1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "cpu.h" 32 #include "tcg.h" 33 #include "qemu/timer.h" 34 #include "qemu/envlist.h" 35 #include "elf.h" 36 37 char *exec_path; 38 39 int singlestep; 40 const char *filename; 41 const char *argv0; 42 int gdbstub_port; 43 envlist_t *envlist; 44 static const char *cpu_model; 45 unsigned long mmap_min_addr; 46 #if defined(CONFIG_USE_GUEST_BASE) 47 unsigned long guest_base; 48 int have_guest_base; 49 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 50 /* 51 * When running 32-on-64 we should make sure we can fit all of the possible 52 * guest address space into a contiguous chunk of virtual host memory. 53 * 54 * This way we will never overlap with our own libraries or binaries or stack 55 * or anything else that QEMU maps. 56 */ 57 # ifdef TARGET_MIPS 58 /* MIPS only supports 31 bits of virtual address space for user space */ 59 unsigned long reserved_va = 0x77000000; 60 # else 61 unsigned long reserved_va = 0xf7000000; 62 # endif 63 #else 64 unsigned long reserved_va; 65 #endif 66 #endif 67 68 static void usage(void); 69 70 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 71 const char *qemu_uname_release; 72 73 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 74 we allocate a bigger stack. Need a better solution, for example 75 by remapping the process stack directly at the right place */ 76 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 77 78 void gemu_log(const char *fmt, ...) 79 { 80 va_list ap; 81 82 va_start(ap, fmt); 83 vfprintf(stderr, fmt, ap); 84 va_end(ap); 85 } 86 87 #if defined(TARGET_I386) 88 int cpu_get_pic_interrupt(CPUX86State *env) 89 { 90 return -1; 91 } 92 #endif 93 94 /***********************************************************/ 95 /* Helper routines for implementing atomic operations. */ 96 97 /* To implement exclusive operations we force all cpus to syncronise. 98 We don't require a full sync, only that no cpus are executing guest code. 99 The alternative is to map target atomic ops onto host equivalents, 100 which requires quite a lot of per host/target work. */ 101 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 102 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 103 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 104 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 105 static int pending_cpus; 106 107 /* Make sure everything is in a consistent state for calling fork(). */ 108 void fork_start(void) 109 { 110 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 111 pthread_mutex_lock(&exclusive_lock); 112 mmap_fork_start(); 113 } 114 115 void fork_end(int child) 116 { 117 mmap_fork_end(child); 118 if (child) { 119 CPUState *cpu, *next_cpu; 120 /* Child processes created by fork() only have a single thread. 121 Discard information about the parent threads. */ 122 CPU_FOREACH_SAFE(cpu, next_cpu) { 123 if (cpu != thread_cpu) { 124 QTAILQ_REMOVE(&cpus, thread_cpu, node); 125 } 126 } 127 pending_cpus = 0; 128 pthread_mutex_init(&exclusive_lock, NULL); 129 pthread_mutex_init(&cpu_list_mutex, NULL); 130 pthread_cond_init(&exclusive_cond, NULL); 131 pthread_cond_init(&exclusive_resume, NULL); 132 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL); 133 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr); 134 } else { 135 pthread_mutex_unlock(&exclusive_lock); 136 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 137 } 138 } 139 140 /* Wait for pending exclusive operations to complete. The exclusive lock 141 must be held. */ 142 static inline void exclusive_idle(void) 143 { 144 while (pending_cpus) { 145 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 146 } 147 } 148 149 /* Start an exclusive operation. 150 Must only be called from outside cpu_arm_exec. */ 151 static inline void start_exclusive(void) 152 { 153 CPUState *other_cpu; 154 155 pthread_mutex_lock(&exclusive_lock); 156 exclusive_idle(); 157 158 pending_cpus = 1; 159 /* Make all other cpus stop executing. */ 160 CPU_FOREACH(other_cpu) { 161 if (other_cpu->running) { 162 pending_cpus++; 163 cpu_exit(other_cpu); 164 } 165 } 166 if (pending_cpus > 1) { 167 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 168 } 169 } 170 171 /* Finish an exclusive operation. */ 172 static inline void end_exclusive(void) 173 { 174 pending_cpus = 0; 175 pthread_cond_broadcast(&exclusive_resume); 176 pthread_mutex_unlock(&exclusive_lock); 177 } 178 179 /* Wait for exclusive ops to finish, and begin cpu execution. */ 180 static inline void cpu_exec_start(CPUState *cpu) 181 { 182 pthread_mutex_lock(&exclusive_lock); 183 exclusive_idle(); 184 cpu->running = true; 185 pthread_mutex_unlock(&exclusive_lock); 186 } 187 188 /* Mark cpu as not executing, and release pending exclusive ops. */ 189 static inline void cpu_exec_end(CPUState *cpu) 190 { 191 pthread_mutex_lock(&exclusive_lock); 192 cpu->running = false; 193 if (pending_cpus > 1) { 194 pending_cpus--; 195 if (pending_cpus == 1) { 196 pthread_cond_signal(&exclusive_cond); 197 } 198 } 199 exclusive_idle(); 200 pthread_mutex_unlock(&exclusive_lock); 201 } 202 203 void cpu_list_lock(void) 204 { 205 pthread_mutex_lock(&cpu_list_mutex); 206 } 207 208 void cpu_list_unlock(void) 209 { 210 pthread_mutex_unlock(&cpu_list_mutex); 211 } 212 213 214 #ifdef TARGET_I386 215 /***********************************************************/ 216 /* CPUX86 core interface */ 217 218 void cpu_smm_update(CPUX86State *env) 219 { 220 } 221 222 uint64_t cpu_get_tsc(CPUX86State *env) 223 { 224 return cpu_get_real_ticks(); 225 } 226 227 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 228 int flags) 229 { 230 unsigned int e1, e2; 231 uint32_t *p; 232 e1 = (addr << 16) | (limit & 0xffff); 233 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 234 e2 |= flags; 235 p = ptr; 236 p[0] = tswap32(e1); 237 p[1] = tswap32(e2); 238 } 239 240 static uint64_t *idt_table; 241 #ifdef TARGET_X86_64 242 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 243 uint64_t addr, unsigned int sel) 244 { 245 uint32_t *p, e1, e2; 246 e1 = (addr & 0xffff) | (sel << 16); 247 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 248 p = ptr; 249 p[0] = tswap32(e1); 250 p[1] = tswap32(e2); 251 p[2] = tswap32(addr >> 32); 252 p[3] = 0; 253 } 254 /* only dpl matters as we do only user space emulation */ 255 static void set_idt(int n, unsigned int dpl) 256 { 257 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 258 } 259 #else 260 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 261 uint32_t addr, unsigned int sel) 262 { 263 uint32_t *p, e1, e2; 264 e1 = (addr & 0xffff) | (sel << 16); 265 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 266 p = ptr; 267 p[0] = tswap32(e1); 268 p[1] = tswap32(e2); 269 } 270 271 /* only dpl matters as we do only user space emulation */ 272 static void set_idt(int n, unsigned int dpl) 273 { 274 set_gate(idt_table + n, 0, dpl, 0, 0); 275 } 276 #endif 277 278 void cpu_loop(CPUX86State *env) 279 { 280 CPUState *cs = CPU(x86_env_get_cpu(env)); 281 int trapnr; 282 abi_ulong pc; 283 target_siginfo_t info; 284 285 for(;;) { 286 trapnr = cpu_x86_exec(env); 287 switch(trapnr) { 288 case 0x80: 289 /* linux syscall from int $0x80 */ 290 env->regs[R_EAX] = do_syscall(env, 291 env->regs[R_EAX], 292 env->regs[R_EBX], 293 env->regs[R_ECX], 294 env->regs[R_EDX], 295 env->regs[R_ESI], 296 env->regs[R_EDI], 297 env->regs[R_EBP], 298 0, 0); 299 break; 300 #ifndef TARGET_ABI32 301 case EXCP_SYSCALL: 302 /* linux syscall from syscall instruction */ 303 env->regs[R_EAX] = do_syscall(env, 304 env->regs[R_EAX], 305 env->regs[R_EDI], 306 env->regs[R_ESI], 307 env->regs[R_EDX], 308 env->regs[10], 309 env->regs[8], 310 env->regs[9], 311 0, 0); 312 break; 313 #endif 314 case EXCP0B_NOSEG: 315 case EXCP0C_STACK: 316 info.si_signo = SIGBUS; 317 info.si_errno = 0; 318 info.si_code = TARGET_SI_KERNEL; 319 info._sifields._sigfault._addr = 0; 320 queue_signal(env, info.si_signo, &info); 321 break; 322 case EXCP0D_GPF: 323 /* XXX: potential problem if ABI32 */ 324 #ifndef TARGET_X86_64 325 if (env->eflags & VM_MASK) { 326 handle_vm86_fault(env); 327 } else 328 #endif 329 { 330 info.si_signo = SIGSEGV; 331 info.si_errno = 0; 332 info.si_code = TARGET_SI_KERNEL; 333 info._sifields._sigfault._addr = 0; 334 queue_signal(env, info.si_signo, &info); 335 } 336 break; 337 case EXCP0E_PAGE: 338 info.si_signo = SIGSEGV; 339 info.si_errno = 0; 340 if (!(env->error_code & 1)) 341 info.si_code = TARGET_SEGV_MAPERR; 342 else 343 info.si_code = TARGET_SEGV_ACCERR; 344 info._sifields._sigfault._addr = env->cr[2]; 345 queue_signal(env, info.si_signo, &info); 346 break; 347 case EXCP00_DIVZ: 348 #ifndef TARGET_X86_64 349 if (env->eflags & VM_MASK) { 350 handle_vm86_trap(env, trapnr); 351 } else 352 #endif 353 { 354 /* division by zero */ 355 info.si_signo = SIGFPE; 356 info.si_errno = 0; 357 info.si_code = TARGET_FPE_INTDIV; 358 info._sifields._sigfault._addr = env->eip; 359 queue_signal(env, info.si_signo, &info); 360 } 361 break; 362 case EXCP01_DB: 363 case EXCP03_INT3: 364 #ifndef TARGET_X86_64 365 if (env->eflags & VM_MASK) { 366 handle_vm86_trap(env, trapnr); 367 } else 368 #endif 369 { 370 info.si_signo = SIGTRAP; 371 info.si_errno = 0; 372 if (trapnr == EXCP01_DB) { 373 info.si_code = TARGET_TRAP_BRKPT; 374 info._sifields._sigfault._addr = env->eip; 375 } else { 376 info.si_code = TARGET_SI_KERNEL; 377 info._sifields._sigfault._addr = 0; 378 } 379 queue_signal(env, info.si_signo, &info); 380 } 381 break; 382 case EXCP04_INTO: 383 case EXCP05_BOUND: 384 #ifndef TARGET_X86_64 385 if (env->eflags & VM_MASK) { 386 handle_vm86_trap(env, trapnr); 387 } else 388 #endif 389 { 390 info.si_signo = SIGSEGV; 391 info.si_errno = 0; 392 info.si_code = TARGET_SI_KERNEL; 393 info._sifields._sigfault._addr = 0; 394 queue_signal(env, info.si_signo, &info); 395 } 396 break; 397 case EXCP06_ILLOP: 398 info.si_signo = SIGILL; 399 info.si_errno = 0; 400 info.si_code = TARGET_ILL_ILLOPN; 401 info._sifields._sigfault._addr = env->eip; 402 queue_signal(env, info.si_signo, &info); 403 break; 404 case EXCP_INTERRUPT: 405 /* just indicate that signals should be handled asap */ 406 break; 407 case EXCP_DEBUG: 408 { 409 int sig; 410 411 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 412 if (sig) 413 { 414 info.si_signo = sig; 415 info.si_errno = 0; 416 info.si_code = TARGET_TRAP_BRKPT; 417 queue_signal(env, info.si_signo, &info); 418 } 419 } 420 break; 421 default: 422 pc = env->segs[R_CS].base + env->eip; 423 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 424 (long)pc, trapnr); 425 abort(); 426 } 427 process_pending_signals(env); 428 } 429 } 430 #endif 431 432 #ifdef TARGET_ARM 433 434 #define get_user_code_u32(x, gaddr, doswap) \ 435 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 436 if (!__r && (doswap)) { \ 437 (x) = bswap32(x); \ 438 } \ 439 __r; \ 440 }) 441 442 #define get_user_code_u16(x, gaddr, doswap) \ 443 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 444 if (!__r && (doswap)) { \ 445 (x) = bswap16(x); \ 446 } \ 447 __r; \ 448 }) 449 450 #ifdef TARGET_ABI32 451 /* Commpage handling -- there is no commpage for AArch64 */ 452 453 /* 454 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 455 * Input: 456 * r0 = pointer to oldval 457 * r1 = pointer to newval 458 * r2 = pointer to target value 459 * 460 * Output: 461 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 462 * C set if *ptr was changed, clear if no exchange happened 463 * 464 * Note segv's in kernel helpers are a bit tricky, we can set the 465 * data address sensibly but the PC address is just the entry point. 466 */ 467 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 468 { 469 uint64_t oldval, newval, val; 470 uint32_t addr, cpsr; 471 target_siginfo_t info; 472 473 /* Based on the 32 bit code in do_kernel_trap */ 474 475 /* XXX: This only works between threads, not between processes. 476 It's probably possible to implement this with native host 477 operations. However things like ldrex/strex are much harder so 478 there's not much point trying. */ 479 start_exclusive(); 480 cpsr = cpsr_read(env); 481 addr = env->regs[2]; 482 483 if (get_user_u64(oldval, env->regs[0])) { 484 env->exception.vaddress = env->regs[0]; 485 goto segv; 486 }; 487 488 if (get_user_u64(newval, env->regs[1])) { 489 env->exception.vaddress = env->regs[1]; 490 goto segv; 491 }; 492 493 if (get_user_u64(val, addr)) { 494 env->exception.vaddress = addr; 495 goto segv; 496 } 497 498 if (val == oldval) { 499 val = newval; 500 501 if (put_user_u64(val, addr)) { 502 env->exception.vaddress = addr; 503 goto segv; 504 }; 505 506 env->regs[0] = 0; 507 cpsr |= CPSR_C; 508 } else { 509 env->regs[0] = -1; 510 cpsr &= ~CPSR_C; 511 } 512 cpsr_write(env, cpsr, CPSR_C); 513 end_exclusive(); 514 return; 515 516 segv: 517 end_exclusive(); 518 /* We get the PC of the entry address - which is as good as anything, 519 on a real kernel what you get depends on which mode it uses. */ 520 info.si_signo = SIGSEGV; 521 info.si_errno = 0; 522 /* XXX: check env->error_code */ 523 info.si_code = TARGET_SEGV_MAPERR; 524 info._sifields._sigfault._addr = env->exception.vaddress; 525 queue_signal(env, info.si_signo, &info); 526 527 end_exclusive(); 528 } 529 530 /* Handle a jump to the kernel code page. */ 531 static int 532 do_kernel_trap(CPUARMState *env) 533 { 534 uint32_t addr; 535 uint32_t cpsr; 536 uint32_t val; 537 538 switch (env->regs[15]) { 539 case 0xffff0fa0: /* __kernel_memory_barrier */ 540 /* ??? No-op. Will need to do better for SMP. */ 541 break; 542 case 0xffff0fc0: /* __kernel_cmpxchg */ 543 /* XXX: This only works between threads, not between processes. 544 It's probably possible to implement this with native host 545 operations. However things like ldrex/strex are much harder so 546 there's not much point trying. */ 547 start_exclusive(); 548 cpsr = cpsr_read(env); 549 addr = env->regs[2]; 550 /* FIXME: This should SEGV if the access fails. */ 551 if (get_user_u32(val, addr)) 552 val = ~env->regs[0]; 553 if (val == env->regs[0]) { 554 val = env->regs[1]; 555 /* FIXME: Check for segfaults. */ 556 put_user_u32(val, addr); 557 env->regs[0] = 0; 558 cpsr |= CPSR_C; 559 } else { 560 env->regs[0] = -1; 561 cpsr &= ~CPSR_C; 562 } 563 cpsr_write(env, cpsr, CPSR_C); 564 end_exclusive(); 565 break; 566 case 0xffff0fe0: /* __kernel_get_tls */ 567 env->regs[0] = env->cp15.tpidrro_el0; 568 break; 569 case 0xffff0f60: /* __kernel_cmpxchg64 */ 570 arm_kernel_cmpxchg64_helper(env); 571 break; 572 573 default: 574 return 1; 575 } 576 /* Jump back to the caller. */ 577 addr = env->regs[14]; 578 if (addr & 1) { 579 env->thumb = 1; 580 addr &= ~1; 581 } 582 env->regs[15] = addr; 583 584 return 0; 585 } 586 587 /* Store exclusive handling for AArch32 */ 588 static int do_strex(CPUARMState *env) 589 { 590 uint64_t val; 591 int size; 592 int rc = 1; 593 int segv = 0; 594 uint32_t addr; 595 start_exclusive(); 596 if (env->exclusive_addr != env->exclusive_test) { 597 goto fail; 598 } 599 /* We know we're always AArch32 so the address is in uint32_t range 600 * unless it was the -1 exclusive-monitor-lost value (which won't 601 * match exclusive_test above). 602 */ 603 assert(extract64(env->exclusive_addr, 32, 32) == 0); 604 addr = env->exclusive_addr; 605 size = env->exclusive_info & 0xf; 606 switch (size) { 607 case 0: 608 segv = get_user_u8(val, addr); 609 break; 610 case 1: 611 segv = get_user_u16(val, addr); 612 break; 613 case 2: 614 case 3: 615 segv = get_user_u32(val, addr); 616 break; 617 default: 618 abort(); 619 } 620 if (segv) { 621 env->exception.vaddress = addr; 622 goto done; 623 } 624 if (size == 3) { 625 uint32_t valhi; 626 segv = get_user_u32(valhi, addr + 4); 627 if (segv) { 628 env->exception.vaddress = addr + 4; 629 goto done; 630 } 631 val = deposit64(val, 32, 32, valhi); 632 } 633 if (val != env->exclusive_val) { 634 goto fail; 635 } 636 637 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 638 switch (size) { 639 case 0: 640 segv = put_user_u8(val, addr); 641 break; 642 case 1: 643 segv = put_user_u16(val, addr); 644 break; 645 case 2: 646 case 3: 647 segv = put_user_u32(val, addr); 648 break; 649 } 650 if (segv) { 651 env->exception.vaddress = addr; 652 goto done; 653 } 654 if (size == 3) { 655 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 656 segv = put_user_u32(val, addr + 4); 657 if (segv) { 658 env->exception.vaddress = addr + 4; 659 goto done; 660 } 661 } 662 rc = 0; 663 fail: 664 env->regs[15] += 4; 665 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 666 done: 667 end_exclusive(); 668 return segv; 669 } 670 671 void cpu_loop(CPUARMState *env) 672 { 673 CPUState *cs = CPU(arm_env_get_cpu(env)); 674 int trapnr; 675 unsigned int n, insn; 676 target_siginfo_t info; 677 uint32_t addr; 678 679 for(;;) { 680 cpu_exec_start(cs); 681 trapnr = cpu_arm_exec(env); 682 cpu_exec_end(cs); 683 switch(trapnr) { 684 case EXCP_UDEF: 685 { 686 TaskState *ts = cs->opaque; 687 uint32_t opcode; 688 int rc; 689 690 /* we handle the FPU emulation here, as Linux */ 691 /* we get the opcode */ 692 /* FIXME - what to do if get_user() fails? */ 693 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 694 695 rc = EmulateAll(opcode, &ts->fpa, env); 696 if (rc == 0) { /* illegal instruction */ 697 info.si_signo = SIGILL; 698 info.si_errno = 0; 699 info.si_code = TARGET_ILL_ILLOPN; 700 info._sifields._sigfault._addr = env->regs[15]; 701 queue_signal(env, info.si_signo, &info); 702 } else if (rc < 0) { /* FP exception */ 703 int arm_fpe=0; 704 705 /* translate softfloat flags to FPSR flags */ 706 if (-rc & float_flag_invalid) 707 arm_fpe |= BIT_IOC; 708 if (-rc & float_flag_divbyzero) 709 arm_fpe |= BIT_DZC; 710 if (-rc & float_flag_overflow) 711 arm_fpe |= BIT_OFC; 712 if (-rc & float_flag_underflow) 713 arm_fpe |= BIT_UFC; 714 if (-rc & float_flag_inexact) 715 arm_fpe |= BIT_IXC; 716 717 FPSR fpsr = ts->fpa.fpsr; 718 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 719 720 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 721 info.si_signo = SIGFPE; 722 info.si_errno = 0; 723 724 /* ordered by priority, least first */ 725 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 726 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 727 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 728 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 729 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 730 731 info._sifields._sigfault._addr = env->regs[15]; 732 queue_signal(env, info.si_signo, &info); 733 } else { 734 env->regs[15] += 4; 735 } 736 737 /* accumulate unenabled exceptions */ 738 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 739 fpsr |= BIT_IXC; 740 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 741 fpsr |= BIT_UFC; 742 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 743 fpsr |= BIT_OFC; 744 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 745 fpsr |= BIT_DZC; 746 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 747 fpsr |= BIT_IOC; 748 ts->fpa.fpsr=fpsr; 749 } else { /* everything OK */ 750 /* increment PC */ 751 env->regs[15] += 4; 752 } 753 } 754 break; 755 case EXCP_SWI: 756 case EXCP_BKPT: 757 { 758 env->eabi = 1; 759 /* system call */ 760 if (trapnr == EXCP_BKPT) { 761 if (env->thumb) { 762 /* FIXME - what to do if get_user() fails? */ 763 get_user_code_u16(insn, env->regs[15], env->bswap_code); 764 n = insn & 0xff; 765 env->regs[15] += 2; 766 } else { 767 /* FIXME - what to do if get_user() fails? */ 768 get_user_code_u32(insn, env->regs[15], env->bswap_code); 769 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 770 env->regs[15] += 4; 771 } 772 } else { 773 if (env->thumb) { 774 /* FIXME - what to do if get_user() fails? */ 775 get_user_code_u16(insn, env->regs[15] - 2, 776 env->bswap_code); 777 n = insn & 0xff; 778 } else { 779 /* FIXME - what to do if get_user() fails? */ 780 get_user_code_u32(insn, env->regs[15] - 4, 781 env->bswap_code); 782 n = insn & 0xffffff; 783 } 784 } 785 786 if (n == ARM_NR_cacheflush) { 787 /* nop */ 788 } else if (n == ARM_NR_semihosting 789 || n == ARM_NR_thumb_semihosting) { 790 env->regs[0] = do_arm_semihosting (env); 791 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 792 /* linux syscall */ 793 if (env->thumb || n == 0) { 794 n = env->regs[7]; 795 } else { 796 n -= ARM_SYSCALL_BASE; 797 env->eabi = 0; 798 } 799 if ( n > ARM_NR_BASE) { 800 switch (n) { 801 case ARM_NR_cacheflush: 802 /* nop */ 803 break; 804 case ARM_NR_set_tls: 805 cpu_set_tls(env, env->regs[0]); 806 env->regs[0] = 0; 807 break; 808 case ARM_NR_breakpoint: 809 env->regs[15] -= env->thumb ? 2 : 4; 810 goto excp_debug; 811 default: 812 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 813 n); 814 env->regs[0] = -TARGET_ENOSYS; 815 break; 816 } 817 } else { 818 env->regs[0] = do_syscall(env, 819 n, 820 env->regs[0], 821 env->regs[1], 822 env->regs[2], 823 env->regs[3], 824 env->regs[4], 825 env->regs[5], 826 0, 0); 827 } 828 } else { 829 goto error; 830 } 831 } 832 break; 833 case EXCP_INTERRUPT: 834 /* just indicate that signals should be handled asap */ 835 break; 836 case EXCP_STREX: 837 if (!do_strex(env)) { 838 break; 839 } 840 /* fall through for segv */ 841 case EXCP_PREFETCH_ABORT: 842 case EXCP_DATA_ABORT: 843 addr = env->exception.vaddress; 844 { 845 info.si_signo = SIGSEGV; 846 info.si_errno = 0; 847 /* XXX: check env->error_code */ 848 info.si_code = TARGET_SEGV_MAPERR; 849 info._sifields._sigfault._addr = addr; 850 queue_signal(env, info.si_signo, &info); 851 } 852 break; 853 case EXCP_DEBUG: 854 excp_debug: 855 { 856 int sig; 857 858 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 859 if (sig) 860 { 861 info.si_signo = sig; 862 info.si_errno = 0; 863 info.si_code = TARGET_TRAP_BRKPT; 864 queue_signal(env, info.si_signo, &info); 865 } 866 } 867 break; 868 case EXCP_KERNEL_TRAP: 869 if (do_kernel_trap(env)) 870 goto error; 871 break; 872 default: 873 error: 874 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 875 trapnr); 876 cpu_dump_state(cs, stderr, fprintf, 0); 877 abort(); 878 } 879 process_pending_signals(env); 880 } 881 } 882 883 #else 884 885 /* 886 * Handle AArch64 store-release exclusive 887 * 888 * rs = gets the status result of store exclusive 889 * rt = is the register that is stored 890 * rt2 = is the second register store (in STP) 891 * 892 */ 893 static int do_strex_a64(CPUARMState *env) 894 { 895 uint64_t val; 896 int size; 897 bool is_pair; 898 int rc = 1; 899 int segv = 0; 900 uint64_t addr; 901 int rs, rt, rt2; 902 903 start_exclusive(); 904 /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */ 905 size = extract32(env->exclusive_info, 0, 2); 906 is_pair = extract32(env->exclusive_info, 2, 1); 907 rs = extract32(env->exclusive_info, 4, 5); 908 rt = extract32(env->exclusive_info, 9, 5); 909 rt2 = extract32(env->exclusive_info, 14, 5); 910 911 addr = env->exclusive_addr; 912 913 if (addr != env->exclusive_test) { 914 goto finish; 915 } 916 917 switch (size) { 918 case 0: 919 segv = get_user_u8(val, addr); 920 break; 921 case 1: 922 segv = get_user_u16(val, addr); 923 break; 924 case 2: 925 segv = get_user_u32(val, addr); 926 break; 927 case 3: 928 segv = get_user_u64(val, addr); 929 break; 930 default: 931 abort(); 932 } 933 if (segv) { 934 env->exception.vaddress = addr; 935 goto error; 936 } 937 if (val != env->exclusive_val) { 938 goto finish; 939 } 940 if (is_pair) { 941 if (size == 2) { 942 segv = get_user_u32(val, addr + 4); 943 } else { 944 segv = get_user_u64(val, addr + 8); 945 } 946 if (segv) { 947 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 948 goto error; 949 } 950 if (val != env->exclusive_high) { 951 goto finish; 952 } 953 } 954 /* handle the zero register */ 955 val = rt == 31 ? 0 : env->xregs[rt]; 956 switch (size) { 957 case 0: 958 segv = put_user_u8(val, addr); 959 break; 960 case 1: 961 segv = put_user_u16(val, addr); 962 break; 963 case 2: 964 segv = put_user_u32(val, addr); 965 break; 966 case 3: 967 segv = put_user_u64(val, addr); 968 break; 969 } 970 if (segv) { 971 goto error; 972 } 973 if (is_pair) { 974 /* handle the zero register */ 975 val = rt2 == 31 ? 0 : env->xregs[rt2]; 976 if (size == 2) { 977 segv = put_user_u32(val, addr + 4); 978 } else { 979 segv = put_user_u64(val, addr + 8); 980 } 981 if (segv) { 982 env->exception.vaddress = addr + (size == 2 ? 4 : 8); 983 goto error; 984 } 985 } 986 rc = 0; 987 finish: 988 env->pc += 4; 989 /* rs == 31 encodes a write to the ZR, thus throwing away 990 * the status return. This is rather silly but valid. 991 */ 992 if (rs < 31) { 993 env->xregs[rs] = rc; 994 } 995 error: 996 /* instruction faulted, PC does not advance */ 997 /* either way a strex releases any exclusive lock we have */ 998 env->exclusive_addr = -1; 999 end_exclusive(); 1000 return segv; 1001 } 1002 1003 /* AArch64 main loop */ 1004 void cpu_loop(CPUARMState *env) 1005 { 1006 CPUState *cs = CPU(arm_env_get_cpu(env)); 1007 int trapnr, sig; 1008 target_siginfo_t info; 1009 1010 for (;;) { 1011 cpu_exec_start(cs); 1012 trapnr = cpu_arm_exec(env); 1013 cpu_exec_end(cs); 1014 1015 switch (trapnr) { 1016 case EXCP_SWI: 1017 env->xregs[0] = do_syscall(env, 1018 env->xregs[8], 1019 env->xregs[0], 1020 env->xregs[1], 1021 env->xregs[2], 1022 env->xregs[3], 1023 env->xregs[4], 1024 env->xregs[5], 1025 0, 0); 1026 break; 1027 case EXCP_INTERRUPT: 1028 /* just indicate that signals should be handled asap */ 1029 break; 1030 case EXCP_UDEF: 1031 info.si_signo = SIGILL; 1032 info.si_errno = 0; 1033 info.si_code = TARGET_ILL_ILLOPN; 1034 info._sifields._sigfault._addr = env->pc; 1035 queue_signal(env, info.si_signo, &info); 1036 break; 1037 case EXCP_STREX: 1038 if (!do_strex_a64(env)) { 1039 break; 1040 } 1041 /* fall through for segv */ 1042 case EXCP_PREFETCH_ABORT: 1043 case EXCP_DATA_ABORT: 1044 info.si_signo = SIGSEGV; 1045 info.si_errno = 0; 1046 /* XXX: check env->error_code */ 1047 info.si_code = TARGET_SEGV_MAPERR; 1048 info._sifields._sigfault._addr = env->exception.vaddress; 1049 queue_signal(env, info.si_signo, &info); 1050 break; 1051 case EXCP_DEBUG: 1052 case EXCP_BKPT: 1053 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1054 if (sig) { 1055 info.si_signo = sig; 1056 info.si_errno = 0; 1057 info.si_code = TARGET_TRAP_BRKPT; 1058 queue_signal(env, info.si_signo, &info); 1059 } 1060 break; 1061 default: 1062 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 1063 trapnr); 1064 cpu_dump_state(cs, stderr, fprintf, 0); 1065 abort(); 1066 } 1067 process_pending_signals(env); 1068 /* Exception return on AArch64 always clears the exclusive monitor, 1069 * so any return to running guest code implies this. 1070 * A strex (successful or otherwise) also clears the monitor, so 1071 * we don't need to specialcase EXCP_STREX. 1072 */ 1073 env->exclusive_addr = -1; 1074 } 1075 } 1076 #endif /* ndef TARGET_ABI32 */ 1077 1078 #endif 1079 1080 #ifdef TARGET_UNICORE32 1081 1082 void cpu_loop(CPUUniCore32State *env) 1083 { 1084 CPUState *cs = CPU(uc32_env_get_cpu(env)); 1085 int trapnr; 1086 unsigned int n, insn; 1087 target_siginfo_t info; 1088 1089 for (;;) { 1090 cpu_exec_start(cs); 1091 trapnr = uc32_cpu_exec(env); 1092 cpu_exec_end(cs); 1093 switch (trapnr) { 1094 case UC32_EXCP_PRIV: 1095 { 1096 /* system call */ 1097 get_user_u32(insn, env->regs[31] - 4); 1098 n = insn & 0xffffff; 1099 1100 if (n >= UC32_SYSCALL_BASE) { 1101 /* linux syscall */ 1102 n -= UC32_SYSCALL_BASE; 1103 if (n == UC32_SYSCALL_NR_set_tls) { 1104 cpu_set_tls(env, env->regs[0]); 1105 env->regs[0] = 0; 1106 } else { 1107 env->regs[0] = do_syscall(env, 1108 n, 1109 env->regs[0], 1110 env->regs[1], 1111 env->regs[2], 1112 env->regs[3], 1113 env->regs[4], 1114 env->regs[5], 1115 0, 0); 1116 } 1117 } else { 1118 goto error; 1119 } 1120 } 1121 break; 1122 case UC32_EXCP_DTRAP: 1123 case UC32_EXCP_ITRAP: 1124 info.si_signo = SIGSEGV; 1125 info.si_errno = 0; 1126 /* XXX: check env->error_code */ 1127 info.si_code = TARGET_SEGV_MAPERR; 1128 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1129 queue_signal(env, info.si_signo, &info); 1130 break; 1131 case EXCP_INTERRUPT: 1132 /* just indicate that signals should be handled asap */ 1133 break; 1134 case EXCP_DEBUG: 1135 { 1136 int sig; 1137 1138 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1139 if (sig) { 1140 info.si_signo = sig; 1141 info.si_errno = 0; 1142 info.si_code = TARGET_TRAP_BRKPT; 1143 queue_signal(env, info.si_signo, &info); 1144 } 1145 } 1146 break; 1147 default: 1148 goto error; 1149 } 1150 process_pending_signals(env); 1151 } 1152 1153 error: 1154 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1155 cpu_dump_state(cs, stderr, fprintf, 0); 1156 abort(); 1157 } 1158 #endif 1159 1160 #ifdef TARGET_SPARC 1161 #define SPARC64_STACK_BIAS 2047 1162 1163 //#define DEBUG_WIN 1164 1165 /* WARNING: dealing with register windows _is_ complicated. More info 1166 can be found at http://www.sics.se/~psm/sparcstack.html */ 1167 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1168 { 1169 index = (index + cwp * 16) % (16 * env->nwindows); 1170 /* wrap handling : if cwp is on the last window, then we use the 1171 registers 'after' the end */ 1172 if (index < 8 && env->cwp == env->nwindows - 1) 1173 index += 16 * env->nwindows; 1174 return index; 1175 } 1176 1177 /* save the register window 'cwp1' */ 1178 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1179 { 1180 unsigned int i; 1181 abi_ulong sp_ptr; 1182 1183 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1184 #ifdef TARGET_SPARC64 1185 if (sp_ptr & 3) 1186 sp_ptr += SPARC64_STACK_BIAS; 1187 #endif 1188 #if defined(DEBUG_WIN) 1189 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1190 sp_ptr, cwp1); 1191 #endif 1192 for(i = 0; i < 16; i++) { 1193 /* FIXME - what to do if put_user() fails? */ 1194 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1195 sp_ptr += sizeof(abi_ulong); 1196 } 1197 } 1198 1199 static void save_window(CPUSPARCState *env) 1200 { 1201 #ifndef TARGET_SPARC64 1202 unsigned int new_wim; 1203 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1204 ((1LL << env->nwindows) - 1); 1205 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1206 env->wim = new_wim; 1207 #else 1208 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1209 env->cansave++; 1210 env->canrestore--; 1211 #endif 1212 } 1213 1214 static void restore_window(CPUSPARCState *env) 1215 { 1216 #ifndef TARGET_SPARC64 1217 unsigned int new_wim; 1218 #endif 1219 unsigned int i, cwp1; 1220 abi_ulong sp_ptr; 1221 1222 #ifndef TARGET_SPARC64 1223 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1224 ((1LL << env->nwindows) - 1); 1225 #endif 1226 1227 /* restore the invalid window */ 1228 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1229 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1230 #ifdef TARGET_SPARC64 1231 if (sp_ptr & 3) 1232 sp_ptr += SPARC64_STACK_BIAS; 1233 #endif 1234 #if defined(DEBUG_WIN) 1235 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1236 sp_ptr, cwp1); 1237 #endif 1238 for(i = 0; i < 16; i++) { 1239 /* FIXME - what to do if get_user() fails? */ 1240 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1241 sp_ptr += sizeof(abi_ulong); 1242 } 1243 #ifdef TARGET_SPARC64 1244 env->canrestore++; 1245 if (env->cleanwin < env->nwindows - 1) 1246 env->cleanwin++; 1247 env->cansave--; 1248 #else 1249 env->wim = new_wim; 1250 #endif 1251 } 1252 1253 static void flush_windows(CPUSPARCState *env) 1254 { 1255 int offset, cwp1; 1256 1257 offset = 1; 1258 for(;;) { 1259 /* if restore would invoke restore_window(), then we can stop */ 1260 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1261 #ifndef TARGET_SPARC64 1262 if (env->wim & (1 << cwp1)) 1263 break; 1264 #else 1265 if (env->canrestore == 0) 1266 break; 1267 env->cansave++; 1268 env->canrestore--; 1269 #endif 1270 save_window_offset(env, cwp1); 1271 offset++; 1272 } 1273 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1274 #ifndef TARGET_SPARC64 1275 /* set wim so that restore will reload the registers */ 1276 env->wim = 1 << cwp1; 1277 #endif 1278 #if defined(DEBUG_WIN) 1279 printf("flush_windows: nb=%d\n", offset - 1); 1280 #endif 1281 } 1282 1283 void cpu_loop (CPUSPARCState *env) 1284 { 1285 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1286 int trapnr; 1287 abi_long ret; 1288 target_siginfo_t info; 1289 1290 while (1) { 1291 trapnr = cpu_sparc_exec (env); 1292 1293 /* Compute PSR before exposing state. */ 1294 if (env->cc_op != CC_OP_FLAGS) { 1295 cpu_get_psr(env); 1296 } 1297 1298 switch (trapnr) { 1299 #ifndef TARGET_SPARC64 1300 case 0x88: 1301 case 0x90: 1302 #else 1303 case 0x110: 1304 case 0x16d: 1305 #endif 1306 ret = do_syscall (env, env->gregs[1], 1307 env->regwptr[0], env->regwptr[1], 1308 env->regwptr[2], env->regwptr[3], 1309 env->regwptr[4], env->regwptr[5], 1310 0, 0); 1311 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1312 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1313 env->xcc |= PSR_CARRY; 1314 #else 1315 env->psr |= PSR_CARRY; 1316 #endif 1317 ret = -ret; 1318 } else { 1319 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1320 env->xcc &= ~PSR_CARRY; 1321 #else 1322 env->psr &= ~PSR_CARRY; 1323 #endif 1324 } 1325 env->regwptr[0] = ret; 1326 /* next instruction */ 1327 env->pc = env->npc; 1328 env->npc = env->npc + 4; 1329 break; 1330 case 0x83: /* flush windows */ 1331 #ifdef TARGET_ABI32 1332 case 0x103: 1333 #endif 1334 flush_windows(env); 1335 /* next instruction */ 1336 env->pc = env->npc; 1337 env->npc = env->npc + 4; 1338 break; 1339 #ifndef TARGET_SPARC64 1340 case TT_WIN_OVF: /* window overflow */ 1341 save_window(env); 1342 break; 1343 case TT_WIN_UNF: /* window underflow */ 1344 restore_window(env); 1345 break; 1346 case TT_TFAULT: 1347 case TT_DFAULT: 1348 { 1349 info.si_signo = TARGET_SIGSEGV; 1350 info.si_errno = 0; 1351 /* XXX: check env->error_code */ 1352 info.si_code = TARGET_SEGV_MAPERR; 1353 info._sifields._sigfault._addr = env->mmuregs[4]; 1354 queue_signal(env, info.si_signo, &info); 1355 } 1356 break; 1357 #else 1358 case TT_SPILL: /* window overflow */ 1359 save_window(env); 1360 break; 1361 case TT_FILL: /* window underflow */ 1362 restore_window(env); 1363 break; 1364 case TT_TFAULT: 1365 case TT_DFAULT: 1366 { 1367 info.si_signo = TARGET_SIGSEGV; 1368 info.si_errno = 0; 1369 /* XXX: check env->error_code */ 1370 info.si_code = TARGET_SEGV_MAPERR; 1371 if (trapnr == TT_DFAULT) 1372 info._sifields._sigfault._addr = env->dmmuregs[4]; 1373 else 1374 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1375 queue_signal(env, info.si_signo, &info); 1376 } 1377 break; 1378 #ifndef TARGET_ABI32 1379 case 0x16e: 1380 flush_windows(env); 1381 sparc64_get_context(env); 1382 break; 1383 case 0x16f: 1384 flush_windows(env); 1385 sparc64_set_context(env); 1386 break; 1387 #endif 1388 #endif 1389 case EXCP_INTERRUPT: 1390 /* just indicate that signals should be handled asap */ 1391 break; 1392 case TT_ILL_INSN: 1393 { 1394 info.si_signo = TARGET_SIGILL; 1395 info.si_errno = 0; 1396 info.si_code = TARGET_ILL_ILLOPC; 1397 info._sifields._sigfault._addr = env->pc; 1398 queue_signal(env, info.si_signo, &info); 1399 } 1400 break; 1401 case EXCP_DEBUG: 1402 { 1403 int sig; 1404 1405 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1406 if (sig) 1407 { 1408 info.si_signo = sig; 1409 info.si_errno = 0; 1410 info.si_code = TARGET_TRAP_BRKPT; 1411 queue_signal(env, info.si_signo, &info); 1412 } 1413 } 1414 break; 1415 default: 1416 printf ("Unhandled trap: 0x%x\n", trapnr); 1417 cpu_dump_state(cs, stderr, fprintf, 0); 1418 exit (1); 1419 } 1420 process_pending_signals (env); 1421 } 1422 } 1423 1424 #endif 1425 1426 #ifdef TARGET_PPC 1427 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1428 { 1429 /* TO FIX */ 1430 return 0; 1431 } 1432 1433 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1434 { 1435 return cpu_ppc_get_tb(env); 1436 } 1437 1438 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1439 { 1440 return cpu_ppc_get_tb(env) >> 32; 1441 } 1442 1443 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1444 { 1445 return cpu_ppc_get_tb(env); 1446 } 1447 1448 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1449 { 1450 return cpu_ppc_get_tb(env) >> 32; 1451 } 1452 1453 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1454 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1455 1456 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1457 { 1458 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1459 } 1460 1461 /* XXX: to be fixed */ 1462 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1463 { 1464 return -1; 1465 } 1466 1467 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1468 { 1469 return -1; 1470 } 1471 1472 #define EXCP_DUMP(env, fmt, ...) \ 1473 do { \ 1474 CPUState *cs = ENV_GET_CPU(env); \ 1475 fprintf(stderr, fmt , ## __VA_ARGS__); \ 1476 cpu_dump_state(cs, stderr, fprintf, 0); \ 1477 qemu_log(fmt, ## __VA_ARGS__); \ 1478 if (qemu_log_enabled()) { \ 1479 log_cpu_state(cs, 0); \ 1480 } \ 1481 } while (0) 1482 1483 static int do_store_exclusive(CPUPPCState *env) 1484 { 1485 target_ulong addr; 1486 target_ulong page_addr; 1487 target_ulong val, val2 __attribute__((unused)) = 0; 1488 int flags; 1489 int segv = 0; 1490 1491 addr = env->reserve_ea; 1492 page_addr = addr & TARGET_PAGE_MASK; 1493 start_exclusive(); 1494 mmap_lock(); 1495 flags = page_get_flags(page_addr); 1496 if ((flags & PAGE_READ) == 0) { 1497 segv = 1; 1498 } else { 1499 int reg = env->reserve_info & 0x1f; 1500 int size = env->reserve_info >> 5; 1501 int stored = 0; 1502 1503 if (addr == env->reserve_addr) { 1504 switch (size) { 1505 case 1: segv = get_user_u8(val, addr); break; 1506 case 2: segv = get_user_u16(val, addr); break; 1507 case 4: segv = get_user_u32(val, addr); break; 1508 #if defined(TARGET_PPC64) 1509 case 8: segv = get_user_u64(val, addr); break; 1510 case 16: { 1511 segv = get_user_u64(val, addr); 1512 if (!segv) { 1513 segv = get_user_u64(val2, addr + 8); 1514 } 1515 break; 1516 } 1517 #endif 1518 default: abort(); 1519 } 1520 if (!segv && val == env->reserve_val) { 1521 val = env->gpr[reg]; 1522 switch (size) { 1523 case 1: segv = put_user_u8(val, addr); break; 1524 case 2: segv = put_user_u16(val, addr); break; 1525 case 4: segv = put_user_u32(val, addr); break; 1526 #if defined(TARGET_PPC64) 1527 case 8: segv = put_user_u64(val, addr); break; 1528 case 16: { 1529 if (val2 == env->reserve_val2) { 1530 if (msr_le) { 1531 val2 = val; 1532 val = env->gpr[reg+1]; 1533 } else { 1534 val2 = env->gpr[reg+1]; 1535 } 1536 segv = put_user_u64(val, addr); 1537 if (!segv) { 1538 segv = put_user_u64(val2, addr + 8); 1539 } 1540 } 1541 break; 1542 } 1543 #endif 1544 default: abort(); 1545 } 1546 if (!segv) { 1547 stored = 1; 1548 } 1549 } 1550 } 1551 env->crf[0] = (stored << 1) | xer_so; 1552 env->reserve_addr = (target_ulong)-1; 1553 } 1554 if (!segv) { 1555 env->nip += 4; 1556 } 1557 mmap_unlock(); 1558 end_exclusive(); 1559 return segv; 1560 } 1561 1562 void cpu_loop(CPUPPCState *env) 1563 { 1564 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1565 target_siginfo_t info; 1566 int trapnr; 1567 target_ulong ret; 1568 1569 for(;;) { 1570 cpu_exec_start(cs); 1571 trapnr = cpu_ppc_exec(env); 1572 cpu_exec_end(cs); 1573 switch(trapnr) { 1574 case POWERPC_EXCP_NONE: 1575 /* Just go on */ 1576 break; 1577 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1578 cpu_abort(cs, "Critical interrupt while in user mode. " 1579 "Aborting\n"); 1580 break; 1581 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1582 cpu_abort(cs, "Machine check exception while in user mode. " 1583 "Aborting\n"); 1584 break; 1585 case POWERPC_EXCP_DSI: /* Data storage exception */ 1586 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1587 env->spr[SPR_DAR]); 1588 /* XXX: check this. Seems bugged */ 1589 switch (env->error_code & 0xFF000000) { 1590 case 0x40000000: 1591 info.si_signo = TARGET_SIGSEGV; 1592 info.si_errno = 0; 1593 info.si_code = TARGET_SEGV_MAPERR; 1594 break; 1595 case 0x04000000: 1596 info.si_signo = TARGET_SIGILL; 1597 info.si_errno = 0; 1598 info.si_code = TARGET_ILL_ILLADR; 1599 break; 1600 case 0x08000000: 1601 info.si_signo = TARGET_SIGSEGV; 1602 info.si_errno = 0; 1603 info.si_code = TARGET_SEGV_ACCERR; 1604 break; 1605 default: 1606 /* Let's send a regular segfault... */ 1607 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1608 env->error_code); 1609 info.si_signo = TARGET_SIGSEGV; 1610 info.si_errno = 0; 1611 info.si_code = TARGET_SEGV_MAPERR; 1612 break; 1613 } 1614 info._sifields._sigfault._addr = env->nip; 1615 queue_signal(env, info.si_signo, &info); 1616 break; 1617 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1618 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1619 "\n", env->spr[SPR_SRR0]); 1620 /* XXX: check this */ 1621 switch (env->error_code & 0xFF000000) { 1622 case 0x40000000: 1623 info.si_signo = TARGET_SIGSEGV; 1624 info.si_errno = 0; 1625 info.si_code = TARGET_SEGV_MAPERR; 1626 break; 1627 case 0x10000000: 1628 case 0x08000000: 1629 info.si_signo = TARGET_SIGSEGV; 1630 info.si_errno = 0; 1631 info.si_code = TARGET_SEGV_ACCERR; 1632 break; 1633 default: 1634 /* Let's send a regular segfault... */ 1635 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1636 env->error_code); 1637 info.si_signo = TARGET_SIGSEGV; 1638 info.si_errno = 0; 1639 info.si_code = TARGET_SEGV_MAPERR; 1640 break; 1641 } 1642 info._sifields._sigfault._addr = env->nip - 4; 1643 queue_signal(env, info.si_signo, &info); 1644 break; 1645 case POWERPC_EXCP_EXTERNAL: /* External input */ 1646 cpu_abort(cs, "External interrupt while in user mode. " 1647 "Aborting\n"); 1648 break; 1649 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1650 EXCP_DUMP(env, "Unaligned memory access\n"); 1651 /* XXX: check this */ 1652 info.si_signo = TARGET_SIGBUS; 1653 info.si_errno = 0; 1654 info.si_code = TARGET_BUS_ADRALN; 1655 info._sifields._sigfault._addr = env->nip - 4; 1656 queue_signal(env, info.si_signo, &info); 1657 break; 1658 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1659 /* XXX: check this */ 1660 switch (env->error_code & ~0xF) { 1661 case POWERPC_EXCP_FP: 1662 EXCP_DUMP(env, "Floating point program exception\n"); 1663 info.si_signo = TARGET_SIGFPE; 1664 info.si_errno = 0; 1665 switch (env->error_code & 0xF) { 1666 case POWERPC_EXCP_FP_OX: 1667 info.si_code = TARGET_FPE_FLTOVF; 1668 break; 1669 case POWERPC_EXCP_FP_UX: 1670 info.si_code = TARGET_FPE_FLTUND; 1671 break; 1672 case POWERPC_EXCP_FP_ZX: 1673 case POWERPC_EXCP_FP_VXZDZ: 1674 info.si_code = TARGET_FPE_FLTDIV; 1675 break; 1676 case POWERPC_EXCP_FP_XX: 1677 info.si_code = TARGET_FPE_FLTRES; 1678 break; 1679 case POWERPC_EXCP_FP_VXSOFT: 1680 info.si_code = TARGET_FPE_FLTINV; 1681 break; 1682 case POWERPC_EXCP_FP_VXSNAN: 1683 case POWERPC_EXCP_FP_VXISI: 1684 case POWERPC_EXCP_FP_VXIDI: 1685 case POWERPC_EXCP_FP_VXIMZ: 1686 case POWERPC_EXCP_FP_VXVC: 1687 case POWERPC_EXCP_FP_VXSQRT: 1688 case POWERPC_EXCP_FP_VXCVI: 1689 info.si_code = TARGET_FPE_FLTSUB; 1690 break; 1691 default: 1692 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1693 env->error_code); 1694 break; 1695 } 1696 break; 1697 case POWERPC_EXCP_INVAL: 1698 EXCP_DUMP(env, "Invalid instruction\n"); 1699 info.si_signo = TARGET_SIGILL; 1700 info.si_errno = 0; 1701 switch (env->error_code & 0xF) { 1702 case POWERPC_EXCP_INVAL_INVAL: 1703 info.si_code = TARGET_ILL_ILLOPC; 1704 break; 1705 case POWERPC_EXCP_INVAL_LSWX: 1706 info.si_code = TARGET_ILL_ILLOPN; 1707 break; 1708 case POWERPC_EXCP_INVAL_SPR: 1709 info.si_code = TARGET_ILL_PRVREG; 1710 break; 1711 case POWERPC_EXCP_INVAL_FP: 1712 info.si_code = TARGET_ILL_COPROC; 1713 break; 1714 default: 1715 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1716 env->error_code & 0xF); 1717 info.si_code = TARGET_ILL_ILLADR; 1718 break; 1719 } 1720 break; 1721 case POWERPC_EXCP_PRIV: 1722 EXCP_DUMP(env, "Privilege violation\n"); 1723 info.si_signo = TARGET_SIGILL; 1724 info.si_errno = 0; 1725 switch (env->error_code & 0xF) { 1726 case POWERPC_EXCP_PRIV_OPC: 1727 info.si_code = TARGET_ILL_PRVOPC; 1728 break; 1729 case POWERPC_EXCP_PRIV_REG: 1730 info.si_code = TARGET_ILL_PRVREG; 1731 break; 1732 default: 1733 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1734 env->error_code & 0xF); 1735 info.si_code = TARGET_ILL_PRVOPC; 1736 break; 1737 } 1738 break; 1739 case POWERPC_EXCP_TRAP: 1740 cpu_abort(cs, "Tried to call a TRAP\n"); 1741 break; 1742 default: 1743 /* Should not happen ! */ 1744 cpu_abort(cs, "Unknown program exception (%02x)\n", 1745 env->error_code); 1746 break; 1747 } 1748 info._sifields._sigfault._addr = env->nip - 4; 1749 queue_signal(env, info.si_signo, &info); 1750 break; 1751 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1752 EXCP_DUMP(env, "No floating point allowed\n"); 1753 info.si_signo = TARGET_SIGILL; 1754 info.si_errno = 0; 1755 info.si_code = TARGET_ILL_COPROC; 1756 info._sifields._sigfault._addr = env->nip - 4; 1757 queue_signal(env, info.si_signo, &info); 1758 break; 1759 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1760 cpu_abort(cs, "Syscall exception while in user mode. " 1761 "Aborting\n"); 1762 break; 1763 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1764 EXCP_DUMP(env, "No APU instruction allowed\n"); 1765 info.si_signo = TARGET_SIGILL; 1766 info.si_errno = 0; 1767 info.si_code = TARGET_ILL_COPROC; 1768 info._sifields._sigfault._addr = env->nip - 4; 1769 queue_signal(env, info.si_signo, &info); 1770 break; 1771 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1772 cpu_abort(cs, "Decrementer interrupt while in user mode. " 1773 "Aborting\n"); 1774 break; 1775 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1776 cpu_abort(cs, "Fix interval timer interrupt while in user mode. " 1777 "Aborting\n"); 1778 break; 1779 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1780 cpu_abort(cs, "Watchdog timer interrupt while in user mode. " 1781 "Aborting\n"); 1782 break; 1783 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1784 cpu_abort(cs, "Data TLB exception while in user mode. " 1785 "Aborting\n"); 1786 break; 1787 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1788 cpu_abort(cs, "Instruction TLB exception while in user mode. " 1789 "Aborting\n"); 1790 break; 1791 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1792 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1793 info.si_signo = TARGET_SIGILL; 1794 info.si_errno = 0; 1795 info.si_code = TARGET_ILL_COPROC; 1796 info._sifields._sigfault._addr = env->nip - 4; 1797 queue_signal(env, info.si_signo, &info); 1798 break; 1799 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1800 cpu_abort(cs, "Embedded floating-point data IRQ not handled\n"); 1801 break; 1802 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1803 cpu_abort(cs, "Embedded floating-point round IRQ not handled\n"); 1804 break; 1805 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1806 cpu_abort(cs, "Performance monitor exception not handled\n"); 1807 break; 1808 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1809 cpu_abort(cs, "Doorbell interrupt while in user mode. " 1810 "Aborting\n"); 1811 break; 1812 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1813 cpu_abort(cs, "Doorbell critical interrupt while in user mode. " 1814 "Aborting\n"); 1815 break; 1816 case POWERPC_EXCP_RESET: /* System reset exception */ 1817 cpu_abort(cs, "Reset interrupt while in user mode. " 1818 "Aborting\n"); 1819 break; 1820 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1821 cpu_abort(cs, "Data segment exception while in user mode. " 1822 "Aborting\n"); 1823 break; 1824 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1825 cpu_abort(cs, "Instruction segment exception " 1826 "while in user mode. Aborting\n"); 1827 break; 1828 /* PowerPC 64 with hypervisor mode support */ 1829 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1830 cpu_abort(cs, "Hypervisor decrementer interrupt " 1831 "while in user mode. Aborting\n"); 1832 break; 1833 case POWERPC_EXCP_TRACE: /* Trace exception */ 1834 /* Nothing to do: 1835 * we use this exception to emulate step-by-step execution mode. 1836 */ 1837 break; 1838 /* PowerPC 64 with hypervisor mode support */ 1839 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1840 cpu_abort(cs, "Hypervisor data storage exception " 1841 "while in user mode. Aborting\n"); 1842 break; 1843 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1844 cpu_abort(cs, "Hypervisor instruction storage exception " 1845 "while in user mode. Aborting\n"); 1846 break; 1847 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1848 cpu_abort(cs, "Hypervisor data segment exception " 1849 "while in user mode. Aborting\n"); 1850 break; 1851 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1852 cpu_abort(cs, "Hypervisor instruction segment exception " 1853 "while in user mode. Aborting\n"); 1854 break; 1855 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1856 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1857 info.si_signo = TARGET_SIGILL; 1858 info.si_errno = 0; 1859 info.si_code = TARGET_ILL_COPROC; 1860 info._sifields._sigfault._addr = env->nip - 4; 1861 queue_signal(env, info.si_signo, &info); 1862 break; 1863 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1864 cpu_abort(cs, "Programmable interval timer interrupt " 1865 "while in user mode. Aborting\n"); 1866 break; 1867 case POWERPC_EXCP_IO: /* IO error exception */ 1868 cpu_abort(cs, "IO error exception while in user mode. " 1869 "Aborting\n"); 1870 break; 1871 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1872 cpu_abort(cs, "Run mode exception while in user mode. " 1873 "Aborting\n"); 1874 break; 1875 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1876 cpu_abort(cs, "Emulation trap exception not handled\n"); 1877 break; 1878 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1879 cpu_abort(cs, "Instruction fetch TLB exception " 1880 "while in user-mode. Aborting"); 1881 break; 1882 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1883 cpu_abort(cs, "Data load TLB exception while in user-mode. " 1884 "Aborting"); 1885 break; 1886 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1887 cpu_abort(cs, "Data store TLB exception while in user-mode. " 1888 "Aborting"); 1889 break; 1890 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1891 cpu_abort(cs, "Floating-point assist exception not handled\n"); 1892 break; 1893 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1894 cpu_abort(cs, "Instruction address breakpoint exception " 1895 "not handled\n"); 1896 break; 1897 case POWERPC_EXCP_SMI: /* System management interrupt */ 1898 cpu_abort(cs, "System management interrupt while in user mode. " 1899 "Aborting\n"); 1900 break; 1901 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1902 cpu_abort(cs, "Thermal interrupt interrupt while in user mode. " 1903 "Aborting\n"); 1904 break; 1905 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1906 cpu_abort(cs, "Performance monitor exception not handled\n"); 1907 break; 1908 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1909 cpu_abort(cs, "Vector assist exception not handled\n"); 1910 break; 1911 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1912 cpu_abort(cs, "Soft patch exception not handled\n"); 1913 break; 1914 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1915 cpu_abort(cs, "Maintenance exception while in user mode. " 1916 "Aborting\n"); 1917 break; 1918 case POWERPC_EXCP_STOP: /* stop translation */ 1919 /* We did invalidate the instruction cache. Go on */ 1920 break; 1921 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1922 /* We just stopped because of a branch. Go on */ 1923 break; 1924 case POWERPC_EXCP_SYSCALL_USER: 1925 /* system call in user-mode emulation */ 1926 /* WARNING: 1927 * PPC ABI uses overflow flag in cr0 to signal an error 1928 * in syscalls. 1929 */ 1930 env->crf[0] &= ~0x1; 1931 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1932 env->gpr[5], env->gpr[6], env->gpr[7], 1933 env->gpr[8], 0, 0); 1934 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1935 /* Returning from a successful sigreturn syscall. 1936 Avoid corrupting register state. */ 1937 break; 1938 } 1939 if (ret > (target_ulong)(-515)) { 1940 env->crf[0] |= 0x1; 1941 ret = -ret; 1942 } 1943 env->gpr[3] = ret; 1944 break; 1945 case POWERPC_EXCP_STCX: 1946 if (do_store_exclusive(env)) { 1947 info.si_signo = TARGET_SIGSEGV; 1948 info.si_errno = 0; 1949 info.si_code = TARGET_SEGV_MAPERR; 1950 info._sifields._sigfault._addr = env->nip; 1951 queue_signal(env, info.si_signo, &info); 1952 } 1953 break; 1954 case EXCP_DEBUG: 1955 { 1956 int sig; 1957 1958 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1959 if (sig) { 1960 info.si_signo = sig; 1961 info.si_errno = 0; 1962 info.si_code = TARGET_TRAP_BRKPT; 1963 queue_signal(env, info.si_signo, &info); 1964 } 1965 } 1966 break; 1967 case EXCP_INTERRUPT: 1968 /* just indicate that signals should be handled asap */ 1969 break; 1970 default: 1971 cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr); 1972 break; 1973 } 1974 process_pending_signals(env); 1975 } 1976 } 1977 #endif 1978 1979 #ifdef TARGET_MIPS 1980 1981 # ifdef TARGET_ABI_MIPSO32 1982 # define MIPS_SYS(name, args) args, 1983 static const uint8_t mips_syscall_args[] = { 1984 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1985 MIPS_SYS(sys_exit , 1) 1986 MIPS_SYS(sys_fork , 0) 1987 MIPS_SYS(sys_read , 3) 1988 MIPS_SYS(sys_write , 3) 1989 MIPS_SYS(sys_open , 3) /* 4005 */ 1990 MIPS_SYS(sys_close , 1) 1991 MIPS_SYS(sys_waitpid , 3) 1992 MIPS_SYS(sys_creat , 2) 1993 MIPS_SYS(sys_link , 2) 1994 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1995 MIPS_SYS(sys_execve , 0) 1996 MIPS_SYS(sys_chdir , 1) 1997 MIPS_SYS(sys_time , 1) 1998 MIPS_SYS(sys_mknod , 3) 1999 MIPS_SYS(sys_chmod , 2) /* 4015 */ 2000 MIPS_SYS(sys_lchown , 3) 2001 MIPS_SYS(sys_ni_syscall , 0) 2002 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 2003 MIPS_SYS(sys_lseek , 3) 2004 MIPS_SYS(sys_getpid , 0) /* 4020 */ 2005 MIPS_SYS(sys_mount , 5) 2006 MIPS_SYS(sys_umount , 1) 2007 MIPS_SYS(sys_setuid , 1) 2008 MIPS_SYS(sys_getuid , 0) 2009 MIPS_SYS(sys_stime , 1) /* 4025 */ 2010 MIPS_SYS(sys_ptrace , 4) 2011 MIPS_SYS(sys_alarm , 1) 2012 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 2013 MIPS_SYS(sys_pause , 0) 2014 MIPS_SYS(sys_utime , 2) /* 4030 */ 2015 MIPS_SYS(sys_ni_syscall , 0) 2016 MIPS_SYS(sys_ni_syscall , 0) 2017 MIPS_SYS(sys_access , 2) 2018 MIPS_SYS(sys_nice , 1) 2019 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 2020 MIPS_SYS(sys_sync , 0) 2021 MIPS_SYS(sys_kill , 2) 2022 MIPS_SYS(sys_rename , 2) 2023 MIPS_SYS(sys_mkdir , 2) 2024 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 2025 MIPS_SYS(sys_dup , 1) 2026 MIPS_SYS(sys_pipe , 0) 2027 MIPS_SYS(sys_times , 1) 2028 MIPS_SYS(sys_ni_syscall , 0) 2029 MIPS_SYS(sys_brk , 1) /* 4045 */ 2030 MIPS_SYS(sys_setgid , 1) 2031 MIPS_SYS(sys_getgid , 0) 2032 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 2033 MIPS_SYS(sys_geteuid , 0) 2034 MIPS_SYS(sys_getegid , 0) /* 4050 */ 2035 MIPS_SYS(sys_acct , 0) 2036 MIPS_SYS(sys_umount2 , 2) 2037 MIPS_SYS(sys_ni_syscall , 0) 2038 MIPS_SYS(sys_ioctl , 3) 2039 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 2040 MIPS_SYS(sys_ni_syscall , 2) 2041 MIPS_SYS(sys_setpgid , 2) 2042 MIPS_SYS(sys_ni_syscall , 0) 2043 MIPS_SYS(sys_olduname , 1) 2044 MIPS_SYS(sys_umask , 1) /* 4060 */ 2045 MIPS_SYS(sys_chroot , 1) 2046 MIPS_SYS(sys_ustat , 2) 2047 MIPS_SYS(sys_dup2 , 2) 2048 MIPS_SYS(sys_getppid , 0) 2049 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 2050 MIPS_SYS(sys_setsid , 0) 2051 MIPS_SYS(sys_sigaction , 3) 2052 MIPS_SYS(sys_sgetmask , 0) 2053 MIPS_SYS(sys_ssetmask , 1) 2054 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 2055 MIPS_SYS(sys_setregid , 2) 2056 MIPS_SYS(sys_sigsuspend , 0) 2057 MIPS_SYS(sys_sigpending , 1) 2058 MIPS_SYS(sys_sethostname , 2) 2059 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 2060 MIPS_SYS(sys_getrlimit , 2) 2061 MIPS_SYS(sys_getrusage , 2) 2062 MIPS_SYS(sys_gettimeofday, 2) 2063 MIPS_SYS(sys_settimeofday, 2) 2064 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 2065 MIPS_SYS(sys_setgroups , 2) 2066 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 2067 MIPS_SYS(sys_symlink , 2) 2068 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 2069 MIPS_SYS(sys_readlink , 3) /* 4085 */ 2070 MIPS_SYS(sys_uselib , 1) 2071 MIPS_SYS(sys_swapon , 2) 2072 MIPS_SYS(sys_reboot , 3) 2073 MIPS_SYS(old_readdir , 3) 2074 MIPS_SYS(old_mmap , 6) /* 4090 */ 2075 MIPS_SYS(sys_munmap , 2) 2076 MIPS_SYS(sys_truncate , 2) 2077 MIPS_SYS(sys_ftruncate , 2) 2078 MIPS_SYS(sys_fchmod , 2) 2079 MIPS_SYS(sys_fchown , 3) /* 4095 */ 2080 MIPS_SYS(sys_getpriority , 2) 2081 MIPS_SYS(sys_setpriority , 3) 2082 MIPS_SYS(sys_ni_syscall , 0) 2083 MIPS_SYS(sys_statfs , 2) 2084 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 2085 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 2086 MIPS_SYS(sys_socketcall , 2) 2087 MIPS_SYS(sys_syslog , 3) 2088 MIPS_SYS(sys_setitimer , 3) 2089 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 2090 MIPS_SYS(sys_newstat , 2) 2091 MIPS_SYS(sys_newlstat , 2) 2092 MIPS_SYS(sys_newfstat , 2) 2093 MIPS_SYS(sys_uname , 1) 2094 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 2095 MIPS_SYS(sys_vhangup , 0) 2096 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 2097 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 2098 MIPS_SYS(sys_wait4 , 4) 2099 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 2100 MIPS_SYS(sys_sysinfo , 1) 2101 MIPS_SYS(sys_ipc , 6) 2102 MIPS_SYS(sys_fsync , 1) 2103 MIPS_SYS(sys_sigreturn , 0) 2104 MIPS_SYS(sys_clone , 6) /* 4120 */ 2105 MIPS_SYS(sys_setdomainname, 2) 2106 MIPS_SYS(sys_newuname , 1) 2107 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 2108 MIPS_SYS(sys_adjtimex , 1) 2109 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 2110 MIPS_SYS(sys_sigprocmask , 3) 2111 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 2112 MIPS_SYS(sys_init_module , 5) 2113 MIPS_SYS(sys_delete_module, 1) 2114 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 2115 MIPS_SYS(sys_quotactl , 0) 2116 MIPS_SYS(sys_getpgid , 1) 2117 MIPS_SYS(sys_fchdir , 1) 2118 MIPS_SYS(sys_bdflush , 2) 2119 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 2120 MIPS_SYS(sys_personality , 1) 2121 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 2122 MIPS_SYS(sys_setfsuid , 1) 2123 MIPS_SYS(sys_setfsgid , 1) 2124 MIPS_SYS(sys_llseek , 5) /* 4140 */ 2125 MIPS_SYS(sys_getdents , 3) 2126 MIPS_SYS(sys_select , 5) 2127 MIPS_SYS(sys_flock , 2) 2128 MIPS_SYS(sys_msync , 3) 2129 MIPS_SYS(sys_readv , 3) /* 4145 */ 2130 MIPS_SYS(sys_writev , 3) 2131 MIPS_SYS(sys_cacheflush , 3) 2132 MIPS_SYS(sys_cachectl , 3) 2133 MIPS_SYS(sys_sysmips , 4) 2134 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 2135 MIPS_SYS(sys_getsid , 1) 2136 MIPS_SYS(sys_fdatasync , 0) 2137 MIPS_SYS(sys_sysctl , 1) 2138 MIPS_SYS(sys_mlock , 2) 2139 MIPS_SYS(sys_munlock , 2) /* 4155 */ 2140 MIPS_SYS(sys_mlockall , 1) 2141 MIPS_SYS(sys_munlockall , 0) 2142 MIPS_SYS(sys_sched_setparam, 2) 2143 MIPS_SYS(sys_sched_getparam, 2) 2144 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2145 MIPS_SYS(sys_sched_getscheduler, 1) 2146 MIPS_SYS(sys_sched_yield , 0) 2147 MIPS_SYS(sys_sched_get_priority_max, 1) 2148 MIPS_SYS(sys_sched_get_priority_min, 1) 2149 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2150 MIPS_SYS(sys_nanosleep, 2) 2151 MIPS_SYS(sys_mremap , 5) 2152 MIPS_SYS(sys_accept , 3) 2153 MIPS_SYS(sys_bind , 3) 2154 MIPS_SYS(sys_connect , 3) /* 4170 */ 2155 MIPS_SYS(sys_getpeername , 3) 2156 MIPS_SYS(sys_getsockname , 3) 2157 MIPS_SYS(sys_getsockopt , 5) 2158 MIPS_SYS(sys_listen , 2) 2159 MIPS_SYS(sys_recv , 4) /* 4175 */ 2160 MIPS_SYS(sys_recvfrom , 6) 2161 MIPS_SYS(sys_recvmsg , 3) 2162 MIPS_SYS(sys_send , 4) 2163 MIPS_SYS(sys_sendmsg , 3) 2164 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2165 MIPS_SYS(sys_setsockopt , 5) 2166 MIPS_SYS(sys_shutdown , 2) 2167 MIPS_SYS(sys_socket , 3) 2168 MIPS_SYS(sys_socketpair , 4) 2169 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2170 MIPS_SYS(sys_getresuid , 3) 2171 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2172 MIPS_SYS(sys_poll , 3) 2173 MIPS_SYS(sys_nfsservctl , 3) 2174 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2175 MIPS_SYS(sys_getresgid , 3) 2176 MIPS_SYS(sys_prctl , 5) 2177 MIPS_SYS(sys_rt_sigreturn, 0) 2178 MIPS_SYS(sys_rt_sigaction, 4) 2179 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2180 MIPS_SYS(sys_rt_sigpending, 2) 2181 MIPS_SYS(sys_rt_sigtimedwait, 4) 2182 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2183 MIPS_SYS(sys_rt_sigsuspend, 0) 2184 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2185 MIPS_SYS(sys_pwrite64 , 6) 2186 MIPS_SYS(sys_chown , 3) 2187 MIPS_SYS(sys_getcwd , 2) 2188 MIPS_SYS(sys_capget , 2) 2189 MIPS_SYS(sys_capset , 2) /* 4205 */ 2190 MIPS_SYS(sys_sigaltstack , 2) 2191 MIPS_SYS(sys_sendfile , 4) 2192 MIPS_SYS(sys_ni_syscall , 0) 2193 MIPS_SYS(sys_ni_syscall , 0) 2194 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2195 MIPS_SYS(sys_truncate64 , 4) 2196 MIPS_SYS(sys_ftruncate64 , 4) 2197 MIPS_SYS(sys_stat64 , 2) 2198 MIPS_SYS(sys_lstat64 , 2) 2199 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2200 MIPS_SYS(sys_pivot_root , 2) 2201 MIPS_SYS(sys_mincore , 3) 2202 MIPS_SYS(sys_madvise , 3) 2203 MIPS_SYS(sys_getdents64 , 3) 2204 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2205 MIPS_SYS(sys_ni_syscall , 0) 2206 MIPS_SYS(sys_gettid , 0) 2207 MIPS_SYS(sys_readahead , 5) 2208 MIPS_SYS(sys_setxattr , 5) 2209 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2210 MIPS_SYS(sys_fsetxattr , 5) 2211 MIPS_SYS(sys_getxattr , 4) 2212 MIPS_SYS(sys_lgetxattr , 4) 2213 MIPS_SYS(sys_fgetxattr , 4) 2214 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2215 MIPS_SYS(sys_llistxattr , 3) 2216 MIPS_SYS(sys_flistxattr , 3) 2217 MIPS_SYS(sys_removexattr , 2) 2218 MIPS_SYS(sys_lremovexattr, 2) 2219 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2220 MIPS_SYS(sys_tkill , 2) 2221 MIPS_SYS(sys_sendfile64 , 5) 2222 MIPS_SYS(sys_futex , 6) 2223 MIPS_SYS(sys_sched_setaffinity, 3) 2224 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2225 MIPS_SYS(sys_io_setup , 2) 2226 MIPS_SYS(sys_io_destroy , 1) 2227 MIPS_SYS(sys_io_getevents, 5) 2228 MIPS_SYS(sys_io_submit , 3) 2229 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2230 MIPS_SYS(sys_exit_group , 1) 2231 MIPS_SYS(sys_lookup_dcookie, 3) 2232 MIPS_SYS(sys_epoll_create, 1) 2233 MIPS_SYS(sys_epoll_ctl , 4) 2234 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2235 MIPS_SYS(sys_remap_file_pages, 5) 2236 MIPS_SYS(sys_set_tid_address, 1) 2237 MIPS_SYS(sys_restart_syscall, 0) 2238 MIPS_SYS(sys_fadvise64_64, 7) 2239 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2240 MIPS_SYS(sys_fstatfs64 , 2) 2241 MIPS_SYS(sys_timer_create, 3) 2242 MIPS_SYS(sys_timer_settime, 4) 2243 MIPS_SYS(sys_timer_gettime, 2) 2244 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2245 MIPS_SYS(sys_timer_delete, 1) 2246 MIPS_SYS(sys_clock_settime, 2) 2247 MIPS_SYS(sys_clock_gettime, 2) 2248 MIPS_SYS(sys_clock_getres, 2) 2249 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2250 MIPS_SYS(sys_tgkill , 3) 2251 MIPS_SYS(sys_utimes , 2) 2252 MIPS_SYS(sys_mbind , 4) 2253 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2254 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2255 MIPS_SYS(sys_mq_open , 4) 2256 MIPS_SYS(sys_mq_unlink , 1) 2257 MIPS_SYS(sys_mq_timedsend, 5) 2258 MIPS_SYS(sys_mq_timedreceive, 5) 2259 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2260 MIPS_SYS(sys_mq_getsetattr, 3) 2261 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2262 MIPS_SYS(sys_waitid , 4) 2263 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2264 MIPS_SYS(sys_add_key , 5) 2265 MIPS_SYS(sys_request_key, 4) 2266 MIPS_SYS(sys_keyctl , 5) 2267 MIPS_SYS(sys_set_thread_area, 1) 2268 MIPS_SYS(sys_inotify_init, 0) 2269 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2270 MIPS_SYS(sys_inotify_rm_watch, 2) 2271 MIPS_SYS(sys_migrate_pages, 4) 2272 MIPS_SYS(sys_openat, 4) 2273 MIPS_SYS(sys_mkdirat, 3) 2274 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2275 MIPS_SYS(sys_fchownat, 5) 2276 MIPS_SYS(sys_futimesat, 3) 2277 MIPS_SYS(sys_fstatat64, 4) 2278 MIPS_SYS(sys_unlinkat, 3) 2279 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2280 MIPS_SYS(sys_linkat, 5) 2281 MIPS_SYS(sys_symlinkat, 3) 2282 MIPS_SYS(sys_readlinkat, 4) 2283 MIPS_SYS(sys_fchmodat, 3) 2284 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2285 MIPS_SYS(sys_pselect6, 6) 2286 MIPS_SYS(sys_ppoll, 5) 2287 MIPS_SYS(sys_unshare, 1) 2288 MIPS_SYS(sys_splice, 6) 2289 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2290 MIPS_SYS(sys_tee, 4) 2291 MIPS_SYS(sys_vmsplice, 4) 2292 MIPS_SYS(sys_move_pages, 6) 2293 MIPS_SYS(sys_set_robust_list, 2) 2294 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2295 MIPS_SYS(sys_kexec_load, 4) 2296 MIPS_SYS(sys_getcpu, 3) 2297 MIPS_SYS(sys_epoll_pwait, 6) 2298 MIPS_SYS(sys_ioprio_set, 3) 2299 MIPS_SYS(sys_ioprio_get, 2) 2300 MIPS_SYS(sys_utimensat, 4) 2301 MIPS_SYS(sys_signalfd, 3) 2302 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2303 MIPS_SYS(sys_eventfd, 1) 2304 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2305 MIPS_SYS(sys_timerfd_create, 2) 2306 MIPS_SYS(sys_timerfd_gettime, 2) 2307 MIPS_SYS(sys_timerfd_settime, 4) 2308 MIPS_SYS(sys_signalfd4, 4) 2309 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2310 MIPS_SYS(sys_epoll_create1, 1) 2311 MIPS_SYS(sys_dup3, 3) 2312 MIPS_SYS(sys_pipe2, 2) 2313 MIPS_SYS(sys_inotify_init1, 1) 2314 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2315 MIPS_SYS(sys_pwritev, 6) 2316 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2317 MIPS_SYS(sys_perf_event_open, 5) 2318 MIPS_SYS(sys_accept4, 4) 2319 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2320 MIPS_SYS(sys_fanotify_init, 2) 2321 MIPS_SYS(sys_fanotify_mark, 6) 2322 MIPS_SYS(sys_prlimit64, 4) 2323 MIPS_SYS(sys_name_to_handle_at, 5) 2324 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2325 MIPS_SYS(sys_clock_adjtime, 2) 2326 MIPS_SYS(sys_syncfs, 1) 2327 }; 2328 # undef MIPS_SYS 2329 # endif /* O32 */ 2330 2331 static int do_store_exclusive(CPUMIPSState *env) 2332 { 2333 target_ulong addr; 2334 target_ulong page_addr; 2335 target_ulong val; 2336 int flags; 2337 int segv = 0; 2338 int reg; 2339 int d; 2340 2341 addr = env->lladdr; 2342 page_addr = addr & TARGET_PAGE_MASK; 2343 start_exclusive(); 2344 mmap_lock(); 2345 flags = page_get_flags(page_addr); 2346 if ((flags & PAGE_READ) == 0) { 2347 segv = 1; 2348 } else { 2349 reg = env->llreg & 0x1f; 2350 d = (env->llreg & 0x20) != 0; 2351 if (d) { 2352 segv = get_user_s64(val, addr); 2353 } else { 2354 segv = get_user_s32(val, addr); 2355 } 2356 if (!segv) { 2357 if (val != env->llval) { 2358 env->active_tc.gpr[reg] = 0; 2359 } else { 2360 if (d) { 2361 segv = put_user_u64(env->llnewval, addr); 2362 } else { 2363 segv = put_user_u32(env->llnewval, addr); 2364 } 2365 if (!segv) { 2366 env->active_tc.gpr[reg] = 1; 2367 } 2368 } 2369 } 2370 } 2371 env->lladdr = -1; 2372 if (!segv) { 2373 env->active_tc.PC += 4; 2374 } 2375 mmap_unlock(); 2376 end_exclusive(); 2377 return segv; 2378 } 2379 2380 /* Break codes */ 2381 enum { 2382 BRK_OVERFLOW = 6, 2383 BRK_DIVZERO = 7 2384 }; 2385 2386 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2387 unsigned int code) 2388 { 2389 int ret = -1; 2390 2391 switch (code) { 2392 case BRK_OVERFLOW: 2393 case BRK_DIVZERO: 2394 info->si_signo = TARGET_SIGFPE; 2395 info->si_errno = 0; 2396 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2397 queue_signal(env, info->si_signo, &*info); 2398 ret = 0; 2399 break; 2400 default: 2401 info->si_signo = TARGET_SIGTRAP; 2402 info->si_errno = 0; 2403 queue_signal(env, info->si_signo, &*info); 2404 ret = 0; 2405 break; 2406 } 2407 2408 return ret; 2409 } 2410 2411 void cpu_loop(CPUMIPSState *env) 2412 { 2413 CPUState *cs = CPU(mips_env_get_cpu(env)); 2414 target_siginfo_t info; 2415 int trapnr; 2416 abi_long ret; 2417 # ifdef TARGET_ABI_MIPSO32 2418 unsigned int syscall_num; 2419 # endif 2420 2421 for(;;) { 2422 cpu_exec_start(cs); 2423 trapnr = cpu_mips_exec(env); 2424 cpu_exec_end(cs); 2425 switch(trapnr) { 2426 case EXCP_SYSCALL: 2427 env->active_tc.PC += 4; 2428 # ifdef TARGET_ABI_MIPSO32 2429 syscall_num = env->active_tc.gpr[2] - 4000; 2430 if (syscall_num >= sizeof(mips_syscall_args)) { 2431 ret = -TARGET_ENOSYS; 2432 } else { 2433 int nb_args; 2434 abi_ulong sp_reg; 2435 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2436 2437 nb_args = mips_syscall_args[syscall_num]; 2438 sp_reg = env->active_tc.gpr[29]; 2439 switch (nb_args) { 2440 /* these arguments are taken from the stack */ 2441 case 8: 2442 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2443 goto done_syscall; 2444 } 2445 case 7: 2446 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2447 goto done_syscall; 2448 } 2449 case 6: 2450 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2451 goto done_syscall; 2452 } 2453 case 5: 2454 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2455 goto done_syscall; 2456 } 2457 default: 2458 break; 2459 } 2460 ret = do_syscall(env, env->active_tc.gpr[2], 2461 env->active_tc.gpr[4], 2462 env->active_tc.gpr[5], 2463 env->active_tc.gpr[6], 2464 env->active_tc.gpr[7], 2465 arg5, arg6, arg7, arg8); 2466 } 2467 done_syscall: 2468 # else 2469 ret = do_syscall(env, env->active_tc.gpr[2], 2470 env->active_tc.gpr[4], env->active_tc.gpr[5], 2471 env->active_tc.gpr[6], env->active_tc.gpr[7], 2472 env->active_tc.gpr[8], env->active_tc.gpr[9], 2473 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2474 # endif /* O32 */ 2475 if (ret == -TARGET_QEMU_ESIGRETURN) { 2476 /* Returning from a successful sigreturn syscall. 2477 Avoid clobbering register state. */ 2478 break; 2479 } 2480 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2481 env->active_tc.gpr[7] = 1; /* error flag */ 2482 ret = -ret; 2483 } else { 2484 env->active_tc.gpr[7] = 0; /* error flag */ 2485 } 2486 env->active_tc.gpr[2] = ret; 2487 break; 2488 case EXCP_TLBL: 2489 case EXCP_TLBS: 2490 case EXCP_AdEL: 2491 case EXCP_AdES: 2492 info.si_signo = TARGET_SIGSEGV; 2493 info.si_errno = 0; 2494 /* XXX: check env->error_code */ 2495 info.si_code = TARGET_SEGV_MAPERR; 2496 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2497 queue_signal(env, info.si_signo, &info); 2498 break; 2499 case EXCP_CpU: 2500 case EXCP_RI: 2501 info.si_signo = TARGET_SIGILL; 2502 info.si_errno = 0; 2503 info.si_code = 0; 2504 queue_signal(env, info.si_signo, &info); 2505 break; 2506 case EXCP_INTERRUPT: 2507 /* just indicate that signals should be handled asap */ 2508 break; 2509 case EXCP_DEBUG: 2510 { 2511 int sig; 2512 2513 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2514 if (sig) 2515 { 2516 info.si_signo = sig; 2517 info.si_errno = 0; 2518 info.si_code = TARGET_TRAP_BRKPT; 2519 queue_signal(env, info.si_signo, &info); 2520 } 2521 } 2522 break; 2523 case EXCP_SC: 2524 if (do_store_exclusive(env)) { 2525 info.si_signo = TARGET_SIGSEGV; 2526 info.si_errno = 0; 2527 info.si_code = TARGET_SEGV_MAPERR; 2528 info._sifields._sigfault._addr = env->active_tc.PC; 2529 queue_signal(env, info.si_signo, &info); 2530 } 2531 break; 2532 case EXCP_DSPDIS: 2533 info.si_signo = TARGET_SIGILL; 2534 info.si_errno = 0; 2535 info.si_code = TARGET_ILL_ILLOPC; 2536 queue_signal(env, info.si_signo, &info); 2537 break; 2538 /* The code below was inspired by the MIPS Linux kernel trap 2539 * handling code in arch/mips/kernel/traps.c. 2540 */ 2541 case EXCP_BREAK: 2542 { 2543 abi_ulong trap_instr; 2544 unsigned int code; 2545 2546 if (env->hflags & MIPS_HFLAG_M16) { 2547 if (env->insn_flags & ASE_MICROMIPS) { 2548 /* microMIPS mode */ 2549 ret = get_user_u16(trap_instr, env->active_tc.PC); 2550 if (ret != 0) { 2551 goto error; 2552 } 2553 2554 if ((trap_instr >> 10) == 0x11) { 2555 /* 16-bit instruction */ 2556 code = trap_instr & 0xf; 2557 } else { 2558 /* 32-bit instruction */ 2559 abi_ulong instr_lo; 2560 2561 ret = get_user_u16(instr_lo, 2562 env->active_tc.PC + 2); 2563 if (ret != 0) { 2564 goto error; 2565 } 2566 trap_instr = (trap_instr << 16) | instr_lo; 2567 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2568 /* Unfortunately, microMIPS also suffers from 2569 the old assembler bug... */ 2570 if (code >= (1 << 10)) { 2571 code >>= 10; 2572 } 2573 } 2574 } else { 2575 /* MIPS16e mode */ 2576 ret = get_user_u16(trap_instr, env->active_tc.PC); 2577 if (ret != 0) { 2578 goto error; 2579 } 2580 code = (trap_instr >> 6) & 0x3f; 2581 } 2582 } else { 2583 ret = get_user_ual(trap_instr, env->active_tc.PC); 2584 if (ret != 0) { 2585 goto error; 2586 } 2587 2588 /* As described in the original Linux kernel code, the 2589 * below checks on 'code' are to work around an old 2590 * assembly bug. 2591 */ 2592 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2593 if (code >= (1 << 10)) { 2594 code >>= 10; 2595 } 2596 } 2597 2598 if (do_break(env, &info, code) != 0) { 2599 goto error; 2600 } 2601 } 2602 break; 2603 case EXCP_TRAP: 2604 { 2605 abi_ulong trap_instr; 2606 unsigned int code = 0; 2607 2608 if (env->hflags & MIPS_HFLAG_M16) { 2609 /* microMIPS mode */ 2610 abi_ulong instr[2]; 2611 2612 ret = get_user_u16(instr[0], env->active_tc.PC) || 2613 get_user_u16(instr[1], env->active_tc.PC + 2); 2614 2615 trap_instr = (instr[0] << 16) | instr[1]; 2616 } else { 2617 ret = get_user_ual(trap_instr, env->active_tc.PC); 2618 } 2619 2620 if (ret != 0) { 2621 goto error; 2622 } 2623 2624 /* The immediate versions don't provide a code. */ 2625 if (!(trap_instr & 0xFC000000)) { 2626 if (env->hflags & MIPS_HFLAG_M16) { 2627 /* microMIPS mode */ 2628 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2629 } else { 2630 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2631 } 2632 } 2633 2634 if (do_break(env, &info, code) != 0) { 2635 goto error; 2636 } 2637 } 2638 break; 2639 default: 2640 error: 2641 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2642 trapnr); 2643 cpu_dump_state(cs, stderr, fprintf, 0); 2644 abort(); 2645 } 2646 process_pending_signals(env); 2647 } 2648 } 2649 #endif 2650 2651 #ifdef TARGET_OPENRISC 2652 2653 void cpu_loop(CPUOpenRISCState *env) 2654 { 2655 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2656 int trapnr, gdbsig; 2657 2658 for (;;) { 2659 trapnr = cpu_exec(env); 2660 gdbsig = 0; 2661 2662 switch (trapnr) { 2663 case EXCP_RESET: 2664 qemu_log("\nReset request, exit, pc is %#x\n", env->pc); 2665 exit(1); 2666 break; 2667 case EXCP_BUSERR: 2668 qemu_log("\nBus error, exit, pc is %#x\n", env->pc); 2669 gdbsig = SIGBUS; 2670 break; 2671 case EXCP_DPF: 2672 case EXCP_IPF: 2673 cpu_dump_state(cs, stderr, fprintf, 0); 2674 gdbsig = TARGET_SIGSEGV; 2675 break; 2676 case EXCP_TICK: 2677 qemu_log("\nTick time interrupt pc is %#x\n", env->pc); 2678 break; 2679 case EXCP_ALIGN: 2680 qemu_log("\nAlignment pc is %#x\n", env->pc); 2681 gdbsig = SIGBUS; 2682 break; 2683 case EXCP_ILLEGAL: 2684 qemu_log("\nIllegal instructionpc is %#x\n", env->pc); 2685 gdbsig = SIGILL; 2686 break; 2687 case EXCP_INT: 2688 qemu_log("\nExternal interruptpc is %#x\n", env->pc); 2689 break; 2690 case EXCP_DTLBMISS: 2691 case EXCP_ITLBMISS: 2692 qemu_log("\nTLB miss\n"); 2693 break; 2694 case EXCP_RANGE: 2695 qemu_log("\nRange\n"); 2696 gdbsig = SIGSEGV; 2697 break; 2698 case EXCP_SYSCALL: 2699 env->pc += 4; /* 0xc00; */ 2700 env->gpr[11] = do_syscall(env, 2701 env->gpr[11], /* return value */ 2702 env->gpr[3], /* r3 - r7 are params */ 2703 env->gpr[4], 2704 env->gpr[5], 2705 env->gpr[6], 2706 env->gpr[7], 2707 env->gpr[8], 0, 0); 2708 break; 2709 case EXCP_FPE: 2710 qemu_log("\nFloating point error\n"); 2711 break; 2712 case EXCP_TRAP: 2713 qemu_log("\nTrap\n"); 2714 gdbsig = SIGTRAP; 2715 break; 2716 case EXCP_NR: 2717 qemu_log("\nNR\n"); 2718 break; 2719 default: 2720 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", 2721 trapnr); 2722 cpu_dump_state(cs, stderr, fprintf, 0); 2723 gdbsig = TARGET_SIGILL; 2724 break; 2725 } 2726 if (gdbsig) { 2727 gdb_handlesig(cs, gdbsig); 2728 if (gdbsig != TARGET_SIGTRAP) { 2729 exit(1); 2730 } 2731 } 2732 2733 process_pending_signals(env); 2734 } 2735 } 2736 2737 #endif /* TARGET_OPENRISC */ 2738 2739 #ifdef TARGET_SH4 2740 void cpu_loop(CPUSH4State *env) 2741 { 2742 CPUState *cs = CPU(sh_env_get_cpu(env)); 2743 int trapnr, ret; 2744 target_siginfo_t info; 2745 2746 while (1) { 2747 trapnr = cpu_sh4_exec (env); 2748 2749 switch (trapnr) { 2750 case 0x160: 2751 env->pc += 2; 2752 ret = do_syscall(env, 2753 env->gregs[3], 2754 env->gregs[4], 2755 env->gregs[5], 2756 env->gregs[6], 2757 env->gregs[7], 2758 env->gregs[0], 2759 env->gregs[1], 2760 0, 0); 2761 env->gregs[0] = ret; 2762 break; 2763 case EXCP_INTERRUPT: 2764 /* just indicate that signals should be handled asap */ 2765 break; 2766 case EXCP_DEBUG: 2767 { 2768 int sig; 2769 2770 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2771 if (sig) 2772 { 2773 info.si_signo = sig; 2774 info.si_errno = 0; 2775 info.si_code = TARGET_TRAP_BRKPT; 2776 queue_signal(env, info.si_signo, &info); 2777 } 2778 } 2779 break; 2780 case 0xa0: 2781 case 0xc0: 2782 info.si_signo = SIGSEGV; 2783 info.si_errno = 0; 2784 info.si_code = TARGET_SEGV_MAPERR; 2785 info._sifields._sigfault._addr = env->tea; 2786 queue_signal(env, info.si_signo, &info); 2787 break; 2788 2789 default: 2790 printf ("Unhandled trap: 0x%x\n", trapnr); 2791 cpu_dump_state(cs, stderr, fprintf, 0); 2792 exit (1); 2793 } 2794 process_pending_signals (env); 2795 } 2796 } 2797 #endif 2798 2799 #ifdef TARGET_CRIS 2800 void cpu_loop(CPUCRISState *env) 2801 { 2802 CPUState *cs = CPU(cris_env_get_cpu(env)); 2803 int trapnr, ret; 2804 target_siginfo_t info; 2805 2806 while (1) { 2807 trapnr = cpu_cris_exec (env); 2808 switch (trapnr) { 2809 case 0xaa: 2810 { 2811 info.si_signo = SIGSEGV; 2812 info.si_errno = 0; 2813 /* XXX: check env->error_code */ 2814 info.si_code = TARGET_SEGV_MAPERR; 2815 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2816 queue_signal(env, info.si_signo, &info); 2817 } 2818 break; 2819 case EXCP_INTERRUPT: 2820 /* just indicate that signals should be handled asap */ 2821 break; 2822 case EXCP_BREAK: 2823 ret = do_syscall(env, 2824 env->regs[9], 2825 env->regs[10], 2826 env->regs[11], 2827 env->regs[12], 2828 env->regs[13], 2829 env->pregs[7], 2830 env->pregs[11], 2831 0, 0); 2832 env->regs[10] = ret; 2833 break; 2834 case EXCP_DEBUG: 2835 { 2836 int sig; 2837 2838 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2839 if (sig) 2840 { 2841 info.si_signo = sig; 2842 info.si_errno = 0; 2843 info.si_code = TARGET_TRAP_BRKPT; 2844 queue_signal(env, info.si_signo, &info); 2845 } 2846 } 2847 break; 2848 default: 2849 printf ("Unhandled trap: 0x%x\n", trapnr); 2850 cpu_dump_state(cs, stderr, fprintf, 0); 2851 exit (1); 2852 } 2853 process_pending_signals (env); 2854 } 2855 } 2856 #endif 2857 2858 #ifdef TARGET_MICROBLAZE 2859 void cpu_loop(CPUMBState *env) 2860 { 2861 CPUState *cs = CPU(mb_env_get_cpu(env)); 2862 int trapnr, ret; 2863 target_siginfo_t info; 2864 2865 while (1) { 2866 trapnr = cpu_mb_exec (env); 2867 switch (trapnr) { 2868 case 0xaa: 2869 { 2870 info.si_signo = SIGSEGV; 2871 info.si_errno = 0; 2872 /* XXX: check env->error_code */ 2873 info.si_code = TARGET_SEGV_MAPERR; 2874 info._sifields._sigfault._addr = 0; 2875 queue_signal(env, info.si_signo, &info); 2876 } 2877 break; 2878 case EXCP_INTERRUPT: 2879 /* just indicate that signals should be handled asap */ 2880 break; 2881 case EXCP_BREAK: 2882 /* Return address is 4 bytes after the call. */ 2883 env->regs[14] += 4; 2884 env->sregs[SR_PC] = env->regs[14]; 2885 ret = do_syscall(env, 2886 env->regs[12], 2887 env->regs[5], 2888 env->regs[6], 2889 env->regs[7], 2890 env->regs[8], 2891 env->regs[9], 2892 env->regs[10], 2893 0, 0); 2894 env->regs[3] = ret; 2895 break; 2896 case EXCP_HW_EXCP: 2897 env->regs[17] = env->sregs[SR_PC] + 4; 2898 if (env->iflags & D_FLAG) { 2899 env->sregs[SR_ESR] |= 1 << 12; 2900 env->sregs[SR_PC] -= 4; 2901 /* FIXME: if branch was immed, replay the imm as well. */ 2902 } 2903 2904 env->iflags &= ~(IMM_FLAG | D_FLAG); 2905 2906 switch (env->sregs[SR_ESR] & 31) { 2907 case ESR_EC_DIVZERO: 2908 info.si_signo = SIGFPE; 2909 info.si_errno = 0; 2910 info.si_code = TARGET_FPE_FLTDIV; 2911 info._sifields._sigfault._addr = 0; 2912 queue_signal(env, info.si_signo, &info); 2913 break; 2914 case ESR_EC_FPU: 2915 info.si_signo = SIGFPE; 2916 info.si_errno = 0; 2917 if (env->sregs[SR_FSR] & FSR_IO) { 2918 info.si_code = TARGET_FPE_FLTINV; 2919 } 2920 if (env->sregs[SR_FSR] & FSR_DZ) { 2921 info.si_code = TARGET_FPE_FLTDIV; 2922 } 2923 info._sifields._sigfault._addr = 0; 2924 queue_signal(env, info.si_signo, &info); 2925 break; 2926 default: 2927 printf ("Unhandled hw-exception: 0x%x\n", 2928 env->sregs[SR_ESR] & ESR_EC_MASK); 2929 cpu_dump_state(cs, stderr, fprintf, 0); 2930 exit (1); 2931 break; 2932 } 2933 break; 2934 case EXCP_DEBUG: 2935 { 2936 int sig; 2937 2938 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2939 if (sig) 2940 { 2941 info.si_signo = sig; 2942 info.si_errno = 0; 2943 info.si_code = TARGET_TRAP_BRKPT; 2944 queue_signal(env, info.si_signo, &info); 2945 } 2946 } 2947 break; 2948 default: 2949 printf ("Unhandled trap: 0x%x\n", trapnr); 2950 cpu_dump_state(cs, stderr, fprintf, 0); 2951 exit (1); 2952 } 2953 process_pending_signals (env); 2954 } 2955 } 2956 #endif 2957 2958 #ifdef TARGET_M68K 2959 2960 void cpu_loop(CPUM68KState *env) 2961 { 2962 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2963 int trapnr; 2964 unsigned int n; 2965 target_siginfo_t info; 2966 TaskState *ts = cs->opaque; 2967 2968 for(;;) { 2969 trapnr = cpu_m68k_exec(env); 2970 switch(trapnr) { 2971 case EXCP_ILLEGAL: 2972 { 2973 if (ts->sim_syscalls) { 2974 uint16_t nr; 2975 nr = lduw(env->pc + 2); 2976 env->pc += 4; 2977 do_m68k_simcall(env, nr); 2978 } else { 2979 goto do_sigill; 2980 } 2981 } 2982 break; 2983 case EXCP_HALT_INSN: 2984 /* Semihosing syscall. */ 2985 env->pc += 4; 2986 do_m68k_semihosting(env, env->dregs[0]); 2987 break; 2988 case EXCP_LINEA: 2989 case EXCP_LINEF: 2990 case EXCP_UNSUPPORTED: 2991 do_sigill: 2992 info.si_signo = SIGILL; 2993 info.si_errno = 0; 2994 info.si_code = TARGET_ILL_ILLOPN; 2995 info._sifields._sigfault._addr = env->pc; 2996 queue_signal(env, info.si_signo, &info); 2997 break; 2998 case EXCP_TRAP0: 2999 { 3000 ts->sim_syscalls = 0; 3001 n = env->dregs[0]; 3002 env->pc += 2; 3003 env->dregs[0] = do_syscall(env, 3004 n, 3005 env->dregs[1], 3006 env->dregs[2], 3007 env->dregs[3], 3008 env->dregs[4], 3009 env->dregs[5], 3010 env->aregs[0], 3011 0, 0); 3012 } 3013 break; 3014 case EXCP_INTERRUPT: 3015 /* just indicate that signals should be handled asap */ 3016 break; 3017 case EXCP_ACCESS: 3018 { 3019 info.si_signo = SIGSEGV; 3020 info.si_errno = 0; 3021 /* XXX: check env->error_code */ 3022 info.si_code = TARGET_SEGV_MAPERR; 3023 info._sifields._sigfault._addr = env->mmu.ar; 3024 queue_signal(env, info.si_signo, &info); 3025 } 3026 break; 3027 case EXCP_DEBUG: 3028 { 3029 int sig; 3030 3031 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3032 if (sig) 3033 { 3034 info.si_signo = sig; 3035 info.si_errno = 0; 3036 info.si_code = TARGET_TRAP_BRKPT; 3037 queue_signal(env, info.si_signo, &info); 3038 } 3039 } 3040 break; 3041 default: 3042 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 3043 trapnr); 3044 cpu_dump_state(cs, stderr, fprintf, 0); 3045 abort(); 3046 } 3047 process_pending_signals(env); 3048 } 3049 } 3050 #endif /* TARGET_M68K */ 3051 3052 #ifdef TARGET_ALPHA 3053 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 3054 { 3055 target_ulong addr, val, tmp; 3056 target_siginfo_t info; 3057 int ret = 0; 3058 3059 addr = env->lock_addr; 3060 tmp = env->lock_st_addr; 3061 env->lock_addr = -1; 3062 env->lock_st_addr = 0; 3063 3064 start_exclusive(); 3065 mmap_lock(); 3066 3067 if (addr == tmp) { 3068 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 3069 goto do_sigsegv; 3070 } 3071 3072 if (val == env->lock_value) { 3073 tmp = env->ir[reg]; 3074 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 3075 goto do_sigsegv; 3076 } 3077 ret = 1; 3078 } 3079 } 3080 env->ir[reg] = ret; 3081 env->pc += 4; 3082 3083 mmap_unlock(); 3084 end_exclusive(); 3085 return; 3086 3087 do_sigsegv: 3088 mmap_unlock(); 3089 end_exclusive(); 3090 3091 info.si_signo = TARGET_SIGSEGV; 3092 info.si_errno = 0; 3093 info.si_code = TARGET_SEGV_MAPERR; 3094 info._sifields._sigfault._addr = addr; 3095 queue_signal(env, TARGET_SIGSEGV, &info); 3096 } 3097 3098 void cpu_loop(CPUAlphaState *env) 3099 { 3100 CPUState *cs = CPU(alpha_env_get_cpu(env)); 3101 int trapnr; 3102 target_siginfo_t info; 3103 abi_long sysret; 3104 3105 while (1) { 3106 trapnr = cpu_alpha_exec (env); 3107 3108 /* All of the traps imply a transition through PALcode, which 3109 implies an REI instruction has been executed. Which means 3110 that the intr_flag should be cleared. */ 3111 env->intr_flag = 0; 3112 3113 switch (trapnr) { 3114 case EXCP_RESET: 3115 fprintf(stderr, "Reset requested. Exit\n"); 3116 exit(1); 3117 break; 3118 case EXCP_MCHK: 3119 fprintf(stderr, "Machine check exception. Exit\n"); 3120 exit(1); 3121 break; 3122 case EXCP_SMP_INTERRUPT: 3123 case EXCP_CLK_INTERRUPT: 3124 case EXCP_DEV_INTERRUPT: 3125 fprintf(stderr, "External interrupt. Exit\n"); 3126 exit(1); 3127 break; 3128 case EXCP_MMFAULT: 3129 env->lock_addr = -1; 3130 info.si_signo = TARGET_SIGSEGV; 3131 info.si_errno = 0; 3132 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 3133 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 3134 info._sifields._sigfault._addr = env->trap_arg0; 3135 queue_signal(env, info.si_signo, &info); 3136 break; 3137 case EXCP_UNALIGN: 3138 env->lock_addr = -1; 3139 info.si_signo = TARGET_SIGBUS; 3140 info.si_errno = 0; 3141 info.si_code = TARGET_BUS_ADRALN; 3142 info._sifields._sigfault._addr = env->trap_arg0; 3143 queue_signal(env, info.si_signo, &info); 3144 break; 3145 case EXCP_OPCDEC: 3146 do_sigill: 3147 env->lock_addr = -1; 3148 info.si_signo = TARGET_SIGILL; 3149 info.si_errno = 0; 3150 info.si_code = TARGET_ILL_ILLOPC; 3151 info._sifields._sigfault._addr = env->pc; 3152 queue_signal(env, info.si_signo, &info); 3153 break; 3154 case EXCP_ARITH: 3155 env->lock_addr = -1; 3156 info.si_signo = TARGET_SIGFPE; 3157 info.si_errno = 0; 3158 info.si_code = TARGET_FPE_FLTINV; 3159 info._sifields._sigfault._addr = env->pc; 3160 queue_signal(env, info.si_signo, &info); 3161 break; 3162 case EXCP_FEN: 3163 /* No-op. Linux simply re-enables the FPU. */ 3164 break; 3165 case EXCP_CALL_PAL: 3166 env->lock_addr = -1; 3167 switch (env->error_code) { 3168 case 0x80: 3169 /* BPT */ 3170 info.si_signo = TARGET_SIGTRAP; 3171 info.si_errno = 0; 3172 info.si_code = TARGET_TRAP_BRKPT; 3173 info._sifields._sigfault._addr = env->pc; 3174 queue_signal(env, info.si_signo, &info); 3175 break; 3176 case 0x81: 3177 /* BUGCHK */ 3178 info.si_signo = TARGET_SIGTRAP; 3179 info.si_errno = 0; 3180 info.si_code = 0; 3181 info._sifields._sigfault._addr = env->pc; 3182 queue_signal(env, info.si_signo, &info); 3183 break; 3184 case 0x83: 3185 /* CALLSYS */ 3186 trapnr = env->ir[IR_V0]; 3187 sysret = do_syscall(env, trapnr, 3188 env->ir[IR_A0], env->ir[IR_A1], 3189 env->ir[IR_A2], env->ir[IR_A3], 3190 env->ir[IR_A4], env->ir[IR_A5], 3191 0, 0); 3192 if (trapnr == TARGET_NR_sigreturn 3193 || trapnr == TARGET_NR_rt_sigreturn) { 3194 break; 3195 } 3196 /* Syscall writes 0 to V0 to bypass error check, similar 3197 to how this is handled internal to Linux kernel. 3198 (Ab)use trapnr temporarily as boolean indicating error. */ 3199 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3200 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3201 env->ir[IR_A3] = trapnr; 3202 break; 3203 case 0x86: 3204 /* IMB */ 3205 /* ??? We can probably elide the code using page_unprotect 3206 that is checking for self-modifying code. Instead we 3207 could simply call tb_flush here. Until we work out the 3208 changes required to turn off the extra write protection, 3209 this can be a no-op. */ 3210 break; 3211 case 0x9E: 3212 /* RDUNIQUE */ 3213 /* Handled in the translator for usermode. */ 3214 abort(); 3215 case 0x9F: 3216 /* WRUNIQUE */ 3217 /* Handled in the translator for usermode. */ 3218 abort(); 3219 case 0xAA: 3220 /* GENTRAP */ 3221 info.si_signo = TARGET_SIGFPE; 3222 switch (env->ir[IR_A0]) { 3223 case TARGET_GEN_INTOVF: 3224 info.si_code = TARGET_FPE_INTOVF; 3225 break; 3226 case TARGET_GEN_INTDIV: 3227 info.si_code = TARGET_FPE_INTDIV; 3228 break; 3229 case TARGET_GEN_FLTOVF: 3230 info.si_code = TARGET_FPE_FLTOVF; 3231 break; 3232 case TARGET_GEN_FLTUND: 3233 info.si_code = TARGET_FPE_FLTUND; 3234 break; 3235 case TARGET_GEN_FLTINV: 3236 info.si_code = TARGET_FPE_FLTINV; 3237 break; 3238 case TARGET_GEN_FLTINE: 3239 info.si_code = TARGET_FPE_FLTRES; 3240 break; 3241 case TARGET_GEN_ROPRAND: 3242 info.si_code = 0; 3243 break; 3244 default: 3245 info.si_signo = TARGET_SIGTRAP; 3246 info.si_code = 0; 3247 break; 3248 } 3249 info.si_errno = 0; 3250 info._sifields._sigfault._addr = env->pc; 3251 queue_signal(env, info.si_signo, &info); 3252 break; 3253 default: 3254 goto do_sigill; 3255 } 3256 break; 3257 case EXCP_DEBUG: 3258 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3259 if (info.si_signo) { 3260 env->lock_addr = -1; 3261 info.si_errno = 0; 3262 info.si_code = TARGET_TRAP_BRKPT; 3263 queue_signal(env, info.si_signo, &info); 3264 } 3265 break; 3266 case EXCP_STL_C: 3267 case EXCP_STQ_C: 3268 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3269 break; 3270 case EXCP_INTERRUPT: 3271 /* Just indicate that signals should be handled asap. */ 3272 break; 3273 default: 3274 printf ("Unhandled trap: 0x%x\n", trapnr); 3275 cpu_dump_state(cs, stderr, fprintf, 0); 3276 exit (1); 3277 } 3278 process_pending_signals (env); 3279 } 3280 } 3281 #endif /* TARGET_ALPHA */ 3282 3283 #ifdef TARGET_S390X 3284 void cpu_loop(CPUS390XState *env) 3285 { 3286 CPUState *cs = CPU(s390_env_get_cpu(env)); 3287 int trapnr, n, sig; 3288 target_siginfo_t info; 3289 target_ulong addr; 3290 3291 while (1) { 3292 trapnr = cpu_s390x_exec(env); 3293 switch (trapnr) { 3294 case EXCP_INTERRUPT: 3295 /* Just indicate that signals should be handled asap. */ 3296 break; 3297 3298 case EXCP_SVC: 3299 n = env->int_svc_code; 3300 if (!n) { 3301 /* syscalls > 255 */ 3302 n = env->regs[1]; 3303 } 3304 env->psw.addr += env->int_svc_ilen; 3305 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3306 env->regs[4], env->regs[5], 3307 env->regs[6], env->regs[7], 0, 0); 3308 break; 3309 3310 case EXCP_DEBUG: 3311 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3312 if (sig) { 3313 n = TARGET_TRAP_BRKPT; 3314 goto do_signal_pc; 3315 } 3316 break; 3317 case EXCP_PGM: 3318 n = env->int_pgm_code; 3319 switch (n) { 3320 case PGM_OPERATION: 3321 case PGM_PRIVILEGED: 3322 sig = SIGILL; 3323 n = TARGET_ILL_ILLOPC; 3324 goto do_signal_pc; 3325 case PGM_PROTECTION: 3326 case PGM_ADDRESSING: 3327 sig = SIGSEGV; 3328 /* XXX: check env->error_code */ 3329 n = TARGET_SEGV_MAPERR; 3330 addr = env->__excp_addr; 3331 goto do_signal; 3332 case PGM_EXECUTE: 3333 case PGM_SPECIFICATION: 3334 case PGM_SPECIAL_OP: 3335 case PGM_OPERAND: 3336 do_sigill_opn: 3337 sig = SIGILL; 3338 n = TARGET_ILL_ILLOPN; 3339 goto do_signal_pc; 3340 3341 case PGM_FIXPT_OVERFLOW: 3342 sig = SIGFPE; 3343 n = TARGET_FPE_INTOVF; 3344 goto do_signal_pc; 3345 case PGM_FIXPT_DIVIDE: 3346 sig = SIGFPE; 3347 n = TARGET_FPE_INTDIV; 3348 goto do_signal_pc; 3349 3350 case PGM_DATA: 3351 n = (env->fpc >> 8) & 0xff; 3352 if (n == 0xff) { 3353 /* compare-and-trap */ 3354 goto do_sigill_opn; 3355 } else { 3356 /* An IEEE exception, simulated or otherwise. */ 3357 if (n & 0x80) { 3358 n = TARGET_FPE_FLTINV; 3359 } else if (n & 0x40) { 3360 n = TARGET_FPE_FLTDIV; 3361 } else if (n & 0x20) { 3362 n = TARGET_FPE_FLTOVF; 3363 } else if (n & 0x10) { 3364 n = TARGET_FPE_FLTUND; 3365 } else if (n & 0x08) { 3366 n = TARGET_FPE_FLTRES; 3367 } else { 3368 /* ??? Quantum exception; BFP, DFP error. */ 3369 goto do_sigill_opn; 3370 } 3371 sig = SIGFPE; 3372 goto do_signal_pc; 3373 } 3374 3375 default: 3376 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3377 cpu_dump_state(cs, stderr, fprintf, 0); 3378 exit(1); 3379 } 3380 break; 3381 3382 do_signal_pc: 3383 addr = env->psw.addr; 3384 do_signal: 3385 info.si_signo = sig; 3386 info.si_errno = 0; 3387 info.si_code = n; 3388 info._sifields._sigfault._addr = addr; 3389 queue_signal(env, info.si_signo, &info); 3390 break; 3391 3392 default: 3393 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3394 cpu_dump_state(cs, stderr, fprintf, 0); 3395 exit(1); 3396 } 3397 process_pending_signals (env); 3398 } 3399 } 3400 3401 #endif /* TARGET_S390X */ 3402 3403 THREAD CPUState *thread_cpu; 3404 3405 void task_settid(TaskState *ts) 3406 { 3407 if (ts->ts_tid == 0) { 3408 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3409 } 3410 } 3411 3412 void stop_all_tasks(void) 3413 { 3414 /* 3415 * We trust that when using NPTL, start_exclusive() 3416 * handles thread stopping correctly. 3417 */ 3418 start_exclusive(); 3419 } 3420 3421 /* Assumes contents are already zeroed. */ 3422 void init_task_state(TaskState *ts) 3423 { 3424 int i; 3425 3426 ts->used = 1; 3427 ts->first_free = ts->sigqueue_table; 3428 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3429 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3430 } 3431 ts->sigqueue_table[i].next = NULL; 3432 } 3433 3434 CPUArchState *cpu_copy(CPUArchState *env) 3435 { 3436 CPUState *cpu = ENV_GET_CPU(env); 3437 CPUArchState *new_env = cpu_init(cpu_model); 3438 CPUState *new_cpu = ENV_GET_CPU(new_env); 3439 #if defined(TARGET_HAS_ICE) 3440 CPUBreakpoint *bp; 3441 CPUWatchpoint *wp; 3442 #endif 3443 3444 /* Reset non arch specific state */ 3445 cpu_reset(new_cpu); 3446 3447 memcpy(new_env, env, sizeof(CPUArchState)); 3448 3449 /* Clone all break/watchpoints. 3450 Note: Once we support ptrace with hw-debug register access, make sure 3451 BP_CPU break/watchpoints are handled correctly on clone. */ 3452 QTAILQ_INIT(&cpu->breakpoints); 3453 QTAILQ_INIT(&cpu->watchpoints); 3454 #if defined(TARGET_HAS_ICE) 3455 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 3456 cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL); 3457 } 3458 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 3459 cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL); 3460 } 3461 #endif 3462 3463 return new_env; 3464 } 3465 3466 static void handle_arg_help(const char *arg) 3467 { 3468 usage(); 3469 } 3470 3471 static void handle_arg_log(const char *arg) 3472 { 3473 int mask; 3474 3475 mask = qemu_str_to_log_mask(arg); 3476 if (!mask) { 3477 qemu_print_log_usage(stdout); 3478 exit(1); 3479 } 3480 qemu_set_log(mask); 3481 } 3482 3483 static void handle_arg_log_filename(const char *arg) 3484 { 3485 qemu_set_log_filename(arg); 3486 } 3487 3488 static void handle_arg_set_env(const char *arg) 3489 { 3490 char *r, *p, *token; 3491 r = p = strdup(arg); 3492 while ((token = strsep(&p, ",")) != NULL) { 3493 if (envlist_setenv(envlist, token) != 0) { 3494 usage(); 3495 } 3496 } 3497 free(r); 3498 } 3499 3500 static void handle_arg_unset_env(const char *arg) 3501 { 3502 char *r, *p, *token; 3503 r = p = strdup(arg); 3504 while ((token = strsep(&p, ",")) != NULL) { 3505 if (envlist_unsetenv(envlist, token) != 0) { 3506 usage(); 3507 } 3508 } 3509 free(r); 3510 } 3511 3512 static void handle_arg_argv0(const char *arg) 3513 { 3514 argv0 = strdup(arg); 3515 } 3516 3517 static void handle_arg_stack_size(const char *arg) 3518 { 3519 char *p; 3520 guest_stack_size = strtoul(arg, &p, 0); 3521 if (guest_stack_size == 0) { 3522 usage(); 3523 } 3524 3525 if (*p == 'M') { 3526 guest_stack_size *= 1024 * 1024; 3527 } else if (*p == 'k' || *p == 'K') { 3528 guest_stack_size *= 1024; 3529 } 3530 } 3531 3532 static void handle_arg_ld_prefix(const char *arg) 3533 { 3534 interp_prefix = strdup(arg); 3535 } 3536 3537 static void handle_arg_pagesize(const char *arg) 3538 { 3539 qemu_host_page_size = atoi(arg); 3540 if (qemu_host_page_size == 0 || 3541 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3542 fprintf(stderr, "page size must be a power of two\n"); 3543 exit(1); 3544 } 3545 } 3546 3547 static void handle_arg_randseed(const char *arg) 3548 { 3549 unsigned long long seed; 3550 3551 if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) { 3552 fprintf(stderr, "Invalid seed number: %s\n", arg); 3553 exit(1); 3554 } 3555 srand(seed); 3556 } 3557 3558 static void handle_arg_gdb(const char *arg) 3559 { 3560 gdbstub_port = atoi(arg); 3561 } 3562 3563 static void handle_arg_uname(const char *arg) 3564 { 3565 qemu_uname_release = strdup(arg); 3566 } 3567 3568 static void handle_arg_cpu(const char *arg) 3569 { 3570 cpu_model = strdup(arg); 3571 if (cpu_model == NULL || is_help_option(cpu_model)) { 3572 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3573 #if defined(cpu_list) 3574 cpu_list(stdout, &fprintf); 3575 #endif 3576 exit(1); 3577 } 3578 } 3579 3580 #if defined(CONFIG_USE_GUEST_BASE) 3581 static void handle_arg_guest_base(const char *arg) 3582 { 3583 guest_base = strtol(arg, NULL, 0); 3584 have_guest_base = 1; 3585 } 3586 3587 static void handle_arg_reserved_va(const char *arg) 3588 { 3589 char *p; 3590 int shift = 0; 3591 reserved_va = strtoul(arg, &p, 0); 3592 switch (*p) { 3593 case 'k': 3594 case 'K': 3595 shift = 10; 3596 break; 3597 case 'M': 3598 shift = 20; 3599 break; 3600 case 'G': 3601 shift = 30; 3602 break; 3603 } 3604 if (shift) { 3605 unsigned long unshifted = reserved_va; 3606 p++; 3607 reserved_va <<= shift; 3608 if (((reserved_va >> shift) != unshifted) 3609 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3610 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3611 #endif 3612 ) { 3613 fprintf(stderr, "Reserved virtual address too big\n"); 3614 exit(1); 3615 } 3616 } 3617 if (*p) { 3618 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3619 exit(1); 3620 } 3621 } 3622 #endif 3623 3624 static void handle_arg_singlestep(const char *arg) 3625 { 3626 singlestep = 1; 3627 } 3628 3629 static void handle_arg_strace(const char *arg) 3630 { 3631 do_strace = 1; 3632 } 3633 3634 static void handle_arg_version(const char *arg) 3635 { 3636 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3637 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3638 exit(0); 3639 } 3640 3641 struct qemu_argument { 3642 const char *argv; 3643 const char *env; 3644 bool has_arg; 3645 void (*handle_opt)(const char *arg); 3646 const char *example; 3647 const char *help; 3648 }; 3649 3650 static const struct qemu_argument arg_table[] = { 3651 {"h", "", false, handle_arg_help, 3652 "", "print this help"}, 3653 {"g", "QEMU_GDB", true, handle_arg_gdb, 3654 "port", "wait gdb connection to 'port'"}, 3655 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3656 "path", "set the elf interpreter prefix to 'path'"}, 3657 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3658 "size", "set the stack size to 'size' bytes"}, 3659 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3660 "model", "select CPU (-cpu help for list)"}, 3661 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3662 "var=value", "sets targets environment variable (see below)"}, 3663 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3664 "var", "unsets targets environment variable (see below)"}, 3665 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3666 "argv0", "forces target process argv[0] to be 'argv0'"}, 3667 {"r", "QEMU_UNAME", true, handle_arg_uname, 3668 "uname", "set qemu uname release string to 'uname'"}, 3669 #if defined(CONFIG_USE_GUEST_BASE) 3670 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3671 "address", "set guest_base address to 'address'"}, 3672 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3673 "size", "reserve 'size' bytes for guest virtual address space"}, 3674 #endif 3675 {"d", "QEMU_LOG", true, handle_arg_log, 3676 "item[,...]", "enable logging of specified items " 3677 "(use '-d help' for a list of items)"}, 3678 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3679 "logfile", "write logs to 'logfile' (default stderr)"}, 3680 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3681 "pagesize", "set the host page size to 'pagesize'"}, 3682 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3683 "", "run in singlestep mode"}, 3684 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3685 "", "log system calls"}, 3686 {"seed", "QEMU_RAND_SEED", true, handle_arg_randseed, 3687 "", "Seed for pseudo-random number generator"}, 3688 {"version", "QEMU_VERSION", false, handle_arg_version, 3689 "", "display version information and exit"}, 3690 {NULL, NULL, false, NULL, NULL, NULL} 3691 }; 3692 3693 static void usage(void) 3694 { 3695 const struct qemu_argument *arginfo; 3696 int maxarglen; 3697 int maxenvlen; 3698 3699 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3700 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3701 "\n" 3702 "Options and associated environment variables:\n" 3703 "\n"); 3704 3705 /* Calculate column widths. We must always have at least enough space 3706 * for the column header. 3707 */ 3708 maxarglen = strlen("Argument"); 3709 maxenvlen = strlen("Env-variable"); 3710 3711 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3712 int arglen = strlen(arginfo->argv); 3713 if (arginfo->has_arg) { 3714 arglen += strlen(arginfo->example) + 1; 3715 } 3716 if (strlen(arginfo->env) > maxenvlen) { 3717 maxenvlen = strlen(arginfo->env); 3718 } 3719 if (arglen > maxarglen) { 3720 maxarglen = arglen; 3721 } 3722 } 3723 3724 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3725 maxenvlen, "Env-variable"); 3726 3727 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3728 if (arginfo->has_arg) { 3729 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3730 (int)(maxarglen - strlen(arginfo->argv) - 1), 3731 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3732 } else { 3733 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3734 maxenvlen, arginfo->env, 3735 arginfo->help); 3736 } 3737 } 3738 3739 printf("\n" 3740 "Defaults:\n" 3741 "QEMU_LD_PREFIX = %s\n" 3742 "QEMU_STACK_SIZE = %ld byte\n", 3743 interp_prefix, 3744 guest_stack_size); 3745 3746 printf("\n" 3747 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3748 "QEMU_UNSET_ENV environment variables to set and unset\n" 3749 "environment variables for the target process.\n" 3750 "It is possible to provide several variables by separating them\n" 3751 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3752 "provide the -E and -U options multiple times.\n" 3753 "The following lines are equivalent:\n" 3754 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3755 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3756 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 3757 "Note that if you provide several changes to a single variable\n" 3758 "the last change will stay in effect.\n"); 3759 3760 exit(1); 3761 } 3762 3763 static int parse_args(int argc, char **argv) 3764 { 3765 const char *r; 3766 int optind; 3767 const struct qemu_argument *arginfo; 3768 3769 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3770 if (arginfo->env == NULL) { 3771 continue; 3772 } 3773 3774 r = getenv(arginfo->env); 3775 if (r != NULL) { 3776 arginfo->handle_opt(r); 3777 } 3778 } 3779 3780 optind = 1; 3781 for (;;) { 3782 if (optind >= argc) { 3783 break; 3784 } 3785 r = argv[optind]; 3786 if (r[0] != '-') { 3787 break; 3788 } 3789 optind++; 3790 r++; 3791 if (!strcmp(r, "-")) { 3792 break; 3793 } 3794 3795 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3796 if (!strcmp(r, arginfo->argv)) { 3797 if (arginfo->has_arg) { 3798 if (optind >= argc) { 3799 usage(); 3800 } 3801 arginfo->handle_opt(argv[optind]); 3802 optind++; 3803 } else { 3804 arginfo->handle_opt(NULL); 3805 } 3806 break; 3807 } 3808 } 3809 3810 /* no option matched the current argv */ 3811 if (arginfo->handle_opt == NULL) { 3812 usage(); 3813 } 3814 } 3815 3816 if (optind >= argc) { 3817 usage(); 3818 } 3819 3820 filename = argv[optind]; 3821 exec_path = argv[optind]; 3822 3823 return optind; 3824 } 3825 3826 int main(int argc, char **argv, char **envp) 3827 { 3828 struct target_pt_regs regs1, *regs = ®s1; 3829 struct image_info info1, *info = &info1; 3830 struct linux_binprm bprm; 3831 TaskState *ts; 3832 CPUArchState *env; 3833 CPUState *cpu; 3834 int optind; 3835 char **target_environ, **wrk; 3836 char **target_argv; 3837 int target_argc; 3838 int i; 3839 int ret; 3840 int execfd; 3841 3842 module_call_init(MODULE_INIT_QOM); 3843 3844 if ((envlist = envlist_create()) == NULL) { 3845 (void) fprintf(stderr, "Unable to allocate envlist\n"); 3846 exit(1); 3847 } 3848 3849 /* add current environment into the list */ 3850 for (wrk = environ; *wrk != NULL; wrk++) { 3851 (void) envlist_setenv(envlist, *wrk); 3852 } 3853 3854 /* Read the stack limit from the kernel. If it's "unlimited", 3855 then we can do little else besides use the default. */ 3856 { 3857 struct rlimit lim; 3858 if (getrlimit(RLIMIT_STACK, &lim) == 0 3859 && lim.rlim_cur != RLIM_INFINITY 3860 && lim.rlim_cur == (target_long)lim.rlim_cur) { 3861 guest_stack_size = lim.rlim_cur; 3862 } 3863 } 3864 3865 cpu_model = NULL; 3866 #if defined(cpudef_setup) 3867 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 3868 #endif 3869 3870 srand(time(NULL)); 3871 3872 optind = parse_args(argc, argv); 3873 3874 /* Zero out regs */ 3875 memset(regs, 0, sizeof(struct target_pt_regs)); 3876 3877 /* Zero out image_info */ 3878 memset(info, 0, sizeof(struct image_info)); 3879 3880 memset(&bprm, 0, sizeof (bprm)); 3881 3882 /* Scan interp_prefix dir for replacement files. */ 3883 init_paths(interp_prefix); 3884 3885 init_qemu_uname_release(); 3886 3887 if (cpu_model == NULL) { 3888 #if defined(TARGET_I386) 3889 #ifdef TARGET_X86_64 3890 cpu_model = "qemu64"; 3891 #else 3892 cpu_model = "qemu32"; 3893 #endif 3894 #elif defined(TARGET_ARM) 3895 cpu_model = "any"; 3896 #elif defined(TARGET_UNICORE32) 3897 cpu_model = "any"; 3898 #elif defined(TARGET_M68K) 3899 cpu_model = "any"; 3900 #elif defined(TARGET_SPARC) 3901 #ifdef TARGET_SPARC64 3902 cpu_model = "TI UltraSparc II"; 3903 #else 3904 cpu_model = "Fujitsu MB86904"; 3905 #endif 3906 #elif defined(TARGET_MIPS) 3907 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 3908 cpu_model = "20Kc"; 3909 #else 3910 cpu_model = "24Kf"; 3911 #endif 3912 #elif defined TARGET_OPENRISC 3913 cpu_model = "or1200"; 3914 #elif defined(TARGET_PPC) 3915 # ifdef TARGET_PPC64 3916 cpu_model = "POWER7"; 3917 # else 3918 cpu_model = "750"; 3919 # endif 3920 #else 3921 cpu_model = "any"; 3922 #endif 3923 } 3924 tcg_exec_init(0); 3925 cpu_exec_init_all(); 3926 /* NOTE: we need to init the CPU at this stage to get 3927 qemu_host_page_size */ 3928 env = cpu_init(cpu_model); 3929 if (!env) { 3930 fprintf(stderr, "Unable to find CPU definition\n"); 3931 exit(1); 3932 } 3933 cpu = ENV_GET_CPU(env); 3934 cpu_reset(cpu); 3935 3936 thread_cpu = cpu; 3937 3938 if (getenv("QEMU_STRACE")) { 3939 do_strace = 1; 3940 } 3941 3942 if (getenv("QEMU_RAND_SEED")) { 3943 handle_arg_randseed(getenv("QEMU_RAND_SEED")); 3944 } 3945 3946 target_environ = envlist_to_environ(envlist, NULL); 3947 envlist_free(envlist); 3948 3949 #if defined(CONFIG_USE_GUEST_BASE) 3950 /* 3951 * Now that page sizes are configured in cpu_init() we can do 3952 * proper page alignment for guest_base. 3953 */ 3954 guest_base = HOST_PAGE_ALIGN(guest_base); 3955 3956 if (reserved_va || have_guest_base) { 3957 guest_base = init_guest_space(guest_base, reserved_va, 0, 3958 have_guest_base); 3959 if (guest_base == (unsigned long)-1) { 3960 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 3961 "space for use as guest address space (check your virtual " 3962 "memory ulimit setting or reserve less using -R option)\n", 3963 reserved_va); 3964 exit(1); 3965 } 3966 3967 if (reserved_va) { 3968 mmap_next_start = reserved_va; 3969 } 3970 } 3971 #endif /* CONFIG_USE_GUEST_BASE */ 3972 3973 /* 3974 * Read in mmap_min_addr kernel parameter. This value is used 3975 * When loading the ELF image to determine whether guest_base 3976 * is needed. It is also used in mmap_find_vma. 3977 */ 3978 { 3979 FILE *fp; 3980 3981 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 3982 unsigned long tmp; 3983 if (fscanf(fp, "%lu", &tmp) == 1) { 3984 mmap_min_addr = tmp; 3985 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); 3986 } 3987 fclose(fp); 3988 } 3989 } 3990 3991 /* 3992 * Prepare copy of argv vector for target. 3993 */ 3994 target_argc = argc - optind; 3995 target_argv = calloc(target_argc + 1, sizeof (char *)); 3996 if (target_argv == NULL) { 3997 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 3998 exit(1); 3999 } 4000 4001 /* 4002 * If argv0 is specified (using '-0' switch) we replace 4003 * argv[0] pointer with the given one. 4004 */ 4005 i = 0; 4006 if (argv0 != NULL) { 4007 target_argv[i++] = strdup(argv0); 4008 } 4009 for (; i < target_argc; i++) { 4010 target_argv[i] = strdup(argv[optind + i]); 4011 } 4012 target_argv[target_argc] = NULL; 4013 4014 ts = g_malloc0 (sizeof(TaskState)); 4015 init_task_state(ts); 4016 /* build Task State */ 4017 ts->info = info; 4018 ts->bprm = &bprm; 4019 cpu->opaque = ts; 4020 task_settid(ts); 4021 4022 execfd = qemu_getauxval(AT_EXECFD); 4023 if (execfd == 0) { 4024 execfd = open(filename, O_RDONLY); 4025 if (execfd < 0) { 4026 printf("Error while loading %s: %s\n", filename, strerror(errno)); 4027 _exit(1); 4028 } 4029 } 4030 4031 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 4032 info, &bprm); 4033 if (ret != 0) { 4034 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 4035 _exit(1); 4036 } 4037 4038 for (wrk = target_environ; *wrk; wrk++) { 4039 free(*wrk); 4040 } 4041 4042 free(target_environ); 4043 4044 if (qemu_log_enabled()) { 4045 #if defined(CONFIG_USE_GUEST_BASE) 4046 qemu_log("guest_base 0x%lx\n", guest_base); 4047 #endif 4048 log_page_dump(); 4049 4050 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 4051 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 4052 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 4053 info->start_code); 4054 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 4055 info->start_data); 4056 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 4057 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 4058 info->start_stack); 4059 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 4060 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 4061 } 4062 4063 target_set_brk(info->brk); 4064 syscall_init(); 4065 signal_init(); 4066 4067 #if defined(CONFIG_USE_GUEST_BASE) 4068 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 4069 generating the prologue until now so that the prologue can take 4070 the real value of GUEST_BASE into account. */ 4071 tcg_prologue_init(&tcg_ctx); 4072 #endif 4073 4074 #if defined(TARGET_I386) 4075 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 4076 env->hflags |= HF_PE_MASK | HF_CPL_MASK; 4077 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 4078 env->cr[4] |= CR4_OSFXSR_MASK; 4079 env->hflags |= HF_OSFXSR_MASK; 4080 } 4081 #ifndef TARGET_ABI32 4082 /* enable 64 bit mode if possible */ 4083 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 4084 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 4085 exit(1); 4086 } 4087 env->cr[4] |= CR4_PAE_MASK; 4088 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 4089 env->hflags |= HF_LMA_MASK; 4090 #endif 4091 4092 /* flags setup : we activate the IRQs by default as in user mode */ 4093 env->eflags |= IF_MASK; 4094 4095 /* linux register setup */ 4096 #ifndef TARGET_ABI32 4097 env->regs[R_EAX] = regs->rax; 4098 env->regs[R_EBX] = regs->rbx; 4099 env->regs[R_ECX] = regs->rcx; 4100 env->regs[R_EDX] = regs->rdx; 4101 env->regs[R_ESI] = regs->rsi; 4102 env->regs[R_EDI] = regs->rdi; 4103 env->regs[R_EBP] = regs->rbp; 4104 env->regs[R_ESP] = regs->rsp; 4105 env->eip = regs->rip; 4106 #else 4107 env->regs[R_EAX] = regs->eax; 4108 env->regs[R_EBX] = regs->ebx; 4109 env->regs[R_ECX] = regs->ecx; 4110 env->regs[R_EDX] = regs->edx; 4111 env->regs[R_ESI] = regs->esi; 4112 env->regs[R_EDI] = regs->edi; 4113 env->regs[R_EBP] = regs->ebp; 4114 env->regs[R_ESP] = regs->esp; 4115 env->eip = regs->eip; 4116 #endif 4117 4118 /* linux interrupt setup */ 4119 #ifndef TARGET_ABI32 4120 env->idt.limit = 511; 4121 #else 4122 env->idt.limit = 255; 4123 #endif 4124 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 4125 PROT_READ|PROT_WRITE, 4126 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4127 idt_table = g2h(env->idt.base); 4128 set_idt(0, 0); 4129 set_idt(1, 0); 4130 set_idt(2, 0); 4131 set_idt(3, 3); 4132 set_idt(4, 3); 4133 set_idt(5, 0); 4134 set_idt(6, 0); 4135 set_idt(7, 0); 4136 set_idt(8, 0); 4137 set_idt(9, 0); 4138 set_idt(10, 0); 4139 set_idt(11, 0); 4140 set_idt(12, 0); 4141 set_idt(13, 0); 4142 set_idt(14, 0); 4143 set_idt(15, 0); 4144 set_idt(16, 0); 4145 set_idt(17, 0); 4146 set_idt(18, 0); 4147 set_idt(19, 0); 4148 set_idt(0x80, 3); 4149 4150 /* linux segment setup */ 4151 { 4152 uint64_t *gdt_table; 4153 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4154 PROT_READ|PROT_WRITE, 4155 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4156 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4157 gdt_table = g2h(env->gdt.base); 4158 #ifdef TARGET_ABI32 4159 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4160 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4161 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4162 #else 4163 /* 64 bit code segment */ 4164 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4165 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4166 DESC_L_MASK | 4167 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4168 #endif 4169 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4170 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4171 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4172 } 4173 cpu_x86_load_seg(env, R_CS, __USER_CS); 4174 cpu_x86_load_seg(env, R_SS, __USER_DS); 4175 #ifdef TARGET_ABI32 4176 cpu_x86_load_seg(env, R_DS, __USER_DS); 4177 cpu_x86_load_seg(env, R_ES, __USER_DS); 4178 cpu_x86_load_seg(env, R_FS, __USER_DS); 4179 cpu_x86_load_seg(env, R_GS, __USER_DS); 4180 /* This hack makes Wine work... */ 4181 env->segs[R_FS].selector = 0; 4182 #else 4183 cpu_x86_load_seg(env, R_DS, 0); 4184 cpu_x86_load_seg(env, R_ES, 0); 4185 cpu_x86_load_seg(env, R_FS, 0); 4186 cpu_x86_load_seg(env, R_GS, 0); 4187 #endif 4188 #elif defined(TARGET_AARCH64) 4189 { 4190 int i; 4191 4192 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4193 fprintf(stderr, 4194 "The selected ARM CPU does not support 64 bit mode\n"); 4195 exit(1); 4196 } 4197 4198 for (i = 0; i < 31; i++) { 4199 env->xregs[i] = regs->regs[i]; 4200 } 4201 env->pc = regs->pc; 4202 env->xregs[31] = regs->sp; 4203 } 4204 #elif defined(TARGET_ARM) 4205 { 4206 int i; 4207 cpsr_write(env, regs->uregs[16], 0xffffffff); 4208 for(i = 0; i < 16; i++) { 4209 env->regs[i] = regs->uregs[i]; 4210 } 4211 /* Enable BE8. */ 4212 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4213 && (info->elf_flags & EF_ARM_BE8)) { 4214 env->bswap_code = 1; 4215 } 4216 } 4217 #elif defined(TARGET_UNICORE32) 4218 { 4219 int i; 4220 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4221 for (i = 0; i < 32; i++) { 4222 env->regs[i] = regs->uregs[i]; 4223 } 4224 } 4225 #elif defined(TARGET_SPARC) 4226 { 4227 int i; 4228 env->pc = regs->pc; 4229 env->npc = regs->npc; 4230 env->y = regs->y; 4231 for(i = 0; i < 8; i++) 4232 env->gregs[i] = regs->u_regs[i]; 4233 for(i = 0; i < 8; i++) 4234 env->regwptr[i] = regs->u_regs[i + 8]; 4235 } 4236 #elif defined(TARGET_PPC) 4237 { 4238 int i; 4239 4240 #if defined(TARGET_PPC64) 4241 #if defined(TARGET_ABI32) 4242 env->msr &= ~((target_ulong)1 << MSR_SF); 4243 #else 4244 env->msr |= (target_ulong)1 << MSR_SF; 4245 #endif 4246 #endif 4247 env->nip = regs->nip; 4248 for(i = 0; i < 32; i++) { 4249 env->gpr[i] = regs->gpr[i]; 4250 } 4251 } 4252 #elif defined(TARGET_M68K) 4253 { 4254 env->pc = regs->pc; 4255 env->dregs[0] = regs->d0; 4256 env->dregs[1] = regs->d1; 4257 env->dregs[2] = regs->d2; 4258 env->dregs[3] = regs->d3; 4259 env->dregs[4] = regs->d4; 4260 env->dregs[5] = regs->d5; 4261 env->dregs[6] = regs->d6; 4262 env->dregs[7] = regs->d7; 4263 env->aregs[0] = regs->a0; 4264 env->aregs[1] = regs->a1; 4265 env->aregs[2] = regs->a2; 4266 env->aregs[3] = regs->a3; 4267 env->aregs[4] = regs->a4; 4268 env->aregs[5] = regs->a5; 4269 env->aregs[6] = regs->a6; 4270 env->aregs[7] = regs->usp; 4271 env->sr = regs->sr; 4272 ts->sim_syscalls = 1; 4273 } 4274 #elif defined(TARGET_MICROBLAZE) 4275 { 4276 env->regs[0] = regs->r0; 4277 env->regs[1] = regs->r1; 4278 env->regs[2] = regs->r2; 4279 env->regs[3] = regs->r3; 4280 env->regs[4] = regs->r4; 4281 env->regs[5] = regs->r5; 4282 env->regs[6] = regs->r6; 4283 env->regs[7] = regs->r7; 4284 env->regs[8] = regs->r8; 4285 env->regs[9] = regs->r9; 4286 env->regs[10] = regs->r10; 4287 env->regs[11] = regs->r11; 4288 env->regs[12] = regs->r12; 4289 env->regs[13] = regs->r13; 4290 env->regs[14] = regs->r14; 4291 env->regs[15] = regs->r15; 4292 env->regs[16] = regs->r16; 4293 env->regs[17] = regs->r17; 4294 env->regs[18] = regs->r18; 4295 env->regs[19] = regs->r19; 4296 env->regs[20] = regs->r20; 4297 env->regs[21] = regs->r21; 4298 env->regs[22] = regs->r22; 4299 env->regs[23] = regs->r23; 4300 env->regs[24] = regs->r24; 4301 env->regs[25] = regs->r25; 4302 env->regs[26] = regs->r26; 4303 env->regs[27] = regs->r27; 4304 env->regs[28] = regs->r28; 4305 env->regs[29] = regs->r29; 4306 env->regs[30] = regs->r30; 4307 env->regs[31] = regs->r31; 4308 env->sregs[SR_PC] = regs->pc; 4309 } 4310 #elif defined(TARGET_MIPS) 4311 { 4312 int i; 4313 4314 for(i = 0; i < 32; i++) { 4315 env->active_tc.gpr[i] = regs->regs[i]; 4316 } 4317 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4318 if (regs->cp0_epc & 1) { 4319 env->hflags |= MIPS_HFLAG_M16; 4320 } 4321 } 4322 #elif defined(TARGET_OPENRISC) 4323 { 4324 int i; 4325 4326 for (i = 0; i < 32; i++) { 4327 env->gpr[i] = regs->gpr[i]; 4328 } 4329 4330 env->sr = regs->sr; 4331 env->pc = regs->pc; 4332 } 4333 #elif defined(TARGET_SH4) 4334 { 4335 int i; 4336 4337 for(i = 0; i < 16; i++) { 4338 env->gregs[i] = regs->regs[i]; 4339 } 4340 env->pc = regs->pc; 4341 } 4342 #elif defined(TARGET_ALPHA) 4343 { 4344 int i; 4345 4346 for(i = 0; i < 28; i++) { 4347 env->ir[i] = ((abi_ulong *)regs)[i]; 4348 } 4349 env->ir[IR_SP] = regs->usp; 4350 env->pc = regs->pc; 4351 } 4352 #elif defined(TARGET_CRIS) 4353 { 4354 env->regs[0] = regs->r0; 4355 env->regs[1] = regs->r1; 4356 env->regs[2] = regs->r2; 4357 env->regs[3] = regs->r3; 4358 env->regs[4] = regs->r4; 4359 env->regs[5] = regs->r5; 4360 env->regs[6] = regs->r6; 4361 env->regs[7] = regs->r7; 4362 env->regs[8] = regs->r8; 4363 env->regs[9] = regs->r9; 4364 env->regs[10] = regs->r10; 4365 env->regs[11] = regs->r11; 4366 env->regs[12] = regs->r12; 4367 env->regs[13] = regs->r13; 4368 env->regs[14] = info->start_stack; 4369 env->regs[15] = regs->acr; 4370 env->pc = regs->erp; 4371 } 4372 #elif defined(TARGET_S390X) 4373 { 4374 int i; 4375 for (i = 0; i < 16; i++) { 4376 env->regs[i] = regs->gprs[i]; 4377 } 4378 env->psw.mask = regs->psw.mask; 4379 env->psw.addr = regs->psw.addr; 4380 } 4381 #else 4382 #error unsupported target CPU 4383 #endif 4384 4385 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4386 ts->stack_base = info->start_stack; 4387 ts->heap_base = info->brk; 4388 /* This will be filled in on the first SYS_HEAPINFO call. */ 4389 ts->heap_limit = 0; 4390 #endif 4391 4392 if (gdbstub_port) { 4393 if (gdbserver_start(gdbstub_port) < 0) { 4394 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4395 gdbstub_port); 4396 exit(1); 4397 } 4398 gdb_handlesig(cpu, 0); 4399 } 4400 cpu_loop(env); 4401 /* never exits */ 4402 return 0; 4403 } 4404