1 /* 2 * qemu user main 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License as published by 8 * the Free Software Foundation; either version 2 of the License, or 9 * (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include <stdlib.h> 20 #include <stdio.h> 21 #include <stdarg.h> 22 #include <string.h> 23 #include <errno.h> 24 #include <unistd.h> 25 #include <sys/mman.h> 26 #include <sys/syscall.h> 27 #include <sys/resource.h> 28 29 #include "qemu.h" 30 #include "qemu-common.h" 31 #include "qemu/cache-utils.h" 32 #include "cpu.h" 33 #include "tcg.h" 34 #include "qemu/timer.h" 35 #include "qemu/envlist.h" 36 #include "elf.h" 37 38 char *exec_path; 39 40 int singlestep; 41 const char *filename; 42 const char *argv0; 43 int gdbstub_port; 44 envlist_t *envlist; 45 static const char *cpu_model; 46 unsigned long mmap_min_addr; 47 #if defined(CONFIG_USE_GUEST_BASE) 48 unsigned long guest_base; 49 int have_guest_base; 50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64) 51 /* 52 * When running 32-on-64 we should make sure we can fit all of the possible 53 * guest address space into a contiguous chunk of virtual host memory. 54 * 55 * This way we will never overlap with our own libraries or binaries or stack 56 * or anything else that QEMU maps. 57 */ 58 # ifdef TARGET_MIPS 59 /* MIPS only supports 31 bits of virtual address space for user space */ 60 unsigned long reserved_va = 0x77000000; 61 # else 62 unsigned long reserved_va = 0xf7000000; 63 # endif 64 #else 65 unsigned long reserved_va; 66 #endif 67 #endif 68 69 static void usage(void); 70 71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX; 72 const char *qemu_uname_release = CONFIG_UNAME_RELEASE; 73 74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so 75 we allocate a bigger stack. Need a better solution, for example 76 by remapping the process stack directly at the right place */ 77 unsigned long guest_stack_size = 8 * 1024 * 1024UL; 78 79 void gemu_log(const char *fmt, ...) 80 { 81 va_list ap; 82 83 va_start(ap, fmt); 84 vfprintf(stderr, fmt, ap); 85 va_end(ap); 86 } 87 88 #if defined(TARGET_I386) 89 int cpu_get_pic_interrupt(CPUX86State *env) 90 { 91 return -1; 92 } 93 #endif 94 95 /***********************************************************/ 96 /* Helper routines for implementing atomic operations. */ 97 98 /* To implement exclusive operations we force all cpus to syncronise. 99 We don't require a full sync, only that no cpus are executing guest code. 100 The alternative is to map target atomic ops onto host equivalents, 101 which requires quite a lot of per host/target work. */ 102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER; 103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER; 104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER; 105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER; 106 static int pending_cpus; 107 108 /* Make sure everything is in a consistent state for calling fork(). */ 109 void fork_start(void) 110 { 111 pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock); 112 pthread_mutex_lock(&exclusive_lock); 113 mmap_fork_start(); 114 } 115 116 void fork_end(int child) 117 { 118 mmap_fork_end(child); 119 if (child) { 120 CPUState *cpu, *next_cpu; 121 /* Child processes created by fork() only have a single thread. 122 Discard information about the parent threads. */ 123 CPU_FOREACH_SAFE(cpu, next_cpu) { 124 if (cpu != thread_cpu) { 125 QTAILQ_REMOVE(&cpus, thread_cpu, node); 126 } 127 } 128 pending_cpus = 0; 129 pthread_mutex_init(&exclusive_lock, NULL); 130 pthread_mutex_init(&cpu_list_mutex, NULL); 131 pthread_cond_init(&exclusive_cond, NULL); 132 pthread_cond_init(&exclusive_resume, NULL); 133 pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL); 134 gdbserver_fork((CPUArchState *)thread_cpu->env_ptr); 135 } else { 136 pthread_mutex_unlock(&exclusive_lock); 137 pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock); 138 } 139 } 140 141 /* Wait for pending exclusive operations to complete. The exclusive lock 142 must be held. */ 143 static inline void exclusive_idle(void) 144 { 145 while (pending_cpus) { 146 pthread_cond_wait(&exclusive_resume, &exclusive_lock); 147 } 148 } 149 150 /* Start an exclusive operation. 151 Must only be called from outside cpu_arm_exec. */ 152 static inline void start_exclusive(void) 153 { 154 CPUState *other_cpu; 155 156 pthread_mutex_lock(&exclusive_lock); 157 exclusive_idle(); 158 159 pending_cpus = 1; 160 /* Make all other cpus stop executing. */ 161 CPU_FOREACH(other_cpu) { 162 if (other_cpu->running) { 163 pending_cpus++; 164 cpu_exit(other_cpu); 165 } 166 } 167 if (pending_cpus > 1) { 168 pthread_cond_wait(&exclusive_cond, &exclusive_lock); 169 } 170 } 171 172 /* Finish an exclusive operation. */ 173 static inline void end_exclusive(void) 174 { 175 pending_cpus = 0; 176 pthread_cond_broadcast(&exclusive_resume); 177 pthread_mutex_unlock(&exclusive_lock); 178 } 179 180 /* Wait for exclusive ops to finish, and begin cpu execution. */ 181 static inline void cpu_exec_start(CPUState *cpu) 182 { 183 pthread_mutex_lock(&exclusive_lock); 184 exclusive_idle(); 185 cpu->running = true; 186 pthread_mutex_unlock(&exclusive_lock); 187 } 188 189 /* Mark cpu as not executing, and release pending exclusive ops. */ 190 static inline void cpu_exec_end(CPUState *cpu) 191 { 192 pthread_mutex_lock(&exclusive_lock); 193 cpu->running = false; 194 if (pending_cpus > 1) { 195 pending_cpus--; 196 if (pending_cpus == 1) { 197 pthread_cond_signal(&exclusive_cond); 198 } 199 } 200 exclusive_idle(); 201 pthread_mutex_unlock(&exclusive_lock); 202 } 203 204 void cpu_list_lock(void) 205 { 206 pthread_mutex_lock(&cpu_list_mutex); 207 } 208 209 void cpu_list_unlock(void) 210 { 211 pthread_mutex_unlock(&cpu_list_mutex); 212 } 213 214 215 #ifdef TARGET_I386 216 /***********************************************************/ 217 /* CPUX86 core interface */ 218 219 void cpu_smm_update(CPUX86State *env) 220 { 221 } 222 223 uint64_t cpu_get_tsc(CPUX86State *env) 224 { 225 return cpu_get_real_ticks(); 226 } 227 228 static void write_dt(void *ptr, unsigned long addr, unsigned long limit, 229 int flags) 230 { 231 unsigned int e1, e2; 232 uint32_t *p; 233 e1 = (addr << 16) | (limit & 0xffff); 234 e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000); 235 e2 |= flags; 236 p = ptr; 237 p[0] = tswap32(e1); 238 p[1] = tswap32(e2); 239 } 240 241 static uint64_t *idt_table; 242 #ifdef TARGET_X86_64 243 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl, 244 uint64_t addr, unsigned int sel) 245 { 246 uint32_t *p, e1, e2; 247 e1 = (addr & 0xffff) | (sel << 16); 248 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 249 p = ptr; 250 p[0] = tswap32(e1); 251 p[1] = tswap32(e2); 252 p[2] = tswap32(addr >> 32); 253 p[3] = 0; 254 } 255 /* only dpl matters as we do only user space emulation */ 256 static void set_idt(int n, unsigned int dpl) 257 { 258 set_gate64(idt_table + n * 2, 0, dpl, 0, 0); 259 } 260 #else 261 static void set_gate(void *ptr, unsigned int type, unsigned int dpl, 262 uint32_t addr, unsigned int sel) 263 { 264 uint32_t *p, e1, e2; 265 e1 = (addr & 0xffff) | (sel << 16); 266 e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8); 267 p = ptr; 268 p[0] = tswap32(e1); 269 p[1] = tswap32(e2); 270 } 271 272 /* only dpl matters as we do only user space emulation */ 273 static void set_idt(int n, unsigned int dpl) 274 { 275 set_gate(idt_table + n, 0, dpl, 0, 0); 276 } 277 #endif 278 279 void cpu_loop(CPUX86State *env) 280 { 281 CPUState *cs = CPU(x86_env_get_cpu(env)); 282 int trapnr; 283 abi_ulong pc; 284 target_siginfo_t info; 285 286 for(;;) { 287 trapnr = cpu_x86_exec(env); 288 switch(trapnr) { 289 case 0x80: 290 /* linux syscall from int $0x80 */ 291 env->regs[R_EAX] = do_syscall(env, 292 env->regs[R_EAX], 293 env->regs[R_EBX], 294 env->regs[R_ECX], 295 env->regs[R_EDX], 296 env->regs[R_ESI], 297 env->regs[R_EDI], 298 env->regs[R_EBP], 299 0, 0); 300 break; 301 #ifndef TARGET_ABI32 302 case EXCP_SYSCALL: 303 /* linux syscall from syscall instruction */ 304 env->regs[R_EAX] = do_syscall(env, 305 env->regs[R_EAX], 306 env->regs[R_EDI], 307 env->regs[R_ESI], 308 env->regs[R_EDX], 309 env->regs[10], 310 env->regs[8], 311 env->regs[9], 312 0, 0); 313 env->eip = env->exception_next_eip; 314 break; 315 #endif 316 case EXCP0B_NOSEG: 317 case EXCP0C_STACK: 318 info.si_signo = SIGBUS; 319 info.si_errno = 0; 320 info.si_code = TARGET_SI_KERNEL; 321 info._sifields._sigfault._addr = 0; 322 queue_signal(env, info.si_signo, &info); 323 break; 324 case EXCP0D_GPF: 325 /* XXX: potential problem if ABI32 */ 326 #ifndef TARGET_X86_64 327 if (env->eflags & VM_MASK) { 328 handle_vm86_fault(env); 329 } else 330 #endif 331 { 332 info.si_signo = SIGSEGV; 333 info.si_errno = 0; 334 info.si_code = TARGET_SI_KERNEL; 335 info._sifields._sigfault._addr = 0; 336 queue_signal(env, info.si_signo, &info); 337 } 338 break; 339 case EXCP0E_PAGE: 340 info.si_signo = SIGSEGV; 341 info.si_errno = 0; 342 if (!(env->error_code & 1)) 343 info.si_code = TARGET_SEGV_MAPERR; 344 else 345 info.si_code = TARGET_SEGV_ACCERR; 346 info._sifields._sigfault._addr = env->cr[2]; 347 queue_signal(env, info.si_signo, &info); 348 break; 349 case EXCP00_DIVZ: 350 #ifndef TARGET_X86_64 351 if (env->eflags & VM_MASK) { 352 handle_vm86_trap(env, trapnr); 353 } else 354 #endif 355 { 356 /* division by zero */ 357 info.si_signo = SIGFPE; 358 info.si_errno = 0; 359 info.si_code = TARGET_FPE_INTDIV; 360 info._sifields._sigfault._addr = env->eip; 361 queue_signal(env, info.si_signo, &info); 362 } 363 break; 364 case EXCP01_DB: 365 case EXCP03_INT3: 366 #ifndef TARGET_X86_64 367 if (env->eflags & VM_MASK) { 368 handle_vm86_trap(env, trapnr); 369 } else 370 #endif 371 { 372 info.si_signo = SIGTRAP; 373 info.si_errno = 0; 374 if (trapnr == EXCP01_DB) { 375 info.si_code = TARGET_TRAP_BRKPT; 376 info._sifields._sigfault._addr = env->eip; 377 } else { 378 info.si_code = TARGET_SI_KERNEL; 379 info._sifields._sigfault._addr = 0; 380 } 381 queue_signal(env, info.si_signo, &info); 382 } 383 break; 384 case EXCP04_INTO: 385 case EXCP05_BOUND: 386 #ifndef TARGET_X86_64 387 if (env->eflags & VM_MASK) { 388 handle_vm86_trap(env, trapnr); 389 } else 390 #endif 391 { 392 info.si_signo = SIGSEGV; 393 info.si_errno = 0; 394 info.si_code = TARGET_SI_KERNEL; 395 info._sifields._sigfault._addr = 0; 396 queue_signal(env, info.si_signo, &info); 397 } 398 break; 399 case EXCP06_ILLOP: 400 info.si_signo = SIGILL; 401 info.si_errno = 0; 402 info.si_code = TARGET_ILL_ILLOPN; 403 info._sifields._sigfault._addr = env->eip; 404 queue_signal(env, info.si_signo, &info); 405 break; 406 case EXCP_INTERRUPT: 407 /* just indicate that signals should be handled asap */ 408 break; 409 case EXCP_DEBUG: 410 { 411 int sig; 412 413 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 414 if (sig) 415 { 416 info.si_signo = sig; 417 info.si_errno = 0; 418 info.si_code = TARGET_TRAP_BRKPT; 419 queue_signal(env, info.si_signo, &info); 420 } 421 } 422 break; 423 default: 424 pc = env->segs[R_CS].base + env->eip; 425 fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n", 426 (long)pc, trapnr); 427 abort(); 428 } 429 process_pending_signals(env); 430 } 431 } 432 #endif 433 434 #ifdef TARGET_ARM 435 436 #define get_user_code_u32(x, gaddr, doswap) \ 437 ({ abi_long __r = get_user_u32((x), (gaddr)); \ 438 if (!__r && (doswap)) { \ 439 (x) = bswap32(x); \ 440 } \ 441 __r; \ 442 }) 443 444 #define get_user_code_u16(x, gaddr, doswap) \ 445 ({ abi_long __r = get_user_u16((x), (gaddr)); \ 446 if (!__r && (doswap)) { \ 447 (x) = bswap16(x); \ 448 } \ 449 __r; \ 450 }) 451 452 #ifdef TARGET_ABI32 453 /* Commpage handling -- there is no commpage for AArch64 */ 454 455 /* 456 * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt 457 * Input: 458 * r0 = pointer to oldval 459 * r1 = pointer to newval 460 * r2 = pointer to target value 461 * 462 * Output: 463 * r0 = 0 if *ptr was changed, non-0 if no exchange happened 464 * C set if *ptr was changed, clear if no exchange happened 465 * 466 * Note segv's in kernel helpers are a bit tricky, we can set the 467 * data address sensibly but the PC address is just the entry point. 468 */ 469 static void arm_kernel_cmpxchg64_helper(CPUARMState *env) 470 { 471 uint64_t oldval, newval, val; 472 uint32_t addr, cpsr; 473 target_siginfo_t info; 474 475 /* Based on the 32 bit code in do_kernel_trap */ 476 477 /* XXX: This only works between threads, not between processes. 478 It's probably possible to implement this with native host 479 operations. However things like ldrex/strex are much harder so 480 there's not much point trying. */ 481 start_exclusive(); 482 cpsr = cpsr_read(env); 483 addr = env->regs[2]; 484 485 if (get_user_u64(oldval, env->regs[0])) { 486 env->cp15.c6_data = env->regs[0]; 487 goto segv; 488 }; 489 490 if (get_user_u64(newval, env->regs[1])) { 491 env->cp15.c6_data = env->regs[1]; 492 goto segv; 493 }; 494 495 if (get_user_u64(val, addr)) { 496 env->cp15.c6_data = addr; 497 goto segv; 498 } 499 500 if (val == oldval) { 501 val = newval; 502 503 if (put_user_u64(val, addr)) { 504 env->cp15.c6_data = addr; 505 goto segv; 506 }; 507 508 env->regs[0] = 0; 509 cpsr |= CPSR_C; 510 } else { 511 env->regs[0] = -1; 512 cpsr &= ~CPSR_C; 513 } 514 cpsr_write(env, cpsr, CPSR_C); 515 end_exclusive(); 516 return; 517 518 segv: 519 end_exclusive(); 520 /* We get the PC of the entry address - which is as good as anything, 521 on a real kernel what you get depends on which mode it uses. */ 522 info.si_signo = SIGSEGV; 523 info.si_errno = 0; 524 /* XXX: check env->error_code */ 525 info.si_code = TARGET_SEGV_MAPERR; 526 info._sifields._sigfault._addr = env->cp15.c6_data; 527 queue_signal(env, info.si_signo, &info); 528 529 end_exclusive(); 530 } 531 532 /* Handle a jump to the kernel code page. */ 533 static int 534 do_kernel_trap(CPUARMState *env) 535 { 536 uint32_t addr; 537 uint32_t cpsr; 538 uint32_t val; 539 540 switch (env->regs[15]) { 541 case 0xffff0fa0: /* __kernel_memory_barrier */ 542 /* ??? No-op. Will need to do better for SMP. */ 543 break; 544 case 0xffff0fc0: /* __kernel_cmpxchg */ 545 /* XXX: This only works between threads, not between processes. 546 It's probably possible to implement this with native host 547 operations. However things like ldrex/strex are much harder so 548 there's not much point trying. */ 549 start_exclusive(); 550 cpsr = cpsr_read(env); 551 addr = env->regs[2]; 552 /* FIXME: This should SEGV if the access fails. */ 553 if (get_user_u32(val, addr)) 554 val = ~env->regs[0]; 555 if (val == env->regs[0]) { 556 val = env->regs[1]; 557 /* FIXME: Check for segfaults. */ 558 put_user_u32(val, addr); 559 env->regs[0] = 0; 560 cpsr |= CPSR_C; 561 } else { 562 env->regs[0] = -1; 563 cpsr &= ~CPSR_C; 564 } 565 cpsr_write(env, cpsr, CPSR_C); 566 end_exclusive(); 567 break; 568 case 0xffff0fe0: /* __kernel_get_tls */ 569 env->regs[0] = env->cp15.c13_tls2; 570 break; 571 case 0xffff0f60: /* __kernel_cmpxchg64 */ 572 arm_kernel_cmpxchg64_helper(env); 573 break; 574 575 default: 576 return 1; 577 } 578 /* Jump back to the caller. */ 579 addr = env->regs[14]; 580 if (addr & 1) { 581 env->thumb = 1; 582 addr &= ~1; 583 } 584 env->regs[15] = addr; 585 586 return 0; 587 } 588 #endif 589 590 static int do_strex(CPUARMState *env) 591 { 592 uint32_t val; 593 int size; 594 int rc = 1; 595 int segv = 0; 596 uint32_t addr; 597 start_exclusive(); 598 addr = env->exclusive_addr; 599 if (addr != env->exclusive_test) { 600 goto fail; 601 } 602 size = env->exclusive_info & 0xf; 603 switch (size) { 604 case 0: 605 segv = get_user_u8(val, addr); 606 break; 607 case 1: 608 segv = get_user_u16(val, addr); 609 break; 610 case 2: 611 case 3: 612 segv = get_user_u32(val, addr); 613 break; 614 default: 615 abort(); 616 } 617 if (segv) { 618 env->cp15.c6_data = addr; 619 goto done; 620 } 621 if (val != env->exclusive_val) { 622 goto fail; 623 } 624 if (size == 3) { 625 segv = get_user_u32(val, addr + 4); 626 if (segv) { 627 env->cp15.c6_data = addr + 4; 628 goto done; 629 } 630 if (val != env->exclusive_high) { 631 goto fail; 632 } 633 } 634 val = env->regs[(env->exclusive_info >> 8) & 0xf]; 635 switch (size) { 636 case 0: 637 segv = put_user_u8(val, addr); 638 break; 639 case 1: 640 segv = put_user_u16(val, addr); 641 break; 642 case 2: 643 case 3: 644 segv = put_user_u32(val, addr); 645 break; 646 } 647 if (segv) { 648 env->cp15.c6_data = addr; 649 goto done; 650 } 651 if (size == 3) { 652 val = env->regs[(env->exclusive_info >> 12) & 0xf]; 653 segv = put_user_u32(val, addr + 4); 654 if (segv) { 655 env->cp15.c6_data = addr + 4; 656 goto done; 657 } 658 } 659 rc = 0; 660 fail: 661 env->regs[15] += 4; 662 env->regs[(env->exclusive_info >> 4) & 0xf] = rc; 663 done: 664 end_exclusive(); 665 return segv; 666 } 667 668 #ifdef TARGET_ABI32 669 void cpu_loop(CPUARMState *env) 670 { 671 CPUState *cs = CPU(arm_env_get_cpu(env)); 672 int trapnr; 673 unsigned int n, insn; 674 target_siginfo_t info; 675 uint32_t addr; 676 677 for(;;) { 678 cpu_exec_start(cs); 679 trapnr = cpu_arm_exec(env); 680 cpu_exec_end(cs); 681 switch(trapnr) { 682 case EXCP_UDEF: 683 { 684 TaskState *ts = env->opaque; 685 uint32_t opcode; 686 int rc; 687 688 /* we handle the FPU emulation here, as Linux */ 689 /* we get the opcode */ 690 /* FIXME - what to do if get_user() fails? */ 691 get_user_code_u32(opcode, env->regs[15], env->bswap_code); 692 693 rc = EmulateAll(opcode, &ts->fpa, env); 694 if (rc == 0) { /* illegal instruction */ 695 info.si_signo = SIGILL; 696 info.si_errno = 0; 697 info.si_code = TARGET_ILL_ILLOPN; 698 info._sifields._sigfault._addr = env->regs[15]; 699 queue_signal(env, info.si_signo, &info); 700 } else if (rc < 0) { /* FP exception */ 701 int arm_fpe=0; 702 703 /* translate softfloat flags to FPSR flags */ 704 if (-rc & float_flag_invalid) 705 arm_fpe |= BIT_IOC; 706 if (-rc & float_flag_divbyzero) 707 arm_fpe |= BIT_DZC; 708 if (-rc & float_flag_overflow) 709 arm_fpe |= BIT_OFC; 710 if (-rc & float_flag_underflow) 711 arm_fpe |= BIT_UFC; 712 if (-rc & float_flag_inexact) 713 arm_fpe |= BIT_IXC; 714 715 FPSR fpsr = ts->fpa.fpsr; 716 //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe); 717 718 if (fpsr & (arm_fpe << 16)) { /* exception enabled? */ 719 info.si_signo = SIGFPE; 720 info.si_errno = 0; 721 722 /* ordered by priority, least first */ 723 if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES; 724 if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND; 725 if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF; 726 if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV; 727 if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV; 728 729 info._sifields._sigfault._addr = env->regs[15]; 730 queue_signal(env, info.si_signo, &info); 731 } else { 732 env->regs[15] += 4; 733 } 734 735 /* accumulate unenabled exceptions */ 736 if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC)) 737 fpsr |= BIT_IXC; 738 if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC)) 739 fpsr |= BIT_UFC; 740 if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC)) 741 fpsr |= BIT_OFC; 742 if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC)) 743 fpsr |= BIT_DZC; 744 if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC)) 745 fpsr |= BIT_IOC; 746 ts->fpa.fpsr=fpsr; 747 } else { /* everything OK */ 748 /* increment PC */ 749 env->regs[15] += 4; 750 } 751 } 752 break; 753 case EXCP_SWI: 754 case EXCP_BKPT: 755 { 756 env->eabi = 1; 757 /* system call */ 758 if (trapnr == EXCP_BKPT) { 759 if (env->thumb) { 760 /* FIXME - what to do if get_user() fails? */ 761 get_user_code_u16(insn, env->regs[15], env->bswap_code); 762 n = insn & 0xff; 763 env->regs[15] += 2; 764 } else { 765 /* FIXME - what to do if get_user() fails? */ 766 get_user_code_u32(insn, env->regs[15], env->bswap_code); 767 n = (insn & 0xf) | ((insn >> 4) & 0xff0); 768 env->regs[15] += 4; 769 } 770 } else { 771 if (env->thumb) { 772 /* FIXME - what to do if get_user() fails? */ 773 get_user_code_u16(insn, env->regs[15] - 2, 774 env->bswap_code); 775 n = insn & 0xff; 776 } else { 777 /* FIXME - what to do if get_user() fails? */ 778 get_user_code_u32(insn, env->regs[15] - 4, 779 env->bswap_code); 780 n = insn & 0xffffff; 781 } 782 } 783 784 if (n == ARM_NR_cacheflush) { 785 /* nop */ 786 } else if (n == ARM_NR_semihosting 787 || n == ARM_NR_thumb_semihosting) { 788 env->regs[0] = do_arm_semihosting (env); 789 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) { 790 /* linux syscall */ 791 if (env->thumb || n == 0) { 792 n = env->regs[7]; 793 } else { 794 n -= ARM_SYSCALL_BASE; 795 env->eabi = 0; 796 } 797 if ( n > ARM_NR_BASE) { 798 switch (n) { 799 case ARM_NR_cacheflush: 800 /* nop */ 801 break; 802 case ARM_NR_set_tls: 803 cpu_set_tls(env, env->regs[0]); 804 env->regs[0] = 0; 805 break; 806 default: 807 gemu_log("qemu: Unsupported ARM syscall: 0x%x\n", 808 n); 809 env->regs[0] = -TARGET_ENOSYS; 810 break; 811 } 812 } else { 813 env->regs[0] = do_syscall(env, 814 n, 815 env->regs[0], 816 env->regs[1], 817 env->regs[2], 818 env->regs[3], 819 env->regs[4], 820 env->regs[5], 821 0, 0); 822 } 823 } else { 824 goto error; 825 } 826 } 827 break; 828 case EXCP_INTERRUPT: 829 /* just indicate that signals should be handled asap */ 830 break; 831 case EXCP_PREFETCH_ABORT: 832 addr = env->cp15.c6_insn; 833 goto do_segv; 834 case EXCP_DATA_ABORT: 835 addr = env->cp15.c6_data; 836 do_segv: 837 { 838 info.si_signo = SIGSEGV; 839 info.si_errno = 0; 840 /* XXX: check env->error_code */ 841 info.si_code = TARGET_SEGV_MAPERR; 842 info._sifields._sigfault._addr = addr; 843 queue_signal(env, info.si_signo, &info); 844 } 845 break; 846 case EXCP_DEBUG: 847 { 848 int sig; 849 850 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 851 if (sig) 852 { 853 info.si_signo = sig; 854 info.si_errno = 0; 855 info.si_code = TARGET_TRAP_BRKPT; 856 queue_signal(env, info.si_signo, &info); 857 } 858 } 859 break; 860 case EXCP_KERNEL_TRAP: 861 if (do_kernel_trap(env)) 862 goto error; 863 break; 864 case EXCP_STREX: 865 if (do_strex(env)) { 866 addr = env->cp15.c6_data; 867 goto do_segv; 868 } 869 break; 870 default: 871 error: 872 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 873 trapnr); 874 cpu_dump_state(cs, stderr, fprintf, 0); 875 abort(); 876 } 877 process_pending_signals(env); 878 } 879 } 880 881 #else 882 883 /* AArch64 main loop */ 884 void cpu_loop(CPUARMState *env) 885 { 886 CPUState *cs = CPU(arm_env_get_cpu(env)); 887 int trapnr, sig; 888 target_siginfo_t info; 889 uint32_t addr; 890 891 for (;;) { 892 cpu_exec_start(cs); 893 trapnr = cpu_arm_exec(env); 894 cpu_exec_end(cs); 895 896 switch (trapnr) { 897 case EXCP_SWI: 898 env->xregs[0] = do_syscall(env, 899 env->xregs[8], 900 env->xregs[0], 901 env->xregs[1], 902 env->xregs[2], 903 env->xregs[3], 904 env->xregs[4], 905 env->xregs[5], 906 0, 0); 907 break; 908 case EXCP_INTERRUPT: 909 /* just indicate that signals should be handled asap */ 910 break; 911 case EXCP_UDEF: 912 info.si_signo = SIGILL; 913 info.si_errno = 0; 914 info.si_code = TARGET_ILL_ILLOPN; 915 info._sifields._sigfault._addr = env->pc; 916 queue_signal(env, info.si_signo, &info); 917 break; 918 case EXCP_PREFETCH_ABORT: 919 addr = env->cp15.c6_insn; 920 goto do_segv; 921 case EXCP_DATA_ABORT: 922 addr = env->cp15.c6_data; 923 do_segv: 924 info.si_signo = SIGSEGV; 925 info.si_errno = 0; 926 /* XXX: check env->error_code */ 927 info.si_code = TARGET_SEGV_MAPERR; 928 info._sifields._sigfault._addr = addr; 929 queue_signal(env, info.si_signo, &info); 930 break; 931 case EXCP_DEBUG: 932 case EXCP_BKPT: 933 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 934 if (sig) { 935 info.si_signo = sig; 936 info.si_errno = 0; 937 info.si_code = TARGET_TRAP_BRKPT; 938 queue_signal(env, info.si_signo, &info); 939 } 940 break; 941 case EXCP_STREX: 942 if (do_strex(env)) { 943 addr = env->cp15.c6_data; 944 goto do_segv; 945 } 946 break; 947 default: 948 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 949 trapnr); 950 cpu_dump_state(cs, stderr, fprintf, 0); 951 abort(); 952 } 953 process_pending_signals(env); 954 } 955 } 956 #endif /* ndef TARGET_ABI32 */ 957 958 #endif 959 960 #ifdef TARGET_UNICORE32 961 962 void cpu_loop(CPUUniCore32State *env) 963 { 964 CPUState *cs = CPU(uc32_env_get_cpu(env)); 965 int trapnr; 966 unsigned int n, insn; 967 target_siginfo_t info; 968 969 for (;;) { 970 cpu_exec_start(cs); 971 trapnr = uc32_cpu_exec(env); 972 cpu_exec_end(cs); 973 switch (trapnr) { 974 case UC32_EXCP_PRIV: 975 { 976 /* system call */ 977 get_user_u32(insn, env->regs[31] - 4); 978 n = insn & 0xffffff; 979 980 if (n >= UC32_SYSCALL_BASE) { 981 /* linux syscall */ 982 n -= UC32_SYSCALL_BASE; 983 if (n == UC32_SYSCALL_NR_set_tls) { 984 cpu_set_tls(env, env->regs[0]); 985 env->regs[0] = 0; 986 } else { 987 env->regs[0] = do_syscall(env, 988 n, 989 env->regs[0], 990 env->regs[1], 991 env->regs[2], 992 env->regs[3], 993 env->regs[4], 994 env->regs[5], 995 0, 0); 996 } 997 } else { 998 goto error; 999 } 1000 } 1001 break; 1002 case UC32_EXCP_DTRAP: 1003 case UC32_EXCP_ITRAP: 1004 info.si_signo = SIGSEGV; 1005 info.si_errno = 0; 1006 /* XXX: check env->error_code */ 1007 info.si_code = TARGET_SEGV_MAPERR; 1008 info._sifields._sigfault._addr = env->cp0.c4_faultaddr; 1009 queue_signal(env, info.si_signo, &info); 1010 break; 1011 case EXCP_INTERRUPT: 1012 /* just indicate that signals should be handled asap */ 1013 break; 1014 case EXCP_DEBUG: 1015 { 1016 int sig; 1017 1018 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1019 if (sig) { 1020 info.si_signo = sig; 1021 info.si_errno = 0; 1022 info.si_code = TARGET_TRAP_BRKPT; 1023 queue_signal(env, info.si_signo, &info); 1024 } 1025 } 1026 break; 1027 default: 1028 goto error; 1029 } 1030 process_pending_signals(env); 1031 } 1032 1033 error: 1034 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr); 1035 cpu_dump_state(cs, stderr, fprintf, 0); 1036 abort(); 1037 } 1038 #endif 1039 1040 #ifdef TARGET_SPARC 1041 #define SPARC64_STACK_BIAS 2047 1042 1043 //#define DEBUG_WIN 1044 1045 /* WARNING: dealing with register windows _is_ complicated. More info 1046 can be found at http://www.sics.se/~psm/sparcstack.html */ 1047 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index) 1048 { 1049 index = (index + cwp * 16) % (16 * env->nwindows); 1050 /* wrap handling : if cwp is on the last window, then we use the 1051 registers 'after' the end */ 1052 if (index < 8 && env->cwp == env->nwindows - 1) 1053 index += 16 * env->nwindows; 1054 return index; 1055 } 1056 1057 /* save the register window 'cwp1' */ 1058 static inline void save_window_offset(CPUSPARCState *env, int cwp1) 1059 { 1060 unsigned int i; 1061 abi_ulong sp_ptr; 1062 1063 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1064 #ifdef TARGET_SPARC64 1065 if (sp_ptr & 3) 1066 sp_ptr += SPARC64_STACK_BIAS; 1067 #endif 1068 #if defined(DEBUG_WIN) 1069 printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n", 1070 sp_ptr, cwp1); 1071 #endif 1072 for(i = 0; i < 16; i++) { 1073 /* FIXME - what to do if put_user() fails? */ 1074 put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1075 sp_ptr += sizeof(abi_ulong); 1076 } 1077 } 1078 1079 static void save_window(CPUSPARCState *env) 1080 { 1081 #ifndef TARGET_SPARC64 1082 unsigned int new_wim; 1083 new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) & 1084 ((1LL << env->nwindows) - 1); 1085 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1086 env->wim = new_wim; 1087 #else 1088 save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2)); 1089 env->cansave++; 1090 env->canrestore--; 1091 #endif 1092 } 1093 1094 static void restore_window(CPUSPARCState *env) 1095 { 1096 #ifndef TARGET_SPARC64 1097 unsigned int new_wim; 1098 #endif 1099 unsigned int i, cwp1; 1100 abi_ulong sp_ptr; 1101 1102 #ifndef TARGET_SPARC64 1103 new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) & 1104 ((1LL << env->nwindows) - 1); 1105 #endif 1106 1107 /* restore the invalid window */ 1108 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1109 sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)]; 1110 #ifdef TARGET_SPARC64 1111 if (sp_ptr & 3) 1112 sp_ptr += SPARC64_STACK_BIAS; 1113 #endif 1114 #if defined(DEBUG_WIN) 1115 printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n", 1116 sp_ptr, cwp1); 1117 #endif 1118 for(i = 0; i < 16; i++) { 1119 /* FIXME - what to do if get_user() fails? */ 1120 get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr); 1121 sp_ptr += sizeof(abi_ulong); 1122 } 1123 #ifdef TARGET_SPARC64 1124 env->canrestore++; 1125 if (env->cleanwin < env->nwindows - 1) 1126 env->cleanwin++; 1127 env->cansave--; 1128 #else 1129 env->wim = new_wim; 1130 #endif 1131 } 1132 1133 static void flush_windows(CPUSPARCState *env) 1134 { 1135 int offset, cwp1; 1136 1137 offset = 1; 1138 for(;;) { 1139 /* if restore would invoke restore_window(), then we can stop */ 1140 cwp1 = cpu_cwp_inc(env, env->cwp + offset); 1141 #ifndef TARGET_SPARC64 1142 if (env->wim & (1 << cwp1)) 1143 break; 1144 #else 1145 if (env->canrestore == 0) 1146 break; 1147 env->cansave++; 1148 env->canrestore--; 1149 #endif 1150 save_window_offset(env, cwp1); 1151 offset++; 1152 } 1153 cwp1 = cpu_cwp_inc(env, env->cwp + 1); 1154 #ifndef TARGET_SPARC64 1155 /* set wim so that restore will reload the registers */ 1156 env->wim = 1 << cwp1; 1157 #endif 1158 #if defined(DEBUG_WIN) 1159 printf("flush_windows: nb=%d\n", offset - 1); 1160 #endif 1161 } 1162 1163 void cpu_loop (CPUSPARCState *env) 1164 { 1165 CPUState *cs = CPU(sparc_env_get_cpu(env)); 1166 int trapnr; 1167 abi_long ret; 1168 target_siginfo_t info; 1169 1170 while (1) { 1171 trapnr = cpu_sparc_exec (env); 1172 1173 /* Compute PSR before exposing state. */ 1174 if (env->cc_op != CC_OP_FLAGS) { 1175 cpu_get_psr(env); 1176 } 1177 1178 switch (trapnr) { 1179 #ifndef TARGET_SPARC64 1180 case 0x88: 1181 case 0x90: 1182 #else 1183 case 0x110: 1184 case 0x16d: 1185 #endif 1186 ret = do_syscall (env, env->gregs[1], 1187 env->regwptr[0], env->regwptr[1], 1188 env->regwptr[2], env->regwptr[3], 1189 env->regwptr[4], env->regwptr[5], 1190 0, 0); 1191 if ((abi_ulong)ret >= (abi_ulong)(-515)) { 1192 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1193 env->xcc |= PSR_CARRY; 1194 #else 1195 env->psr |= PSR_CARRY; 1196 #endif 1197 ret = -ret; 1198 } else { 1199 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) 1200 env->xcc &= ~PSR_CARRY; 1201 #else 1202 env->psr &= ~PSR_CARRY; 1203 #endif 1204 } 1205 env->regwptr[0] = ret; 1206 /* next instruction */ 1207 env->pc = env->npc; 1208 env->npc = env->npc + 4; 1209 break; 1210 case 0x83: /* flush windows */ 1211 #ifdef TARGET_ABI32 1212 case 0x103: 1213 #endif 1214 flush_windows(env); 1215 /* next instruction */ 1216 env->pc = env->npc; 1217 env->npc = env->npc + 4; 1218 break; 1219 #ifndef TARGET_SPARC64 1220 case TT_WIN_OVF: /* window overflow */ 1221 save_window(env); 1222 break; 1223 case TT_WIN_UNF: /* window underflow */ 1224 restore_window(env); 1225 break; 1226 case TT_TFAULT: 1227 case TT_DFAULT: 1228 { 1229 info.si_signo = TARGET_SIGSEGV; 1230 info.si_errno = 0; 1231 /* XXX: check env->error_code */ 1232 info.si_code = TARGET_SEGV_MAPERR; 1233 info._sifields._sigfault._addr = env->mmuregs[4]; 1234 queue_signal(env, info.si_signo, &info); 1235 } 1236 break; 1237 #else 1238 case TT_SPILL: /* window overflow */ 1239 save_window(env); 1240 break; 1241 case TT_FILL: /* window underflow */ 1242 restore_window(env); 1243 break; 1244 case TT_TFAULT: 1245 case TT_DFAULT: 1246 { 1247 info.si_signo = TARGET_SIGSEGV; 1248 info.si_errno = 0; 1249 /* XXX: check env->error_code */ 1250 info.si_code = TARGET_SEGV_MAPERR; 1251 if (trapnr == TT_DFAULT) 1252 info._sifields._sigfault._addr = env->dmmuregs[4]; 1253 else 1254 info._sifields._sigfault._addr = cpu_tsptr(env)->tpc; 1255 queue_signal(env, info.si_signo, &info); 1256 } 1257 break; 1258 #ifndef TARGET_ABI32 1259 case 0x16e: 1260 flush_windows(env); 1261 sparc64_get_context(env); 1262 break; 1263 case 0x16f: 1264 flush_windows(env); 1265 sparc64_set_context(env); 1266 break; 1267 #endif 1268 #endif 1269 case EXCP_INTERRUPT: 1270 /* just indicate that signals should be handled asap */ 1271 break; 1272 case TT_ILL_INSN: 1273 { 1274 info.si_signo = TARGET_SIGILL; 1275 info.si_errno = 0; 1276 info.si_code = TARGET_ILL_ILLOPC; 1277 info._sifields._sigfault._addr = env->pc; 1278 queue_signal(env, info.si_signo, &info); 1279 } 1280 break; 1281 case EXCP_DEBUG: 1282 { 1283 int sig; 1284 1285 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1286 if (sig) 1287 { 1288 info.si_signo = sig; 1289 info.si_errno = 0; 1290 info.si_code = TARGET_TRAP_BRKPT; 1291 queue_signal(env, info.si_signo, &info); 1292 } 1293 } 1294 break; 1295 default: 1296 printf ("Unhandled trap: 0x%x\n", trapnr); 1297 cpu_dump_state(cs, stderr, fprintf, 0); 1298 exit (1); 1299 } 1300 process_pending_signals (env); 1301 } 1302 } 1303 1304 #endif 1305 1306 #ifdef TARGET_PPC 1307 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env) 1308 { 1309 /* TO FIX */ 1310 return 0; 1311 } 1312 1313 uint64_t cpu_ppc_load_tbl(CPUPPCState *env) 1314 { 1315 return cpu_ppc_get_tb(env); 1316 } 1317 1318 uint32_t cpu_ppc_load_tbu(CPUPPCState *env) 1319 { 1320 return cpu_ppc_get_tb(env) >> 32; 1321 } 1322 1323 uint64_t cpu_ppc_load_atbl(CPUPPCState *env) 1324 { 1325 return cpu_ppc_get_tb(env); 1326 } 1327 1328 uint32_t cpu_ppc_load_atbu(CPUPPCState *env) 1329 { 1330 return cpu_ppc_get_tb(env) >> 32; 1331 } 1332 1333 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env) 1334 __attribute__ (( alias ("cpu_ppc_load_tbu") )); 1335 1336 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env) 1337 { 1338 return cpu_ppc_load_tbl(env) & 0x3FFFFF80; 1339 } 1340 1341 /* XXX: to be fixed */ 1342 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp) 1343 { 1344 return -1; 1345 } 1346 1347 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val) 1348 { 1349 return -1; 1350 } 1351 1352 #define EXCP_DUMP(env, fmt, ...) \ 1353 do { \ 1354 CPUState *cs = ENV_GET_CPU(env); \ 1355 fprintf(stderr, fmt , ## __VA_ARGS__); \ 1356 cpu_dump_state(cs, stderr, fprintf, 0); \ 1357 qemu_log(fmt, ## __VA_ARGS__); \ 1358 if (qemu_log_enabled()) { \ 1359 log_cpu_state(cs, 0); \ 1360 } \ 1361 } while (0) 1362 1363 static int do_store_exclusive(CPUPPCState *env) 1364 { 1365 target_ulong addr; 1366 target_ulong page_addr; 1367 target_ulong val; 1368 int flags; 1369 int segv = 0; 1370 1371 addr = env->reserve_ea; 1372 page_addr = addr & TARGET_PAGE_MASK; 1373 start_exclusive(); 1374 mmap_lock(); 1375 flags = page_get_flags(page_addr); 1376 if ((flags & PAGE_READ) == 0) { 1377 segv = 1; 1378 } else { 1379 int reg = env->reserve_info & 0x1f; 1380 int size = (env->reserve_info >> 5) & 0xf; 1381 int stored = 0; 1382 1383 if (addr == env->reserve_addr) { 1384 switch (size) { 1385 case 1: segv = get_user_u8(val, addr); break; 1386 case 2: segv = get_user_u16(val, addr); break; 1387 case 4: segv = get_user_u32(val, addr); break; 1388 #if defined(TARGET_PPC64) 1389 case 8: segv = get_user_u64(val, addr); break; 1390 #endif 1391 default: abort(); 1392 } 1393 if (!segv && val == env->reserve_val) { 1394 val = env->gpr[reg]; 1395 switch (size) { 1396 case 1: segv = put_user_u8(val, addr); break; 1397 case 2: segv = put_user_u16(val, addr); break; 1398 case 4: segv = put_user_u32(val, addr); break; 1399 #if defined(TARGET_PPC64) 1400 case 8: segv = put_user_u64(val, addr); break; 1401 #endif 1402 default: abort(); 1403 } 1404 if (!segv) { 1405 stored = 1; 1406 } 1407 } 1408 } 1409 env->crf[0] = (stored << 1) | xer_so; 1410 env->reserve_addr = (target_ulong)-1; 1411 } 1412 if (!segv) { 1413 env->nip += 4; 1414 } 1415 mmap_unlock(); 1416 end_exclusive(); 1417 return segv; 1418 } 1419 1420 void cpu_loop(CPUPPCState *env) 1421 { 1422 CPUState *cs = CPU(ppc_env_get_cpu(env)); 1423 target_siginfo_t info; 1424 int trapnr; 1425 target_ulong ret; 1426 1427 for(;;) { 1428 cpu_exec_start(cs); 1429 trapnr = cpu_ppc_exec(env); 1430 cpu_exec_end(cs); 1431 switch(trapnr) { 1432 case POWERPC_EXCP_NONE: 1433 /* Just go on */ 1434 break; 1435 case POWERPC_EXCP_CRITICAL: /* Critical input */ 1436 cpu_abort(env, "Critical interrupt while in user mode. " 1437 "Aborting\n"); 1438 break; 1439 case POWERPC_EXCP_MCHECK: /* Machine check exception */ 1440 cpu_abort(env, "Machine check exception while in user mode. " 1441 "Aborting\n"); 1442 break; 1443 case POWERPC_EXCP_DSI: /* Data storage exception */ 1444 EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n", 1445 env->spr[SPR_DAR]); 1446 /* XXX: check this. Seems bugged */ 1447 switch (env->error_code & 0xFF000000) { 1448 case 0x40000000: 1449 info.si_signo = TARGET_SIGSEGV; 1450 info.si_errno = 0; 1451 info.si_code = TARGET_SEGV_MAPERR; 1452 break; 1453 case 0x04000000: 1454 info.si_signo = TARGET_SIGILL; 1455 info.si_errno = 0; 1456 info.si_code = TARGET_ILL_ILLADR; 1457 break; 1458 case 0x08000000: 1459 info.si_signo = TARGET_SIGSEGV; 1460 info.si_errno = 0; 1461 info.si_code = TARGET_SEGV_ACCERR; 1462 break; 1463 default: 1464 /* Let's send a regular segfault... */ 1465 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1466 env->error_code); 1467 info.si_signo = TARGET_SIGSEGV; 1468 info.si_errno = 0; 1469 info.si_code = TARGET_SEGV_MAPERR; 1470 break; 1471 } 1472 info._sifields._sigfault._addr = env->nip; 1473 queue_signal(env, info.si_signo, &info); 1474 break; 1475 case POWERPC_EXCP_ISI: /* Instruction storage exception */ 1476 EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx 1477 "\n", env->spr[SPR_SRR0]); 1478 /* XXX: check this */ 1479 switch (env->error_code & 0xFF000000) { 1480 case 0x40000000: 1481 info.si_signo = TARGET_SIGSEGV; 1482 info.si_errno = 0; 1483 info.si_code = TARGET_SEGV_MAPERR; 1484 break; 1485 case 0x10000000: 1486 case 0x08000000: 1487 info.si_signo = TARGET_SIGSEGV; 1488 info.si_errno = 0; 1489 info.si_code = TARGET_SEGV_ACCERR; 1490 break; 1491 default: 1492 /* Let's send a regular segfault... */ 1493 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n", 1494 env->error_code); 1495 info.si_signo = TARGET_SIGSEGV; 1496 info.si_errno = 0; 1497 info.si_code = TARGET_SEGV_MAPERR; 1498 break; 1499 } 1500 info._sifields._sigfault._addr = env->nip - 4; 1501 queue_signal(env, info.si_signo, &info); 1502 break; 1503 case POWERPC_EXCP_EXTERNAL: /* External input */ 1504 cpu_abort(env, "External interrupt while in user mode. " 1505 "Aborting\n"); 1506 break; 1507 case POWERPC_EXCP_ALIGN: /* Alignment exception */ 1508 EXCP_DUMP(env, "Unaligned memory access\n"); 1509 /* XXX: check this */ 1510 info.si_signo = TARGET_SIGBUS; 1511 info.si_errno = 0; 1512 info.si_code = TARGET_BUS_ADRALN; 1513 info._sifields._sigfault._addr = env->nip - 4; 1514 queue_signal(env, info.si_signo, &info); 1515 break; 1516 case POWERPC_EXCP_PROGRAM: /* Program exception */ 1517 /* XXX: check this */ 1518 switch (env->error_code & ~0xF) { 1519 case POWERPC_EXCP_FP: 1520 EXCP_DUMP(env, "Floating point program exception\n"); 1521 info.si_signo = TARGET_SIGFPE; 1522 info.si_errno = 0; 1523 switch (env->error_code & 0xF) { 1524 case POWERPC_EXCP_FP_OX: 1525 info.si_code = TARGET_FPE_FLTOVF; 1526 break; 1527 case POWERPC_EXCP_FP_UX: 1528 info.si_code = TARGET_FPE_FLTUND; 1529 break; 1530 case POWERPC_EXCP_FP_ZX: 1531 case POWERPC_EXCP_FP_VXZDZ: 1532 info.si_code = TARGET_FPE_FLTDIV; 1533 break; 1534 case POWERPC_EXCP_FP_XX: 1535 info.si_code = TARGET_FPE_FLTRES; 1536 break; 1537 case POWERPC_EXCP_FP_VXSOFT: 1538 info.si_code = TARGET_FPE_FLTINV; 1539 break; 1540 case POWERPC_EXCP_FP_VXSNAN: 1541 case POWERPC_EXCP_FP_VXISI: 1542 case POWERPC_EXCP_FP_VXIDI: 1543 case POWERPC_EXCP_FP_VXIMZ: 1544 case POWERPC_EXCP_FP_VXVC: 1545 case POWERPC_EXCP_FP_VXSQRT: 1546 case POWERPC_EXCP_FP_VXCVI: 1547 info.si_code = TARGET_FPE_FLTSUB; 1548 break; 1549 default: 1550 EXCP_DUMP(env, "Unknown floating point exception (%02x)\n", 1551 env->error_code); 1552 break; 1553 } 1554 break; 1555 case POWERPC_EXCP_INVAL: 1556 EXCP_DUMP(env, "Invalid instruction\n"); 1557 info.si_signo = TARGET_SIGILL; 1558 info.si_errno = 0; 1559 switch (env->error_code & 0xF) { 1560 case POWERPC_EXCP_INVAL_INVAL: 1561 info.si_code = TARGET_ILL_ILLOPC; 1562 break; 1563 case POWERPC_EXCP_INVAL_LSWX: 1564 info.si_code = TARGET_ILL_ILLOPN; 1565 break; 1566 case POWERPC_EXCP_INVAL_SPR: 1567 info.si_code = TARGET_ILL_PRVREG; 1568 break; 1569 case POWERPC_EXCP_INVAL_FP: 1570 info.si_code = TARGET_ILL_COPROC; 1571 break; 1572 default: 1573 EXCP_DUMP(env, "Unknown invalid operation (%02x)\n", 1574 env->error_code & 0xF); 1575 info.si_code = TARGET_ILL_ILLADR; 1576 break; 1577 } 1578 break; 1579 case POWERPC_EXCP_PRIV: 1580 EXCP_DUMP(env, "Privilege violation\n"); 1581 info.si_signo = TARGET_SIGILL; 1582 info.si_errno = 0; 1583 switch (env->error_code & 0xF) { 1584 case POWERPC_EXCP_PRIV_OPC: 1585 info.si_code = TARGET_ILL_PRVOPC; 1586 break; 1587 case POWERPC_EXCP_PRIV_REG: 1588 info.si_code = TARGET_ILL_PRVREG; 1589 break; 1590 default: 1591 EXCP_DUMP(env, "Unknown privilege violation (%02x)\n", 1592 env->error_code & 0xF); 1593 info.si_code = TARGET_ILL_PRVOPC; 1594 break; 1595 } 1596 break; 1597 case POWERPC_EXCP_TRAP: 1598 cpu_abort(env, "Tried to call a TRAP\n"); 1599 break; 1600 default: 1601 /* Should not happen ! */ 1602 cpu_abort(env, "Unknown program exception (%02x)\n", 1603 env->error_code); 1604 break; 1605 } 1606 info._sifields._sigfault._addr = env->nip - 4; 1607 queue_signal(env, info.si_signo, &info); 1608 break; 1609 case POWERPC_EXCP_FPU: /* Floating-point unavailable exception */ 1610 EXCP_DUMP(env, "No floating point allowed\n"); 1611 info.si_signo = TARGET_SIGILL; 1612 info.si_errno = 0; 1613 info.si_code = TARGET_ILL_COPROC; 1614 info._sifields._sigfault._addr = env->nip - 4; 1615 queue_signal(env, info.si_signo, &info); 1616 break; 1617 case POWERPC_EXCP_SYSCALL: /* System call exception */ 1618 cpu_abort(env, "Syscall exception while in user mode. " 1619 "Aborting\n"); 1620 break; 1621 case POWERPC_EXCP_APU: /* Auxiliary processor unavailable */ 1622 EXCP_DUMP(env, "No APU instruction allowed\n"); 1623 info.si_signo = TARGET_SIGILL; 1624 info.si_errno = 0; 1625 info.si_code = TARGET_ILL_COPROC; 1626 info._sifields._sigfault._addr = env->nip - 4; 1627 queue_signal(env, info.si_signo, &info); 1628 break; 1629 case POWERPC_EXCP_DECR: /* Decrementer exception */ 1630 cpu_abort(env, "Decrementer interrupt while in user mode. " 1631 "Aborting\n"); 1632 break; 1633 case POWERPC_EXCP_FIT: /* Fixed-interval timer interrupt */ 1634 cpu_abort(env, "Fix interval timer interrupt while in user mode. " 1635 "Aborting\n"); 1636 break; 1637 case POWERPC_EXCP_WDT: /* Watchdog timer interrupt */ 1638 cpu_abort(env, "Watchdog timer interrupt while in user mode. " 1639 "Aborting\n"); 1640 break; 1641 case POWERPC_EXCP_DTLB: /* Data TLB error */ 1642 cpu_abort(env, "Data TLB exception while in user mode. " 1643 "Aborting\n"); 1644 break; 1645 case POWERPC_EXCP_ITLB: /* Instruction TLB error */ 1646 cpu_abort(env, "Instruction TLB exception while in user mode. " 1647 "Aborting\n"); 1648 break; 1649 case POWERPC_EXCP_SPEU: /* SPE/embedded floating-point unavail. */ 1650 EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n"); 1651 info.si_signo = TARGET_SIGILL; 1652 info.si_errno = 0; 1653 info.si_code = TARGET_ILL_COPROC; 1654 info._sifields._sigfault._addr = env->nip - 4; 1655 queue_signal(env, info.si_signo, &info); 1656 break; 1657 case POWERPC_EXCP_EFPDI: /* Embedded floating-point data IRQ */ 1658 cpu_abort(env, "Embedded floating-point data IRQ not handled\n"); 1659 break; 1660 case POWERPC_EXCP_EFPRI: /* Embedded floating-point round IRQ */ 1661 cpu_abort(env, "Embedded floating-point round IRQ not handled\n"); 1662 break; 1663 case POWERPC_EXCP_EPERFM: /* Embedded performance monitor IRQ */ 1664 cpu_abort(env, "Performance monitor exception not handled\n"); 1665 break; 1666 case POWERPC_EXCP_DOORI: /* Embedded doorbell interrupt */ 1667 cpu_abort(env, "Doorbell interrupt while in user mode. " 1668 "Aborting\n"); 1669 break; 1670 case POWERPC_EXCP_DOORCI: /* Embedded doorbell critical interrupt */ 1671 cpu_abort(env, "Doorbell critical interrupt while in user mode. " 1672 "Aborting\n"); 1673 break; 1674 case POWERPC_EXCP_RESET: /* System reset exception */ 1675 cpu_abort(env, "Reset interrupt while in user mode. " 1676 "Aborting\n"); 1677 break; 1678 case POWERPC_EXCP_DSEG: /* Data segment exception */ 1679 cpu_abort(env, "Data segment exception while in user mode. " 1680 "Aborting\n"); 1681 break; 1682 case POWERPC_EXCP_ISEG: /* Instruction segment exception */ 1683 cpu_abort(env, "Instruction segment exception " 1684 "while in user mode. Aborting\n"); 1685 break; 1686 /* PowerPC 64 with hypervisor mode support */ 1687 case POWERPC_EXCP_HDECR: /* Hypervisor decrementer exception */ 1688 cpu_abort(env, "Hypervisor decrementer interrupt " 1689 "while in user mode. Aborting\n"); 1690 break; 1691 case POWERPC_EXCP_TRACE: /* Trace exception */ 1692 /* Nothing to do: 1693 * we use this exception to emulate step-by-step execution mode. 1694 */ 1695 break; 1696 /* PowerPC 64 with hypervisor mode support */ 1697 case POWERPC_EXCP_HDSI: /* Hypervisor data storage exception */ 1698 cpu_abort(env, "Hypervisor data storage exception " 1699 "while in user mode. Aborting\n"); 1700 break; 1701 case POWERPC_EXCP_HISI: /* Hypervisor instruction storage excp */ 1702 cpu_abort(env, "Hypervisor instruction storage exception " 1703 "while in user mode. Aborting\n"); 1704 break; 1705 case POWERPC_EXCP_HDSEG: /* Hypervisor data segment exception */ 1706 cpu_abort(env, "Hypervisor data segment exception " 1707 "while in user mode. Aborting\n"); 1708 break; 1709 case POWERPC_EXCP_HISEG: /* Hypervisor instruction segment excp */ 1710 cpu_abort(env, "Hypervisor instruction segment exception " 1711 "while in user mode. Aborting\n"); 1712 break; 1713 case POWERPC_EXCP_VPU: /* Vector unavailable exception */ 1714 EXCP_DUMP(env, "No Altivec instructions allowed\n"); 1715 info.si_signo = TARGET_SIGILL; 1716 info.si_errno = 0; 1717 info.si_code = TARGET_ILL_COPROC; 1718 info._sifields._sigfault._addr = env->nip - 4; 1719 queue_signal(env, info.si_signo, &info); 1720 break; 1721 case POWERPC_EXCP_PIT: /* Programmable interval timer IRQ */ 1722 cpu_abort(env, "Programmable interval timer interrupt " 1723 "while in user mode. Aborting\n"); 1724 break; 1725 case POWERPC_EXCP_IO: /* IO error exception */ 1726 cpu_abort(env, "IO error exception while in user mode. " 1727 "Aborting\n"); 1728 break; 1729 case POWERPC_EXCP_RUNM: /* Run mode exception */ 1730 cpu_abort(env, "Run mode exception while in user mode. " 1731 "Aborting\n"); 1732 break; 1733 case POWERPC_EXCP_EMUL: /* Emulation trap exception */ 1734 cpu_abort(env, "Emulation trap exception not handled\n"); 1735 break; 1736 case POWERPC_EXCP_IFTLB: /* Instruction fetch TLB error */ 1737 cpu_abort(env, "Instruction fetch TLB exception " 1738 "while in user-mode. Aborting"); 1739 break; 1740 case POWERPC_EXCP_DLTLB: /* Data load TLB miss */ 1741 cpu_abort(env, "Data load TLB exception while in user-mode. " 1742 "Aborting"); 1743 break; 1744 case POWERPC_EXCP_DSTLB: /* Data store TLB miss */ 1745 cpu_abort(env, "Data store TLB exception while in user-mode. " 1746 "Aborting"); 1747 break; 1748 case POWERPC_EXCP_FPA: /* Floating-point assist exception */ 1749 cpu_abort(env, "Floating-point assist exception not handled\n"); 1750 break; 1751 case POWERPC_EXCP_IABR: /* Instruction address breakpoint */ 1752 cpu_abort(env, "Instruction address breakpoint exception " 1753 "not handled\n"); 1754 break; 1755 case POWERPC_EXCP_SMI: /* System management interrupt */ 1756 cpu_abort(env, "System management interrupt while in user mode. " 1757 "Aborting\n"); 1758 break; 1759 case POWERPC_EXCP_THERM: /* Thermal interrupt */ 1760 cpu_abort(env, "Thermal interrupt interrupt while in user mode. " 1761 "Aborting\n"); 1762 break; 1763 case POWERPC_EXCP_PERFM: /* Embedded performance monitor IRQ */ 1764 cpu_abort(env, "Performance monitor exception not handled\n"); 1765 break; 1766 case POWERPC_EXCP_VPUA: /* Vector assist exception */ 1767 cpu_abort(env, "Vector assist exception not handled\n"); 1768 break; 1769 case POWERPC_EXCP_SOFTP: /* Soft patch exception */ 1770 cpu_abort(env, "Soft patch exception not handled\n"); 1771 break; 1772 case POWERPC_EXCP_MAINT: /* Maintenance exception */ 1773 cpu_abort(env, "Maintenance exception while in user mode. " 1774 "Aborting\n"); 1775 break; 1776 case POWERPC_EXCP_STOP: /* stop translation */ 1777 /* We did invalidate the instruction cache. Go on */ 1778 break; 1779 case POWERPC_EXCP_BRANCH: /* branch instruction: */ 1780 /* We just stopped because of a branch. Go on */ 1781 break; 1782 case POWERPC_EXCP_SYSCALL_USER: 1783 /* system call in user-mode emulation */ 1784 /* WARNING: 1785 * PPC ABI uses overflow flag in cr0 to signal an error 1786 * in syscalls. 1787 */ 1788 env->crf[0] &= ~0x1; 1789 ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4], 1790 env->gpr[5], env->gpr[6], env->gpr[7], 1791 env->gpr[8], 0, 0); 1792 if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) { 1793 /* Returning from a successful sigreturn syscall. 1794 Avoid corrupting register state. */ 1795 break; 1796 } 1797 if (ret > (target_ulong)(-515)) { 1798 env->crf[0] |= 0x1; 1799 ret = -ret; 1800 } 1801 env->gpr[3] = ret; 1802 break; 1803 case POWERPC_EXCP_STCX: 1804 if (do_store_exclusive(env)) { 1805 info.si_signo = TARGET_SIGSEGV; 1806 info.si_errno = 0; 1807 info.si_code = TARGET_SEGV_MAPERR; 1808 info._sifields._sigfault._addr = env->nip; 1809 queue_signal(env, info.si_signo, &info); 1810 } 1811 break; 1812 case EXCP_DEBUG: 1813 { 1814 int sig; 1815 1816 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 1817 if (sig) { 1818 info.si_signo = sig; 1819 info.si_errno = 0; 1820 info.si_code = TARGET_TRAP_BRKPT; 1821 queue_signal(env, info.si_signo, &info); 1822 } 1823 } 1824 break; 1825 case EXCP_INTERRUPT: 1826 /* just indicate that signals should be handled asap */ 1827 break; 1828 default: 1829 cpu_abort(env, "Unknown exception 0x%d. Aborting\n", trapnr); 1830 break; 1831 } 1832 process_pending_signals(env); 1833 } 1834 } 1835 #endif 1836 1837 #ifdef TARGET_MIPS 1838 1839 # ifdef TARGET_ABI_MIPSO32 1840 # define MIPS_SYS(name, args) args, 1841 static const uint8_t mips_syscall_args[] = { 1842 MIPS_SYS(sys_syscall , 8) /* 4000 */ 1843 MIPS_SYS(sys_exit , 1) 1844 MIPS_SYS(sys_fork , 0) 1845 MIPS_SYS(sys_read , 3) 1846 MIPS_SYS(sys_write , 3) 1847 MIPS_SYS(sys_open , 3) /* 4005 */ 1848 MIPS_SYS(sys_close , 1) 1849 MIPS_SYS(sys_waitpid , 3) 1850 MIPS_SYS(sys_creat , 2) 1851 MIPS_SYS(sys_link , 2) 1852 MIPS_SYS(sys_unlink , 1) /* 4010 */ 1853 MIPS_SYS(sys_execve , 0) 1854 MIPS_SYS(sys_chdir , 1) 1855 MIPS_SYS(sys_time , 1) 1856 MIPS_SYS(sys_mknod , 3) 1857 MIPS_SYS(sys_chmod , 2) /* 4015 */ 1858 MIPS_SYS(sys_lchown , 3) 1859 MIPS_SYS(sys_ni_syscall , 0) 1860 MIPS_SYS(sys_ni_syscall , 0) /* was sys_stat */ 1861 MIPS_SYS(sys_lseek , 3) 1862 MIPS_SYS(sys_getpid , 0) /* 4020 */ 1863 MIPS_SYS(sys_mount , 5) 1864 MIPS_SYS(sys_umount , 1) 1865 MIPS_SYS(sys_setuid , 1) 1866 MIPS_SYS(sys_getuid , 0) 1867 MIPS_SYS(sys_stime , 1) /* 4025 */ 1868 MIPS_SYS(sys_ptrace , 4) 1869 MIPS_SYS(sys_alarm , 1) 1870 MIPS_SYS(sys_ni_syscall , 0) /* was sys_fstat */ 1871 MIPS_SYS(sys_pause , 0) 1872 MIPS_SYS(sys_utime , 2) /* 4030 */ 1873 MIPS_SYS(sys_ni_syscall , 0) 1874 MIPS_SYS(sys_ni_syscall , 0) 1875 MIPS_SYS(sys_access , 2) 1876 MIPS_SYS(sys_nice , 1) 1877 MIPS_SYS(sys_ni_syscall , 0) /* 4035 */ 1878 MIPS_SYS(sys_sync , 0) 1879 MIPS_SYS(sys_kill , 2) 1880 MIPS_SYS(sys_rename , 2) 1881 MIPS_SYS(sys_mkdir , 2) 1882 MIPS_SYS(sys_rmdir , 1) /* 4040 */ 1883 MIPS_SYS(sys_dup , 1) 1884 MIPS_SYS(sys_pipe , 0) 1885 MIPS_SYS(sys_times , 1) 1886 MIPS_SYS(sys_ni_syscall , 0) 1887 MIPS_SYS(sys_brk , 1) /* 4045 */ 1888 MIPS_SYS(sys_setgid , 1) 1889 MIPS_SYS(sys_getgid , 0) 1890 MIPS_SYS(sys_ni_syscall , 0) /* was signal(2) */ 1891 MIPS_SYS(sys_geteuid , 0) 1892 MIPS_SYS(sys_getegid , 0) /* 4050 */ 1893 MIPS_SYS(sys_acct , 0) 1894 MIPS_SYS(sys_umount2 , 2) 1895 MIPS_SYS(sys_ni_syscall , 0) 1896 MIPS_SYS(sys_ioctl , 3) 1897 MIPS_SYS(sys_fcntl , 3) /* 4055 */ 1898 MIPS_SYS(sys_ni_syscall , 2) 1899 MIPS_SYS(sys_setpgid , 2) 1900 MIPS_SYS(sys_ni_syscall , 0) 1901 MIPS_SYS(sys_olduname , 1) 1902 MIPS_SYS(sys_umask , 1) /* 4060 */ 1903 MIPS_SYS(sys_chroot , 1) 1904 MIPS_SYS(sys_ustat , 2) 1905 MIPS_SYS(sys_dup2 , 2) 1906 MIPS_SYS(sys_getppid , 0) 1907 MIPS_SYS(sys_getpgrp , 0) /* 4065 */ 1908 MIPS_SYS(sys_setsid , 0) 1909 MIPS_SYS(sys_sigaction , 3) 1910 MIPS_SYS(sys_sgetmask , 0) 1911 MIPS_SYS(sys_ssetmask , 1) 1912 MIPS_SYS(sys_setreuid , 2) /* 4070 */ 1913 MIPS_SYS(sys_setregid , 2) 1914 MIPS_SYS(sys_sigsuspend , 0) 1915 MIPS_SYS(sys_sigpending , 1) 1916 MIPS_SYS(sys_sethostname , 2) 1917 MIPS_SYS(sys_setrlimit , 2) /* 4075 */ 1918 MIPS_SYS(sys_getrlimit , 2) 1919 MIPS_SYS(sys_getrusage , 2) 1920 MIPS_SYS(sys_gettimeofday, 2) 1921 MIPS_SYS(sys_settimeofday, 2) 1922 MIPS_SYS(sys_getgroups , 2) /* 4080 */ 1923 MIPS_SYS(sys_setgroups , 2) 1924 MIPS_SYS(sys_ni_syscall , 0) /* old_select */ 1925 MIPS_SYS(sys_symlink , 2) 1926 MIPS_SYS(sys_ni_syscall , 0) /* was sys_lstat */ 1927 MIPS_SYS(sys_readlink , 3) /* 4085 */ 1928 MIPS_SYS(sys_uselib , 1) 1929 MIPS_SYS(sys_swapon , 2) 1930 MIPS_SYS(sys_reboot , 3) 1931 MIPS_SYS(old_readdir , 3) 1932 MIPS_SYS(old_mmap , 6) /* 4090 */ 1933 MIPS_SYS(sys_munmap , 2) 1934 MIPS_SYS(sys_truncate , 2) 1935 MIPS_SYS(sys_ftruncate , 2) 1936 MIPS_SYS(sys_fchmod , 2) 1937 MIPS_SYS(sys_fchown , 3) /* 4095 */ 1938 MIPS_SYS(sys_getpriority , 2) 1939 MIPS_SYS(sys_setpriority , 3) 1940 MIPS_SYS(sys_ni_syscall , 0) 1941 MIPS_SYS(sys_statfs , 2) 1942 MIPS_SYS(sys_fstatfs , 2) /* 4100 */ 1943 MIPS_SYS(sys_ni_syscall , 0) /* was ioperm(2) */ 1944 MIPS_SYS(sys_socketcall , 2) 1945 MIPS_SYS(sys_syslog , 3) 1946 MIPS_SYS(sys_setitimer , 3) 1947 MIPS_SYS(sys_getitimer , 2) /* 4105 */ 1948 MIPS_SYS(sys_newstat , 2) 1949 MIPS_SYS(sys_newlstat , 2) 1950 MIPS_SYS(sys_newfstat , 2) 1951 MIPS_SYS(sys_uname , 1) 1952 MIPS_SYS(sys_ni_syscall , 0) /* 4110 was iopl(2) */ 1953 MIPS_SYS(sys_vhangup , 0) 1954 MIPS_SYS(sys_ni_syscall , 0) /* was sys_idle() */ 1955 MIPS_SYS(sys_ni_syscall , 0) /* was sys_vm86 */ 1956 MIPS_SYS(sys_wait4 , 4) 1957 MIPS_SYS(sys_swapoff , 1) /* 4115 */ 1958 MIPS_SYS(sys_sysinfo , 1) 1959 MIPS_SYS(sys_ipc , 6) 1960 MIPS_SYS(sys_fsync , 1) 1961 MIPS_SYS(sys_sigreturn , 0) 1962 MIPS_SYS(sys_clone , 6) /* 4120 */ 1963 MIPS_SYS(sys_setdomainname, 2) 1964 MIPS_SYS(sys_newuname , 1) 1965 MIPS_SYS(sys_ni_syscall , 0) /* sys_modify_ldt */ 1966 MIPS_SYS(sys_adjtimex , 1) 1967 MIPS_SYS(sys_mprotect , 3) /* 4125 */ 1968 MIPS_SYS(sys_sigprocmask , 3) 1969 MIPS_SYS(sys_ni_syscall , 0) /* was create_module */ 1970 MIPS_SYS(sys_init_module , 5) 1971 MIPS_SYS(sys_delete_module, 1) 1972 MIPS_SYS(sys_ni_syscall , 0) /* 4130 was get_kernel_syms */ 1973 MIPS_SYS(sys_quotactl , 0) 1974 MIPS_SYS(sys_getpgid , 1) 1975 MIPS_SYS(sys_fchdir , 1) 1976 MIPS_SYS(sys_bdflush , 2) 1977 MIPS_SYS(sys_sysfs , 3) /* 4135 */ 1978 MIPS_SYS(sys_personality , 1) 1979 MIPS_SYS(sys_ni_syscall , 0) /* for afs_syscall */ 1980 MIPS_SYS(sys_setfsuid , 1) 1981 MIPS_SYS(sys_setfsgid , 1) 1982 MIPS_SYS(sys_llseek , 5) /* 4140 */ 1983 MIPS_SYS(sys_getdents , 3) 1984 MIPS_SYS(sys_select , 5) 1985 MIPS_SYS(sys_flock , 2) 1986 MIPS_SYS(sys_msync , 3) 1987 MIPS_SYS(sys_readv , 3) /* 4145 */ 1988 MIPS_SYS(sys_writev , 3) 1989 MIPS_SYS(sys_cacheflush , 3) 1990 MIPS_SYS(sys_cachectl , 3) 1991 MIPS_SYS(sys_sysmips , 4) 1992 MIPS_SYS(sys_ni_syscall , 0) /* 4150 */ 1993 MIPS_SYS(sys_getsid , 1) 1994 MIPS_SYS(sys_fdatasync , 0) 1995 MIPS_SYS(sys_sysctl , 1) 1996 MIPS_SYS(sys_mlock , 2) 1997 MIPS_SYS(sys_munlock , 2) /* 4155 */ 1998 MIPS_SYS(sys_mlockall , 1) 1999 MIPS_SYS(sys_munlockall , 0) 2000 MIPS_SYS(sys_sched_setparam, 2) 2001 MIPS_SYS(sys_sched_getparam, 2) 2002 MIPS_SYS(sys_sched_setscheduler, 3) /* 4160 */ 2003 MIPS_SYS(sys_sched_getscheduler, 1) 2004 MIPS_SYS(sys_sched_yield , 0) 2005 MIPS_SYS(sys_sched_get_priority_max, 1) 2006 MIPS_SYS(sys_sched_get_priority_min, 1) 2007 MIPS_SYS(sys_sched_rr_get_interval, 2) /* 4165 */ 2008 MIPS_SYS(sys_nanosleep, 2) 2009 MIPS_SYS(sys_mremap , 5) 2010 MIPS_SYS(sys_accept , 3) 2011 MIPS_SYS(sys_bind , 3) 2012 MIPS_SYS(sys_connect , 3) /* 4170 */ 2013 MIPS_SYS(sys_getpeername , 3) 2014 MIPS_SYS(sys_getsockname , 3) 2015 MIPS_SYS(sys_getsockopt , 5) 2016 MIPS_SYS(sys_listen , 2) 2017 MIPS_SYS(sys_recv , 4) /* 4175 */ 2018 MIPS_SYS(sys_recvfrom , 6) 2019 MIPS_SYS(sys_recvmsg , 3) 2020 MIPS_SYS(sys_send , 4) 2021 MIPS_SYS(sys_sendmsg , 3) 2022 MIPS_SYS(sys_sendto , 6) /* 4180 */ 2023 MIPS_SYS(sys_setsockopt , 5) 2024 MIPS_SYS(sys_shutdown , 2) 2025 MIPS_SYS(sys_socket , 3) 2026 MIPS_SYS(sys_socketpair , 4) 2027 MIPS_SYS(sys_setresuid , 3) /* 4185 */ 2028 MIPS_SYS(sys_getresuid , 3) 2029 MIPS_SYS(sys_ni_syscall , 0) /* was sys_query_module */ 2030 MIPS_SYS(sys_poll , 3) 2031 MIPS_SYS(sys_nfsservctl , 3) 2032 MIPS_SYS(sys_setresgid , 3) /* 4190 */ 2033 MIPS_SYS(sys_getresgid , 3) 2034 MIPS_SYS(sys_prctl , 5) 2035 MIPS_SYS(sys_rt_sigreturn, 0) 2036 MIPS_SYS(sys_rt_sigaction, 4) 2037 MIPS_SYS(sys_rt_sigprocmask, 4) /* 4195 */ 2038 MIPS_SYS(sys_rt_sigpending, 2) 2039 MIPS_SYS(sys_rt_sigtimedwait, 4) 2040 MIPS_SYS(sys_rt_sigqueueinfo, 3) 2041 MIPS_SYS(sys_rt_sigsuspend, 0) 2042 MIPS_SYS(sys_pread64 , 6) /* 4200 */ 2043 MIPS_SYS(sys_pwrite64 , 6) 2044 MIPS_SYS(sys_chown , 3) 2045 MIPS_SYS(sys_getcwd , 2) 2046 MIPS_SYS(sys_capget , 2) 2047 MIPS_SYS(sys_capset , 2) /* 4205 */ 2048 MIPS_SYS(sys_sigaltstack , 2) 2049 MIPS_SYS(sys_sendfile , 4) 2050 MIPS_SYS(sys_ni_syscall , 0) 2051 MIPS_SYS(sys_ni_syscall , 0) 2052 MIPS_SYS(sys_mmap2 , 6) /* 4210 */ 2053 MIPS_SYS(sys_truncate64 , 4) 2054 MIPS_SYS(sys_ftruncate64 , 4) 2055 MIPS_SYS(sys_stat64 , 2) 2056 MIPS_SYS(sys_lstat64 , 2) 2057 MIPS_SYS(sys_fstat64 , 2) /* 4215 */ 2058 MIPS_SYS(sys_pivot_root , 2) 2059 MIPS_SYS(sys_mincore , 3) 2060 MIPS_SYS(sys_madvise , 3) 2061 MIPS_SYS(sys_getdents64 , 3) 2062 MIPS_SYS(sys_fcntl64 , 3) /* 4220 */ 2063 MIPS_SYS(sys_ni_syscall , 0) 2064 MIPS_SYS(sys_gettid , 0) 2065 MIPS_SYS(sys_readahead , 5) 2066 MIPS_SYS(sys_setxattr , 5) 2067 MIPS_SYS(sys_lsetxattr , 5) /* 4225 */ 2068 MIPS_SYS(sys_fsetxattr , 5) 2069 MIPS_SYS(sys_getxattr , 4) 2070 MIPS_SYS(sys_lgetxattr , 4) 2071 MIPS_SYS(sys_fgetxattr , 4) 2072 MIPS_SYS(sys_listxattr , 3) /* 4230 */ 2073 MIPS_SYS(sys_llistxattr , 3) 2074 MIPS_SYS(sys_flistxattr , 3) 2075 MIPS_SYS(sys_removexattr , 2) 2076 MIPS_SYS(sys_lremovexattr, 2) 2077 MIPS_SYS(sys_fremovexattr, 2) /* 4235 */ 2078 MIPS_SYS(sys_tkill , 2) 2079 MIPS_SYS(sys_sendfile64 , 5) 2080 MIPS_SYS(sys_futex , 6) 2081 MIPS_SYS(sys_sched_setaffinity, 3) 2082 MIPS_SYS(sys_sched_getaffinity, 3) /* 4240 */ 2083 MIPS_SYS(sys_io_setup , 2) 2084 MIPS_SYS(sys_io_destroy , 1) 2085 MIPS_SYS(sys_io_getevents, 5) 2086 MIPS_SYS(sys_io_submit , 3) 2087 MIPS_SYS(sys_io_cancel , 3) /* 4245 */ 2088 MIPS_SYS(sys_exit_group , 1) 2089 MIPS_SYS(sys_lookup_dcookie, 3) 2090 MIPS_SYS(sys_epoll_create, 1) 2091 MIPS_SYS(sys_epoll_ctl , 4) 2092 MIPS_SYS(sys_epoll_wait , 3) /* 4250 */ 2093 MIPS_SYS(sys_remap_file_pages, 5) 2094 MIPS_SYS(sys_set_tid_address, 1) 2095 MIPS_SYS(sys_restart_syscall, 0) 2096 MIPS_SYS(sys_fadvise64_64, 7) 2097 MIPS_SYS(sys_statfs64 , 3) /* 4255 */ 2098 MIPS_SYS(sys_fstatfs64 , 2) 2099 MIPS_SYS(sys_timer_create, 3) 2100 MIPS_SYS(sys_timer_settime, 4) 2101 MIPS_SYS(sys_timer_gettime, 2) 2102 MIPS_SYS(sys_timer_getoverrun, 1) /* 4260 */ 2103 MIPS_SYS(sys_timer_delete, 1) 2104 MIPS_SYS(sys_clock_settime, 2) 2105 MIPS_SYS(sys_clock_gettime, 2) 2106 MIPS_SYS(sys_clock_getres, 2) 2107 MIPS_SYS(sys_clock_nanosleep, 4) /* 4265 */ 2108 MIPS_SYS(sys_tgkill , 3) 2109 MIPS_SYS(sys_utimes , 2) 2110 MIPS_SYS(sys_mbind , 4) 2111 MIPS_SYS(sys_ni_syscall , 0) /* sys_get_mempolicy */ 2112 MIPS_SYS(sys_ni_syscall , 0) /* 4270 sys_set_mempolicy */ 2113 MIPS_SYS(sys_mq_open , 4) 2114 MIPS_SYS(sys_mq_unlink , 1) 2115 MIPS_SYS(sys_mq_timedsend, 5) 2116 MIPS_SYS(sys_mq_timedreceive, 5) 2117 MIPS_SYS(sys_mq_notify , 2) /* 4275 */ 2118 MIPS_SYS(sys_mq_getsetattr, 3) 2119 MIPS_SYS(sys_ni_syscall , 0) /* sys_vserver */ 2120 MIPS_SYS(sys_waitid , 4) 2121 MIPS_SYS(sys_ni_syscall , 0) /* available, was setaltroot */ 2122 MIPS_SYS(sys_add_key , 5) 2123 MIPS_SYS(sys_request_key, 4) 2124 MIPS_SYS(sys_keyctl , 5) 2125 MIPS_SYS(sys_set_thread_area, 1) 2126 MIPS_SYS(sys_inotify_init, 0) 2127 MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */ 2128 MIPS_SYS(sys_inotify_rm_watch, 2) 2129 MIPS_SYS(sys_migrate_pages, 4) 2130 MIPS_SYS(sys_openat, 4) 2131 MIPS_SYS(sys_mkdirat, 3) 2132 MIPS_SYS(sys_mknodat, 4) /* 4290 */ 2133 MIPS_SYS(sys_fchownat, 5) 2134 MIPS_SYS(sys_futimesat, 3) 2135 MIPS_SYS(sys_fstatat64, 4) 2136 MIPS_SYS(sys_unlinkat, 3) 2137 MIPS_SYS(sys_renameat, 4) /* 4295 */ 2138 MIPS_SYS(sys_linkat, 5) 2139 MIPS_SYS(sys_symlinkat, 3) 2140 MIPS_SYS(sys_readlinkat, 4) 2141 MIPS_SYS(sys_fchmodat, 3) 2142 MIPS_SYS(sys_faccessat, 3) /* 4300 */ 2143 MIPS_SYS(sys_pselect6, 6) 2144 MIPS_SYS(sys_ppoll, 5) 2145 MIPS_SYS(sys_unshare, 1) 2146 MIPS_SYS(sys_splice, 6) 2147 MIPS_SYS(sys_sync_file_range, 7) /* 4305 */ 2148 MIPS_SYS(sys_tee, 4) 2149 MIPS_SYS(sys_vmsplice, 4) 2150 MIPS_SYS(sys_move_pages, 6) 2151 MIPS_SYS(sys_set_robust_list, 2) 2152 MIPS_SYS(sys_get_robust_list, 3) /* 4310 */ 2153 MIPS_SYS(sys_kexec_load, 4) 2154 MIPS_SYS(sys_getcpu, 3) 2155 MIPS_SYS(sys_epoll_pwait, 6) 2156 MIPS_SYS(sys_ioprio_set, 3) 2157 MIPS_SYS(sys_ioprio_get, 2) 2158 MIPS_SYS(sys_utimensat, 4) 2159 MIPS_SYS(sys_signalfd, 3) 2160 MIPS_SYS(sys_ni_syscall, 0) /* was timerfd */ 2161 MIPS_SYS(sys_eventfd, 1) 2162 MIPS_SYS(sys_fallocate, 6) /* 4320 */ 2163 MIPS_SYS(sys_timerfd_create, 2) 2164 MIPS_SYS(sys_timerfd_gettime, 2) 2165 MIPS_SYS(sys_timerfd_settime, 4) 2166 MIPS_SYS(sys_signalfd4, 4) 2167 MIPS_SYS(sys_eventfd2, 2) /* 4325 */ 2168 MIPS_SYS(sys_epoll_create1, 1) 2169 MIPS_SYS(sys_dup3, 3) 2170 MIPS_SYS(sys_pipe2, 2) 2171 MIPS_SYS(sys_inotify_init1, 1) 2172 MIPS_SYS(sys_preadv, 6) /* 4330 */ 2173 MIPS_SYS(sys_pwritev, 6) 2174 MIPS_SYS(sys_rt_tgsigqueueinfo, 4) 2175 MIPS_SYS(sys_perf_event_open, 5) 2176 MIPS_SYS(sys_accept4, 4) 2177 MIPS_SYS(sys_recvmmsg, 5) /* 4335 */ 2178 MIPS_SYS(sys_fanotify_init, 2) 2179 MIPS_SYS(sys_fanotify_mark, 6) 2180 MIPS_SYS(sys_prlimit64, 4) 2181 MIPS_SYS(sys_name_to_handle_at, 5) 2182 MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */ 2183 MIPS_SYS(sys_clock_adjtime, 2) 2184 MIPS_SYS(sys_syncfs, 1) 2185 }; 2186 # undef MIPS_SYS 2187 # endif /* O32 */ 2188 2189 static int do_store_exclusive(CPUMIPSState *env) 2190 { 2191 target_ulong addr; 2192 target_ulong page_addr; 2193 target_ulong val; 2194 int flags; 2195 int segv = 0; 2196 int reg; 2197 int d; 2198 2199 addr = env->lladdr; 2200 page_addr = addr & TARGET_PAGE_MASK; 2201 start_exclusive(); 2202 mmap_lock(); 2203 flags = page_get_flags(page_addr); 2204 if ((flags & PAGE_READ) == 0) { 2205 segv = 1; 2206 } else { 2207 reg = env->llreg & 0x1f; 2208 d = (env->llreg & 0x20) != 0; 2209 if (d) { 2210 segv = get_user_s64(val, addr); 2211 } else { 2212 segv = get_user_s32(val, addr); 2213 } 2214 if (!segv) { 2215 if (val != env->llval) { 2216 env->active_tc.gpr[reg] = 0; 2217 } else { 2218 if (d) { 2219 segv = put_user_u64(env->llnewval, addr); 2220 } else { 2221 segv = put_user_u32(env->llnewval, addr); 2222 } 2223 if (!segv) { 2224 env->active_tc.gpr[reg] = 1; 2225 } 2226 } 2227 } 2228 } 2229 env->lladdr = -1; 2230 if (!segv) { 2231 env->active_tc.PC += 4; 2232 } 2233 mmap_unlock(); 2234 end_exclusive(); 2235 return segv; 2236 } 2237 2238 /* Break codes */ 2239 enum { 2240 BRK_OVERFLOW = 6, 2241 BRK_DIVZERO = 7 2242 }; 2243 2244 static int do_break(CPUMIPSState *env, target_siginfo_t *info, 2245 unsigned int code) 2246 { 2247 int ret = -1; 2248 2249 switch (code) { 2250 case BRK_OVERFLOW: 2251 case BRK_DIVZERO: 2252 info->si_signo = TARGET_SIGFPE; 2253 info->si_errno = 0; 2254 info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV; 2255 queue_signal(env, info->si_signo, &*info); 2256 ret = 0; 2257 break; 2258 default: 2259 break; 2260 } 2261 2262 return ret; 2263 } 2264 2265 void cpu_loop(CPUMIPSState *env) 2266 { 2267 CPUState *cs = CPU(mips_env_get_cpu(env)); 2268 target_siginfo_t info; 2269 int trapnr; 2270 abi_long ret; 2271 # ifdef TARGET_ABI_MIPSO32 2272 unsigned int syscall_num; 2273 # endif 2274 2275 for(;;) { 2276 cpu_exec_start(cs); 2277 trapnr = cpu_mips_exec(env); 2278 cpu_exec_end(cs); 2279 switch(trapnr) { 2280 case EXCP_SYSCALL: 2281 env->active_tc.PC += 4; 2282 # ifdef TARGET_ABI_MIPSO32 2283 syscall_num = env->active_tc.gpr[2] - 4000; 2284 if (syscall_num >= sizeof(mips_syscall_args)) { 2285 ret = -TARGET_ENOSYS; 2286 } else { 2287 int nb_args; 2288 abi_ulong sp_reg; 2289 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0; 2290 2291 nb_args = mips_syscall_args[syscall_num]; 2292 sp_reg = env->active_tc.gpr[29]; 2293 switch (nb_args) { 2294 /* these arguments are taken from the stack */ 2295 case 8: 2296 if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) { 2297 goto done_syscall; 2298 } 2299 case 7: 2300 if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) { 2301 goto done_syscall; 2302 } 2303 case 6: 2304 if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) { 2305 goto done_syscall; 2306 } 2307 case 5: 2308 if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) { 2309 goto done_syscall; 2310 } 2311 default: 2312 break; 2313 } 2314 ret = do_syscall(env, env->active_tc.gpr[2], 2315 env->active_tc.gpr[4], 2316 env->active_tc.gpr[5], 2317 env->active_tc.gpr[6], 2318 env->active_tc.gpr[7], 2319 arg5, arg6, arg7, arg8); 2320 } 2321 done_syscall: 2322 # else 2323 ret = do_syscall(env, env->active_tc.gpr[2], 2324 env->active_tc.gpr[4], env->active_tc.gpr[5], 2325 env->active_tc.gpr[6], env->active_tc.gpr[7], 2326 env->active_tc.gpr[8], env->active_tc.gpr[9], 2327 env->active_tc.gpr[10], env->active_tc.gpr[11]); 2328 # endif /* O32 */ 2329 if (ret == -TARGET_QEMU_ESIGRETURN) { 2330 /* Returning from a successful sigreturn syscall. 2331 Avoid clobbering register state. */ 2332 break; 2333 } 2334 if ((abi_ulong)ret >= (abi_ulong)-1133) { 2335 env->active_tc.gpr[7] = 1; /* error flag */ 2336 ret = -ret; 2337 } else { 2338 env->active_tc.gpr[7] = 0; /* error flag */ 2339 } 2340 env->active_tc.gpr[2] = ret; 2341 break; 2342 case EXCP_TLBL: 2343 case EXCP_TLBS: 2344 case EXCP_AdEL: 2345 case EXCP_AdES: 2346 info.si_signo = TARGET_SIGSEGV; 2347 info.si_errno = 0; 2348 /* XXX: check env->error_code */ 2349 info.si_code = TARGET_SEGV_MAPERR; 2350 info._sifields._sigfault._addr = env->CP0_BadVAddr; 2351 queue_signal(env, info.si_signo, &info); 2352 break; 2353 case EXCP_CpU: 2354 case EXCP_RI: 2355 info.si_signo = TARGET_SIGILL; 2356 info.si_errno = 0; 2357 info.si_code = 0; 2358 queue_signal(env, info.si_signo, &info); 2359 break; 2360 case EXCP_INTERRUPT: 2361 /* just indicate that signals should be handled asap */ 2362 break; 2363 case EXCP_DEBUG: 2364 { 2365 int sig; 2366 2367 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2368 if (sig) 2369 { 2370 info.si_signo = sig; 2371 info.si_errno = 0; 2372 info.si_code = TARGET_TRAP_BRKPT; 2373 queue_signal(env, info.si_signo, &info); 2374 } 2375 } 2376 break; 2377 case EXCP_SC: 2378 if (do_store_exclusive(env)) { 2379 info.si_signo = TARGET_SIGSEGV; 2380 info.si_errno = 0; 2381 info.si_code = TARGET_SEGV_MAPERR; 2382 info._sifields._sigfault._addr = env->active_tc.PC; 2383 queue_signal(env, info.si_signo, &info); 2384 } 2385 break; 2386 case EXCP_DSPDIS: 2387 info.si_signo = TARGET_SIGILL; 2388 info.si_errno = 0; 2389 info.si_code = TARGET_ILL_ILLOPC; 2390 queue_signal(env, info.si_signo, &info); 2391 break; 2392 /* The code below was inspired by the MIPS Linux kernel trap 2393 * handling code in arch/mips/kernel/traps.c. 2394 */ 2395 case EXCP_BREAK: 2396 { 2397 abi_ulong trap_instr; 2398 unsigned int code; 2399 2400 if (env->hflags & MIPS_HFLAG_M16) { 2401 if (env->insn_flags & ASE_MICROMIPS) { 2402 /* microMIPS mode */ 2403 ret = get_user_u16(trap_instr, env->active_tc.PC); 2404 if (ret != 0) { 2405 goto error; 2406 } 2407 2408 if ((trap_instr >> 10) == 0x11) { 2409 /* 16-bit instruction */ 2410 code = trap_instr & 0xf; 2411 } else { 2412 /* 32-bit instruction */ 2413 abi_ulong instr_lo; 2414 2415 ret = get_user_u16(instr_lo, 2416 env->active_tc.PC + 2); 2417 if (ret != 0) { 2418 goto error; 2419 } 2420 trap_instr = (trap_instr << 16) | instr_lo; 2421 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2422 /* Unfortunately, microMIPS also suffers from 2423 the old assembler bug... */ 2424 if (code >= (1 << 10)) { 2425 code >>= 10; 2426 } 2427 } 2428 } else { 2429 /* MIPS16e mode */ 2430 ret = get_user_u16(trap_instr, env->active_tc.PC); 2431 if (ret != 0) { 2432 goto error; 2433 } 2434 code = (trap_instr >> 6) & 0x3f; 2435 } 2436 } else { 2437 ret = get_user_ual(trap_instr, env->active_tc.PC); 2438 if (ret != 0) { 2439 goto error; 2440 } 2441 2442 /* As described in the original Linux kernel code, the 2443 * below checks on 'code' are to work around an old 2444 * assembly bug. 2445 */ 2446 code = ((trap_instr >> 6) & ((1 << 20) - 1)); 2447 if (code >= (1 << 10)) { 2448 code >>= 10; 2449 } 2450 } 2451 2452 if (do_break(env, &info, code) != 0) { 2453 goto error; 2454 } 2455 } 2456 break; 2457 case EXCP_TRAP: 2458 { 2459 abi_ulong trap_instr; 2460 unsigned int code = 0; 2461 2462 if (env->hflags & MIPS_HFLAG_M16) { 2463 /* microMIPS mode */ 2464 abi_ulong instr[2]; 2465 2466 ret = get_user_u16(instr[0], env->active_tc.PC) || 2467 get_user_u16(instr[1], env->active_tc.PC + 2); 2468 2469 trap_instr = (instr[0] << 16) | instr[1]; 2470 } else { 2471 ret = get_user_ual(trap_instr, env->active_tc.PC); 2472 } 2473 2474 if (ret != 0) { 2475 goto error; 2476 } 2477 2478 /* The immediate versions don't provide a code. */ 2479 if (!(trap_instr & 0xFC000000)) { 2480 if (env->hflags & MIPS_HFLAG_M16) { 2481 /* microMIPS mode */ 2482 code = ((trap_instr >> 12) & ((1 << 4) - 1)); 2483 } else { 2484 code = ((trap_instr >> 6) & ((1 << 10) - 1)); 2485 } 2486 } 2487 2488 if (do_break(env, &info, code) != 0) { 2489 goto error; 2490 } 2491 } 2492 break; 2493 default: 2494 error: 2495 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2496 trapnr); 2497 cpu_dump_state(cs, stderr, fprintf, 0); 2498 abort(); 2499 } 2500 process_pending_signals(env); 2501 } 2502 } 2503 #endif 2504 2505 #ifdef TARGET_OPENRISC 2506 2507 void cpu_loop(CPUOpenRISCState *env) 2508 { 2509 CPUState *cs = CPU(openrisc_env_get_cpu(env)); 2510 int trapnr, gdbsig; 2511 2512 for (;;) { 2513 trapnr = cpu_exec(env); 2514 gdbsig = 0; 2515 2516 switch (trapnr) { 2517 case EXCP_RESET: 2518 qemu_log("\nReset request, exit, pc is %#x\n", env->pc); 2519 exit(1); 2520 break; 2521 case EXCP_BUSERR: 2522 qemu_log("\nBus error, exit, pc is %#x\n", env->pc); 2523 gdbsig = SIGBUS; 2524 break; 2525 case EXCP_DPF: 2526 case EXCP_IPF: 2527 cpu_dump_state(cs, stderr, fprintf, 0); 2528 gdbsig = TARGET_SIGSEGV; 2529 break; 2530 case EXCP_TICK: 2531 qemu_log("\nTick time interrupt pc is %#x\n", env->pc); 2532 break; 2533 case EXCP_ALIGN: 2534 qemu_log("\nAlignment pc is %#x\n", env->pc); 2535 gdbsig = SIGBUS; 2536 break; 2537 case EXCP_ILLEGAL: 2538 qemu_log("\nIllegal instructionpc is %#x\n", env->pc); 2539 gdbsig = SIGILL; 2540 break; 2541 case EXCP_INT: 2542 qemu_log("\nExternal interruptpc is %#x\n", env->pc); 2543 break; 2544 case EXCP_DTLBMISS: 2545 case EXCP_ITLBMISS: 2546 qemu_log("\nTLB miss\n"); 2547 break; 2548 case EXCP_RANGE: 2549 qemu_log("\nRange\n"); 2550 gdbsig = SIGSEGV; 2551 break; 2552 case EXCP_SYSCALL: 2553 env->pc += 4; /* 0xc00; */ 2554 env->gpr[11] = do_syscall(env, 2555 env->gpr[11], /* return value */ 2556 env->gpr[3], /* r3 - r7 are params */ 2557 env->gpr[4], 2558 env->gpr[5], 2559 env->gpr[6], 2560 env->gpr[7], 2561 env->gpr[8], 0, 0); 2562 break; 2563 case EXCP_FPE: 2564 qemu_log("\nFloating point error\n"); 2565 break; 2566 case EXCP_TRAP: 2567 qemu_log("\nTrap\n"); 2568 gdbsig = SIGTRAP; 2569 break; 2570 case EXCP_NR: 2571 qemu_log("\nNR\n"); 2572 break; 2573 default: 2574 qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n", 2575 trapnr); 2576 cpu_dump_state(cs, stderr, fprintf, 0); 2577 gdbsig = TARGET_SIGILL; 2578 break; 2579 } 2580 if (gdbsig) { 2581 gdb_handlesig(cs, gdbsig); 2582 if (gdbsig != TARGET_SIGTRAP) { 2583 exit(1); 2584 } 2585 } 2586 2587 process_pending_signals(env); 2588 } 2589 } 2590 2591 #endif /* TARGET_OPENRISC */ 2592 2593 #ifdef TARGET_SH4 2594 void cpu_loop(CPUSH4State *env) 2595 { 2596 CPUState *cs = CPU(sh_env_get_cpu(env)); 2597 int trapnr, ret; 2598 target_siginfo_t info; 2599 2600 while (1) { 2601 trapnr = cpu_sh4_exec (env); 2602 2603 switch (trapnr) { 2604 case 0x160: 2605 env->pc += 2; 2606 ret = do_syscall(env, 2607 env->gregs[3], 2608 env->gregs[4], 2609 env->gregs[5], 2610 env->gregs[6], 2611 env->gregs[7], 2612 env->gregs[0], 2613 env->gregs[1], 2614 0, 0); 2615 env->gregs[0] = ret; 2616 break; 2617 case EXCP_INTERRUPT: 2618 /* just indicate that signals should be handled asap */ 2619 break; 2620 case EXCP_DEBUG: 2621 { 2622 int sig; 2623 2624 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2625 if (sig) 2626 { 2627 info.si_signo = sig; 2628 info.si_errno = 0; 2629 info.si_code = TARGET_TRAP_BRKPT; 2630 queue_signal(env, info.si_signo, &info); 2631 } 2632 } 2633 break; 2634 case 0xa0: 2635 case 0xc0: 2636 info.si_signo = SIGSEGV; 2637 info.si_errno = 0; 2638 info.si_code = TARGET_SEGV_MAPERR; 2639 info._sifields._sigfault._addr = env->tea; 2640 queue_signal(env, info.si_signo, &info); 2641 break; 2642 2643 default: 2644 printf ("Unhandled trap: 0x%x\n", trapnr); 2645 cpu_dump_state(cs, stderr, fprintf, 0); 2646 exit (1); 2647 } 2648 process_pending_signals (env); 2649 } 2650 } 2651 #endif 2652 2653 #ifdef TARGET_CRIS 2654 void cpu_loop(CPUCRISState *env) 2655 { 2656 CPUState *cs = CPU(cris_env_get_cpu(env)); 2657 int trapnr, ret; 2658 target_siginfo_t info; 2659 2660 while (1) { 2661 trapnr = cpu_cris_exec (env); 2662 switch (trapnr) { 2663 case 0xaa: 2664 { 2665 info.si_signo = SIGSEGV; 2666 info.si_errno = 0; 2667 /* XXX: check env->error_code */ 2668 info.si_code = TARGET_SEGV_MAPERR; 2669 info._sifields._sigfault._addr = env->pregs[PR_EDA]; 2670 queue_signal(env, info.si_signo, &info); 2671 } 2672 break; 2673 case EXCP_INTERRUPT: 2674 /* just indicate that signals should be handled asap */ 2675 break; 2676 case EXCP_BREAK: 2677 ret = do_syscall(env, 2678 env->regs[9], 2679 env->regs[10], 2680 env->regs[11], 2681 env->regs[12], 2682 env->regs[13], 2683 env->pregs[7], 2684 env->pregs[11], 2685 0, 0); 2686 env->regs[10] = ret; 2687 break; 2688 case EXCP_DEBUG: 2689 { 2690 int sig; 2691 2692 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2693 if (sig) 2694 { 2695 info.si_signo = sig; 2696 info.si_errno = 0; 2697 info.si_code = TARGET_TRAP_BRKPT; 2698 queue_signal(env, info.si_signo, &info); 2699 } 2700 } 2701 break; 2702 default: 2703 printf ("Unhandled trap: 0x%x\n", trapnr); 2704 cpu_dump_state(cs, stderr, fprintf, 0); 2705 exit (1); 2706 } 2707 process_pending_signals (env); 2708 } 2709 } 2710 #endif 2711 2712 #ifdef TARGET_MICROBLAZE 2713 void cpu_loop(CPUMBState *env) 2714 { 2715 CPUState *cs = CPU(mb_env_get_cpu(env)); 2716 int trapnr, ret; 2717 target_siginfo_t info; 2718 2719 while (1) { 2720 trapnr = cpu_mb_exec (env); 2721 switch (trapnr) { 2722 case 0xaa: 2723 { 2724 info.si_signo = SIGSEGV; 2725 info.si_errno = 0; 2726 /* XXX: check env->error_code */ 2727 info.si_code = TARGET_SEGV_MAPERR; 2728 info._sifields._sigfault._addr = 0; 2729 queue_signal(env, info.si_signo, &info); 2730 } 2731 break; 2732 case EXCP_INTERRUPT: 2733 /* just indicate that signals should be handled asap */ 2734 break; 2735 case EXCP_BREAK: 2736 /* Return address is 4 bytes after the call. */ 2737 env->regs[14] += 4; 2738 env->sregs[SR_PC] = env->regs[14]; 2739 ret = do_syscall(env, 2740 env->regs[12], 2741 env->regs[5], 2742 env->regs[6], 2743 env->regs[7], 2744 env->regs[8], 2745 env->regs[9], 2746 env->regs[10], 2747 0, 0); 2748 env->regs[3] = ret; 2749 break; 2750 case EXCP_HW_EXCP: 2751 env->regs[17] = env->sregs[SR_PC] + 4; 2752 if (env->iflags & D_FLAG) { 2753 env->sregs[SR_ESR] |= 1 << 12; 2754 env->sregs[SR_PC] -= 4; 2755 /* FIXME: if branch was immed, replay the imm as well. */ 2756 } 2757 2758 env->iflags &= ~(IMM_FLAG | D_FLAG); 2759 2760 switch (env->sregs[SR_ESR] & 31) { 2761 case ESR_EC_DIVZERO: 2762 info.si_signo = SIGFPE; 2763 info.si_errno = 0; 2764 info.si_code = TARGET_FPE_FLTDIV; 2765 info._sifields._sigfault._addr = 0; 2766 queue_signal(env, info.si_signo, &info); 2767 break; 2768 case ESR_EC_FPU: 2769 info.si_signo = SIGFPE; 2770 info.si_errno = 0; 2771 if (env->sregs[SR_FSR] & FSR_IO) { 2772 info.si_code = TARGET_FPE_FLTINV; 2773 } 2774 if (env->sregs[SR_FSR] & FSR_DZ) { 2775 info.si_code = TARGET_FPE_FLTDIV; 2776 } 2777 info._sifields._sigfault._addr = 0; 2778 queue_signal(env, info.si_signo, &info); 2779 break; 2780 default: 2781 printf ("Unhandled hw-exception: 0x%x\n", 2782 env->sregs[SR_ESR] & ESR_EC_MASK); 2783 cpu_dump_state(cs, stderr, fprintf, 0); 2784 exit (1); 2785 break; 2786 } 2787 break; 2788 case EXCP_DEBUG: 2789 { 2790 int sig; 2791 2792 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2793 if (sig) 2794 { 2795 info.si_signo = sig; 2796 info.si_errno = 0; 2797 info.si_code = TARGET_TRAP_BRKPT; 2798 queue_signal(env, info.si_signo, &info); 2799 } 2800 } 2801 break; 2802 default: 2803 printf ("Unhandled trap: 0x%x\n", trapnr); 2804 cpu_dump_state(cs, stderr, fprintf, 0); 2805 exit (1); 2806 } 2807 process_pending_signals (env); 2808 } 2809 } 2810 #endif 2811 2812 #ifdef TARGET_M68K 2813 2814 void cpu_loop(CPUM68KState *env) 2815 { 2816 CPUState *cs = CPU(m68k_env_get_cpu(env)); 2817 int trapnr; 2818 unsigned int n; 2819 target_siginfo_t info; 2820 TaskState *ts = env->opaque; 2821 2822 for(;;) { 2823 trapnr = cpu_m68k_exec(env); 2824 switch(trapnr) { 2825 case EXCP_ILLEGAL: 2826 { 2827 if (ts->sim_syscalls) { 2828 uint16_t nr; 2829 nr = lduw(env->pc + 2); 2830 env->pc += 4; 2831 do_m68k_simcall(env, nr); 2832 } else { 2833 goto do_sigill; 2834 } 2835 } 2836 break; 2837 case EXCP_HALT_INSN: 2838 /* Semihosing syscall. */ 2839 env->pc += 4; 2840 do_m68k_semihosting(env, env->dregs[0]); 2841 break; 2842 case EXCP_LINEA: 2843 case EXCP_LINEF: 2844 case EXCP_UNSUPPORTED: 2845 do_sigill: 2846 info.si_signo = SIGILL; 2847 info.si_errno = 0; 2848 info.si_code = TARGET_ILL_ILLOPN; 2849 info._sifields._sigfault._addr = env->pc; 2850 queue_signal(env, info.si_signo, &info); 2851 break; 2852 case EXCP_TRAP0: 2853 { 2854 ts->sim_syscalls = 0; 2855 n = env->dregs[0]; 2856 env->pc += 2; 2857 env->dregs[0] = do_syscall(env, 2858 n, 2859 env->dregs[1], 2860 env->dregs[2], 2861 env->dregs[3], 2862 env->dregs[4], 2863 env->dregs[5], 2864 env->aregs[0], 2865 0, 0); 2866 } 2867 break; 2868 case EXCP_INTERRUPT: 2869 /* just indicate that signals should be handled asap */ 2870 break; 2871 case EXCP_ACCESS: 2872 { 2873 info.si_signo = SIGSEGV; 2874 info.si_errno = 0; 2875 /* XXX: check env->error_code */ 2876 info.si_code = TARGET_SEGV_MAPERR; 2877 info._sifields._sigfault._addr = env->mmu.ar; 2878 queue_signal(env, info.si_signo, &info); 2879 } 2880 break; 2881 case EXCP_DEBUG: 2882 { 2883 int sig; 2884 2885 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 2886 if (sig) 2887 { 2888 info.si_signo = sig; 2889 info.si_errno = 0; 2890 info.si_code = TARGET_TRAP_BRKPT; 2891 queue_signal(env, info.si_signo, &info); 2892 } 2893 } 2894 break; 2895 default: 2896 fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", 2897 trapnr); 2898 cpu_dump_state(cs, stderr, fprintf, 0); 2899 abort(); 2900 } 2901 process_pending_signals(env); 2902 } 2903 } 2904 #endif /* TARGET_M68K */ 2905 2906 #ifdef TARGET_ALPHA 2907 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad) 2908 { 2909 target_ulong addr, val, tmp; 2910 target_siginfo_t info; 2911 int ret = 0; 2912 2913 addr = env->lock_addr; 2914 tmp = env->lock_st_addr; 2915 env->lock_addr = -1; 2916 env->lock_st_addr = 0; 2917 2918 start_exclusive(); 2919 mmap_lock(); 2920 2921 if (addr == tmp) { 2922 if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) { 2923 goto do_sigsegv; 2924 } 2925 2926 if (val == env->lock_value) { 2927 tmp = env->ir[reg]; 2928 if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) { 2929 goto do_sigsegv; 2930 } 2931 ret = 1; 2932 } 2933 } 2934 env->ir[reg] = ret; 2935 env->pc += 4; 2936 2937 mmap_unlock(); 2938 end_exclusive(); 2939 return; 2940 2941 do_sigsegv: 2942 mmap_unlock(); 2943 end_exclusive(); 2944 2945 info.si_signo = TARGET_SIGSEGV; 2946 info.si_errno = 0; 2947 info.si_code = TARGET_SEGV_MAPERR; 2948 info._sifields._sigfault._addr = addr; 2949 queue_signal(env, TARGET_SIGSEGV, &info); 2950 } 2951 2952 void cpu_loop(CPUAlphaState *env) 2953 { 2954 CPUState *cs = CPU(alpha_env_get_cpu(env)); 2955 int trapnr; 2956 target_siginfo_t info; 2957 abi_long sysret; 2958 2959 while (1) { 2960 trapnr = cpu_alpha_exec (env); 2961 2962 /* All of the traps imply a transition through PALcode, which 2963 implies an REI instruction has been executed. Which means 2964 that the intr_flag should be cleared. */ 2965 env->intr_flag = 0; 2966 2967 switch (trapnr) { 2968 case EXCP_RESET: 2969 fprintf(stderr, "Reset requested. Exit\n"); 2970 exit(1); 2971 break; 2972 case EXCP_MCHK: 2973 fprintf(stderr, "Machine check exception. Exit\n"); 2974 exit(1); 2975 break; 2976 case EXCP_SMP_INTERRUPT: 2977 case EXCP_CLK_INTERRUPT: 2978 case EXCP_DEV_INTERRUPT: 2979 fprintf(stderr, "External interrupt. Exit\n"); 2980 exit(1); 2981 break; 2982 case EXCP_MMFAULT: 2983 env->lock_addr = -1; 2984 info.si_signo = TARGET_SIGSEGV; 2985 info.si_errno = 0; 2986 info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID 2987 ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR); 2988 info._sifields._sigfault._addr = env->trap_arg0; 2989 queue_signal(env, info.si_signo, &info); 2990 break; 2991 case EXCP_UNALIGN: 2992 env->lock_addr = -1; 2993 info.si_signo = TARGET_SIGBUS; 2994 info.si_errno = 0; 2995 info.si_code = TARGET_BUS_ADRALN; 2996 info._sifields._sigfault._addr = env->trap_arg0; 2997 queue_signal(env, info.si_signo, &info); 2998 break; 2999 case EXCP_OPCDEC: 3000 do_sigill: 3001 env->lock_addr = -1; 3002 info.si_signo = TARGET_SIGILL; 3003 info.si_errno = 0; 3004 info.si_code = TARGET_ILL_ILLOPC; 3005 info._sifields._sigfault._addr = env->pc; 3006 queue_signal(env, info.si_signo, &info); 3007 break; 3008 case EXCP_ARITH: 3009 env->lock_addr = -1; 3010 info.si_signo = TARGET_SIGFPE; 3011 info.si_errno = 0; 3012 info.si_code = TARGET_FPE_FLTINV; 3013 info._sifields._sigfault._addr = env->pc; 3014 queue_signal(env, info.si_signo, &info); 3015 break; 3016 case EXCP_FEN: 3017 /* No-op. Linux simply re-enables the FPU. */ 3018 break; 3019 case EXCP_CALL_PAL: 3020 env->lock_addr = -1; 3021 switch (env->error_code) { 3022 case 0x80: 3023 /* BPT */ 3024 info.si_signo = TARGET_SIGTRAP; 3025 info.si_errno = 0; 3026 info.si_code = TARGET_TRAP_BRKPT; 3027 info._sifields._sigfault._addr = env->pc; 3028 queue_signal(env, info.si_signo, &info); 3029 break; 3030 case 0x81: 3031 /* BUGCHK */ 3032 info.si_signo = TARGET_SIGTRAP; 3033 info.si_errno = 0; 3034 info.si_code = 0; 3035 info._sifields._sigfault._addr = env->pc; 3036 queue_signal(env, info.si_signo, &info); 3037 break; 3038 case 0x83: 3039 /* CALLSYS */ 3040 trapnr = env->ir[IR_V0]; 3041 sysret = do_syscall(env, trapnr, 3042 env->ir[IR_A0], env->ir[IR_A1], 3043 env->ir[IR_A2], env->ir[IR_A3], 3044 env->ir[IR_A4], env->ir[IR_A5], 3045 0, 0); 3046 if (trapnr == TARGET_NR_sigreturn 3047 || trapnr == TARGET_NR_rt_sigreturn) { 3048 break; 3049 } 3050 /* Syscall writes 0 to V0 to bypass error check, similar 3051 to how this is handled internal to Linux kernel. 3052 (Ab)use trapnr temporarily as boolean indicating error. */ 3053 trapnr = (env->ir[IR_V0] != 0 && sysret < 0); 3054 env->ir[IR_V0] = (trapnr ? -sysret : sysret); 3055 env->ir[IR_A3] = trapnr; 3056 break; 3057 case 0x86: 3058 /* IMB */ 3059 /* ??? We can probably elide the code using page_unprotect 3060 that is checking for self-modifying code. Instead we 3061 could simply call tb_flush here. Until we work out the 3062 changes required to turn off the extra write protection, 3063 this can be a no-op. */ 3064 break; 3065 case 0x9E: 3066 /* RDUNIQUE */ 3067 /* Handled in the translator for usermode. */ 3068 abort(); 3069 case 0x9F: 3070 /* WRUNIQUE */ 3071 /* Handled in the translator for usermode. */ 3072 abort(); 3073 case 0xAA: 3074 /* GENTRAP */ 3075 info.si_signo = TARGET_SIGFPE; 3076 switch (env->ir[IR_A0]) { 3077 case TARGET_GEN_INTOVF: 3078 info.si_code = TARGET_FPE_INTOVF; 3079 break; 3080 case TARGET_GEN_INTDIV: 3081 info.si_code = TARGET_FPE_INTDIV; 3082 break; 3083 case TARGET_GEN_FLTOVF: 3084 info.si_code = TARGET_FPE_FLTOVF; 3085 break; 3086 case TARGET_GEN_FLTUND: 3087 info.si_code = TARGET_FPE_FLTUND; 3088 break; 3089 case TARGET_GEN_FLTINV: 3090 info.si_code = TARGET_FPE_FLTINV; 3091 break; 3092 case TARGET_GEN_FLTINE: 3093 info.si_code = TARGET_FPE_FLTRES; 3094 break; 3095 case TARGET_GEN_ROPRAND: 3096 info.si_code = 0; 3097 break; 3098 default: 3099 info.si_signo = TARGET_SIGTRAP; 3100 info.si_code = 0; 3101 break; 3102 } 3103 info.si_errno = 0; 3104 info._sifields._sigfault._addr = env->pc; 3105 queue_signal(env, info.si_signo, &info); 3106 break; 3107 default: 3108 goto do_sigill; 3109 } 3110 break; 3111 case EXCP_DEBUG: 3112 info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP); 3113 if (info.si_signo) { 3114 env->lock_addr = -1; 3115 info.si_errno = 0; 3116 info.si_code = TARGET_TRAP_BRKPT; 3117 queue_signal(env, info.si_signo, &info); 3118 } 3119 break; 3120 case EXCP_STL_C: 3121 case EXCP_STQ_C: 3122 do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C); 3123 break; 3124 case EXCP_INTERRUPT: 3125 /* Just indicate that signals should be handled asap. */ 3126 break; 3127 default: 3128 printf ("Unhandled trap: 0x%x\n", trapnr); 3129 cpu_dump_state(cs, stderr, fprintf, 0); 3130 exit (1); 3131 } 3132 process_pending_signals (env); 3133 } 3134 } 3135 #endif /* TARGET_ALPHA */ 3136 3137 #ifdef TARGET_S390X 3138 void cpu_loop(CPUS390XState *env) 3139 { 3140 CPUState *cs = CPU(s390_env_get_cpu(env)); 3141 int trapnr, n, sig; 3142 target_siginfo_t info; 3143 target_ulong addr; 3144 3145 while (1) { 3146 trapnr = cpu_s390x_exec(env); 3147 switch (trapnr) { 3148 case EXCP_INTERRUPT: 3149 /* Just indicate that signals should be handled asap. */ 3150 break; 3151 3152 case EXCP_SVC: 3153 n = env->int_svc_code; 3154 if (!n) { 3155 /* syscalls > 255 */ 3156 n = env->regs[1]; 3157 } 3158 env->psw.addr += env->int_svc_ilen; 3159 env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3], 3160 env->regs[4], env->regs[5], 3161 env->regs[6], env->regs[7], 0, 0); 3162 break; 3163 3164 case EXCP_DEBUG: 3165 sig = gdb_handlesig(cs, TARGET_SIGTRAP); 3166 if (sig) { 3167 n = TARGET_TRAP_BRKPT; 3168 goto do_signal_pc; 3169 } 3170 break; 3171 case EXCP_PGM: 3172 n = env->int_pgm_code; 3173 switch (n) { 3174 case PGM_OPERATION: 3175 case PGM_PRIVILEGED: 3176 sig = SIGILL; 3177 n = TARGET_ILL_ILLOPC; 3178 goto do_signal_pc; 3179 case PGM_PROTECTION: 3180 case PGM_ADDRESSING: 3181 sig = SIGSEGV; 3182 /* XXX: check env->error_code */ 3183 n = TARGET_SEGV_MAPERR; 3184 addr = env->__excp_addr; 3185 goto do_signal; 3186 case PGM_EXECUTE: 3187 case PGM_SPECIFICATION: 3188 case PGM_SPECIAL_OP: 3189 case PGM_OPERAND: 3190 do_sigill_opn: 3191 sig = SIGILL; 3192 n = TARGET_ILL_ILLOPN; 3193 goto do_signal_pc; 3194 3195 case PGM_FIXPT_OVERFLOW: 3196 sig = SIGFPE; 3197 n = TARGET_FPE_INTOVF; 3198 goto do_signal_pc; 3199 case PGM_FIXPT_DIVIDE: 3200 sig = SIGFPE; 3201 n = TARGET_FPE_INTDIV; 3202 goto do_signal_pc; 3203 3204 case PGM_DATA: 3205 n = (env->fpc >> 8) & 0xff; 3206 if (n == 0xff) { 3207 /* compare-and-trap */ 3208 goto do_sigill_opn; 3209 } else { 3210 /* An IEEE exception, simulated or otherwise. */ 3211 if (n & 0x80) { 3212 n = TARGET_FPE_FLTINV; 3213 } else if (n & 0x40) { 3214 n = TARGET_FPE_FLTDIV; 3215 } else if (n & 0x20) { 3216 n = TARGET_FPE_FLTOVF; 3217 } else if (n & 0x10) { 3218 n = TARGET_FPE_FLTUND; 3219 } else if (n & 0x08) { 3220 n = TARGET_FPE_FLTRES; 3221 } else { 3222 /* ??? Quantum exception; BFP, DFP error. */ 3223 goto do_sigill_opn; 3224 } 3225 sig = SIGFPE; 3226 goto do_signal_pc; 3227 } 3228 3229 default: 3230 fprintf(stderr, "Unhandled program exception: %#x\n", n); 3231 cpu_dump_state(cs, stderr, fprintf, 0); 3232 exit(1); 3233 } 3234 break; 3235 3236 do_signal_pc: 3237 addr = env->psw.addr; 3238 do_signal: 3239 info.si_signo = sig; 3240 info.si_errno = 0; 3241 info.si_code = n; 3242 info._sifields._sigfault._addr = addr; 3243 queue_signal(env, info.si_signo, &info); 3244 break; 3245 3246 default: 3247 fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr); 3248 cpu_dump_state(cs, stderr, fprintf, 0); 3249 exit(1); 3250 } 3251 process_pending_signals (env); 3252 } 3253 } 3254 3255 #endif /* TARGET_S390X */ 3256 3257 THREAD CPUState *thread_cpu; 3258 3259 void task_settid(TaskState *ts) 3260 { 3261 if (ts->ts_tid == 0) { 3262 ts->ts_tid = (pid_t)syscall(SYS_gettid); 3263 } 3264 } 3265 3266 void stop_all_tasks(void) 3267 { 3268 /* 3269 * We trust that when using NPTL, start_exclusive() 3270 * handles thread stopping correctly. 3271 */ 3272 start_exclusive(); 3273 } 3274 3275 /* Assumes contents are already zeroed. */ 3276 void init_task_state(TaskState *ts) 3277 { 3278 int i; 3279 3280 ts->used = 1; 3281 ts->first_free = ts->sigqueue_table; 3282 for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) { 3283 ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1]; 3284 } 3285 ts->sigqueue_table[i].next = NULL; 3286 } 3287 3288 CPUArchState *cpu_copy(CPUArchState *env) 3289 { 3290 CPUArchState *new_env = cpu_init(cpu_model); 3291 #if defined(TARGET_HAS_ICE) 3292 CPUBreakpoint *bp; 3293 CPUWatchpoint *wp; 3294 #endif 3295 3296 /* Reset non arch specific state */ 3297 cpu_reset(ENV_GET_CPU(new_env)); 3298 3299 memcpy(new_env, env, sizeof(CPUArchState)); 3300 3301 /* Clone all break/watchpoints. 3302 Note: Once we support ptrace with hw-debug register access, make sure 3303 BP_CPU break/watchpoints are handled correctly on clone. */ 3304 QTAILQ_INIT(&env->breakpoints); 3305 QTAILQ_INIT(&env->watchpoints); 3306 #if defined(TARGET_HAS_ICE) 3307 QTAILQ_FOREACH(bp, &env->breakpoints, entry) { 3308 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL); 3309 } 3310 QTAILQ_FOREACH(wp, &env->watchpoints, entry) { 3311 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1, 3312 wp->flags, NULL); 3313 } 3314 #endif 3315 3316 return new_env; 3317 } 3318 3319 static void handle_arg_help(const char *arg) 3320 { 3321 usage(); 3322 } 3323 3324 static void handle_arg_log(const char *arg) 3325 { 3326 int mask; 3327 3328 mask = qemu_str_to_log_mask(arg); 3329 if (!mask) { 3330 qemu_print_log_usage(stdout); 3331 exit(1); 3332 } 3333 qemu_set_log(mask); 3334 } 3335 3336 static void handle_arg_log_filename(const char *arg) 3337 { 3338 qemu_set_log_filename(arg); 3339 } 3340 3341 static void handle_arg_set_env(const char *arg) 3342 { 3343 char *r, *p, *token; 3344 r = p = strdup(arg); 3345 while ((token = strsep(&p, ",")) != NULL) { 3346 if (envlist_setenv(envlist, token) != 0) { 3347 usage(); 3348 } 3349 } 3350 free(r); 3351 } 3352 3353 static void handle_arg_unset_env(const char *arg) 3354 { 3355 char *r, *p, *token; 3356 r = p = strdup(arg); 3357 while ((token = strsep(&p, ",")) != NULL) { 3358 if (envlist_unsetenv(envlist, token) != 0) { 3359 usage(); 3360 } 3361 } 3362 free(r); 3363 } 3364 3365 static void handle_arg_argv0(const char *arg) 3366 { 3367 argv0 = strdup(arg); 3368 } 3369 3370 static void handle_arg_stack_size(const char *arg) 3371 { 3372 char *p; 3373 guest_stack_size = strtoul(arg, &p, 0); 3374 if (guest_stack_size == 0) { 3375 usage(); 3376 } 3377 3378 if (*p == 'M') { 3379 guest_stack_size *= 1024 * 1024; 3380 } else if (*p == 'k' || *p == 'K') { 3381 guest_stack_size *= 1024; 3382 } 3383 } 3384 3385 static void handle_arg_ld_prefix(const char *arg) 3386 { 3387 interp_prefix = strdup(arg); 3388 } 3389 3390 static void handle_arg_pagesize(const char *arg) 3391 { 3392 qemu_host_page_size = atoi(arg); 3393 if (qemu_host_page_size == 0 || 3394 (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) { 3395 fprintf(stderr, "page size must be a power of two\n"); 3396 exit(1); 3397 } 3398 } 3399 3400 static void handle_arg_gdb(const char *arg) 3401 { 3402 gdbstub_port = atoi(arg); 3403 } 3404 3405 static void handle_arg_uname(const char *arg) 3406 { 3407 qemu_uname_release = strdup(arg); 3408 } 3409 3410 static void handle_arg_cpu(const char *arg) 3411 { 3412 cpu_model = strdup(arg); 3413 if (cpu_model == NULL || is_help_option(cpu_model)) { 3414 /* XXX: implement xxx_cpu_list for targets that still miss it */ 3415 #if defined(cpu_list) 3416 cpu_list(stdout, &fprintf); 3417 #endif 3418 exit(1); 3419 } 3420 } 3421 3422 #if defined(CONFIG_USE_GUEST_BASE) 3423 static void handle_arg_guest_base(const char *arg) 3424 { 3425 guest_base = strtol(arg, NULL, 0); 3426 have_guest_base = 1; 3427 } 3428 3429 static void handle_arg_reserved_va(const char *arg) 3430 { 3431 char *p; 3432 int shift = 0; 3433 reserved_va = strtoul(arg, &p, 0); 3434 switch (*p) { 3435 case 'k': 3436 case 'K': 3437 shift = 10; 3438 break; 3439 case 'M': 3440 shift = 20; 3441 break; 3442 case 'G': 3443 shift = 30; 3444 break; 3445 } 3446 if (shift) { 3447 unsigned long unshifted = reserved_va; 3448 p++; 3449 reserved_va <<= shift; 3450 if (((reserved_va >> shift) != unshifted) 3451 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS 3452 || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS)) 3453 #endif 3454 ) { 3455 fprintf(stderr, "Reserved virtual address too big\n"); 3456 exit(1); 3457 } 3458 } 3459 if (*p) { 3460 fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p); 3461 exit(1); 3462 } 3463 } 3464 #endif 3465 3466 static void handle_arg_singlestep(const char *arg) 3467 { 3468 singlestep = 1; 3469 } 3470 3471 static void handle_arg_strace(const char *arg) 3472 { 3473 do_strace = 1; 3474 } 3475 3476 static void handle_arg_version(const char *arg) 3477 { 3478 printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION 3479 ", Copyright (c) 2003-2008 Fabrice Bellard\n"); 3480 exit(0); 3481 } 3482 3483 struct qemu_argument { 3484 const char *argv; 3485 const char *env; 3486 bool has_arg; 3487 void (*handle_opt)(const char *arg); 3488 const char *example; 3489 const char *help; 3490 }; 3491 3492 static const struct qemu_argument arg_table[] = { 3493 {"h", "", false, handle_arg_help, 3494 "", "print this help"}, 3495 {"g", "QEMU_GDB", true, handle_arg_gdb, 3496 "port", "wait gdb connection to 'port'"}, 3497 {"L", "QEMU_LD_PREFIX", true, handle_arg_ld_prefix, 3498 "path", "set the elf interpreter prefix to 'path'"}, 3499 {"s", "QEMU_STACK_SIZE", true, handle_arg_stack_size, 3500 "size", "set the stack size to 'size' bytes"}, 3501 {"cpu", "QEMU_CPU", true, handle_arg_cpu, 3502 "model", "select CPU (-cpu help for list)"}, 3503 {"E", "QEMU_SET_ENV", true, handle_arg_set_env, 3504 "var=value", "sets targets environment variable (see below)"}, 3505 {"U", "QEMU_UNSET_ENV", true, handle_arg_unset_env, 3506 "var", "unsets targets environment variable (see below)"}, 3507 {"0", "QEMU_ARGV0", true, handle_arg_argv0, 3508 "argv0", "forces target process argv[0] to be 'argv0'"}, 3509 {"r", "QEMU_UNAME", true, handle_arg_uname, 3510 "uname", "set qemu uname release string to 'uname'"}, 3511 #if defined(CONFIG_USE_GUEST_BASE) 3512 {"B", "QEMU_GUEST_BASE", true, handle_arg_guest_base, 3513 "address", "set guest_base address to 'address'"}, 3514 {"R", "QEMU_RESERVED_VA", true, handle_arg_reserved_va, 3515 "size", "reserve 'size' bytes for guest virtual address space"}, 3516 #endif 3517 {"d", "QEMU_LOG", true, handle_arg_log, 3518 "item[,...]", "enable logging of specified items " 3519 "(use '-d help' for a list of items)"}, 3520 {"D", "QEMU_LOG_FILENAME", true, handle_arg_log_filename, 3521 "logfile", "write logs to 'logfile' (default stderr)"}, 3522 {"p", "QEMU_PAGESIZE", true, handle_arg_pagesize, 3523 "pagesize", "set the host page size to 'pagesize'"}, 3524 {"singlestep", "QEMU_SINGLESTEP", false, handle_arg_singlestep, 3525 "", "run in singlestep mode"}, 3526 {"strace", "QEMU_STRACE", false, handle_arg_strace, 3527 "", "log system calls"}, 3528 {"version", "QEMU_VERSION", false, handle_arg_version, 3529 "", "display version information and exit"}, 3530 {NULL, NULL, false, NULL, NULL, NULL} 3531 }; 3532 3533 static void usage(void) 3534 { 3535 const struct qemu_argument *arginfo; 3536 int maxarglen; 3537 int maxenvlen; 3538 3539 printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n" 3540 "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n" 3541 "\n" 3542 "Options and associated environment variables:\n" 3543 "\n"); 3544 3545 /* Calculate column widths. We must always have at least enough space 3546 * for the column header. 3547 */ 3548 maxarglen = strlen("Argument"); 3549 maxenvlen = strlen("Env-variable"); 3550 3551 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3552 int arglen = strlen(arginfo->argv); 3553 if (arginfo->has_arg) { 3554 arglen += strlen(arginfo->example) + 1; 3555 } 3556 if (strlen(arginfo->env) > maxenvlen) { 3557 maxenvlen = strlen(arginfo->env); 3558 } 3559 if (arglen > maxarglen) { 3560 maxarglen = arglen; 3561 } 3562 } 3563 3564 printf("%-*s %-*s Description\n", maxarglen+1, "Argument", 3565 maxenvlen, "Env-variable"); 3566 3567 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3568 if (arginfo->has_arg) { 3569 printf("-%s %-*s %-*s %s\n", arginfo->argv, 3570 (int)(maxarglen - strlen(arginfo->argv) - 1), 3571 arginfo->example, maxenvlen, arginfo->env, arginfo->help); 3572 } else { 3573 printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv, 3574 maxenvlen, arginfo->env, 3575 arginfo->help); 3576 } 3577 } 3578 3579 printf("\n" 3580 "Defaults:\n" 3581 "QEMU_LD_PREFIX = %s\n" 3582 "QEMU_STACK_SIZE = %ld byte\n", 3583 interp_prefix, 3584 guest_stack_size); 3585 3586 printf("\n" 3587 "You can use -E and -U options or the QEMU_SET_ENV and\n" 3588 "QEMU_UNSET_ENV environment variables to set and unset\n" 3589 "environment variables for the target process.\n" 3590 "It is possible to provide several variables by separating them\n" 3591 "by commas in getsubopt(3) style. Additionally it is possible to\n" 3592 "provide the -E and -U options multiple times.\n" 3593 "The following lines are equivalent:\n" 3594 " -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n" 3595 " -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n" 3596 " QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n" 3597 "Note that if you provide several changes to a single variable\n" 3598 "the last change will stay in effect.\n"); 3599 3600 exit(1); 3601 } 3602 3603 static int parse_args(int argc, char **argv) 3604 { 3605 const char *r; 3606 int optind; 3607 const struct qemu_argument *arginfo; 3608 3609 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3610 if (arginfo->env == NULL) { 3611 continue; 3612 } 3613 3614 r = getenv(arginfo->env); 3615 if (r != NULL) { 3616 arginfo->handle_opt(r); 3617 } 3618 } 3619 3620 optind = 1; 3621 for (;;) { 3622 if (optind >= argc) { 3623 break; 3624 } 3625 r = argv[optind]; 3626 if (r[0] != '-') { 3627 break; 3628 } 3629 optind++; 3630 r++; 3631 if (!strcmp(r, "-")) { 3632 break; 3633 } 3634 3635 for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) { 3636 if (!strcmp(r, arginfo->argv)) { 3637 if (arginfo->has_arg) { 3638 if (optind >= argc) { 3639 usage(); 3640 } 3641 arginfo->handle_opt(argv[optind]); 3642 optind++; 3643 } else { 3644 arginfo->handle_opt(NULL); 3645 } 3646 break; 3647 } 3648 } 3649 3650 /* no option matched the current argv */ 3651 if (arginfo->handle_opt == NULL) { 3652 usage(); 3653 } 3654 } 3655 3656 if (optind >= argc) { 3657 usage(); 3658 } 3659 3660 filename = argv[optind]; 3661 exec_path = argv[optind]; 3662 3663 return optind; 3664 } 3665 3666 static int get_execfd(char **envp) 3667 { 3668 typedef struct { 3669 long a_type; 3670 long a_val; 3671 } auxv_t; 3672 auxv_t *auxv; 3673 3674 while (*envp++ != NULL) { 3675 ; 3676 } 3677 3678 for (auxv = (auxv_t *)envp; auxv->a_type != AT_NULL; auxv++) { 3679 if (auxv->a_type == AT_EXECFD) { 3680 return auxv->a_val; 3681 } 3682 } 3683 return -1; 3684 } 3685 3686 int main(int argc, char **argv, char **envp) 3687 { 3688 struct target_pt_regs regs1, *regs = ®s1; 3689 struct image_info info1, *info = &info1; 3690 struct linux_binprm bprm; 3691 TaskState *ts; 3692 CPUArchState *env; 3693 CPUState *cpu; 3694 int optind; 3695 char **target_environ, **wrk; 3696 char **target_argv; 3697 int target_argc; 3698 int i; 3699 int ret; 3700 int execfd; 3701 3702 module_call_init(MODULE_INIT_QOM); 3703 3704 qemu_cache_utils_init(envp); 3705 3706 if ((envlist = envlist_create()) == NULL) { 3707 (void) fprintf(stderr, "Unable to allocate envlist\n"); 3708 exit(1); 3709 } 3710 3711 /* add current environment into the list */ 3712 for (wrk = environ; *wrk != NULL; wrk++) { 3713 (void) envlist_setenv(envlist, *wrk); 3714 } 3715 3716 /* Read the stack limit from the kernel. If it's "unlimited", 3717 then we can do little else besides use the default. */ 3718 { 3719 struct rlimit lim; 3720 if (getrlimit(RLIMIT_STACK, &lim) == 0 3721 && lim.rlim_cur != RLIM_INFINITY 3722 && lim.rlim_cur == (target_long)lim.rlim_cur) { 3723 guest_stack_size = lim.rlim_cur; 3724 } 3725 } 3726 3727 cpu_model = NULL; 3728 #if defined(cpudef_setup) 3729 cpudef_setup(); /* parse cpu definitions in target config file (TBD) */ 3730 #endif 3731 3732 optind = parse_args(argc, argv); 3733 3734 /* Zero out regs */ 3735 memset(regs, 0, sizeof(struct target_pt_regs)); 3736 3737 /* Zero out image_info */ 3738 memset(info, 0, sizeof(struct image_info)); 3739 3740 memset(&bprm, 0, sizeof (bprm)); 3741 3742 /* Scan interp_prefix dir for replacement files. */ 3743 init_paths(interp_prefix); 3744 3745 init_qemu_uname_release(); 3746 3747 if (cpu_model == NULL) { 3748 #if defined(TARGET_I386) 3749 #ifdef TARGET_X86_64 3750 cpu_model = "qemu64"; 3751 #else 3752 cpu_model = "qemu32"; 3753 #endif 3754 #elif defined(TARGET_ARM) 3755 cpu_model = "any"; 3756 #elif defined(TARGET_UNICORE32) 3757 cpu_model = "any"; 3758 #elif defined(TARGET_M68K) 3759 cpu_model = "any"; 3760 #elif defined(TARGET_SPARC) 3761 #ifdef TARGET_SPARC64 3762 cpu_model = "TI UltraSparc II"; 3763 #else 3764 cpu_model = "Fujitsu MB86904"; 3765 #endif 3766 #elif defined(TARGET_MIPS) 3767 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64) 3768 cpu_model = "20Kc"; 3769 #else 3770 cpu_model = "24Kf"; 3771 #endif 3772 #elif defined TARGET_OPENRISC 3773 cpu_model = "or1200"; 3774 #elif defined(TARGET_PPC) 3775 #ifdef TARGET_PPC64 3776 cpu_model = "970fx"; 3777 #else 3778 cpu_model = "750"; 3779 #endif 3780 #else 3781 cpu_model = "any"; 3782 #endif 3783 } 3784 tcg_exec_init(0); 3785 cpu_exec_init_all(); 3786 /* NOTE: we need to init the CPU at this stage to get 3787 qemu_host_page_size */ 3788 env = cpu_init(cpu_model); 3789 if (!env) { 3790 fprintf(stderr, "Unable to find CPU definition\n"); 3791 exit(1); 3792 } 3793 cpu = ENV_GET_CPU(env); 3794 cpu_reset(cpu); 3795 3796 thread_cpu = cpu; 3797 3798 if (getenv("QEMU_STRACE")) { 3799 do_strace = 1; 3800 } 3801 3802 target_environ = envlist_to_environ(envlist, NULL); 3803 envlist_free(envlist); 3804 3805 #if defined(CONFIG_USE_GUEST_BASE) 3806 /* 3807 * Now that page sizes are configured in cpu_init() we can do 3808 * proper page alignment for guest_base. 3809 */ 3810 guest_base = HOST_PAGE_ALIGN(guest_base); 3811 3812 if (reserved_va || have_guest_base) { 3813 guest_base = init_guest_space(guest_base, reserved_va, 0, 3814 have_guest_base); 3815 if (guest_base == (unsigned long)-1) { 3816 fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address " 3817 "space for use as guest address space (check your virtual " 3818 "memory ulimit setting or reserve less using -R option)\n", 3819 reserved_va); 3820 exit(1); 3821 } 3822 3823 if (reserved_va) { 3824 mmap_next_start = reserved_va; 3825 } 3826 } 3827 #endif /* CONFIG_USE_GUEST_BASE */ 3828 3829 /* 3830 * Read in mmap_min_addr kernel parameter. This value is used 3831 * When loading the ELF image to determine whether guest_base 3832 * is needed. It is also used in mmap_find_vma. 3833 */ 3834 { 3835 FILE *fp; 3836 3837 if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) { 3838 unsigned long tmp; 3839 if (fscanf(fp, "%lu", &tmp) == 1) { 3840 mmap_min_addr = tmp; 3841 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr); 3842 } 3843 fclose(fp); 3844 } 3845 } 3846 3847 /* 3848 * Prepare copy of argv vector for target. 3849 */ 3850 target_argc = argc - optind; 3851 target_argv = calloc(target_argc + 1, sizeof (char *)); 3852 if (target_argv == NULL) { 3853 (void) fprintf(stderr, "Unable to allocate memory for target_argv\n"); 3854 exit(1); 3855 } 3856 3857 /* 3858 * If argv0 is specified (using '-0' switch) we replace 3859 * argv[0] pointer with the given one. 3860 */ 3861 i = 0; 3862 if (argv0 != NULL) { 3863 target_argv[i++] = strdup(argv0); 3864 } 3865 for (; i < target_argc; i++) { 3866 target_argv[i] = strdup(argv[optind + i]); 3867 } 3868 target_argv[target_argc] = NULL; 3869 3870 ts = g_malloc0 (sizeof(TaskState)); 3871 init_task_state(ts); 3872 /* build Task State */ 3873 ts->info = info; 3874 ts->bprm = &bprm; 3875 env->opaque = ts; 3876 task_settid(ts); 3877 3878 execfd = get_execfd(envp); 3879 if (execfd < 0) { 3880 execfd = open(filename, O_RDONLY); 3881 } 3882 if (execfd < 0) { 3883 printf("Error while loading %s: %s\n", filename, strerror(-execfd)); 3884 _exit(1); 3885 } 3886 3887 ret = loader_exec(execfd, filename, target_argv, target_environ, regs, 3888 info, &bprm); 3889 if (ret != 0) { 3890 printf("Error while loading %s: %s\n", filename, strerror(-ret)); 3891 _exit(1); 3892 } 3893 3894 for (wrk = target_environ; *wrk; wrk++) { 3895 free(*wrk); 3896 } 3897 3898 free(target_environ); 3899 3900 if (qemu_log_enabled()) { 3901 #if defined(CONFIG_USE_GUEST_BASE) 3902 qemu_log("guest_base 0x%lx\n", guest_base); 3903 #endif 3904 log_page_dump(); 3905 3906 qemu_log("start_brk 0x" TARGET_ABI_FMT_lx "\n", info->start_brk); 3907 qemu_log("end_code 0x" TARGET_ABI_FMT_lx "\n", info->end_code); 3908 qemu_log("start_code 0x" TARGET_ABI_FMT_lx "\n", 3909 info->start_code); 3910 qemu_log("start_data 0x" TARGET_ABI_FMT_lx "\n", 3911 info->start_data); 3912 qemu_log("end_data 0x" TARGET_ABI_FMT_lx "\n", info->end_data); 3913 qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n", 3914 info->start_stack); 3915 qemu_log("brk 0x" TARGET_ABI_FMT_lx "\n", info->brk); 3916 qemu_log("entry 0x" TARGET_ABI_FMT_lx "\n", info->entry); 3917 } 3918 3919 target_set_brk(info->brk); 3920 syscall_init(); 3921 signal_init(); 3922 3923 #if defined(CONFIG_USE_GUEST_BASE) 3924 /* Now that we've loaded the binary, GUEST_BASE is fixed. Delay 3925 generating the prologue until now so that the prologue can take 3926 the real value of GUEST_BASE into account. */ 3927 tcg_prologue_init(&tcg_ctx); 3928 #endif 3929 3930 #if defined(TARGET_I386) 3931 cpu_x86_set_cpl(env, 3); 3932 3933 env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK; 3934 env->hflags |= HF_PE_MASK; 3935 if (env->features[FEAT_1_EDX] & CPUID_SSE) { 3936 env->cr[4] |= CR4_OSFXSR_MASK; 3937 env->hflags |= HF_OSFXSR_MASK; 3938 } 3939 #ifndef TARGET_ABI32 3940 /* enable 64 bit mode if possible */ 3941 if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { 3942 fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n"); 3943 exit(1); 3944 } 3945 env->cr[4] |= CR4_PAE_MASK; 3946 env->efer |= MSR_EFER_LMA | MSR_EFER_LME; 3947 env->hflags |= HF_LMA_MASK; 3948 #endif 3949 3950 /* flags setup : we activate the IRQs by default as in user mode */ 3951 env->eflags |= IF_MASK; 3952 3953 /* linux register setup */ 3954 #ifndef TARGET_ABI32 3955 env->regs[R_EAX] = regs->rax; 3956 env->regs[R_EBX] = regs->rbx; 3957 env->regs[R_ECX] = regs->rcx; 3958 env->regs[R_EDX] = regs->rdx; 3959 env->regs[R_ESI] = regs->rsi; 3960 env->regs[R_EDI] = regs->rdi; 3961 env->regs[R_EBP] = regs->rbp; 3962 env->regs[R_ESP] = regs->rsp; 3963 env->eip = regs->rip; 3964 #else 3965 env->regs[R_EAX] = regs->eax; 3966 env->regs[R_EBX] = regs->ebx; 3967 env->regs[R_ECX] = regs->ecx; 3968 env->regs[R_EDX] = regs->edx; 3969 env->regs[R_ESI] = regs->esi; 3970 env->regs[R_EDI] = regs->edi; 3971 env->regs[R_EBP] = regs->ebp; 3972 env->regs[R_ESP] = regs->esp; 3973 env->eip = regs->eip; 3974 #endif 3975 3976 /* linux interrupt setup */ 3977 #ifndef TARGET_ABI32 3978 env->idt.limit = 511; 3979 #else 3980 env->idt.limit = 255; 3981 #endif 3982 env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1), 3983 PROT_READ|PROT_WRITE, 3984 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 3985 idt_table = g2h(env->idt.base); 3986 set_idt(0, 0); 3987 set_idt(1, 0); 3988 set_idt(2, 0); 3989 set_idt(3, 3); 3990 set_idt(4, 3); 3991 set_idt(5, 0); 3992 set_idt(6, 0); 3993 set_idt(7, 0); 3994 set_idt(8, 0); 3995 set_idt(9, 0); 3996 set_idt(10, 0); 3997 set_idt(11, 0); 3998 set_idt(12, 0); 3999 set_idt(13, 0); 4000 set_idt(14, 0); 4001 set_idt(15, 0); 4002 set_idt(16, 0); 4003 set_idt(17, 0); 4004 set_idt(18, 0); 4005 set_idt(19, 0); 4006 set_idt(0x80, 3); 4007 4008 /* linux segment setup */ 4009 { 4010 uint64_t *gdt_table; 4011 env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES, 4012 PROT_READ|PROT_WRITE, 4013 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0); 4014 env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1; 4015 gdt_table = g2h(env->gdt.base); 4016 #ifdef TARGET_ABI32 4017 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4018 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4019 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4020 #else 4021 /* 64 bit code segment */ 4022 write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff, 4023 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4024 DESC_L_MASK | 4025 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT)); 4026 #endif 4027 write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff, 4028 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK | 4029 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT)); 4030 } 4031 cpu_x86_load_seg(env, R_CS, __USER_CS); 4032 cpu_x86_load_seg(env, R_SS, __USER_DS); 4033 #ifdef TARGET_ABI32 4034 cpu_x86_load_seg(env, R_DS, __USER_DS); 4035 cpu_x86_load_seg(env, R_ES, __USER_DS); 4036 cpu_x86_load_seg(env, R_FS, __USER_DS); 4037 cpu_x86_load_seg(env, R_GS, __USER_DS); 4038 /* This hack makes Wine work... */ 4039 env->segs[R_FS].selector = 0; 4040 #else 4041 cpu_x86_load_seg(env, R_DS, 0); 4042 cpu_x86_load_seg(env, R_ES, 0); 4043 cpu_x86_load_seg(env, R_FS, 0); 4044 cpu_x86_load_seg(env, R_GS, 0); 4045 #endif 4046 #elif defined(TARGET_AARCH64) 4047 { 4048 int i; 4049 4050 if (!(arm_feature(env, ARM_FEATURE_AARCH64))) { 4051 fprintf(stderr, 4052 "The selected ARM CPU does not support 64 bit mode\n"); 4053 exit(1); 4054 } 4055 4056 for (i = 0; i < 31; i++) { 4057 env->xregs[i] = regs->regs[i]; 4058 } 4059 env->pc = regs->pc; 4060 env->xregs[31] = regs->sp; 4061 } 4062 #elif defined(TARGET_ARM) 4063 { 4064 int i; 4065 cpsr_write(env, regs->uregs[16], 0xffffffff); 4066 for(i = 0; i < 16; i++) { 4067 env->regs[i] = regs->uregs[i]; 4068 } 4069 /* Enable BE8. */ 4070 if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4 4071 && (info->elf_flags & EF_ARM_BE8)) { 4072 env->bswap_code = 1; 4073 } 4074 } 4075 #elif defined(TARGET_UNICORE32) 4076 { 4077 int i; 4078 cpu_asr_write(env, regs->uregs[32], 0xffffffff); 4079 for (i = 0; i < 32; i++) { 4080 env->regs[i] = regs->uregs[i]; 4081 } 4082 } 4083 #elif defined(TARGET_SPARC) 4084 { 4085 int i; 4086 env->pc = regs->pc; 4087 env->npc = regs->npc; 4088 env->y = regs->y; 4089 for(i = 0; i < 8; i++) 4090 env->gregs[i] = regs->u_regs[i]; 4091 for(i = 0; i < 8; i++) 4092 env->regwptr[i] = regs->u_regs[i + 8]; 4093 } 4094 #elif defined(TARGET_PPC) 4095 { 4096 int i; 4097 4098 #if defined(TARGET_PPC64) 4099 #if defined(TARGET_ABI32) 4100 env->msr &= ~((target_ulong)1 << MSR_SF); 4101 #else 4102 env->msr |= (target_ulong)1 << MSR_SF; 4103 #endif 4104 #endif 4105 env->nip = regs->nip; 4106 for(i = 0; i < 32; i++) { 4107 env->gpr[i] = regs->gpr[i]; 4108 } 4109 } 4110 #elif defined(TARGET_M68K) 4111 { 4112 env->pc = regs->pc; 4113 env->dregs[0] = regs->d0; 4114 env->dregs[1] = regs->d1; 4115 env->dregs[2] = regs->d2; 4116 env->dregs[3] = regs->d3; 4117 env->dregs[4] = regs->d4; 4118 env->dregs[5] = regs->d5; 4119 env->dregs[6] = regs->d6; 4120 env->dregs[7] = regs->d7; 4121 env->aregs[0] = regs->a0; 4122 env->aregs[1] = regs->a1; 4123 env->aregs[2] = regs->a2; 4124 env->aregs[3] = regs->a3; 4125 env->aregs[4] = regs->a4; 4126 env->aregs[5] = regs->a5; 4127 env->aregs[6] = regs->a6; 4128 env->aregs[7] = regs->usp; 4129 env->sr = regs->sr; 4130 ts->sim_syscalls = 1; 4131 } 4132 #elif defined(TARGET_MICROBLAZE) 4133 { 4134 env->regs[0] = regs->r0; 4135 env->regs[1] = regs->r1; 4136 env->regs[2] = regs->r2; 4137 env->regs[3] = regs->r3; 4138 env->regs[4] = regs->r4; 4139 env->regs[5] = regs->r5; 4140 env->regs[6] = regs->r6; 4141 env->regs[7] = regs->r7; 4142 env->regs[8] = regs->r8; 4143 env->regs[9] = regs->r9; 4144 env->regs[10] = regs->r10; 4145 env->regs[11] = regs->r11; 4146 env->regs[12] = regs->r12; 4147 env->regs[13] = regs->r13; 4148 env->regs[14] = regs->r14; 4149 env->regs[15] = regs->r15; 4150 env->regs[16] = regs->r16; 4151 env->regs[17] = regs->r17; 4152 env->regs[18] = regs->r18; 4153 env->regs[19] = regs->r19; 4154 env->regs[20] = regs->r20; 4155 env->regs[21] = regs->r21; 4156 env->regs[22] = regs->r22; 4157 env->regs[23] = regs->r23; 4158 env->regs[24] = regs->r24; 4159 env->regs[25] = regs->r25; 4160 env->regs[26] = regs->r26; 4161 env->regs[27] = regs->r27; 4162 env->regs[28] = regs->r28; 4163 env->regs[29] = regs->r29; 4164 env->regs[30] = regs->r30; 4165 env->regs[31] = regs->r31; 4166 env->sregs[SR_PC] = regs->pc; 4167 } 4168 #elif defined(TARGET_MIPS) 4169 { 4170 int i; 4171 4172 for(i = 0; i < 32; i++) { 4173 env->active_tc.gpr[i] = regs->regs[i]; 4174 } 4175 env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1; 4176 if (regs->cp0_epc & 1) { 4177 env->hflags |= MIPS_HFLAG_M16; 4178 } 4179 } 4180 #elif defined(TARGET_OPENRISC) 4181 { 4182 int i; 4183 4184 for (i = 0; i < 32; i++) { 4185 env->gpr[i] = regs->gpr[i]; 4186 } 4187 4188 env->sr = regs->sr; 4189 env->pc = regs->pc; 4190 } 4191 #elif defined(TARGET_SH4) 4192 { 4193 int i; 4194 4195 for(i = 0; i < 16; i++) { 4196 env->gregs[i] = regs->regs[i]; 4197 } 4198 env->pc = regs->pc; 4199 } 4200 #elif defined(TARGET_ALPHA) 4201 { 4202 int i; 4203 4204 for(i = 0; i < 28; i++) { 4205 env->ir[i] = ((abi_ulong *)regs)[i]; 4206 } 4207 env->ir[IR_SP] = regs->usp; 4208 env->pc = regs->pc; 4209 } 4210 #elif defined(TARGET_CRIS) 4211 { 4212 env->regs[0] = regs->r0; 4213 env->regs[1] = regs->r1; 4214 env->regs[2] = regs->r2; 4215 env->regs[3] = regs->r3; 4216 env->regs[4] = regs->r4; 4217 env->regs[5] = regs->r5; 4218 env->regs[6] = regs->r6; 4219 env->regs[7] = regs->r7; 4220 env->regs[8] = regs->r8; 4221 env->regs[9] = regs->r9; 4222 env->regs[10] = regs->r10; 4223 env->regs[11] = regs->r11; 4224 env->regs[12] = regs->r12; 4225 env->regs[13] = regs->r13; 4226 env->regs[14] = info->start_stack; 4227 env->regs[15] = regs->acr; 4228 env->pc = regs->erp; 4229 } 4230 #elif defined(TARGET_S390X) 4231 { 4232 int i; 4233 for (i = 0; i < 16; i++) { 4234 env->regs[i] = regs->gprs[i]; 4235 } 4236 env->psw.mask = regs->psw.mask; 4237 env->psw.addr = regs->psw.addr; 4238 } 4239 #else 4240 #error unsupported target CPU 4241 #endif 4242 4243 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32) 4244 ts->stack_base = info->start_stack; 4245 ts->heap_base = info->brk; 4246 /* This will be filled in on the first SYS_HEAPINFO call. */ 4247 ts->heap_limit = 0; 4248 #endif 4249 4250 if (gdbstub_port) { 4251 if (gdbserver_start(gdbstub_port) < 0) { 4252 fprintf(stderr, "qemu: could not open gdbserver on port %d\n", 4253 gdbstub_port); 4254 exit(1); 4255 } 4256 gdb_handlesig(cpu, 0); 4257 } 4258 cpu_loop(env); 4259 /* never exits */ 4260 return 0; 4261 } 4262