xref: /openbmc/qemu/linux-user/main.c (revision 0bc12c4f)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "cpu.h"
32 #include "tcg.h"
33 #include "qemu/timer.h"
34 #include "qemu/envlist.h"
35 #include "elf.h"
36 
37 char *exec_path;
38 
39 int singlestep;
40 const char *filename;
41 const char *argv0;
42 int gdbstub_port;
43 envlist_t *envlist;
44 static const char *cpu_model;
45 unsigned long mmap_min_addr;
46 #if defined(CONFIG_USE_GUEST_BASE)
47 unsigned long guest_base;
48 int have_guest_base;
49 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
50 /*
51  * When running 32-on-64 we should make sure we can fit all of the possible
52  * guest address space into a contiguous chunk of virtual host memory.
53  *
54  * This way we will never overlap with our own libraries or binaries or stack
55  * or anything else that QEMU maps.
56  */
57 # ifdef TARGET_MIPS
58 /* MIPS only supports 31 bits of virtual address space for user space */
59 unsigned long reserved_va = 0x77000000;
60 # else
61 unsigned long reserved_va = 0xf7000000;
62 # endif
63 #else
64 unsigned long reserved_va;
65 #endif
66 #endif
67 
68 static void usage(void);
69 
70 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
71 const char *qemu_uname_release;
72 
73 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
74    we allocate a bigger stack. Need a better solution, for example
75    by remapping the process stack directly at the right place */
76 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
77 
78 void gemu_log(const char *fmt, ...)
79 {
80     va_list ap;
81 
82     va_start(ap, fmt);
83     vfprintf(stderr, fmt, ap);
84     va_end(ap);
85 }
86 
87 #if defined(TARGET_I386)
88 int cpu_get_pic_interrupt(CPUX86State *env)
89 {
90     return -1;
91 }
92 #endif
93 
94 /***********************************************************/
95 /* Helper routines for implementing atomic operations.  */
96 
97 /* To implement exclusive operations we force all cpus to syncronise.
98    We don't require a full sync, only that no cpus are executing guest code.
99    The alternative is to map target atomic ops onto host equivalents,
100    which requires quite a lot of per host/target work.  */
101 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
102 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
103 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
104 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
105 static int pending_cpus;
106 
107 /* Make sure everything is in a consistent state for calling fork().  */
108 void fork_start(void)
109 {
110     pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
111     pthread_mutex_lock(&exclusive_lock);
112     mmap_fork_start();
113 }
114 
115 void fork_end(int child)
116 {
117     mmap_fork_end(child);
118     if (child) {
119         CPUState *cpu, *next_cpu;
120         /* Child processes created by fork() only have a single thread.
121            Discard information about the parent threads.  */
122         CPU_FOREACH_SAFE(cpu, next_cpu) {
123             if (cpu != thread_cpu) {
124                 QTAILQ_REMOVE(&cpus, thread_cpu, node);
125             }
126         }
127         pending_cpus = 0;
128         pthread_mutex_init(&exclusive_lock, NULL);
129         pthread_mutex_init(&cpu_list_mutex, NULL);
130         pthread_cond_init(&exclusive_cond, NULL);
131         pthread_cond_init(&exclusive_resume, NULL);
132         pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
133         gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
134     } else {
135         pthread_mutex_unlock(&exclusive_lock);
136         pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
137     }
138 }
139 
140 /* Wait for pending exclusive operations to complete.  The exclusive lock
141    must be held.  */
142 static inline void exclusive_idle(void)
143 {
144     while (pending_cpus) {
145         pthread_cond_wait(&exclusive_resume, &exclusive_lock);
146     }
147 }
148 
149 /* Start an exclusive operation.
150    Must only be called from outside cpu_arm_exec.   */
151 static inline void start_exclusive(void)
152 {
153     CPUState *other_cpu;
154 
155     pthread_mutex_lock(&exclusive_lock);
156     exclusive_idle();
157 
158     pending_cpus = 1;
159     /* Make all other cpus stop executing.  */
160     CPU_FOREACH(other_cpu) {
161         if (other_cpu->running) {
162             pending_cpus++;
163             cpu_exit(other_cpu);
164         }
165     }
166     if (pending_cpus > 1) {
167         pthread_cond_wait(&exclusive_cond, &exclusive_lock);
168     }
169 }
170 
171 /* Finish an exclusive operation.  */
172 static inline void __attribute__((unused)) end_exclusive(void)
173 {
174     pending_cpus = 0;
175     pthread_cond_broadcast(&exclusive_resume);
176     pthread_mutex_unlock(&exclusive_lock);
177 }
178 
179 /* Wait for exclusive ops to finish, and begin cpu execution.  */
180 static inline void cpu_exec_start(CPUState *cpu)
181 {
182     pthread_mutex_lock(&exclusive_lock);
183     exclusive_idle();
184     cpu->running = true;
185     pthread_mutex_unlock(&exclusive_lock);
186 }
187 
188 /* Mark cpu as not executing, and release pending exclusive ops.  */
189 static inline void cpu_exec_end(CPUState *cpu)
190 {
191     pthread_mutex_lock(&exclusive_lock);
192     cpu->running = false;
193     if (pending_cpus > 1) {
194         pending_cpus--;
195         if (pending_cpus == 1) {
196             pthread_cond_signal(&exclusive_cond);
197         }
198     }
199     exclusive_idle();
200     pthread_mutex_unlock(&exclusive_lock);
201 }
202 
203 void cpu_list_lock(void)
204 {
205     pthread_mutex_lock(&cpu_list_mutex);
206 }
207 
208 void cpu_list_unlock(void)
209 {
210     pthread_mutex_unlock(&cpu_list_mutex);
211 }
212 
213 
214 #ifdef TARGET_I386
215 /***********************************************************/
216 /* CPUX86 core interface */
217 
218 uint64_t cpu_get_tsc(CPUX86State *env)
219 {
220     return cpu_get_real_ticks();
221 }
222 
223 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
224                      int flags)
225 {
226     unsigned int e1, e2;
227     uint32_t *p;
228     e1 = (addr << 16) | (limit & 0xffff);
229     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
230     e2 |= flags;
231     p = ptr;
232     p[0] = tswap32(e1);
233     p[1] = tswap32(e2);
234 }
235 
236 static uint64_t *idt_table;
237 #ifdef TARGET_X86_64
238 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
239                        uint64_t addr, unsigned int sel)
240 {
241     uint32_t *p, e1, e2;
242     e1 = (addr & 0xffff) | (sel << 16);
243     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
244     p = ptr;
245     p[0] = tswap32(e1);
246     p[1] = tswap32(e2);
247     p[2] = tswap32(addr >> 32);
248     p[3] = 0;
249 }
250 /* only dpl matters as we do only user space emulation */
251 static void set_idt(int n, unsigned int dpl)
252 {
253     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
254 }
255 #else
256 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
257                      uint32_t addr, unsigned int sel)
258 {
259     uint32_t *p, e1, e2;
260     e1 = (addr & 0xffff) | (sel << 16);
261     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
262     p = ptr;
263     p[0] = tswap32(e1);
264     p[1] = tswap32(e2);
265 }
266 
267 /* only dpl matters as we do only user space emulation */
268 static void set_idt(int n, unsigned int dpl)
269 {
270     set_gate(idt_table + n, 0, dpl, 0, 0);
271 }
272 #endif
273 
274 void cpu_loop(CPUX86State *env)
275 {
276     CPUState *cs = CPU(x86_env_get_cpu(env));
277     int trapnr;
278     abi_ulong pc;
279     target_siginfo_t info;
280 
281     for(;;) {
282         cpu_exec_start(cs);
283         trapnr = cpu_x86_exec(env);
284         cpu_exec_end(cs);
285         switch(trapnr) {
286         case 0x80:
287             /* linux syscall from int $0x80 */
288             env->regs[R_EAX] = do_syscall(env,
289                                           env->regs[R_EAX],
290                                           env->regs[R_EBX],
291                                           env->regs[R_ECX],
292                                           env->regs[R_EDX],
293                                           env->regs[R_ESI],
294                                           env->regs[R_EDI],
295                                           env->regs[R_EBP],
296                                           0, 0);
297             break;
298 #ifndef TARGET_ABI32
299         case EXCP_SYSCALL:
300             /* linux syscall from syscall instruction */
301             env->regs[R_EAX] = do_syscall(env,
302                                           env->regs[R_EAX],
303                                           env->regs[R_EDI],
304                                           env->regs[R_ESI],
305                                           env->regs[R_EDX],
306                                           env->regs[10],
307                                           env->regs[8],
308                                           env->regs[9],
309                                           0, 0);
310             break;
311 #endif
312         case EXCP0B_NOSEG:
313         case EXCP0C_STACK:
314             info.si_signo = TARGET_SIGBUS;
315             info.si_errno = 0;
316             info.si_code = TARGET_SI_KERNEL;
317             info._sifields._sigfault._addr = 0;
318             queue_signal(env, info.si_signo, &info);
319             break;
320         case EXCP0D_GPF:
321             /* XXX: potential problem if ABI32 */
322 #ifndef TARGET_X86_64
323             if (env->eflags & VM_MASK) {
324                 handle_vm86_fault(env);
325             } else
326 #endif
327             {
328                 info.si_signo = TARGET_SIGSEGV;
329                 info.si_errno = 0;
330                 info.si_code = TARGET_SI_KERNEL;
331                 info._sifields._sigfault._addr = 0;
332                 queue_signal(env, info.si_signo, &info);
333             }
334             break;
335         case EXCP0E_PAGE:
336             info.si_signo = TARGET_SIGSEGV;
337             info.si_errno = 0;
338             if (!(env->error_code & 1))
339                 info.si_code = TARGET_SEGV_MAPERR;
340             else
341                 info.si_code = TARGET_SEGV_ACCERR;
342             info._sifields._sigfault._addr = env->cr[2];
343             queue_signal(env, info.si_signo, &info);
344             break;
345         case EXCP00_DIVZ:
346 #ifndef TARGET_X86_64
347             if (env->eflags & VM_MASK) {
348                 handle_vm86_trap(env, trapnr);
349             } else
350 #endif
351             {
352                 /* division by zero */
353                 info.si_signo = TARGET_SIGFPE;
354                 info.si_errno = 0;
355                 info.si_code = TARGET_FPE_INTDIV;
356                 info._sifields._sigfault._addr = env->eip;
357                 queue_signal(env, info.si_signo, &info);
358             }
359             break;
360         case EXCP01_DB:
361         case EXCP03_INT3:
362 #ifndef TARGET_X86_64
363             if (env->eflags & VM_MASK) {
364                 handle_vm86_trap(env, trapnr);
365             } else
366 #endif
367             {
368                 info.si_signo = TARGET_SIGTRAP;
369                 info.si_errno = 0;
370                 if (trapnr == EXCP01_DB) {
371                     info.si_code = TARGET_TRAP_BRKPT;
372                     info._sifields._sigfault._addr = env->eip;
373                 } else {
374                     info.si_code = TARGET_SI_KERNEL;
375                     info._sifields._sigfault._addr = 0;
376                 }
377                 queue_signal(env, info.si_signo, &info);
378             }
379             break;
380         case EXCP04_INTO:
381         case EXCP05_BOUND:
382 #ifndef TARGET_X86_64
383             if (env->eflags & VM_MASK) {
384                 handle_vm86_trap(env, trapnr);
385             } else
386 #endif
387             {
388                 info.si_signo = TARGET_SIGSEGV;
389                 info.si_errno = 0;
390                 info.si_code = TARGET_SI_KERNEL;
391                 info._sifields._sigfault._addr = 0;
392                 queue_signal(env, info.si_signo, &info);
393             }
394             break;
395         case EXCP06_ILLOP:
396             info.si_signo = TARGET_SIGILL;
397             info.si_errno = 0;
398             info.si_code = TARGET_ILL_ILLOPN;
399             info._sifields._sigfault._addr = env->eip;
400             queue_signal(env, info.si_signo, &info);
401             break;
402         case EXCP_INTERRUPT:
403             /* just indicate that signals should be handled asap */
404             break;
405         case EXCP_DEBUG:
406             {
407                 int sig;
408 
409                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
410                 if (sig)
411                   {
412                     info.si_signo = sig;
413                     info.si_errno = 0;
414                     info.si_code = TARGET_TRAP_BRKPT;
415                     queue_signal(env, info.si_signo, &info);
416                   }
417             }
418             break;
419         default:
420             pc = env->segs[R_CS].base + env->eip;
421             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
422                     (long)pc, trapnr);
423             abort();
424         }
425         process_pending_signals(env);
426     }
427 }
428 #endif
429 
430 #ifdef TARGET_ARM
431 
432 #define get_user_code_u32(x, gaddr, doswap)             \
433     ({ abi_long __r = get_user_u32((x), (gaddr));       \
434         if (!__r && (doswap)) {                         \
435             (x) = bswap32(x);                           \
436         }                                               \
437         __r;                                            \
438     })
439 
440 #define get_user_code_u16(x, gaddr, doswap)             \
441     ({ abi_long __r = get_user_u16((x), (gaddr));       \
442         if (!__r && (doswap)) {                         \
443             (x) = bswap16(x);                           \
444         }                                               \
445         __r;                                            \
446     })
447 
448 #ifdef TARGET_ABI32
449 /* Commpage handling -- there is no commpage for AArch64 */
450 
451 /*
452  * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
453  * Input:
454  * r0 = pointer to oldval
455  * r1 = pointer to newval
456  * r2 = pointer to target value
457  *
458  * Output:
459  * r0 = 0 if *ptr was changed, non-0 if no exchange happened
460  * C set if *ptr was changed, clear if no exchange happened
461  *
462  * Note segv's in kernel helpers are a bit tricky, we can set the
463  * data address sensibly but the PC address is just the entry point.
464  */
465 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
466 {
467     uint64_t oldval, newval, val;
468     uint32_t addr, cpsr;
469     target_siginfo_t info;
470 
471     /* Based on the 32 bit code in do_kernel_trap */
472 
473     /* XXX: This only works between threads, not between processes.
474        It's probably possible to implement this with native host
475        operations. However things like ldrex/strex are much harder so
476        there's not much point trying.  */
477     start_exclusive();
478     cpsr = cpsr_read(env);
479     addr = env->regs[2];
480 
481     if (get_user_u64(oldval, env->regs[0])) {
482         env->exception.vaddress = env->regs[0];
483         goto segv;
484     };
485 
486     if (get_user_u64(newval, env->regs[1])) {
487         env->exception.vaddress = env->regs[1];
488         goto segv;
489     };
490 
491     if (get_user_u64(val, addr)) {
492         env->exception.vaddress = addr;
493         goto segv;
494     }
495 
496     if (val == oldval) {
497         val = newval;
498 
499         if (put_user_u64(val, addr)) {
500             env->exception.vaddress = addr;
501             goto segv;
502         };
503 
504         env->regs[0] = 0;
505         cpsr |= CPSR_C;
506     } else {
507         env->regs[0] = -1;
508         cpsr &= ~CPSR_C;
509     }
510     cpsr_write(env, cpsr, CPSR_C);
511     end_exclusive();
512     return;
513 
514 segv:
515     end_exclusive();
516     /* We get the PC of the entry address - which is as good as anything,
517        on a real kernel what you get depends on which mode it uses. */
518     info.si_signo = TARGET_SIGSEGV;
519     info.si_errno = 0;
520     /* XXX: check env->error_code */
521     info.si_code = TARGET_SEGV_MAPERR;
522     info._sifields._sigfault._addr = env->exception.vaddress;
523     queue_signal(env, info.si_signo, &info);
524 }
525 
526 /* Handle a jump to the kernel code page.  */
527 static int
528 do_kernel_trap(CPUARMState *env)
529 {
530     uint32_t addr;
531     uint32_t cpsr;
532     uint32_t val;
533 
534     switch (env->regs[15]) {
535     case 0xffff0fa0: /* __kernel_memory_barrier */
536         /* ??? No-op. Will need to do better for SMP.  */
537         break;
538     case 0xffff0fc0: /* __kernel_cmpxchg */
539          /* XXX: This only works between threads, not between processes.
540             It's probably possible to implement this with native host
541             operations. However things like ldrex/strex are much harder so
542             there's not much point trying.  */
543         start_exclusive();
544         cpsr = cpsr_read(env);
545         addr = env->regs[2];
546         /* FIXME: This should SEGV if the access fails.  */
547         if (get_user_u32(val, addr))
548             val = ~env->regs[0];
549         if (val == env->regs[0]) {
550             val = env->regs[1];
551             /* FIXME: Check for segfaults.  */
552             put_user_u32(val, addr);
553             env->regs[0] = 0;
554             cpsr |= CPSR_C;
555         } else {
556             env->regs[0] = -1;
557             cpsr &= ~CPSR_C;
558         }
559         cpsr_write(env, cpsr, CPSR_C);
560         end_exclusive();
561         break;
562     case 0xffff0fe0: /* __kernel_get_tls */
563         env->regs[0] = cpu_get_tls(env);
564         break;
565     case 0xffff0f60: /* __kernel_cmpxchg64 */
566         arm_kernel_cmpxchg64_helper(env);
567         break;
568 
569     default:
570         return 1;
571     }
572     /* Jump back to the caller.  */
573     addr = env->regs[14];
574     if (addr & 1) {
575         env->thumb = 1;
576         addr &= ~1;
577     }
578     env->regs[15] = addr;
579 
580     return 0;
581 }
582 
583 /* Store exclusive handling for AArch32 */
584 static int do_strex(CPUARMState *env)
585 {
586     uint64_t val;
587     int size;
588     int rc = 1;
589     int segv = 0;
590     uint32_t addr;
591     start_exclusive();
592     if (env->exclusive_addr != env->exclusive_test) {
593         goto fail;
594     }
595     /* We know we're always AArch32 so the address is in uint32_t range
596      * unless it was the -1 exclusive-monitor-lost value (which won't
597      * match exclusive_test above).
598      */
599     assert(extract64(env->exclusive_addr, 32, 32) == 0);
600     addr = env->exclusive_addr;
601     size = env->exclusive_info & 0xf;
602     switch (size) {
603     case 0:
604         segv = get_user_u8(val, addr);
605         break;
606     case 1:
607         segv = get_user_u16(val, addr);
608         break;
609     case 2:
610     case 3:
611         segv = get_user_u32(val, addr);
612         break;
613     default:
614         abort();
615     }
616     if (segv) {
617         env->exception.vaddress = addr;
618         goto done;
619     }
620     if (size == 3) {
621         uint32_t valhi;
622         segv = get_user_u32(valhi, addr + 4);
623         if (segv) {
624             env->exception.vaddress = addr + 4;
625             goto done;
626         }
627         val = deposit64(val, 32, 32, valhi);
628     }
629     if (val != env->exclusive_val) {
630         goto fail;
631     }
632 
633     val = env->regs[(env->exclusive_info >> 8) & 0xf];
634     switch (size) {
635     case 0:
636         segv = put_user_u8(val, addr);
637         break;
638     case 1:
639         segv = put_user_u16(val, addr);
640         break;
641     case 2:
642     case 3:
643         segv = put_user_u32(val, addr);
644         break;
645     }
646     if (segv) {
647         env->exception.vaddress = addr;
648         goto done;
649     }
650     if (size == 3) {
651         val = env->regs[(env->exclusive_info >> 12) & 0xf];
652         segv = put_user_u32(val, addr + 4);
653         if (segv) {
654             env->exception.vaddress = addr + 4;
655             goto done;
656         }
657     }
658     rc = 0;
659 fail:
660     env->regs[15] += 4;
661     env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
662 done:
663     end_exclusive();
664     return segv;
665 }
666 
667 void cpu_loop(CPUARMState *env)
668 {
669     CPUState *cs = CPU(arm_env_get_cpu(env));
670     int trapnr;
671     unsigned int n, insn;
672     target_siginfo_t info;
673     uint32_t addr;
674 
675     for(;;) {
676         cpu_exec_start(cs);
677         trapnr = cpu_arm_exec(env);
678         cpu_exec_end(cs);
679         switch(trapnr) {
680         case EXCP_UDEF:
681             {
682                 TaskState *ts = cs->opaque;
683                 uint32_t opcode;
684                 int rc;
685 
686                 /* we handle the FPU emulation here, as Linux */
687                 /* we get the opcode */
688                 /* FIXME - what to do if get_user() fails? */
689                 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
690 
691                 rc = EmulateAll(opcode, &ts->fpa, env);
692                 if (rc == 0) { /* illegal instruction */
693                     info.si_signo = TARGET_SIGILL;
694                     info.si_errno = 0;
695                     info.si_code = TARGET_ILL_ILLOPN;
696                     info._sifields._sigfault._addr = env->regs[15];
697                     queue_signal(env, info.si_signo, &info);
698                 } else if (rc < 0) { /* FP exception */
699                     int arm_fpe=0;
700 
701                     /* translate softfloat flags to FPSR flags */
702                     if (-rc & float_flag_invalid)
703                       arm_fpe |= BIT_IOC;
704                     if (-rc & float_flag_divbyzero)
705                       arm_fpe |= BIT_DZC;
706                     if (-rc & float_flag_overflow)
707                       arm_fpe |= BIT_OFC;
708                     if (-rc & float_flag_underflow)
709                       arm_fpe |= BIT_UFC;
710                     if (-rc & float_flag_inexact)
711                       arm_fpe |= BIT_IXC;
712 
713                     FPSR fpsr = ts->fpa.fpsr;
714                     //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
715 
716                     if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
717                       info.si_signo = TARGET_SIGFPE;
718                       info.si_errno = 0;
719 
720                       /* ordered by priority, least first */
721                       if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
722                       if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
723                       if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
724                       if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
725                       if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
726 
727                       info._sifields._sigfault._addr = env->regs[15];
728                       queue_signal(env, info.si_signo, &info);
729                     } else {
730                       env->regs[15] += 4;
731                     }
732 
733                     /* accumulate unenabled exceptions */
734                     if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
735                       fpsr |= BIT_IXC;
736                     if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
737                       fpsr |= BIT_UFC;
738                     if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
739                       fpsr |= BIT_OFC;
740                     if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
741                       fpsr |= BIT_DZC;
742                     if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
743                       fpsr |= BIT_IOC;
744                     ts->fpa.fpsr=fpsr;
745                 } else { /* everything OK */
746                     /* increment PC */
747                     env->regs[15] += 4;
748                 }
749             }
750             break;
751         case EXCP_SWI:
752         case EXCP_BKPT:
753             {
754                 env->eabi = 1;
755                 /* system call */
756                 if (trapnr == EXCP_BKPT) {
757                     if (env->thumb) {
758                         /* FIXME - what to do if get_user() fails? */
759                         get_user_code_u16(insn, env->regs[15], env->bswap_code);
760                         n = insn & 0xff;
761                         env->regs[15] += 2;
762                     } else {
763                         /* FIXME - what to do if get_user() fails? */
764                         get_user_code_u32(insn, env->regs[15], env->bswap_code);
765                         n = (insn & 0xf) | ((insn >> 4) & 0xff0);
766                         env->regs[15] += 4;
767                     }
768                 } else {
769                     if (env->thumb) {
770                         /* FIXME - what to do if get_user() fails? */
771                         get_user_code_u16(insn, env->regs[15] - 2,
772                                           env->bswap_code);
773                         n = insn & 0xff;
774                     } else {
775                         /* FIXME - what to do if get_user() fails? */
776                         get_user_code_u32(insn, env->regs[15] - 4,
777                                           env->bswap_code);
778                         n = insn & 0xffffff;
779                     }
780                 }
781 
782                 if (n == ARM_NR_cacheflush) {
783                     /* nop */
784                 } else if (n == ARM_NR_semihosting
785                            || n == ARM_NR_thumb_semihosting) {
786                     env->regs[0] = do_arm_semihosting (env);
787                 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
788                     /* linux syscall */
789                     if (env->thumb || n == 0) {
790                         n = env->regs[7];
791                     } else {
792                         n -= ARM_SYSCALL_BASE;
793                         env->eabi = 0;
794                     }
795                     if ( n > ARM_NR_BASE) {
796                         switch (n) {
797                         case ARM_NR_cacheflush:
798                             /* nop */
799                             break;
800                         case ARM_NR_set_tls:
801                             cpu_set_tls(env, env->regs[0]);
802                             env->regs[0] = 0;
803                             break;
804                         case ARM_NR_breakpoint:
805                             env->regs[15] -= env->thumb ? 2 : 4;
806                             goto excp_debug;
807                         default:
808                             gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
809                                      n);
810                             env->regs[0] = -TARGET_ENOSYS;
811                             break;
812                         }
813                     } else {
814                         env->regs[0] = do_syscall(env,
815                                                   n,
816                                                   env->regs[0],
817                                                   env->regs[1],
818                                                   env->regs[2],
819                                                   env->regs[3],
820                                                   env->regs[4],
821                                                   env->regs[5],
822                                                   0, 0);
823                     }
824                 } else {
825                     goto error;
826                 }
827             }
828             break;
829         case EXCP_INTERRUPT:
830             /* just indicate that signals should be handled asap */
831             break;
832         case EXCP_STREX:
833             if (!do_strex(env)) {
834                 break;
835             }
836             /* fall through for segv */
837         case EXCP_PREFETCH_ABORT:
838         case EXCP_DATA_ABORT:
839             addr = env->exception.vaddress;
840             {
841                 info.si_signo = TARGET_SIGSEGV;
842                 info.si_errno = 0;
843                 /* XXX: check env->error_code */
844                 info.si_code = TARGET_SEGV_MAPERR;
845                 info._sifields._sigfault._addr = addr;
846                 queue_signal(env, info.si_signo, &info);
847             }
848             break;
849         case EXCP_DEBUG:
850         excp_debug:
851             {
852                 int sig;
853 
854                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
855                 if (sig)
856                   {
857                     info.si_signo = sig;
858                     info.si_errno = 0;
859                     info.si_code = TARGET_TRAP_BRKPT;
860                     queue_signal(env, info.si_signo, &info);
861                   }
862             }
863             break;
864         case EXCP_KERNEL_TRAP:
865             if (do_kernel_trap(env))
866               goto error;
867             break;
868         default:
869         error:
870             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
871                     trapnr);
872             cpu_dump_state(cs, stderr, fprintf, 0);
873             abort();
874         }
875         process_pending_signals(env);
876     }
877 }
878 
879 #else
880 
881 /*
882  * Handle AArch64 store-release exclusive
883  *
884  * rs = gets the status result of store exclusive
885  * rt = is the register that is stored
886  * rt2 = is the second register store (in STP)
887  *
888  */
889 static int do_strex_a64(CPUARMState *env)
890 {
891     uint64_t val;
892     int size;
893     bool is_pair;
894     int rc = 1;
895     int segv = 0;
896     uint64_t addr;
897     int rs, rt, rt2;
898 
899     start_exclusive();
900     /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
901     size = extract32(env->exclusive_info, 0, 2);
902     is_pair = extract32(env->exclusive_info, 2, 1);
903     rs = extract32(env->exclusive_info, 4, 5);
904     rt = extract32(env->exclusive_info, 9, 5);
905     rt2 = extract32(env->exclusive_info, 14, 5);
906 
907     addr = env->exclusive_addr;
908 
909     if (addr != env->exclusive_test) {
910         goto finish;
911     }
912 
913     switch (size) {
914     case 0:
915         segv = get_user_u8(val, addr);
916         break;
917     case 1:
918         segv = get_user_u16(val, addr);
919         break;
920     case 2:
921         segv = get_user_u32(val, addr);
922         break;
923     case 3:
924         segv = get_user_u64(val, addr);
925         break;
926     default:
927         abort();
928     }
929     if (segv) {
930         env->exception.vaddress = addr;
931         goto error;
932     }
933     if (val != env->exclusive_val) {
934         goto finish;
935     }
936     if (is_pair) {
937         if (size == 2) {
938             segv = get_user_u32(val, addr + 4);
939         } else {
940             segv = get_user_u64(val, addr + 8);
941         }
942         if (segv) {
943             env->exception.vaddress = addr + (size == 2 ? 4 : 8);
944             goto error;
945         }
946         if (val != env->exclusive_high) {
947             goto finish;
948         }
949     }
950     /* handle the zero register */
951     val = rt == 31 ? 0 : env->xregs[rt];
952     switch (size) {
953     case 0:
954         segv = put_user_u8(val, addr);
955         break;
956     case 1:
957         segv = put_user_u16(val, addr);
958         break;
959     case 2:
960         segv = put_user_u32(val, addr);
961         break;
962     case 3:
963         segv = put_user_u64(val, addr);
964         break;
965     }
966     if (segv) {
967         goto error;
968     }
969     if (is_pair) {
970         /* handle the zero register */
971         val = rt2 == 31 ? 0 : env->xregs[rt2];
972         if (size == 2) {
973             segv = put_user_u32(val, addr + 4);
974         } else {
975             segv = put_user_u64(val, addr + 8);
976         }
977         if (segv) {
978             env->exception.vaddress = addr + (size == 2 ? 4 : 8);
979             goto error;
980         }
981     }
982     rc = 0;
983 finish:
984     env->pc += 4;
985     /* rs == 31 encodes a write to the ZR, thus throwing away
986      * the status return. This is rather silly but valid.
987      */
988     if (rs < 31) {
989         env->xregs[rs] = rc;
990     }
991 error:
992     /* instruction faulted, PC does not advance */
993     /* either way a strex releases any exclusive lock we have */
994     env->exclusive_addr = -1;
995     end_exclusive();
996     return segv;
997 }
998 
999 /* AArch64 main loop */
1000 void cpu_loop(CPUARMState *env)
1001 {
1002     CPUState *cs = CPU(arm_env_get_cpu(env));
1003     int trapnr, sig;
1004     target_siginfo_t info;
1005 
1006     for (;;) {
1007         cpu_exec_start(cs);
1008         trapnr = cpu_arm_exec(env);
1009         cpu_exec_end(cs);
1010 
1011         switch (trapnr) {
1012         case EXCP_SWI:
1013             env->xregs[0] = do_syscall(env,
1014                                        env->xregs[8],
1015                                        env->xregs[0],
1016                                        env->xregs[1],
1017                                        env->xregs[2],
1018                                        env->xregs[3],
1019                                        env->xregs[4],
1020                                        env->xregs[5],
1021                                        0, 0);
1022             break;
1023         case EXCP_INTERRUPT:
1024             /* just indicate that signals should be handled asap */
1025             break;
1026         case EXCP_UDEF:
1027             info.si_signo = TARGET_SIGILL;
1028             info.si_errno = 0;
1029             info.si_code = TARGET_ILL_ILLOPN;
1030             info._sifields._sigfault._addr = env->pc;
1031             queue_signal(env, info.si_signo, &info);
1032             break;
1033         case EXCP_STREX:
1034             if (!do_strex_a64(env)) {
1035                 break;
1036             }
1037             /* fall through for segv */
1038         case EXCP_PREFETCH_ABORT:
1039         case EXCP_DATA_ABORT:
1040             info.si_signo = TARGET_SIGSEGV;
1041             info.si_errno = 0;
1042             /* XXX: check env->error_code */
1043             info.si_code = TARGET_SEGV_MAPERR;
1044             info._sifields._sigfault._addr = env->exception.vaddress;
1045             queue_signal(env, info.si_signo, &info);
1046             break;
1047         case EXCP_DEBUG:
1048         case EXCP_BKPT:
1049             sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1050             if (sig) {
1051                 info.si_signo = sig;
1052                 info.si_errno = 0;
1053                 info.si_code = TARGET_TRAP_BRKPT;
1054                 queue_signal(env, info.si_signo, &info);
1055             }
1056             break;
1057         default:
1058             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
1059                     trapnr);
1060             cpu_dump_state(cs, stderr, fprintf, 0);
1061             abort();
1062         }
1063         process_pending_signals(env);
1064         /* Exception return on AArch64 always clears the exclusive monitor,
1065          * so any return to running guest code implies this.
1066          * A strex (successful or otherwise) also clears the monitor, so
1067          * we don't need to specialcase EXCP_STREX.
1068          */
1069         env->exclusive_addr = -1;
1070     }
1071 }
1072 #endif /* ndef TARGET_ABI32 */
1073 
1074 #endif
1075 
1076 #ifdef TARGET_UNICORE32
1077 
1078 void cpu_loop(CPUUniCore32State *env)
1079 {
1080     CPUState *cs = CPU(uc32_env_get_cpu(env));
1081     int trapnr;
1082     unsigned int n, insn;
1083     target_siginfo_t info;
1084 
1085     for (;;) {
1086         cpu_exec_start(cs);
1087         trapnr = uc32_cpu_exec(env);
1088         cpu_exec_end(cs);
1089         switch (trapnr) {
1090         case UC32_EXCP_PRIV:
1091             {
1092                 /* system call */
1093                 get_user_u32(insn, env->regs[31] - 4);
1094                 n = insn & 0xffffff;
1095 
1096                 if (n >= UC32_SYSCALL_BASE) {
1097                     /* linux syscall */
1098                     n -= UC32_SYSCALL_BASE;
1099                     if (n == UC32_SYSCALL_NR_set_tls) {
1100                             cpu_set_tls(env, env->regs[0]);
1101                             env->regs[0] = 0;
1102                     } else {
1103                         env->regs[0] = do_syscall(env,
1104                                                   n,
1105                                                   env->regs[0],
1106                                                   env->regs[1],
1107                                                   env->regs[2],
1108                                                   env->regs[3],
1109                                                   env->regs[4],
1110                                                   env->regs[5],
1111                                                   0, 0);
1112                     }
1113                 } else {
1114                     goto error;
1115                 }
1116             }
1117             break;
1118         case UC32_EXCP_DTRAP:
1119         case UC32_EXCP_ITRAP:
1120             info.si_signo = TARGET_SIGSEGV;
1121             info.si_errno = 0;
1122             /* XXX: check env->error_code */
1123             info.si_code = TARGET_SEGV_MAPERR;
1124             info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
1125             queue_signal(env, info.si_signo, &info);
1126             break;
1127         case EXCP_INTERRUPT:
1128             /* just indicate that signals should be handled asap */
1129             break;
1130         case EXCP_DEBUG:
1131             {
1132                 int sig;
1133 
1134                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1135                 if (sig) {
1136                     info.si_signo = sig;
1137                     info.si_errno = 0;
1138                     info.si_code = TARGET_TRAP_BRKPT;
1139                     queue_signal(env, info.si_signo, &info);
1140                 }
1141             }
1142             break;
1143         default:
1144             goto error;
1145         }
1146         process_pending_signals(env);
1147     }
1148 
1149 error:
1150     fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1151     cpu_dump_state(cs, stderr, fprintf, 0);
1152     abort();
1153 }
1154 #endif
1155 
1156 #ifdef TARGET_SPARC
1157 #define SPARC64_STACK_BIAS 2047
1158 
1159 //#define DEBUG_WIN
1160 
1161 /* WARNING: dealing with register windows _is_ complicated. More info
1162    can be found at http://www.sics.se/~psm/sparcstack.html */
1163 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
1164 {
1165     index = (index + cwp * 16) % (16 * env->nwindows);
1166     /* wrap handling : if cwp is on the last window, then we use the
1167        registers 'after' the end */
1168     if (index < 8 && env->cwp == env->nwindows - 1)
1169         index += 16 * env->nwindows;
1170     return index;
1171 }
1172 
1173 /* save the register window 'cwp1' */
1174 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1175 {
1176     unsigned int i;
1177     abi_ulong sp_ptr;
1178 
1179     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1180 #ifdef TARGET_SPARC64
1181     if (sp_ptr & 3)
1182         sp_ptr += SPARC64_STACK_BIAS;
1183 #endif
1184 #if defined(DEBUG_WIN)
1185     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1186            sp_ptr, cwp1);
1187 #endif
1188     for(i = 0; i < 16; i++) {
1189         /* FIXME - what to do if put_user() fails? */
1190         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1191         sp_ptr += sizeof(abi_ulong);
1192     }
1193 }
1194 
1195 static void save_window(CPUSPARCState *env)
1196 {
1197 #ifndef TARGET_SPARC64
1198     unsigned int new_wim;
1199     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1200         ((1LL << env->nwindows) - 1);
1201     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1202     env->wim = new_wim;
1203 #else
1204     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1205     env->cansave++;
1206     env->canrestore--;
1207 #endif
1208 }
1209 
1210 static void restore_window(CPUSPARCState *env)
1211 {
1212 #ifndef TARGET_SPARC64
1213     unsigned int new_wim;
1214 #endif
1215     unsigned int i, cwp1;
1216     abi_ulong sp_ptr;
1217 
1218 #ifndef TARGET_SPARC64
1219     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1220         ((1LL << env->nwindows) - 1);
1221 #endif
1222 
1223     /* restore the invalid window */
1224     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1225     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1226 #ifdef TARGET_SPARC64
1227     if (sp_ptr & 3)
1228         sp_ptr += SPARC64_STACK_BIAS;
1229 #endif
1230 #if defined(DEBUG_WIN)
1231     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1232            sp_ptr, cwp1);
1233 #endif
1234     for(i = 0; i < 16; i++) {
1235         /* FIXME - what to do if get_user() fails? */
1236         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1237         sp_ptr += sizeof(abi_ulong);
1238     }
1239 #ifdef TARGET_SPARC64
1240     env->canrestore++;
1241     if (env->cleanwin < env->nwindows - 1)
1242         env->cleanwin++;
1243     env->cansave--;
1244 #else
1245     env->wim = new_wim;
1246 #endif
1247 }
1248 
1249 static void flush_windows(CPUSPARCState *env)
1250 {
1251     int offset, cwp1;
1252 
1253     offset = 1;
1254     for(;;) {
1255         /* if restore would invoke restore_window(), then we can stop */
1256         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1257 #ifndef TARGET_SPARC64
1258         if (env->wim & (1 << cwp1))
1259             break;
1260 #else
1261         if (env->canrestore == 0)
1262             break;
1263         env->cansave++;
1264         env->canrestore--;
1265 #endif
1266         save_window_offset(env, cwp1);
1267         offset++;
1268     }
1269     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1270 #ifndef TARGET_SPARC64
1271     /* set wim so that restore will reload the registers */
1272     env->wim = 1 << cwp1;
1273 #endif
1274 #if defined(DEBUG_WIN)
1275     printf("flush_windows: nb=%d\n", offset - 1);
1276 #endif
1277 }
1278 
1279 void cpu_loop (CPUSPARCState *env)
1280 {
1281     CPUState *cs = CPU(sparc_env_get_cpu(env));
1282     int trapnr;
1283     abi_long ret;
1284     target_siginfo_t info;
1285 
1286     while (1) {
1287         cpu_exec_start(cs);
1288         trapnr = cpu_sparc_exec (env);
1289         cpu_exec_end(cs);
1290 
1291         /* Compute PSR before exposing state.  */
1292         if (env->cc_op != CC_OP_FLAGS) {
1293             cpu_get_psr(env);
1294         }
1295 
1296         switch (trapnr) {
1297 #ifndef TARGET_SPARC64
1298         case 0x88:
1299         case 0x90:
1300 #else
1301         case 0x110:
1302         case 0x16d:
1303 #endif
1304             ret = do_syscall (env, env->gregs[1],
1305                               env->regwptr[0], env->regwptr[1],
1306                               env->regwptr[2], env->regwptr[3],
1307                               env->regwptr[4], env->regwptr[5],
1308                               0, 0);
1309             if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1310 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1311                 env->xcc |= PSR_CARRY;
1312 #else
1313                 env->psr |= PSR_CARRY;
1314 #endif
1315                 ret = -ret;
1316             } else {
1317 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1318                 env->xcc &= ~PSR_CARRY;
1319 #else
1320                 env->psr &= ~PSR_CARRY;
1321 #endif
1322             }
1323             env->regwptr[0] = ret;
1324             /* next instruction */
1325             env->pc = env->npc;
1326             env->npc = env->npc + 4;
1327             break;
1328         case 0x83: /* flush windows */
1329 #ifdef TARGET_ABI32
1330         case 0x103:
1331 #endif
1332             flush_windows(env);
1333             /* next instruction */
1334             env->pc = env->npc;
1335             env->npc = env->npc + 4;
1336             break;
1337 #ifndef TARGET_SPARC64
1338         case TT_WIN_OVF: /* window overflow */
1339             save_window(env);
1340             break;
1341         case TT_WIN_UNF: /* window underflow */
1342             restore_window(env);
1343             break;
1344         case TT_TFAULT:
1345         case TT_DFAULT:
1346             {
1347                 info.si_signo = TARGET_SIGSEGV;
1348                 info.si_errno = 0;
1349                 /* XXX: check env->error_code */
1350                 info.si_code = TARGET_SEGV_MAPERR;
1351                 info._sifields._sigfault._addr = env->mmuregs[4];
1352                 queue_signal(env, info.si_signo, &info);
1353             }
1354             break;
1355 #else
1356         case TT_SPILL: /* window overflow */
1357             save_window(env);
1358             break;
1359         case TT_FILL: /* window underflow */
1360             restore_window(env);
1361             break;
1362         case TT_TFAULT:
1363         case TT_DFAULT:
1364             {
1365                 info.si_signo = TARGET_SIGSEGV;
1366                 info.si_errno = 0;
1367                 /* XXX: check env->error_code */
1368                 info.si_code = TARGET_SEGV_MAPERR;
1369                 if (trapnr == TT_DFAULT)
1370                     info._sifields._sigfault._addr = env->dmmuregs[4];
1371                 else
1372                     info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1373                 queue_signal(env, info.si_signo, &info);
1374             }
1375             break;
1376 #ifndef TARGET_ABI32
1377         case 0x16e:
1378             flush_windows(env);
1379             sparc64_get_context(env);
1380             break;
1381         case 0x16f:
1382             flush_windows(env);
1383             sparc64_set_context(env);
1384             break;
1385 #endif
1386 #endif
1387         case EXCP_INTERRUPT:
1388             /* just indicate that signals should be handled asap */
1389             break;
1390         case TT_ILL_INSN:
1391             {
1392                 info.si_signo = TARGET_SIGILL;
1393                 info.si_errno = 0;
1394                 info.si_code = TARGET_ILL_ILLOPC;
1395                 info._sifields._sigfault._addr = env->pc;
1396                 queue_signal(env, info.si_signo, &info);
1397             }
1398             break;
1399         case EXCP_DEBUG:
1400             {
1401                 int sig;
1402 
1403                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1404                 if (sig)
1405                   {
1406                     info.si_signo = sig;
1407                     info.si_errno = 0;
1408                     info.si_code = TARGET_TRAP_BRKPT;
1409                     queue_signal(env, info.si_signo, &info);
1410                   }
1411             }
1412             break;
1413         default:
1414             printf ("Unhandled trap: 0x%x\n", trapnr);
1415             cpu_dump_state(cs, stderr, fprintf, 0);
1416             exit (1);
1417         }
1418         process_pending_signals (env);
1419     }
1420 }
1421 
1422 #endif
1423 
1424 #ifdef TARGET_PPC
1425 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1426 {
1427     /* TO FIX */
1428     return 0;
1429 }
1430 
1431 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1432 {
1433     return cpu_ppc_get_tb(env);
1434 }
1435 
1436 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1437 {
1438     return cpu_ppc_get_tb(env) >> 32;
1439 }
1440 
1441 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1442 {
1443     return cpu_ppc_get_tb(env);
1444 }
1445 
1446 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1447 {
1448     return cpu_ppc_get_tb(env) >> 32;
1449 }
1450 
1451 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1452 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1453 
1454 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1455 {
1456     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1457 }
1458 
1459 /* XXX: to be fixed */
1460 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1461 {
1462     return -1;
1463 }
1464 
1465 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1466 {
1467     return -1;
1468 }
1469 
1470 #define EXCP_DUMP(env, fmt, ...)                                        \
1471 do {                                                                    \
1472     CPUState *cs = ENV_GET_CPU(env);                                    \
1473     fprintf(stderr, fmt , ## __VA_ARGS__);                              \
1474     cpu_dump_state(cs, stderr, fprintf, 0);                             \
1475     qemu_log(fmt, ## __VA_ARGS__);                                      \
1476     if (qemu_log_enabled()) {                                           \
1477         log_cpu_state(cs, 0);                                           \
1478     }                                                                   \
1479 } while (0)
1480 
1481 static int do_store_exclusive(CPUPPCState *env)
1482 {
1483     target_ulong addr;
1484     target_ulong page_addr;
1485     target_ulong val, val2 __attribute__((unused)) = 0;
1486     int flags;
1487     int segv = 0;
1488 
1489     addr = env->reserve_ea;
1490     page_addr = addr & TARGET_PAGE_MASK;
1491     start_exclusive();
1492     mmap_lock();
1493     flags = page_get_flags(page_addr);
1494     if ((flags & PAGE_READ) == 0) {
1495         segv = 1;
1496     } else {
1497         int reg = env->reserve_info & 0x1f;
1498         int size = env->reserve_info >> 5;
1499         int stored = 0;
1500 
1501         if (addr == env->reserve_addr) {
1502             switch (size) {
1503             case 1: segv = get_user_u8(val, addr); break;
1504             case 2: segv = get_user_u16(val, addr); break;
1505             case 4: segv = get_user_u32(val, addr); break;
1506 #if defined(TARGET_PPC64)
1507             case 8: segv = get_user_u64(val, addr); break;
1508             case 16: {
1509                 segv = get_user_u64(val, addr);
1510                 if (!segv) {
1511                     segv = get_user_u64(val2, addr + 8);
1512                 }
1513                 break;
1514             }
1515 #endif
1516             default: abort();
1517             }
1518             if (!segv && val == env->reserve_val) {
1519                 val = env->gpr[reg];
1520                 switch (size) {
1521                 case 1: segv = put_user_u8(val, addr); break;
1522                 case 2: segv = put_user_u16(val, addr); break;
1523                 case 4: segv = put_user_u32(val, addr); break;
1524 #if defined(TARGET_PPC64)
1525                 case 8: segv = put_user_u64(val, addr); break;
1526                 case 16: {
1527                     if (val2 == env->reserve_val2) {
1528                         if (msr_le) {
1529                             val2 = val;
1530                             val = env->gpr[reg+1];
1531                         } else {
1532                             val2 = env->gpr[reg+1];
1533                         }
1534                         segv = put_user_u64(val, addr);
1535                         if (!segv) {
1536                             segv = put_user_u64(val2, addr + 8);
1537                         }
1538                     }
1539                     break;
1540                 }
1541 #endif
1542                 default: abort();
1543                 }
1544                 if (!segv) {
1545                     stored = 1;
1546                 }
1547             }
1548         }
1549         env->crf[0] = (stored << 1) | xer_so;
1550         env->reserve_addr = (target_ulong)-1;
1551     }
1552     if (!segv) {
1553         env->nip += 4;
1554     }
1555     mmap_unlock();
1556     end_exclusive();
1557     return segv;
1558 }
1559 
1560 void cpu_loop(CPUPPCState *env)
1561 {
1562     CPUState *cs = CPU(ppc_env_get_cpu(env));
1563     target_siginfo_t info;
1564     int trapnr;
1565     target_ulong ret;
1566 
1567     for(;;) {
1568         cpu_exec_start(cs);
1569         trapnr = cpu_ppc_exec(env);
1570         cpu_exec_end(cs);
1571         switch(trapnr) {
1572         case POWERPC_EXCP_NONE:
1573             /* Just go on */
1574             break;
1575         case POWERPC_EXCP_CRITICAL: /* Critical input                        */
1576             cpu_abort(cs, "Critical interrupt while in user mode. "
1577                       "Aborting\n");
1578             break;
1579         case POWERPC_EXCP_MCHECK:   /* Machine check exception               */
1580             cpu_abort(cs, "Machine check exception while in user mode. "
1581                       "Aborting\n");
1582             break;
1583         case POWERPC_EXCP_DSI:      /* Data storage exception                */
1584             EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1585                       env->spr[SPR_DAR]);
1586             /* XXX: check this. Seems bugged */
1587             switch (env->error_code & 0xFF000000) {
1588             case 0x40000000:
1589                 info.si_signo = TARGET_SIGSEGV;
1590                 info.si_errno = 0;
1591                 info.si_code = TARGET_SEGV_MAPERR;
1592                 break;
1593             case 0x04000000:
1594                 info.si_signo = TARGET_SIGILL;
1595                 info.si_errno = 0;
1596                 info.si_code = TARGET_ILL_ILLADR;
1597                 break;
1598             case 0x08000000:
1599                 info.si_signo = TARGET_SIGSEGV;
1600                 info.si_errno = 0;
1601                 info.si_code = TARGET_SEGV_ACCERR;
1602                 break;
1603             default:
1604                 /* Let's send a regular segfault... */
1605                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1606                           env->error_code);
1607                 info.si_signo = TARGET_SIGSEGV;
1608                 info.si_errno = 0;
1609                 info.si_code = TARGET_SEGV_MAPERR;
1610                 break;
1611             }
1612             info._sifields._sigfault._addr = env->nip;
1613             queue_signal(env, info.si_signo, &info);
1614             break;
1615         case POWERPC_EXCP_ISI:      /* Instruction storage exception         */
1616             EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1617                       "\n", env->spr[SPR_SRR0]);
1618             /* XXX: check this */
1619             switch (env->error_code & 0xFF000000) {
1620             case 0x40000000:
1621                 info.si_signo = TARGET_SIGSEGV;
1622             info.si_errno = 0;
1623                 info.si_code = TARGET_SEGV_MAPERR;
1624                 break;
1625             case 0x10000000:
1626             case 0x08000000:
1627                 info.si_signo = TARGET_SIGSEGV;
1628                 info.si_errno = 0;
1629                 info.si_code = TARGET_SEGV_ACCERR;
1630                 break;
1631             default:
1632                 /* Let's send a regular segfault... */
1633                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1634                           env->error_code);
1635                 info.si_signo = TARGET_SIGSEGV;
1636                 info.si_errno = 0;
1637                 info.si_code = TARGET_SEGV_MAPERR;
1638                 break;
1639             }
1640             info._sifields._sigfault._addr = env->nip - 4;
1641             queue_signal(env, info.si_signo, &info);
1642             break;
1643         case POWERPC_EXCP_EXTERNAL: /* External input                        */
1644             cpu_abort(cs, "External interrupt while in user mode. "
1645                       "Aborting\n");
1646             break;
1647         case POWERPC_EXCP_ALIGN:    /* Alignment exception                   */
1648             EXCP_DUMP(env, "Unaligned memory access\n");
1649             /* XXX: check this */
1650             info.si_signo = TARGET_SIGBUS;
1651             info.si_errno = 0;
1652             info.si_code = TARGET_BUS_ADRALN;
1653             info._sifields._sigfault._addr = env->nip - 4;
1654             queue_signal(env, info.si_signo, &info);
1655             break;
1656         case POWERPC_EXCP_PROGRAM:  /* Program exception                     */
1657             /* XXX: check this */
1658             switch (env->error_code & ~0xF) {
1659             case POWERPC_EXCP_FP:
1660                 EXCP_DUMP(env, "Floating point program exception\n");
1661                 info.si_signo = TARGET_SIGFPE;
1662                 info.si_errno = 0;
1663                 switch (env->error_code & 0xF) {
1664                 case POWERPC_EXCP_FP_OX:
1665                     info.si_code = TARGET_FPE_FLTOVF;
1666                     break;
1667                 case POWERPC_EXCP_FP_UX:
1668                     info.si_code = TARGET_FPE_FLTUND;
1669                     break;
1670                 case POWERPC_EXCP_FP_ZX:
1671                 case POWERPC_EXCP_FP_VXZDZ:
1672                     info.si_code = TARGET_FPE_FLTDIV;
1673                     break;
1674                 case POWERPC_EXCP_FP_XX:
1675                     info.si_code = TARGET_FPE_FLTRES;
1676                     break;
1677                 case POWERPC_EXCP_FP_VXSOFT:
1678                     info.si_code = TARGET_FPE_FLTINV;
1679                     break;
1680                 case POWERPC_EXCP_FP_VXSNAN:
1681                 case POWERPC_EXCP_FP_VXISI:
1682                 case POWERPC_EXCP_FP_VXIDI:
1683                 case POWERPC_EXCP_FP_VXIMZ:
1684                 case POWERPC_EXCP_FP_VXVC:
1685                 case POWERPC_EXCP_FP_VXSQRT:
1686                 case POWERPC_EXCP_FP_VXCVI:
1687                     info.si_code = TARGET_FPE_FLTSUB;
1688                     break;
1689                 default:
1690                     EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1691                               env->error_code);
1692                     break;
1693                 }
1694                 break;
1695             case POWERPC_EXCP_INVAL:
1696                 EXCP_DUMP(env, "Invalid instruction\n");
1697                 info.si_signo = TARGET_SIGILL;
1698                 info.si_errno = 0;
1699                 switch (env->error_code & 0xF) {
1700                 case POWERPC_EXCP_INVAL_INVAL:
1701                     info.si_code = TARGET_ILL_ILLOPC;
1702                     break;
1703                 case POWERPC_EXCP_INVAL_LSWX:
1704                     info.si_code = TARGET_ILL_ILLOPN;
1705                     break;
1706                 case POWERPC_EXCP_INVAL_SPR:
1707                     info.si_code = TARGET_ILL_PRVREG;
1708                     break;
1709                 case POWERPC_EXCP_INVAL_FP:
1710                     info.si_code = TARGET_ILL_COPROC;
1711                     break;
1712                 default:
1713                     EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1714                               env->error_code & 0xF);
1715                     info.si_code = TARGET_ILL_ILLADR;
1716                     break;
1717                 }
1718                 break;
1719             case POWERPC_EXCP_PRIV:
1720                 EXCP_DUMP(env, "Privilege violation\n");
1721                 info.si_signo = TARGET_SIGILL;
1722                 info.si_errno = 0;
1723                 switch (env->error_code & 0xF) {
1724                 case POWERPC_EXCP_PRIV_OPC:
1725                     info.si_code = TARGET_ILL_PRVOPC;
1726                     break;
1727                 case POWERPC_EXCP_PRIV_REG:
1728                     info.si_code = TARGET_ILL_PRVREG;
1729                     break;
1730                 default:
1731                     EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1732                               env->error_code & 0xF);
1733                     info.si_code = TARGET_ILL_PRVOPC;
1734                     break;
1735                 }
1736                 break;
1737             case POWERPC_EXCP_TRAP:
1738                 cpu_abort(cs, "Tried to call a TRAP\n");
1739                 break;
1740             default:
1741                 /* Should not happen ! */
1742                 cpu_abort(cs, "Unknown program exception (%02x)\n",
1743                           env->error_code);
1744                 break;
1745             }
1746             info._sifields._sigfault._addr = env->nip - 4;
1747             queue_signal(env, info.si_signo, &info);
1748             break;
1749         case POWERPC_EXCP_FPU:      /* Floating-point unavailable exception  */
1750             EXCP_DUMP(env, "No floating point allowed\n");
1751             info.si_signo = TARGET_SIGILL;
1752             info.si_errno = 0;
1753             info.si_code = TARGET_ILL_COPROC;
1754             info._sifields._sigfault._addr = env->nip - 4;
1755             queue_signal(env, info.si_signo, &info);
1756             break;
1757         case POWERPC_EXCP_SYSCALL:  /* System call exception                 */
1758             cpu_abort(cs, "Syscall exception while in user mode. "
1759                       "Aborting\n");
1760             break;
1761         case POWERPC_EXCP_APU:      /* Auxiliary processor unavailable       */
1762             EXCP_DUMP(env, "No APU instruction allowed\n");
1763             info.si_signo = TARGET_SIGILL;
1764             info.si_errno = 0;
1765             info.si_code = TARGET_ILL_COPROC;
1766             info._sifields._sigfault._addr = env->nip - 4;
1767             queue_signal(env, info.si_signo, &info);
1768             break;
1769         case POWERPC_EXCP_DECR:     /* Decrementer exception                 */
1770             cpu_abort(cs, "Decrementer interrupt while in user mode. "
1771                       "Aborting\n");
1772             break;
1773         case POWERPC_EXCP_FIT:      /* Fixed-interval timer interrupt        */
1774             cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1775                       "Aborting\n");
1776             break;
1777         case POWERPC_EXCP_WDT:      /* Watchdog timer interrupt              */
1778             cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1779                       "Aborting\n");
1780             break;
1781         case POWERPC_EXCP_DTLB:     /* Data TLB error                        */
1782             cpu_abort(cs, "Data TLB exception while in user mode. "
1783                       "Aborting\n");
1784             break;
1785         case POWERPC_EXCP_ITLB:     /* Instruction TLB error                 */
1786             cpu_abort(cs, "Instruction TLB exception while in user mode. "
1787                       "Aborting\n");
1788             break;
1789         case POWERPC_EXCP_SPEU:     /* SPE/embedded floating-point unavail.  */
1790             EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1791             info.si_signo = TARGET_SIGILL;
1792             info.si_errno = 0;
1793             info.si_code = TARGET_ILL_COPROC;
1794             info._sifields._sigfault._addr = env->nip - 4;
1795             queue_signal(env, info.si_signo, &info);
1796             break;
1797         case POWERPC_EXCP_EFPDI:    /* Embedded floating-point data IRQ      */
1798             cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1799             break;
1800         case POWERPC_EXCP_EFPRI:    /* Embedded floating-point round IRQ     */
1801             cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1802             break;
1803         case POWERPC_EXCP_EPERFM:   /* Embedded performance monitor IRQ      */
1804             cpu_abort(cs, "Performance monitor exception not handled\n");
1805             break;
1806         case POWERPC_EXCP_DOORI:    /* Embedded doorbell interrupt           */
1807             cpu_abort(cs, "Doorbell interrupt while in user mode. "
1808                        "Aborting\n");
1809             break;
1810         case POWERPC_EXCP_DOORCI:   /* Embedded doorbell critical interrupt  */
1811             cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1812                       "Aborting\n");
1813             break;
1814         case POWERPC_EXCP_RESET:    /* System reset exception                */
1815             cpu_abort(cs, "Reset interrupt while in user mode. "
1816                       "Aborting\n");
1817             break;
1818         case POWERPC_EXCP_DSEG:     /* Data segment exception                */
1819             cpu_abort(cs, "Data segment exception while in user mode. "
1820                       "Aborting\n");
1821             break;
1822         case POWERPC_EXCP_ISEG:     /* Instruction segment exception         */
1823             cpu_abort(cs, "Instruction segment exception "
1824                       "while in user mode. Aborting\n");
1825             break;
1826         /* PowerPC 64 with hypervisor mode support */
1827         case POWERPC_EXCP_HDECR:    /* Hypervisor decrementer exception      */
1828             cpu_abort(cs, "Hypervisor decrementer interrupt "
1829                       "while in user mode. Aborting\n");
1830             break;
1831         case POWERPC_EXCP_TRACE:    /* Trace exception                       */
1832             /* Nothing to do:
1833              * we use this exception to emulate step-by-step execution mode.
1834              */
1835             break;
1836         /* PowerPC 64 with hypervisor mode support */
1837         case POWERPC_EXCP_HDSI:     /* Hypervisor data storage exception     */
1838             cpu_abort(cs, "Hypervisor data storage exception "
1839                       "while in user mode. Aborting\n");
1840             break;
1841         case POWERPC_EXCP_HISI:     /* Hypervisor instruction storage excp   */
1842             cpu_abort(cs, "Hypervisor instruction storage exception "
1843                       "while in user mode. Aborting\n");
1844             break;
1845         case POWERPC_EXCP_HDSEG:    /* Hypervisor data segment exception     */
1846             cpu_abort(cs, "Hypervisor data segment exception "
1847                       "while in user mode. Aborting\n");
1848             break;
1849         case POWERPC_EXCP_HISEG:    /* Hypervisor instruction segment excp   */
1850             cpu_abort(cs, "Hypervisor instruction segment exception "
1851                       "while in user mode. Aborting\n");
1852             break;
1853         case POWERPC_EXCP_VPU:      /* Vector unavailable exception          */
1854             EXCP_DUMP(env, "No Altivec instructions allowed\n");
1855             info.si_signo = TARGET_SIGILL;
1856             info.si_errno = 0;
1857             info.si_code = TARGET_ILL_COPROC;
1858             info._sifields._sigfault._addr = env->nip - 4;
1859             queue_signal(env, info.si_signo, &info);
1860             break;
1861         case POWERPC_EXCP_PIT:      /* Programmable interval timer IRQ       */
1862             cpu_abort(cs, "Programmable interval timer interrupt "
1863                       "while in user mode. Aborting\n");
1864             break;
1865         case POWERPC_EXCP_IO:       /* IO error exception                    */
1866             cpu_abort(cs, "IO error exception while in user mode. "
1867                       "Aborting\n");
1868             break;
1869         case POWERPC_EXCP_RUNM:     /* Run mode exception                    */
1870             cpu_abort(cs, "Run mode exception while in user mode. "
1871                       "Aborting\n");
1872             break;
1873         case POWERPC_EXCP_EMUL:     /* Emulation trap exception              */
1874             cpu_abort(cs, "Emulation trap exception not handled\n");
1875             break;
1876         case POWERPC_EXCP_IFTLB:    /* Instruction fetch TLB error           */
1877             cpu_abort(cs, "Instruction fetch TLB exception "
1878                       "while in user-mode. Aborting");
1879             break;
1880         case POWERPC_EXCP_DLTLB:    /* Data load TLB miss                    */
1881             cpu_abort(cs, "Data load TLB exception while in user-mode. "
1882                       "Aborting");
1883             break;
1884         case POWERPC_EXCP_DSTLB:    /* Data store TLB miss                   */
1885             cpu_abort(cs, "Data store TLB exception while in user-mode. "
1886                       "Aborting");
1887             break;
1888         case POWERPC_EXCP_FPA:      /* Floating-point assist exception       */
1889             cpu_abort(cs, "Floating-point assist exception not handled\n");
1890             break;
1891         case POWERPC_EXCP_IABR:     /* Instruction address breakpoint        */
1892             cpu_abort(cs, "Instruction address breakpoint exception "
1893                       "not handled\n");
1894             break;
1895         case POWERPC_EXCP_SMI:      /* System management interrupt           */
1896             cpu_abort(cs, "System management interrupt while in user mode. "
1897                       "Aborting\n");
1898             break;
1899         case POWERPC_EXCP_THERM:    /* Thermal interrupt                     */
1900             cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1901                       "Aborting\n");
1902             break;
1903         case POWERPC_EXCP_PERFM:   /* Embedded performance monitor IRQ      */
1904             cpu_abort(cs, "Performance monitor exception not handled\n");
1905             break;
1906         case POWERPC_EXCP_VPUA:     /* Vector assist exception               */
1907             cpu_abort(cs, "Vector assist exception not handled\n");
1908             break;
1909         case POWERPC_EXCP_SOFTP:    /* Soft patch exception                  */
1910             cpu_abort(cs, "Soft patch exception not handled\n");
1911             break;
1912         case POWERPC_EXCP_MAINT:    /* Maintenance exception                 */
1913             cpu_abort(cs, "Maintenance exception while in user mode. "
1914                       "Aborting\n");
1915             break;
1916         case POWERPC_EXCP_STOP:     /* stop translation                      */
1917             /* We did invalidate the instruction cache. Go on */
1918             break;
1919         case POWERPC_EXCP_BRANCH:   /* branch instruction:                   */
1920             /* We just stopped because of a branch. Go on */
1921             break;
1922         case POWERPC_EXCP_SYSCALL_USER:
1923             /* system call in user-mode emulation */
1924             /* WARNING:
1925              * PPC ABI uses overflow flag in cr0 to signal an error
1926              * in syscalls.
1927              */
1928             env->crf[0] &= ~0x1;
1929             ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1930                              env->gpr[5], env->gpr[6], env->gpr[7],
1931                              env->gpr[8], 0, 0);
1932             if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1933                 /* Returning from a successful sigreturn syscall.
1934                    Avoid corrupting register state.  */
1935                 break;
1936             }
1937             if (ret > (target_ulong)(-515)) {
1938                 env->crf[0] |= 0x1;
1939                 ret = -ret;
1940             }
1941             env->gpr[3] = ret;
1942             break;
1943         case POWERPC_EXCP_STCX:
1944             if (do_store_exclusive(env)) {
1945                 info.si_signo = TARGET_SIGSEGV;
1946                 info.si_errno = 0;
1947                 info.si_code = TARGET_SEGV_MAPERR;
1948                 info._sifields._sigfault._addr = env->nip;
1949                 queue_signal(env, info.si_signo, &info);
1950             }
1951             break;
1952         case EXCP_DEBUG:
1953             {
1954                 int sig;
1955 
1956                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1957                 if (sig) {
1958                     info.si_signo = sig;
1959                     info.si_errno = 0;
1960                     info.si_code = TARGET_TRAP_BRKPT;
1961                     queue_signal(env, info.si_signo, &info);
1962                   }
1963             }
1964             break;
1965         case EXCP_INTERRUPT:
1966             /* just indicate that signals should be handled asap */
1967             break;
1968         default:
1969             cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr);
1970             break;
1971         }
1972         process_pending_signals(env);
1973     }
1974 }
1975 #endif
1976 
1977 #ifdef TARGET_MIPS
1978 
1979 # ifdef TARGET_ABI_MIPSO32
1980 #  define MIPS_SYS(name, args) args,
1981 static const uint8_t mips_syscall_args[] = {
1982 	MIPS_SYS(sys_syscall	, 8)	/* 4000 */
1983 	MIPS_SYS(sys_exit	, 1)
1984 	MIPS_SYS(sys_fork	, 0)
1985 	MIPS_SYS(sys_read	, 3)
1986 	MIPS_SYS(sys_write	, 3)
1987 	MIPS_SYS(sys_open	, 3)	/* 4005 */
1988 	MIPS_SYS(sys_close	, 1)
1989 	MIPS_SYS(sys_waitpid	, 3)
1990 	MIPS_SYS(sys_creat	, 2)
1991 	MIPS_SYS(sys_link	, 2)
1992 	MIPS_SYS(sys_unlink	, 1)	/* 4010 */
1993 	MIPS_SYS(sys_execve	, 0)
1994 	MIPS_SYS(sys_chdir	, 1)
1995 	MIPS_SYS(sys_time	, 1)
1996 	MIPS_SYS(sys_mknod	, 3)
1997 	MIPS_SYS(sys_chmod	, 2)	/* 4015 */
1998 	MIPS_SYS(sys_lchown	, 3)
1999 	MIPS_SYS(sys_ni_syscall	, 0)
2000 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_stat */
2001 	MIPS_SYS(sys_lseek	, 3)
2002 	MIPS_SYS(sys_getpid	, 0)	/* 4020 */
2003 	MIPS_SYS(sys_mount	, 5)
2004 	MIPS_SYS(sys_umount	, 1)
2005 	MIPS_SYS(sys_setuid	, 1)
2006 	MIPS_SYS(sys_getuid	, 0)
2007 	MIPS_SYS(sys_stime	, 1)	/* 4025 */
2008 	MIPS_SYS(sys_ptrace	, 4)
2009 	MIPS_SYS(sys_alarm	, 1)
2010 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_fstat */
2011 	MIPS_SYS(sys_pause	, 0)
2012 	MIPS_SYS(sys_utime	, 2)	/* 4030 */
2013 	MIPS_SYS(sys_ni_syscall	, 0)
2014 	MIPS_SYS(sys_ni_syscall	, 0)
2015 	MIPS_SYS(sys_access	, 2)
2016 	MIPS_SYS(sys_nice	, 1)
2017 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4035 */
2018 	MIPS_SYS(sys_sync	, 0)
2019 	MIPS_SYS(sys_kill	, 2)
2020 	MIPS_SYS(sys_rename	, 2)
2021 	MIPS_SYS(sys_mkdir	, 2)
2022 	MIPS_SYS(sys_rmdir	, 1)	/* 4040 */
2023 	MIPS_SYS(sys_dup		, 1)
2024 	MIPS_SYS(sys_pipe	, 0)
2025 	MIPS_SYS(sys_times	, 1)
2026 	MIPS_SYS(sys_ni_syscall	, 0)
2027 	MIPS_SYS(sys_brk		, 1)	/* 4045 */
2028 	MIPS_SYS(sys_setgid	, 1)
2029 	MIPS_SYS(sys_getgid	, 0)
2030 	MIPS_SYS(sys_ni_syscall	, 0)	/* was signal(2) */
2031 	MIPS_SYS(sys_geteuid	, 0)
2032 	MIPS_SYS(sys_getegid	, 0)	/* 4050 */
2033 	MIPS_SYS(sys_acct	, 0)
2034 	MIPS_SYS(sys_umount2	, 2)
2035 	MIPS_SYS(sys_ni_syscall	, 0)
2036 	MIPS_SYS(sys_ioctl	, 3)
2037 	MIPS_SYS(sys_fcntl	, 3)	/* 4055 */
2038 	MIPS_SYS(sys_ni_syscall	, 2)
2039 	MIPS_SYS(sys_setpgid	, 2)
2040 	MIPS_SYS(sys_ni_syscall	, 0)
2041 	MIPS_SYS(sys_olduname	, 1)
2042 	MIPS_SYS(sys_umask	, 1)	/* 4060 */
2043 	MIPS_SYS(sys_chroot	, 1)
2044 	MIPS_SYS(sys_ustat	, 2)
2045 	MIPS_SYS(sys_dup2	, 2)
2046 	MIPS_SYS(sys_getppid	, 0)
2047 	MIPS_SYS(sys_getpgrp	, 0)	/* 4065 */
2048 	MIPS_SYS(sys_setsid	, 0)
2049 	MIPS_SYS(sys_sigaction	, 3)
2050 	MIPS_SYS(sys_sgetmask	, 0)
2051 	MIPS_SYS(sys_ssetmask	, 1)
2052 	MIPS_SYS(sys_setreuid	, 2)	/* 4070 */
2053 	MIPS_SYS(sys_setregid	, 2)
2054 	MIPS_SYS(sys_sigsuspend	, 0)
2055 	MIPS_SYS(sys_sigpending	, 1)
2056 	MIPS_SYS(sys_sethostname	, 2)
2057 	MIPS_SYS(sys_setrlimit	, 2)	/* 4075 */
2058 	MIPS_SYS(sys_getrlimit	, 2)
2059 	MIPS_SYS(sys_getrusage	, 2)
2060 	MIPS_SYS(sys_gettimeofday, 2)
2061 	MIPS_SYS(sys_settimeofday, 2)
2062 	MIPS_SYS(sys_getgroups	, 2)	/* 4080 */
2063 	MIPS_SYS(sys_setgroups	, 2)
2064 	MIPS_SYS(sys_ni_syscall	, 0)	/* old_select */
2065 	MIPS_SYS(sys_symlink	, 2)
2066 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_lstat */
2067 	MIPS_SYS(sys_readlink	, 3)	/* 4085 */
2068 	MIPS_SYS(sys_uselib	, 1)
2069 	MIPS_SYS(sys_swapon	, 2)
2070 	MIPS_SYS(sys_reboot	, 3)
2071 	MIPS_SYS(old_readdir	, 3)
2072 	MIPS_SYS(old_mmap	, 6)	/* 4090 */
2073 	MIPS_SYS(sys_munmap	, 2)
2074 	MIPS_SYS(sys_truncate	, 2)
2075 	MIPS_SYS(sys_ftruncate	, 2)
2076 	MIPS_SYS(sys_fchmod	, 2)
2077 	MIPS_SYS(sys_fchown	, 3)	/* 4095 */
2078 	MIPS_SYS(sys_getpriority	, 2)
2079 	MIPS_SYS(sys_setpriority	, 3)
2080 	MIPS_SYS(sys_ni_syscall	, 0)
2081 	MIPS_SYS(sys_statfs	, 2)
2082 	MIPS_SYS(sys_fstatfs	, 2)	/* 4100 */
2083 	MIPS_SYS(sys_ni_syscall	, 0)	/* was ioperm(2) */
2084 	MIPS_SYS(sys_socketcall	, 2)
2085 	MIPS_SYS(sys_syslog	, 3)
2086 	MIPS_SYS(sys_setitimer	, 3)
2087 	MIPS_SYS(sys_getitimer	, 2)	/* 4105 */
2088 	MIPS_SYS(sys_newstat	, 2)
2089 	MIPS_SYS(sys_newlstat	, 2)
2090 	MIPS_SYS(sys_newfstat	, 2)
2091 	MIPS_SYS(sys_uname	, 1)
2092 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4110 was iopl(2) */
2093 	MIPS_SYS(sys_vhangup	, 0)
2094 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_idle() */
2095 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_vm86 */
2096 	MIPS_SYS(sys_wait4	, 4)
2097 	MIPS_SYS(sys_swapoff	, 1)	/* 4115 */
2098 	MIPS_SYS(sys_sysinfo	, 1)
2099 	MIPS_SYS(sys_ipc		, 6)
2100 	MIPS_SYS(sys_fsync	, 1)
2101 	MIPS_SYS(sys_sigreturn	, 0)
2102 	MIPS_SYS(sys_clone	, 6)	/* 4120 */
2103 	MIPS_SYS(sys_setdomainname, 2)
2104 	MIPS_SYS(sys_newuname	, 1)
2105 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_modify_ldt */
2106 	MIPS_SYS(sys_adjtimex	, 1)
2107 	MIPS_SYS(sys_mprotect	, 3)	/* 4125 */
2108 	MIPS_SYS(sys_sigprocmask	, 3)
2109 	MIPS_SYS(sys_ni_syscall	, 0)	/* was create_module */
2110 	MIPS_SYS(sys_init_module	, 5)
2111 	MIPS_SYS(sys_delete_module, 1)
2112 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4130	was get_kernel_syms */
2113 	MIPS_SYS(sys_quotactl	, 0)
2114 	MIPS_SYS(sys_getpgid	, 1)
2115 	MIPS_SYS(sys_fchdir	, 1)
2116 	MIPS_SYS(sys_bdflush	, 2)
2117 	MIPS_SYS(sys_sysfs	, 3)	/* 4135 */
2118 	MIPS_SYS(sys_personality	, 1)
2119 	MIPS_SYS(sys_ni_syscall	, 0)	/* for afs_syscall */
2120 	MIPS_SYS(sys_setfsuid	, 1)
2121 	MIPS_SYS(sys_setfsgid	, 1)
2122 	MIPS_SYS(sys_llseek	, 5)	/* 4140 */
2123 	MIPS_SYS(sys_getdents	, 3)
2124 	MIPS_SYS(sys_select	, 5)
2125 	MIPS_SYS(sys_flock	, 2)
2126 	MIPS_SYS(sys_msync	, 3)
2127 	MIPS_SYS(sys_readv	, 3)	/* 4145 */
2128 	MIPS_SYS(sys_writev	, 3)
2129 	MIPS_SYS(sys_cacheflush	, 3)
2130 	MIPS_SYS(sys_cachectl	, 3)
2131 	MIPS_SYS(sys_sysmips	, 4)
2132 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4150 */
2133 	MIPS_SYS(sys_getsid	, 1)
2134 	MIPS_SYS(sys_fdatasync	, 0)
2135 	MIPS_SYS(sys_sysctl	, 1)
2136 	MIPS_SYS(sys_mlock	, 2)
2137 	MIPS_SYS(sys_munlock	, 2)	/* 4155 */
2138 	MIPS_SYS(sys_mlockall	, 1)
2139 	MIPS_SYS(sys_munlockall	, 0)
2140 	MIPS_SYS(sys_sched_setparam, 2)
2141 	MIPS_SYS(sys_sched_getparam, 2)
2142 	MIPS_SYS(sys_sched_setscheduler, 3)	/* 4160 */
2143 	MIPS_SYS(sys_sched_getscheduler, 1)
2144 	MIPS_SYS(sys_sched_yield	, 0)
2145 	MIPS_SYS(sys_sched_get_priority_max, 1)
2146 	MIPS_SYS(sys_sched_get_priority_min, 1)
2147 	MIPS_SYS(sys_sched_rr_get_interval, 2)	/* 4165 */
2148 	MIPS_SYS(sys_nanosleep,	2)
2149 	MIPS_SYS(sys_mremap	, 5)
2150 	MIPS_SYS(sys_accept	, 3)
2151 	MIPS_SYS(sys_bind	, 3)
2152 	MIPS_SYS(sys_connect	, 3)	/* 4170 */
2153 	MIPS_SYS(sys_getpeername	, 3)
2154 	MIPS_SYS(sys_getsockname	, 3)
2155 	MIPS_SYS(sys_getsockopt	, 5)
2156 	MIPS_SYS(sys_listen	, 2)
2157 	MIPS_SYS(sys_recv	, 4)	/* 4175 */
2158 	MIPS_SYS(sys_recvfrom	, 6)
2159 	MIPS_SYS(sys_recvmsg	, 3)
2160 	MIPS_SYS(sys_send	, 4)
2161 	MIPS_SYS(sys_sendmsg	, 3)
2162 	MIPS_SYS(sys_sendto	, 6)	/* 4180 */
2163 	MIPS_SYS(sys_setsockopt	, 5)
2164 	MIPS_SYS(sys_shutdown	, 2)
2165 	MIPS_SYS(sys_socket	, 3)
2166 	MIPS_SYS(sys_socketpair	, 4)
2167 	MIPS_SYS(sys_setresuid	, 3)	/* 4185 */
2168 	MIPS_SYS(sys_getresuid	, 3)
2169 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_query_module */
2170 	MIPS_SYS(sys_poll	, 3)
2171 	MIPS_SYS(sys_nfsservctl	, 3)
2172 	MIPS_SYS(sys_setresgid	, 3)	/* 4190 */
2173 	MIPS_SYS(sys_getresgid	, 3)
2174 	MIPS_SYS(sys_prctl	, 5)
2175 	MIPS_SYS(sys_rt_sigreturn, 0)
2176 	MIPS_SYS(sys_rt_sigaction, 4)
2177 	MIPS_SYS(sys_rt_sigprocmask, 4)	/* 4195 */
2178 	MIPS_SYS(sys_rt_sigpending, 2)
2179 	MIPS_SYS(sys_rt_sigtimedwait, 4)
2180 	MIPS_SYS(sys_rt_sigqueueinfo, 3)
2181 	MIPS_SYS(sys_rt_sigsuspend, 0)
2182 	MIPS_SYS(sys_pread64	, 6)	/* 4200 */
2183 	MIPS_SYS(sys_pwrite64	, 6)
2184 	MIPS_SYS(sys_chown	, 3)
2185 	MIPS_SYS(sys_getcwd	, 2)
2186 	MIPS_SYS(sys_capget	, 2)
2187 	MIPS_SYS(sys_capset	, 2)	/* 4205 */
2188 	MIPS_SYS(sys_sigaltstack	, 2)
2189 	MIPS_SYS(sys_sendfile	, 4)
2190 	MIPS_SYS(sys_ni_syscall	, 0)
2191 	MIPS_SYS(sys_ni_syscall	, 0)
2192 	MIPS_SYS(sys_mmap2	, 6)	/* 4210 */
2193 	MIPS_SYS(sys_truncate64	, 4)
2194 	MIPS_SYS(sys_ftruncate64	, 4)
2195 	MIPS_SYS(sys_stat64	, 2)
2196 	MIPS_SYS(sys_lstat64	, 2)
2197 	MIPS_SYS(sys_fstat64	, 2)	/* 4215 */
2198 	MIPS_SYS(sys_pivot_root	, 2)
2199 	MIPS_SYS(sys_mincore	, 3)
2200 	MIPS_SYS(sys_madvise	, 3)
2201 	MIPS_SYS(sys_getdents64	, 3)
2202 	MIPS_SYS(sys_fcntl64	, 3)	/* 4220 */
2203 	MIPS_SYS(sys_ni_syscall	, 0)
2204 	MIPS_SYS(sys_gettid	, 0)
2205 	MIPS_SYS(sys_readahead	, 5)
2206 	MIPS_SYS(sys_setxattr	, 5)
2207 	MIPS_SYS(sys_lsetxattr	, 5)	/* 4225 */
2208 	MIPS_SYS(sys_fsetxattr	, 5)
2209 	MIPS_SYS(sys_getxattr	, 4)
2210 	MIPS_SYS(sys_lgetxattr	, 4)
2211 	MIPS_SYS(sys_fgetxattr	, 4)
2212 	MIPS_SYS(sys_listxattr	, 3)	/* 4230 */
2213 	MIPS_SYS(sys_llistxattr	, 3)
2214 	MIPS_SYS(sys_flistxattr	, 3)
2215 	MIPS_SYS(sys_removexattr	, 2)
2216 	MIPS_SYS(sys_lremovexattr, 2)
2217 	MIPS_SYS(sys_fremovexattr, 2)	/* 4235 */
2218 	MIPS_SYS(sys_tkill	, 2)
2219 	MIPS_SYS(sys_sendfile64	, 5)
2220 	MIPS_SYS(sys_futex	, 6)
2221 	MIPS_SYS(sys_sched_setaffinity, 3)
2222 	MIPS_SYS(sys_sched_getaffinity, 3)	/* 4240 */
2223 	MIPS_SYS(sys_io_setup	, 2)
2224 	MIPS_SYS(sys_io_destroy	, 1)
2225 	MIPS_SYS(sys_io_getevents, 5)
2226 	MIPS_SYS(sys_io_submit	, 3)
2227 	MIPS_SYS(sys_io_cancel	, 3)	/* 4245 */
2228 	MIPS_SYS(sys_exit_group	, 1)
2229 	MIPS_SYS(sys_lookup_dcookie, 3)
2230 	MIPS_SYS(sys_epoll_create, 1)
2231 	MIPS_SYS(sys_epoll_ctl	, 4)
2232 	MIPS_SYS(sys_epoll_wait	, 3)	/* 4250 */
2233 	MIPS_SYS(sys_remap_file_pages, 5)
2234 	MIPS_SYS(sys_set_tid_address, 1)
2235 	MIPS_SYS(sys_restart_syscall, 0)
2236 	MIPS_SYS(sys_fadvise64_64, 7)
2237 	MIPS_SYS(sys_statfs64	, 3)	/* 4255 */
2238 	MIPS_SYS(sys_fstatfs64	, 2)
2239 	MIPS_SYS(sys_timer_create, 3)
2240 	MIPS_SYS(sys_timer_settime, 4)
2241 	MIPS_SYS(sys_timer_gettime, 2)
2242 	MIPS_SYS(sys_timer_getoverrun, 1)	/* 4260 */
2243 	MIPS_SYS(sys_timer_delete, 1)
2244 	MIPS_SYS(sys_clock_settime, 2)
2245 	MIPS_SYS(sys_clock_gettime, 2)
2246 	MIPS_SYS(sys_clock_getres, 2)
2247 	MIPS_SYS(sys_clock_nanosleep, 4)	/* 4265 */
2248 	MIPS_SYS(sys_tgkill	, 3)
2249 	MIPS_SYS(sys_utimes	, 2)
2250 	MIPS_SYS(sys_mbind	, 4)
2251 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_get_mempolicy */
2252 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4270 sys_set_mempolicy */
2253 	MIPS_SYS(sys_mq_open	, 4)
2254 	MIPS_SYS(sys_mq_unlink	, 1)
2255 	MIPS_SYS(sys_mq_timedsend, 5)
2256 	MIPS_SYS(sys_mq_timedreceive, 5)
2257 	MIPS_SYS(sys_mq_notify	, 2)	/* 4275 */
2258 	MIPS_SYS(sys_mq_getsetattr, 3)
2259 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_vserver */
2260 	MIPS_SYS(sys_waitid	, 4)
2261 	MIPS_SYS(sys_ni_syscall	, 0)	/* available, was setaltroot */
2262 	MIPS_SYS(sys_add_key	, 5)
2263 	MIPS_SYS(sys_request_key, 4)
2264 	MIPS_SYS(sys_keyctl	, 5)
2265 	MIPS_SYS(sys_set_thread_area, 1)
2266 	MIPS_SYS(sys_inotify_init, 0)
2267 	MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2268 	MIPS_SYS(sys_inotify_rm_watch, 2)
2269 	MIPS_SYS(sys_migrate_pages, 4)
2270 	MIPS_SYS(sys_openat, 4)
2271 	MIPS_SYS(sys_mkdirat, 3)
2272 	MIPS_SYS(sys_mknodat, 4)	/* 4290 */
2273 	MIPS_SYS(sys_fchownat, 5)
2274 	MIPS_SYS(sys_futimesat, 3)
2275 	MIPS_SYS(sys_fstatat64, 4)
2276 	MIPS_SYS(sys_unlinkat, 3)
2277 	MIPS_SYS(sys_renameat, 4)	/* 4295 */
2278 	MIPS_SYS(sys_linkat, 5)
2279 	MIPS_SYS(sys_symlinkat, 3)
2280 	MIPS_SYS(sys_readlinkat, 4)
2281 	MIPS_SYS(sys_fchmodat, 3)
2282 	MIPS_SYS(sys_faccessat, 3)	/* 4300 */
2283 	MIPS_SYS(sys_pselect6, 6)
2284 	MIPS_SYS(sys_ppoll, 5)
2285 	MIPS_SYS(sys_unshare, 1)
2286 	MIPS_SYS(sys_splice, 6)
2287 	MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2288 	MIPS_SYS(sys_tee, 4)
2289 	MIPS_SYS(sys_vmsplice, 4)
2290 	MIPS_SYS(sys_move_pages, 6)
2291 	MIPS_SYS(sys_set_robust_list, 2)
2292 	MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2293 	MIPS_SYS(sys_kexec_load, 4)
2294 	MIPS_SYS(sys_getcpu, 3)
2295 	MIPS_SYS(sys_epoll_pwait, 6)
2296 	MIPS_SYS(sys_ioprio_set, 3)
2297 	MIPS_SYS(sys_ioprio_get, 2)
2298         MIPS_SYS(sys_utimensat, 4)
2299         MIPS_SYS(sys_signalfd, 3)
2300         MIPS_SYS(sys_ni_syscall, 0)     /* was timerfd */
2301         MIPS_SYS(sys_eventfd, 1)
2302         MIPS_SYS(sys_fallocate, 6)      /* 4320 */
2303         MIPS_SYS(sys_timerfd_create, 2)
2304         MIPS_SYS(sys_timerfd_gettime, 2)
2305         MIPS_SYS(sys_timerfd_settime, 4)
2306         MIPS_SYS(sys_signalfd4, 4)
2307         MIPS_SYS(sys_eventfd2, 2)       /* 4325 */
2308         MIPS_SYS(sys_epoll_create1, 1)
2309         MIPS_SYS(sys_dup3, 3)
2310         MIPS_SYS(sys_pipe2, 2)
2311         MIPS_SYS(sys_inotify_init1, 1)
2312         MIPS_SYS(sys_preadv, 6)         /* 4330 */
2313         MIPS_SYS(sys_pwritev, 6)
2314         MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2315         MIPS_SYS(sys_perf_event_open, 5)
2316         MIPS_SYS(sys_accept4, 4)
2317         MIPS_SYS(sys_recvmmsg, 5)       /* 4335 */
2318         MIPS_SYS(sys_fanotify_init, 2)
2319         MIPS_SYS(sys_fanotify_mark, 6)
2320         MIPS_SYS(sys_prlimit64, 4)
2321         MIPS_SYS(sys_name_to_handle_at, 5)
2322         MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2323         MIPS_SYS(sys_clock_adjtime, 2)
2324         MIPS_SYS(sys_syncfs, 1)
2325 };
2326 #  undef MIPS_SYS
2327 # endif /* O32 */
2328 
2329 static int do_store_exclusive(CPUMIPSState *env)
2330 {
2331     target_ulong addr;
2332     target_ulong page_addr;
2333     target_ulong val;
2334     int flags;
2335     int segv = 0;
2336     int reg;
2337     int d;
2338 
2339     addr = env->lladdr;
2340     page_addr = addr & TARGET_PAGE_MASK;
2341     start_exclusive();
2342     mmap_lock();
2343     flags = page_get_flags(page_addr);
2344     if ((flags & PAGE_READ) == 0) {
2345         segv = 1;
2346     } else {
2347         reg = env->llreg & 0x1f;
2348         d = (env->llreg & 0x20) != 0;
2349         if (d) {
2350             segv = get_user_s64(val, addr);
2351         } else {
2352             segv = get_user_s32(val, addr);
2353         }
2354         if (!segv) {
2355             if (val != env->llval) {
2356                 env->active_tc.gpr[reg] = 0;
2357             } else {
2358                 if (d) {
2359                     segv = put_user_u64(env->llnewval, addr);
2360                 } else {
2361                     segv = put_user_u32(env->llnewval, addr);
2362                 }
2363                 if (!segv) {
2364                     env->active_tc.gpr[reg] = 1;
2365                 }
2366             }
2367         }
2368     }
2369     env->lladdr = -1;
2370     if (!segv) {
2371         env->active_tc.PC += 4;
2372     }
2373     mmap_unlock();
2374     end_exclusive();
2375     return segv;
2376 }
2377 
2378 /* Break codes */
2379 enum {
2380     BRK_OVERFLOW = 6,
2381     BRK_DIVZERO = 7
2382 };
2383 
2384 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2385                     unsigned int code)
2386 {
2387     int ret = -1;
2388 
2389     switch (code) {
2390     case BRK_OVERFLOW:
2391     case BRK_DIVZERO:
2392         info->si_signo = TARGET_SIGFPE;
2393         info->si_errno = 0;
2394         info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2395         queue_signal(env, info->si_signo, &*info);
2396         ret = 0;
2397         break;
2398     default:
2399         info->si_signo = TARGET_SIGTRAP;
2400         info->si_errno = 0;
2401         queue_signal(env, info->si_signo, &*info);
2402         ret = 0;
2403         break;
2404     }
2405 
2406     return ret;
2407 }
2408 
2409 void cpu_loop(CPUMIPSState *env)
2410 {
2411     CPUState *cs = CPU(mips_env_get_cpu(env));
2412     target_siginfo_t info;
2413     int trapnr;
2414     abi_long ret;
2415 # ifdef TARGET_ABI_MIPSO32
2416     unsigned int syscall_num;
2417 # endif
2418 
2419     for(;;) {
2420         cpu_exec_start(cs);
2421         trapnr = cpu_mips_exec(env);
2422         cpu_exec_end(cs);
2423         switch(trapnr) {
2424         case EXCP_SYSCALL:
2425             env->active_tc.PC += 4;
2426 # ifdef TARGET_ABI_MIPSO32
2427             syscall_num = env->active_tc.gpr[2] - 4000;
2428             if (syscall_num >= sizeof(mips_syscall_args)) {
2429                 ret = -TARGET_ENOSYS;
2430             } else {
2431                 int nb_args;
2432                 abi_ulong sp_reg;
2433                 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2434 
2435                 nb_args = mips_syscall_args[syscall_num];
2436                 sp_reg = env->active_tc.gpr[29];
2437                 switch (nb_args) {
2438                 /* these arguments are taken from the stack */
2439                 case 8:
2440                     if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2441                         goto done_syscall;
2442                     }
2443                 case 7:
2444                     if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2445                         goto done_syscall;
2446                     }
2447                 case 6:
2448                     if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2449                         goto done_syscall;
2450                     }
2451                 case 5:
2452                     if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2453                         goto done_syscall;
2454                     }
2455                 default:
2456                     break;
2457                 }
2458                 ret = do_syscall(env, env->active_tc.gpr[2],
2459                                  env->active_tc.gpr[4],
2460                                  env->active_tc.gpr[5],
2461                                  env->active_tc.gpr[6],
2462                                  env->active_tc.gpr[7],
2463                                  arg5, arg6, arg7, arg8);
2464             }
2465 done_syscall:
2466 # else
2467             ret = do_syscall(env, env->active_tc.gpr[2],
2468                              env->active_tc.gpr[4], env->active_tc.gpr[5],
2469                              env->active_tc.gpr[6], env->active_tc.gpr[7],
2470                              env->active_tc.gpr[8], env->active_tc.gpr[9],
2471                              env->active_tc.gpr[10], env->active_tc.gpr[11]);
2472 # endif /* O32 */
2473             if (ret == -TARGET_QEMU_ESIGRETURN) {
2474                 /* Returning from a successful sigreturn syscall.
2475                    Avoid clobbering register state.  */
2476                 break;
2477             }
2478             if ((abi_ulong)ret >= (abi_ulong)-1133) {
2479                 env->active_tc.gpr[7] = 1; /* error flag */
2480                 ret = -ret;
2481             } else {
2482                 env->active_tc.gpr[7] = 0; /* error flag */
2483             }
2484             env->active_tc.gpr[2] = ret;
2485             break;
2486         case EXCP_TLBL:
2487         case EXCP_TLBS:
2488         case EXCP_AdEL:
2489         case EXCP_AdES:
2490             info.si_signo = TARGET_SIGSEGV;
2491             info.si_errno = 0;
2492             /* XXX: check env->error_code */
2493             info.si_code = TARGET_SEGV_MAPERR;
2494             info._sifields._sigfault._addr = env->CP0_BadVAddr;
2495             queue_signal(env, info.si_signo, &info);
2496             break;
2497         case EXCP_CpU:
2498         case EXCP_RI:
2499             info.si_signo = TARGET_SIGILL;
2500             info.si_errno = 0;
2501             info.si_code = 0;
2502             queue_signal(env, info.si_signo, &info);
2503             break;
2504         case EXCP_INTERRUPT:
2505             /* just indicate that signals should be handled asap */
2506             break;
2507         case EXCP_DEBUG:
2508             {
2509                 int sig;
2510 
2511                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2512                 if (sig)
2513                   {
2514                     info.si_signo = sig;
2515                     info.si_errno = 0;
2516                     info.si_code = TARGET_TRAP_BRKPT;
2517                     queue_signal(env, info.si_signo, &info);
2518                   }
2519             }
2520             break;
2521         case EXCP_SC:
2522             if (do_store_exclusive(env)) {
2523                 info.si_signo = TARGET_SIGSEGV;
2524                 info.si_errno = 0;
2525                 info.si_code = TARGET_SEGV_MAPERR;
2526                 info._sifields._sigfault._addr = env->active_tc.PC;
2527                 queue_signal(env, info.si_signo, &info);
2528             }
2529             break;
2530         case EXCP_DSPDIS:
2531             info.si_signo = TARGET_SIGILL;
2532             info.si_errno = 0;
2533             info.si_code = TARGET_ILL_ILLOPC;
2534             queue_signal(env, info.si_signo, &info);
2535             break;
2536         /* The code below was inspired by the MIPS Linux kernel trap
2537          * handling code in arch/mips/kernel/traps.c.
2538          */
2539         case EXCP_BREAK:
2540             {
2541                 abi_ulong trap_instr;
2542                 unsigned int code;
2543 
2544                 if (env->hflags & MIPS_HFLAG_M16) {
2545                     if (env->insn_flags & ASE_MICROMIPS) {
2546                         /* microMIPS mode */
2547                         ret = get_user_u16(trap_instr, env->active_tc.PC);
2548                         if (ret != 0) {
2549                             goto error;
2550                         }
2551 
2552                         if ((trap_instr >> 10) == 0x11) {
2553                             /* 16-bit instruction */
2554                             code = trap_instr & 0xf;
2555                         } else {
2556                             /* 32-bit instruction */
2557                             abi_ulong instr_lo;
2558 
2559                             ret = get_user_u16(instr_lo,
2560                                                env->active_tc.PC + 2);
2561                             if (ret != 0) {
2562                                 goto error;
2563                             }
2564                             trap_instr = (trap_instr << 16) | instr_lo;
2565                             code = ((trap_instr >> 6) & ((1 << 20) - 1));
2566                             /* Unfortunately, microMIPS also suffers from
2567                                the old assembler bug...  */
2568                             if (code >= (1 << 10)) {
2569                                 code >>= 10;
2570                             }
2571                         }
2572                     } else {
2573                         /* MIPS16e mode */
2574                         ret = get_user_u16(trap_instr, env->active_tc.PC);
2575                         if (ret != 0) {
2576                             goto error;
2577                         }
2578                         code = (trap_instr >> 6) & 0x3f;
2579                     }
2580                 } else {
2581                     ret = get_user_ual(trap_instr, env->active_tc.PC);
2582                     if (ret != 0) {
2583                         goto error;
2584                     }
2585 
2586                     /* As described in the original Linux kernel code, the
2587                      * below checks on 'code' are to work around an old
2588                      * assembly bug.
2589                      */
2590                     code = ((trap_instr >> 6) & ((1 << 20) - 1));
2591                     if (code >= (1 << 10)) {
2592                         code >>= 10;
2593                     }
2594                 }
2595 
2596                 if (do_break(env, &info, code) != 0) {
2597                     goto error;
2598                 }
2599             }
2600             break;
2601         case EXCP_TRAP:
2602             {
2603                 abi_ulong trap_instr;
2604                 unsigned int code = 0;
2605 
2606                 if (env->hflags & MIPS_HFLAG_M16) {
2607                     /* microMIPS mode */
2608                     abi_ulong instr[2];
2609 
2610                     ret = get_user_u16(instr[0], env->active_tc.PC) ||
2611                           get_user_u16(instr[1], env->active_tc.PC + 2);
2612 
2613                     trap_instr = (instr[0] << 16) | instr[1];
2614                 } else {
2615                     ret = get_user_ual(trap_instr, env->active_tc.PC);
2616                 }
2617 
2618                 if (ret != 0) {
2619                     goto error;
2620                 }
2621 
2622                 /* The immediate versions don't provide a code.  */
2623                 if (!(trap_instr & 0xFC000000)) {
2624                     if (env->hflags & MIPS_HFLAG_M16) {
2625                         /* microMIPS mode */
2626                         code = ((trap_instr >> 12) & ((1 << 4) - 1));
2627                     } else {
2628                         code = ((trap_instr >> 6) & ((1 << 10) - 1));
2629                     }
2630                 }
2631 
2632                 if (do_break(env, &info, code) != 0) {
2633                     goto error;
2634                 }
2635             }
2636             break;
2637         default:
2638 error:
2639             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2640                     trapnr);
2641             cpu_dump_state(cs, stderr, fprintf, 0);
2642             abort();
2643         }
2644         process_pending_signals(env);
2645     }
2646 }
2647 #endif
2648 
2649 #ifdef TARGET_OPENRISC
2650 
2651 void cpu_loop(CPUOpenRISCState *env)
2652 {
2653     CPUState *cs = CPU(openrisc_env_get_cpu(env));
2654     int trapnr, gdbsig;
2655 
2656     for (;;) {
2657         cpu_exec_start(cs);
2658         trapnr = cpu_exec(env);
2659         cpu_exec_end(cs);
2660         gdbsig = 0;
2661 
2662         switch (trapnr) {
2663         case EXCP_RESET:
2664             qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2665             exit(1);
2666             break;
2667         case EXCP_BUSERR:
2668             qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2669             gdbsig = TARGET_SIGBUS;
2670             break;
2671         case EXCP_DPF:
2672         case EXCP_IPF:
2673             cpu_dump_state(cs, stderr, fprintf, 0);
2674             gdbsig = TARGET_SIGSEGV;
2675             break;
2676         case EXCP_TICK:
2677             qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2678             break;
2679         case EXCP_ALIGN:
2680             qemu_log("\nAlignment pc is %#x\n", env->pc);
2681             gdbsig = TARGET_SIGBUS;
2682             break;
2683         case EXCP_ILLEGAL:
2684             qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2685             gdbsig = TARGET_SIGILL;
2686             break;
2687         case EXCP_INT:
2688             qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2689             break;
2690         case EXCP_DTLBMISS:
2691         case EXCP_ITLBMISS:
2692             qemu_log("\nTLB miss\n");
2693             break;
2694         case EXCP_RANGE:
2695             qemu_log("\nRange\n");
2696             gdbsig = TARGET_SIGSEGV;
2697             break;
2698         case EXCP_SYSCALL:
2699             env->pc += 4;   /* 0xc00; */
2700             env->gpr[11] = do_syscall(env,
2701                                       env->gpr[11], /* return value       */
2702                                       env->gpr[3],  /* r3 - r7 are params */
2703                                       env->gpr[4],
2704                                       env->gpr[5],
2705                                       env->gpr[6],
2706                                       env->gpr[7],
2707                                       env->gpr[8], 0, 0);
2708             break;
2709         case EXCP_FPE:
2710             qemu_log("\nFloating point error\n");
2711             break;
2712         case EXCP_TRAP:
2713             qemu_log("\nTrap\n");
2714             gdbsig = TARGET_SIGTRAP;
2715             break;
2716         case EXCP_NR:
2717             qemu_log("\nNR\n");
2718             break;
2719         default:
2720             qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2721                      trapnr);
2722             cpu_dump_state(cs, stderr, fprintf, 0);
2723             gdbsig = TARGET_SIGILL;
2724             break;
2725         }
2726         if (gdbsig) {
2727             gdb_handlesig(cs, gdbsig);
2728             if (gdbsig != TARGET_SIGTRAP) {
2729                 exit(1);
2730             }
2731         }
2732 
2733         process_pending_signals(env);
2734     }
2735 }
2736 
2737 #endif /* TARGET_OPENRISC */
2738 
2739 #ifdef TARGET_SH4
2740 void cpu_loop(CPUSH4State *env)
2741 {
2742     CPUState *cs = CPU(sh_env_get_cpu(env));
2743     int trapnr, ret;
2744     target_siginfo_t info;
2745 
2746     while (1) {
2747         cpu_exec_start(cs);
2748         trapnr = cpu_sh4_exec (env);
2749         cpu_exec_end(cs);
2750 
2751         switch (trapnr) {
2752         case 0x160:
2753             env->pc += 2;
2754             ret = do_syscall(env,
2755                              env->gregs[3],
2756                              env->gregs[4],
2757                              env->gregs[5],
2758                              env->gregs[6],
2759                              env->gregs[7],
2760                              env->gregs[0],
2761                              env->gregs[1],
2762                              0, 0);
2763             env->gregs[0] = ret;
2764             break;
2765         case EXCP_INTERRUPT:
2766             /* just indicate that signals should be handled asap */
2767             break;
2768         case EXCP_DEBUG:
2769             {
2770                 int sig;
2771 
2772                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2773                 if (sig)
2774                   {
2775                     info.si_signo = sig;
2776                     info.si_errno = 0;
2777                     info.si_code = TARGET_TRAP_BRKPT;
2778                     queue_signal(env, info.si_signo, &info);
2779                   }
2780             }
2781             break;
2782 	case 0xa0:
2783 	case 0xc0:
2784             info.si_signo = TARGET_SIGSEGV;
2785             info.si_errno = 0;
2786             info.si_code = TARGET_SEGV_MAPERR;
2787             info._sifields._sigfault._addr = env->tea;
2788             queue_signal(env, info.si_signo, &info);
2789 	    break;
2790 
2791         default:
2792             printf ("Unhandled trap: 0x%x\n", trapnr);
2793             cpu_dump_state(cs, stderr, fprintf, 0);
2794             exit (1);
2795         }
2796         process_pending_signals (env);
2797     }
2798 }
2799 #endif
2800 
2801 #ifdef TARGET_CRIS
2802 void cpu_loop(CPUCRISState *env)
2803 {
2804     CPUState *cs = CPU(cris_env_get_cpu(env));
2805     int trapnr, ret;
2806     target_siginfo_t info;
2807 
2808     while (1) {
2809         cpu_exec_start(cs);
2810         trapnr = cpu_cris_exec (env);
2811         cpu_exec_end(cs);
2812         switch (trapnr) {
2813         case 0xaa:
2814             {
2815                 info.si_signo = TARGET_SIGSEGV;
2816                 info.si_errno = 0;
2817                 /* XXX: check env->error_code */
2818                 info.si_code = TARGET_SEGV_MAPERR;
2819                 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2820                 queue_signal(env, info.si_signo, &info);
2821             }
2822             break;
2823 	case EXCP_INTERRUPT:
2824 	  /* just indicate that signals should be handled asap */
2825 	  break;
2826         case EXCP_BREAK:
2827             ret = do_syscall(env,
2828                              env->regs[9],
2829                              env->regs[10],
2830                              env->regs[11],
2831                              env->regs[12],
2832                              env->regs[13],
2833                              env->pregs[7],
2834                              env->pregs[11],
2835                              0, 0);
2836             env->regs[10] = ret;
2837             break;
2838         case EXCP_DEBUG:
2839             {
2840                 int sig;
2841 
2842                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2843                 if (sig)
2844                   {
2845                     info.si_signo = sig;
2846                     info.si_errno = 0;
2847                     info.si_code = TARGET_TRAP_BRKPT;
2848                     queue_signal(env, info.si_signo, &info);
2849                   }
2850             }
2851             break;
2852         default:
2853             printf ("Unhandled trap: 0x%x\n", trapnr);
2854             cpu_dump_state(cs, stderr, fprintf, 0);
2855             exit (1);
2856         }
2857         process_pending_signals (env);
2858     }
2859 }
2860 #endif
2861 
2862 #ifdef TARGET_MICROBLAZE
2863 void cpu_loop(CPUMBState *env)
2864 {
2865     CPUState *cs = CPU(mb_env_get_cpu(env));
2866     int trapnr, ret;
2867     target_siginfo_t info;
2868 
2869     while (1) {
2870         cpu_exec_start(cs);
2871         trapnr = cpu_mb_exec (env);
2872         cpu_exec_end(cs);
2873         switch (trapnr) {
2874         case 0xaa:
2875             {
2876                 info.si_signo = TARGET_SIGSEGV;
2877                 info.si_errno = 0;
2878                 /* XXX: check env->error_code */
2879                 info.si_code = TARGET_SEGV_MAPERR;
2880                 info._sifields._sigfault._addr = 0;
2881                 queue_signal(env, info.si_signo, &info);
2882             }
2883             break;
2884 	case EXCP_INTERRUPT:
2885 	  /* just indicate that signals should be handled asap */
2886 	  break;
2887         case EXCP_BREAK:
2888             /* Return address is 4 bytes after the call.  */
2889             env->regs[14] += 4;
2890             env->sregs[SR_PC] = env->regs[14];
2891             ret = do_syscall(env,
2892                              env->regs[12],
2893                              env->regs[5],
2894                              env->regs[6],
2895                              env->regs[7],
2896                              env->regs[8],
2897                              env->regs[9],
2898                              env->regs[10],
2899                              0, 0);
2900             env->regs[3] = ret;
2901             break;
2902         case EXCP_HW_EXCP:
2903             env->regs[17] = env->sregs[SR_PC] + 4;
2904             if (env->iflags & D_FLAG) {
2905                 env->sregs[SR_ESR] |= 1 << 12;
2906                 env->sregs[SR_PC] -= 4;
2907                 /* FIXME: if branch was immed, replay the imm as well.  */
2908             }
2909 
2910             env->iflags &= ~(IMM_FLAG | D_FLAG);
2911 
2912             switch (env->sregs[SR_ESR] & 31) {
2913                 case ESR_EC_DIVZERO:
2914                     info.si_signo = TARGET_SIGFPE;
2915                     info.si_errno = 0;
2916                     info.si_code = TARGET_FPE_FLTDIV;
2917                     info._sifields._sigfault._addr = 0;
2918                     queue_signal(env, info.si_signo, &info);
2919                     break;
2920                 case ESR_EC_FPU:
2921                     info.si_signo = TARGET_SIGFPE;
2922                     info.si_errno = 0;
2923                     if (env->sregs[SR_FSR] & FSR_IO) {
2924                         info.si_code = TARGET_FPE_FLTINV;
2925                     }
2926                     if (env->sregs[SR_FSR] & FSR_DZ) {
2927                         info.si_code = TARGET_FPE_FLTDIV;
2928                     }
2929                     info._sifields._sigfault._addr = 0;
2930                     queue_signal(env, info.si_signo, &info);
2931                     break;
2932                 default:
2933                     printf ("Unhandled hw-exception: 0x%x\n",
2934                             env->sregs[SR_ESR] & ESR_EC_MASK);
2935                     cpu_dump_state(cs, stderr, fprintf, 0);
2936                     exit (1);
2937                     break;
2938             }
2939             break;
2940         case EXCP_DEBUG:
2941             {
2942                 int sig;
2943 
2944                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2945                 if (sig)
2946                   {
2947                     info.si_signo = sig;
2948                     info.si_errno = 0;
2949                     info.si_code = TARGET_TRAP_BRKPT;
2950                     queue_signal(env, info.si_signo, &info);
2951                   }
2952             }
2953             break;
2954         default:
2955             printf ("Unhandled trap: 0x%x\n", trapnr);
2956             cpu_dump_state(cs, stderr, fprintf, 0);
2957             exit (1);
2958         }
2959         process_pending_signals (env);
2960     }
2961 }
2962 #endif
2963 
2964 #ifdef TARGET_M68K
2965 
2966 void cpu_loop(CPUM68KState *env)
2967 {
2968     CPUState *cs = CPU(m68k_env_get_cpu(env));
2969     int trapnr;
2970     unsigned int n;
2971     target_siginfo_t info;
2972     TaskState *ts = cs->opaque;
2973 
2974     for(;;) {
2975         cpu_exec_start(cs);
2976         trapnr = cpu_m68k_exec(env);
2977         cpu_exec_end(cs);
2978         switch(trapnr) {
2979         case EXCP_ILLEGAL:
2980             {
2981                 if (ts->sim_syscalls) {
2982                     uint16_t nr;
2983                     get_user_u16(nr, env->pc + 2);
2984                     env->pc += 4;
2985                     do_m68k_simcall(env, nr);
2986                 } else {
2987                     goto do_sigill;
2988                 }
2989             }
2990             break;
2991         case EXCP_HALT_INSN:
2992             /* Semihosing syscall.  */
2993             env->pc += 4;
2994             do_m68k_semihosting(env, env->dregs[0]);
2995             break;
2996         case EXCP_LINEA:
2997         case EXCP_LINEF:
2998         case EXCP_UNSUPPORTED:
2999         do_sigill:
3000             info.si_signo = TARGET_SIGILL;
3001             info.si_errno = 0;
3002             info.si_code = TARGET_ILL_ILLOPN;
3003             info._sifields._sigfault._addr = env->pc;
3004             queue_signal(env, info.si_signo, &info);
3005             break;
3006         case EXCP_TRAP0:
3007             {
3008                 ts->sim_syscalls = 0;
3009                 n = env->dregs[0];
3010                 env->pc += 2;
3011                 env->dregs[0] = do_syscall(env,
3012                                           n,
3013                                           env->dregs[1],
3014                                           env->dregs[2],
3015                                           env->dregs[3],
3016                                           env->dregs[4],
3017                                           env->dregs[5],
3018                                           env->aregs[0],
3019                                           0, 0);
3020             }
3021             break;
3022         case EXCP_INTERRUPT:
3023             /* just indicate that signals should be handled asap */
3024             break;
3025         case EXCP_ACCESS:
3026             {
3027                 info.si_signo = TARGET_SIGSEGV;
3028                 info.si_errno = 0;
3029                 /* XXX: check env->error_code */
3030                 info.si_code = TARGET_SEGV_MAPERR;
3031                 info._sifields._sigfault._addr = env->mmu.ar;
3032                 queue_signal(env, info.si_signo, &info);
3033             }
3034             break;
3035         case EXCP_DEBUG:
3036             {
3037                 int sig;
3038 
3039                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3040                 if (sig)
3041                   {
3042                     info.si_signo = sig;
3043                     info.si_errno = 0;
3044                     info.si_code = TARGET_TRAP_BRKPT;
3045                     queue_signal(env, info.si_signo, &info);
3046                   }
3047             }
3048             break;
3049         default:
3050             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
3051                     trapnr);
3052             cpu_dump_state(cs, stderr, fprintf, 0);
3053             abort();
3054         }
3055         process_pending_signals(env);
3056     }
3057 }
3058 #endif /* TARGET_M68K */
3059 
3060 #ifdef TARGET_ALPHA
3061 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
3062 {
3063     target_ulong addr, val, tmp;
3064     target_siginfo_t info;
3065     int ret = 0;
3066 
3067     addr = env->lock_addr;
3068     tmp = env->lock_st_addr;
3069     env->lock_addr = -1;
3070     env->lock_st_addr = 0;
3071 
3072     start_exclusive();
3073     mmap_lock();
3074 
3075     if (addr == tmp) {
3076         if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3077             goto do_sigsegv;
3078         }
3079 
3080         if (val == env->lock_value) {
3081             tmp = env->ir[reg];
3082             if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
3083                 goto do_sigsegv;
3084             }
3085             ret = 1;
3086         }
3087     }
3088     env->ir[reg] = ret;
3089     env->pc += 4;
3090 
3091     mmap_unlock();
3092     end_exclusive();
3093     return;
3094 
3095  do_sigsegv:
3096     mmap_unlock();
3097     end_exclusive();
3098 
3099     info.si_signo = TARGET_SIGSEGV;
3100     info.si_errno = 0;
3101     info.si_code = TARGET_SEGV_MAPERR;
3102     info._sifields._sigfault._addr = addr;
3103     queue_signal(env, TARGET_SIGSEGV, &info);
3104 }
3105 
3106 void cpu_loop(CPUAlphaState *env)
3107 {
3108     CPUState *cs = CPU(alpha_env_get_cpu(env));
3109     int trapnr;
3110     target_siginfo_t info;
3111     abi_long sysret;
3112 
3113     while (1) {
3114         cpu_exec_start(cs);
3115         trapnr = cpu_alpha_exec (env);
3116         cpu_exec_end(cs);
3117 
3118         /* All of the traps imply a transition through PALcode, which
3119            implies an REI instruction has been executed.  Which means
3120            that the intr_flag should be cleared.  */
3121         env->intr_flag = 0;
3122 
3123         switch (trapnr) {
3124         case EXCP_RESET:
3125             fprintf(stderr, "Reset requested. Exit\n");
3126             exit(1);
3127             break;
3128         case EXCP_MCHK:
3129             fprintf(stderr, "Machine check exception. Exit\n");
3130             exit(1);
3131             break;
3132         case EXCP_SMP_INTERRUPT:
3133         case EXCP_CLK_INTERRUPT:
3134         case EXCP_DEV_INTERRUPT:
3135             fprintf(stderr, "External interrupt. Exit\n");
3136             exit(1);
3137             break;
3138         case EXCP_MMFAULT:
3139             env->lock_addr = -1;
3140             info.si_signo = TARGET_SIGSEGV;
3141             info.si_errno = 0;
3142             info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3143                             ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3144             info._sifields._sigfault._addr = env->trap_arg0;
3145             queue_signal(env, info.si_signo, &info);
3146             break;
3147         case EXCP_UNALIGN:
3148             env->lock_addr = -1;
3149             info.si_signo = TARGET_SIGBUS;
3150             info.si_errno = 0;
3151             info.si_code = TARGET_BUS_ADRALN;
3152             info._sifields._sigfault._addr = env->trap_arg0;
3153             queue_signal(env, info.si_signo, &info);
3154             break;
3155         case EXCP_OPCDEC:
3156         do_sigill:
3157             env->lock_addr = -1;
3158             info.si_signo = TARGET_SIGILL;
3159             info.si_errno = 0;
3160             info.si_code = TARGET_ILL_ILLOPC;
3161             info._sifields._sigfault._addr = env->pc;
3162             queue_signal(env, info.si_signo, &info);
3163             break;
3164         case EXCP_ARITH:
3165             env->lock_addr = -1;
3166             info.si_signo = TARGET_SIGFPE;
3167             info.si_errno = 0;
3168             info.si_code = TARGET_FPE_FLTINV;
3169             info._sifields._sigfault._addr = env->pc;
3170             queue_signal(env, info.si_signo, &info);
3171             break;
3172         case EXCP_FEN:
3173             /* No-op.  Linux simply re-enables the FPU.  */
3174             break;
3175         case EXCP_CALL_PAL:
3176             env->lock_addr = -1;
3177             switch (env->error_code) {
3178             case 0x80:
3179                 /* BPT */
3180                 info.si_signo = TARGET_SIGTRAP;
3181                 info.si_errno = 0;
3182                 info.si_code = TARGET_TRAP_BRKPT;
3183                 info._sifields._sigfault._addr = env->pc;
3184                 queue_signal(env, info.si_signo, &info);
3185                 break;
3186             case 0x81:
3187                 /* BUGCHK */
3188                 info.si_signo = TARGET_SIGTRAP;
3189                 info.si_errno = 0;
3190                 info.si_code = 0;
3191                 info._sifields._sigfault._addr = env->pc;
3192                 queue_signal(env, info.si_signo, &info);
3193                 break;
3194             case 0x83:
3195                 /* CALLSYS */
3196                 trapnr = env->ir[IR_V0];
3197                 sysret = do_syscall(env, trapnr,
3198                                     env->ir[IR_A0], env->ir[IR_A1],
3199                                     env->ir[IR_A2], env->ir[IR_A3],
3200                                     env->ir[IR_A4], env->ir[IR_A5],
3201                                     0, 0);
3202                 if (trapnr == TARGET_NR_sigreturn
3203                     || trapnr == TARGET_NR_rt_sigreturn) {
3204                     break;
3205                 }
3206                 /* Syscall writes 0 to V0 to bypass error check, similar
3207                    to how this is handled internal to Linux kernel.
3208                    (Ab)use trapnr temporarily as boolean indicating error.  */
3209                 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3210                 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3211                 env->ir[IR_A3] = trapnr;
3212                 break;
3213             case 0x86:
3214                 /* IMB */
3215                 /* ??? We can probably elide the code using page_unprotect
3216                    that is checking for self-modifying code.  Instead we
3217                    could simply call tb_flush here.  Until we work out the
3218                    changes required to turn off the extra write protection,
3219                    this can be a no-op.  */
3220                 break;
3221             case 0x9E:
3222                 /* RDUNIQUE */
3223                 /* Handled in the translator for usermode.  */
3224                 abort();
3225             case 0x9F:
3226                 /* WRUNIQUE */
3227                 /* Handled in the translator for usermode.  */
3228                 abort();
3229             case 0xAA:
3230                 /* GENTRAP */
3231                 info.si_signo = TARGET_SIGFPE;
3232                 switch (env->ir[IR_A0]) {
3233                 case TARGET_GEN_INTOVF:
3234                     info.si_code = TARGET_FPE_INTOVF;
3235                     break;
3236                 case TARGET_GEN_INTDIV:
3237                     info.si_code = TARGET_FPE_INTDIV;
3238                     break;
3239                 case TARGET_GEN_FLTOVF:
3240                     info.si_code = TARGET_FPE_FLTOVF;
3241                     break;
3242                 case TARGET_GEN_FLTUND:
3243                     info.si_code = TARGET_FPE_FLTUND;
3244                     break;
3245                 case TARGET_GEN_FLTINV:
3246                     info.si_code = TARGET_FPE_FLTINV;
3247                     break;
3248                 case TARGET_GEN_FLTINE:
3249                     info.si_code = TARGET_FPE_FLTRES;
3250                     break;
3251                 case TARGET_GEN_ROPRAND:
3252                     info.si_code = 0;
3253                     break;
3254                 default:
3255                     info.si_signo = TARGET_SIGTRAP;
3256                     info.si_code = 0;
3257                     break;
3258                 }
3259                 info.si_errno = 0;
3260                 info._sifields._sigfault._addr = env->pc;
3261                 queue_signal(env, info.si_signo, &info);
3262                 break;
3263             default:
3264                 goto do_sigill;
3265             }
3266             break;
3267         case EXCP_DEBUG:
3268             info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3269             if (info.si_signo) {
3270                 env->lock_addr = -1;
3271                 info.si_errno = 0;
3272                 info.si_code = TARGET_TRAP_BRKPT;
3273                 queue_signal(env, info.si_signo, &info);
3274             }
3275             break;
3276         case EXCP_STL_C:
3277         case EXCP_STQ_C:
3278             do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3279             break;
3280         case EXCP_INTERRUPT:
3281             /* Just indicate that signals should be handled asap.  */
3282             break;
3283         default:
3284             printf ("Unhandled trap: 0x%x\n", trapnr);
3285             cpu_dump_state(cs, stderr, fprintf, 0);
3286             exit (1);
3287         }
3288         process_pending_signals (env);
3289     }
3290 }
3291 #endif /* TARGET_ALPHA */
3292 
3293 #ifdef TARGET_S390X
3294 void cpu_loop(CPUS390XState *env)
3295 {
3296     CPUState *cs = CPU(s390_env_get_cpu(env));
3297     int trapnr, n, sig;
3298     target_siginfo_t info;
3299     target_ulong addr;
3300 
3301     while (1) {
3302         cpu_exec_start(cs);
3303         trapnr = cpu_s390x_exec(env);
3304         cpu_exec_end(cs);
3305         switch (trapnr) {
3306         case EXCP_INTERRUPT:
3307             /* Just indicate that signals should be handled asap.  */
3308             break;
3309 
3310         case EXCP_SVC:
3311             n = env->int_svc_code;
3312             if (!n) {
3313                 /* syscalls > 255 */
3314                 n = env->regs[1];
3315             }
3316             env->psw.addr += env->int_svc_ilen;
3317             env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
3318                                       env->regs[4], env->regs[5],
3319                                       env->regs[6], env->regs[7], 0, 0);
3320             break;
3321 
3322         case EXCP_DEBUG:
3323             sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3324             if (sig) {
3325                 n = TARGET_TRAP_BRKPT;
3326                 goto do_signal_pc;
3327             }
3328             break;
3329         case EXCP_PGM:
3330             n = env->int_pgm_code;
3331             switch (n) {
3332             case PGM_OPERATION:
3333             case PGM_PRIVILEGED:
3334                 sig = TARGET_SIGILL;
3335                 n = TARGET_ILL_ILLOPC;
3336                 goto do_signal_pc;
3337             case PGM_PROTECTION:
3338             case PGM_ADDRESSING:
3339                 sig = TARGET_SIGSEGV;
3340                 /* XXX: check env->error_code */
3341                 n = TARGET_SEGV_MAPERR;
3342                 addr = env->__excp_addr;
3343                 goto do_signal;
3344             case PGM_EXECUTE:
3345             case PGM_SPECIFICATION:
3346             case PGM_SPECIAL_OP:
3347             case PGM_OPERAND:
3348             do_sigill_opn:
3349                 sig = TARGET_SIGILL;
3350                 n = TARGET_ILL_ILLOPN;
3351                 goto do_signal_pc;
3352 
3353             case PGM_FIXPT_OVERFLOW:
3354                 sig = TARGET_SIGFPE;
3355                 n = TARGET_FPE_INTOVF;
3356                 goto do_signal_pc;
3357             case PGM_FIXPT_DIVIDE:
3358                 sig = TARGET_SIGFPE;
3359                 n = TARGET_FPE_INTDIV;
3360                 goto do_signal_pc;
3361 
3362             case PGM_DATA:
3363                 n = (env->fpc >> 8) & 0xff;
3364                 if (n == 0xff) {
3365                     /* compare-and-trap */
3366                     goto do_sigill_opn;
3367                 } else {
3368                     /* An IEEE exception, simulated or otherwise.  */
3369                     if (n & 0x80) {
3370                         n = TARGET_FPE_FLTINV;
3371                     } else if (n & 0x40) {
3372                         n = TARGET_FPE_FLTDIV;
3373                     } else if (n & 0x20) {
3374                         n = TARGET_FPE_FLTOVF;
3375                     } else if (n & 0x10) {
3376                         n = TARGET_FPE_FLTUND;
3377                     } else if (n & 0x08) {
3378                         n = TARGET_FPE_FLTRES;
3379                     } else {
3380                         /* ??? Quantum exception; BFP, DFP error.  */
3381                         goto do_sigill_opn;
3382                     }
3383                     sig = TARGET_SIGFPE;
3384                     goto do_signal_pc;
3385                 }
3386 
3387             default:
3388                 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3389                 cpu_dump_state(cs, stderr, fprintf, 0);
3390                 exit(1);
3391             }
3392             break;
3393 
3394         do_signal_pc:
3395             addr = env->psw.addr;
3396         do_signal:
3397             info.si_signo = sig;
3398             info.si_errno = 0;
3399             info.si_code = n;
3400             info._sifields._sigfault._addr = addr;
3401             queue_signal(env, info.si_signo, &info);
3402             break;
3403 
3404         default:
3405             fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3406             cpu_dump_state(cs, stderr, fprintf, 0);
3407             exit(1);
3408         }
3409         process_pending_signals (env);
3410     }
3411 }
3412 
3413 #endif /* TARGET_S390X */
3414 
3415 THREAD CPUState *thread_cpu;
3416 
3417 void task_settid(TaskState *ts)
3418 {
3419     if (ts->ts_tid == 0) {
3420         ts->ts_tid = (pid_t)syscall(SYS_gettid);
3421     }
3422 }
3423 
3424 void stop_all_tasks(void)
3425 {
3426     /*
3427      * We trust that when using NPTL, start_exclusive()
3428      * handles thread stopping correctly.
3429      */
3430     start_exclusive();
3431 }
3432 
3433 /* Assumes contents are already zeroed.  */
3434 void init_task_state(TaskState *ts)
3435 {
3436     int i;
3437 
3438     ts->used = 1;
3439     ts->first_free = ts->sigqueue_table;
3440     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3441         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3442     }
3443     ts->sigqueue_table[i].next = NULL;
3444 }
3445 
3446 CPUArchState *cpu_copy(CPUArchState *env)
3447 {
3448     CPUState *cpu = ENV_GET_CPU(env);
3449     CPUState *new_cpu = cpu_init(cpu_model);
3450     CPUArchState *new_env = new_cpu->env_ptr;
3451     CPUBreakpoint *bp;
3452     CPUWatchpoint *wp;
3453 
3454     /* Reset non arch specific state */
3455     cpu_reset(new_cpu);
3456 
3457     memcpy(new_env, env, sizeof(CPUArchState));
3458 
3459     /* Clone all break/watchpoints.
3460        Note: Once we support ptrace with hw-debug register access, make sure
3461        BP_CPU break/watchpoints are handled correctly on clone. */
3462     QTAILQ_INIT(&cpu->breakpoints);
3463     QTAILQ_INIT(&cpu->watchpoints);
3464     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3465         cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3466     }
3467     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3468         cpu_watchpoint_insert(new_cpu, wp->vaddr, wp->len, wp->flags, NULL);
3469     }
3470 
3471     return new_env;
3472 }
3473 
3474 static void handle_arg_help(const char *arg)
3475 {
3476     usage();
3477 }
3478 
3479 static void handle_arg_log(const char *arg)
3480 {
3481     int mask;
3482 
3483     mask = qemu_str_to_log_mask(arg);
3484     if (!mask) {
3485         qemu_print_log_usage(stdout);
3486         exit(1);
3487     }
3488     qemu_set_log(mask);
3489 }
3490 
3491 static void handle_arg_log_filename(const char *arg)
3492 {
3493     qemu_set_log_filename(arg);
3494 }
3495 
3496 static void handle_arg_set_env(const char *arg)
3497 {
3498     char *r, *p, *token;
3499     r = p = strdup(arg);
3500     while ((token = strsep(&p, ",")) != NULL) {
3501         if (envlist_setenv(envlist, token) != 0) {
3502             usage();
3503         }
3504     }
3505     free(r);
3506 }
3507 
3508 static void handle_arg_unset_env(const char *arg)
3509 {
3510     char *r, *p, *token;
3511     r = p = strdup(arg);
3512     while ((token = strsep(&p, ",")) != NULL) {
3513         if (envlist_unsetenv(envlist, token) != 0) {
3514             usage();
3515         }
3516     }
3517     free(r);
3518 }
3519 
3520 static void handle_arg_argv0(const char *arg)
3521 {
3522     argv0 = strdup(arg);
3523 }
3524 
3525 static void handle_arg_stack_size(const char *arg)
3526 {
3527     char *p;
3528     guest_stack_size = strtoul(arg, &p, 0);
3529     if (guest_stack_size == 0) {
3530         usage();
3531     }
3532 
3533     if (*p == 'M') {
3534         guest_stack_size *= 1024 * 1024;
3535     } else if (*p == 'k' || *p == 'K') {
3536         guest_stack_size *= 1024;
3537     }
3538 }
3539 
3540 static void handle_arg_ld_prefix(const char *arg)
3541 {
3542     interp_prefix = strdup(arg);
3543 }
3544 
3545 static void handle_arg_pagesize(const char *arg)
3546 {
3547     qemu_host_page_size = atoi(arg);
3548     if (qemu_host_page_size == 0 ||
3549         (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3550         fprintf(stderr, "page size must be a power of two\n");
3551         exit(1);
3552     }
3553 }
3554 
3555 static void handle_arg_randseed(const char *arg)
3556 {
3557     unsigned long long seed;
3558 
3559     if (parse_uint_full(arg, &seed, 0) != 0 || seed > UINT_MAX) {
3560         fprintf(stderr, "Invalid seed number: %s\n", arg);
3561         exit(1);
3562     }
3563     srand(seed);
3564 }
3565 
3566 static void handle_arg_gdb(const char *arg)
3567 {
3568     gdbstub_port = atoi(arg);
3569 }
3570 
3571 static void handle_arg_uname(const char *arg)
3572 {
3573     qemu_uname_release = strdup(arg);
3574 }
3575 
3576 static void handle_arg_cpu(const char *arg)
3577 {
3578     cpu_model = strdup(arg);
3579     if (cpu_model == NULL || is_help_option(cpu_model)) {
3580         /* XXX: implement xxx_cpu_list for targets that still miss it */
3581 #if defined(cpu_list)
3582         cpu_list(stdout, &fprintf);
3583 #endif
3584         exit(1);
3585     }
3586 }
3587 
3588 #if defined(CONFIG_USE_GUEST_BASE)
3589 static void handle_arg_guest_base(const char *arg)
3590 {
3591     guest_base = strtol(arg, NULL, 0);
3592     have_guest_base = 1;
3593 }
3594 
3595 static void handle_arg_reserved_va(const char *arg)
3596 {
3597     char *p;
3598     int shift = 0;
3599     reserved_va = strtoul(arg, &p, 0);
3600     switch (*p) {
3601     case 'k':
3602     case 'K':
3603         shift = 10;
3604         break;
3605     case 'M':
3606         shift = 20;
3607         break;
3608     case 'G':
3609         shift = 30;
3610         break;
3611     }
3612     if (shift) {
3613         unsigned long unshifted = reserved_va;
3614         p++;
3615         reserved_va <<= shift;
3616         if (((reserved_va >> shift) != unshifted)
3617 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3618             || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3619 #endif
3620             ) {
3621             fprintf(stderr, "Reserved virtual address too big\n");
3622             exit(1);
3623         }
3624     }
3625     if (*p) {
3626         fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3627         exit(1);
3628     }
3629 }
3630 #endif
3631 
3632 static void handle_arg_singlestep(const char *arg)
3633 {
3634     singlestep = 1;
3635 }
3636 
3637 static void handle_arg_strace(const char *arg)
3638 {
3639     do_strace = 1;
3640 }
3641 
3642 static void handle_arg_version(const char *arg)
3643 {
3644     printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3645            ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3646     exit(0);
3647 }
3648 
3649 struct qemu_argument {
3650     const char *argv;
3651     const char *env;
3652     bool has_arg;
3653     void (*handle_opt)(const char *arg);
3654     const char *example;
3655     const char *help;
3656 };
3657 
3658 static const struct qemu_argument arg_table[] = {
3659     {"h",          "",                 false, handle_arg_help,
3660      "",           "print this help"},
3661     {"g",          "QEMU_GDB",         true,  handle_arg_gdb,
3662      "port",       "wait gdb connection to 'port'"},
3663     {"L",          "QEMU_LD_PREFIX",   true,  handle_arg_ld_prefix,
3664      "path",       "set the elf interpreter prefix to 'path'"},
3665     {"s",          "QEMU_STACK_SIZE",  true,  handle_arg_stack_size,
3666      "size",       "set the stack size to 'size' bytes"},
3667     {"cpu",        "QEMU_CPU",         true,  handle_arg_cpu,
3668      "model",      "select CPU (-cpu help for list)"},
3669     {"E",          "QEMU_SET_ENV",     true,  handle_arg_set_env,
3670      "var=value",  "sets targets environment variable (see below)"},
3671     {"U",          "QEMU_UNSET_ENV",   true,  handle_arg_unset_env,
3672      "var",        "unsets targets environment variable (see below)"},
3673     {"0",          "QEMU_ARGV0",       true,  handle_arg_argv0,
3674      "argv0",      "forces target process argv[0] to be 'argv0'"},
3675     {"r",          "QEMU_UNAME",       true,  handle_arg_uname,
3676      "uname",      "set qemu uname release string to 'uname'"},
3677 #if defined(CONFIG_USE_GUEST_BASE)
3678     {"B",          "QEMU_GUEST_BASE",  true,  handle_arg_guest_base,
3679      "address",    "set guest_base address to 'address'"},
3680     {"R",          "QEMU_RESERVED_VA", true,  handle_arg_reserved_va,
3681      "size",       "reserve 'size' bytes for guest virtual address space"},
3682 #endif
3683     {"d",          "QEMU_LOG",         true,  handle_arg_log,
3684      "item[,...]", "enable logging of specified items "
3685      "(use '-d help' for a list of items)"},
3686     {"D",          "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3687      "logfile",     "write logs to 'logfile' (default stderr)"},
3688     {"p",          "QEMU_PAGESIZE",    true,  handle_arg_pagesize,
3689      "pagesize",   "set the host page size to 'pagesize'"},
3690     {"singlestep", "QEMU_SINGLESTEP",  false, handle_arg_singlestep,
3691      "",           "run in singlestep mode"},
3692     {"strace",     "QEMU_STRACE",      false, handle_arg_strace,
3693      "",           "log system calls"},
3694     {"seed",       "QEMU_RAND_SEED",   true,  handle_arg_randseed,
3695      "",           "Seed for pseudo-random number generator"},
3696     {"version",    "QEMU_VERSION",     false, handle_arg_version,
3697      "",           "display version information and exit"},
3698     {NULL, NULL, false, NULL, NULL, NULL}
3699 };
3700 
3701 static void usage(void)
3702 {
3703     const struct qemu_argument *arginfo;
3704     int maxarglen;
3705     int maxenvlen;
3706 
3707     printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
3708            "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
3709            "\n"
3710            "Options and associated environment variables:\n"
3711            "\n");
3712 
3713     /* Calculate column widths. We must always have at least enough space
3714      * for the column header.
3715      */
3716     maxarglen = strlen("Argument");
3717     maxenvlen = strlen("Env-variable");
3718 
3719     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3720         int arglen = strlen(arginfo->argv);
3721         if (arginfo->has_arg) {
3722             arglen += strlen(arginfo->example) + 1;
3723         }
3724         if (strlen(arginfo->env) > maxenvlen) {
3725             maxenvlen = strlen(arginfo->env);
3726         }
3727         if (arglen > maxarglen) {
3728             maxarglen = arglen;
3729         }
3730     }
3731 
3732     printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
3733             maxenvlen, "Env-variable");
3734 
3735     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3736         if (arginfo->has_arg) {
3737             printf("-%s %-*s %-*s %s\n", arginfo->argv,
3738                    (int)(maxarglen - strlen(arginfo->argv) - 1),
3739                    arginfo->example, maxenvlen, arginfo->env, arginfo->help);
3740         } else {
3741             printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
3742                     maxenvlen, arginfo->env,
3743                     arginfo->help);
3744         }
3745     }
3746 
3747     printf("\n"
3748            "Defaults:\n"
3749            "QEMU_LD_PREFIX  = %s\n"
3750            "QEMU_STACK_SIZE = %ld byte\n",
3751            interp_prefix,
3752            guest_stack_size);
3753 
3754     printf("\n"
3755            "You can use -E and -U options or the QEMU_SET_ENV and\n"
3756            "QEMU_UNSET_ENV environment variables to set and unset\n"
3757            "environment variables for the target process.\n"
3758            "It is possible to provide several variables by separating them\n"
3759            "by commas in getsubopt(3) style. Additionally it is possible to\n"
3760            "provide the -E and -U options multiple times.\n"
3761            "The following lines are equivalent:\n"
3762            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3763            "    -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3764            "    QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3765            "Note that if you provide several changes to a single variable\n"
3766            "the last change will stay in effect.\n");
3767 
3768     exit(1);
3769 }
3770 
3771 static int parse_args(int argc, char **argv)
3772 {
3773     const char *r;
3774     int optind;
3775     const struct qemu_argument *arginfo;
3776 
3777     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3778         if (arginfo->env == NULL) {
3779             continue;
3780         }
3781 
3782         r = getenv(arginfo->env);
3783         if (r != NULL) {
3784             arginfo->handle_opt(r);
3785         }
3786     }
3787 
3788     optind = 1;
3789     for (;;) {
3790         if (optind >= argc) {
3791             break;
3792         }
3793         r = argv[optind];
3794         if (r[0] != '-') {
3795             break;
3796         }
3797         optind++;
3798         r++;
3799         if (!strcmp(r, "-")) {
3800             break;
3801         }
3802 
3803         for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3804             if (!strcmp(r, arginfo->argv)) {
3805                 if (arginfo->has_arg) {
3806                     if (optind >= argc) {
3807                         usage();
3808                     }
3809                     arginfo->handle_opt(argv[optind]);
3810                     optind++;
3811                 } else {
3812                     arginfo->handle_opt(NULL);
3813                 }
3814                 break;
3815             }
3816         }
3817 
3818         /* no option matched the current argv */
3819         if (arginfo->handle_opt == NULL) {
3820             usage();
3821         }
3822     }
3823 
3824     if (optind >= argc) {
3825         usage();
3826     }
3827 
3828     filename = argv[optind];
3829     exec_path = argv[optind];
3830 
3831     return optind;
3832 }
3833 
3834 int main(int argc, char **argv, char **envp)
3835 {
3836     struct target_pt_regs regs1, *regs = &regs1;
3837     struct image_info info1, *info = &info1;
3838     struct linux_binprm bprm;
3839     TaskState *ts;
3840     CPUArchState *env;
3841     CPUState *cpu;
3842     int optind;
3843     char **target_environ, **wrk;
3844     char **target_argv;
3845     int target_argc;
3846     int i;
3847     int ret;
3848     int execfd;
3849 
3850     module_call_init(MODULE_INIT_QOM);
3851 
3852     if ((envlist = envlist_create()) == NULL) {
3853         (void) fprintf(stderr, "Unable to allocate envlist\n");
3854         exit(1);
3855     }
3856 
3857     /* add current environment into the list */
3858     for (wrk = environ; *wrk != NULL; wrk++) {
3859         (void) envlist_setenv(envlist, *wrk);
3860     }
3861 
3862     /* Read the stack limit from the kernel.  If it's "unlimited",
3863        then we can do little else besides use the default.  */
3864     {
3865         struct rlimit lim;
3866         if (getrlimit(RLIMIT_STACK, &lim) == 0
3867             && lim.rlim_cur != RLIM_INFINITY
3868             && lim.rlim_cur == (target_long)lim.rlim_cur) {
3869             guest_stack_size = lim.rlim_cur;
3870         }
3871     }
3872 
3873     cpu_model = NULL;
3874 #if defined(cpudef_setup)
3875     cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3876 #endif
3877 
3878     srand(time(NULL));
3879 
3880     optind = parse_args(argc, argv);
3881 
3882     /* Zero out regs */
3883     memset(regs, 0, sizeof(struct target_pt_regs));
3884 
3885     /* Zero out image_info */
3886     memset(info, 0, sizeof(struct image_info));
3887 
3888     memset(&bprm, 0, sizeof (bprm));
3889 
3890     /* Scan interp_prefix dir for replacement files. */
3891     init_paths(interp_prefix);
3892 
3893     init_qemu_uname_release();
3894 
3895     if (cpu_model == NULL) {
3896 #if defined(TARGET_I386)
3897 #ifdef TARGET_X86_64
3898         cpu_model = "qemu64";
3899 #else
3900         cpu_model = "qemu32";
3901 #endif
3902 #elif defined(TARGET_ARM)
3903         cpu_model = "any";
3904 #elif defined(TARGET_UNICORE32)
3905         cpu_model = "any";
3906 #elif defined(TARGET_M68K)
3907         cpu_model = "any";
3908 #elif defined(TARGET_SPARC)
3909 #ifdef TARGET_SPARC64
3910         cpu_model = "TI UltraSparc II";
3911 #else
3912         cpu_model = "Fujitsu MB86904";
3913 #endif
3914 #elif defined(TARGET_MIPS)
3915 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3916         cpu_model = "5KEf";
3917 #else
3918         cpu_model = "24Kf";
3919 #endif
3920 #elif defined TARGET_OPENRISC
3921         cpu_model = "or1200";
3922 #elif defined(TARGET_PPC)
3923 # ifdef TARGET_PPC64
3924         cpu_model = "POWER7";
3925 # else
3926         cpu_model = "750";
3927 # endif
3928 #else
3929         cpu_model = "any";
3930 #endif
3931     }
3932     tcg_exec_init(0);
3933     /* NOTE: we need to init the CPU at this stage to get
3934        qemu_host_page_size */
3935     cpu = cpu_init(cpu_model);
3936     if (!cpu) {
3937         fprintf(stderr, "Unable to find CPU definition\n");
3938         exit(1);
3939     }
3940     env = cpu->env_ptr;
3941     cpu_reset(cpu);
3942 
3943     thread_cpu = cpu;
3944 
3945     if (getenv("QEMU_STRACE")) {
3946         do_strace = 1;
3947     }
3948 
3949     if (getenv("QEMU_RAND_SEED")) {
3950         handle_arg_randseed(getenv("QEMU_RAND_SEED"));
3951     }
3952 
3953     target_environ = envlist_to_environ(envlist, NULL);
3954     envlist_free(envlist);
3955 
3956 #if defined(CONFIG_USE_GUEST_BASE)
3957     /*
3958      * Now that page sizes are configured in cpu_init() we can do
3959      * proper page alignment for guest_base.
3960      */
3961     guest_base = HOST_PAGE_ALIGN(guest_base);
3962 
3963     if (reserved_va || have_guest_base) {
3964         guest_base = init_guest_space(guest_base, reserved_va, 0,
3965                                       have_guest_base);
3966         if (guest_base == (unsigned long)-1) {
3967             fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3968                     "space for use as guest address space (check your virtual "
3969                     "memory ulimit setting or reserve less using -R option)\n",
3970                     reserved_va);
3971             exit(1);
3972         }
3973 
3974         if (reserved_va) {
3975             mmap_next_start = reserved_va;
3976         }
3977     }
3978 #endif /* CONFIG_USE_GUEST_BASE */
3979 
3980     /*
3981      * Read in mmap_min_addr kernel parameter.  This value is used
3982      * When loading the ELF image to determine whether guest_base
3983      * is needed.  It is also used in mmap_find_vma.
3984      */
3985     {
3986         FILE *fp;
3987 
3988         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3989             unsigned long tmp;
3990             if (fscanf(fp, "%lu", &tmp) == 1) {
3991                 mmap_min_addr = tmp;
3992                 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3993             }
3994             fclose(fp);
3995         }
3996     }
3997 
3998     /*
3999      * Prepare copy of argv vector for target.
4000      */
4001     target_argc = argc - optind;
4002     target_argv = calloc(target_argc + 1, sizeof (char *));
4003     if (target_argv == NULL) {
4004 	(void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
4005 	exit(1);
4006     }
4007 
4008     /*
4009      * If argv0 is specified (using '-0' switch) we replace
4010      * argv[0] pointer with the given one.
4011      */
4012     i = 0;
4013     if (argv0 != NULL) {
4014         target_argv[i++] = strdup(argv0);
4015     }
4016     for (; i < target_argc; i++) {
4017         target_argv[i] = strdup(argv[optind + i]);
4018     }
4019     target_argv[target_argc] = NULL;
4020 
4021     ts = g_malloc0 (sizeof(TaskState));
4022     init_task_state(ts);
4023     /* build Task State */
4024     ts->info = info;
4025     ts->bprm = &bprm;
4026     cpu->opaque = ts;
4027     task_settid(ts);
4028 
4029     execfd = qemu_getauxval(AT_EXECFD);
4030     if (execfd == 0) {
4031         execfd = open(filename, O_RDONLY);
4032         if (execfd < 0) {
4033             printf("Error while loading %s: %s\n", filename, strerror(errno));
4034             _exit(1);
4035         }
4036     }
4037 
4038     ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4039         info, &bprm);
4040     if (ret != 0) {
4041         printf("Error while loading %s: %s\n", filename, strerror(-ret));
4042         _exit(1);
4043     }
4044 
4045     for (wrk = target_environ; *wrk; wrk++) {
4046         free(*wrk);
4047     }
4048 
4049     free(target_environ);
4050 
4051     if (qemu_log_enabled()) {
4052 #if defined(CONFIG_USE_GUEST_BASE)
4053         qemu_log("guest_base  0x%lx\n", guest_base);
4054 #endif
4055         log_page_dump();
4056 
4057         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4058         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4059         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
4060                  info->start_code);
4061         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
4062                  info->start_data);
4063         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4064         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
4065                  info->start_stack);
4066         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
4067         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
4068     }
4069 
4070     target_set_brk(info->brk);
4071     syscall_init();
4072     signal_init();
4073 
4074 #if defined(CONFIG_USE_GUEST_BASE)
4075     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
4076        generating the prologue until now so that the prologue can take
4077        the real value of GUEST_BASE into account.  */
4078     tcg_prologue_init(&tcg_ctx);
4079 #endif
4080 
4081 #if defined(TARGET_I386)
4082     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4083     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
4084     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4085         env->cr[4] |= CR4_OSFXSR_MASK;
4086         env->hflags |= HF_OSFXSR_MASK;
4087     }
4088 #ifndef TARGET_ABI32
4089     /* enable 64 bit mode if possible */
4090     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4091         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4092         exit(1);
4093     }
4094     env->cr[4] |= CR4_PAE_MASK;
4095     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4096     env->hflags |= HF_LMA_MASK;
4097 #endif
4098 
4099     /* flags setup : we activate the IRQs by default as in user mode */
4100     env->eflags |= IF_MASK;
4101 
4102     /* linux register setup */
4103 #ifndef TARGET_ABI32
4104     env->regs[R_EAX] = regs->rax;
4105     env->regs[R_EBX] = regs->rbx;
4106     env->regs[R_ECX] = regs->rcx;
4107     env->regs[R_EDX] = regs->rdx;
4108     env->regs[R_ESI] = regs->rsi;
4109     env->regs[R_EDI] = regs->rdi;
4110     env->regs[R_EBP] = regs->rbp;
4111     env->regs[R_ESP] = regs->rsp;
4112     env->eip = regs->rip;
4113 #else
4114     env->regs[R_EAX] = regs->eax;
4115     env->regs[R_EBX] = regs->ebx;
4116     env->regs[R_ECX] = regs->ecx;
4117     env->regs[R_EDX] = regs->edx;
4118     env->regs[R_ESI] = regs->esi;
4119     env->regs[R_EDI] = regs->edi;
4120     env->regs[R_EBP] = regs->ebp;
4121     env->regs[R_ESP] = regs->esp;
4122     env->eip = regs->eip;
4123 #endif
4124 
4125     /* linux interrupt setup */
4126 #ifndef TARGET_ABI32
4127     env->idt.limit = 511;
4128 #else
4129     env->idt.limit = 255;
4130 #endif
4131     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4132                                 PROT_READ|PROT_WRITE,
4133                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4134     idt_table = g2h(env->idt.base);
4135     set_idt(0, 0);
4136     set_idt(1, 0);
4137     set_idt(2, 0);
4138     set_idt(3, 3);
4139     set_idt(4, 3);
4140     set_idt(5, 0);
4141     set_idt(6, 0);
4142     set_idt(7, 0);
4143     set_idt(8, 0);
4144     set_idt(9, 0);
4145     set_idt(10, 0);
4146     set_idt(11, 0);
4147     set_idt(12, 0);
4148     set_idt(13, 0);
4149     set_idt(14, 0);
4150     set_idt(15, 0);
4151     set_idt(16, 0);
4152     set_idt(17, 0);
4153     set_idt(18, 0);
4154     set_idt(19, 0);
4155     set_idt(0x80, 3);
4156 
4157     /* linux segment setup */
4158     {
4159         uint64_t *gdt_table;
4160         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4161                                     PROT_READ|PROT_WRITE,
4162                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4163         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4164         gdt_table = g2h(env->gdt.base);
4165 #ifdef TARGET_ABI32
4166         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4167                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4168                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4169 #else
4170         /* 64 bit code segment */
4171         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4172                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4173                  DESC_L_MASK |
4174                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4175 #endif
4176         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4177                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4178                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4179     }
4180     cpu_x86_load_seg(env, R_CS, __USER_CS);
4181     cpu_x86_load_seg(env, R_SS, __USER_DS);
4182 #ifdef TARGET_ABI32
4183     cpu_x86_load_seg(env, R_DS, __USER_DS);
4184     cpu_x86_load_seg(env, R_ES, __USER_DS);
4185     cpu_x86_load_seg(env, R_FS, __USER_DS);
4186     cpu_x86_load_seg(env, R_GS, __USER_DS);
4187     /* This hack makes Wine work... */
4188     env->segs[R_FS].selector = 0;
4189 #else
4190     cpu_x86_load_seg(env, R_DS, 0);
4191     cpu_x86_load_seg(env, R_ES, 0);
4192     cpu_x86_load_seg(env, R_FS, 0);
4193     cpu_x86_load_seg(env, R_GS, 0);
4194 #endif
4195 #elif defined(TARGET_AARCH64)
4196     {
4197         int i;
4198 
4199         if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4200             fprintf(stderr,
4201                     "The selected ARM CPU does not support 64 bit mode\n");
4202             exit(1);
4203         }
4204 
4205         for (i = 0; i < 31; i++) {
4206             env->xregs[i] = regs->regs[i];
4207         }
4208         env->pc = regs->pc;
4209         env->xregs[31] = regs->sp;
4210     }
4211 #elif defined(TARGET_ARM)
4212     {
4213         int i;
4214         cpsr_write(env, regs->uregs[16], 0xffffffff);
4215         for(i = 0; i < 16; i++) {
4216             env->regs[i] = regs->uregs[i];
4217         }
4218         /* Enable BE8.  */
4219         if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4220             && (info->elf_flags & EF_ARM_BE8)) {
4221             env->bswap_code = 1;
4222         }
4223     }
4224 #elif defined(TARGET_UNICORE32)
4225     {
4226         int i;
4227         cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4228         for (i = 0; i < 32; i++) {
4229             env->regs[i] = regs->uregs[i];
4230         }
4231     }
4232 #elif defined(TARGET_SPARC)
4233     {
4234         int i;
4235 	env->pc = regs->pc;
4236 	env->npc = regs->npc;
4237         env->y = regs->y;
4238         for(i = 0; i < 8; i++)
4239             env->gregs[i] = regs->u_regs[i];
4240         for(i = 0; i < 8; i++)
4241             env->regwptr[i] = regs->u_regs[i + 8];
4242     }
4243 #elif defined(TARGET_PPC)
4244     {
4245         int i;
4246 
4247 #if defined(TARGET_PPC64)
4248 #if defined(TARGET_ABI32)
4249         env->msr &= ~((target_ulong)1 << MSR_SF);
4250 #else
4251         env->msr |= (target_ulong)1 << MSR_SF;
4252 #endif
4253 #endif
4254         env->nip = regs->nip;
4255         for(i = 0; i < 32; i++) {
4256             env->gpr[i] = regs->gpr[i];
4257         }
4258     }
4259 #elif defined(TARGET_M68K)
4260     {
4261         env->pc = regs->pc;
4262         env->dregs[0] = regs->d0;
4263         env->dregs[1] = regs->d1;
4264         env->dregs[2] = regs->d2;
4265         env->dregs[3] = regs->d3;
4266         env->dregs[4] = regs->d4;
4267         env->dregs[5] = regs->d5;
4268         env->dregs[6] = regs->d6;
4269         env->dregs[7] = regs->d7;
4270         env->aregs[0] = regs->a0;
4271         env->aregs[1] = regs->a1;
4272         env->aregs[2] = regs->a2;
4273         env->aregs[3] = regs->a3;
4274         env->aregs[4] = regs->a4;
4275         env->aregs[5] = regs->a5;
4276         env->aregs[6] = regs->a6;
4277         env->aregs[7] = regs->usp;
4278         env->sr = regs->sr;
4279         ts->sim_syscalls = 1;
4280     }
4281 #elif defined(TARGET_MICROBLAZE)
4282     {
4283         env->regs[0] = regs->r0;
4284         env->regs[1] = regs->r1;
4285         env->regs[2] = regs->r2;
4286         env->regs[3] = regs->r3;
4287         env->regs[4] = regs->r4;
4288         env->regs[5] = regs->r5;
4289         env->regs[6] = regs->r6;
4290         env->regs[7] = regs->r7;
4291         env->regs[8] = regs->r8;
4292         env->regs[9] = regs->r9;
4293         env->regs[10] = regs->r10;
4294         env->regs[11] = regs->r11;
4295         env->regs[12] = regs->r12;
4296         env->regs[13] = regs->r13;
4297         env->regs[14] = regs->r14;
4298         env->regs[15] = regs->r15;
4299         env->regs[16] = regs->r16;
4300         env->regs[17] = regs->r17;
4301         env->regs[18] = regs->r18;
4302         env->regs[19] = regs->r19;
4303         env->regs[20] = regs->r20;
4304         env->regs[21] = regs->r21;
4305         env->regs[22] = regs->r22;
4306         env->regs[23] = regs->r23;
4307         env->regs[24] = regs->r24;
4308         env->regs[25] = regs->r25;
4309         env->regs[26] = regs->r26;
4310         env->regs[27] = regs->r27;
4311         env->regs[28] = regs->r28;
4312         env->regs[29] = regs->r29;
4313         env->regs[30] = regs->r30;
4314         env->regs[31] = regs->r31;
4315         env->sregs[SR_PC] = regs->pc;
4316     }
4317 #elif defined(TARGET_MIPS)
4318     {
4319         int i;
4320 
4321         for(i = 0; i < 32; i++) {
4322             env->active_tc.gpr[i] = regs->regs[i];
4323         }
4324         env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4325         if (regs->cp0_epc & 1) {
4326             env->hflags |= MIPS_HFLAG_M16;
4327         }
4328     }
4329 #elif defined(TARGET_OPENRISC)
4330     {
4331         int i;
4332 
4333         for (i = 0; i < 32; i++) {
4334             env->gpr[i] = regs->gpr[i];
4335         }
4336 
4337         env->sr = regs->sr;
4338         env->pc = regs->pc;
4339     }
4340 #elif defined(TARGET_SH4)
4341     {
4342         int i;
4343 
4344         for(i = 0; i < 16; i++) {
4345             env->gregs[i] = regs->regs[i];
4346         }
4347         env->pc = regs->pc;
4348     }
4349 #elif defined(TARGET_ALPHA)
4350     {
4351         int i;
4352 
4353         for(i = 0; i < 28; i++) {
4354             env->ir[i] = ((abi_ulong *)regs)[i];
4355         }
4356         env->ir[IR_SP] = regs->usp;
4357         env->pc = regs->pc;
4358     }
4359 #elif defined(TARGET_CRIS)
4360     {
4361 	    env->regs[0] = regs->r0;
4362 	    env->regs[1] = regs->r1;
4363 	    env->regs[2] = regs->r2;
4364 	    env->regs[3] = regs->r3;
4365 	    env->regs[4] = regs->r4;
4366 	    env->regs[5] = regs->r5;
4367 	    env->regs[6] = regs->r6;
4368 	    env->regs[7] = regs->r7;
4369 	    env->regs[8] = regs->r8;
4370 	    env->regs[9] = regs->r9;
4371 	    env->regs[10] = regs->r10;
4372 	    env->regs[11] = regs->r11;
4373 	    env->regs[12] = regs->r12;
4374 	    env->regs[13] = regs->r13;
4375 	    env->regs[14] = info->start_stack;
4376 	    env->regs[15] = regs->acr;
4377 	    env->pc = regs->erp;
4378     }
4379 #elif defined(TARGET_S390X)
4380     {
4381             int i;
4382             for (i = 0; i < 16; i++) {
4383                 env->regs[i] = regs->gprs[i];
4384             }
4385             env->psw.mask = regs->psw.mask;
4386             env->psw.addr = regs->psw.addr;
4387     }
4388 #else
4389 #error unsupported target CPU
4390 #endif
4391 
4392 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4393     ts->stack_base = info->start_stack;
4394     ts->heap_base = info->brk;
4395     /* This will be filled in on the first SYS_HEAPINFO call.  */
4396     ts->heap_limit = 0;
4397 #endif
4398 
4399     if (gdbstub_port) {
4400         if (gdbserver_start(gdbstub_port) < 0) {
4401             fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4402                     gdbstub_port);
4403             exit(1);
4404         }
4405         gdb_handlesig(cpu, 0);
4406     }
4407     cpu_loop(env);
4408     /* never exits */
4409     return 0;
4410 }
4411