1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "qemu-version.h" 21 #include <sys/syscall.h> 22 #include <sys/resource.h> 23 24 #include "qapi/error.h" 25 #include "qemu.h" 26 #include "qemu/path.h" 27 #include "qemu/config-file.h" 28 #include "qemu/cutils.h" 29 #include "qemu/help_option.h" 30 #include "cpu.h" 31 #include "exec/exec-all.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 #include "exec/log.h" 37 #include "trace/control.h" 38 #include "glib-compat.h" 39 40 char *exec_path; 41 42 int singlestep; 43 static const char *filename; 44 static const char *argv0; 45 static int gdbstub_port; 46 static envlist_t *envlist; 47 static const char *cpu_model; 48 unsigned long mmap_min_addr; 49 unsigned long guest_base; 50 int have_guest_base; 51 52 #define EXCP_DUMP(env, fmt, ...) \ 53 do { \ 54 CPUState *cs = ENV_GET_CPU(env); \ 55 fprintf(stderr, fmt , ## __VA_ARGS__); \ 56 cpu_dump_state(cs, stderr, fprintf, 0); \ 57 if (qemu_log_separate()) { \ 58 qemu_log(fmt, ## __VA_ARGS__); \ 59 log_cpu_state(cs, 0); \ 60 } \ 61 } while (0) 62 63 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 64 /* 65 * When running 32-on-64 we should make sure we can fit all of the possible 66 * guest address space into a contiguous chunk of virtual host memory. 67 * 68 * This way we will never overlap with our own libraries or binaries or stack 69 * or anything else that QEMU maps. 70 */ 71 # ifdef TARGET_MIPS 72 /* MIPS only supports 31 bits of virtual address space for user space */ 73 unsigned long reserved_va = 0x77000000; 74 # else 75 unsigned long reserved_va = 0xf7000000; 76 # endif 77 #else 78 unsigned long reserved_va; 79 #endif 80 81 static void usage(int exitcode); 82 83 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 84 const char *qemu_uname_release; 85 86 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 87 we allocate a bigger stack. Need a better solution, for example 88 by remapping the process stack directly at the right place */ 89 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 90 91 void gemu_log(const char *fmt, ...) 92 { 93 va_list ap; 94 95 va_start(ap, fmt); 96 vfprintf(stderr, fmt, ap); 97 va_end(ap); 98 } 99 100 #if defined(TARGET_I386) 101 int cpu_get_pic_interrupt(CPUX86State *env) 102 { 103 return -1; 104 } 105 #endif 106 107 /***********************************************************/ 108 /* Helper routines for implementing atomic operations. */ 109 110 /* To implement exclusive operations we force all cpus to syncronise. 111 We don't require a full sync, only that no cpus are executing guest code. 112 The alternative is to map target atomic ops onto host equivalents, 113 which requires quite a lot of per host/target work. */ 114 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 115 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 116 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 117 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 118 static int pending_cpus; 119 120 /* Make sure everything is in a consistent state for calling fork(). */ 121 void fork_start(void) 122 { 123 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 124 pthread_mutex_lock(&exclusive_lock); 125 mmap_fork_start(); 126 } 127 128 void fork_end(int child) 129 { 130 mmap_fork_end(child); 131 if (child) { 132 CPUState *cpu, *next_cpu; 133 /* Child processes created by fork() only have a single thread. 134 Discard information about the parent threads. */ 135 CPU_FOREACH_SAFE(cpu, next_cpu) { 136 if (cpu != thread_cpu) { 137 QTAILQ_REMOVE(&cpus, cpu, node); 138 } 139 } 140 pending_cpus = 0; 141 pthread_mutex_init(&exclusive_lock, NULL); 142 pthread_mutex_init(&cpu_list_mutex, NULL); 143 pthread_cond_init(&exclusive_cond, NULL); 144 pthread_cond_init(&exclusive_resume, NULL); 145 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock); 146 gdbserver_fork(thread_cpu); 147 } else { 148 pthread_mutex_unlock(&exclusive_lock); 149 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 150 } 151 } 152 153 /* Wait for pending exclusive operations to complete. The exclusive lock 154 must be held. */ 155 static inline void exclusive_idle(void) 156 { 157 while (pending_cpus) { 158 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 159 } 160 } 161 162 /* Start an exclusive operation. 163 Must only be called from outside cpu_exec. */ 164 static inline void start_exclusive(void) 165 { 166 CPUState *other_cpu; 167 168 pthread_mutex_lock(&exclusive_lock); 169 exclusive_idle(); 170 171 pending_cpus = 1; 172 /* Make all other cpus stop executing. */ 173 CPU_FOREACH(other_cpu) { 174 if (other_cpu->running) { 175 pending_cpus++; 176 cpu_exit(other_cpu); 177 } 178 } 179 if (pending_cpus > 1) { 180 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 181 } 182 } 183 184 /* Finish an exclusive operation. */ 185 static inline void __attribute__((unused)) end_exclusive(void) 186 { 187 pending_cpus = 0; 188 pthread_cond_broadcast(&exclusive_resume); 189 pthread_mutex_unlock(&exclusive_lock); 190 } 191 192 /* Wait for exclusive ops to finish, and begin cpu execution. */ 193 static inline void cpu_exec_start(CPUState *cpu) 194 { 195 pthread_mutex_lock(&exclusive_lock); 196 exclusive_idle(); 197 cpu->running = true; 198 pthread_mutex_unlock(&exclusive_lock); 199 } 200 201 /* Mark cpu as not executing, and release pending exclusive ops. */ 202 static inline void cpu_exec_end(CPUState *cpu) 203 { 204 pthread_mutex_lock(&exclusive_lock); 205 cpu->running = false; 206 if (pending_cpus > 1) { 207 pending_cpus--; 208 if (pending_cpus == 1) { 209 pthread_cond_signal(&exclusive_cond); 210 } 211 } 212 exclusive_idle(); 213 pthread_mutex_unlock(&exclusive_lock); 214 } 215 216 void cpu_list_lock(void) 217 { 218 pthread_mutex_lock(&cpu_list_mutex); 219 } 220 221 void cpu_list_unlock(void) 222 { 223 pthread_mutex_unlock(&cpu_list_mutex); 224 } 225 226 227 #ifdef TARGET_I386 228 /***********************************************************/ 229 /* CPUX86 core interface */ 230 231 uint64_t cpu_get_tsc(CPUX86State *env) 232 { 233 return cpu_get_host_ticks(); 234 } 235 236 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 237 int flags) 238 { 239 unsigned int e1, e2; 240 uint32_t *p; 241 e1 = (addr << 16) | (limit & 0xffff); 242 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 243 e2 |= flags; 244 p = ptr; 245 p[0] = tswap32(e1); 246 p[1] = tswap32(e2); 247 } 248 249 static uint64_t *idt_table; 250 #ifdef TARGET_X86_64 251 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 252 uint64_t addr, unsigned int sel) 253 { 254 uint32_t *p, e1, e2; 255 e1 = (addr & 0xffff) | (sel << 16); 256 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 257 p = ptr; 258 p[0] = tswap32(e1); 259 p[1] = tswap32(e2); 260 p[2] = tswap32(addr >> 32); 261 p[3] = 0; 262 } 263 /* only dpl matters as we do only user space emulation */ 264 static void set_idt(int n, unsigned int dpl) 265 { 266 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 267 } 268 #else 269 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 270 uint32_t addr, unsigned int sel) 271 { 272 uint32_t *p, e1, e2; 273 e1 = (addr & 0xffff) | (sel << 16); 274 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 275 p = ptr; 276 p[0] = tswap32(e1); 277 p[1] = tswap32(e2); 278 } 279 280 /* only dpl matters as we do only user space emulation */ 281 static void set_idt(int n, unsigned int dpl) 282 { 283 set_gate(idt_table + n, 0, dpl, 0, 0); 284 } 285 #endif 286 287 void cpu_loop(CPUX86State *env) 288 { 289 CPUState *cs = CPU(x86_env_get_cpu(env)); 290 int trapnr; 291 abi_ulong pc; 292 abi_ulong ret; 293 target_siginfo_t info; 294 295 for(;;) { 296 cpu_exec_start(cs); 297 trapnr = cpu_exec(cs); 298 cpu_exec_end(cs); 299 switch(trapnr) { 300 case 0x80: 301 /* linux syscall from int $0x80 */ 302 ret = do_syscall(env, 303 env->regs[R_EAX], 304 env->regs[R_EBX], 305 env->regs[R_ECX], 306 env->regs[R_EDX], 307 env->regs[R_ESI], 308 env->regs[R_EDI], 309 env->regs[R_EBP], 310 0, 0); 311 if (ret == -TARGET_ERESTARTSYS) { 312 env->eip -= 2; 313 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 314 env->regs[R_EAX] = ret; 315 } 316 break; 317 #ifndef TARGET_ABI32 318 case EXCP_SYSCALL: 319 /* linux syscall from syscall instruction */ 320 ret = do_syscall(env, 321 env->regs[R_EAX], 322 env->regs[R_EDI], 323 env->regs[R_ESI], 324 env->regs[R_EDX], 325 env->regs[10], 326 env->regs[8], 327 env->regs[9], 328 0, 0); 329 if (ret == -TARGET_ERESTARTSYS) { 330 env->eip -= 2; 331 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 332 env->regs[R_EAX] = ret; 333 } 334 break; 335 #endif 336 case EXCP0B_NOSEG: 337 case EXCP0C_STACK: 338 info.si_signo = TARGET_SIGBUS; 339 info.si_errno = 0; 340 info.si_code = TARGET_SI_KERNEL; 341 info._sifields._sigfault._addr = 0; 342 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 343 break; 344 case EXCP0D_GPF: 345 /* XXX: potential problem if ABI32 */ 346 #ifndef TARGET_X86_64 347 if (env->eflags & VM_MASK) { 348 handle_vm86_fault(env); 349 } else 350 #endif 351 { 352 info.si_signo = TARGET_SIGSEGV; 353 info.si_errno = 0; 354 info.si_code = TARGET_SI_KERNEL; 355 info._sifields._sigfault._addr = 0; 356 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 357 } 358 break; 359 case EXCP0E_PAGE: 360 info.si_signo = TARGET_SIGSEGV; 361 info.si_errno = 0; 362 if (!(env->error_code & 1)) 363 info.si_code = TARGET_SEGV_MAPERR; 364 else 365 info.si_code = TARGET_SEGV_ACCERR; 366 info._sifields._sigfault._addr = env->cr[2]; 367 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 368 break; 369 case EXCP00_DIVZ: 370 #ifndef TARGET_X86_64 371 if (env->eflags & VM_MASK) { 372 handle_vm86_trap(env, trapnr); 373 } else 374 #endif 375 { 376 /* division by zero */ 377 info.si_signo = TARGET_SIGFPE; 378 info.si_errno = 0; 379 info.si_code = TARGET_FPE_INTDIV; 380 info._sifields._sigfault._addr = env->eip; 381 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 382 } 383 break; 384 case EXCP01_DB: 385 case EXCP03_INT3: 386 #ifndef TARGET_X86_64 387 if (env->eflags & VM_MASK) { 388 handle_vm86_trap(env, trapnr); 389 } else 390 #endif 391 { 392 info.si_signo = TARGET_SIGTRAP; 393 info.si_errno = 0; 394 if (trapnr == EXCP01_DB) { 395 info.si_code = TARGET_TRAP_BRKPT; 396 info._sifields._sigfault._addr = env->eip; 397 } else { 398 info.si_code = TARGET_SI_KERNEL; 399 info._sifields._sigfault._addr = 0; 400 } 401 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 402 } 403 break; 404 case EXCP04_INTO: 405 case EXCP05_BOUND: 406 #ifndef TARGET_X86_64 407 if (env->eflags & VM_MASK) { 408 handle_vm86_trap(env, trapnr); 409 } else 410 #endif 411 { 412 info.si_signo = TARGET_SIGSEGV; 413 info.si_errno = 0; 414 info.si_code = TARGET_SI_KERNEL; 415 info._sifields._sigfault._addr = 0; 416 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 417 } 418 break; 419 case EXCP06_ILLOP: 420 info.si_signo = TARGET_SIGILL; 421 info.si_errno = 0; 422 info.si_code = TARGET_ILL_ILLOPN; 423 info._sifields._sigfault._addr = env->eip; 424 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 425 break; 426 case EXCP_INTERRUPT: 427 /* just indicate that signals should be handled asap */ 428 break; 429 case EXCP_DEBUG: 430 { 431 int sig; 432 433 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 434 if (sig) 435 { 436 info.si_signo = sig; 437 info.si_errno = 0; 438 info.si_code = TARGET_TRAP_BRKPT; 439 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 440 } 441 } 442 break; 443 default: 444 pc = env->segs[R_CS].base + env->eip; 445 EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 446 (long)pc, trapnr); 447 abort(); 448 } 449 process_pending_signals(env); 450 } 451 } 452 #endif 453 454 #ifdef TARGET_ARM 455 456 #define get_user_code_u32(x, gaddr, env) \ 457 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 458 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 459 (x) = bswap32(x); \ 460 } \ 461 __r; \ 462 }) 463 464 #define get_user_code_u16(x, gaddr, env) \ 465 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 466 if (!__r && bswap_code(arm_sctlr_b(env))) { \ 467 (x) = bswap16(x); \ 468 } \ 469 __r; \ 470 }) 471 472 #define get_user_data_u32(x, gaddr, env) \ 473 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 474 if (!__r && arm_cpu_bswap_data(env)) { \ 475 (x) = bswap32(x); \ 476 } \ 477 __r; \ 478 }) 479 480 #define get_user_data_u16(x, gaddr, env) \ 481 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 482 if (!__r && arm_cpu_bswap_data(env)) { \ 483 (x) = bswap16(x); \ 484 } \ 485 __r; \ 486 }) 487 488 #define put_user_data_u32(x, gaddr, env) \ 489 ({ typeof(x) __x = (x); \ 490 if (arm_cpu_bswap_data(env)) { \ 491 __x = bswap32(__x); \ 492 } \ 493 put_user_u32(__x, (gaddr)); \ 494 }) 495 496 #define put_user_data_u16(x, gaddr, env) \ 497 ({ typeof(x) __x = (x); \ 498 if (arm_cpu_bswap_data(env)) { \ 499 __x = bswap16(__x); \ 500 } \ 501 put_user_u16(__x, (gaddr)); \ 502 }) 503 504 #ifdef TARGET_ABI32 505 /* Commpage handling -- there is no commpage for AArch64 */ 506 507 /* 508 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 509 * Input: 510 * r0 = pointer to oldval 511 * r1 = pointer to newval 512 * r2 = pointer to target value 513 * 514 * Output: 515 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 516 * C set if *ptr was changed, clear if no exchange happened 517 * 518 * Note segv's in kernel helpers are a bit tricky, we can set the 519 * data address sensibly but the PC address is just the entry point. 520 */ 521 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 522 { 523 uint64_t oldval, newval, val; 524 uint32_t addr, cpsr; 525 target_siginfo_t info; 526 527 /* Based on the 32 bit code in do_kernel_trap */ 528 529 /* XXX: This only works between threads, not between processes. 530 It's probably possible to implement this with native host 531 operations. However things like ldrex/strex are much harder so 532 there's not much point trying. */ 533 start_exclusive(); 534 cpsr = cpsr_read(env); 535 addr = env->regs[2]; 536 537 if (get_user_u64(oldval, env->regs[0])) { 538 env->exception.vaddress = env->regs[0]; 539 goto segv; 540 }; 541 542 if (get_user_u64(newval, env->regs[1])) { 543 env->exception.vaddress = env->regs[1]; 544 goto segv; 545 }; 546 547 if (get_user_u64(val, addr)) { 548 env->exception.vaddress = addr; 549 goto segv; 550 } 551 552 if (val == oldval) { 553 val = newval; 554 555 if (put_user_u64(val, addr)) { 556 env->exception.vaddress = addr; 557 goto segv; 558 }; 559 560 env->regs[0] = 0; 561 cpsr |= CPSR_C; 562 } else { 563 env->regs[0] = -1; 564 cpsr &= ~CPSR_C; 565 } 566 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 567 end_exclusive(); 568 return; 569 570 segv: 571 end_exclusive(); 572 /* We get the PC of the entry address - which is as good as anything, 573 on a real kernel what you get depends on which mode it uses. */ 574 info.si_signo = TARGET_SIGSEGV; 575 info.si_errno = 0; 576 /* XXX: check env->error_code */ 577 info.si_code = TARGET_SEGV_MAPERR; 578 info._sifields._sigfault._addr = env->exception.vaddress; 579 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 580 } 581 582 /* Handle a jump to the kernel code page. */ 583 static int 584 do_kernel_trap(CPUARMState *env) 585 { 586 uint32_t addr; 587 uint32_t cpsr; 588 uint32_t val; 589 590 switch (env->regs[15]) { 591 case 0xffff0fa0: /* __kernel_memory_barrier */ 592 /* ??? No-op. Will need to do better for SMP. */ 593 break; 594 case 0xffff0fc0: /* __kernel_cmpxchg */ 595 /* XXX: This only works between threads, not between processes. 596 It's probably possible to implement this with native host 597 operations. However things like ldrex/strex are much harder so 598 there's not much point trying. */ 599 start_exclusive(); 600 cpsr = cpsr_read(env); 601 addr = env->regs[2]; 602 /* FIXME: This should SEGV if the access fails. */ 603 if (get_user_u32(val, addr)) 604 val = ~env->regs[0]; 605 if (val == env->regs[0]) { 606 val = env->regs[1]; 607 /* FIXME: Check for segfaults. */ 608 put_user_u32(val, addr); 609 env->regs[0] = 0; 610 cpsr |= CPSR_C; 611 } else { 612 env->regs[0] = -1; 613 cpsr &= ~CPSR_C; 614 } 615 cpsr_write(env, cpsr, CPSR_C, CPSRWriteByInstr); 616 end_exclusive(); 617 break; 618 case 0xffff0fe0: /* __kernel_get_tls */ 619 env->regs[0] = cpu_get_tls(env); 620 break; 621 case 0xffff0f60: /* __kernel_cmpxchg64 */ 622 arm_kernel_cmpxchg64_helper(env); 623 break; 624 625 default: 626 return 1; 627 } 628 /* Jump back to the caller. */ 629 addr = env->regs[14]; 630 if (addr & 1) { 631 env->thumb = 1; 632 addr &= ~1; 633 } 634 env->regs[15] = addr; 635 636 return 0; 637 } 638 639 /* Store exclusive handling for AArch32 */ 640 static int do_strex(CPUARMState *env) 641 { 642 uint64_t val; 643 int size; 644 int rc = 1; 645 int segv = 0; 646 uint32_t addr; 647 start_exclusive(); 648 if (env->exclusive_addr != env->exclusive_test) { 649 goto fail; 650 } 651 /* We know we're always AArch32 so the address is in uint32_t range 652 * unless it was the -1 exclusive-monitor-lost value (which won't 653 * match exclusive_test above). 654 */ 655 assert(extract64(env->exclusive_addr, 32, 32) == 0); 656 addr = env->exclusive_addr; 657 size = env->exclusive_info & 0xf; 658 switch (size) { 659 case 0: 660 segv = get_user_u8(val, addr); 661 break; 662 case 1: 663 segv = get_user_data_u16(val, addr, env); 664 break; 665 case 2: 666 case 3: 667 segv = get_user_data_u32(val, addr, env); 668 break; 669 default: 670 abort(); 671 } 672 if (segv) { 673 env->exception.vaddress = addr; 674 goto done; 675 } 676 if (size == 3) { 677 uint32_t valhi; 678 segv = get_user_data_u32(valhi, addr + 4, env); 679 if (segv) { 680 env->exception.vaddress = addr + 4; 681 goto done; 682 } 683 if (arm_cpu_bswap_data(env)) { 684 val = deposit64((uint64_t)valhi, 32, 32, val); 685 } else { 686 val = deposit64(val, 32, 32, valhi); 687 } 688 } 689 if (val != env->exclusive_val) { 690 goto fail; 691 } 692 693 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 694 switch (size) { 695 case 0: 696 segv = put_user_u8(val, addr); 697 break; 698 case 1: 699 segv = put_user_data_u16(val, addr, env); 700 break; 701 case 2: 702 case 3: 703 segv = put_user_data_u32(val, addr, env); 704 break; 705 } 706 if (segv) { 707 env->exception.vaddress = addr; 708 goto done; 709 } 710 if (size == 3) { 711 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 712 segv = put_user_data_u32(val, addr + 4, env); 713 if (segv) { 714 env->exception.vaddress = addr + 4; 715 goto done; 716 } 717 } 718 rc = 0; 719 fail: 720 env->regs[15] += 4; 721 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 722 done: 723 end_exclusive(); 724 return segv; 725 } 726 727 void cpu_loop(CPUARMState *env) 728 { 729 CPUState *cs = CPU(arm_env_get_cpu(env)); 730 int trapnr; 731 unsigned int n, insn; 732 target_siginfo_t info; 733 uint32_t addr; 734 abi_ulong ret; 735 736 for(;;) { 737 cpu_exec_start(cs); 738 trapnr = cpu_exec(cs); 739 cpu_exec_end(cs); 740 switch(trapnr) { 741 case EXCP_UDEF: 742 { 743 TaskState *ts = cs->opaque; 744 uint32_t opcode; 745 int rc; 746 747 /* we handle the FPU emulation here, as Linux */ 748 /* we get the opcode */ 749 /* FIXME - what to do if get_user() fails? */ 750 get_user_code_u32(opcode, env->regs[15], env); 751 752 rc = EmulateAll(opcode, &ts->fpa, env); 753 if (rc == 0) { /* illegal instruction */ 754 info.si_signo = TARGET_SIGILL; 755 info.si_errno = 0; 756 info.si_code = TARGET_ILL_ILLOPN; 757 info._sifields._sigfault._addr = env->regs[15]; 758 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 759 } else if (rc < 0) { /* FP exception */ 760 int arm_fpe=0; 761 762 /* translate softfloat flags to FPSR flags */ 763 if (-rc & float_flag_invalid) 764 arm_fpe |= BIT_IOC; 765 if (-rc & float_flag_divbyzero) 766 arm_fpe |= BIT_DZC; 767 if (-rc & float_flag_overflow) 768 arm_fpe |= BIT_OFC; 769 if (-rc & float_flag_underflow) 770 arm_fpe |= BIT_UFC; 771 if (-rc & float_flag_inexact) 772 arm_fpe |= BIT_IXC; 773 774 FPSR fpsr = ts->fpa.fpsr; 775 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 776 777 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 778 info.si_signo = TARGET_SIGFPE; 779 info.si_errno = 0; 780 781 /* ordered by priority, least first */ 782 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 783 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 784 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 785 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 786 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 787 788 info._sifields._sigfault._addr = env->regs[15]; 789 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 790 } else { 791 env->regs[15] += 4; 792 } 793 794 /* accumulate unenabled exceptions */ 795 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 796 fpsr |= BIT_IXC; 797 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 798 fpsr |= BIT_UFC; 799 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 800 fpsr |= BIT_OFC; 801 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 802 fpsr |= BIT_DZC; 803 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 804 fpsr |= BIT_IOC; 805 ts->fpa.fpsr=fpsr; 806 } else { /* everything OK */ 807 /* increment PC */ 808 env->regs[15] += 4; 809 } 810 } 811 break; 812 case EXCP_SWI: 813 case EXCP_BKPT: 814 { 815 env->eabi = 1; 816 /* system call */ 817 if (trapnr == EXCP_BKPT) { 818 if (env->thumb) { 819 /* FIXME - what to do if get_user() fails? */ 820 get_user_code_u16(insn, env->regs[15], env); 821 n = insn & 0xff; 822 env->regs[15] += 2; 823 } else { 824 /* FIXME - what to do if get_user() fails? */ 825 get_user_code_u32(insn, env->regs[15], env); 826 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 827 env->regs[15] += 4; 828 } 829 } else { 830 if (env->thumb) { 831 /* FIXME - what to do if get_user() fails? */ 832 get_user_code_u16(insn, env->regs[15] - 2, env); 833 n = insn & 0xff; 834 } else { 835 /* FIXME - what to do if get_user() fails? */ 836 get_user_code_u32(insn, env->regs[15] - 4, env); 837 n = insn & 0xffffff; 838 } 839 } 840 841 if (n == ARM_NR_cacheflush) { 842 /* nop */ 843 } else if (n == ARM_NR_semihosting 844 || n == ARM_NR_thumb_semihosting) { 845 env->regs[0] = do_arm_semihosting (env); 846 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 847 /* linux syscall */ 848 if (env->thumb || n == 0) { 849 n = env->regs[7]; 850 } else { 851 n -= ARM_SYSCALL_BASE; 852 env->eabi = 0; 853 } 854 if ( n > ARM_NR_BASE) { 855 switch (n) { 856 case ARM_NR_cacheflush: 857 /* nop */ 858 break; 859 case ARM_NR_set_tls: 860 cpu_set_tls(env, env->regs[0]); 861 env->regs[0] = 0; 862 break; 863 case ARM_NR_breakpoint: 864 env->regs[15] -= env->thumb ? 2 : 4; 865 goto excp_debug; 866 default: 867 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 868 n); 869 env->regs[0] = -TARGET_ENOSYS; 870 break; 871 } 872 } else { 873 ret = do_syscall(env, 874 n, 875 env->regs[0], 876 env->regs[1], 877 env->regs[2], 878 env->regs[3], 879 env->regs[4], 880 env->regs[5], 881 0, 0); 882 if (ret == -TARGET_ERESTARTSYS) { 883 env->regs[15] -= env->thumb ? 2 : 4; 884 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 885 env->regs[0] = ret; 886 } 887 } 888 } else { 889 goto error; 890 } 891 } 892 break; 893 case EXCP_INTERRUPT: 894 /* just indicate that signals should be handled asap */ 895 break; 896 case EXCP_STREX: 897 if (!do_strex(env)) { 898 break; 899 } 900 /* fall through for segv */ 901 case EXCP_PREFETCH_ABORT: 902 case EXCP_DATA_ABORT: 903 addr = env->exception.vaddress; 904 { 905 info.si_signo = TARGET_SIGSEGV; 906 info.si_errno = 0; 907 /* XXX: check env->error_code */ 908 info.si_code = TARGET_SEGV_MAPERR; 909 info._sifields._sigfault._addr = addr; 910 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 911 } 912 break; 913 case EXCP_DEBUG: 914 excp_debug: 915 { 916 int sig; 917 918 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 919 if (sig) 920 { 921 info.si_signo = sig; 922 info.si_errno = 0; 923 info.si_code = TARGET_TRAP_BRKPT; 924 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 925 } 926 } 927 break; 928 case EXCP_KERNEL_TRAP: 929 if (do_kernel_trap(env)) 930 goto error; 931 break; 932 case EXCP_YIELD: 933 /* nothing to do here for user-mode, just resume guest code */ 934 break; 935 default: 936 error: 937 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 938 abort(); 939 } 940 process_pending_signals(env); 941 } 942 } 943 944 #else 945 946 /* 947 * Handle AArch64 store-release exclusive 948 * 949 * rs = gets the status result of store exclusive 950 * rt = is the register that is stored 951 * rt2 = is the second register store (in STP) 952 * 953 */ 954 static int do_strex_a64(CPUARMState *env) 955 { 956 uint64_t val; 957 int size; 958 bool is_pair; 959 int rc = 1; 960 int segv = 0; 961 uint64_t addr; 962 int rs, rt, rt2; 963 964 start_exclusive(); 965 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 966 size = extract32(env->exclusive_info, 0, 2); 967 is_pair = extract32(env->exclusive_info, 2, 1); 968 rs = extract32(env->exclusive_info, 4, 5); 969 rt = extract32(env->exclusive_info, 9, 5); 970 rt2 = extract32(env->exclusive_info, 14, 5); 971 972 addr = env->exclusive_addr; 973 974 if (addr != env->exclusive_test) { 975 goto finish; 976 } 977 978 switch (size) { 979 case 0: 980 segv = get_user_u8(val, addr); 981 break; 982 case 1: 983 segv = get_user_u16(val, addr); 984 break; 985 case 2: 986 segv = get_user_u32(val, addr); 987 break; 988 case 3: 989 segv = get_user_u64(val, addr); 990 break; 991 default: 992 abort(); 993 } 994 if (segv) { 995 env->exception.vaddress = addr; 996 goto error; 997 } 998 if (val != env->exclusive_val) { 999 goto finish; 1000 } 1001 if (is_pair) { 1002 if (size == 2) { 1003 segv = get_user_u32(val, addr + 4); 1004 } else { 1005 segv = get_user_u64(val, addr + 8); 1006 } 1007 if (segv) { 1008 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 1009 goto error; 1010 } 1011 if (val != env->exclusive_high) { 1012 goto finish; 1013 } 1014 } 1015 /* handle the zero register */ 1016 val = rt == 31 ? 0 : env->xregs[rt]; 1017 switch (size) { 1018 case 0: 1019 segv = put_user_u8(val, addr); 1020 break; 1021 case 1: 1022 segv = put_user_u16(val, addr); 1023 break; 1024 case 2: 1025 segv = put_user_u32(val, addr); 1026 break; 1027 case 3: 1028 segv = put_user_u64(val, addr); 1029 break; 1030 } 1031 if (segv) { 1032 goto error; 1033 } 1034 if (is_pair) { 1035 /* handle the zero register */ 1036 val = rt2 == 31 ? 0 : env->xregs[rt2]; 1037 if (size == 2) { 1038 segv = put_user_u32(val, addr + 4); 1039 } else { 1040 segv = put_user_u64(val, addr + 8); 1041 } 1042 if (segv) { 1043 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 1044 goto error; 1045 } 1046 } 1047 rc = 0; 1048 finish: 1049 env->pc += 4; 1050 /* rs == 31 encodes a write to the ZR, thus throwing away 1051 * the status return. This is rather silly but valid. 1052 */ 1053 if (rs < 31) { 1054 env->xregs[rs] = rc; 1055 } 1056 error: 1057 /* instruction faulted, PC does not advance */ 1058 /* either way a strex releases any exclusive lock we have */ 1059 env->exclusive_addr = -1; 1060 end_exclusive(); 1061 return segv; 1062 } 1063 1064 /* AArch64 main loop */ 1065 void cpu_loop(CPUARMState *env) 1066 { 1067 CPUState *cs = CPU(arm_env_get_cpu(env)); 1068 int trapnr, sig; 1069 abi_long ret; 1070 target_siginfo_t info; 1071 1072 for (;;) { 1073 cpu_exec_start(cs); 1074 trapnr = cpu_exec(cs); 1075 cpu_exec_end(cs); 1076 1077 switch (trapnr) { 1078 case EXCP_SWI: 1079 ret = do_syscall(env, 1080 env->xregs[8], 1081 env->xregs[0], 1082 env->xregs[1], 1083 env->xregs[2], 1084 env->xregs[3], 1085 env->xregs[4], 1086 env->xregs[5], 1087 0, 0); 1088 if (ret == -TARGET_ERESTARTSYS) { 1089 env->pc -= 4; 1090 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 1091 env->xregs[0] = ret; 1092 } 1093 break; 1094 case EXCP_INTERRUPT: 1095 /* just indicate that signals should be handled asap */ 1096 break; 1097 case EXCP_UDEF: 1098 info.si_signo = TARGET_SIGILL; 1099 info.si_errno = 0; 1100 info.si_code = TARGET_ILL_ILLOPN; 1101 info._sifields._sigfault._addr = env->pc; 1102 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1103 break; 1104 case EXCP_STREX: 1105 if (!do_strex_a64(env)) { 1106 break; 1107 } 1108 /* fall through for segv */ 1109 case EXCP_PREFETCH_ABORT: 1110 case EXCP_DATA_ABORT: 1111 info.si_signo = TARGET_SIGSEGV; 1112 info.si_errno = 0; 1113 /* XXX: check env->error_code */ 1114 info.si_code = TARGET_SEGV_MAPERR; 1115 info._sifields._sigfault._addr = env->exception.vaddress; 1116 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1117 break; 1118 case EXCP_DEBUG: 1119 case EXCP_BKPT: 1120 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1121 if (sig) { 1122 info.si_signo = sig; 1123 info.si_errno = 0; 1124 info.si_code = TARGET_TRAP_BRKPT; 1125 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1126 } 1127 break; 1128 case EXCP_SEMIHOST: 1129 env->xregs[0] = do_arm_semihosting(env); 1130 break; 1131 case EXCP_YIELD: 1132 /* nothing to do here for user-mode, just resume guest code */ 1133 break; 1134 default: 1135 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1136 abort(); 1137 } 1138 process_pending_signals(env); 1139 /* Exception return on AArch64 always clears the exclusive monitor, 1140 * so any return to running guest code implies this. 1141 * A strex (successful or otherwise) also clears the monitor, so 1142 * we don't need to specialcase EXCP_STREX. 1143 */ 1144 env->exclusive_addr = -1; 1145 } 1146 } 1147 #endif /* ndef TARGET_ABI32 */ 1148 1149 #endif 1150 1151 #ifdef TARGET_UNICORE32 1152 1153 void cpu_loop(CPUUniCore32State *env) 1154 { 1155 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1156 int trapnr; 1157 unsigned int n, insn; 1158 target_siginfo_t info; 1159 1160 for (;;) { 1161 cpu_exec_start(cs); 1162 trapnr = cpu_exec(cs); 1163 cpu_exec_end(cs); 1164 switch (trapnr) { 1165 case UC32_EXCP_PRIV: 1166 { 1167 /* system call */ 1168 get_user_u32(insn, env->regs[31] - 4); 1169 n = insn & 0xffffff; 1170 1171 if (n >= UC32_SYSCALL_BASE) { 1172 /* linux syscall */ 1173 n -= UC32_SYSCALL_BASE; 1174 if (n == UC32_SYSCALL_NR_set_tls) { 1175 cpu_set_tls(env, env->regs[0]); 1176 env->regs[0] = 0; 1177 } else { 1178 abi_long ret = do_syscall(env, 1179 n, 1180 env->regs[0], 1181 env->regs[1], 1182 env->regs[2], 1183 env->regs[3], 1184 env->regs[4], 1185 env->regs[5], 1186 0, 0); 1187 if (ret == -TARGET_ERESTARTSYS) { 1188 env->regs[31] -= 4; 1189 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 1190 env->regs[0] = ret; 1191 } 1192 } 1193 } else { 1194 goto error; 1195 } 1196 } 1197 break; 1198 case UC32_EXCP_DTRAP: 1199 case UC32_EXCP_ITRAP: 1200 info.si_signo = TARGET_SIGSEGV; 1201 info.si_errno = 0; 1202 /* XXX: check env->error_code */ 1203 info.si_code = TARGET_SEGV_MAPERR; 1204 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1205 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1206 break; 1207 case EXCP_INTERRUPT: 1208 /* just indicate that signals should be handled asap */ 1209 break; 1210 case EXCP_DEBUG: 1211 { 1212 int sig; 1213 1214 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1215 if (sig) { 1216 info.si_signo = sig; 1217 info.si_errno = 0; 1218 info.si_code = TARGET_TRAP_BRKPT; 1219 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1220 } 1221 } 1222 break; 1223 default: 1224 goto error; 1225 } 1226 process_pending_signals(env); 1227 } 1228 1229 error: 1230 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1231 abort(); 1232 } 1233 #endif 1234 1235 #ifdef TARGET_SPARC 1236 #define SPARC64_STACK_BIAS 2047 1237 1238 //#define DEBUG_WIN 1239 1240 /* WARNING: dealing with register windows _is_ complicated. More info 1241 can be found at http://www.sics.se/~psm/sparcstack.html */ 1242 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1243 { 1244 index = (index + cwp * 16) % (16 * env->nwindows); 1245 /* wrap handling : if cwp is on the last window, then we use the 1246 registers 'after' the end */ 1247 if (index < 8 && env->cwp == env->nwindows - 1) 1248 index += 16 * env->nwindows; 1249 return index; 1250 } 1251 1252 /* save the register window 'cwp1' */ 1253 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1254 { 1255 unsigned int i; 1256 abi_ulong sp_ptr; 1257 1258 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1259 #ifdef TARGET_SPARC64 1260 if (sp_ptr & 3) 1261 sp_ptr += SPARC64_STACK_BIAS; 1262 #endif 1263 #if defined(DEBUG_WIN) 1264 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1265 sp_ptr, cwp1); 1266 #endif 1267 for(i = 0; i < 16; i++) { 1268 /* FIXME - what to do if put_user() fails? */ 1269 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1270 sp_ptr += sizeof(abi_ulong); 1271 } 1272 } 1273 1274 static void save_window(CPUSPARCState *env) 1275 { 1276 #ifndef TARGET_SPARC64 1277 unsigned int new_wim; 1278 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1279 ((1LL << env->nwindows) - 1); 1280 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1281 env->wim = new_wim; 1282 #else 1283 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1284 env->cansave++; 1285 env->canrestore--; 1286 #endif 1287 } 1288 1289 static void restore_window(CPUSPARCState *env) 1290 { 1291 #ifndef TARGET_SPARC64 1292 unsigned int new_wim; 1293 #endif 1294 unsigned int i, cwp1; 1295 abi_ulong sp_ptr; 1296 1297 #ifndef TARGET_SPARC64 1298 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1299 ((1LL << env->nwindows) - 1); 1300 #endif 1301 1302 /* restore the invalid window */ 1303 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1304 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1305 #ifdef TARGET_SPARC64 1306 if (sp_ptr & 3) 1307 sp_ptr += SPARC64_STACK_BIAS; 1308 #endif 1309 #if defined(DEBUG_WIN) 1310 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1311 sp_ptr, cwp1); 1312 #endif 1313 for(i = 0; i < 16; i++) { 1314 /* FIXME - what to do if get_user() fails? */ 1315 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1316 sp_ptr += sizeof(abi_ulong); 1317 } 1318 #ifdef TARGET_SPARC64 1319 env->canrestore++; 1320 if (env->cleanwin < env->nwindows - 1) 1321 env->cleanwin++; 1322 env->cansave--; 1323 #else 1324 env->wim = new_wim; 1325 #endif 1326 } 1327 1328 static void flush_windows(CPUSPARCState *env) 1329 { 1330 int offset, cwp1; 1331 1332 offset = 1; 1333 for(;;) { 1334 /* if restore would invoke restore_window(), then we can stop */ 1335 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1336 #ifndef TARGET_SPARC64 1337 if (env->wim & (1 << cwp1)) 1338 break; 1339 #else 1340 if (env->canrestore == 0) 1341 break; 1342 env->cansave++; 1343 env->canrestore--; 1344 #endif 1345 save_window_offset(env, cwp1); 1346 offset++; 1347 } 1348 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1349 #ifndef TARGET_SPARC64 1350 /* set wim so that restore will reload the registers */ 1351 env->wim = 1 << cwp1; 1352 #endif 1353 #if defined(DEBUG_WIN) 1354 printf("flush_windows: nb=%d\n", offset - 1); 1355 #endif 1356 } 1357 1358 void cpu_loop (CPUSPARCState *env) 1359 { 1360 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1361 int trapnr; 1362 abi_long ret; 1363 target_siginfo_t info; 1364 1365 while (1) { 1366 cpu_exec_start(cs); 1367 trapnr = cpu_exec(cs); 1368 cpu_exec_end(cs); 1369 1370 /* Compute PSR before exposing state. */ 1371 if (env->cc_op != CC_OP_FLAGS) { 1372 cpu_get_psr(env); 1373 } 1374 1375 switch (trapnr) { 1376 #ifndef TARGET_SPARC64 1377 case 0x88: 1378 case 0x90: 1379 #else 1380 case 0x110: 1381 case 0x16d: 1382 #endif 1383 ret = do_syscall (env, env->gregs[1], 1384 env->regwptr[0], env->regwptr[1], 1385 env->regwptr[2], env->regwptr[3], 1386 env->regwptr[4], env->regwptr[5], 1387 0, 0); 1388 if (ret == -TARGET_ERESTARTSYS || ret == -TARGET_QEMU_ESIGRETURN) { 1389 break; 1390 } 1391 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1392 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1393 env->xcc |= PSR_CARRY; 1394 #else 1395 env->psr |= PSR_CARRY; 1396 #endif 1397 ret = -ret; 1398 } else { 1399 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1400 env->xcc &= ~PSR_CARRY; 1401 #else 1402 env->psr &= ~PSR_CARRY; 1403 #endif 1404 } 1405 env->regwptr[0] = ret; 1406 /* next instruction */ 1407 env->pc = env->npc; 1408 env->npc = env->npc + 4; 1409 break; 1410 case 0x83: /* flush windows */ 1411 #ifdef TARGET_ABI32 1412 case 0x103: 1413 #endif 1414 flush_windows(env); 1415 /* next instruction */ 1416 env->pc = env->npc; 1417 env->npc = env->npc + 4; 1418 break; 1419 #ifndef TARGET_SPARC64 1420 case TT_WIN_OVF: /* window overflow */ 1421 save_window(env); 1422 break; 1423 case TT_WIN_UNF: /* window underflow */ 1424 restore_window(env); 1425 break; 1426 case TT_TFAULT: 1427 case TT_DFAULT: 1428 { 1429 info.si_signo = TARGET_SIGSEGV; 1430 info.si_errno = 0; 1431 /* XXX: check env->error_code */ 1432 info.si_code = TARGET_SEGV_MAPERR; 1433 info._sifields._sigfault._addr = env->mmuregs[4]; 1434 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1435 } 1436 break; 1437 #else 1438 case TT_SPILL: /* window overflow */ 1439 save_window(env); 1440 break; 1441 case TT_FILL: /* window underflow */ 1442 restore_window(env); 1443 break; 1444 case TT_TFAULT: 1445 case TT_DFAULT: 1446 { 1447 info.si_signo = TARGET_SIGSEGV; 1448 info.si_errno = 0; 1449 /* XXX: check env->error_code */ 1450 info.si_code = TARGET_SEGV_MAPERR; 1451 if (trapnr == TT_DFAULT) 1452 info._sifields._sigfault._addr = env->dmmuregs[4]; 1453 else 1454 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1455 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1456 } 1457 break; 1458 #ifndef TARGET_ABI32 1459 case 0x16e: 1460 flush_windows(env); 1461 sparc64_get_context(env); 1462 break; 1463 case 0x16f: 1464 flush_windows(env); 1465 sparc64_set_context(env); 1466 break; 1467 #endif 1468 #endif 1469 case EXCP_INTERRUPT: 1470 /* just indicate that signals should be handled asap */ 1471 break; 1472 case TT_ILL_INSN: 1473 { 1474 info.si_signo = TARGET_SIGILL; 1475 info.si_errno = 0; 1476 info.si_code = TARGET_ILL_ILLOPC; 1477 info._sifields._sigfault._addr = env->pc; 1478 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1479 } 1480 break; 1481 case EXCP_DEBUG: 1482 { 1483 int sig; 1484 1485 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1486 if (sig) 1487 { 1488 info.si_signo = sig; 1489 info.si_errno = 0; 1490 info.si_code = TARGET_TRAP_BRKPT; 1491 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1492 } 1493 } 1494 break; 1495 default: 1496 printf ("Unhandled trap: 0x%x\n", trapnr); 1497 cpu_dump_state(cs, stderr, fprintf, 0); 1498 exit(EXIT_FAILURE); 1499 } 1500 process_pending_signals (env); 1501 } 1502 } 1503 1504 #endif 1505 1506 #ifdef TARGET_PPC 1507 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1508 { 1509 return cpu_get_host_ticks(); 1510 } 1511 1512 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1513 { 1514 return cpu_ppc_get_tb(env); 1515 } 1516 1517 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1518 { 1519 return cpu_ppc_get_tb(env) >> 32; 1520 } 1521 1522 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1523 { 1524 return cpu_ppc_get_tb(env); 1525 } 1526 1527 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1528 { 1529 return cpu_ppc_get_tb(env) >> 32; 1530 } 1531 1532 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1533 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1534 1535 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1536 { 1537 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1538 } 1539 1540 /* XXX: to be fixed */ 1541 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1542 { 1543 return -1; 1544 } 1545 1546 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1547 { 1548 return -1; 1549 } 1550 1551 static int do_store_exclusive(CPUPPCState *env) 1552 { 1553 target_ulong addr; 1554 target_ulong page_addr; 1555 target_ulong val, val2 __attribute__((unused)) = 0; 1556 int flags; 1557 int segv = 0; 1558 1559 addr = env->reserve_ea; 1560 page_addr = addr & TARGET_PAGE_MASK; 1561 start_exclusive(); 1562 mmap_lock(); 1563 flags = page_get_flags(page_addr); 1564 if ((flags & PAGE_READ) == 0) { 1565 segv = 1; 1566 } else { 1567 int reg = env->reserve_info & 0x1f; 1568 int size = env->reserve_info >> 5; 1569 int stored = 0; 1570 1571 if (addr == env->reserve_addr) { 1572 switch (size) { 1573 case 1: segv = get_user_u8(val, addr); break; 1574 case 2: segv = get_user_u16(val, addr); break; 1575 case 4: segv = get_user_u32(val, addr); break; 1576 #if defined(TARGET_PPC64) 1577 case 8: segv = get_user_u64(val, addr); break; 1578 case 16: { 1579 segv = get_user_u64(val, addr); 1580 if (!segv) { 1581 segv = get_user_u64(val2, addr + 8); 1582 } 1583 break; 1584 } 1585 #endif 1586 default: abort(); 1587 } 1588 if (!segv && val == env->reserve_val) { 1589 val = env->gpr[reg]; 1590 switch (size) { 1591 case 1: segv = put_user_u8(val, addr); break; 1592 case 2: segv = put_user_u16(val, addr); break; 1593 case 4: segv = put_user_u32(val, addr); break; 1594 #if defined(TARGET_PPC64) 1595 case 8: segv = put_user_u64(val, addr); break; 1596 case 16: { 1597 if (val2 == env->reserve_val2) { 1598 if (msr_le) { 1599 val2 = val; 1600 val = env->gpr[reg+1]; 1601 } else { 1602 val2 = env->gpr[reg+1]; 1603 } 1604 segv = put_user_u64(val, addr); 1605 if (!segv) { 1606 segv = put_user_u64(val2, addr + 8); 1607 } 1608 } 1609 break; 1610 } 1611 #endif 1612 default: abort(); 1613 } 1614 if (!segv) { 1615 stored = 1; 1616 } 1617 } 1618 } 1619 env->crf[0] = (stored << 1) | xer_so; 1620 env->reserve_addr = (target_ulong)-1; 1621 } 1622 if (!segv) { 1623 env->nip += 4; 1624 } 1625 mmap_unlock(); 1626 end_exclusive(); 1627 return segv; 1628 } 1629 1630 void cpu_loop(CPUPPCState *env) 1631 { 1632 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1633 target_siginfo_t info; 1634 int trapnr; 1635 target_ulong ret; 1636 1637 for(;;) { 1638 cpu_exec_start(cs); 1639 trapnr = cpu_exec(cs); 1640 cpu_exec_end(cs); 1641 switch(trapnr) { 1642 case POWERPC_EXCP_NONE: 1643 /* Just go on */ 1644 break; 1645 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1646 cpu_abort(cs, "Critical interrupt while in user mode. " 1647 "Aborting\n"); 1648 break; 1649 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1650 cpu_abort(cs, "Machine check exception while in user mode. " 1651 "Aborting\n"); 1652 break; 1653 case POWERPC_EXCP_DSI: /* Data storage exception */ 1654 /* XXX: check this. Seems bugged */ 1655 switch (env->error_code & 0xFF000000) { 1656 case 0x40000000: 1657 case 0x42000000: 1658 info.si_signo = TARGET_SIGSEGV; 1659 info.si_errno = 0; 1660 info.si_code = TARGET_SEGV_MAPERR; 1661 break; 1662 case 0x04000000: 1663 info.si_signo = TARGET_SIGILL; 1664 info.si_errno = 0; 1665 info.si_code = TARGET_ILL_ILLADR; 1666 break; 1667 case 0x08000000: 1668 info.si_signo = TARGET_SIGSEGV; 1669 info.si_errno = 0; 1670 info.si_code = TARGET_SEGV_ACCERR; 1671 break; 1672 default: 1673 /* Let's send a regular segfault... */ 1674 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1675 env->error_code); 1676 info.si_signo = TARGET_SIGSEGV; 1677 info.si_errno = 0; 1678 info.si_code = TARGET_SEGV_MAPERR; 1679 break; 1680 } 1681 info._sifields._sigfault._addr = env->nip; 1682 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1683 break; 1684 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1685 /* XXX: check this */ 1686 switch (env->error_code & 0xFF000000) { 1687 case 0x40000000: 1688 info.si_signo = TARGET_SIGSEGV; 1689 info.si_errno = 0; 1690 info.si_code = TARGET_SEGV_MAPERR; 1691 break; 1692 case 0x10000000: 1693 case 0x08000000: 1694 info.si_signo = TARGET_SIGSEGV; 1695 info.si_errno = 0; 1696 info.si_code = TARGET_SEGV_ACCERR; 1697 break; 1698 default: 1699 /* Let's send a regular segfault... */ 1700 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1701 env->error_code); 1702 info.si_signo = TARGET_SIGSEGV; 1703 info.si_errno = 0; 1704 info.si_code = TARGET_SEGV_MAPERR; 1705 break; 1706 } 1707 info._sifields._sigfault._addr = env->nip - 4; 1708 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1709 break; 1710 case POWERPC_EXCP_EXTERNAL: /* External input */ 1711 cpu_abort(cs, "External interrupt while in user mode. " 1712 "Aborting\n"); 1713 break; 1714 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1715 /* XXX: check this */ 1716 info.si_signo = TARGET_SIGBUS; 1717 info.si_errno = 0; 1718 info.si_code = TARGET_BUS_ADRALN; 1719 info._sifields._sigfault._addr = env->nip; 1720 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1721 break; 1722 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1723 case POWERPC_EXCP_HV_EMU: /* HV emulation */ 1724 /* XXX: check this */ 1725 switch (env->error_code & ~0xF) { 1726 case POWERPC_EXCP_FP: 1727 info.si_signo = TARGET_SIGFPE; 1728 info.si_errno = 0; 1729 switch (env->error_code & 0xF) { 1730 case POWERPC_EXCP_FP_OX: 1731 info.si_code = TARGET_FPE_FLTOVF; 1732 break; 1733 case POWERPC_EXCP_FP_UX: 1734 info.si_code = TARGET_FPE_FLTUND; 1735 break; 1736 case POWERPC_EXCP_FP_ZX: 1737 case POWERPC_EXCP_FP_VXZDZ: 1738 info.si_code = TARGET_FPE_FLTDIV; 1739 break; 1740 case POWERPC_EXCP_FP_XX: 1741 info.si_code = TARGET_FPE_FLTRES; 1742 break; 1743 case POWERPC_EXCP_FP_VXSOFT: 1744 info.si_code = TARGET_FPE_FLTINV; 1745 break; 1746 case POWERPC_EXCP_FP_VXSNAN: 1747 case POWERPC_EXCP_FP_VXISI: 1748 case POWERPC_EXCP_FP_VXIDI: 1749 case POWERPC_EXCP_FP_VXIMZ: 1750 case POWERPC_EXCP_FP_VXVC: 1751 case POWERPC_EXCP_FP_VXSQRT: 1752 case POWERPC_EXCP_FP_VXCVI: 1753 info.si_code = TARGET_FPE_FLTSUB; 1754 break; 1755 default: 1756 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1757 env->error_code); 1758 break; 1759 } 1760 break; 1761 case POWERPC_EXCP_INVAL: 1762 info.si_signo = TARGET_SIGILL; 1763 info.si_errno = 0; 1764 switch (env->error_code & 0xF) { 1765 case POWERPC_EXCP_INVAL_INVAL: 1766 info.si_code = TARGET_ILL_ILLOPC; 1767 break; 1768 case POWERPC_EXCP_INVAL_LSWX: 1769 info.si_code = TARGET_ILL_ILLOPN; 1770 break; 1771 case POWERPC_EXCP_INVAL_SPR: 1772 info.si_code = TARGET_ILL_PRVREG; 1773 break; 1774 case POWERPC_EXCP_INVAL_FP: 1775 info.si_code = TARGET_ILL_COPROC; 1776 break; 1777 default: 1778 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1779 env->error_code & 0xF); 1780 info.si_code = TARGET_ILL_ILLADR; 1781 break; 1782 } 1783 break; 1784 case POWERPC_EXCP_PRIV: 1785 info.si_signo = TARGET_SIGILL; 1786 info.si_errno = 0; 1787 switch (env->error_code & 0xF) { 1788 case POWERPC_EXCP_PRIV_OPC: 1789 info.si_code = TARGET_ILL_PRVOPC; 1790 break; 1791 case POWERPC_EXCP_PRIV_REG: 1792 info.si_code = TARGET_ILL_PRVREG; 1793 break; 1794 default: 1795 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1796 env->error_code & 0xF); 1797 info.si_code = TARGET_ILL_PRVOPC; 1798 break; 1799 } 1800 break; 1801 case POWERPC_EXCP_TRAP: 1802 cpu_abort(cs, "Tried to call a TRAP\n"); 1803 break; 1804 default: 1805 /* Should not happen ! */ 1806 cpu_abort(cs, "Unknown program exception (%02x)\n", 1807 env->error_code); 1808 break; 1809 } 1810 info._sifields._sigfault._addr = env->nip; 1811 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1812 break; 1813 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1814 info.si_signo = TARGET_SIGILL; 1815 info.si_errno = 0; 1816 info.si_code = TARGET_ILL_COPROC; 1817 info._sifields._sigfault._addr = env->nip; 1818 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1819 break; 1820 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1821 cpu_abort(cs, "Syscall exception while in user mode. " 1822 "Aborting\n"); 1823 break; 1824 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1825 info.si_signo = TARGET_SIGILL; 1826 info.si_errno = 0; 1827 info.si_code = TARGET_ILL_COPROC; 1828 info._sifields._sigfault._addr = env->nip; 1829 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1830 break; 1831 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1832 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1833 "Aborting\n"); 1834 break; 1835 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1836 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1837 "Aborting\n"); 1838 break; 1839 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1840 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1841 "Aborting\n"); 1842 break; 1843 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1844 cpu_abort(cs, "Data TLB exception while in user mode. " 1845 "Aborting\n"); 1846 break; 1847 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1848 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1849 "Aborting\n"); 1850 break; 1851 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1852 info.si_signo = TARGET_SIGILL; 1853 info.si_errno = 0; 1854 info.si_code = TARGET_ILL_COPROC; 1855 info._sifields._sigfault._addr = env->nip; 1856 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1857 break; 1858 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1859 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1860 break; 1861 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1862 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1863 break; 1864 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1865 cpu_abort(cs, "Performance monitor exception not handled\n"); 1866 break; 1867 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1868 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1869 "Aborting\n"); 1870 break; 1871 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1872 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1873 "Aborting\n"); 1874 break; 1875 case POWERPC_EXCP_RESET: /* System reset exception */ 1876 cpu_abort(cs, "Reset interrupt while in user mode. " 1877 "Aborting\n"); 1878 break; 1879 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1880 cpu_abort(cs, "Data segment exception while in user mode. " 1881 "Aborting\n"); 1882 break; 1883 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1884 cpu_abort(cs, "Instruction segment exception " 1885 "while in user mode. Aborting\n"); 1886 break; 1887 /* PowerPC 64 with hypervisor mode support */ 1888 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1889 cpu_abort(cs, "Hypervisor decrementer interrupt " 1890 "while in user mode. Aborting\n"); 1891 break; 1892 case POWERPC_EXCP_TRACE: /* Trace exception */ 1893 /* Nothing to do: 1894 * we use this exception to emulate step-by-step execution mode. 1895 */ 1896 break; 1897 /* PowerPC 64 with hypervisor mode support */ 1898 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1899 cpu_abort(cs, "Hypervisor data storage exception " 1900 "while in user mode. Aborting\n"); 1901 break; 1902 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1903 cpu_abort(cs, "Hypervisor instruction storage exception " 1904 "while in user mode. Aborting\n"); 1905 break; 1906 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1907 cpu_abort(cs, "Hypervisor data segment exception " 1908 "while in user mode. Aborting\n"); 1909 break; 1910 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1911 cpu_abort(cs, "Hypervisor instruction segment exception " 1912 "while in user mode. Aborting\n"); 1913 break; 1914 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1915 info.si_signo = TARGET_SIGILL; 1916 info.si_errno = 0; 1917 info.si_code = TARGET_ILL_COPROC; 1918 info._sifields._sigfault._addr = env->nip; 1919 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 1920 break; 1921 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1922 cpu_abort(cs, "Programmable interval timer interrupt " 1923 "while in user mode. Aborting\n"); 1924 break; 1925 case POWERPC_EXCP_IO: /* IO error exception */ 1926 cpu_abort(cs, "IO error exception while in user mode. " 1927 "Aborting\n"); 1928 break; 1929 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1930 cpu_abort(cs, "Run mode exception while in user mode. " 1931 "Aborting\n"); 1932 break; 1933 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1934 cpu_abort(cs, "Emulation trap exception not handled\n"); 1935 break; 1936 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1937 cpu_abort(cs, "Instruction fetch TLB exception " 1938 "while in user-mode. Aborting"); 1939 break; 1940 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1941 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1942 "Aborting"); 1943 break; 1944 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1945 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1946 "Aborting"); 1947 break; 1948 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1949 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1950 break; 1951 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1952 cpu_abort(cs, "Instruction address breakpoint exception " 1953 "not handled\n"); 1954 break; 1955 case POWERPC_EXCP_SMI: /* System management interrupt */ 1956 cpu_abort(cs, "System management interrupt while in user mode. " 1957 "Aborting\n"); 1958 break; 1959 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1960 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1961 "Aborting\n"); 1962 break; 1963 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1964 cpu_abort(cs, "Performance monitor exception not handled\n"); 1965 break; 1966 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1967 cpu_abort(cs, "Vector assist exception not handled\n"); 1968 break; 1969 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1970 cpu_abort(cs, "Soft patch exception not handled\n"); 1971 break; 1972 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1973 cpu_abort(cs, "Maintenance exception while in user mode. " 1974 "Aborting\n"); 1975 break; 1976 case POWERPC_EXCP_STOP: /* stop translation */ 1977 /* We did invalidate the instruction cache. Go on */ 1978 break; 1979 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1980 /* We just stopped because of a branch. Go on */ 1981 break; 1982 case POWERPC_EXCP_SYSCALL_USER: 1983 /* system call in user-mode emulation */ 1984 /* WARNING: 1985 * PPC ABI uses overflow flag in cr0 to signal an error 1986 * in syscalls. 1987 */ 1988 env->crf[0] &= ~0x1; 1989 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1990 env->gpr[5], env->gpr[6], env->gpr[7], 1991 env->gpr[8], 0, 0); 1992 if (ret == -TARGET_ERESTARTSYS) { 1993 break; 1994 } 1995 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1996 /* Returning from a successful sigreturn syscall. 1997 Avoid corrupting register state. */ 1998 break; 1999 } 2000 env->nip += 4; 2001 if (ret > (target_ulong)(-515)) { 2002 env->crf[0] |= 0x1; 2003 ret = -ret; 2004 } 2005 env->gpr[3] = ret; 2006 break; 2007 case POWERPC_EXCP_STCX: 2008 if (do_store_exclusive(env)) { 2009 info.si_signo = TARGET_SIGSEGV; 2010 info.si_errno = 0; 2011 info.si_code = TARGET_SEGV_MAPERR; 2012 info._sifields._sigfault._addr = env->nip; 2013 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2014 } 2015 break; 2016 case EXCP_DEBUG: 2017 { 2018 int sig; 2019 2020 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2021 if (sig) { 2022 info.si_signo = sig; 2023 info.si_errno = 0; 2024 info.si_code = TARGET_TRAP_BRKPT; 2025 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2026 } 2027 } 2028 break; 2029 case EXCP_INTERRUPT: 2030 /* just indicate that signals should be handled asap */ 2031 break; 2032 default: 2033 cpu_abort(cs, "Unknown exception 0x%x. Aborting\n", trapnr); 2034 break; 2035 } 2036 process_pending_signals(env); 2037 } 2038 } 2039 #endif 2040 2041 #ifdef TARGET_MIPS 2042 2043 # ifdef TARGET_ABI_MIPSO32 2044 # define MIPS_SYS(name, args) args, 2045 static const uint8_t mips_syscall_args[] = { 2046 MIPS_SYS(sys_syscall , 8) /* 4000 */ 2047 MIPS_SYS(sys_exit , 1) 2048 MIPS_SYS(sys_fork , 0) 2049 MIPS_SYS(sys_read , 3) 2050 MIPS_SYS(sys_write , 3) 2051 MIPS_SYS(sys_open , 3) /* 4005 */ 2052 MIPS_SYS(sys_close , 1) 2053 MIPS_SYS(sys_waitpid , 3) 2054 MIPS_SYS(sys_creat , 2) 2055 MIPS_SYS(sys_link , 2) 2056 MIPS_SYS(sys_unlink , 1) /* 4010 */ 2057 MIPS_SYS(sys_execve , 0) 2058 MIPS_SYS(sys_chdir , 1) 2059 MIPS_SYS(sys_time , 1) 2060 MIPS_SYS(sys_mknod , 3) 2061 MIPS_SYS(sys_chmod , 2) /* 4015 */ 2062 MIPS_SYS(sys_lchown , 3) 2063 MIPS_SYS(sys_ni_syscall , 0) 2064 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 2065 MIPS_SYS(sys_lseek , 3) 2066 MIPS_SYS(sys_getpid , 0) /* 4020 */ 2067 MIPS_SYS(sys_mount , 5) 2068 MIPS_SYS(sys_umount , 1) 2069 MIPS_SYS(sys_setuid , 1) 2070 MIPS_SYS(sys_getuid , 0) 2071 MIPS_SYS(sys_stime , 1) /* 4025 */ 2072 MIPS_SYS(sys_ptrace , 4) 2073 MIPS_SYS(sys_alarm , 1) 2074 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2075 MIPS_SYS(sys_pause , 0) 2076 MIPS_SYS(sys_utime , 2) /* 4030 */ 2077 MIPS_SYS(sys_ni_syscall , 0) 2078 MIPS_SYS(sys_ni_syscall , 0) 2079 MIPS_SYS(sys_access , 2) 2080 MIPS_SYS(sys_nice , 1) 2081 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2082 MIPS_SYS(sys_sync , 0) 2083 MIPS_SYS(sys_kill , 2) 2084 MIPS_SYS(sys_rename , 2) 2085 MIPS_SYS(sys_mkdir , 2) 2086 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2087 MIPS_SYS(sys_dup , 1) 2088 MIPS_SYS(sys_pipe , 0) 2089 MIPS_SYS(sys_times , 1) 2090 MIPS_SYS(sys_ni_syscall , 0) 2091 MIPS_SYS(sys_brk , 1) /* 4045 */ 2092 MIPS_SYS(sys_setgid , 1) 2093 MIPS_SYS(sys_getgid , 0) 2094 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2095 MIPS_SYS(sys_geteuid , 0) 2096 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2097 MIPS_SYS(sys_acct , 0) 2098 MIPS_SYS(sys_umount2 , 2) 2099 MIPS_SYS(sys_ni_syscall , 0) 2100 MIPS_SYS(sys_ioctl , 3) 2101 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2102 MIPS_SYS(sys_ni_syscall , 2) 2103 MIPS_SYS(sys_setpgid , 2) 2104 MIPS_SYS(sys_ni_syscall , 0) 2105 MIPS_SYS(sys_olduname , 1) 2106 MIPS_SYS(sys_umask , 1) /* 4060 */ 2107 MIPS_SYS(sys_chroot , 1) 2108 MIPS_SYS(sys_ustat , 2) 2109 MIPS_SYS(sys_dup2 , 2) 2110 MIPS_SYS(sys_getppid , 0) 2111 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2112 MIPS_SYS(sys_setsid , 0) 2113 MIPS_SYS(sys_sigaction , 3) 2114 MIPS_SYS(sys_sgetmask , 0) 2115 MIPS_SYS(sys_ssetmask , 1) 2116 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2117 MIPS_SYS(sys_setregid , 2) 2118 MIPS_SYS(sys_sigsuspend , 0) 2119 MIPS_SYS(sys_sigpending , 1) 2120 MIPS_SYS(sys_sethostname , 2) 2121 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2122 MIPS_SYS(sys_getrlimit , 2) 2123 MIPS_SYS(sys_getrusage , 2) 2124 MIPS_SYS(sys_gettimeofday, 2) 2125 MIPS_SYS(sys_settimeofday, 2) 2126 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2127 MIPS_SYS(sys_setgroups , 2) 2128 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2129 MIPS_SYS(sys_symlink , 2) 2130 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2131 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2132 MIPS_SYS(sys_uselib , 1) 2133 MIPS_SYS(sys_swapon , 2) 2134 MIPS_SYS(sys_reboot , 3) 2135 MIPS_SYS(old_readdir , 3) 2136 MIPS_SYS(old_mmap , 6) /* 4090 */ 2137 MIPS_SYS(sys_munmap , 2) 2138 MIPS_SYS(sys_truncate , 2) 2139 MIPS_SYS(sys_ftruncate , 2) 2140 MIPS_SYS(sys_fchmod , 2) 2141 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2142 MIPS_SYS(sys_getpriority , 2) 2143 MIPS_SYS(sys_setpriority , 3) 2144 MIPS_SYS(sys_ni_syscall , 0) 2145 MIPS_SYS(sys_statfs , 2) 2146 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2147 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2148 MIPS_SYS(sys_socketcall , 2) 2149 MIPS_SYS(sys_syslog , 3) 2150 MIPS_SYS(sys_setitimer , 3) 2151 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2152 MIPS_SYS(sys_newstat , 2) 2153 MIPS_SYS(sys_newlstat , 2) 2154 MIPS_SYS(sys_newfstat , 2) 2155 MIPS_SYS(sys_uname , 1) 2156 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2157 MIPS_SYS(sys_vhangup , 0) 2158 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2159 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2160 MIPS_SYS(sys_wait4 , 4) 2161 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2162 MIPS_SYS(sys_sysinfo , 1) 2163 MIPS_SYS(sys_ipc , 6) 2164 MIPS_SYS(sys_fsync , 1) 2165 MIPS_SYS(sys_sigreturn , 0) 2166 MIPS_SYS(sys_clone , 6) /* 4120 */ 2167 MIPS_SYS(sys_setdomainname, 2) 2168 MIPS_SYS(sys_newuname , 1) 2169 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2170 MIPS_SYS(sys_adjtimex , 1) 2171 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2172 MIPS_SYS(sys_sigprocmask , 3) 2173 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2174 MIPS_SYS(sys_init_module , 5) 2175 MIPS_SYS(sys_delete_module, 1) 2176 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2177 MIPS_SYS(sys_quotactl , 0) 2178 MIPS_SYS(sys_getpgid , 1) 2179 MIPS_SYS(sys_fchdir , 1) 2180 MIPS_SYS(sys_bdflush , 2) 2181 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2182 MIPS_SYS(sys_personality , 1) 2183 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2184 MIPS_SYS(sys_setfsuid , 1) 2185 MIPS_SYS(sys_setfsgid , 1) 2186 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2187 MIPS_SYS(sys_getdents , 3) 2188 MIPS_SYS(sys_select , 5) 2189 MIPS_SYS(sys_flock , 2) 2190 MIPS_SYS(sys_msync , 3) 2191 MIPS_SYS(sys_readv , 3) /* 4145 */ 2192 MIPS_SYS(sys_writev , 3) 2193 MIPS_SYS(sys_cacheflush , 3) 2194 MIPS_SYS(sys_cachectl , 3) 2195 MIPS_SYS(sys_sysmips , 4) 2196 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2197 MIPS_SYS(sys_getsid , 1) 2198 MIPS_SYS(sys_fdatasync , 0) 2199 MIPS_SYS(sys_sysctl , 1) 2200 MIPS_SYS(sys_mlock , 2) 2201 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2202 MIPS_SYS(sys_mlockall , 1) 2203 MIPS_SYS(sys_munlockall , 0) 2204 MIPS_SYS(sys_sched_setparam, 2) 2205 MIPS_SYS(sys_sched_getparam, 2) 2206 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2207 MIPS_SYS(sys_sched_getscheduler, 1) 2208 MIPS_SYS(sys_sched_yield , 0) 2209 MIPS_SYS(sys_sched_get_priority_max, 1) 2210 MIPS_SYS(sys_sched_get_priority_min, 1) 2211 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2212 MIPS_SYS(sys_nanosleep, 2) 2213 MIPS_SYS(sys_mremap , 5) 2214 MIPS_SYS(sys_accept , 3) 2215 MIPS_SYS(sys_bind , 3) 2216 MIPS_SYS(sys_connect , 3) /* 4170 */ 2217 MIPS_SYS(sys_getpeername , 3) 2218 MIPS_SYS(sys_getsockname , 3) 2219 MIPS_SYS(sys_getsockopt , 5) 2220 MIPS_SYS(sys_listen , 2) 2221 MIPS_SYS(sys_recv , 4) /* 4175 */ 2222 MIPS_SYS(sys_recvfrom , 6) 2223 MIPS_SYS(sys_recvmsg , 3) 2224 MIPS_SYS(sys_send , 4) 2225 MIPS_SYS(sys_sendmsg , 3) 2226 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2227 MIPS_SYS(sys_setsockopt , 5) 2228 MIPS_SYS(sys_shutdown , 2) 2229 MIPS_SYS(sys_socket , 3) 2230 MIPS_SYS(sys_socketpair , 4) 2231 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2232 MIPS_SYS(sys_getresuid , 3) 2233 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2234 MIPS_SYS(sys_poll , 3) 2235 MIPS_SYS(sys_nfsservctl , 3) 2236 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2237 MIPS_SYS(sys_getresgid , 3) 2238 MIPS_SYS(sys_prctl , 5) 2239 MIPS_SYS(sys_rt_sigreturn, 0) 2240 MIPS_SYS(sys_rt_sigaction, 4) 2241 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2242 MIPS_SYS(sys_rt_sigpending, 2) 2243 MIPS_SYS(sys_rt_sigtimedwait, 4) 2244 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2245 MIPS_SYS(sys_rt_sigsuspend, 0) 2246 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2247 MIPS_SYS(sys_pwrite64 , 6) 2248 MIPS_SYS(sys_chown , 3) 2249 MIPS_SYS(sys_getcwd , 2) 2250 MIPS_SYS(sys_capget , 2) 2251 MIPS_SYS(sys_capset , 2) /* 4205 */ 2252 MIPS_SYS(sys_sigaltstack , 2) 2253 MIPS_SYS(sys_sendfile , 4) 2254 MIPS_SYS(sys_ni_syscall , 0) 2255 MIPS_SYS(sys_ni_syscall , 0) 2256 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2257 MIPS_SYS(sys_truncate64 , 4) 2258 MIPS_SYS(sys_ftruncate64 , 4) 2259 MIPS_SYS(sys_stat64 , 2) 2260 MIPS_SYS(sys_lstat64 , 2) 2261 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2262 MIPS_SYS(sys_pivot_root , 2) 2263 MIPS_SYS(sys_mincore , 3) 2264 MIPS_SYS(sys_madvise , 3) 2265 MIPS_SYS(sys_getdents64 , 3) 2266 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2267 MIPS_SYS(sys_ni_syscall , 0) 2268 MIPS_SYS(sys_gettid , 0) 2269 MIPS_SYS(sys_readahead , 5) 2270 MIPS_SYS(sys_setxattr , 5) 2271 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2272 MIPS_SYS(sys_fsetxattr , 5) 2273 MIPS_SYS(sys_getxattr , 4) 2274 MIPS_SYS(sys_lgetxattr , 4) 2275 MIPS_SYS(sys_fgetxattr , 4) 2276 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2277 MIPS_SYS(sys_llistxattr , 3) 2278 MIPS_SYS(sys_flistxattr , 3) 2279 MIPS_SYS(sys_removexattr , 2) 2280 MIPS_SYS(sys_lremovexattr, 2) 2281 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2282 MIPS_SYS(sys_tkill , 2) 2283 MIPS_SYS(sys_sendfile64 , 5) 2284 MIPS_SYS(sys_futex , 6) 2285 MIPS_SYS(sys_sched_setaffinity, 3) 2286 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2287 MIPS_SYS(sys_io_setup , 2) 2288 MIPS_SYS(sys_io_destroy , 1) 2289 MIPS_SYS(sys_io_getevents, 5) 2290 MIPS_SYS(sys_io_submit , 3) 2291 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2292 MIPS_SYS(sys_exit_group , 1) 2293 MIPS_SYS(sys_lookup_dcookie, 3) 2294 MIPS_SYS(sys_epoll_create, 1) 2295 MIPS_SYS(sys_epoll_ctl , 4) 2296 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2297 MIPS_SYS(sys_remap_file_pages, 5) 2298 MIPS_SYS(sys_set_tid_address, 1) 2299 MIPS_SYS(sys_restart_syscall, 0) 2300 MIPS_SYS(sys_fadvise64_64, 7) 2301 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2302 MIPS_SYS(sys_fstatfs64 , 2) 2303 MIPS_SYS(sys_timer_create, 3) 2304 MIPS_SYS(sys_timer_settime, 4) 2305 MIPS_SYS(sys_timer_gettime, 2) 2306 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2307 MIPS_SYS(sys_timer_delete, 1) 2308 MIPS_SYS(sys_clock_settime, 2) 2309 MIPS_SYS(sys_clock_gettime, 2) 2310 MIPS_SYS(sys_clock_getres, 2) 2311 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2312 MIPS_SYS(sys_tgkill , 3) 2313 MIPS_SYS(sys_utimes , 2) 2314 MIPS_SYS(sys_mbind , 4) 2315 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2316 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2317 MIPS_SYS(sys_mq_open , 4) 2318 MIPS_SYS(sys_mq_unlink , 1) 2319 MIPS_SYS(sys_mq_timedsend, 5) 2320 MIPS_SYS(sys_mq_timedreceive, 5) 2321 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2322 MIPS_SYS(sys_mq_getsetattr, 3) 2323 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2324 MIPS_SYS(sys_waitid , 4) 2325 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2326 MIPS_SYS(sys_add_key , 5) 2327 MIPS_SYS(sys_request_key, 4) 2328 MIPS_SYS(sys_keyctl , 5) 2329 MIPS_SYS(sys_set_thread_area, 1) 2330 MIPS_SYS(sys_inotify_init, 0) 2331 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2332 MIPS_SYS(sys_inotify_rm_watch, 2) 2333 MIPS_SYS(sys_migrate_pages, 4) 2334 MIPS_SYS(sys_openat, 4) 2335 MIPS_SYS(sys_mkdirat, 3) 2336 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2337 MIPS_SYS(sys_fchownat, 5) 2338 MIPS_SYS(sys_futimesat, 3) 2339 MIPS_SYS(sys_fstatat64, 4) 2340 MIPS_SYS(sys_unlinkat, 3) 2341 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2342 MIPS_SYS(sys_linkat, 5) 2343 MIPS_SYS(sys_symlinkat, 3) 2344 MIPS_SYS(sys_readlinkat, 4) 2345 MIPS_SYS(sys_fchmodat, 3) 2346 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2347 MIPS_SYS(sys_pselect6, 6) 2348 MIPS_SYS(sys_ppoll, 5) 2349 MIPS_SYS(sys_unshare, 1) 2350 MIPS_SYS(sys_splice, 6) 2351 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2352 MIPS_SYS(sys_tee, 4) 2353 MIPS_SYS(sys_vmsplice, 4) 2354 MIPS_SYS(sys_move_pages, 6) 2355 MIPS_SYS(sys_set_robust_list, 2) 2356 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2357 MIPS_SYS(sys_kexec_load, 4) 2358 MIPS_SYS(sys_getcpu, 3) 2359 MIPS_SYS(sys_epoll_pwait, 6) 2360 MIPS_SYS(sys_ioprio_set, 3) 2361 MIPS_SYS(sys_ioprio_get, 2) 2362 MIPS_SYS(sys_utimensat, 4) 2363 MIPS_SYS(sys_signalfd, 3) 2364 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2365 MIPS_SYS(sys_eventfd, 1) 2366 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2367 MIPS_SYS(sys_timerfd_create, 2) 2368 MIPS_SYS(sys_timerfd_gettime, 2) 2369 MIPS_SYS(sys_timerfd_settime, 4) 2370 MIPS_SYS(sys_signalfd4, 4) 2371 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2372 MIPS_SYS(sys_epoll_create1, 1) 2373 MIPS_SYS(sys_dup3, 3) 2374 MIPS_SYS(sys_pipe2, 2) 2375 MIPS_SYS(sys_inotify_init1, 1) 2376 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2377 MIPS_SYS(sys_pwritev, 6) 2378 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2379 MIPS_SYS(sys_perf_event_open, 5) 2380 MIPS_SYS(sys_accept4, 4) 2381 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2382 MIPS_SYS(sys_fanotify_init, 2) 2383 MIPS_SYS(sys_fanotify_mark, 6) 2384 MIPS_SYS(sys_prlimit64, 4) 2385 MIPS_SYS(sys_name_to_handle_at, 5) 2386 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2387 MIPS_SYS(sys_clock_adjtime, 2) 2388 MIPS_SYS(sys_syncfs, 1) 2389 }; 2390 # undef MIPS_SYS 2391 # endif /* O32 */ 2392 2393 static int do_store_exclusive(CPUMIPSState *env) 2394 { 2395 target_ulong addr; 2396 target_ulong page_addr; 2397 target_ulong val; 2398 int flags; 2399 int segv = 0; 2400 int reg; 2401 int d; 2402 2403 addr = env->lladdr; 2404 page_addr = addr & TARGET_PAGE_MASK; 2405 start_exclusive(); 2406 mmap_lock(); 2407 flags = page_get_flags(page_addr); 2408 if ((flags & PAGE_READ) == 0) { 2409 segv = 1; 2410 } else { 2411 reg = env->llreg & 0x1f; 2412 d = (env->llreg & 0x20) != 0; 2413 if (d) { 2414 segv = get_user_s64(val, addr); 2415 } else { 2416 segv = get_user_s32(val, addr); 2417 } 2418 if (!segv) { 2419 if (val != env->llval) { 2420 env->active_tc.gpr[reg] = 0; 2421 } else { 2422 if (d) { 2423 segv = put_user_u64(env->llnewval, addr); 2424 } else { 2425 segv = put_user_u32(env->llnewval, addr); 2426 } 2427 if (!segv) { 2428 env->active_tc.gpr[reg] = 1; 2429 } 2430 } 2431 } 2432 } 2433 env->lladdr = -1; 2434 if (!segv) { 2435 env->active_tc.PC += 4; 2436 } 2437 mmap_unlock(); 2438 end_exclusive(); 2439 return segv; 2440 } 2441 2442 /* Break codes */ 2443 enum { 2444 BRK_OVERFLOW = 6, 2445 BRK_DIVZERO = 7 2446 }; 2447 2448 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2449 unsigned int code) 2450 { 2451 int ret = -1; 2452 2453 switch (code) { 2454 case BRK_OVERFLOW: 2455 case BRK_DIVZERO: 2456 info->si_signo = TARGET_SIGFPE; 2457 info->si_errno = 0; 2458 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2459 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2460 ret = 0; 2461 break; 2462 default: 2463 info->si_signo = TARGET_SIGTRAP; 2464 info->si_errno = 0; 2465 queue_signal(env, info->si_signo, QEMU_SI_FAULT, &*info); 2466 ret = 0; 2467 break; 2468 } 2469 2470 return ret; 2471 } 2472 2473 void cpu_loop(CPUMIPSState *env) 2474 { 2475 CPUState *cs = CPU(mips_env_get_cpu(env)); 2476 target_siginfo_t info; 2477 int trapnr; 2478 abi_long ret; 2479 # ifdef TARGET_ABI_MIPSO32 2480 unsigned int syscall_num; 2481 # endif 2482 2483 for(;;) { 2484 cpu_exec_start(cs); 2485 trapnr = cpu_exec(cs); 2486 cpu_exec_end(cs); 2487 switch(trapnr) { 2488 case EXCP_SYSCALL: 2489 env->active_tc.PC += 4; 2490 # ifdef TARGET_ABI_MIPSO32 2491 syscall_num = env->active_tc.gpr[2] - 4000; 2492 if (syscall_num >= sizeof(mips_syscall_args)) { 2493 ret = -TARGET_ENOSYS; 2494 } else { 2495 int nb_args; 2496 abi_ulong sp_reg; 2497 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2498 2499 nb_args = mips_syscall_args[syscall_num]; 2500 sp_reg = env->active_tc.gpr[29]; 2501 switch (nb_args) { 2502 /* these arguments are taken from the stack */ 2503 case 8: 2504 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2505 goto done_syscall; 2506 } 2507 case 7: 2508 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2509 goto done_syscall; 2510 } 2511 case 6: 2512 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2513 goto done_syscall; 2514 } 2515 case 5: 2516 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2517 goto done_syscall; 2518 } 2519 default: 2520 break; 2521 } 2522 ret = do_syscall(env, env->active_tc.gpr[2], 2523 env->active_tc.gpr[4], 2524 env->active_tc.gpr[5], 2525 env->active_tc.gpr[6], 2526 env->active_tc.gpr[7], 2527 arg5, arg6, arg7, arg8); 2528 } 2529 done_syscall: 2530 # else 2531 ret = do_syscall(env, env->active_tc.gpr[2], 2532 env->active_tc.gpr[4], env->active_tc.gpr[5], 2533 env->active_tc.gpr[6], env->active_tc.gpr[7], 2534 env->active_tc.gpr[8], env->active_tc.gpr[9], 2535 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2536 # endif /* O32 */ 2537 if (ret == -TARGET_ERESTARTSYS) { 2538 env->active_tc.PC -= 4; 2539 break; 2540 } 2541 if (ret == -TARGET_QEMU_ESIGRETURN) { 2542 /* Returning from a successful sigreturn syscall. 2543 Avoid clobbering register state. */ 2544 break; 2545 } 2546 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2547 env->active_tc.gpr[7] = 1; /* error flag */ 2548 ret = -ret; 2549 } else { 2550 env->active_tc.gpr[7] = 0; /* error flag */ 2551 } 2552 env->active_tc.gpr[2] = ret; 2553 break; 2554 case EXCP_TLBL: 2555 case EXCP_TLBS: 2556 case EXCP_AdEL: 2557 case EXCP_AdES: 2558 info.si_signo = TARGET_SIGSEGV; 2559 info.si_errno = 0; 2560 /* XXX: check env->error_code */ 2561 info.si_code = TARGET_SEGV_MAPERR; 2562 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2563 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2564 break; 2565 case EXCP_CpU: 2566 case EXCP_RI: 2567 info.si_signo = TARGET_SIGILL; 2568 info.si_errno = 0; 2569 info.si_code = 0; 2570 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2571 break; 2572 case EXCP_INTERRUPT: 2573 /* just indicate that signals should be handled asap */ 2574 break; 2575 case EXCP_DEBUG: 2576 { 2577 int sig; 2578 2579 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2580 if (sig) 2581 { 2582 info.si_signo = sig; 2583 info.si_errno = 0; 2584 info.si_code = TARGET_TRAP_BRKPT; 2585 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2586 } 2587 } 2588 break; 2589 case EXCP_SC: 2590 if (do_store_exclusive(env)) { 2591 info.si_signo = TARGET_SIGSEGV; 2592 info.si_errno = 0; 2593 info.si_code = TARGET_SEGV_MAPERR; 2594 info._sifields._sigfault._addr = env->active_tc.PC; 2595 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2596 } 2597 break; 2598 case EXCP_DSPDIS: 2599 info.si_signo = TARGET_SIGILL; 2600 info.si_errno = 0; 2601 info.si_code = TARGET_ILL_ILLOPC; 2602 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2603 break; 2604 /* The code below was inspired by the MIPS Linux kernel trap 2605 * handling code in arch/mips/kernel/traps.c. 2606 */ 2607 case EXCP_BREAK: 2608 { 2609 abi_ulong trap_instr; 2610 unsigned int code; 2611 2612 if (env->hflags & MIPS_HFLAG_M16) { 2613 if (env->insn_flags & ASE_MICROMIPS) { 2614 /* microMIPS mode */ 2615 ret = get_user_u16(trap_instr, env->active_tc.PC); 2616 if (ret != 0) { 2617 goto error; 2618 } 2619 2620 if ((trap_instr >> 10) == 0x11) { 2621 /* 16-bit instruction */ 2622 code = trap_instr & 0xf; 2623 } else { 2624 /* 32-bit instruction */ 2625 abi_ulong instr_lo; 2626 2627 ret = get_user_u16(instr_lo, 2628 env->active_tc.PC + 2); 2629 if (ret != 0) { 2630 goto error; 2631 } 2632 trap_instr = (trap_instr << 16) | instr_lo; 2633 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2634 /* Unfortunately, microMIPS also suffers from 2635 the old assembler bug... */ 2636 if (code >= (1 << 10)) { 2637 code >>= 10; 2638 } 2639 } 2640 } else { 2641 /* MIPS16e mode */ 2642 ret = get_user_u16(trap_instr, env->active_tc.PC); 2643 if (ret != 0) { 2644 goto error; 2645 } 2646 code = (trap_instr >> 6) & 0x3f; 2647 } 2648 } else { 2649 ret = get_user_u32(trap_instr, env->active_tc.PC); 2650 if (ret != 0) { 2651 goto error; 2652 } 2653 2654 /* As described in the original Linux kernel code, the 2655 * below checks on 'code' are to work around an old 2656 * assembly bug. 2657 */ 2658 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2659 if (code >= (1 << 10)) { 2660 code >>= 10; 2661 } 2662 } 2663 2664 if (do_break(env, &info, code) != 0) { 2665 goto error; 2666 } 2667 } 2668 break; 2669 case EXCP_TRAP: 2670 { 2671 abi_ulong trap_instr; 2672 unsigned int code = 0; 2673 2674 if (env->hflags & MIPS_HFLAG_M16) { 2675 /* microMIPS mode */ 2676 abi_ulong instr[2]; 2677 2678 ret = get_user_u16(instr[0], env->active_tc.PC) || 2679 get_user_u16(instr[1], env->active_tc.PC + 2); 2680 2681 trap_instr = (instr[0] << 16) | instr[1]; 2682 } else { 2683 ret = get_user_u32(trap_instr, env->active_tc.PC); 2684 } 2685 2686 if (ret != 0) { 2687 goto error; 2688 } 2689 2690 /* The immediate versions don't provide a code. */ 2691 if (!(trap_instr & 0xFC000000)) { 2692 if (env->hflags & MIPS_HFLAG_M16) { 2693 /* microMIPS mode */ 2694 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2695 } else { 2696 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2697 } 2698 } 2699 2700 if (do_break(env, &info, code) != 0) { 2701 goto error; 2702 } 2703 } 2704 break; 2705 default: 2706 error: 2707 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 2708 abort(); 2709 } 2710 process_pending_signals(env); 2711 } 2712 } 2713 #endif 2714 2715 #ifdef TARGET_OPENRISC 2716 2717 void cpu_loop(CPUOpenRISCState *env) 2718 { 2719 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2720 int trapnr, gdbsig; 2721 abi_long ret; 2722 2723 for (;;) { 2724 cpu_exec_start(cs); 2725 trapnr = cpu_exec(cs); 2726 cpu_exec_end(cs); 2727 gdbsig = 0; 2728 2729 switch (trapnr) { 2730 case EXCP_RESET: 2731 qemu_log_mask(CPU_LOG_INT, "\nReset request, exit, pc is %#x\n", env->pc); 2732 exit(EXIT_FAILURE); 2733 break; 2734 case EXCP_BUSERR: 2735 qemu_log_mask(CPU_LOG_INT, "\nBus error, exit, pc is %#x\n", env->pc); 2736 gdbsig = TARGET_SIGBUS; 2737 break; 2738 case EXCP_DPF: 2739 case EXCP_IPF: 2740 cpu_dump_state(cs, stderr, fprintf, 0); 2741 gdbsig = TARGET_SIGSEGV; 2742 break; 2743 case EXCP_TICK: 2744 qemu_log_mask(CPU_LOG_INT, "\nTick time interrupt pc is %#x\n", env->pc); 2745 break; 2746 case EXCP_ALIGN: 2747 qemu_log_mask(CPU_LOG_INT, "\nAlignment pc is %#x\n", env->pc); 2748 gdbsig = TARGET_SIGBUS; 2749 break; 2750 case EXCP_ILLEGAL: 2751 qemu_log_mask(CPU_LOG_INT, "\nIllegal instructionpc is %#x\n", env->pc); 2752 gdbsig = TARGET_SIGILL; 2753 break; 2754 case EXCP_INT: 2755 qemu_log_mask(CPU_LOG_INT, "\nExternal interruptpc is %#x\n", env->pc); 2756 break; 2757 case EXCP_DTLBMISS: 2758 case EXCP_ITLBMISS: 2759 qemu_log_mask(CPU_LOG_INT, "\nTLB miss\n"); 2760 break; 2761 case EXCP_RANGE: 2762 qemu_log_mask(CPU_LOG_INT, "\nRange\n"); 2763 gdbsig = TARGET_SIGSEGV; 2764 break; 2765 case EXCP_SYSCALL: 2766 env->pc += 4; /* 0xc00; */ 2767 ret = do_syscall(env, 2768 env->gpr[11], /* return value */ 2769 env->gpr[3], /* r3 - r7 are params */ 2770 env->gpr[4], 2771 env->gpr[5], 2772 env->gpr[6], 2773 env->gpr[7], 2774 env->gpr[8], 0, 0); 2775 if (ret == -TARGET_ERESTARTSYS) { 2776 env->pc -= 4; 2777 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2778 env->gpr[11] = ret; 2779 } 2780 break; 2781 case EXCP_FPE: 2782 qemu_log_mask(CPU_LOG_INT, "\nFloating point error\n"); 2783 break; 2784 case EXCP_TRAP: 2785 qemu_log_mask(CPU_LOG_INT, "\nTrap\n"); 2786 gdbsig = TARGET_SIGTRAP; 2787 break; 2788 case EXCP_NR: 2789 qemu_log_mask(CPU_LOG_INT, "\nNR\n"); 2790 break; 2791 default: 2792 EXCP_DUMP(env, "\nqemu: unhandled CPU exception %#x - aborting\n", 2793 trapnr); 2794 gdbsig = TARGET_SIGILL; 2795 break; 2796 } 2797 if (gdbsig) { 2798 gdb_handlesig(cs, gdbsig); 2799 if (gdbsig != TARGET_SIGTRAP) { 2800 exit(EXIT_FAILURE); 2801 } 2802 } 2803 2804 process_pending_signals(env); 2805 } 2806 } 2807 2808 #endif /* TARGET_OPENRISC */ 2809 2810 #ifdef TARGET_SH4 2811 void cpu_loop(CPUSH4State *env) 2812 { 2813 CPUState *cs = CPU(sh_env_get_cpu(env)); 2814 int trapnr, ret; 2815 target_siginfo_t info; 2816 2817 while (1) { 2818 cpu_exec_start(cs); 2819 trapnr = cpu_exec(cs); 2820 cpu_exec_end(cs); 2821 2822 switch (trapnr) { 2823 case 0x160: 2824 env->pc += 2; 2825 ret = do_syscall(env, 2826 env->gregs[3], 2827 env->gregs[4], 2828 env->gregs[5], 2829 env->gregs[6], 2830 env->gregs[7], 2831 env->gregs[0], 2832 env->gregs[1], 2833 0, 0); 2834 if (ret == -TARGET_ERESTARTSYS) { 2835 env->pc -= 2; 2836 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2837 env->gregs[0] = ret; 2838 } 2839 break; 2840 case EXCP_INTERRUPT: 2841 /* just indicate that signals should be handled asap */ 2842 break; 2843 case EXCP_DEBUG: 2844 { 2845 int sig; 2846 2847 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2848 if (sig) 2849 { 2850 info.si_signo = sig; 2851 info.si_errno = 0; 2852 info.si_code = TARGET_TRAP_BRKPT; 2853 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2854 } 2855 } 2856 break; 2857 case 0xa0: 2858 case 0xc0: 2859 info.si_signo = TARGET_SIGSEGV; 2860 info.si_errno = 0; 2861 info.si_code = TARGET_SEGV_MAPERR; 2862 info._sifields._sigfault._addr = env->tea; 2863 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2864 break; 2865 2866 default: 2867 printf ("Unhandled trap: 0x%x\n", trapnr); 2868 cpu_dump_state(cs, stderr, fprintf, 0); 2869 exit(EXIT_FAILURE); 2870 } 2871 process_pending_signals (env); 2872 } 2873 } 2874 #endif 2875 2876 #ifdef TARGET_CRIS 2877 void cpu_loop(CPUCRISState *env) 2878 { 2879 CPUState *cs = CPU(cris_env_get_cpu(env)); 2880 int trapnr, ret; 2881 target_siginfo_t info; 2882 2883 while (1) { 2884 cpu_exec_start(cs); 2885 trapnr = cpu_exec(cs); 2886 cpu_exec_end(cs); 2887 switch (trapnr) { 2888 case 0xaa: 2889 { 2890 info.si_signo = TARGET_SIGSEGV; 2891 info.si_errno = 0; 2892 /* XXX: check env->error_code */ 2893 info.si_code = TARGET_SEGV_MAPERR; 2894 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2895 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2896 } 2897 break; 2898 case EXCP_INTERRUPT: 2899 /* just indicate that signals should be handled asap */ 2900 break; 2901 case EXCP_BREAK: 2902 ret = do_syscall(env, 2903 env->regs[9], 2904 env->regs[10], 2905 env->regs[11], 2906 env->regs[12], 2907 env->regs[13], 2908 env->pregs[7], 2909 env->pregs[11], 2910 0, 0); 2911 if (ret == -TARGET_ERESTARTSYS) { 2912 env->pc -= 2; 2913 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2914 env->regs[10] = ret; 2915 } 2916 break; 2917 case EXCP_DEBUG: 2918 { 2919 int sig; 2920 2921 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2922 if (sig) 2923 { 2924 info.si_signo = sig; 2925 info.si_errno = 0; 2926 info.si_code = TARGET_TRAP_BRKPT; 2927 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2928 } 2929 } 2930 break; 2931 default: 2932 printf ("Unhandled trap: 0x%x\n", trapnr); 2933 cpu_dump_state(cs, stderr, fprintf, 0); 2934 exit(EXIT_FAILURE); 2935 } 2936 process_pending_signals (env); 2937 } 2938 } 2939 #endif 2940 2941 #ifdef TARGET_MICROBLAZE 2942 void cpu_loop(CPUMBState *env) 2943 { 2944 CPUState *cs = CPU(mb_env_get_cpu(env)); 2945 int trapnr, ret; 2946 target_siginfo_t info; 2947 2948 while (1) { 2949 cpu_exec_start(cs); 2950 trapnr = cpu_exec(cs); 2951 cpu_exec_end(cs); 2952 switch (trapnr) { 2953 case 0xaa: 2954 { 2955 info.si_signo = TARGET_SIGSEGV; 2956 info.si_errno = 0; 2957 /* XXX: check env->error_code */ 2958 info.si_code = TARGET_SEGV_MAPERR; 2959 info._sifields._sigfault._addr = 0; 2960 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 2961 } 2962 break; 2963 case EXCP_INTERRUPT: 2964 /* just indicate that signals should be handled asap */ 2965 break; 2966 case EXCP_BREAK: 2967 /* Return address is 4 bytes after the call. */ 2968 env->regs[14] += 4; 2969 env->sregs[SR_PC] = env->regs[14]; 2970 ret = do_syscall(env, 2971 env->regs[12], 2972 env->regs[5], 2973 env->regs[6], 2974 env->regs[7], 2975 env->regs[8], 2976 env->regs[9], 2977 env->regs[10], 2978 0, 0); 2979 if (ret == -TARGET_ERESTARTSYS) { 2980 /* Wind back to before the syscall. */ 2981 env->sregs[SR_PC] -= 4; 2982 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 2983 env->regs[3] = ret; 2984 } 2985 /* All syscall exits result in guest r14 being equal to the 2986 * PC we return to, because the kernel syscall exit "rtbd" does 2987 * this. (This is true even for sigreturn(); note that r14 is 2988 * not a userspace-usable register, as the kernel may clobber it 2989 * at any point.) 2990 */ 2991 env->regs[14] = env->sregs[SR_PC]; 2992 break; 2993 case EXCP_HW_EXCP: 2994 env->regs[17] = env->sregs[SR_PC] + 4; 2995 if (env->iflags & D_FLAG) { 2996 env->sregs[SR_ESR] |= 1 << 12; 2997 env->sregs[SR_PC] -= 4; 2998 /* FIXME: if branch was immed, replay the imm as well. */ 2999 } 3000 3001 env->iflags &= ~(IMM_FLAG | D_FLAG); 3002 3003 switch (env->sregs[SR_ESR] & 31) { 3004 case ESR_EC_DIVZERO: 3005 info.si_signo = TARGET_SIGFPE; 3006 info.si_errno = 0; 3007 info.si_code = TARGET_FPE_FLTDIV; 3008 info._sifields._sigfault._addr = 0; 3009 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3010 break; 3011 case ESR_EC_FPU: 3012 info.si_signo = TARGET_SIGFPE; 3013 info.si_errno = 0; 3014 if (env->sregs[SR_FSR] & FSR_IO) { 3015 info.si_code = TARGET_FPE_FLTINV; 3016 } 3017 if (env->sregs[SR_FSR] & FSR_DZ) { 3018 info.si_code = TARGET_FPE_FLTDIV; 3019 } 3020 info._sifields._sigfault._addr = 0; 3021 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3022 break; 3023 default: 3024 printf ("Unhandled hw-exception: 0x%x\n", 3025 env->sregs[SR_ESR] & ESR_EC_MASK); 3026 cpu_dump_state(cs, stderr, fprintf, 0); 3027 exit(EXIT_FAILURE); 3028 break; 3029 } 3030 break; 3031 case EXCP_DEBUG: 3032 { 3033 int sig; 3034 3035 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3036 if (sig) 3037 { 3038 info.si_signo = sig; 3039 info.si_errno = 0; 3040 info.si_code = TARGET_TRAP_BRKPT; 3041 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3042 } 3043 } 3044 break; 3045 default: 3046 printf ("Unhandled trap: 0x%x\n", trapnr); 3047 cpu_dump_state(cs, stderr, fprintf, 0); 3048 exit(EXIT_FAILURE); 3049 } 3050 process_pending_signals (env); 3051 } 3052 } 3053 #endif 3054 3055 #ifdef TARGET_M68K 3056 3057 void cpu_loop(CPUM68KState *env) 3058 { 3059 CPUState *cs = CPU(m68k_env_get_cpu(env)); 3060 int trapnr; 3061 unsigned int n; 3062 target_siginfo_t info; 3063 TaskState *ts = cs->opaque; 3064 3065 for(;;) { 3066 cpu_exec_start(cs); 3067 trapnr = cpu_exec(cs); 3068 cpu_exec_end(cs); 3069 switch(trapnr) { 3070 case EXCP_ILLEGAL: 3071 { 3072 if (ts->sim_syscalls) { 3073 uint16_t nr; 3074 get_user_u16(nr, env->pc + 2); 3075 env->pc += 4; 3076 do_m68k_simcall(env, nr); 3077 } else { 3078 goto do_sigill; 3079 } 3080 } 3081 break; 3082 case EXCP_HALT_INSN: 3083 /* Semihosing syscall. */ 3084 env->pc += 4; 3085 do_m68k_semihosting(env, env->dregs[0]); 3086 break; 3087 case EXCP_LINEA: 3088 case EXCP_LINEF: 3089 case EXCP_UNSUPPORTED: 3090 do_sigill: 3091 info.si_signo = TARGET_SIGILL; 3092 info.si_errno = 0; 3093 info.si_code = TARGET_ILL_ILLOPN; 3094 info._sifields._sigfault._addr = env->pc; 3095 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3096 break; 3097 case EXCP_TRAP0: 3098 { 3099 abi_long ret; 3100 ts->sim_syscalls = 0; 3101 n = env->dregs[0]; 3102 env->pc += 2; 3103 ret = do_syscall(env, 3104 n, 3105 env->dregs[1], 3106 env->dregs[2], 3107 env->dregs[3], 3108 env->dregs[4], 3109 env->dregs[5], 3110 env->aregs[0], 3111 0, 0); 3112 if (ret == -TARGET_ERESTARTSYS) { 3113 env->pc -= 2; 3114 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3115 env->dregs[0] = ret; 3116 } 3117 } 3118 break; 3119 case EXCP_INTERRUPT: 3120 /* just indicate that signals should be handled asap */ 3121 break; 3122 case EXCP_ACCESS: 3123 { 3124 info.si_signo = TARGET_SIGSEGV; 3125 info.si_errno = 0; 3126 /* XXX: check env->error_code */ 3127 info.si_code = TARGET_SEGV_MAPERR; 3128 info._sifields._sigfault._addr = env->mmu.ar; 3129 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3130 } 3131 break; 3132 case EXCP_DEBUG: 3133 { 3134 int sig; 3135 3136 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3137 if (sig) 3138 { 3139 info.si_signo = sig; 3140 info.si_errno = 0; 3141 info.si_code = TARGET_TRAP_BRKPT; 3142 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3143 } 3144 } 3145 break; 3146 default: 3147 EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 3148 abort(); 3149 } 3150 process_pending_signals(env); 3151 } 3152 } 3153 #endif /* TARGET_M68K */ 3154 3155 #ifdef TARGET_ALPHA 3156 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3157 { 3158 target_ulong addr, val, tmp; 3159 target_siginfo_t info; 3160 int ret = 0; 3161 3162 addr = env->lock_addr; 3163 tmp = env->lock_st_addr; 3164 env->lock_addr = -1; 3165 env->lock_st_addr = 0; 3166 3167 start_exclusive(); 3168 mmap_lock(); 3169 3170 if (addr == tmp) { 3171 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3172 goto do_sigsegv; 3173 } 3174 3175 if (val == env->lock_value) { 3176 tmp = env->ir[reg]; 3177 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3178 goto do_sigsegv; 3179 } 3180 ret = 1; 3181 } 3182 } 3183 env->ir[reg] = ret; 3184 env->pc += 4; 3185 3186 mmap_unlock(); 3187 end_exclusive(); 3188 return; 3189 3190 do_sigsegv: 3191 mmap_unlock(); 3192 end_exclusive(); 3193 3194 info.si_signo = TARGET_SIGSEGV; 3195 info.si_errno = 0; 3196 info.si_code = TARGET_SEGV_MAPERR; 3197 info._sifields._sigfault._addr = addr; 3198 queue_signal(env, TARGET_SIGSEGV, QEMU_SI_FAULT, &info); 3199 } 3200 3201 void cpu_loop(CPUAlphaState *env) 3202 { 3203 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3204 int trapnr; 3205 target_siginfo_t info; 3206 abi_long sysret; 3207 3208 while (1) { 3209 cpu_exec_start(cs); 3210 trapnr = cpu_exec(cs); 3211 cpu_exec_end(cs); 3212 3213 /* All of the traps imply a transition through PALcode, which 3214 implies an REI instruction has been executed. Which means 3215 that the intr_flag should be cleared. */ 3216 env->intr_flag = 0; 3217 3218 switch (trapnr) { 3219 case EXCP_RESET: 3220 fprintf(stderr, "Reset requested. Exit\n"); 3221 exit(EXIT_FAILURE); 3222 break; 3223 case EXCP_MCHK: 3224 fprintf(stderr, "Machine check exception. Exit\n"); 3225 exit(EXIT_FAILURE); 3226 break; 3227 case EXCP_SMP_INTERRUPT: 3228 case EXCP_CLK_INTERRUPT: 3229 case EXCP_DEV_INTERRUPT: 3230 fprintf(stderr, "External interrupt. Exit\n"); 3231 exit(EXIT_FAILURE); 3232 break; 3233 case EXCP_MMFAULT: 3234 env->lock_addr = -1; 3235 info.si_signo = TARGET_SIGSEGV; 3236 info.si_errno = 0; 3237 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3238 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3239 info._sifields._sigfault._addr = env->trap_arg0; 3240 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3241 break; 3242 case EXCP_UNALIGN: 3243 env->lock_addr = -1; 3244 info.si_signo = TARGET_SIGBUS; 3245 info.si_errno = 0; 3246 info.si_code = TARGET_BUS_ADRALN; 3247 info._sifields._sigfault._addr = env->trap_arg0; 3248 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3249 break; 3250 case EXCP_OPCDEC: 3251 do_sigill: 3252 env->lock_addr = -1; 3253 info.si_signo = TARGET_SIGILL; 3254 info.si_errno = 0; 3255 info.si_code = TARGET_ILL_ILLOPC; 3256 info._sifields._sigfault._addr = env->pc; 3257 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3258 break; 3259 case EXCP_ARITH: 3260 env->lock_addr = -1; 3261 info.si_signo = TARGET_SIGFPE; 3262 info.si_errno = 0; 3263 info.si_code = TARGET_FPE_FLTINV; 3264 info._sifields._sigfault._addr = env->pc; 3265 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3266 break; 3267 case EXCP_FEN: 3268 /* No-op. Linux simply re-enables the FPU. */ 3269 break; 3270 case EXCP_CALL_PAL: 3271 env->lock_addr = -1; 3272 switch (env->error_code) { 3273 case 0x80: 3274 /* BPT */ 3275 info.si_signo = TARGET_SIGTRAP; 3276 info.si_errno = 0; 3277 info.si_code = TARGET_TRAP_BRKPT; 3278 info._sifields._sigfault._addr = env->pc; 3279 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3280 break; 3281 case 0x81: 3282 /* BUGCHK */ 3283 info.si_signo = TARGET_SIGTRAP; 3284 info.si_errno = 0; 3285 info.si_code = 0; 3286 info._sifields._sigfault._addr = env->pc; 3287 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3288 break; 3289 case 0x83: 3290 /* CALLSYS */ 3291 trapnr = env->ir[IR_V0]; 3292 sysret = do_syscall(env, trapnr, 3293 env->ir[IR_A0], env->ir[IR_A1], 3294 env->ir[IR_A2], env->ir[IR_A3], 3295 env->ir[IR_A4], env->ir[IR_A5], 3296 0, 0); 3297 if (sysret == -TARGET_ERESTARTSYS) { 3298 env->pc -= 4; 3299 break; 3300 } 3301 if (sysret == -TARGET_QEMU_ESIGRETURN) { 3302 break; 3303 } 3304 /* Syscall writes 0 to V0 to bypass error check, similar 3305 to how this is handled internal to Linux kernel. 3306 (Ab)use trapnr temporarily as boolean indicating error. */ 3307 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3308 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3309 env->ir[IR_A3] = trapnr; 3310 break; 3311 case 0x86: 3312 /* IMB */ 3313 /* ??? We can probably elide the code using page_unprotect 3314 that is checking for self-modifying code. Instead we 3315 could simply call tb_flush here. Until we work out the 3316 changes required to turn off the extra write protection, 3317 this can be a no-op. */ 3318 break; 3319 case 0x9E: 3320 /* RDUNIQUE */ 3321 /* Handled in the translator for usermode. */ 3322 abort(); 3323 case 0x9F: 3324 /* WRUNIQUE */ 3325 /* Handled in the translator for usermode. */ 3326 abort(); 3327 case 0xAA: 3328 /* GENTRAP */ 3329 info.si_signo = TARGET_SIGFPE; 3330 switch (env->ir[IR_A0]) { 3331 case TARGET_GEN_INTOVF: 3332 info.si_code = TARGET_FPE_INTOVF; 3333 break; 3334 case TARGET_GEN_INTDIV: 3335 info.si_code = TARGET_FPE_INTDIV; 3336 break; 3337 case TARGET_GEN_FLTOVF: 3338 info.si_code = TARGET_FPE_FLTOVF; 3339 break; 3340 case TARGET_GEN_FLTUND: 3341 info.si_code = TARGET_FPE_FLTUND; 3342 break; 3343 case TARGET_GEN_FLTINV: 3344 info.si_code = TARGET_FPE_FLTINV; 3345 break; 3346 case TARGET_GEN_FLTINE: 3347 info.si_code = TARGET_FPE_FLTRES; 3348 break; 3349 case TARGET_GEN_ROPRAND: 3350 info.si_code = 0; 3351 break; 3352 default: 3353 info.si_signo = TARGET_SIGTRAP; 3354 info.si_code = 0; 3355 break; 3356 } 3357 info.si_errno = 0; 3358 info._sifields._sigfault._addr = env->pc; 3359 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3360 break; 3361 default: 3362 goto do_sigill; 3363 } 3364 break; 3365 case EXCP_DEBUG: 3366 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3367 if (info.si_signo) { 3368 env->lock_addr = -1; 3369 info.si_errno = 0; 3370 info.si_code = TARGET_TRAP_BRKPT; 3371 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3372 } 3373 break; 3374 case EXCP_STL_C: 3375 case EXCP_STQ_C: 3376 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3377 break; 3378 case EXCP_INTERRUPT: 3379 /* Just indicate that signals should be handled asap. */ 3380 break; 3381 default: 3382 printf ("Unhandled trap: 0x%x\n", trapnr); 3383 cpu_dump_state(cs, stderr, fprintf, 0); 3384 exit(EXIT_FAILURE); 3385 } 3386 process_pending_signals (env); 3387 } 3388 } 3389 #endif /* TARGET_ALPHA */ 3390 3391 #ifdef TARGET_S390X 3392 void cpu_loop(CPUS390XState *env) 3393 { 3394 CPUState *cs = CPU(s390_env_get_cpu(env)); 3395 int trapnr, n, sig; 3396 target_siginfo_t info; 3397 target_ulong addr; 3398 abi_long ret; 3399 3400 while (1) { 3401 cpu_exec_start(cs); 3402 trapnr = cpu_exec(cs); 3403 cpu_exec_end(cs); 3404 switch (trapnr) { 3405 case EXCP_INTERRUPT: 3406 /* Just indicate that signals should be handled asap. */ 3407 break; 3408 3409 case EXCP_SVC: 3410 n = env->int_svc_code; 3411 if (!n) { 3412 /* syscalls > 255 */ 3413 n = env->regs[1]; 3414 } 3415 env->psw.addr += env->int_svc_ilen; 3416 ret = do_syscall(env, n, env->regs[2], env->regs[3], 3417 env->regs[4], env->regs[5], 3418 env->regs[6], env->regs[7], 0, 0); 3419 if (ret == -TARGET_ERESTARTSYS) { 3420 env->psw.addr -= env->int_svc_ilen; 3421 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3422 env->regs[2] = ret; 3423 } 3424 break; 3425 3426 case EXCP_DEBUG: 3427 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3428 if (sig) { 3429 n = TARGET_TRAP_BRKPT; 3430 goto do_signal_pc; 3431 } 3432 break; 3433 case EXCP_PGM: 3434 n = env->int_pgm_code; 3435 switch (n) { 3436 case PGM_OPERATION: 3437 case PGM_PRIVILEGED: 3438 sig = TARGET_SIGILL; 3439 n = TARGET_ILL_ILLOPC; 3440 goto do_signal_pc; 3441 case PGM_PROTECTION: 3442 case PGM_ADDRESSING: 3443 sig = TARGET_SIGSEGV; 3444 /* XXX: check env->error_code */ 3445 n = TARGET_SEGV_MAPERR; 3446 addr = env->__excp_addr; 3447 goto do_signal; 3448 case PGM_EXECUTE: 3449 case PGM_SPECIFICATION: 3450 case PGM_SPECIAL_OP: 3451 case PGM_OPERAND: 3452 do_sigill_opn: 3453 sig = TARGET_SIGILL; 3454 n = TARGET_ILL_ILLOPN; 3455 goto do_signal_pc; 3456 3457 case PGM_FIXPT_OVERFLOW: 3458 sig = TARGET_SIGFPE; 3459 n = TARGET_FPE_INTOVF; 3460 goto do_signal_pc; 3461 case PGM_FIXPT_DIVIDE: 3462 sig = TARGET_SIGFPE; 3463 n = TARGET_FPE_INTDIV; 3464 goto do_signal_pc; 3465 3466 case PGM_DATA: 3467 n = (env->fpc >> 8) & 0xff; 3468 if (n == 0xff) { 3469 /* compare-and-trap */ 3470 goto do_sigill_opn; 3471 } else { 3472 /* An IEEE exception, simulated or otherwise. */ 3473 if (n & 0x80) { 3474 n = TARGET_FPE_FLTINV; 3475 } else if (n & 0x40) { 3476 n = TARGET_FPE_FLTDIV; 3477 } else if (n & 0x20) { 3478 n = TARGET_FPE_FLTOVF; 3479 } else if (n & 0x10) { 3480 n = TARGET_FPE_FLTUND; 3481 } else if (n & 0x08) { 3482 n = TARGET_FPE_FLTRES; 3483 } else { 3484 /* ??? Quantum exception; BFP, DFP error. */ 3485 goto do_sigill_opn; 3486 } 3487 sig = TARGET_SIGFPE; 3488 goto do_signal_pc; 3489 } 3490 3491 default: 3492 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3493 cpu_dump_state(cs, stderr, fprintf, 0); 3494 exit(EXIT_FAILURE); 3495 } 3496 break; 3497 3498 do_signal_pc: 3499 addr = env->psw.addr; 3500 do_signal: 3501 info.si_signo = sig; 3502 info.si_errno = 0; 3503 info.si_code = n; 3504 info._sifields._sigfault._addr = addr; 3505 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3506 break; 3507 3508 default: 3509 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3510 cpu_dump_state(cs, stderr, fprintf, 0); 3511 exit(EXIT_FAILURE); 3512 } 3513 process_pending_signals (env); 3514 } 3515 } 3516 3517 #endif /* TARGET_S390X */ 3518 3519 #ifdef TARGET_TILEGX 3520 3521 static void gen_sigill_reg(CPUTLGState *env) 3522 { 3523 target_siginfo_t info; 3524 3525 info.si_signo = TARGET_SIGILL; 3526 info.si_errno = 0; 3527 info.si_code = TARGET_ILL_PRVREG; 3528 info._sifields._sigfault._addr = env->pc; 3529 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3530 } 3531 3532 static void do_signal(CPUTLGState *env, int signo, int sigcode) 3533 { 3534 target_siginfo_t info; 3535 3536 info.si_signo = signo; 3537 info.si_errno = 0; 3538 info._sifields._sigfault._addr = env->pc; 3539 3540 if (signo == TARGET_SIGSEGV) { 3541 /* The passed in sigcode is a dummy; check for a page mapping 3542 and pass either MAPERR or ACCERR. */ 3543 target_ulong addr = env->excaddr; 3544 info._sifields._sigfault._addr = addr; 3545 if (page_check_range(addr, 1, PAGE_VALID) < 0) { 3546 sigcode = TARGET_SEGV_MAPERR; 3547 } else { 3548 sigcode = TARGET_SEGV_ACCERR; 3549 } 3550 } 3551 info.si_code = sigcode; 3552 3553 queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info); 3554 } 3555 3556 static void gen_sigsegv_maperr(CPUTLGState *env, target_ulong addr) 3557 { 3558 env->excaddr = addr; 3559 do_signal(env, TARGET_SIGSEGV, 0); 3560 } 3561 3562 static void set_regval(CPUTLGState *env, uint8_t reg, uint64_t val) 3563 { 3564 if (unlikely(reg >= TILEGX_R_COUNT)) { 3565 switch (reg) { 3566 case TILEGX_R_SN: 3567 case TILEGX_R_ZERO: 3568 return; 3569 case TILEGX_R_IDN0: 3570 case TILEGX_R_IDN1: 3571 case TILEGX_R_UDN0: 3572 case TILEGX_R_UDN1: 3573 case TILEGX_R_UDN2: 3574 case TILEGX_R_UDN3: 3575 gen_sigill_reg(env); 3576 return; 3577 default: 3578 g_assert_not_reached(); 3579 } 3580 } 3581 env->regs[reg] = val; 3582 } 3583 3584 /* 3585 * Compare the 8-byte contents of the CmpValue SPR with the 8-byte value in 3586 * memory at the address held in the first source register. If the values are 3587 * not equal, then no memory operation is performed. If the values are equal, 3588 * the 8-byte quantity from the second source register is written into memory 3589 * at the address held in the first source register. In either case, the result 3590 * of the instruction is the value read from memory. The compare and write to 3591 * memory are atomic and thus can be used for synchronization purposes. This 3592 * instruction only operates for addresses aligned to a 8-byte boundary. 3593 * Unaligned memory access causes an Unaligned Data Reference interrupt. 3594 * 3595 * Functional Description (64-bit) 3596 * uint64_t memVal = memoryReadDoubleWord (rf[SrcA]); 3597 * rf[Dest] = memVal; 3598 * if (memVal == SPR[CmpValueSPR]) 3599 * memoryWriteDoubleWord (rf[SrcA], rf[SrcB]); 3600 * 3601 * Functional Description (32-bit) 3602 * uint64_t memVal = signExtend32 (memoryReadWord (rf[SrcA])); 3603 * rf[Dest] = memVal; 3604 * if (memVal == signExtend32 (SPR[CmpValueSPR])) 3605 * memoryWriteWord (rf[SrcA], rf[SrcB]); 3606 * 3607 * 3608 * This function also processes exch and exch4 which need not process SPR. 3609 */ 3610 static void do_exch(CPUTLGState *env, bool quad, bool cmp) 3611 { 3612 target_ulong addr; 3613 target_long val, sprval; 3614 3615 start_exclusive(); 3616 3617 addr = env->atomic_srca; 3618 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3619 goto sigsegv_maperr; 3620 } 3621 3622 if (cmp) { 3623 if (quad) { 3624 sprval = env->spregs[TILEGX_SPR_CMPEXCH]; 3625 } else { 3626 sprval = sextract64(env->spregs[TILEGX_SPR_CMPEXCH], 0, 32); 3627 } 3628 } 3629 3630 if (!cmp || val == sprval) { 3631 target_long valb = env->atomic_srcb; 3632 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3633 goto sigsegv_maperr; 3634 } 3635 } 3636 3637 set_regval(env, env->atomic_dstr, val); 3638 end_exclusive(); 3639 return; 3640 3641 sigsegv_maperr: 3642 end_exclusive(); 3643 gen_sigsegv_maperr(env, addr); 3644 } 3645 3646 static void do_fetch(CPUTLGState *env, int trapnr, bool quad) 3647 { 3648 int8_t write = 1; 3649 target_ulong addr; 3650 target_long val, valb; 3651 3652 start_exclusive(); 3653 3654 addr = env->atomic_srca; 3655 valb = env->atomic_srcb; 3656 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3657 goto sigsegv_maperr; 3658 } 3659 3660 switch (trapnr) { 3661 case TILEGX_EXCP_OPCODE_FETCHADD: 3662 case TILEGX_EXCP_OPCODE_FETCHADD4: 3663 valb += val; 3664 break; 3665 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3666 valb += val; 3667 if (valb < 0) { 3668 write = 0; 3669 } 3670 break; 3671 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3672 valb += val; 3673 if ((int32_t)valb < 0) { 3674 write = 0; 3675 } 3676 break; 3677 case TILEGX_EXCP_OPCODE_FETCHAND: 3678 case TILEGX_EXCP_OPCODE_FETCHAND4: 3679 valb &= val; 3680 break; 3681 case TILEGX_EXCP_OPCODE_FETCHOR: 3682 case TILEGX_EXCP_OPCODE_FETCHOR4: 3683 valb |= val; 3684 break; 3685 default: 3686 g_assert_not_reached(); 3687 } 3688 3689 if (write) { 3690 if (quad ? put_user_u64(valb, addr) : put_user_u32(valb, addr)) { 3691 goto sigsegv_maperr; 3692 } 3693 } 3694 3695 set_regval(env, env->atomic_dstr, val); 3696 end_exclusive(); 3697 return; 3698 3699 sigsegv_maperr: 3700 end_exclusive(); 3701 gen_sigsegv_maperr(env, addr); 3702 } 3703 3704 void cpu_loop(CPUTLGState *env) 3705 { 3706 CPUState *cs = CPU(tilegx_env_get_cpu(env)); 3707 int trapnr; 3708 3709 while (1) { 3710 cpu_exec_start(cs); 3711 trapnr = cpu_exec(cs); 3712 cpu_exec_end(cs); 3713 switch (trapnr) { 3714 case TILEGX_EXCP_SYSCALL: 3715 { 3716 abi_ulong ret = do_syscall(env, env->regs[TILEGX_R_NR], 3717 env->regs[0], env->regs[1], 3718 env->regs[2], env->regs[3], 3719 env->regs[4], env->regs[5], 3720 env->regs[6], env->regs[7]); 3721 if (ret == -TARGET_ERESTARTSYS) { 3722 env->pc -= 8; 3723 } else if (ret != -TARGET_QEMU_ESIGRETURN) { 3724 env->regs[TILEGX_R_RE] = ret; 3725 env->regs[TILEGX_R_ERR] = TILEGX_IS_ERRNO(ret) ? -ret : 0; 3726 } 3727 break; 3728 } 3729 case TILEGX_EXCP_OPCODE_EXCH: 3730 do_exch(env, true, false); 3731 break; 3732 case TILEGX_EXCP_OPCODE_EXCH4: 3733 do_exch(env, false, false); 3734 break; 3735 case TILEGX_EXCP_OPCODE_CMPEXCH: 3736 do_exch(env, true, true); 3737 break; 3738 case TILEGX_EXCP_OPCODE_CMPEXCH4: 3739 do_exch(env, false, true); 3740 break; 3741 case TILEGX_EXCP_OPCODE_FETCHADD: 3742 case TILEGX_EXCP_OPCODE_FETCHADDGEZ: 3743 case TILEGX_EXCP_OPCODE_FETCHAND: 3744 case TILEGX_EXCP_OPCODE_FETCHOR: 3745 do_fetch(env, trapnr, true); 3746 break; 3747 case TILEGX_EXCP_OPCODE_FETCHADD4: 3748 case TILEGX_EXCP_OPCODE_FETCHADDGEZ4: 3749 case TILEGX_EXCP_OPCODE_FETCHAND4: 3750 case TILEGX_EXCP_OPCODE_FETCHOR4: 3751 do_fetch(env, trapnr, false); 3752 break; 3753 case TILEGX_EXCP_SIGNAL: 3754 do_signal(env, env->signo, env->sigcode); 3755 break; 3756 case TILEGX_EXCP_REG_IDN_ACCESS: 3757 case TILEGX_EXCP_REG_UDN_ACCESS: 3758 gen_sigill_reg(env); 3759 break; 3760 default: 3761 fprintf(stderr, "trapnr is %d[0x%x].\n", trapnr, trapnr); 3762 g_assert_not_reached(); 3763 } 3764 process_pending_signals(env); 3765 } 3766 } 3767 3768 #endif 3769 3770 THREAD CPUState *thread_cpu; 3771 3772 void task_settid(TaskState *ts) 3773 { 3774 if (ts->ts_tid == 0) { 3775 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3776 } 3777 } 3778 3779 void stop_all_tasks(void) 3780 { 3781 /* 3782 * We trust that when using NPTL, start_exclusive() 3783 * handles thread stopping correctly. 3784 */ 3785 start_exclusive(); 3786 } 3787 3788 /* Assumes contents are already zeroed. */ 3789 void init_task_state(TaskState *ts) 3790 { 3791 ts->used = 1; 3792 } 3793 3794 CPUArchState *cpu_copy(CPUArchState *env) 3795 { 3796 CPUState *cpu = ENV_GET_CPU(env); 3797 CPUState *new_cpu = cpu_init(cpu_model); 3798 CPUArchState *new_env = new_cpu->env_ptr; 3799 CPUBreakpoint *bp; 3800 CPUWatchpoint *wp; 3801 3802 /* Reset non arch specific state */ 3803 cpu_reset(new_cpu); 3804 3805 memcpy(new_env, env, sizeof(CPUArchState)); 3806 3807 /* Clone all break/watchpoints. 3808 Note: Once we support ptrace with hw-debug register access, make sure 3809 BP_CPU break/watchpoints are handled correctly on clone. */ 3810 QTAILQ_INIT(&new_cpu->breakpoints); 3811 QTAILQ_INIT(&new_cpu->watchpoints); 3812 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3813 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3814 } 3815 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3816 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3817 } 3818 3819 return new_env; 3820 } 3821 3822 static void handle_arg_help(const char *arg) 3823 { 3824 usage(EXIT_SUCCESS); 3825 } 3826 3827 static void handle_arg_log(const char *arg) 3828 { 3829 int mask; 3830 3831 mask = qemu_str_to_log_mask(arg); 3832 if (!mask) { 3833 qemu_print_log_usage(stdout); 3834 exit(EXIT_FAILURE); 3835 } 3836 qemu_log_needs_buffers(); 3837 qemu_set_log(mask); 3838 } 3839 3840 static void handle_arg_log_filename(const char *arg) 3841 { 3842 qemu_set_log_filename(arg, &error_fatal); 3843 } 3844 3845 static void handle_arg_set_env(const char *arg) 3846 { 3847 char *r, *p, *token; 3848 r = p = strdup(arg); 3849 while ((token = strsep(&p, ",")) != NULL) { 3850 if (envlist_setenv(envlist, token) != 0) { 3851 usage(EXIT_FAILURE); 3852 } 3853 } 3854 free(r); 3855 } 3856 3857 static void handle_arg_unset_env(const char *arg) 3858 { 3859 char *r, *p, *token; 3860 r = p = strdup(arg); 3861 while ((token = strsep(&p, ",")) != NULL) { 3862 if (envlist_unsetenv(envlist, token) != 0) { 3863 usage(EXIT_FAILURE); 3864 } 3865 } 3866 free(r); 3867 } 3868 3869 static void handle_arg_argv0(const char *arg) 3870 { 3871 argv0 = strdup(arg); 3872 } 3873 3874 static void handle_arg_stack_size(const char *arg) 3875 { 3876 char *p; 3877 guest_stack_size = strtoul(arg, &p, 0); 3878 if (guest_stack_size == 0) { 3879 usage(EXIT_FAILURE); 3880 } 3881 3882 if (*p == 'M') { 3883 guest_stack_size *= 1024 * 1024; 3884 } else if (*p == 'k' || *p == 'K') { 3885 guest_stack_size *= 1024; 3886 } 3887 } 3888 3889 static void handle_arg_ld_prefix(const char *arg) 3890 { 3891 interp_prefix = strdup(arg); 3892 } 3893 3894 static void handle_arg_pagesize(const char *arg) 3895 { 3896 qemu_host_page_size = atoi(arg); 3897 if (qemu_host_page_size == 0 || 3898 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3899 fprintf(stderr, "page size must be a power of two\n"); 3900 exit(EXIT_FAILURE); 3901 } 3902 } 3903 3904 static void handle_arg_randseed(const char *arg) 3905 { 3906 unsigned long long seed; 3907 3908 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3909 fprintf(stderr, "Invalid seed number: %s\n", arg); 3910 exit(EXIT_FAILURE); 3911 } 3912 srand(seed); 3913 } 3914 3915 static void handle_arg_gdb(const char *arg) 3916 { 3917 gdbstub_port = atoi(arg); 3918 } 3919 3920 static void handle_arg_uname(const char *arg) 3921 { 3922 qemu_uname_release = strdup(arg); 3923 } 3924 3925 static void handle_arg_cpu(const char *arg) 3926 { 3927 cpu_model = strdup(arg); 3928 if (cpu_model == NULL || is_help_option(cpu_model)) { 3929 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3930 #if defined(cpu_list) 3931 cpu_list(stdout, &fprintf); 3932 #endif 3933 exit(EXIT_FAILURE); 3934 } 3935 } 3936 3937 static void handle_arg_guest_base(const char *arg) 3938 { 3939 guest_base = strtol(arg, NULL, 0); 3940 have_guest_base = 1; 3941 } 3942 3943 static void handle_arg_reserved_va(const char *arg) 3944 { 3945 char *p; 3946 int shift = 0; 3947 reserved_va = strtoul(arg, &p, 0); 3948 switch (*p) { 3949 case 'k': 3950 case 'K': 3951 shift = 10; 3952 break; 3953 case 'M': 3954 shift = 20; 3955 break; 3956 case 'G': 3957 shift = 30; 3958 break; 3959 } 3960 if (shift) { 3961 unsigned long unshifted = reserved_va; 3962 p++; 3963 reserved_va <<= shift; 3964 if (((reserved_va >> shift) != unshifted) 3965 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3966 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3967 #endif 3968 ) { 3969 fprintf(stderr, "Reserved virtual address too big\n"); 3970 exit(EXIT_FAILURE); 3971 } 3972 } 3973 if (*p) { 3974 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3975 exit(EXIT_FAILURE); 3976 } 3977 } 3978 3979 static void handle_arg_singlestep(const char *arg) 3980 { 3981 singlestep = 1; 3982 } 3983 3984 static void handle_arg_strace(const char *arg) 3985 { 3986 do_strace = 1; 3987 } 3988 3989 static void handle_arg_version(const char *arg) 3990 { 3991 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3992 ", " QEMU_COPYRIGHT "\n"); 3993 exit(EXIT_SUCCESS); 3994 } 3995 3996 static char *trace_file; 3997 static void handle_arg_trace(const char *arg) 3998 { 3999 g_free(trace_file); 4000 trace_file = trace_opt_parse(arg); 4001 } 4002 4003 struct qemu_argument { 4004 const char *argv; 4005 const char *env; 4006 bool has_arg; 4007 void (*handle_opt)(const char *arg); 4008 const char *example; 4009 const char *help; 4010 }; 4011 4012 static const struct qemu_argument arg_table[] = { 4013 {"h", "", false, handle_arg_help, 4014 "", "print this help"}, 4015 {"help", "", false, handle_arg_help, 4016 "", ""}, 4017 {"g", "QEMU_GDB", true, handle_arg_gdb, 4018 "port", "wait gdb connection to 'port'"}, 4019 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 4020 "path", "set the elf interpreter prefix to 'path'"}, 4021 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 4022 "size", "set the stack size to 'size' bytes"}, 4023 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 4024 "model", "select CPU (-cpu help for list)"}, 4025 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 4026 "var=value", "sets targets environment variable (see below)"}, 4027 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 4028 "var", "unsets targets environment variable (see below)"}, 4029 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 4030 "argv0", "forces target process argv[0] to be 'argv0'"}, 4031 {"r", "QEMU_UNAME", true, handle_arg_uname, 4032 "uname", "set qemu uname release string to 'uname'"}, 4033 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 4034 "address", "set guest_base address to 'address'"}, 4035 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 4036 "size", "reserve 'size' bytes for guest virtual address space"}, 4037 {"d", "QEMU_LOG", true, handle_arg_log, 4038 "item[,...]", "enable logging of specified items " 4039 "(use '-d help' for a list of items)"}, 4040 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 4041 "logfile", "write logs to 'logfile' (default stderr)"}, 4042 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 4043 "pagesize", "set the host page size to 'pagesize'"}, 4044 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 4045 "", "run in singlestep mode"}, 4046 {"strace", "QEMU_STRACE", false, handle_arg_strace, 4047 "", "log system calls"}, 4048 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 4049 "", "Seed for pseudo-random number generator"}, 4050 {"trace", "QEMU_TRACE", true, handle_arg_trace, 4051 "", "[[enable=]<pattern>][,events=<file>][,file=<file>]"}, 4052 {"version", "QEMU_VERSION", false, handle_arg_version, 4053 "", "display version information and exit"}, 4054 {NULL, NULL, false, NULL, NULL, NULL} 4055 }; 4056 4057 static void usage(int exitcode) 4058 { 4059 const struct qemu_argument *arginfo; 4060 int maxarglen; 4061 int maxenvlen; 4062 4063 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 4064 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 4065 "\n" 4066 "Options and associated environment variables:\n" 4067 "\n"); 4068 4069 /* Calculate column widths. We must always have at least enough space 4070 * for the column header. 4071 */ 4072 maxarglen = strlen("Argument"); 4073 maxenvlen = strlen("Env-variable"); 4074 4075 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4076 int arglen = strlen(arginfo->argv); 4077 if (arginfo->has_arg) { 4078 arglen += strlen(arginfo->example) + 1; 4079 } 4080 if (strlen(arginfo->env) > maxenvlen) { 4081 maxenvlen = strlen(arginfo->env); 4082 } 4083 if (arglen > maxarglen) { 4084 maxarglen = arglen; 4085 } 4086 } 4087 4088 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 4089 maxenvlen, "Env-variable"); 4090 4091 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4092 if (arginfo->has_arg) { 4093 printf("-%s %-*s %-*s %s\n", arginfo->argv, 4094 (int)(maxarglen - strlen(arginfo->argv) - 1), 4095 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 4096 } else { 4097 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 4098 maxenvlen, arginfo->env, 4099 arginfo->help); 4100 } 4101 } 4102 4103 printf("\n" 4104 "Defaults:\n" 4105 "QEMU_LD_PREFIX = %s\n" 4106 "QEMU_STACK_SIZE = %ld byte\n", 4107 interp_prefix, 4108 guest_stack_size); 4109 4110 printf("\n" 4111 "You can use -E and -U options or the QEMU_SET_ENV and\n" 4112 "QEMU_UNSET_ENV environment variables to set and unset\n" 4113 "environment variables for the target process.\n" 4114 "It is possible to provide several variables by separating them\n" 4115 "by commas in getsubopt(3) style. Additionally it is possible to\n" 4116 "provide the -E and -U options multiple times.\n" 4117 "The following lines are equivalent:\n" 4118 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 4119 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 4120 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 4121 "Note that if you provide several changes to a single variable\n" 4122 "the last change will stay in effect.\n"); 4123 4124 exit(exitcode); 4125 } 4126 4127 static int parse_args(int argc, char **argv) 4128 { 4129 const char *r; 4130 int optind; 4131 const struct qemu_argument *arginfo; 4132 4133 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4134 if (arginfo->env == NULL) { 4135 continue; 4136 } 4137 4138 r = getenv(arginfo->env); 4139 if (r != NULL) { 4140 arginfo->handle_opt(r); 4141 } 4142 } 4143 4144 optind = 1; 4145 for (;;) { 4146 if (optind >= argc) { 4147 break; 4148 } 4149 r = argv[optind]; 4150 if (r[0] != '-') { 4151 break; 4152 } 4153 optind++; 4154 r++; 4155 if (!strcmp(r, "-")) { 4156 break; 4157 } 4158 /* Treat --foo the same as -foo. */ 4159 if (r[0] == '-') { 4160 r++; 4161 } 4162 4163 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 4164 if (!strcmp(r, arginfo->argv)) { 4165 if (arginfo->has_arg) { 4166 if (optind >= argc) { 4167 (void) fprintf(stderr, 4168 "qemu: missing argument for option '%s'\n", r); 4169 exit(EXIT_FAILURE); 4170 } 4171 arginfo->handle_opt(argv[optind]); 4172 optind++; 4173 } else { 4174 arginfo->handle_opt(NULL); 4175 } 4176 break; 4177 } 4178 } 4179 4180 /* no option matched the current argv */ 4181 if (arginfo->handle_opt == NULL) { 4182 (void) fprintf(stderr, "qemu: unknown option '%s'\n", r); 4183 exit(EXIT_FAILURE); 4184 } 4185 } 4186 4187 if (optind >= argc) { 4188 (void) fprintf(stderr, "qemu: no user program specified\n"); 4189 exit(EXIT_FAILURE); 4190 } 4191 4192 filename = argv[optind]; 4193 exec_path = argv[optind]; 4194 4195 return optind; 4196 } 4197 4198 int main(int argc, char **argv, char **envp) 4199 { 4200 struct target_pt_regs regs1, *regs = ®s1; 4201 struct image_info info1, *info = &info1; 4202 struct linux_binprm bprm; 4203 TaskState *ts; 4204 CPUArchState *env; 4205 CPUState *cpu; 4206 int optind; 4207 char **target_environ, **wrk; 4208 char **target_argv; 4209 int target_argc; 4210 int i; 4211 int ret; 4212 int execfd; 4213 4214 module_call_init(MODULE_INIT_QOM); 4215 4216 if ((envlist = envlist_create()) == NULL) { 4217 (void) fprintf(stderr, "Unable to allocate envlist\n"); 4218 exit(EXIT_FAILURE); 4219 } 4220 4221 /* add current environment into the list */ 4222 for (wrk = environ; *wrk != NULL; wrk++) { 4223 (void) envlist_setenv(envlist, *wrk); 4224 } 4225 4226 /* Read the stack limit from the kernel. If it's "unlimited", 4227 then we can do little else besides use the default. */ 4228 { 4229 struct rlimit lim; 4230 if (getrlimit(RLIMIT_STACK, &lim) == 0 4231 && lim.rlim_cur != RLIM_INFINITY 4232 && lim.rlim_cur == (target_long)lim.rlim_cur) { 4233 guest_stack_size = lim.rlim_cur; 4234 } 4235 } 4236 4237 cpu_model = NULL; 4238 4239 srand(time(NULL)); 4240 4241 qemu_add_opts(&qemu_trace_opts); 4242 4243 optind = parse_args(argc, argv); 4244 4245 if (!trace_init_backends()) { 4246 exit(1); 4247 } 4248 trace_init_file(trace_file); 4249 4250 /* Zero out regs */ 4251 memset(regs, 0, sizeof(struct target_pt_regs)); 4252 4253 /* Zero out image_info */ 4254 memset(info, 0, sizeof(struct image_info)); 4255 4256 memset(&bprm, 0, sizeof (bprm)); 4257 4258 /* Scan interp_prefix dir for replacement files. */ 4259 init_paths(interp_prefix); 4260 4261 init_qemu_uname_release(); 4262 4263 if (cpu_model == NULL) { 4264 #if defined(TARGET_I386) 4265 #ifdef TARGET_X86_64 4266 cpu_model = "qemu64"; 4267 #else 4268 cpu_model = "qemu32"; 4269 #endif 4270 #elif defined(TARGET_ARM) 4271 cpu_model = "any"; 4272 #elif defined(TARGET_UNICORE32) 4273 cpu_model = "any"; 4274 #elif defined(TARGET_M68K) 4275 cpu_model = "any"; 4276 #elif defined(TARGET_SPARC) 4277 #ifdef TARGET_SPARC64 4278 cpu_model = "TI UltraSparc II"; 4279 #else 4280 cpu_model = "Fujitsu MB86904"; 4281 #endif 4282 #elif defined(TARGET_MIPS) 4283 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 4284 cpu_model = "5KEf"; 4285 #else 4286 cpu_model = "24Kf"; 4287 #endif 4288 #elif defined TARGET_OPENRISC 4289 cpu_model = "or1200"; 4290 #elif defined(TARGET_PPC) 4291 # ifdef TARGET_PPC64 4292 cpu_model = "POWER8"; 4293 # else 4294 cpu_model = "750"; 4295 # endif 4296 #elif defined TARGET_SH4 4297 cpu_model = TYPE_SH7785_CPU; 4298 #else 4299 cpu_model = "any"; 4300 #endif 4301 } 4302 tcg_exec_init(0); 4303 /* NOTE: we need to init the CPU at this stage to get 4304 qemu_host_page_size */ 4305 cpu = cpu_init(cpu_model); 4306 if (!cpu) { 4307 fprintf(stderr, "Unable to find CPU definition\n"); 4308 exit(EXIT_FAILURE); 4309 } 4310 env = cpu->env_ptr; 4311 cpu_reset(cpu); 4312 4313 thread_cpu = cpu; 4314 4315 if (getenv("QEMU_STRACE")) { 4316 do_strace = 1; 4317 } 4318 4319 if (getenv("QEMU_RAND_SEED")) { 4320 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 4321 } 4322 4323 target_environ = envlist_to_environ(envlist, NULL); 4324 envlist_free(envlist); 4325 4326 /* 4327 * Now that page sizes are configured in cpu_init() we can do 4328 * proper page alignment for guest_base. 4329 */ 4330 guest_base = HOST_PAGE_ALIGN(guest_base); 4331 4332 if (reserved_va || have_guest_base) { 4333 guest_base = init_guest_space(guest_base, reserved_va, 0, 4334 have_guest_base); 4335 if (guest_base == (unsigned long)-1) { 4336 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 4337 "space for use as guest address space (check your virtual " 4338 "memory ulimit setting or reserve less using -R option)\n", 4339 reserved_va); 4340 exit(EXIT_FAILURE); 4341 } 4342 4343 if (reserved_va) { 4344 mmap_next_start = reserved_va; 4345 } 4346 } 4347 4348 /* 4349 * Read in mmap_min_addr kernel parameter. This value is used 4350 * When loading the ELF image to determine whether guest_base 4351 * is needed. It is also used in mmap_find_vma. 4352 */ 4353 { 4354 FILE *fp; 4355 4356 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 4357 unsigned long tmp; 4358 if (fscanf(fp, "%lu", &tmp) == 1) { 4359 mmap_min_addr = tmp; 4360 qemu_log_mask(CPU_LOG_PAGE, "host mmap_min_addr=0x%lx\n", mmap_min_addr); 4361 } 4362 fclose(fp); 4363 } 4364 } 4365 4366 /* 4367 * Prepare copy of argv vector for target. 4368 */ 4369 target_argc = argc - optind; 4370 target_argv = calloc(target_argc + 1, sizeof (char *)); 4371 if (target_argv == NULL) { 4372 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 4373 exit(EXIT_FAILURE); 4374 } 4375 4376 /* 4377 * If argv0 is specified (using '-0' switch) we replace 4378 * argv[0] pointer with the given one. 4379 */ 4380 i = 0; 4381 if (argv0 != NULL) { 4382 target_argv[i++] = strdup(argv0); 4383 } 4384 for (; i < target_argc; i++) { 4385 target_argv[i] = strdup(argv[optind + i]); 4386 } 4387 target_argv[target_argc] = NULL; 4388 4389 ts = g_new0(TaskState, 1); 4390 init_task_state(ts); 4391 /* build Task State */ 4392 ts->info = info; 4393 ts->bprm = &bprm; 4394 cpu->opaque = ts; 4395 task_settid(ts); 4396 4397 execfd = qemu_getauxval(AT_EXECFD); 4398 if (execfd == 0) { 4399 execfd = open(filename, O_RDONLY); 4400 if (execfd < 0) { 4401 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4402 _exit(EXIT_FAILURE); 4403 } 4404 } 4405 4406 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4407 info, &bprm); 4408 if (ret != 0) { 4409 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4410 _exit(EXIT_FAILURE); 4411 } 4412 4413 for (wrk = target_environ; *wrk; wrk++) { 4414 free(*wrk); 4415 } 4416 4417 free(target_environ); 4418 4419 if (qemu_loglevel_mask(CPU_LOG_PAGE)) { 4420 qemu_log("guest_base 0x%lx\n", guest_base); 4421 log_page_dump(); 4422 4423 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4424 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4425 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4426 info->start_code); 4427 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4428 info->start_data); 4429 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4430 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4431 info->start_stack); 4432 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4433 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4434 } 4435 4436 target_set_brk(info->brk); 4437 syscall_init(); 4438 signal_init(); 4439 4440 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4441 generating the prologue until now so that the prologue can take 4442 the real value of GUEST_BASE into account. */ 4443 tcg_prologue_init(&tcg_ctx); 4444 4445 #if defined(TARGET_I386) 4446 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4447 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4448 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4449 env->cr[4] |= CR4_OSFXSR_MASK; 4450 env->hflags |= HF_OSFXSR_MASK; 4451 } 4452 #ifndef TARGET_ABI32 4453 /* enable 64 bit mode if possible */ 4454 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4455 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4456 exit(EXIT_FAILURE); 4457 } 4458 env->cr[4] |= CR4_PAE_MASK; 4459 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4460 env->hflags |= HF_LMA_MASK; 4461 #endif 4462 4463 /* flags setup : we activate the IRQs by default as in user mode */ 4464 env->eflags |= IF_MASK; 4465 4466 /* linux register setup */ 4467 #ifndef TARGET_ABI32 4468 env->regs[R_EAX] = regs->rax; 4469 env->regs[R_EBX] = regs->rbx; 4470 env->regs[R_ECX] = regs->rcx; 4471 env->regs[R_EDX] = regs->rdx; 4472 env->regs[R_ESI] = regs->rsi; 4473 env->regs[R_EDI] = regs->rdi; 4474 env->regs[R_EBP] = regs->rbp; 4475 env->regs[R_ESP] = regs->rsp; 4476 env->eip = regs->rip; 4477 #else 4478 env->regs[R_EAX] = regs->eax; 4479 env->regs[R_EBX] = regs->ebx; 4480 env->regs[R_ECX] = regs->ecx; 4481 env->regs[R_EDX] = regs->edx; 4482 env->regs[R_ESI] = regs->esi; 4483 env->regs[R_EDI] = regs->edi; 4484 env->regs[R_EBP] = regs->ebp; 4485 env->regs[R_ESP] = regs->esp; 4486 env->eip = regs->eip; 4487 #endif 4488 4489 /* linux interrupt setup */ 4490 #ifndef TARGET_ABI32 4491 env->idt.limit = 511; 4492 #else 4493 env->idt.limit = 255; 4494 #endif 4495 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4496 PROT_READ|PROT_WRITE, 4497 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4498 idt_table = g2h(env->idt.base); 4499 set_idt(0, 0); 4500 set_idt(1, 0); 4501 set_idt(2, 0); 4502 set_idt(3, 3); 4503 set_idt(4, 3); 4504 set_idt(5, 0); 4505 set_idt(6, 0); 4506 set_idt(7, 0); 4507 set_idt(8, 0); 4508 set_idt(9, 0); 4509 set_idt(10, 0); 4510 set_idt(11, 0); 4511 set_idt(12, 0); 4512 set_idt(13, 0); 4513 set_idt(14, 0); 4514 set_idt(15, 0); 4515 set_idt(16, 0); 4516 set_idt(17, 0); 4517 set_idt(18, 0); 4518 set_idt(19, 0); 4519 set_idt(0x80, 3); 4520 4521 /* linux segment setup */ 4522 { 4523 uint64_t *gdt_table; 4524 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4525 PROT_READ|PROT_WRITE, 4526 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4527 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4528 gdt_table = g2h(env->gdt.base); 4529 #ifdef TARGET_ABI32 4530 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4531 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4532 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4533 #else 4534 /* 64 bit code segment */ 4535 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4536 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4537 DESC_L_MASK | 4538 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4539 #endif 4540 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4541 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4542 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4543 } 4544 cpu_x86_load_seg(env, R_CS, __USER_CS); 4545 cpu_x86_load_seg(env, R_SS, __USER_DS); 4546 #ifdef TARGET_ABI32 4547 cpu_x86_load_seg(env, R_DS, __USER_DS); 4548 cpu_x86_load_seg(env, R_ES, __USER_DS); 4549 cpu_x86_load_seg(env, R_FS, __USER_DS); 4550 cpu_x86_load_seg(env, R_GS, __USER_DS); 4551 /* This hack makes Wine work... */ 4552 env->segs[R_FS].selector = 0; 4553 #else 4554 cpu_x86_load_seg(env, R_DS, 0); 4555 cpu_x86_load_seg(env, R_ES, 0); 4556 cpu_x86_load_seg(env, R_FS, 0); 4557 cpu_x86_load_seg(env, R_GS, 0); 4558 #endif 4559 #elif defined(TARGET_AARCH64) 4560 { 4561 int i; 4562 4563 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4564 fprintf(stderr, 4565 "The selected ARM CPU does not support 64 bit mode\n"); 4566 exit(EXIT_FAILURE); 4567 } 4568 4569 for (i = 0; i < 31; i++) { 4570 env->xregs[i] = regs->regs[i]; 4571 } 4572 env->pc = regs->pc; 4573 env->xregs[31] = regs->sp; 4574 } 4575 #elif defined(TARGET_ARM) 4576 { 4577 int i; 4578 cpsr_write(env, regs->uregs[16], CPSR_USER | CPSR_EXEC, 4579 CPSRWriteByInstr); 4580 for(i = 0; i < 16; i++) { 4581 env->regs[i] = regs->uregs[i]; 4582 } 4583 #ifdef TARGET_WORDS_BIGENDIAN 4584 /* Enable BE8. */ 4585 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4586 && (info->elf_flags & EF_ARM_BE8)) { 4587 env->uncached_cpsr |= CPSR_E; 4588 env->cp15.sctlr_el[1] |= SCTLR_E0E; 4589 } else { 4590 env->cp15.sctlr_el[1] |= SCTLR_B; 4591 } 4592 #endif 4593 } 4594 #elif defined(TARGET_UNICORE32) 4595 { 4596 int i; 4597 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4598 for (i = 0; i < 32; i++) { 4599 env->regs[i] = regs->uregs[i]; 4600 } 4601 } 4602 #elif defined(TARGET_SPARC) 4603 { 4604 int i; 4605 env->pc = regs->pc; 4606 env->npc = regs->npc; 4607 env->y = regs->y; 4608 for(i = 0; i < 8; i++) 4609 env->gregs[i] = regs->u_regs[i]; 4610 for(i = 0; i < 8; i++) 4611 env->regwptr[i] = regs->u_regs[i + 8]; 4612 } 4613 #elif defined(TARGET_PPC) 4614 { 4615 int i; 4616 4617 #if defined(TARGET_PPC64) 4618 int flag = (env->insns_flags2 & PPC2_BOOKE206) ? MSR_CM : MSR_SF; 4619 #if defined(TARGET_ABI32) 4620 env->msr &= ~((target_ulong)1 << flag); 4621 #else 4622 env->msr |= (target_ulong)1 << flag; 4623 #endif 4624 #endif 4625 env->nip = regs->nip; 4626 for(i = 0; i < 32; i++) { 4627 env->gpr[i] = regs->gpr[i]; 4628 } 4629 } 4630 #elif defined(TARGET_M68K) 4631 { 4632 env->pc = regs->pc; 4633 env->dregs[0] = regs->d0; 4634 env->dregs[1] = regs->d1; 4635 env->dregs[2] = regs->d2; 4636 env->dregs[3] = regs->d3; 4637 env->dregs[4] = regs->d4; 4638 env->dregs[5] = regs->d5; 4639 env->dregs[6] = regs->d6; 4640 env->dregs[7] = regs->d7; 4641 env->aregs[0] = regs->a0; 4642 env->aregs[1] = regs->a1; 4643 env->aregs[2] = regs->a2; 4644 env->aregs[3] = regs->a3; 4645 env->aregs[4] = regs->a4; 4646 env->aregs[5] = regs->a5; 4647 env->aregs[6] = regs->a6; 4648 env->aregs[7] = regs->usp; 4649 env->sr = regs->sr; 4650 ts->sim_syscalls = 1; 4651 } 4652 #elif defined(TARGET_MICROBLAZE) 4653 { 4654 env->regs[0] = regs->r0; 4655 env->regs[1] = regs->r1; 4656 env->regs[2] = regs->r2; 4657 env->regs[3] = regs->r3; 4658 env->regs[4] = regs->r4; 4659 env->regs[5] = regs->r5; 4660 env->regs[6] = regs->r6; 4661 env->regs[7] = regs->r7; 4662 env->regs[8] = regs->r8; 4663 env->regs[9] = regs->r9; 4664 env->regs[10] = regs->r10; 4665 env->regs[11] = regs->r11; 4666 env->regs[12] = regs->r12; 4667 env->regs[13] = regs->r13; 4668 env->regs[14] = regs->r14; 4669 env->regs[15] = regs->r15; 4670 env->regs[16] = regs->r16; 4671 env->regs[17] = regs->r17; 4672 env->regs[18] = regs->r18; 4673 env->regs[19] = regs->r19; 4674 env->regs[20] = regs->r20; 4675 env->regs[21] = regs->r21; 4676 env->regs[22] = regs->r22; 4677 env->regs[23] = regs->r23; 4678 env->regs[24] = regs->r24; 4679 env->regs[25] = regs->r25; 4680 env->regs[26] = regs->r26; 4681 env->regs[27] = regs->r27; 4682 env->regs[28] = regs->r28; 4683 env->regs[29] = regs->r29; 4684 env->regs[30] = regs->r30; 4685 env->regs[31] = regs->r31; 4686 env->sregs[SR_PC] = regs->pc; 4687 } 4688 #elif defined(TARGET_MIPS) 4689 { 4690 int i; 4691 4692 for(i = 0; i < 32; i++) { 4693 env->active_tc.gpr[i] = regs->regs[i]; 4694 } 4695 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4696 if (regs->cp0_epc & 1) { 4697 env->hflags |= MIPS_HFLAG_M16; 4698 } 4699 if (((info->elf_flags & EF_MIPS_NAN2008) != 0) != 4700 ((env->active_fpu.fcr31 & (1 << FCR31_NAN2008)) != 0)) { 4701 if ((env->active_fpu.fcr31_rw_bitmask & 4702 (1 << FCR31_NAN2008)) == 0) { 4703 fprintf(stderr, "ELF binary's NaN mode not supported by CPU\n"); 4704 exit(1); 4705 } 4706 if ((info->elf_flags & EF_MIPS_NAN2008) != 0) { 4707 env->active_fpu.fcr31 |= (1 << FCR31_NAN2008); 4708 } else { 4709 env->active_fpu.fcr31 &= ~(1 << FCR31_NAN2008); 4710 } 4711 restore_snan_bit_mode(env); 4712 } 4713 } 4714 #elif defined(TARGET_OPENRISC) 4715 { 4716 int i; 4717 4718 for (i = 0; i < 32; i++) { 4719 env->gpr[i] = regs->gpr[i]; 4720 } 4721 4722 env->sr = regs->sr; 4723 env->pc = regs->pc; 4724 } 4725 #elif defined(TARGET_SH4) 4726 { 4727 int i; 4728 4729 for(i = 0; i < 16; i++) { 4730 env->gregs[i] = regs->regs[i]; 4731 } 4732 env->pc = regs->pc; 4733 } 4734 #elif defined(TARGET_ALPHA) 4735 { 4736 int i; 4737 4738 for(i = 0; i < 28; i++) { 4739 env->ir[i] = ((abi_ulong *)regs)[i]; 4740 } 4741 env->ir[IR_SP] = regs->usp; 4742 env->pc = regs->pc; 4743 } 4744 #elif defined(TARGET_CRIS) 4745 { 4746 env->regs[0] = regs->r0; 4747 env->regs[1] = regs->r1; 4748 env->regs[2] = regs->r2; 4749 env->regs[3] = regs->r3; 4750 env->regs[4] = regs->r4; 4751 env->regs[5] = regs->r5; 4752 env->regs[6] = regs->r6; 4753 env->regs[7] = regs->r7; 4754 env->regs[8] = regs->r8; 4755 env->regs[9] = regs->r9; 4756 env->regs[10] = regs->r10; 4757 env->regs[11] = regs->r11; 4758 env->regs[12] = regs->r12; 4759 env->regs[13] = regs->r13; 4760 env->regs[14] = info->start_stack; 4761 env->regs[15] = regs->acr; 4762 env->pc = regs->erp; 4763 } 4764 #elif defined(TARGET_S390X) 4765 { 4766 int i; 4767 for (i = 0; i < 16; i++) { 4768 env->regs[i] = regs->gprs[i]; 4769 } 4770 env->psw.mask = regs->psw.mask; 4771 env->psw.addr = regs->psw.addr; 4772 } 4773 #elif defined(TARGET_TILEGX) 4774 { 4775 int i; 4776 for (i = 0; i < TILEGX_R_COUNT; i++) { 4777 env->regs[i] = regs->regs[i]; 4778 } 4779 for (i = 0; i < TILEGX_SPR_COUNT; i++) { 4780 env->spregs[i] = 0; 4781 } 4782 env->pc = regs->pc; 4783 } 4784 #else 4785 #error unsupported target CPU 4786 #endif 4787 4788 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4789 ts->stack_base = info->start_stack; 4790 ts->heap_base = info->brk; 4791 /* This will be filled in on the first SYS_HEAPINFO call. */ 4792 ts->heap_limit = 0; 4793 #endif 4794 4795 if (gdbstub_port) { 4796 if (gdbserver_start(gdbstub_port) < 0) { 4797 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4798 gdbstub_port); 4799 exit(EXIT_FAILURE); 4800 } 4801 gdb_handlesig(cpu, 0); 4802 } 4803 cpu_loop(env); 4804 /* never exits */ 4805 return 0; 4806 } 4807