ 1725 /* WARNING: 1726 * PPC ABI uses overflow flag in cr0 to signal an error 1727 * in syscalls. 1728 */ 1729 env->crf[0] &= ~0x1; 1730 env->nip += 4; 1731 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1732 env->gpr[5], env->gpr[6], env->gpr[7], 1733 env->gpr[8], 0, 0); 1734 if (ret == -TARGET_ERESTARTSYS) { 1735 env->nip -= 4; 1736 break; 1737 } 1738 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1739 /* Returning from a successful sigreturn syscall. 1740 Avoid corrupting register state. */ 1741 break; 1742 } 1743 if (ret > (target_ulong)(-515)) { 1744 env->crf[0] |= 0x1; 1745 ret = -ret; 1746 } 1747 env->gpr[3] = ret; 1748 break; 1749 case POWERPC_EXCP_STCX: 1750 if (do_store_exclusive(env)) { 1751 info.si_signo = TARGET_SIGSEGV; 1752 info.si_errno = 0; 1753 info.si_code = TARGET_SEGV_MAPERR; 1754 info._sifields._sigfault._addr = env->nip; 1755 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1756 } 1757 break; 1758 case EXCP_DEBUG: 1759 { 1760 int sig; 1761 1762 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1763 if (sig) { 1764 info.si_signo = sig; 1765 info.si_errno = 0; 1766 info.si_code = TARGET_TRAP_BRKPT; 1767 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1768 } 1769 } 1770 break; 1771 case EXCP_INTERRUPT: 1772 /* just indicate that signals should be handled asap */ 1773 break; 1774 case EXCP_ATOMIC: 1775 cpu_exec_step_atomic(cs); 1776 break; 1777 default: 1778 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr); 1779 break; 1780 } 1781 process_pending_signals(env); 1782 } 1783 } 1784 #endif 1785 1786 #ifdef TARGET_MIPS 1787 1788 # ifdef TARGET_ABI_MIPSO32 1789 # define MIPS_SYS(name, args) args, 1790 static const uint8_t mips_syscall_args[] = { 1791 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1792 MIPS_SYS(sys_exit , 1) 1793 MIPS_SYS(sys_fork , 0) 1794 MIPS_SYS(sys_read , 3) 1795 MIPS_SYS(sys_write , 3) 1796 MIPS_SYS(sys_open , 3) /* 4005 */ 1797 MIPS_SYS(sys_close , 1) 1798 MIPS_SYS(sys_waitpid , 3) 1799 MIPS_SYS(sys_creat , 2) 1800 MIPS_SYS(sys_link , 2) 1801 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1802 MIPS_SYS(sys_execve , 0) 1803 MIPS_SYS(sys_chdir , 1) 1804 MIPS_SYS(sys_time , 1) 1805 MIPS_SYS(sys_mknod , 3) 1806 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1807 MIPS_SYS(sys_lchown , 3) 1808 MIPS_SYS(sys_ni_syscall , 0) 1809 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1810 MIPS_SYS(sys_lseek , 3) 1811 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1812 MIPS_SYS(sys_mount , 5) 1813 MIPS_SYS(sys_umount , 1) 1814 MIPS_SYS(sys_setuid , 1) 1815 MIPS_SYS(sys_getuid , 0) 1816 MIPS_SYS(sys_stime , 1) /* 4025 */ 1817 MIPS_SYS(sys_ptrace , 4) 1818 MIPS_SYS(sys_alarm , 1) 1819 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 1820 MIPS_SYS(sys_pause , 0) 1821 MIPS_SYS(sys_utime , 2) /* 4030 */ 1822 MIPS_SYS(sys_ni_syscall , 0) 1823 MIPS_SYS(sys_ni_syscall , 0) 1824 MIPS_SYS(sys_access , 2) 1825 MIPS_SYS(sys_nice , 1) 1826 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 1827 MIPS_SYS(sys_sync , 0) 1828 MIPS_SYS(sys_kill , 2) 1829 MIPS_SYS(sys_rename , 2) 1830 MIPS_SYS(sys_mkdir , 2) 1831 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 1832 MIPS_SYS(sys_dup , 1) 1833 MIPS_SYS(sys_pipe , 0) 1834 MIPS_SYS(sys_times , 1) 1835 MIPS_SYS(sys_ni_syscall , 0) 1836 MIPS_SYS(sys_brk , 1) /* 4045 */ 1837 MIPS_SYS(sys_setgid , 1) 1838 MIPS_SYS(sys_getgid , 0) 1839 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 1840 MIPS_SYS(sys_geteuid , 0) 1841 MIPS_SYS(sys_getegid , 0) /* 4050 */ 1842 MIPS_SYS(sys_acct , 0) 1843 MIPS_SYS(sys_umount2 , 2) 1844 MIPS_SYS(sys_ni_syscall , 0) 1845 MIPS_SYS(sys_ioctl , 3) 1846 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 1847 MIPS_SYS(sys_ni_syscall , 2) 1848 MIPS_SYS(sys_setpgid , 2) 1849 MIPS_SYS(sys_ni_syscall , 0) 1850 MIPS_SYS(sys_olduname , 1) 1851 MIPS_SYS(sys_umask , 1) /* 4060 */ 1852 MIPS_SYS(sys_chroot , 1) 1853 MIPS_SYS(sys_ustat , 2) 1854 MIPS_SYS(sys_dup2 , 2) 1855 MIPS_SYS(sys_getppid , 0) 1856 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 1857 MIPS_SYS(sys_setsid , 0) 1858 MIPS_SYS(sys_sigaction , 3) 1859 MIPS_SYS(sys_sgetmask , 0) 1860 MIPS_SYS(sys_ssetmask , 1) 1861 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 1862 MIPS_SYS(sys_setregid , 2) 1863 MIPS_SYS(sys_sigsuspend , 0) 1864 MIPS_SYS(sys_sigpending , 1) 1865 MIPS_SYS(sys_sethostname , 2) 1866 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 1867 MIPS_SYS(sys_getrlimit , 2) 1868 MIPS_SYS(sys_getrusage , 2) 1869 MIPS_SYS(sys_gettimeofday, 2) 1870 MIPS_SYS(sys_settimeofday, 2) 1871 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 1872 MIPS_SYS(sys_setgroups , 2) 1873 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 1874 MIPS_SYS(sys_symlink , 2) 1875 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 1876 MIPS_SYS(sys_readlink , 3) /* 4085 */ 1877 MIPS_SYS(sys_uselib , 1) 1878 MIPS_SYS(sys_swapon , 2) 1879 MIPS_SYS(sys_reboot , 3) 1880 MIPS_SYS(old_readdir , 3) 1881 MIPS_SYS(old_mmap , 6) /* 4090 */ 1882 MIPS_SYS(sys_munmap , 2) 1883 MIPS_SYS(sys_truncate , 2) 1884 MIPS_SYS(sys_ftruncate , 2) 1885 MIPS_SYS(sys_fchmod , 2) 1886 MIPS_SYS(sys_fchown , 3) /* 4095 */ 1887 MIPS_SYS(sys_getpriority , 2) 1888 MIPS_SYS(sys_setpriority , 3) 1889 MIPS_SYS(sys_ni_syscall , 0) 1890 MIPS_SYS(sys_statfs , 2) 1891 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 1892 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 1893 MIPS_SYS(sys_socketcall , 2) 1894 MIPS_SYS(sys_syslog , 3) 1895 MIPS_SYS(sys_setitimer , 3) 1896 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 1897 MIPS_SYS(sys_newstat , 2) 1898 MIPS_SYS(sys_newlstat , 2) 1899 MIPS_SYS(sys_newfstat , 2) 1900 MIPS_SYS(sys_uname , 1) 1901 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 1902 MIPS_SYS(sys_vhangup , 0) 1903 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 1904 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 1905 MIPS_SYS(sys_wait4 , 4) 1906 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 1907 MIPS_SYS(sys_sysinfo , 1) 1908 MIPS_SYS(sys_ipc , 6) 1909 MIPS_SYS(sys_fsync , 1) 1910 MIPS_SYS(sys_sigreturn , 0) 1911 MIPS_SYS(sys_clone , 6) /* 4120 */ 1912 MIPS_SYS(sys_setdomainname, 2) 1913 MIPS_SYS(sys_newuname , 1) 1914 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 1915 MIPS_SYS(sys_adjtimex , 1) 1916 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 1917 MIPS_SYS(sys_sigprocmask , 3) 1918 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 1919 MIPS_SYS(sys_init_module , 5) 1920 MIPS_SYS(sys_delete_module, 1) 1921 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 1922 MIPS_SYS(sys_quotactl , 0) 1923 MIPS_SYS(sys_getpgid , 1) 1924 MIPS_SYS(sys_fchdir , 1) 1925 MIPS_SYS(sys_bdflush , 2) 1926 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 1927 MIPS_SYS(sys_personality , 1) 1928 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 1929 MIPS_SYS(sys_setfsuid , 1) 1930 MIPS_SYS(sys_setfsgid , 1) 1931 MIPS_SYS(sys_llseek , 5) /* 4140 */ 1932 MIPS_SYS(sys_getdents , 3) 1933 MIPS_SYS(sys_select , 5) 1934 MIPS_SYS(sys_flock , 2) 1935 MIPS_SYS(sys_msync , 3) 1936 MIPS_SYS(sys_readv , 3) /* 4145 */ 1937 MIPS_SYS(sys_writev , 3) 1938 MIPS_SYS(sys_cacheflush , 3) 1939 MIPS_SYS(sys_cachectl , 3) 1940 MIPS_SYS(sys_sysmips , 4) 1941 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 1942 MIPS_SYS(sys_getsid , 1) 1943 MIPS_SYS(sys_fdatasync , 0) 1944 MIPS_SYS(sys_sysctl , 1) 1945 MIPS_SYS(sys_mlock , 2) 1946 MIPS_SYS(sys_munlock , 2) /* 4155 */ 1947 MIPS_SYS(sys_mlockall , 1) 1948 MIPS_SYS(sys_munlockall , 0) 1949 MIPS_SYS(sys_sched_setparam, 2) 1950 MIPS_SYS(sys_sched_getparam, 2) 1951 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 1952 MIPS_SYS(sys_sched_getscheduler, 1) 1953 MIPS_SYS(sys_sched_yield , 0) 1954 MIPS_SYS(sys_sched_get_priority_max, 1) 1955 MIPS_SYS(sys_sched_get_priority_min, 1) 1956 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 1957 MIPS_SYS(sys_nanosleep, 2) 1958 MIPS_SYS(sys_mremap , 5) 1959 MIPS_SYS(sys_accept , 3) 1960 MIPS_SYS(sys_bind , 3) 1961 MIPS_SYS(sys_connect , 3) /* 4170 */ 1962 MIPS_SYS(sys_getpeername , 3) 1963 MIPS_SYS(sys_getsockname , 3) 1964 MIPS_SYS(sys_getsockopt , 5) 1965 MIPS_SYS(sys_listen , 2) 1966 MIPS_SYS(sys_recv , 4) /* 4175 */ 1967 MIPS_SYS(sys_recvfrom , 6) 1968 MIPS_SYS(sys_recvmsg , 3) 1969 MIPS_SYS(sys_send , 4) 1970 MIPS_SYS(sys_sendmsg , 3) 1971 MIPS_SYS(sys_sendto , 6) /* 4180 */ 1972 MIPS_SYS(sys_setsockopt , 5) 1973 MIPS_SYS(sys_shutdown , 2) 1974 MIPS_SYS(sys_socket , 3) 1975 MIPS_SYS(sys_socketpair , 4) 1976 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 1977 MIPS_SYS(sys_getresuid , 3) 1978 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 1979 MIPS_SYS(sys_poll , 3) 1980 MIPS_SYS(sys_nfsservctl , 3) 1981 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 1982 MIPS_SYS(sys_getresgid , 3) 1983 MIPS_SYS(sys_prctl , 5) 1984 MIPS_SYS(sys_rt_sigreturn, 0) 1985 MIPS_SYS(sys_rt_sigaction, 4) 1986 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 1987 MIPS_SYS(sys_rt_sigpending, 2) 1988 MIPS_SYS(sys_rt_sigtimedwait, 4) 1989 MIPS_SYS(sys_rt_sigqueueinfo, 3) 1990 MIPS_SYS(sys_rt_sigsuspend, 0) 1991 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 1992 MIPS_SYS(sys_pwrite64 , 6) 1993 MIPS_SYS(sys_chown , 3) 1994 MIPS_SYS(sys_getcwd , 2) 1995 MIPS_SYS(sys_capget , 2) 1996 MIPS_SYS(sys_capset , 2) /* 4205 */ 1997 MIPS_SYS(sys_sigaltstack , 2) 1998 MIPS_SYS(sys_sendfile , 4) 1999 MIPS_SYS(sys_ni_syscall , 0) 2000 MIPS_SYS(sys_ni_syscall , 0) 2001 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2002 MIPS_SYS(sys_truncate64 , 4) 2003 MIPS_SYS(sys_ftruncate64 , 4) 2004 MIPS_SYS(sys_stat64 , 2) 2005 MIPS_SYS(sys_lstat64 , 2) 2006 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2007 MIPS_SYS(sys_pivot_root , 2) 2008 MIPS_SYS(sys_mincore , 3) 2009 MIPS_SYS(sys_madvise , 3) 2010 MIPS_SYS(sys_getdents64 , 3) 2011 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2012 MIPS_SYS(sys_ni_syscall , 0) 2013 MIPS_SYS(sys_gettid , 0) 2014 MIPS_SYS(sys_readahead , 5) 2015 MIPS_SYS(sys_setxattr , 5) 2016 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2017 MIPS_SYS(sys_fsetxattr , 5) 2018 MIPS_SYS(sys_getxattr , 4) 2019 MIPS_SYS(sys_lgetxattr , 4) 2020 MIPS_SYS(sys_fgetxattr , 4) 2021 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2022 MIPS_SYS(sys_llistxattr , 3) 2023 MIPS_SYS(sys_flistxattr , 3) 2024 MIPS_SYS(sys_removexattr , 2) 2025 MIPS_SYS(sys_lremovexattr, 2) 2026 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2027 MIPS_SYS(sys_tkill , 2) 2028 MIPS_SYS(sys_sendfile64 , 5) 2029 MIPS_SYS(sys_futex , 6) 2030 MIPS_SYS(sys_sched_setaffinity, 3) 2031 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2032 MIPS_SYS(sys_io_setup , 2) 2033 MIPS_SYS(sys_io_destroy , 1) 2034 MIPS_SYS(sys_io_getevents, 5) 2035 MIPS_SYS(sys_io_submit , 3) 2036 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2037 MIPS_SYS(sys_exit_group , 1) 2038 MIPS_SYS(sys_lookup_dcookie, 3) 2039 MIPS_SYS(sys_epoll_create, 1) 2040 MIPS_SYS(sys_epoll_ctl , 4) 2041 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2042 MIPS_SYS(sys_remap_file_pages, 5) 2043 MIPS_SYS(sys_set_tid_address, 1) 2044 MIPS_SYS(sys_restart_syscall, 0) 2045 MIPS_SYS(sys_fadvise64_64, 7) 2046 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2047 MIPS_SYS(sys_fstatfs64 , 2) 2048 MIPS_SYS(sys_timer_create, 3) 2049 MIPS_SYS(sys_timer_settime, 4) 2050 MIPS_SYS(sys_timer_gettime, 2) 2051 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2052 MIPS_SYS(sys_timer_delete, 1) 2053 MIPS_SYS(sys_clock_settime, 2) 2054 MIPS_SYS(sys_clock_gettime, 2) 2055 MIPS_SYS(sys_clock_getres, 2) 2056 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2057 MIPS_SYS(sys_tgkill , 3) 2058 MIPS_SYS(sys_utimes , 2) 2059 MIPS_SYS(sys_mbind , 4) 2060 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2061 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2062 MIPS_SYS(sys_mq_open , 4) 2063 MIPS_SYS(sys_mq_unlink , 1) 2064 MIPS_SYS(sys_mq_timedsend, 5) 2065 MIPS_SYS(sys_mq_timedreceive, 5) 2066 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2067 MIPS_SYS(sys_mq_getsetattr, 3) 2068 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2069 MIPS_SYS(sys_waitid , 4) 2070 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2071 MIPS_SYS(sys_add_key , 5) 2072 MIPS_SYS(sys_request_key, 4) 2073 MIPS_SYS(sys_keyctl , 5) 2074 MIPS_SYS(sys_set_thread_area, 1) 2075 MIPS_SYS(sys_inotify_init, 0) 2076 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2077 MIPS_SYS(sys_inotify_rm_watch, 2) 2078 MIPS_SYS(sys_migrate_pages, 4) 2079 MIPS_SYS(sys_openat, 4) 2080 MIPS_SYS(sys_mkdirat, 3) 2081 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2082 MIPS_SYS(sys_fchownat, 5) 2083 MIPS_SYS(sys_futimesat, 3) 2084 MIPS_SYS(sys_fstatat64, 4) 2085 MIPS_SYS(sys_unlinkat, 3) 2086 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2087 MIPS_SYS(sys_linkat, 5) 2088 MIPS_SYS(sys_symlinkat, 3) 2089 MIPS_SYS(sys_readlinkat, 4) 2090 MIPS_SYS(sys_fchmodat, 3) 2091 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2092 MIPS_SYS(sys_pselect6, 6) 2093 MIPS_SYS(sys_ppoll, 5) 2094 MIPS_SYS(sys_unshare, 1) 2095 MIPS_SYS(sys_splice, 6) 2096 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2097 MIPS_SYS(sys_tee, 4) 2098 MIPS_SYS(sys_vmsplice, 4) 2099 MIPS_SYS(sys_move_pages, 6) 2100 MIPS_SYS(sys_set_robust_list, 2) 2101 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2102 MIPS_SYS(sys_kexec_load, 4) 2103 MIPS_SYS(sys_getcpu, 3) 2104 MIPS_SYS(sys_epoll_pwait, 6) 2105 MIPS_SYS(sys_ioprio_set, 3) 2106 MIPS_SYS(sys_ioprio_get, 2) 2107 MIPS_SYS(sys_utimensat, 4) 2108 MIPS_SYS(sys_signalfd, 3) 2109 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2110 MIPS_SYS(sys_eventfd, 1) 2111 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2112 MIPS_SYS(sys_timerfd_create, 2) 2113 MIPS_SYS(sys_timerfd_gettime, 2) 2114 MIPS_SYS(sys_timerfd_settime, 4) 2115 MIPS_SYS(sys_signalfd4, 4) 2116 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2117 MIPS_SYS(sys_epoll_create1, 1) 2118 MIPS_SYS(sys_dup3, 3) 2119 MIPS_SYS(sys_pipe2, 2) 2120 MIPS_SYS(sys_inotify_init1, 1) 2121 MIPS_SYS(sys_preadv, 5) /* 4330 */ 2122 MIPS_SYS(sys_pwritev, 5) 2123 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2124 MIPS_SYS(sys_perf_event_open, 5) 2125 MIPS_SYS(sys_accept4, 4) 2126 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2127 MIPS_SYS(sys_fanotify_init, 2) 2128 MIPS_SYS(sys_fanotify_mark, 6) 2129 MIPS_SYS(sys_prlimit64, 4) 2130 MIPS_SYS(sys_name_to_handle_at, 5) 2131 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2132 MIPS_SYS(sys_clock_adjtime, 2) 2133 MIPS_SYS(sys_syncfs, 1) 2134 MIPS_SYS(sys_sendmmsg, 4) 2135 MIPS_SYS(sys_setns, 2) 2136 MIPS_SYS(sys_process_vm_readv, 6) /* 345 */ 2137 MIPS_SYS(sys_process_vm_writev, 6) 2138 MIPS_SYS(sys_kcmp, 5) 2139 MIPS_SYS(sys_finit_module, 3) 2140 MIPS_SYS(sys_sched_setattr, 2) 2141 MIPS_SYS(sys_sched_getattr, 3) /* 350 */ 2142 MIPS_SYS(sys_renameat2, 5) 2143 MIPS_SYS(sys_seccomp, 3) 2144 MIPS_SYS(sys_getrandom, 3) 2145 MIPS_SYS(sys_memfd_create, 2) 2146 MIPS_SYS(sys_bpf, 3) /* 355 */ 2147 MIPS_SYS(sys_execveat, 5) 2148 MIPS_SYS(sys_userfaultfd, 1) 2149 MIPS_SYS(sys_membarrier, 2) 2150 MIPS_SYS(sys_mlock2, 3) 2151 MIPS_SYS(sys_copy_file_range, 6) /* 360 */ 2152 MIPS_SYS(sys_preadv2, 6) 2153 MIPS_SYS(sys_pwritev2, 6) 2154 }; 2155 # undef MIPS_SYS 2156 # endif /* O32 */ 2157 2158 static int do_store_exclusive(CPUMIPSState *env) 2159 { 2160 target_ulong addr; 2161 target_ulong page_addr; 2162 target_ulong val; 2163 int flags; 2164 int segv = 0; 2165 int reg; 2166 int d; 2167 2168 addr = env->lladdr; 2169 page_addr = addr & TARGET_PAGE_MASK; 2170 start_exclusive(); 2171 mmap_lock(); 2172 flags = page_get_flags(page_addr); 2173 if ((flags & PAGE_READ) == 0) { 2174 segv = 1; 2175 } else { 2176 reg = env->llreg & 0x1f; 2177 d = (env->llreg & 0x20) != 0; 2178 if (d) { 2179 segv = get_user_s64(val, addr); 2180 } else { 2181 segv = get_user_s32(val, addr); 2182 } 2183 if (!segv) { 2184 if (val != env->llval) { 2185 env->active_tc.gpr[reg] = 0; 2186 } else { 2187 if (d) { 2188 segv = put_user_u64(env->llnewval, addr); 2189 } else { 2190 segv = put_user_u32(env->llnewval, addr); 2191 } 2192 if (!segv) { 2193 env->active_tc.gpr[reg] = 1; 2194 } 2195 } 2196 } 2197 } 2198 env->lladdr = -1; 2199 if (!segv) { 2200 env->active_tc.PC += 4; 2201 } 2202 mmap_unlock(); 2203 end_exclusive(); 2204 return segv; 2205 } 2206 2207 /* Break codes */ 2208 enum { 2209 BRK_OVERFLOW = 6, 2210 BRK_DIVZERO = 7 2211 }; 2212 2213 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2214 unsigned int code) 2215 { 2216 int ret = -1; 2217 2218 switch (code) { 2219 case BRK_OVERFLOW: 2220 case BRK_DIVZERO: 2221 info->si_signo = TARGET_SIGFPE; 2222 info->si_errno = 0; 2223 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2224 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2225 ret = 0; 2226 break; 2227 default: 2228 info->si_signo = TARGET_SIGTRAP; 2229 info->si_errno = 0; 2230 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2231 ret = 0; 2232 break; 2233 } 2234 2235 return ret; 2236 } 2237 2238 void cpu_loop(CPUMIPSState *env) 2239 { 2240 CPUState *cs = CPU(mips_env_get_cpu(env)); 2241 target_siginfo_t info; 2242 int trapnr; 2243 abi_long ret; 2244 # ifdef TARGET_ABI_MIPSO32 2245 unsigned int syscall_num; 2246 # endif 2247 2248 for(;;) { 2249 cpu_exec_start(cs); 2250 trapnr = cpu_exec(cs); 2251 cpu_exec_end(cs); 2252 process_queued_cpu_work(cs); 2253 2254 switch(trapnr) { 2255 case EXCP_SYSCALL: 2256 env->active_tc.PC += 4; 2257 # ifdef TARGET_ABI_MIPSO32 2258 syscall_num = env->active_tc.gpr[2] - 4000; 2259 if (syscall_num >= sizeof(mips_syscall_args)) { 2260 ret = -TARGET_ENOSYS; 2261 } else { 2262 int nb_args; 2263 abi_ulong sp_reg; 2264 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2265 2266 nb_args = mips_syscall_args[syscall_num]; 2267 sp_reg = env->active_tc.gpr[29]; 2268 switch (nb_args) { 2269 /* these arguments are taken from the stack */ 2270 case 8: 2271 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2272 goto done_syscall; 2273 } 2274 case 7: 2275 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2276 goto done_syscall; 2277 } 2278 case 6: 2279 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2280 goto done_syscall; 2281 } 2282 case 5: 2283 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2284 goto done_syscall; 2285 } 2286 default: 2287 break; 2288 } 2289 ret = do_syscall(env, env->active_tc.gpr[2], 2290 env->active_tc.gpr[4], 2291 env->active_tc.gpr[5], 2292 env->active_tc.gpr[6], 2293 env->active_tc.gpr[7], 2294 arg5, arg6, arg7, arg8); 2295 } 2296 done_syscall: 2297 # else 2298 ret = do_syscall(env, env->active_tc.gpr[2], 2299 env->active_tc.gpr[4], env->active_tc.gpr[5], 2300 env->active_tc.gpr[6], env->active_tc.gpr[7], 2301 env->active_tc.gpr[8], env->active_tc.gpr[9], 2302 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2303 # endif /* O32 */ 2304 if (ret == -TARGET_ERESTARTSYS) { 2305 env->active_tc.PC -= 4; 2306 break; 2307 } 2308 if (ret == -TARGET_QEMU_ESIGRETURN) { 2309 /* Returning from a successful sigreturn syscall. 2310 Avoid clobbering register state. */ 2311 break; 2312 } 2313 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2314 env->active_tc.gpr[7] = 1; /* error flag */ 2315 ret = -ret; 2316 } else { 2317 env->active_tc.gpr[7] = 0; /* error flag */ 2318 } 2319 env->active_tc.gpr[2] = ret; 2320 break; 2321 case EXCP_TLBL: 2322 case EXCP_TLBS: 2323 case EXCP_AdEL: 2324 case EXCP_AdES: 2325 info.si_signo = TARGET_SIGSEGV; 2326 info.si_errno = 0; 2327 /* XXX: check env->error_code */ 2328 info.si_code = TARGET_SEGV_MAPERR; 2329 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2330 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2331 break; 2332 case EXCP_CpU: 2333 case EXCP_RI: 2334 info.si_signo = TARGET_SIGILL; 2335 info.si_errno = 0; 2336 info.si_code = 0; 2337 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2338 break; 2339 case EXCP_INTERRUPT: 2340 /* just indicate that signals should be handled asap */ 2341 break; 2342 case EXCP_DEBUG: 2343 { 2344 int sig; 2345 2346 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2347 if (sig) 2348 { 2349 info.si_signo = sig; 2350 info.si_errno = 0; 2351 info.si_code = TARGET_TRAP_BRKPT; 2352 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2353 } 2354 } 2355 break; 2356 case EXCP_SC: 2357 if (do_store_exclusive(env)) { 2358 info.si_signo = TARGET_SIGSEGV; 2359 info.si_errno = 0; 2360 info.si_code = TARGET_SEGV_MAPERR; 2361 info._sifields._sigfault._addr = env->active_tc.PC; 2362 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2363 } 2364 break; 2365 case EXCP_DSPDIS: 2366 info.si_signo = TARGET_SIGILL; 2367 info.si_errno = 0; 2368 info.si_code = TARGET_ILL_ILLOPC; 2369 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2370 break; 2371 /* The code below was inspired by the MIPS Linux kernel trap 2372 * handling code in arch/mips/kernel/traps.c. 2373 */ 2374 case EXCP_BREAK: 2375 { 2376 abi_ulong trap_instr; 2377 unsigned int code; 2378 2379 if (env->hflags & MIPS_HFLAG_M16) { 2380 if (env->insn_flags & ASE_MICROMIPS) { 2381 /* microMIPS mode */ 2382 ret = get_user_u16(trap_instr, env->active_tc.PC); 2383 if (ret != 0) { 2384 goto error; 2385 } 2386 2387 if ((trap_instr >> 10) == 0x11) { 2388 /* 16-bit instruction */ 2389 code = trap_instr & 0xf; 2390 } else { 2391 /* 32-bit instruction */ 2392 abi_ulong instr_lo; 2393 2394 ret = get_user_u16(instr_lo, 2395 env->active_tc.PC + 2); 2396 if (ret != 0) { 2397 goto error; 2398 } 2399 trap_instr = (trap_instr << 16) | instr_lo; 2400 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2401 /* Unfortunately, microMIPS also suffers from 2402 the old assembler bug... */ 2403 if (code >= (1 << 10)) { 2404 code >>= 10; 2405 } 2406 } 2407 } else { 2408 /* MIPS16e mode */ 2409 ret = get_user_u16(trap_instr, env->active_tc.PC); 2410 if (ret != 0) { 2411 goto error; 2412 } 2413 code = (trap_instr >> 6) & 0x3f; 2414 } 2415 } else { 2416 ret = get_user_u32(trap_instr, env->active_tc.PC); 2417 if (ret != 0) { 2418 goto error; 2419 } 2420 2421 /* As described in the original Linux kernel code, the 2422 * below checks on 'code' are to work around an old 2423 * assembly bug. 2424 */ 2425 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2426 if (code >= (1 << 10)) { 2427 code >>= 10; 2428 } 2429 } 2430 2431 if (do_break(env, &info, code) != 0) { 2432 goto error; 2433 } 2434 } 2435 break; 2436 case EXCP_TRAP: 2437 { 2438 abi_ulong trap_instr; 2439 unsigned int code = 0; 2440 2441 if (env->hflags & MIPS_HFLAG_M16) { 2442 /* microMIPS mode */ 2443 abi_ulong instr[2]; 2444 2445 ret = get_user_u16(instr[0], env->active_tc.PC) || 2446 get_user_u16(instr[1], env->active_tc.PC + 2); 2447 2448 trap_instr = (instr[0] << 16) | instr[1]; 2449 } else { 2450 ret = get_user_u32(trap_instr, env->active_tc.PC); 2451 } 2452 2453 if (ret != 0) { 2454 goto error; 2455 } 2456 2457 /* The immediate versions don't provide a code. */ 2458 if (!(trap_instr & 0xFC000000)) { 2459 if (env->hflags & MIPS_HFLAG_M16) { 2460 /* microMIPS mode */ 2461 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2462 } else { 2463 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2464 } 2465 } 2466 2467 if (do_break(env, &info, code) != 0) { 2468 goto error; 2469 } 2470 } 2471 break; 2472 case EXCP_ATOMIC: 2473 cpu_exec_step_atomic(cs); 2474 break; 2475 default: 2476 error: 2477 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2478 abort(); 2479 } 2480 process_pending_signals(env); 2481 } 2482 } 2483 #endif 2484 2485 #ifdef TARGET_NIOS2 2486 2487 void cpu_loop(CPUNios2State *env) 2488 { 2489 CPUState *cs = ENV_GET_CPU(env); 2490 Nios2CPU *cpu = NIOS2_CPU(cs); 2491 target_siginfo_t info; 2492 int trapnr, gdbsig, ret; 2493 2494 for (;;) { 2495 cpu_exec_start(cs); 2496 trapnr = cpu_exec(cs); 2497 cpu_exec_end(cs); 2498 gdbsig = 0; 2499 2500 switch (trapnr) { 2501 case EXCP_INTERRUPT: 2502 /* just indicate that signals should be handled asap */ 2503 break; 2504 case EXCP_TRAP: 2505 if (env->regs[R_AT] == 0) { 2506 abi_long ret; 2507 qemu_log_mask(CPU_LOG_INT, "\nSyscall\n"); 2508 2509 ret = do_syscall(env, env->regs[2], 2510 env->regs[4], env->regs[5], env->regs[6], 2511 env->regs[7], env->regs[8], env->regs[9], 2512 0, 0); 2513 2514 if (env->regs[2] == 0) { /* FIXME: syscall 0 workaround */ 2515 ret = 0; 2516 } 2517 2518 env->regs[2] = abs(ret); 2519 /* Return value is 0..4096 */ 2520 env->regs[7] = (ret > 0xfffffffffffff000ULL); 2521 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2522 env->regs[CR_STATUS] &= ~0x3; 2523 env->regs[R_EA] = env->regs[R_PC] + 4; 2524 env->regs[R_PC] += 4; 2525 break; 2526 } else { 2527 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2528 2529 env->regs[CR_ESTATUS] = env->regs[CR_STATUS]; 2530 env->regs[CR_STATUS] &= ~0x3; 2531 env->regs[R_EA] = env->regs[R_PC] + 4; 2532 env->regs[R_PC] = cpu->exception_addr; 2533 2534 gdbsig = TARGET_SIGTRAP; 2535 break; 2536 } 2537 case 0xaa: 2538 switch (env->regs[R_PC]) { 2539 /*case 0x1000:*/ /* TODO:__kuser_helper_version */ 2540 case 0x1004: /* __kuser_cmpxchg */ 2541 start_exclusive(); 2542 if (env->regs[4] & 0x3) { 2543 goto kuser_fail; 2544 } 2545 ret = get_user_u32(env->regs[2], env->regs[4]); 2546 if (ret) { 2547 end_exclusive(); 2548 goto kuser_fail; 2549 } 2550 env->regs[2] -= env->regs[5]; 2551 if (env->regs[2] == 0) { 2552 put_user_u32(env->regs[6], env->regs[4]); 2553 } 2554 end_exclusive(); 2555 env->regs[R_PC] = env->regs[R_RA]; 2556 break; 2557 /*case 0x1040:*/ /* TODO:__kuser_sigtramp */ 2558 default: 2559 ; 2560 kuser_fail: 2561 info.si_signo = TARGET_SIGSEGV; 2562 info.si_errno = 0; 2563 /* TODO: check env->error_code */ 2564 info.si_code = TARGET_SEGV_MAPERR; 2565 info._sifields._sigfault._addr = env->regs[R_PC]; 2566 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2567 } 2568 break; 2569 default: 2570 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2571 trapnr); 2572 gdbsig = TARGET_SIGILL; 2573 break; 2574 } 2575 if (gdbsig) { 2576 gdb_handlesig(cs, gdbsig); 2577 if (gdbsig != TARGET_SIGTRAP) { 2578 exit(EXIT_FAILURE); 2579 } 2580 } 2581 2582 process_pending_signals(env); 2583 } 2584 } 2585 2586 #endif /* TARGET_NIOS2 */ 2587 2588 #ifdef TARGET_OPENRISC 2589 2590 void cpu_loop(CPUOpenRISCState *env) 2591 { 2592 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2593 int trapnr; 2594 abi_long ret; 2595 target_siginfo_t info; 2596 2597 for (;;) { 2598 cpu_exec_start(cs); 2599 trapnr = cpu_exec(cs); 2600 cpu_exec_end(cs); 2601 process_queued_cpu_work(cs); 2602 2603 switch (trapnr) { 2604 case EXCP_SYSCALL: 2605 env->pc += 4; /* 0xc00; */ 2606 ret = do_syscall(env, 2607 cpu_get_gpr(env, 11), /* return value */ 2608 cpu_get_gpr(env, 3), /* r3 - r7 are params */ 2609 cpu_get_gpr(env, 4), 2610 cpu_get_gpr(env, 5), 2611 cpu_get_gpr(env, 6), 2612 cpu_get_gpr(env, 7), 2613 cpu_get_gpr(env, 8), 0, 0); 2614 if (ret == -TARGET_ERESTARTSYS) { 2615 env->pc -= 4; 2616 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2617 cpu_set_gpr(env, 11, ret); 2618 } 2619 break; 2620 case EXCP_DPF: 2621 case EXCP_IPF: 2622 case EXCP_RANGE: 2623 info.si_signo = TARGET_SIGSEGV; 2624 info.si_errno = 0; 2625 info.si_code = TARGET_SEGV_MAPERR; 2626 info._sifields._sigfault._addr = env->pc; 2627 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2628 break; 2629 case EXCP_ALIGN: 2630 info.si_signo = TARGET_SIGBUS; 2631 info.si_errno = 0; 2632 info.si_code = TARGET_BUS_ADRALN; 2633 info._sifields._sigfault._addr = env->pc; 2634 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2635 break; 2636 case EXCP_ILLEGAL: 2637 info.si_signo = TARGET_SIGILL; 2638 info.si_errno = 0; 2639 info.si_code = TARGET_ILL_ILLOPC; 2640 info._sifields._sigfault._addr = env->pc; 2641 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2642 break; 2643 case EXCP_FPE: 2644 info.si_signo = TARGET_SIGFPE; 2645 info.si_errno = 0; 2646 info.si_code = 0; 2647 info._sifields._sigfault._addr = env->pc; 2648 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2649 break; 2650 case EXCP_INTERRUPT: 2651 /* We processed the pending cpu work above. */ 2652 break; 2653 case EXCP_DEBUG: 2654 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 2655 if (trapnr) { 2656 info.si_signo = trapnr; 2657 info.si_errno = 0; 2658 info.si_code = TARGET_TRAP_BRKPT; 2659 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2660 } 2661 break; 2662 case EXCP_ATOMIC: 2663 cpu_exec_step_atomic(cs); 2664 break; 2665 default: 2666 g_assert_not_reached(); 2667 } 2668 process_pending_signals(env); 2669 } 2670 } 2671 2672 #endif /* TARGET_OPENRISC */ 2673 2674 #ifdef TARGET_SH4 2675 void cpu_loop(CPUSH4State *env) 2676 { 2677 CPUState *cs = CPU(sh_env_get_cpu(env)); 2678 int trapnr, ret; 2679 target_siginfo_t info; 2680 2681 while (1) { 2682 bool arch_interrupt = true; 2683 2684 cpu_exec_start(cs); 2685 trapnr = cpu_exec(cs); 2686 cpu_exec_end(cs); 2687 process_queued_cpu_work(cs); 2688 2689 switch (trapnr) { 2690 case 0x160: 2691 env->pc += 2; 2692 ret = do_syscall(env, 2693 env->gregs[3], 2694 env->gregs[4], 2695 env->gregs[5], 2696 env->gregs[6], 2697 env->gregs[7], 2698 env->gregs[0], 2699 env->gregs[1], 2700 0, 0); 2701 if (ret == -TARGET_ERESTARTSYS) { 2702 env->pc -= 2; 2703 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2704 env->gregs[0] = ret; 2705 } 2706 break; 2707 case EXCP_INTERRUPT: 2708 /* just indicate that signals should be handled asap */ 2709 break; 2710 case EXCP_DEBUG: 2711 { 2712 int sig; 2713 2714 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2715 if (sig) { 2716 info.si_signo = sig; 2717 info.si_errno = 0; 2718 info.si_code = TARGET_TRAP_BRKPT; 2719 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2720 } else { 2721 arch_interrupt = false; 2722 } 2723 } 2724 break; 2725 case 0xa0: 2726 case 0xc0: 2727 info.si_signo = TARGET_SIGSEGV; 2728 info.si_errno = 0; 2729 info.si_code = TARGET_SEGV_MAPERR; 2730 info._sifields._sigfault._addr = env->tea; 2731 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2732 break; 2733 case EXCP_ATOMIC: 2734 cpu_exec_step_atomic(cs); 2735 arch_interrupt = false; 2736 break; 2737 default: 2738 printf ("Unhandled trap: 0x%x\n", trapnr); 2739 cpu_dump_state(cs, stderr, fprintf, 0); 2740 exit(EXIT_FAILURE); 2741 } 2742 process_pending_signals (env); 2743 2744 /* Most of the traps imply an exception or interrupt, which 2745 implies an REI instruction has been executed. Which means 2746 that LDST (aka LOK_ADDR) should be cleared. But there are 2747 a few exceptions for traps internal to QEMU. */ 2748 if (arch_interrupt) { 2749 env->lock_addr = -1; 2750 } 2751 } 2752 } 2753 #endif 2754 2755 #ifdef TARGET_CRIS 2756 void cpu_loop(CPUCRISState *env) 2757 { 2758 CPUState *cs = CPU(cris_env_get_cpu(env)); 2759 int trapnr, ret; 2760 target_siginfo_t info; 2761 2762 while (1) { 2763 cpu_exec_start(cs); 2764 trapnr = cpu_exec(cs); 2765 cpu_exec_end(cs); 2766 process_queued_cpu_work(cs); 2767 2768 switch (trapnr) { 2769 case 0xaa: 2770 { 2771 info.si_signo = TARGET_SIGSEGV; 2772 info.si_errno = 0; 2773 /* XXX: check env->error_code */ 2774 info.si_code = TARGET_SEGV_MAPERR; 2775 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2776 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2777 } 2778 break; 2779 case EXCP_INTERRUPT: 2780 /* just indicate that signals should be handled asap */ 2781 break; 2782 case EXCP_BREAK: 2783 ret = do_syscall(env, 2784 env->regs[9], 2785 env->regs[10], 2786 env->regs[11], 2787 env->regs[12], 2788 env->regs[13], 2789 env->pregs[7], 2790 env->pregs[11], 2791 0, 0); 2792 if (ret == -TARGET_ERESTARTSYS) { 2793 env->pc -= 2; 2794 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2795 env->regs[10] = ret; 2796 } 2797 break; 2798 case EXCP_DEBUG: 2799 { 2800 int sig; 2801 2802 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2803 if (sig) 2804 { 2805 info.si_signo = sig; 2806 info.si_errno = 0; 2807 info.si_code = TARGET_TRAP_BRKPT; 2808 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2809 } 2810 } 2811 break; 2812 case EXCP_ATOMIC: 2813 cpu_exec_step_atomic(cs); 2814 break; 2815 default: 2816 printf ("Unhandled trap: 0x%x\n", trapnr); 2817 cpu_dump_state(cs, stderr, fprintf, 0); 2818 exit(EXIT_FAILURE); 2819 } 2820 process_pending_signals (env); 2821 } 2822 } 2823 #endif 2824 2825 #ifdef TARGET_MICROBLAZE 2826 void cpu_loop(CPUMBState *env) 2827 { 2828 CPUState *cs = CPU(mb_env_get_cpu(env)); 2829 int trapnr, ret; 2830 target_siginfo_t info; 2831 2832 while (1) { 2833 cpu_exec_start(cs); 2834 trapnr = cpu_exec(cs); 2835 cpu_exec_end(cs); 2836 process_queued_cpu_work(cs); 2837 2838 switch (trapnr) { 2839 case 0xaa: 2840 { 2841 info.si_signo = TARGET_SIGSEGV; 2842 info.si_errno = 0; 2843 /* XXX: check env->error_code */ 2844 info.si_code = TARGET_SEGV_MAPERR; 2845 info._sifields._sigfault._addr = 0; 2846 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2847 } 2848 break; 2849 case EXCP_INTERRUPT: 2850 /* just indicate that signals should be handled asap */ 2851 break; 2852 case EXCP_BREAK: 2853 /* Return address is 4 bytes after the call. */ 2854 env->regs[14] += 4; 2855 env->sregs[SR_PC] = env->regs[14]; 2856 ret = do_syscall(env, 2857 env->regs[12], 2858 env->regs[5], 2859 env->regs[6], 2860 env->regs[7], 2861 env->regs[8], 2862 env->regs[9], 2863 env->regs[10], 2864 0, 0); 2865 if (ret == -TARGET_ERESTARTSYS) { 2866 /* Wind back to before the syscall. */ 2867 env->sregs[SR_PC] -= 4; 2868 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2869 env->regs[3] = ret; 2870 } 2871 /* All syscall exits result in guest r14 being equal to the 2872 * PC we return to, because the kernel syscall exit "rtbd" does 2873 * this. (This is true even for sigreturn(); note that r14 is 2874 * not a userspace-usable register, as the kernel may clobber it 2875 * at any point.) 2876 */ 2877 env->regs[14] = env->sregs[SR_PC]; 2878 break; 2879 case EXCP_HW_EXCP: 2880 env->regs[17] = env->sregs[SR_PC] + 4; 2881 if (env->iflags & D_FLAG) { 2882 env->sregs[SR_ESR] |= 1 << 12; 2883 env->sregs[SR_PC] -= 4; 2884 /* FIXME: if branch was immed, replay the imm as well. */ 2885 } 2886 2887 env->iflags &= ~(IMM_FLAG | D_FLAG); 2888 2889 switch (env->sregs[SR_ESR] & 31) { 2890 case ESR_EC_DIVZERO: 2891 info.si_signo = TARGET_SIGFPE; 2892 info.si_errno = 0; 2893 info.si_code = TARGET_FPE_FLTDIV; 2894 info._sifields._sigfault._addr = 0; 2895 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2896 break; 2897 case ESR_EC_FPU: 2898 info.si_signo = TARGET_SIGFPE; 2899 info.si_errno = 0; 2900 if (env->sregs[SR_FSR] & FSR_IO) { 2901 info.si_code = TARGET_FPE_FLTINV; 2902 } 2903 if (env->sregs[SR_FSR] & FSR_DZ) { 2904 info.si_code = TARGET_FPE_FLTDIV; 2905 } 2906 info._sifields._sigfault._addr = 0; 2907 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2908 break; 2909 default: 2910 printf ("Unhandled hw-exception: 0x%x\n", 2911 env->sregs[SR_ESR] & ESR_EC_MASK); 2912 cpu_dump_state(cs, stderr, fprintf, 0); 2913 exit(EXIT_FAILURE); 2914 break; 2915 } 2916 break; 2917 case EXCP_DEBUG: 2918 { 2919 int sig; 2920 2921 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2922 if (sig) 2923 { 2924 info.si_signo = sig; 2925 info.si_errno = 0; 2926 info.si_code = TARGET_TRAP_BRKPT; 2927 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2928 } 2929 } 2930 break; 2931 case EXCP_ATOMIC: 2932 cpu_exec_step_atomic(cs); 2933 break; 2934 default: 2935 printf ("Unhandled trap: 0x%x\n", trapnr); 2936 cpu_dump_state(cs, stderr, fprintf, 0); 2937 exit(EXIT_FAILURE); 2938 } 2939 process_pending_signals (env); 2940 } 2941 } 2942 #endif 2943 2944 #ifdef TARGET_M68K 2945 2946 void cpu_loop(CPUM68KState *env) 2947 { 2948 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2949 int trapnr; 2950 unsigned int n; 2951 target_siginfo_t info; 2952 TaskState *ts = cs->opaque; 2953 2954 for(;;) { 2955 cpu_exec_start(cs); 2956 trapnr = cpu_exec(cs); 2957 cpu_exec_end(cs); 2958 process_queued_cpu_work(cs); 2959 2960 switch(trapnr) { 2961 case EXCP_ILLEGAL: 2962 { 2963 if (ts->sim_syscalls) { 2964 uint16_t nr; 2965 get_user_u16(nr, env->pc + 2); 2966 env->pc += 4; 2967 do_m68k_simcall(env, nr); 2968 } else { 2969 goto do_sigill; 2970 } 2971 } 2972 break; 2973 case EXCP_HALT_INSN: 2974 /* Semihosing syscall. */ 2975 env->pc += 4; 2976 do_m68k_semihosting(env, env->dregs[0]); 2977 break; 2978 case EXCP_LINEA: 2979 case EXCP_LINEF: 2980 case EXCP_UNSUPPORTED: 2981 do_sigill: 2982 info.si_signo = TARGET_SIGILL; 2983 info.si_errno = 0; 2984 info.si_code = TARGET_ILL_ILLOPN; 2985 info._sifields._sigfault._addr = env->pc; 2986 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2987 break; 2988 case EXCP_CHK: 2989 info.si_signo = TARGET_SIGFPE; 2990 info.si_errno = 0; 2991 info.si_code = TARGET_FPE_INTOVF; 2992 info._sifields._sigfault._addr = env->pc; 2993 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2994 break; 2995 case EXCP_DIV0: 2996 info.si_signo = TARGET_SIGFPE; 2997 info.si_errno = 0; 2998 info.si_code = TARGET_FPE_INTDIV; 2999 info._sifields._sigfault._addr = env->pc; 3000 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3001 break; 3002 case EXCP_TRAP0: 3003 { 3004 abi_long ret; 3005 ts->sim_syscalls = 0; 3006 n = env->dregs[0]; 3007 env->pc += 2; 3008 ret = do_syscall(env, 3009 n, 3010 env->dregs[1], 3011 env->dregs[2], 3012 env->dregs[3], 3013 env->dregs[4], 3014 env->dregs[5], 3015 env->aregs[0], 3016 0, 0); 3017 if (ret == -TARGET_ERESTARTSYS) { 3018 env->pc -= 2; 3019 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3020 env->dregs[0] = ret; 3021 } 3022 } 3023 break; 3024 case EXCP_INTERRUPT: 3025 /* just indicate that signals should be handled asap */ 3026 break; 3027 case EXCP_ACCESS: 3028 { 3029 info.si_signo = TARGET_SIGSEGV; 3030 info.si_errno = 0; 3031 /* XXX: check env->error_code */ 3032 info.si_code = TARGET_SEGV_MAPERR; 3033 info._sifields._sigfault._addr = env->mmu.ar; 3034 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3035 } 3036 break; 3037 case EXCP_DEBUG: 3038 { 3039 int sig; 3040 3041 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3042 if (sig) 3043 { 3044 info.si_signo = sig; 3045 info.si_errno = 0; 3046 info.si_code = TARGET_TRAP_BRKPT; 3047 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3048 } 3049 } 3050 break; 3051 case EXCP_ATOMIC: 3052 cpu_exec_step_atomic(cs); 3053 break; 3054 default: 3055 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3056 abort(); 3057 } 3058 process_pending_signals(env); 3059 } 3060 } 3061 #endif /* TARGET_M68K */ 3062 3063 #ifdef TARGET_ALPHA 3064 void cpu_loop(CPUAlphaState *env) 3065 { 3066 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3067 int trapnr; 3068 target_siginfo_t info; 3069 abi_long sysret; 3070 3071 while (1) { 3072 bool arch_interrupt = true; 3073 3074 cpu_exec_start(cs); 3075 trapnr = cpu_exec(cs); 3076 cpu_exec_end(cs); 3077 process_queued_cpu_work(cs); 3078 3079 switch (trapnr) { 3080 case EXCP_RESET: 3081 fprintf(stderr, "Reset requested. Exit\n"); 3082 exit(EXIT_FAILURE); 3083 break; 3084 case EXCP_MCHK: 3085 fprintf(stderr, "Machine check exception. Exit\n"); 3086 exit(EXIT_FAILURE); 3087 break; 3088 case EXCP_SMP_INTERRUPT: 3089 case EXCP_CLK_INTERRUPT: 3090 case EXCP_DEV_INTERRUPT: 3091 fprintf(stderr, "External interrupt. Exit\n"); 3092 exit(EXIT_FAILURE); 3093 break; 3094 case EXCP_MMFAULT: 3095 info.si_signo = TARGET_SIGSEGV; 3096 info.si_errno = 0; 3097 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3098 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3099 info._sifields._sigfault._addr = env->trap_arg0; 3100 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3101 break; 3102 case EXCP_UNALIGN: 3103 info.si_signo = TARGET_SIGBUS; 3104 info.si_errno = 0; 3105 info.si_code = TARGET_BUS_ADRALN; 3106 info._sifields._sigfault._addr = env->trap_arg0; 3107 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3108 break; 3109 case EXCP_OPCDEC: 3110 do_sigill: 3111 info.si_signo = TARGET_SIGILL; 3112 info.si_errno = 0; 3113 info.si_code = TARGET_ILL_ILLOPC; 3114 info._sifields._sigfault._addr = env->pc; 3115 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3116 break; 3117 case EXCP_ARITH: 3118 info.si_signo = TARGET_SIGFPE; 3119 info.si_errno = 0; 3120 info.si_code = TARGET_FPE_FLTINV; 3121 info._sifields._sigfault._addr = env->pc; 3122 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3123 break; 3124 case EXCP_FEN: 3125 /* No-op. Linux simply re-enables the FPU. */ 3126 break; 3127 case EXCP_CALL_PAL: 3128 switch (env->error_code) { 3129 case 0x80: 3130 /* BPT */ 3131 info.si_signo = TARGET_SIGTRAP; 3132 info.si_errno = 0; 3133 info.si_code = TARGET_TRAP_BRKPT; 3134 info._sifields._sigfault._addr = env->pc; 3135 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3136 break; 3137 case 0x81: 3138 /* BUGCHK */ 3139 info.si_signo = TARGET_SIGTRAP; 3140 info.si_errno = 0; 3141 info.si_code = 0; 3142 info._sifields._sigfault._addr = env->pc; 3143 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3144 break; 3145 case 0x83: 3146 /* CALLSYS */ 3147 trapnr = env->ir[IR_V0]; 3148 sysret = do_syscall(env, trapnr, 3149 env->ir[IR_A0], env->ir[IR_A1], 3150 env->ir[IR_A2], env->ir[IR_A3], 3151 env->ir[IR_A4], env->ir[IR_A5], 3152 0, 0); 3153 if (sysret == -TARGET_ERESTARTSYS) { 3154 env->pc -= 4; 3155 break; 3156 } 3157 if (sysret == -TARGET_QEMU_ESIGRETURN) { 3158 break; 3159 } 3160 /* Syscall writes 0 to V0 to bypass error check, similar 3161 to how this is handled internal to Linux kernel. 3162 (Ab)use trapnr temporarily as boolean indicating error. */ 3163 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3164 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3165 env->ir[IR_A3] = trapnr; 3166 break; 3167 case 0x86: 3168 /* IMB */ 3169 /* ??? We can probably elide the code using page_unprotect 3170 that is checking for self-modifying code. Instead we 3171 could simply call tb_flush here. Until we work out the 3172 changes required to turn off the extra write protection, 3173 this can be a no-op. */ 3174 break; 3175 case 0x9E: 3176 /* RDUNIQUE */ 3177 /* Handled in the translator for usermode. */ 3178 abort(); 3179 case 0x9F: 3180 /* WRUNIQUE */ 3181 /* Handled in the translator for usermode. */ 3182 abort(); 3183 case 0xAA: 3184 /* GENTRAP */ 3185 info.si_signo = TARGET_SIGFPE; 3186 switch (env->ir[IR_A0]) { 3187 case TARGET_GEN_INTOVF: 3188 info.si_code = TARGET_FPE_INTOVF; 3189 break; 3190 case TARGET_GEN_INTDIV: 3191 info.si_code = TARGET_FPE_INTDIV; 3192 break; 3193 case TARGET_GEN_FLTOVF: 3194 info.si_code = TARGET_FPE_FLTOVF; 3195 break; 3196 case TARGET_GEN_FLTUND: 3197 info.si_code = TARGET_FPE_FLTUND; 3198 break; 3199 case TARGET_GEN_FLTINV: 3200 info.si_code = TARGET_FPE_FLTINV; 3201 break; 3202 case TARGET_GEN_FLTINE: 3203 info.si_code = TARGET_FPE_FLTRES; 3204 break; 3205 case TARGET_GEN_ROPRAND: 3206 info.si_code = 0; 3207 break; 3208 default: 3209 info.si_signo = TARGET_SIGTRAP; 3210 info.si_code = 0; 3211 break; 3212 } 3213 info.si_errno = 0; 3214 info._sifields._sigfault._addr = env->pc; 3215 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3216 break; 3217 default: 3218 goto do_sigill; 3219 } 3220 break; 3221 case EXCP_DEBUG: 3222 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3223 if (info.si_signo) { 3224 info.si_errno = 0; 3225 info.si_code = TARGET_TRAP_BRKPT; 3226 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3227 } else { 3228 arch_interrupt = false; 3229 } 3230 break; 3231 case EXCP_INTERRUPT: 3232 /* Just indicate that signals should be handled asap. */ 3233 break; 3234 case EXCP_ATOMIC: 3235 cpu_exec_step_atomic(cs); 3236 arch_interrupt = false; 3237 break; 3238 default: 3239 printf ("Unhandled trap: 0x%x\n", trapnr); 3240 cpu_dump_state(cs, stderr, fprintf, 0); 3241 exit(EXIT_FAILURE); 3242 } 3243 process_pending_signals (env); 3244 3245 /* Most of the traps imply a transition through PALcode, which 3246 implies an REI instruction has been executed. Which means 3247 that RX and LOCK_ADDR should be cleared. But there are a 3248 few exceptions for traps internal to QEMU. */ 3249 if (arch_interrupt) { 3250 env->flags &= ~ENV_FLAG_RX_FLAG; 3251 env->lock_addr = -1; 3252 } 3253 } 3254 } 3255 #endif /* TARGET_ALPHA */ 3256 3257 #ifdef TARGET_S390X 3258 3259 /* s390x masks the fault address it reports in si_addr for SIGSEGV and SIGBUS */ 3260 #define S390X_FAIL_ADDR_MASK -4096LL 3261 3262 void cpu_loop(CPUS390XState *env) 3263 { 3264 CPUState *cs = CPU(s390_env_get_cpu(env)); 3265 int trapnr, n, sig; 3266 target_siginfo_t info; 3267 target_ulong addr; 3268 abi_long ret; 3269 3270 while (1) { 3271 cpu_exec_start(cs); 3272 trapnr = cpu_exec(cs); 3273 cpu_exec_end(cs); 3274 process_queued_cpu_work(cs); 3275 3276 switch (trapnr) { 3277 case EXCP_INTERRUPT: 3278 /* Just indicate that signals should be handled asap. */ 3279 break; 3280 3281 case EXCP_SVC: 3282 n = env->int_svc_code; 3283 if (!n) { 3284 /* syscalls > 255 */ 3285 n = env->regs[1]; 3286 } 3287 env->psw.addr += env->int_svc_ilen; 3288 ret = do_syscall(env, n, env->regs[2], env->regs[3], 3289 env->regs[4], env->regs[5], 3290 env->regs[6], env->regs[7], 0, 0); 3291 if (ret == -TARGET_ERESTARTSYS) { 3292 env->psw.addr -= env->int_svc_ilen; 3293 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3294 env->regs[2] = ret; 3295 } 3296 break; 3297 3298 case EXCP_DEBUG: 3299 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3300 if (sig) { 3301 n = TARGET_TRAP_BRKPT; 3302 goto do_signal_pc; 3303 } 3304 break; 3305 case EXCP_PGM: 3306 n = env->int_pgm_code; 3307 switch (n) { 3308 case PGM_OPERATION: 3309 case PGM_PRIVILEGED: 3310 sig = TARGET_SIGILL; 3311 n = TARGET_ILL_ILLOPC; 3312 goto do_signal_pc; 3313 case PGM_PROTECTION: 3314 case PGM_ADDRESSING: 3315 sig = TARGET_SIGSEGV; 3316 /* XXX: check env->error_code */ 3317 n = TARGET_SEGV_MAPERR; 3318 addr = env->__excp_addr & S390X_FAIL_ADDR_MASK; 3319 goto do_signal; 3320 case PGM_EXECUTE: 3321 case PGM_SPECIFICATION: 3322 case PGM_SPECIAL_OP: 3323 case PGM_OPERAND: 3324 do_sigill_opn: 3325 sig = TARGET_SIGILL; 3326 n = TARGET_ILL_ILLOPN; 3327 goto do_signal_pc; 3328 3329 case PGM_FIXPT_OVERFLOW: 3330 sig = TARGET_SIGFPE; 3331 n = TARGET_FPE_INTOVF; 3332 goto do_signal_pc; 3333 case PGM_FIXPT_DIVIDE: 3334 sig = TARGET_SIGFPE; 3335 n = TARGET_FPE_INTDIV; 3336 goto do_signal_pc; 3337 3338 case PGM_DATA: 3339 n = (env->fpc >> 8) & 0xff; 3340 if (n == 0xff) { 3341 /* compare-and-trap */ 3342 goto do_sigill_opn; 3343 } else { 3344 /* An IEEE exception, simulated or otherwise. */ 3345 if (n & 0x80) { 3346 n = TARGET_FPE_FLTINV; 3347 } else if (n & 0x40) { 3348 n = TARGET_FPE_FLTDIV; 3349 } else if (n & 0x20) { 3350 n = TARGET_FPE_FLTOVF; 3351 } else if (n & 0x10) { 3352 n = TARGET_FPE_FLTUND; 3353 } else if (n & 0x08) { 3354 n = TARGET_FPE_FLTRES; 3355 } else { 3356 /* ??? Quantum exception; BFP, DFP error. */ 3357 goto do_sigill_opn; 3358 } 3359 sig = TARGET_SIGFPE; 3360 goto do_signal_pc; 3361 } 3362 3363 default: 3364 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3365 cpu_dump_state(cs, stderr, fprintf, 0); 3366 exit(EXIT_FAILURE); 3367 } 3368 break; 3369 3370 do_signal_pc: 3371 addr = env->psw.addr; 3372 do_signal: 3373 info.si_signo = sig; 3374 info.si_errno = 0; 3375 info.si_code = n; 3376 info._sifields._sigfault._addr = addr; 3377 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3378 break; 3379 3380 case EXCP_ATOMIC: 3381 cpu_exec_step_atomic(cs); 3382 break; 3383 default: 3384 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3385 cpu_dump_state(cs, stderr, fprintf, 0); 3386 exit(EXIT_FAILURE); 3387 } 3388 process_pending_signals (env); 3389 } 3390 } 3391 3392 #endif /* TARGET_S390X */ 3393 3394 #ifdef TARGET_TILEGX 3395 3396 static void gen_sigill_reg(CPUTLGState *env) 3397 { 3398 target_siginfo_t info; 3399 3400 info.si_signo = TARGET_SIGILL; 3401 info.si_errno = 0; 3402 info.si_code = TARGET_ILL_PRVREG; 3403 info._sifields._sigfault._addr = env->pc; 3404 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3405 } 3406 3407 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3408 { 3409 target_siginfo_t info; 3410 3411 info.si_signo = signo; 3412 info.si_errno = 0; 3413 info._sifields._sigfault._addr = env->pc; 3414 3415 if (signo == TARGET_SIGSEGV) { 3416 /* The passed in sigcode is a dummy; check for a page mapping 3417 and pass either MAPERR or ACCERR. */ 3418 target_ulong addr = env->excaddr; 3419 info._sifields._sigfault._addr = addr; 3420 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3421 sigcode = TARGET_SEGV_MAPERR; 3422 } else { 3423 sigcode = TARGET_SEGV_ACCERR; 3424 } 3425 } 3426 info.si_code = sigcode; 3427 3428 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3429 } 3430 3431 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3432 { 3433 env->excaddr = addr; 3434 do_signal(env, TARGET_SIGSEGV, 0); 3435 } 3436 3437 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3438 { 3439 if (unlikely(reg >= TILEGX_R_COUNT)) { 3440 switch (reg) { 3441 case TILEGX_R_SN: 3442 case TILEGX_R_ZERO: 3443 return; 3444 case TILEGX_R_IDN0: 3445 case TILEGX_R_IDN1: 3446 case TILEGX_R_UDN0: 3447 case TILEGX_R_UDN1: 3448 case TILEGX_R_UDN2: 3449 case TILEGX_R_UDN3: 3450 gen_sigill_reg(env); 3451 return; 3452 default: 3453 g_assert_not_reached(); 3454 } 3455 } 3456 env->regs[reg] = val; 3457 } 3458 3459 /* 3460 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3461 * memory at the address held in the first source register. If the values are 3462 * not equal, then no memory operation is performed. If the values are equal, 3463 * the 8-byte quantity from the second source register is written into memory 3464 * at the address held in the first source register. In either case, the result 3465 * of the instruction is the value read from memory. The compare and write to 3466 * memory are atomic and thus can be used for synchronization purposes. This 3467 * instruction only operates for addresses aligned to a 8-byte boundary. 3468 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3469 * 3470 * Functional Description (64-bit) 3471 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3472 * rf[Dest] = memVal; 3473 * if (memVal == SPR[CmpValueSPR]) 3474 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3475 * 3476 * Functional Description (32-bit) 3477 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3478 * rf[Dest] = memVal; 3479 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3480 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3481 * 3482 * 3483 * This function also processes exch and exch4 which need not process SPR. 3484 */ 3485 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3486 { 3487 target_ulong addr; 3488 target_long val, sprval; 3489 3490 start_exclusive(); 3491 3492 addr = env->atomic_srca; 3493 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3494 goto sigsegv_maperr; 3495 } 3496 3497 if (cmp) { 3498 if (quad) { 3499 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3500 } else { 3501 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3502 } 3503 } 3504 3505 if (!cmp || val == sprval) { 3506 target_long valb = env->atomic_srcb; 3507 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3508 goto sigsegv_maperr; 3509 } 3510 } 3511 3512 set_regval(env, env->atomic_dstr, val); 3513 end_exclusive(); 3514 return; 3515 3516 sigsegv_maperr: 3517 end_exclusive(); 3518 gen_sigsegv_maperr(env, addr); 3519 } 3520 3521 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3522 { 3523 int8_t write = 1; 3524 target_ulong addr; 3525 target_long val, valb; 3526 3527 start_exclusive(); 3528 3529 addr = env->atomic_srca; 3530 valb = env->atomic_srcb; 3531 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3532 goto sigsegv_maperr; 3533 } 3534 3535 switch (trapnr) { 3536 case TILEGX_EXCP_OPCODE_FETCHADD: 3537 case TILEGX_EXCP_OPCODE_FETCHADD4: 3538 valb += val; 3539 break; 3540 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3541 valb += val; 3542 if (valb < 0) { 3543 write = 0; 3544 } 3545 break; 3546 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3547 valb += val; 3548 if ((int32_t)valb < 0) { 3549 write = 0; 3550 } 3551 break; 3552 case TILEGX_EXCP_OPCODE_FETCHAND: 3553 case TILEGX_EXCP_OPCODE_FETCHAND4: 3554 valb &= val; 3555 break; 3556 case TILEGX_EXCP_OPCODE_FETCHOR: 3557 case TILEGX_EXCP_OPCODE_FETCHOR4: 3558 valb |= val; 3559 break; 3560 default: 3561 g_assert_not_reached(); 3562 } 3563 3564 if (write) { 3565 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3566 goto sigsegv_maperr; 3567 } 3568 } 3569 3570 set_regval(env, env->atomic_dstr, val); 3571 end_exclusive(); 3572 return; 3573 3574 sigsegv_maperr: 3575 end_exclusive(); 3576 gen_sigsegv_maperr(env, addr); 3577 } 3578 3579 void cpu_loop(CPUTLGState *env) 3580 { 3581 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3582 int trapnr; 3583 3584 while (1) { 3585 cpu_exec_start(cs); 3586 trapnr = cpu_exec(cs); 3587 cpu_exec_end(cs); 3588 process_queued_cpu_work(cs); 3589 3590 switch (trapnr) { 3591 case TILEGX_EXCP_SYSCALL: 3592 { 3593 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], 3594 env->regs[0], env->regs[1], 3595 env->regs[2], env->regs[3], 3596 env->regs[4], env->regs[5], 3597 env->regs[6], env->regs[7]); 3598 if (ret == -TARGET_ERESTARTSYS) { 3599 env->pc -= 8; 3600 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3601 env->regs[TILEGX_R_RE] = ret; 3602 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; 3603 } 3604 break; 3605 } 3606 case TILEGX_EXCP_OPCODE_EXCH: 3607 do_exch(env, true, false); 3608 break; 3609 case TILEGX_EXCP_OPCODE_EXCH4: 3610 do_exch(env, false, false); 3611 break; 3612 case TILEGX_EXCP_OPCODE_CMPEXCH: 3613 do_exch(env, true, true); 3614 break; 3615 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3616 do_exch(env, false, true); 3617 break; 3618 case TILEGX_EXCP_OPCODE_FETCHADD: 3619 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3620 case TILEGX_EXCP_OPCODE_FETCHAND: 3621 case TILEGX_EXCP_OPCODE_FETCHOR: 3622 do_fetch(env, trapnr, true); 3623 break; 3624 case TILEGX_EXCP_OPCODE_FETCHADD4: 3625 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3626 case TILEGX_EXCP_OPCODE_FETCHAND4: 3627 case TILEGX_EXCP_OPCODE_FETCHOR4: 3628 do_fetch(env, trapnr, false); 3629 break; 3630 case TILEGX_EXCP_SIGNAL: 3631 do_signal(env, env->signo, env->sigcode); 3632 break; 3633 case TILEGX_EXCP_REG_IDN_ACCESS: 3634 case TILEGX_EXCP_REG_UDN_ACCESS: 3635 gen_sigill_reg(env); 3636 break; 3637 case EXCP_ATOMIC: 3638 cpu_exec_step_atomic(cs); 3639 break; 3640 default: 3641 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3642 g_assert_not_reached(); 3643 } 3644 process_pending_signals(env); 3645 } 3646 } 3647 3648 #endif 3649 3650 #ifdef TARGET_HPPA 3651 3652 static abi_ulong hppa_lws(CPUHPPAState *env) 3653 { 3654 uint32_t which = env->gr[20]; 3655 abi_ulong addr = env->gr[26]; 3656 abi_ulong old = env->gr[25]; 3657 abi_ulong new = env->gr[24]; 3658 abi_ulong size, ret; 3659 3660 switch (which) { 3661 default: 3662 return -TARGET_ENOSYS; 3663 3664 case 0: /* elf32 atomic 32bit cmpxchg */ 3665 if ((addr & 3) || !access_ok(VERIFY_WRITE, addr, 4)) { 3666 return -TARGET_EFAULT; 3667 } 3668 old = tswap32(old); 3669 new = tswap32(new); 3670 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3671 ret = tswap32(ret); 3672 break; 3673 3674 case 2: /* elf32 atomic "new" cmpxchg */ 3675 size = env->gr[23]; 3676 if (size >= 4) { 3677 return -TARGET_ENOSYS; 3678 } 3679 if (((addr | old | new) & ((1 << size) - 1)) 3680 || !access_ok(VERIFY_WRITE, addr, 1 << size) 3681 || !access_ok(VERIFY_READ, old, 1 << size) 3682 || !access_ok(VERIFY_READ, new, 1 << size)) { 3683 return -TARGET_EFAULT; 3684 } 3685 /* Note that below we use host-endian loads so that the cmpxchg 3686 can be host-endian as well. */ 3687 switch (size) { 3688 case 0: 3689 old = *(uint8_t *)g2h(old); 3690 new = *(uint8_t *)g2h(new); 3691 ret = atomic_cmpxchg((uint8_t *)g2h(addr), old, new); 3692 ret = ret != old; 3693 break; 3694 case 1: 3695 old = *(uint16_t *)g2h(old); 3696 new = *(uint16_t *)g2h(new); 3697 ret = atomic_cmpxchg((uint16_t *)g2h(addr), old, new); 3698 ret = ret != old; 3699 break; 3700 case 2: 3701 old = *(uint32_t *)g2h(old); 3702 new = *(uint32_t *)g2h(new); 3703 ret = atomic_cmpxchg((uint32_t *)g2h(addr), old, new); 3704 ret = ret != old; 3705 break; 3706 case 3: 3707 { 3708 uint64_t o64, n64, r64; 3709 o64 = *(uint64_t *)g2h(old); 3710 n64 = *(uint64_t *)g2h(new); 3711 #ifdef CONFIG_ATOMIC64 3712 r64 = atomic_cmpxchg__nocheck((uint64_t *)g2h(addr), o64, n64); 3713 ret = r64 != o64; 3714 #else 3715 start_exclusive(); 3716 r64 = *(uint64_t *)g2h(addr); 3717 ret = 1; 3718 if (r64 == o64) { 3719 *(uint64_t *)g2h(addr) = n64; 3720 ret = 0; 3721 } 3722 end_exclusive(); 3723 #endif 3724 } 3725 break; 3726 } 3727 break; 3728 } 3729 3730 env->gr[28] = ret; 3731 return 0; 3732 } 3733 3734 void cpu_loop(CPUHPPAState *env) 3735 { 3736 CPUState *cs = CPU(hppa_env_get_cpu(env)); 3737 target_siginfo_t info; 3738 abi_ulong ret; 3739 int trapnr; 3740 3741 while (1) { 3742 cpu_exec_start(cs); 3743 trapnr = cpu_exec(cs); 3744 cpu_exec_end(cs); 3745 process_queued_cpu_work(cs); 3746 3747 switch (trapnr) { 3748 case EXCP_SYSCALL: 3749 ret = do_syscall(env, env->gr[20], 3750 env->gr[26], env->gr[25], 3751 env->gr[24], env->gr[23], 3752 env->gr[22], env->gr[21], 0, 0); 3753 switch (ret) { 3754 default: 3755 env->gr[28] = ret; 3756 /* We arrived here by faking the gateway page. Return. */ 3757 env->iaoq_f = env->gr[31]; 3758 env->iaoq_b = env->gr[31] + 4; 3759 break; 3760 case -TARGET_ERESTARTSYS: 3761 case -TARGET_QEMU_ESIGRETURN: 3762 break; 3763 } 3764 break; 3765 case EXCP_SYSCALL_LWS: 3766 env->gr[21] = hppa_lws(env); 3767 /* We arrived here by faking the gateway page. Return. */ 3768 env->iaoq_f = env->gr[31]; 3769 env->iaoq_b = env->gr[31] + 4; 3770 break; 3771 case EXCP_SIGSEGV: 3772 info.si_signo = TARGET_SIGSEGV; 3773 info.si_errno = 0; 3774 info.si_code = TARGET_SEGV_ACCERR; 3775 info._sifields._sigfault._addr = env->ior; 3776 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3777 break; 3778 case EXCP_SIGILL: 3779 info.si_signo = TARGET_SIGILL; 3780 info.si_errno = 0; 3781 info.si_code = TARGET_ILL_ILLOPN; 3782 info._sifields._sigfault._addr = env->iaoq_f; 3783 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3784 break; 3785 case EXCP_SIGFPE: 3786 info.si_signo = TARGET_SIGFPE; 3787 info.si_errno = 0; 3788 info.si_code = 0; 3789 info._sifields._sigfault._addr = env->iaoq_f; 3790 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3791 break; 3792 case EXCP_DEBUG: 3793 trapnr = gdb_handlesig(cs, TARGET_SIGTRAP); 3794 if (trapnr) { 3795 info.si_signo = trapnr; 3796 info.si_errno = 0; 3797 info.si_code = TARGET_TRAP_BRKPT; 3798 queue_signal(env, trapnr, QEMU_SI_FAULT, &info); 3799 } 3800 break; 3801 case EXCP_INTERRUPT: 3802 /* just indicate that signals should be handled asap */ 3803 break; 3804 default: 3805 g_assert_not_reached(); 3806 } 3807 process_pending_signals(env); 3808 } 3809 } 3810 3811 #endif /* TARGET_HPPA */ 3812 3813 THREAD CPUState *thread_cpu; 3814 3815 bool qemu_cpu_is_self(CPUState *cpu) 3816 { 3817 return thread_cpu == cpu; 3818 } 3819 3820 void qemu_cpu_kick(CPUState *cpu) 3821 { 3822 cpu_exit(cpu); 3823 } 3824 3825 void task_settid(TaskState *ts) 3826 { 3827 if (ts->ts_tid == 0) { 3828 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3829 } 3830 } 3831 3832 void stop_all_tasks(void) 3833 { 3834 /* 3835 * We trust that when using NPTL, start_exclusive() 3836 * handles thread stopping correctly. 3837 */ 3838 start_exclusive(); 3839 } 3840 3841 /* Assumes contents are already zeroed. */ 3842 void init_task_state(TaskState *ts) 3843 { 3844 ts->used = 1; 3845 } 3846 3847 CPUArchState *cpu_copy(CPUArchState *env) 3848 { 3849 CPUState *cpu = ENV_GET_CPU(env); 3850 CPUState *new_cpu = cpu_init(cpu_model); 3851 CPUArchState *new_env = new_cpu->env_ptr; 3852 CPUBreakpoint *bp; 3853 CPUWatchpoint *wp; 3854 3855 /* Reset non arch specific state */ 3856 cpu_reset(new_cpu); 3857 3858 memcpy(new_env, env, sizeof(CPUArchState)); 3859 3860 /* Clone all break/watchpoints. 3861 Note: Once we support ptrace with hw-debug register access, make sure 3862 BP_CPU break/watchpoints are handled correctly on clone. */ 3863 QTAILQ_INIT(&new_cpu->breakpoints); 3864 QTAILQ_INIT(&new_cpu->watchpoints); 3865 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3866 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3867 } 3868 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3869 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3870 } 3871 3872 return new_env; 3873 } 3874 3875 static void handle_arg_help(const char *arg) 3876 { 3877 usage(EXIT_SUCCESS); 3878 } 3879 3880 static void handle_arg_log(const char *arg) 3881 { 3882 int mask; 3883 3884 mask = qemu_str_to_log_mask(arg); 3885 if (!mask) { 3886 qemu_print_log_usage(stdout); 3887 exit(EXIT_FAILURE); 3888 } 3889 qemu_log_needs_buffers(); 3890 qemu_set_log(mask); 3891 } 3892 3893 static void handle_arg_dfilter(const char *arg) 3894 { 3895 qemu_set_dfilter_ranges(arg, NULL); 3896 } 3897 3898 static void handle_arg_log_filename(const char *arg) 3899 { 3900 qemu_set_log_filename(arg, &error_fatal); 3901 } 3902 3903 static void handle_arg_set_env(const char *arg) 3904 { 3905 char *r, *p, *token; 3906 r = p = strdup(arg); 3907 while ((token = strsep(&p, ",")) != NULL) { 3908 if (envlist_setenv(envlist, token) != 0) { 3909 usage(EXIT_FAILURE); 3910 } 3911 } 3912 free(r); 3913 } 3914 3915 static void handle_arg_unset_env(const char *arg) 3916 { 3917 char *r, *p, *token; 3918 r = p = strdup(arg); 3919 while ((token = strsep(&p, ",")) != NULL) { 3920 if (envlist_unsetenv(envlist, token) != 0) { 3921 usage(EXIT_FAILURE); 3922 } 3923 } 3924 free(r); 3925 } 3926 3927 static void handle_arg_argv0(const char *arg) 3928 { 3929 argv0 = strdup(arg); 3930 } 3931 3932 static void handle_arg_stack_size(const char *arg) 3933 { 3934 char *p; 3935 guest_stack_size = strtoul(arg, &p, 0); 3936 if (guest_stack_size == 0) { 3937 usage(EXIT_FAILURE); 3938 } 3939 3940 if (*p == 'M') { 3941 guest_stack_size *= 1024 * 1024; 3942 } else if (*p == 'k' || *p == 'K') { 3943 guest_stack_size *= 1024; 3944 } 3945 } 3946 3947 static void handle_arg_ld_prefix(const char *arg) 3948 { 3949 interp_prefix = strdup(arg); 3950 } 3951 3952 static void handle_arg_pagesize(const char *arg) 3953 { 3954 qemu_host_page_size = atoi(arg); 3955 if (qemu_host_page_size == 0 || 3956 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3957 fprintf(stderr, "page size must be a power of two\n"); 3958 exit(EXIT_FAILURE); 3959 } 3960 } 3961 3962 static void handle_arg_randseed(const char *arg) 3963 { 3964 unsigned long long seed; 3965 3966 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3967 fprintf(stderr, "Invalid seed number: %s\n", arg); 3968 exit(EXIT_FAILURE); 3969 } 3970 srand(seed); 3971 } 3972 3973 static void handle_arg_gdb(const char *arg) 3974 { 3975 gdbstub_port = atoi(arg); 3976 } 3977 3978 static void handle_arg_uname(const char *arg) 3979 { 3980 qemu_uname_release = strdup(arg); 3981 } 3982 3983 static void handle_arg_cpu(const char *arg) 3984 { 3985 cpu_model = strdup(arg); 3986 if (cpu_model == NULL || is_help_option(cpu_model)) { 3987 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3988 #if defined(cpu_list) 3989 cpu_list(stdout, &fprintf); 3990 #endif 3991 exit(EXIT_FAILURE); 3992 } 3993 } 3994 3995 static void handle_arg_guest_base(const char *arg) 3996 { 3997 guest_base = strtol(arg, NULL, 0); 3998 have_guest_base = 1; 3999 } 4000 4001 static void handle_arg_reserved_va(const char *arg) 4002 { 4003 char *p; 4004 int shift = 0; 4005 reserved_va = strtoul(arg, &p, 0); 4006 switch (*p) { 4007 case 'k': 4008 case 'K': 4009 shift = 10; 4010 break; 4011 case 'M': 4012 shift = 20; 4013 break; 4014 case 'G': 4015 shift = 30; 4016 break; 4017 } 4018 if (shift) { 4019 unsigned long unshifted = reserved_va; 4020 p++; 4021 reserved_va <<= shift; 4022 if (reserved_va >> shift != unshifted 4023 || (MAX_RESERVED_VA && reserved_va > MAX_RESERVED_VA)) { 4024 fprintf(stderr, "Reserved virtual address too big\n"); 4025 exit(EXIT_FAILURE); 4026 } 4027 } 4028 if (*p) { 4029 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 4030 exit(EXIT_FAILURE); 4031 } 4032 } 4033 4034 static void handle_arg_singlestep(const char *arg) 4035 { 4036 singlestep = 1; 4037 } 4038 4039 static void handle_arg_strace(const char *arg) 4040 { 4041 do_strace = 1; 4042 } 4043 4044 static void handle_arg_version(const char *arg) 4045 { 4046 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 4047 "\n" QEMU_COPYRIGHT "\n"); 4048 exit(EXIT_SUCCESS); 4049 } 4050 4051 static char *trace_file; 4052 static void handle_arg_trace(const char *arg) 4053 { 4054 g_free(trace_file); 4055 trace_file = trace_opt_parse(arg); 4056 } 4057 4058 struct qemu_argument { 4059 const char *argv; 4060 const char *env; 4061 bool has_arg; 4062 void (*handle_opt)(const char *arg); 4063 const char *example; 4064 const char *help; 4065 }; 4066 4067 static const struct qemu_argument arg_table[] = { 4068 {"h", "", false, handle_arg_help, 4069 "", "print this help"}, 4070 {"help", "", false, handle_arg_help, 4071 "", ""}, 4072 {"g", "QEMU_GDB", true, handle_arg_gdb, 4073 "port", "wait gdb connection to 'port'"}, 4074 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 4075 "path", "set the elf interpreter prefix to 'path'"}, 4076 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 4077 "size", "set the stack size to 'size' bytes"}, 4078 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 4079 "model", "select CPU (-cpu help for list)"}, 4080 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 4081 "var=value", "sets targets environment variable (see below)"}, 4082 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 4083 "var", "unsets targets environment variable (see below)"}, 4084 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 4085 "argv0", "forces target process argv[0] to be 'argv0'"}, 4086 {"r", "QEMU_UNAME", true, handle_arg_uname, 4087 "uname", "set qemu uname release string to 'uname'"}, 4088 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 4089 "address", "set guest_base address to 'address'"}, 4090 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 4091 "size", "reserve 'size' bytes for guest virtual address space"}, 4092 {"d", "QEMU_LOG", true, handle_arg_log, 4093 "item[,...]", "enable logging of specified items " 4094 "(use '-d help' for a list of items)"}, 4095 {"dfilter", "QEMU_DFILTER", true, handle_arg_dfilter, 4096 "range[,...]","filter logging based on address range"}, 4097 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 4098 "logfile", "write logs to 'logfile' (default stderr)"}, 4099 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 4100 "pagesize", "set the host page size to 'pagesize'"}, 4101 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 4102 "", "run in singlestep mode"}, 4103 {"strace", "QEMU_STRACE", false, handle_arg_strace, 4104 "", "log system calls"}, 4105 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 4106 "", "Seed for pseudo-random number generator"}, 4107 {"trace", "QEMU_TRACE", true, handle_arg_trace, 4108 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"}, 4109 {"version", "QEMU_VERSION", false, handle_arg_version, 4110 "", "display version information and exit"}, 4111 {NULL, NULL, false, NULL, NULL, NULL} 4112 }; 4113 4114 static void usage(int exitcode) 4115 { 4116 const struct qemu_argument *arginfo; 4117 int maxarglen; 4118 int maxenvlen; 4119 4120 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 4121 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 4122 "\n" 4123 "Options and associated environment variables:\n" 4124 "\n"); 4125 4126 /* Calculate column widths. We must always have at least enough space 4127 * for the column header. 4128 */ 4129 maxarglen = strlen("Argument"); 4130 maxenvlen = strlen("Env-variable"); 4131 4132 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4133 int arglen = strlen(arginfo->argv); 4134 if (arginfo->has_arg) { 4135 arglen += strlen(arginfo->example) + 1; 4136 } 4137 if (strlen(arginfo->env) > maxenvlen) { 4138 maxenvlen = strlen(arginfo->env); 4139 } 4140 if (arglen > maxarglen) { 4141 maxarglen = arglen; 4142 } 4143 } 4144 4145 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 4146 maxenvlen, "Env-variable"); 4147 4148 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4149 if (arginfo->has_arg) { 4150 printf("-%s %-*s %-*s %s\n", arginfo->argv, 4151 (int)(maxarglen - strlen(arginfo->argv) - 1), 4152 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 4153 } else { 4154 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 4155 maxenvlen, arginfo->env, 4156 arginfo->help); 4157 } 4158 } 4159 4160 printf("\n" 4161 "Defaults:\n" 4162 "QEMU_LD_PREFIX = %s\n" 4163 "QEMU_STACK_SIZE = %ld byte\n", 4164 interp_prefix, 4165 guest_stack_size); 4166 4167 printf("\n" 4168 "You can use -E and -U options or the QEMU_SET_ENV and\n" 4169 "QEMU_UNSET_ENV environment variables to set and unset\n" 4170 "environment variables for the target process.\n" 4171 "It is possible to provide several variables by separating them\n" 4172 "by commas in getsubopt(3) style. Additionally it is possible to\n" 4173 "provide the -E and -U options multiple times.\n" 4174 "The following lines are equivalent:\n" 4175 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 4176 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 4177 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4178 "Note that if you provide several changes to a single variable\n" 4179 "the last change will stay in effect.\n" 4180 "\n" 4181 QEMU_HELP_BOTTOM "\n"); 4182 4183 exit(exitcode); 4184 } 4185 4186 static int parse_args(int argc, char **argv) 4187 { 4188 const char *r; 4189 int optind; 4190 const struct qemu_argument *arginfo; 4191 4192 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4193 if (arginfo->env == NULL) { 4194 continue; 4195 } 4196 4197 r = getenv(arginfo->env); 4198 if (r != NULL) { 4199 arginfo->handle_opt(r); 4200 } 4201 } 4202 4203 optind = 1; 4204 for (;;) { 4205 if (optind >= argc) { 4206 break; 4207 } 4208 r = argv[optind]; 4209 if (r[0] != '-') { 4210 break; 4211 } 4212 optind++; 4213 r++; 4214 if (!strcmp(r, "-")) { 4215 break; 4216 } 4217 /* Treat --foo the same as -foo. */ 4218 if (r[0] == '-') { 4219 r++; 4220 } 4221 4222 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4223 if (!strcmp(r, arginfo->argv)) { 4224 if (arginfo->has_arg) { 4225 if (optind >= argc) { 4226 (void) fprintf(stderr, 4227 "qemu: missing argument for option '%s'\n", r); 4228 exit(EXIT_FAILURE); 4229 } 4230 arginfo->handle_opt(argv[optind]); 4231 optind++; 4232 } else { 4233 arginfo->handle_opt(NULL); 4234 } 4235 break; 4236 } 4237 } 4238 4239 /* no option matched the current argv */ 4240 if (arginfo->handle_opt == NULL) { 4241 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4242 exit(EXIT_FAILURE); 4243 } 4244 } 4245 4246 if (optind >= argc) { 4247 (void) fprintf(stderr, "qemu: no user program specified\n"); 4248 exit(EXIT_FAILURE); 4249 } 4250 4251 filename = argv[optind]; 4252 exec_path = argv[optind]; 4253 4254 return optind; 4255 } 4256 4257 int main(int argc, char **argv, char **envp) 4258 { 4259 struct target_pt_regs regs1, *regs = ®s1; 4260 struct image_info info1, *info = &info1; 4261 struct linux_binprm bprm; 4262 TaskState *ts; 4263 CPUArchState *env; 4264 CPUState *cpu; 4265 int optind; 4266 char **target_environ, **wrk; 4267 char **target_argv; 4268 int target_argc; 4269 int i; 4270 int ret; 4271 int execfd; 4272 4273 module_call_init(MODULE_INIT_TRACE); 4274 qemu_init_cpu_list(); 4275 module_call_init(MODULE_INIT_QOM); 4276 4277 envlist = envlist_create(); 4278 4279 /* add current environment into the list */ 4280 for (wrk = environ; *wrk != NULL; wrk++) { 4281 (void) envlist_setenv(envlist, *wrk); 4282 } 4283 4284 /* Read the stack limit from the kernel. If it's "unlimited", 4285 then we can do little else besides use the default. */ 4286 { 4287 struct rlimit lim; 4288 if (getrlimit(RLIMIT_STACK, &lim) == 0 4289 && lim.rlim_cur != RLIM_INFINITY 4290 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4291 guest_stack_size = lim.rlim_cur; 4292 } 4293 } 4294 4295 cpu_model = NULL; 4296 4297 srand(time(NULL)); 4298 4299 qemu_add_opts(&qemu_trace_opts); 4300 4301 optind = parse_args(argc, argv); 4302 4303 if (!trace_init_backends()) { 4304 exit(1); 4305 } 4306 trace_init_file(trace_file); 4307 4308 /* Zero out regs */ 4309 memset(regs, 0, sizeof(struct target_pt_regs)); 4310 4311 /* Zero out image_info */ 4312 memset(info, 0, sizeof(struct image_info)); 4313 4314 memset(&bprm, 0, sizeof (bprm)); 4315 4316 /* Scan interp_prefix dir for replacement files. */ 4317 init_paths(interp_prefix); 4318 4319 init_qemu_uname_release(); 4320 4321 if (cpu_model == NULL) { 4322 #if defined(TARGET_I386) 4323 #ifdef TARGET_X86_64 4324 cpu_model = "qemu64"; 4325 #else 4326 cpu_model = "qemu32"; 4327 #endif 4328 #elif defined(TARGET_ARM) 4329 cpu_model = "any"; 4330 #elif defined(TARGET_UNICORE32) 4331 cpu_model = "any"; 4332 #elif defined(TARGET_M68K) 4333 cpu_model = "any"; 4334 #elif defined(TARGET_SPARC) 4335 #ifdef TARGET_SPARC64 4336 cpu_model = "TI UltraSparc II"; 4337 #else 4338 cpu_model = "Fujitsu MB86904"; 4339 #endif 4340 #elif defined(TARGET_MIPS) 4341 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4342 cpu_model = "5KEf"; 4343 #else 4344 cpu_model = "24Kf"; 4345 #endif 4346 #elif defined TARGET_OPENRISC 4347 cpu_model = "or1200"; 4348 #elif defined(TARGET_PPC) 4349 # ifdef TARGET_PPC64 4350 cpu_model = "POWER8"; 4351 # else 4352 cpu_model = "750"; 4353 # endif 4354 #elif defined TARGET_SH4 4355 cpu_model = "sh7785"; 4356 #elif defined TARGET_S390X 4357 cpu_model = "qemu"; 4358 #else 4359 cpu_model = "any"; 4360 #endif 4361 } 4362 tcg_exec_init(0); 4363 /* NOTE: we need to init the CPU at this stage to get 4364 qemu_host_page_size */ 4365 cpu = cpu_init(cpu_model); 4366 env = cpu->env_ptr; 4367 cpu_reset(cpu); 4368 4369 thread_cpu = cpu; 4370 4371 if (getenv("QEMU_STRACE")) { 4372 do_strace = 1; 4373 } 4374 4375 if (getenv("QEMU_RAND_SEED")) { 4376 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4377 } 4378 4379 target_environ = envlist_to_environ(envlist, NULL); 4380 envlist_free(envlist); 4381 4382 /* 4383 * Now that page sizes are configured in cpu_init() we can do 4384 * proper page alignment for guest_base. 4385 */ 4386 guest_base = HOST_PAGE_ALIGN(guest_base); 4387 4388 if (reserved_va || have_guest_base) { 4389 guest_base = init_guest_space(guest_base, reserved_va, 0, 4390 have_guest_base); 4391 if (guest_base == (unsigned long)-1) { 4392 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4393 "space for use as guest address space (check your virtual " 4394 "memory ulimit setting or reserve less using -R option)\n", 4395 reserved_va); 4396 exit(EXIT_FAILURE); 4397 } 4398 4399 if (reserved_va) { 4400 mmap_next_start = reserved_va; 4401 } 4402 } 4403 4404 /* 4405 * Read in mmap_min_addr kernel parameter. This value is used 4406 * When loading the ELF image to determine whether guest_base 4407 * is needed. It is also used in mmap_find_vma. 4408 */ 4409 { 4410 FILE *fp; 4411 4412 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4413 unsigned long tmp; 4414 if (fscanf(fp, "%lu", &tmp) == 1) { 4415 mmap_min_addr = tmp; 4416 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4417 } 4418 fclose(fp); 4419 } 4420 } 4421 4422 /* 4423 * Prepare copy of argv vector for target. 4424 */ 4425 target_argc = argc - optind; 4426 target_argv = calloc(target_argc + 1, sizeof (char *)); 4427 if (target_argv == NULL) { 4428 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4429 exit(EXIT_FAILURE); 4430 } 4431 4432 /* 4433 * If argv0 is specified (using '-0' switch) we replace 4434 * argv[0] pointer with the given one. 4435 */ 4436 i = 0; 4437 if (argv0 != NULL) { 4438 target_argv[i++] = strdup(argv0); 4439 } 4440 for (; i < target_argc; i++) { 4441 target_argv[i] = strdup(argv[optind + i]); 4442 } 4443 target_argv[target_argc] = NULL; 4444 4445 ts = g_new0(TaskState, 1); 4446 init_task_state(ts); 4447 /* build Task State */ 4448 ts->info = info; 4449 ts->bprm = &bprm; 4450 cpu->opaque = ts; 4451 task_settid(ts); 4452 4453 execfd = qemu_getauxval(AT_EXECFD); 4454 if (execfd == 0) { 4455 execfd = open(filename, O_RDONLY); 4456 if (execfd < 0) { 4457 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4458 _exit(EXIT_FAILURE); 4459 } 4460 } 4461 4462 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4463 info, &bprm); 4464 if (ret != 0) { 4465 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4466 _exit(EXIT_FAILURE); 4467 } 4468 4469 for (wrk = target_environ; *wrk; wrk++) { 4470 g_free(*wrk); 4471 } 4472 4473 g_free(target_environ); 4474 4475 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4476 qemu_log("guest_base 0x%lx\n", guest_base); 4477 log_page_dump(); 4478 4479 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4480 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4481 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", info->start_code); 4482 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", info->start_data); 4483 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4484 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", info->start_stack); 4485 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4486 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4487 qemu_log("argv_start 0x" TARGET_ABI_FMT_lx "\n", info->arg_start); 4488 qemu_log("env_start 0x" TARGET_ABI_FMT_lx "\n", 4489 info->arg_end + (abi_ulong)sizeof(abi_ulong)); 4490 qemu_log("auxv_start 0x" TARGET_ABI_FMT_lx "\n", info->saved_auxv); 4491 } 4492 4493 target_set_brk(info->brk); 4494 syscall_init(); 4495 signal_init(); 4496 4497 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4498 generating the prologue until now so that the prologue can take 4499 the real value of GUEST_BASE into account. */ 4500 tcg_prologue_init(tcg_ctx); 4501 tcg_region_init(); 4502 4503 #if defined(TARGET_I386) 4504 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4505 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4506 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4507 env->cr[4] |= CR4_OSFXSR_MASK; 4508 env->hflags |= HF_OSFXSR_MASK; 4509 } 4510 #ifndef TARGET_ABI32 4511 /* enable 64 bit mode if possible */ 4512 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4513 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4514 exit(EXIT_FAILURE); 4515 } 4516 env->cr[4] |= CR4_PAE_MASK; 4517 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4518 env->hflags |= HF_LMA_MASK; 4519 #endif 4520 4521 /* flags setup : we activate the IRQs by default as in user mode */ 4522 env->eflags |= IF_MASK; 4523 4524 /* linux register setup */ 4525 #ifndef TARGET_ABI32 4526 env->regs[R_EAX] = regs->rax; 4527 env->regs[R_EBX] = regs->rbx; 4528 env->regs[R_ECX] = regs->rcx; 4529 env->regs[R_EDX] = regs->rdx; 4530 env->regs[R_ESI] = regs->rsi; 4531 env->regs[R_EDI] = regs->rdi; 4532 env->regs[R_EBP] = regs->rbp; 4533 env->regs[R_ESP] = regs->rsp; 4534 env->eip = regs->rip; 4535 #else 4536 env->regs[R_EAX] = regs->eax; 4537 env->regs[R_EBX] = regs->ebx; 4538 env->regs[R_ECX] = regs->ecx; 4539 env->regs[R_EDX] = regs->edx; 4540 env->regs[R_ESI] = regs->esi; 4541 env->regs[R_EDI] = regs->edi; 4542 env->regs[R_EBP] = regs->ebp; 4543 env->regs[R_ESP] = regs->esp; 4544 env->eip = regs->eip; 4545 #endif 4546 4547 /* linux interrupt setup */ 4548 #ifndef TARGET_ABI32 4549 env->idt.limit = 511; 4550 #else 4551 env->idt.limit = 255; 4552 #endif 4553 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4554 PROT_READ|PROT_WRITE, 4555 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4556 idt_table = g2h(env->idt.base); 4557 set_idt(0, 0); 4558 set_idt(1, 0); 4559 set_idt(2, 0); 4560 set_idt(3, 3); 4561 set_idt(4, 3); 4562 set_idt(5, 0); 4563 set_idt(6, 0); 4564 set_idt(7, 0); 4565 set_idt(8, 0); 4566 set_idt(9, 0); 4567 set_idt(10, 0); 4568 set_idt(11, 0); 4569 set_idt(12, 0); 4570 set_idt(13, 0); 4571 set_idt(14, 0); 4572 set_idt(15, 0); 4573 set_idt(16, 0); 4574 set_idt(17, 0); 4575 set_idt(18, 0); 4576 set_idt(19, 0); 4577 set_idt(0x80, 3); 4578 4579 /* linux segment setup */ 4580 { 4581 uint64_t *gdt_table; 4582 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4583 PROT_READ|PROT_WRITE, 4584 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4585 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4586 gdt_table = g2h(env->gdt.base); 4587 #ifdef TARGET_ABI32 4588 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4589 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4590 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4591 #else 4592 /* 64 bit code segment */ 4593 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4594 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4595 DESC_L_MASK | 4596 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4597 #endif 4598 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4599 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4600 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4601 } 4602 cpu_x86_load_seg(env, R_CS, __USER_CS); 4603 cpu_x86_load_seg(env, R_SS, __USER_DS); 4604 #ifdef TARGET_ABI32 4605 cpu_x86_load_seg(env, R_DS, __USER_DS); 4606 cpu_x86_load_seg(env, R_ES, __USER_DS); 4607 cpu_x86_load_seg(env, R_FS, __USER_DS); 4608 cpu_x86_load_seg(env, R_GS, __USER_DS); 4609 /* This hack makes Wine work... */ 4610 env->segs[R_FS].selector = 0; 4611 #else 4612 cpu_x86_load_seg(env, R_DS, 0); 4613 cpu_x86_load_seg(env, R_ES, 0); 4614 cpu_x86_load_seg(env, R_FS, 0); 4615 cpu_x86_load_seg(env, R_GS, 0); 4616 #endif 4617 #elif defined(TARGET_AARCH64) 4618 { 4619 int i; 4620 4621 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4622 fprintf(stderr, 4623 "The selected ARM CPU does not support 64 bit mode\n"); 4624 exit(EXIT_FAILURE); 4625 } 4626 4627 for (i = 0; i < 31; i++) { 4628 env->xregs[i] = regs->regs[i]; 4629 } 4630 env->pc = regs->pc; 4631 env->xregs[31] = regs->sp; 4632 #ifdef TARGET_WORDS_BIGENDIAN 4633 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4634 for (i = 1; i < 4; ++i) { 4635 env->cp15.sctlr_el[i] |= SCTLR_EE; 4636 } 4637 #endif 4638 } 4639 #elif defined(TARGET_ARM) 4640 { 4641 int i; 4642 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, 4643 CPSRWriteByInstr); 4644 for(i = 0; i < 16; i++) { 4645 env->regs[i] = regs->uregs[i]; 4646 } 4647 #ifdef TARGET_WORDS_BIGENDIAN 4648 /* Enable BE8. */ 4649 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4650 && (info->elf_flags & EF_ARM_BE8)) { 4651 env->uncached_cpsr |= CPSR_E; 4652 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4653 } else { 4654 env->cp15.sctlr_el[1] |= SCTLR_B; 4655 } 4656 #endif 4657 } 4658 #elif defined(TARGET_UNICORE32) 4659 { 4660 int i; 4661 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4662 for (i = 0; i < 32; i++) { 4663 env->regs[i] = regs->uregs[i]; 4664 } 4665 } 4666 #elif defined(TARGET_SPARC) 4667 { 4668 int i; 4669 env->pc = regs->pc; 4670 env->npc = regs->npc; 4671 env->y = regs->y; 4672 for(i = 0; i < 8; i++) 4673 env->gregs[i] = regs->u_regs[i]; 4674 for(i = 0; i < 8; i++) 4675 env->regwptr[i] = regs->u_regs[i + 8]; 4676 } 4677 #elif defined(TARGET_PPC) 4678 { 4679 int i; 4680 4681 #if defined(TARGET_PPC64) 4682 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; 4683 #if defined(TARGET_ABI32) 4684 env->msr &= ~((target_ulong)1 << flag); 4685 #else 4686 env->msr |= (target_ulong)1 << flag; 4687 #endif 4688 #endif 4689 env->nip = regs->nip; 4690 for(i = 0; i < 32; i++) { 4691 env->gpr[i] = regs->gpr[i]; 4692 } 4693 } 4694 #elif defined(TARGET_M68K) 4695 { 4696 env->pc = regs->pc; 4697 env->dregs[0] = regs->d0; 4698 env->dregs[1] = regs->d1; 4699 env->dregs[2] = regs->d2; 4700 env->dregs[3] = regs->d3; 4701 env->dregs[4] = regs->d4; 4702 env->dregs[5] = regs->d5; 4703 env->dregs[6] = regs->d6; 4704 env->dregs[7] = regs->d7; 4705 env->aregs[0] = regs->a0; 4706 env->aregs[1] = regs->a1; 4707 env->aregs[2] = regs->a2; 4708 env->aregs[3] = regs->a3; 4709 env->aregs[4] = regs->a4; 4710 env->aregs[5] = regs->a5; 4711 env->aregs[6] = regs->a6; 4712 env->aregs[7] = regs->usp; 4713 env->sr = regs->sr; 4714 ts->sim_syscalls = 1; 4715 } 4716 #elif defined(TARGET_MICROBLAZE) 4717 { 4718 env->regs[0] = regs->r0; 4719 env->regs[1] = regs->r1; 4720 env->regs[2] = regs->r2; 4721 env->regs[3] = regs->r3; 4722 env->regs[4] = regs->r4; 4723 env->regs[5] = regs->r5; 4724 env->regs[6] = regs->r6; 4725 env->regs[7] = regs->r7; 4726 env->regs[8] = regs->r8; 4727 env->regs[9] = regs->r9; 4728 env->regs[10] = regs->r10; 4729 env->regs[11] = regs->r11; 4730 env->regs[12] = regs->r12; 4731 env->regs[13] = regs->r13; 4732 env->regs[14] = regs->r14; 4733 env->regs[15] = regs->r15; 4734 env->regs[16] = regs->r16; 4735 env->regs[17] = regs->r17; 4736 env->regs[18] = regs->r18; 4737 env->regs[19] = regs->r19; 4738 env->regs[20] = regs->r20; 4739 env->regs[21] = regs->r21; 4740 env->regs[22] = regs->r22; 4741 env->regs[23] = regs->r23; 4742 env->regs[24] = regs->r24; 4743 env->regs[25] = regs->r25; 4744 env->regs[26] = regs->r26; 4745 env->regs[27] = regs->r27; 4746 env->regs[28] = regs->r28; 4747 env->regs[29] = regs->r29; 4748 env->regs[30] = regs->r30; 4749 env->regs[31] = regs->r31; 4750 env->sregs[SR_PC] = regs->pc; 4751 } 4752 #elif defined(TARGET_MIPS) 4753 { 4754 int i; 4755 4756 for(i = 0; i < 32; i++) { 4757 env->active_tc.gpr[i] = regs->regs[i]; 4758 } 4759 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4760 if (regs->cp0_epc & 1) { 4761 env->hflags |= MIPS_HFLAG_M16; 4762 } 4763 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != 4764 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { 4765 if ((env->active_fpu.fcr31_rw_bitmask & 4766 (1 << FCR31_NAN2008)) == 0) { 4767 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); 4768 exit(1); 4769 } 4770 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { 4771 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); 4772 } else { 4773 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); 4774 } 4775 restore_snan_bit_mode(env); 4776 } 4777 } 4778 #elif defined(TARGET_NIOS2) 4779 { 4780 env->regs[0] = 0; 4781 env->regs[1] = regs->r1; 4782 env->regs[2] = regs->r2; 4783 env->regs[3] = regs->r3; 4784 env->regs[4] = regs->r4; 4785 env->regs[5] = regs->r5; 4786 env->regs[6] = regs->r6; 4787 env->regs[7] = regs->r7; 4788 env->regs[8] = regs->r8; 4789 env->regs[9] = regs->r9; 4790 env->regs[10] = regs->r10; 4791 env->regs[11] = regs->r11; 4792 env->regs[12] = regs->r12; 4793 env->regs[13] = regs->r13; 4794 env->regs[14] = regs->r14; 4795 env->regs[15] = regs->r15; 4796 /* TODO: unsigned long orig_r2; */ 4797 env->regs[R_RA] = regs->ra; 4798 env->regs[R_FP] = regs->fp; 4799 env->regs[R_SP] = regs->sp; 4800 env->regs[R_GP] = regs->gp; 4801 env->regs[CR_ESTATUS] = regs->estatus; 4802 env->regs[R_EA] = regs->ea; 4803 /* TODO: unsigned long orig_r7; */ 4804 4805 /* Emulate eret when starting thread. */ 4806 env->regs[R_PC] = regs->ea; 4807 } 4808 #elif defined(TARGET_OPENRISC) 4809 { 4810 int i; 4811 4812 for (i = 0; i < 32; i++) { 4813 cpu_set_gpr(env, i, regs->gpr[i]); 4814 } 4815 env->pc = regs->pc; 4816 cpu_set_sr(env, regs->sr); 4817 } 4818 #elif defined(TARGET_SH4) 4819 { 4820 int i; 4821 4822 for(i = 0; i < 16; i++) { 4823 env->gregs[i] = regs->regs[i]; 4824 } 4825 env->pc = regs->pc; 4826 } 4827 #elif defined(TARGET_ALPHA) 4828 { 4829 int i; 4830 4831 for(i = 0; i < 28; i++) { 4832 env->ir[i] = ((abi_ulong *)regs)[i]; 4833 } 4834 env->ir[IR_SP] = regs->usp; 4835 env->pc = regs->pc; 4836 } 4837 #elif defined(TARGET_CRIS) 4838 { 4839 env->regs[0] = regs->r0; 4840 env->regs[1] = regs->r1; 4841 env->regs[2] = regs->r2; 4842 env->regs[3] = regs->r3; 4843 env->regs[4] = regs->r4; 4844 env->regs[5] = regs->r5; 4845 env->regs[6] = regs->r6; 4846 env->regs[7] = regs->r7; 4847 env->regs[8] = regs->r8; 4848 env->regs[9] = regs->r9; 4849 env->regs[10] = regs->r10; 4850 env->regs[11] = regs->r11; 4851 env->regs[12] = regs->r12; 4852 env->regs[13] = regs->r13; 4853 env->regs[14] = info->start_stack; 4854 env->regs[15] = regs->acr; 4855 env->pc = regs->erp; 4856 } 4857 #elif defined(TARGET_S390X) 4858 { 4859 int i; 4860 for (i = 0; i < 16; i++) { 4861 env->regs[i] = regs->gprs[i]; 4862 } 4863 env->psw.mask = regs->psw.mask; 4864 env->psw.addr = regs->psw.addr; 4865 } 4866 #elif defined(TARGET_TILEGX) 4867 { 4868 int i; 4869 for (i = 0; i < TILEGX_R_COUNT; i++) { 4870 env->regs[i] = regs->regs[i]; 4871 } 4872 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4873 env->spregs[i] = 0; 4874 } 4875 env->pc = regs->pc; 4876 } 4877 #elif defined(TARGET_HPPA) 4878 { 4879 int i; 4880 for (i = 1; i < 32; i++) { 4881 env->gr[i] = regs->gr[i]; 4882 } 4883 env->iaoq_f = regs->iaoq[0]; 4884 env->iaoq_b = regs->iaoq[1]; 4885 } 4886 #else 4887 #error unsupported target CPU 4888 #endif 4889 4890 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4891 ts->stack_base = info->start_stack; 4892 ts->heap_base = info->brk; 4893 /* This will be filled in on the first SYS_HEAPINFO call. */ 4894 ts->heap_limit = 0; 4895 #endif 4896 4897 if (gdbstub_port) { 4898 if (gdbserver_start(gdbstub_port) < 0) { 4899 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4900 gdbstub_port); 4901 exit(EXIT_FAILURE); 4902 } 4903 gdb_handlesig(cpu, 0); 4904 } 4905 cpu_loop(env); 4906 /* never exits */ 4907 return 0; 4908 } 4909