xref: /openbmc/qemu/linux-user/main.c (revision 01c22f2c)
1 /*
2  *  qemu user main
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include <stdio.h>
21 #include <stdarg.h>
22 #include <string.h>
23 #include <errno.h>
24 #include <unistd.h>
25 #include <sys/mman.h>
26 #include <sys/syscall.h>
27 #include <sys/resource.h>
28 
29 #include "qemu.h"
30 #include "qemu-common.h"
31 #include "qemu/cache-utils.h"
32 #include "cpu.h"
33 #include "tcg.h"
34 #include "qemu/timer.h"
35 #include "qemu/envlist.h"
36 #include "elf.h"
37 
38 char *exec_path;
39 
40 int singlestep;
41 const char *filename;
42 const char *argv0;
43 int gdbstub_port;
44 envlist_t *envlist;
45 static const char *cpu_model;
46 unsigned long mmap_min_addr;
47 #if defined(CONFIG_USE_GUEST_BASE)
48 unsigned long guest_base;
49 int have_guest_base;
50 #if (TARGET_LONG_BITS == 32) && (HOST_LONG_BITS == 64)
51 /*
52  * When running 32-on-64 we should make sure we can fit all of the possible
53  * guest address space into a contiguous chunk of virtual host memory.
54  *
55  * This way we will never overlap with our own libraries or binaries or stack
56  * or anything else that QEMU maps.
57  */
58 # ifdef TARGET_MIPS
59 /* MIPS only supports 31 bits of virtual address space for user space */
60 unsigned long reserved_va = 0x77000000;
61 # else
62 unsigned long reserved_va = 0xf7000000;
63 # endif
64 #else
65 unsigned long reserved_va;
66 #endif
67 #endif
68 
69 static void usage(void);
70 
71 static const char *interp_prefix = CONFIG_QEMU_INTERP_PREFIX;
72 const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
73 
74 /* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
75    we allocate a bigger stack. Need a better solution, for example
76    by remapping the process stack directly at the right place */
77 unsigned long guest_stack_size = 8 * 1024 * 1024UL;
78 
79 void gemu_log(const char *fmt, ...)
80 {
81     va_list ap;
82 
83     va_start(ap, fmt);
84     vfprintf(stderr, fmt, ap);
85     va_end(ap);
86 }
87 
88 #if defined(TARGET_I386)
89 int cpu_get_pic_interrupt(CPUX86State *env)
90 {
91     return -1;
92 }
93 #endif
94 
95 /***********************************************************/
96 /* Helper routines for implementing atomic operations.  */
97 
98 /* To implement exclusive operations we force all cpus to syncronise.
99    We don't require a full sync, only that no cpus are executing guest code.
100    The alternative is to map target atomic ops onto host equivalents,
101    which requires quite a lot of per host/target work.  */
102 static pthread_mutex_t cpu_list_mutex = PTHREAD_MUTEX_INITIALIZER;
103 static pthread_mutex_t exclusive_lock = PTHREAD_MUTEX_INITIALIZER;
104 static pthread_cond_t exclusive_cond = PTHREAD_COND_INITIALIZER;
105 static pthread_cond_t exclusive_resume = PTHREAD_COND_INITIALIZER;
106 static int pending_cpus;
107 
108 /* Make sure everything is in a consistent state for calling fork().  */
109 void fork_start(void)
110 {
111     pthread_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
112     pthread_mutex_lock(&exclusive_lock);
113     mmap_fork_start();
114 }
115 
116 void fork_end(int child)
117 {
118     mmap_fork_end(child);
119     if (child) {
120         CPUState *cpu, *next_cpu;
121         /* Child processes created by fork() only have a single thread.
122            Discard information about the parent threads.  */
123         CPU_FOREACH_SAFE(cpu, next_cpu) {
124             if (cpu != thread_cpu) {
125                 QTAILQ_REMOVE(&cpus, thread_cpu, node);
126             }
127         }
128         pending_cpus = 0;
129         pthread_mutex_init(&exclusive_lock, NULL);
130         pthread_mutex_init(&cpu_list_mutex, NULL);
131         pthread_cond_init(&exclusive_cond, NULL);
132         pthread_cond_init(&exclusive_resume, NULL);
133         pthread_mutex_init(&tcg_ctx.tb_ctx.tb_lock, NULL);
134         gdbserver_fork((CPUArchState *)thread_cpu->env_ptr);
135     } else {
136         pthread_mutex_unlock(&exclusive_lock);
137         pthread_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
138     }
139 }
140 
141 /* Wait for pending exclusive operations to complete.  The exclusive lock
142    must be held.  */
143 static inline void exclusive_idle(void)
144 {
145     while (pending_cpus) {
146         pthread_cond_wait(&exclusive_resume, &exclusive_lock);
147     }
148 }
149 
150 /* Start an exclusive operation.
151    Must only be called from outside cpu_arm_exec.   */
152 static inline void start_exclusive(void)
153 {
154     CPUState *other_cpu;
155 
156     pthread_mutex_lock(&exclusive_lock);
157     exclusive_idle();
158 
159     pending_cpus = 1;
160     /* Make all other cpus stop executing.  */
161     CPU_FOREACH(other_cpu) {
162         if (other_cpu->running) {
163             pending_cpus++;
164             cpu_exit(other_cpu);
165         }
166     }
167     if (pending_cpus > 1) {
168         pthread_cond_wait(&exclusive_cond, &exclusive_lock);
169     }
170 }
171 
172 /* Finish an exclusive operation.  */
173 static inline void end_exclusive(void)
174 {
175     pending_cpus = 0;
176     pthread_cond_broadcast(&exclusive_resume);
177     pthread_mutex_unlock(&exclusive_lock);
178 }
179 
180 /* Wait for exclusive ops to finish, and begin cpu execution.  */
181 static inline void cpu_exec_start(CPUState *cpu)
182 {
183     pthread_mutex_lock(&exclusive_lock);
184     exclusive_idle();
185     cpu->running = true;
186     pthread_mutex_unlock(&exclusive_lock);
187 }
188 
189 /* Mark cpu as not executing, and release pending exclusive ops.  */
190 static inline void cpu_exec_end(CPUState *cpu)
191 {
192     pthread_mutex_lock(&exclusive_lock);
193     cpu->running = false;
194     if (pending_cpus > 1) {
195         pending_cpus--;
196         if (pending_cpus == 1) {
197             pthread_cond_signal(&exclusive_cond);
198         }
199     }
200     exclusive_idle();
201     pthread_mutex_unlock(&exclusive_lock);
202 }
203 
204 void cpu_list_lock(void)
205 {
206     pthread_mutex_lock(&cpu_list_mutex);
207 }
208 
209 void cpu_list_unlock(void)
210 {
211     pthread_mutex_unlock(&cpu_list_mutex);
212 }
213 
214 
215 #ifdef TARGET_I386
216 /***********************************************************/
217 /* CPUX86 core interface */
218 
219 void cpu_smm_update(CPUX86State *env)
220 {
221 }
222 
223 uint64_t cpu_get_tsc(CPUX86State *env)
224 {
225     return cpu_get_real_ticks();
226 }
227 
228 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
229                      int flags)
230 {
231     unsigned int e1, e2;
232     uint32_t *p;
233     e1 = (addr << 16) | (limit & 0xffff);
234     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
235     e2 |= flags;
236     p = ptr;
237     p[0] = tswap32(e1);
238     p[1] = tswap32(e2);
239 }
240 
241 static uint64_t *idt_table;
242 #ifdef TARGET_X86_64
243 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
244                        uint64_t addr, unsigned int sel)
245 {
246     uint32_t *p, e1, e2;
247     e1 = (addr & 0xffff) | (sel << 16);
248     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
249     p = ptr;
250     p[0] = tswap32(e1);
251     p[1] = tswap32(e2);
252     p[2] = tswap32(addr >> 32);
253     p[3] = 0;
254 }
255 /* only dpl matters as we do only user space emulation */
256 static void set_idt(int n, unsigned int dpl)
257 {
258     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
259 }
260 #else
261 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
262                      uint32_t addr, unsigned int sel)
263 {
264     uint32_t *p, e1, e2;
265     e1 = (addr & 0xffff) | (sel << 16);
266     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
267     p = ptr;
268     p[0] = tswap32(e1);
269     p[1] = tswap32(e2);
270 }
271 
272 /* only dpl matters as we do only user space emulation */
273 static void set_idt(int n, unsigned int dpl)
274 {
275     set_gate(idt_table + n, 0, dpl, 0, 0);
276 }
277 #endif
278 
279 void cpu_loop(CPUX86State *env)
280 {
281     CPUState *cs = CPU(x86_env_get_cpu(env));
282     int trapnr;
283     abi_ulong pc;
284     target_siginfo_t info;
285 
286     for(;;) {
287         trapnr = cpu_x86_exec(env);
288         switch(trapnr) {
289         case 0x80:
290             /* linux syscall from int $0x80 */
291             env->regs[R_EAX] = do_syscall(env,
292                                           env->regs[R_EAX],
293                                           env->regs[R_EBX],
294                                           env->regs[R_ECX],
295                                           env->regs[R_EDX],
296                                           env->regs[R_ESI],
297                                           env->regs[R_EDI],
298                                           env->regs[R_EBP],
299                                           0, 0);
300             break;
301 #ifndef TARGET_ABI32
302         case EXCP_SYSCALL:
303             /* linux syscall from syscall instruction */
304             env->regs[R_EAX] = do_syscall(env,
305                                           env->regs[R_EAX],
306                                           env->regs[R_EDI],
307                                           env->regs[R_ESI],
308                                           env->regs[R_EDX],
309                                           env->regs[10],
310                                           env->regs[8],
311                                           env->regs[9],
312                                           0, 0);
313             env->eip = env->exception_next_eip;
314             break;
315 #endif
316         case EXCP0B_NOSEG:
317         case EXCP0C_STACK:
318             info.si_signo = SIGBUS;
319             info.si_errno = 0;
320             info.si_code = TARGET_SI_KERNEL;
321             info._sifields._sigfault._addr = 0;
322             queue_signal(env, info.si_signo, &info);
323             break;
324         case EXCP0D_GPF:
325             /* XXX: potential problem if ABI32 */
326 #ifndef TARGET_X86_64
327             if (env->eflags & VM_MASK) {
328                 handle_vm86_fault(env);
329             } else
330 #endif
331             {
332                 info.si_signo = SIGSEGV;
333                 info.si_errno = 0;
334                 info.si_code = TARGET_SI_KERNEL;
335                 info._sifields._sigfault._addr = 0;
336                 queue_signal(env, info.si_signo, &info);
337             }
338             break;
339         case EXCP0E_PAGE:
340             info.si_signo = SIGSEGV;
341             info.si_errno = 0;
342             if (!(env->error_code & 1))
343                 info.si_code = TARGET_SEGV_MAPERR;
344             else
345                 info.si_code = TARGET_SEGV_ACCERR;
346             info._sifields._sigfault._addr = env->cr[2];
347             queue_signal(env, info.si_signo, &info);
348             break;
349         case EXCP00_DIVZ:
350 #ifndef TARGET_X86_64
351             if (env->eflags & VM_MASK) {
352                 handle_vm86_trap(env, trapnr);
353             } else
354 #endif
355             {
356                 /* division by zero */
357                 info.si_signo = SIGFPE;
358                 info.si_errno = 0;
359                 info.si_code = TARGET_FPE_INTDIV;
360                 info._sifields._sigfault._addr = env->eip;
361                 queue_signal(env, info.si_signo, &info);
362             }
363             break;
364         case EXCP01_DB:
365         case EXCP03_INT3:
366 #ifndef TARGET_X86_64
367             if (env->eflags & VM_MASK) {
368                 handle_vm86_trap(env, trapnr);
369             } else
370 #endif
371             {
372                 info.si_signo = SIGTRAP;
373                 info.si_errno = 0;
374                 if (trapnr == EXCP01_DB) {
375                     info.si_code = TARGET_TRAP_BRKPT;
376                     info._sifields._sigfault._addr = env->eip;
377                 } else {
378                     info.si_code = TARGET_SI_KERNEL;
379                     info._sifields._sigfault._addr = 0;
380                 }
381                 queue_signal(env, info.si_signo, &info);
382             }
383             break;
384         case EXCP04_INTO:
385         case EXCP05_BOUND:
386 #ifndef TARGET_X86_64
387             if (env->eflags & VM_MASK) {
388                 handle_vm86_trap(env, trapnr);
389             } else
390 #endif
391             {
392                 info.si_signo = SIGSEGV;
393                 info.si_errno = 0;
394                 info.si_code = TARGET_SI_KERNEL;
395                 info._sifields._sigfault._addr = 0;
396                 queue_signal(env, info.si_signo, &info);
397             }
398             break;
399         case EXCP06_ILLOP:
400             info.si_signo = SIGILL;
401             info.si_errno = 0;
402             info.si_code = TARGET_ILL_ILLOPN;
403             info._sifields._sigfault._addr = env->eip;
404             queue_signal(env, info.si_signo, &info);
405             break;
406         case EXCP_INTERRUPT:
407             /* just indicate that signals should be handled asap */
408             break;
409         case EXCP_DEBUG:
410             {
411                 int sig;
412 
413                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
414                 if (sig)
415                   {
416                     info.si_signo = sig;
417                     info.si_errno = 0;
418                     info.si_code = TARGET_TRAP_BRKPT;
419                     queue_signal(env, info.si_signo, &info);
420                   }
421             }
422             break;
423         default:
424             pc = env->segs[R_CS].base + env->eip;
425             fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
426                     (long)pc, trapnr);
427             abort();
428         }
429         process_pending_signals(env);
430     }
431 }
432 #endif
433 
434 #ifdef TARGET_ARM
435 
436 #define get_user_code_u32(x, gaddr, doswap)             \
437     ({ abi_long __r = get_user_u32((x), (gaddr));       \
438         if (!__r && (doswap)) {                         \
439             (x) = bswap32(x);                           \
440         }                                               \
441         __r;                                            \
442     })
443 
444 #define get_user_code_u16(x, gaddr, doswap)             \
445     ({ abi_long __r = get_user_u16((x), (gaddr));       \
446         if (!__r && (doswap)) {                         \
447             (x) = bswap16(x);                           \
448         }                                               \
449         __r;                                            \
450     })
451 
452 #ifdef TARGET_ABI32
453 /* Commpage handling -- there is no commpage for AArch64 */
454 
455 /*
456  * See the Linux kernel's Documentation/arm/kernel_user_helpers.txt
457  * Input:
458  * r0 = pointer to oldval
459  * r1 = pointer to newval
460  * r2 = pointer to target value
461  *
462  * Output:
463  * r0 = 0 if *ptr was changed, non-0 if no exchange happened
464  * C set if *ptr was changed, clear if no exchange happened
465  *
466  * Note segv's in kernel helpers are a bit tricky, we can set the
467  * data address sensibly but the PC address is just the entry point.
468  */
469 static void arm_kernel_cmpxchg64_helper(CPUARMState *env)
470 {
471     uint64_t oldval, newval, val;
472     uint32_t addr, cpsr;
473     target_siginfo_t info;
474 
475     /* Based on the 32 bit code in do_kernel_trap */
476 
477     /* XXX: This only works between threads, not between processes.
478        It's probably possible to implement this with native host
479        operations. However things like ldrex/strex are much harder so
480        there's not much point trying.  */
481     start_exclusive();
482     cpsr = cpsr_read(env);
483     addr = env->regs[2];
484 
485     if (get_user_u64(oldval, env->regs[0])) {
486         env->cp15.c6_data = env->regs[0];
487         goto segv;
488     };
489 
490     if (get_user_u64(newval, env->regs[1])) {
491         env->cp15.c6_data = env->regs[1];
492         goto segv;
493     };
494 
495     if (get_user_u64(val, addr)) {
496         env->cp15.c6_data = addr;
497         goto segv;
498     }
499 
500     if (val == oldval) {
501         val = newval;
502 
503         if (put_user_u64(val, addr)) {
504             env->cp15.c6_data = addr;
505             goto segv;
506         };
507 
508         env->regs[0] = 0;
509         cpsr |= CPSR_C;
510     } else {
511         env->regs[0] = -1;
512         cpsr &= ~CPSR_C;
513     }
514     cpsr_write(env, cpsr, CPSR_C);
515     end_exclusive();
516     return;
517 
518 segv:
519     end_exclusive();
520     /* We get the PC of the entry address - which is as good as anything,
521        on a real kernel what you get depends on which mode it uses. */
522     info.si_signo = SIGSEGV;
523     info.si_errno = 0;
524     /* XXX: check env->error_code */
525     info.si_code = TARGET_SEGV_MAPERR;
526     info._sifields._sigfault._addr = env->cp15.c6_data;
527     queue_signal(env, info.si_signo, &info);
528 
529     end_exclusive();
530 }
531 
532 /* Handle a jump to the kernel code page.  */
533 static int
534 do_kernel_trap(CPUARMState *env)
535 {
536     uint32_t addr;
537     uint32_t cpsr;
538     uint32_t val;
539 
540     switch (env->regs[15]) {
541     case 0xffff0fa0: /* __kernel_memory_barrier */
542         /* ??? No-op. Will need to do better for SMP.  */
543         break;
544     case 0xffff0fc0: /* __kernel_cmpxchg */
545          /* XXX: This only works between threads, not between processes.
546             It's probably possible to implement this with native host
547             operations. However things like ldrex/strex are much harder so
548             there's not much point trying.  */
549         start_exclusive();
550         cpsr = cpsr_read(env);
551         addr = env->regs[2];
552         /* FIXME: This should SEGV if the access fails.  */
553         if (get_user_u32(val, addr))
554             val = ~env->regs[0];
555         if (val == env->regs[0]) {
556             val = env->regs[1];
557             /* FIXME: Check for segfaults.  */
558             put_user_u32(val, addr);
559             env->regs[0] = 0;
560             cpsr |= CPSR_C;
561         } else {
562             env->regs[0] = -1;
563             cpsr &= ~CPSR_C;
564         }
565         cpsr_write(env, cpsr, CPSR_C);
566         end_exclusive();
567         break;
568     case 0xffff0fe0: /* __kernel_get_tls */
569         env->regs[0] = env->cp15.tpidrro_el0;
570         break;
571     case 0xffff0f60: /* __kernel_cmpxchg64 */
572         arm_kernel_cmpxchg64_helper(env);
573         break;
574 
575     default:
576         return 1;
577     }
578     /* Jump back to the caller.  */
579     addr = env->regs[14];
580     if (addr & 1) {
581         env->thumb = 1;
582         addr &= ~1;
583     }
584     env->regs[15] = addr;
585 
586     return 0;
587 }
588 
589 /* Store exclusive handling for AArch32 */
590 static int do_strex(CPUARMState *env)
591 {
592     uint64_t val;
593     int size;
594     int rc = 1;
595     int segv = 0;
596     uint32_t addr;
597     start_exclusive();
598     if (env->exclusive_addr != env->exclusive_test) {
599         goto fail;
600     }
601     /* We know we're always AArch32 so the address is in uint32_t range
602      * unless it was the -1 exclusive-monitor-lost value (which won't
603      * match exclusive_test above).
604      */
605     assert(extract64(env->exclusive_addr, 32, 32) == 0);
606     addr = env->exclusive_addr;
607     size = env->exclusive_info & 0xf;
608     switch (size) {
609     case 0:
610         segv = get_user_u8(val, addr);
611         break;
612     case 1:
613         segv = get_user_u16(val, addr);
614         break;
615     case 2:
616     case 3:
617         segv = get_user_u32(val, addr);
618         break;
619     default:
620         abort();
621     }
622     if (segv) {
623         env->cp15.c6_data = addr;
624         goto done;
625     }
626     if (size == 3) {
627         uint32_t valhi;
628         segv = get_user_u32(valhi, addr + 4);
629         if (segv) {
630             env->cp15.c6_data = addr + 4;
631             goto done;
632         }
633         val = deposit64(val, 32, 32, valhi);
634     }
635     if (val != env->exclusive_val) {
636         goto fail;
637     }
638 
639     val = env->regs[(env->exclusive_info >> 8) & 0xf];
640     switch (size) {
641     case 0:
642         segv = put_user_u8(val, addr);
643         break;
644     case 1:
645         segv = put_user_u16(val, addr);
646         break;
647     case 2:
648     case 3:
649         segv = put_user_u32(val, addr);
650         break;
651     }
652     if (segv) {
653         env->cp15.c6_data = addr;
654         goto done;
655     }
656     if (size == 3) {
657         val = env->regs[(env->exclusive_info >> 12) & 0xf];
658         segv = put_user_u32(val, addr + 4);
659         if (segv) {
660             env->cp15.c6_data = addr + 4;
661             goto done;
662         }
663     }
664     rc = 0;
665 fail:
666     env->regs[15] += 4;
667     env->regs[(env->exclusive_info >> 4) & 0xf] = rc;
668 done:
669     end_exclusive();
670     return segv;
671 }
672 
673 void cpu_loop(CPUARMState *env)
674 {
675     CPUState *cs = CPU(arm_env_get_cpu(env));
676     int trapnr;
677     unsigned int n, insn;
678     target_siginfo_t info;
679     uint32_t addr;
680 
681     for(;;) {
682         cpu_exec_start(cs);
683         trapnr = cpu_arm_exec(env);
684         cpu_exec_end(cs);
685         switch(trapnr) {
686         case EXCP_UDEF:
687             {
688                 TaskState *ts = cs->opaque;
689                 uint32_t opcode;
690                 int rc;
691 
692                 /* we handle the FPU emulation here, as Linux */
693                 /* we get the opcode */
694                 /* FIXME - what to do if get_user() fails? */
695                 get_user_code_u32(opcode, env->regs[15], env->bswap_code);
696 
697                 rc = EmulateAll(opcode, &ts->fpa, env);
698                 if (rc == 0) { /* illegal instruction */
699                     info.si_signo = SIGILL;
700                     info.si_errno = 0;
701                     info.si_code = TARGET_ILL_ILLOPN;
702                     info._sifields._sigfault._addr = env->regs[15];
703                     queue_signal(env, info.si_signo, &info);
704                 } else if (rc < 0) { /* FP exception */
705                     int arm_fpe=0;
706 
707                     /* translate softfloat flags to FPSR flags */
708                     if (-rc & float_flag_invalid)
709                       arm_fpe |= BIT_IOC;
710                     if (-rc & float_flag_divbyzero)
711                       arm_fpe |= BIT_DZC;
712                     if (-rc & float_flag_overflow)
713                       arm_fpe |= BIT_OFC;
714                     if (-rc & float_flag_underflow)
715                       arm_fpe |= BIT_UFC;
716                     if (-rc & float_flag_inexact)
717                       arm_fpe |= BIT_IXC;
718 
719                     FPSR fpsr = ts->fpa.fpsr;
720                     //printf("fpsr 0x%x, arm_fpe 0x%x\n",fpsr,arm_fpe);
721 
722                     if (fpsr & (arm_fpe << 16)) { /* exception enabled? */
723                       info.si_signo = SIGFPE;
724                       info.si_errno = 0;
725 
726                       /* ordered by priority, least first */
727                       if (arm_fpe & BIT_IXC) info.si_code = TARGET_FPE_FLTRES;
728                       if (arm_fpe & BIT_UFC) info.si_code = TARGET_FPE_FLTUND;
729                       if (arm_fpe & BIT_OFC) info.si_code = TARGET_FPE_FLTOVF;
730                       if (arm_fpe & BIT_DZC) info.si_code = TARGET_FPE_FLTDIV;
731                       if (arm_fpe & BIT_IOC) info.si_code = TARGET_FPE_FLTINV;
732 
733                       info._sifields._sigfault._addr = env->regs[15];
734                       queue_signal(env, info.si_signo, &info);
735                     } else {
736                       env->regs[15] += 4;
737                     }
738 
739                     /* accumulate unenabled exceptions */
740                     if ((!(fpsr & BIT_IXE)) && (arm_fpe & BIT_IXC))
741                       fpsr |= BIT_IXC;
742                     if ((!(fpsr & BIT_UFE)) && (arm_fpe & BIT_UFC))
743                       fpsr |= BIT_UFC;
744                     if ((!(fpsr & BIT_OFE)) && (arm_fpe & BIT_OFC))
745                       fpsr |= BIT_OFC;
746                     if ((!(fpsr & BIT_DZE)) && (arm_fpe & BIT_DZC))
747                       fpsr |= BIT_DZC;
748                     if ((!(fpsr & BIT_IOE)) && (arm_fpe & BIT_IOC))
749                       fpsr |= BIT_IOC;
750                     ts->fpa.fpsr=fpsr;
751                 } else { /* everything OK */
752                     /* increment PC */
753                     env->regs[15] += 4;
754                 }
755             }
756             break;
757         case EXCP_SWI:
758         case EXCP_BKPT:
759             {
760                 env->eabi = 1;
761                 /* system call */
762                 if (trapnr == EXCP_BKPT) {
763                     if (env->thumb) {
764                         /* FIXME - what to do if get_user() fails? */
765                         get_user_code_u16(insn, env->regs[15], env->bswap_code);
766                         n = insn & 0xff;
767                         env->regs[15] += 2;
768                     } else {
769                         /* FIXME - what to do if get_user() fails? */
770                         get_user_code_u32(insn, env->regs[15], env->bswap_code);
771                         n = (insn & 0xf) | ((insn >> 4) & 0xff0);
772                         env->regs[15] += 4;
773                     }
774                 } else {
775                     if (env->thumb) {
776                         /* FIXME - what to do if get_user() fails? */
777                         get_user_code_u16(insn, env->regs[15] - 2,
778                                           env->bswap_code);
779                         n = insn & 0xff;
780                     } else {
781                         /* FIXME - what to do if get_user() fails? */
782                         get_user_code_u32(insn, env->regs[15] - 4,
783                                           env->bswap_code);
784                         n = insn & 0xffffff;
785                     }
786                 }
787 
788                 if (n == ARM_NR_cacheflush) {
789                     /* nop */
790                 } else if (n == ARM_NR_semihosting
791                            || n == ARM_NR_thumb_semihosting) {
792                     env->regs[0] = do_arm_semihosting (env);
793                 } else if (n == 0 || n >= ARM_SYSCALL_BASE || env->thumb) {
794                     /* linux syscall */
795                     if (env->thumb || n == 0) {
796                         n = env->regs[7];
797                     } else {
798                         n -= ARM_SYSCALL_BASE;
799                         env->eabi = 0;
800                     }
801                     if ( n > ARM_NR_BASE) {
802                         switch (n) {
803                         case ARM_NR_cacheflush:
804                             /* nop */
805                             break;
806                         case ARM_NR_set_tls:
807                             cpu_set_tls(env, env->regs[0]);
808                             env->regs[0] = 0;
809                             break;
810                         default:
811                             gemu_log("qemu: Unsupported ARM syscall: 0x%x\n",
812                                      n);
813                             env->regs[0] = -TARGET_ENOSYS;
814                             break;
815                         }
816                     } else {
817                         env->regs[0] = do_syscall(env,
818                                                   n,
819                                                   env->regs[0],
820                                                   env->regs[1],
821                                                   env->regs[2],
822                                                   env->regs[3],
823                                                   env->regs[4],
824                                                   env->regs[5],
825                                                   0, 0);
826                     }
827                 } else {
828                     goto error;
829                 }
830             }
831             break;
832         case EXCP_INTERRUPT:
833             /* just indicate that signals should be handled asap */
834             break;
835         case EXCP_PREFETCH_ABORT:
836             addr = env->cp15.c6_insn;
837             goto do_segv;
838         case EXCP_DATA_ABORT:
839             addr = env->cp15.c6_data;
840         do_segv:
841             {
842                 info.si_signo = SIGSEGV;
843                 info.si_errno = 0;
844                 /* XXX: check env->error_code */
845                 info.si_code = TARGET_SEGV_MAPERR;
846                 info._sifields._sigfault._addr = addr;
847                 queue_signal(env, info.si_signo, &info);
848             }
849             break;
850         case EXCP_DEBUG:
851             {
852                 int sig;
853 
854                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
855                 if (sig)
856                   {
857                     info.si_signo = sig;
858                     info.si_errno = 0;
859                     info.si_code = TARGET_TRAP_BRKPT;
860                     queue_signal(env, info.si_signo, &info);
861                   }
862             }
863             break;
864         case EXCP_KERNEL_TRAP:
865             if (do_kernel_trap(env))
866               goto error;
867             break;
868         case EXCP_STREX:
869             if (do_strex(env)) {
870                 addr = env->cp15.c6_data;
871                 goto do_segv;
872             }
873             break;
874         default:
875         error:
876             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
877                     trapnr);
878             cpu_dump_state(cs, stderr, fprintf, 0);
879             abort();
880         }
881         process_pending_signals(env);
882     }
883 }
884 
885 #else
886 
887 /*
888  * Handle AArch64 store-release exclusive
889  *
890  * rs = gets the status result of store exclusive
891  * rt = is the register that is stored
892  * rt2 = is the second register store (in STP)
893  *
894  */
895 static int do_strex_a64(CPUARMState *env)
896 {
897     uint64_t val;
898     int size;
899     bool is_pair;
900     int rc = 1;
901     int segv = 0;
902     uint64_t addr;
903     int rs, rt, rt2;
904 
905     start_exclusive();
906     /* size | is_pair << 2 | (rs << 4) | (rt << 9) | (rt2 << 14)); */
907     size = extract32(env->exclusive_info, 0, 2);
908     is_pair = extract32(env->exclusive_info, 2, 1);
909     rs = extract32(env->exclusive_info, 4, 5);
910     rt = extract32(env->exclusive_info, 9, 5);
911     rt2 = extract32(env->exclusive_info, 14, 5);
912 
913     addr = env->exclusive_addr;
914 
915     if (addr != env->exclusive_test) {
916         goto finish;
917     }
918 
919     switch (size) {
920     case 0:
921         segv = get_user_u8(val, addr);
922         break;
923     case 1:
924         segv = get_user_u16(val, addr);
925         break;
926     case 2:
927         segv = get_user_u32(val, addr);
928         break;
929     case 3:
930         segv = get_user_u64(val, addr);
931         break;
932     default:
933         abort();
934     }
935     if (segv) {
936         env->cp15.c6_data = addr;
937         goto error;
938     }
939     if (val != env->exclusive_val) {
940         goto finish;
941     }
942     if (is_pair) {
943         if (size == 2) {
944             segv = get_user_u32(val, addr + 4);
945         } else {
946             segv = get_user_u64(val, addr + 8);
947         }
948         if (segv) {
949             env->cp15.c6_data = addr + (size == 2 ? 4 : 8);
950             goto error;
951         }
952         if (val != env->exclusive_high) {
953             goto finish;
954         }
955     }
956     /* handle the zero register */
957     val = rt == 31 ? 0 : env->xregs[rt];
958     switch (size) {
959     case 0:
960         segv = put_user_u8(val, addr);
961         break;
962     case 1:
963         segv = put_user_u16(val, addr);
964         break;
965     case 2:
966         segv = put_user_u32(val, addr);
967         break;
968     case 3:
969         segv = put_user_u64(val, addr);
970         break;
971     }
972     if (segv) {
973         goto error;
974     }
975     if (is_pair) {
976         /* handle the zero register */
977         val = rt2 == 31 ? 0 : env->xregs[rt2];
978         if (size == 2) {
979             segv = put_user_u32(val, addr + 4);
980         } else {
981             segv = put_user_u64(val, addr + 8);
982         }
983         if (segv) {
984             env->cp15.c6_data = addr + (size == 2 ? 4 : 8);
985             goto error;
986         }
987     }
988     rc = 0;
989 finish:
990     env->pc += 4;
991     /* rs == 31 encodes a write to the ZR, thus throwing away
992      * the status return. This is rather silly but valid.
993      */
994     if (rs < 31) {
995         env->xregs[rs] = rc;
996     }
997 error:
998     /* instruction faulted, PC does not advance */
999     /* either way a strex releases any exclusive lock we have */
1000     env->exclusive_addr = -1;
1001     end_exclusive();
1002     return segv;
1003 }
1004 
1005 /* AArch64 main loop */
1006 void cpu_loop(CPUARMState *env)
1007 {
1008     CPUState *cs = CPU(arm_env_get_cpu(env));
1009     int trapnr, sig;
1010     target_siginfo_t info;
1011     uint32_t addr;
1012 
1013     for (;;) {
1014         cpu_exec_start(cs);
1015         trapnr = cpu_arm_exec(env);
1016         cpu_exec_end(cs);
1017 
1018         switch (trapnr) {
1019         case EXCP_SWI:
1020             env->xregs[0] = do_syscall(env,
1021                                        env->xregs[8],
1022                                        env->xregs[0],
1023                                        env->xregs[1],
1024                                        env->xregs[2],
1025                                        env->xregs[3],
1026                                        env->xregs[4],
1027                                        env->xregs[5],
1028                                        0, 0);
1029             break;
1030         case EXCP_INTERRUPT:
1031             /* just indicate that signals should be handled asap */
1032             break;
1033         case EXCP_UDEF:
1034             info.si_signo = SIGILL;
1035             info.si_errno = 0;
1036             info.si_code = TARGET_ILL_ILLOPN;
1037             info._sifields._sigfault._addr = env->pc;
1038             queue_signal(env, info.si_signo, &info);
1039             break;
1040         case EXCP_PREFETCH_ABORT:
1041             addr = env->cp15.c6_insn;
1042             goto do_segv;
1043         case EXCP_DATA_ABORT:
1044             addr = env->cp15.c6_data;
1045         do_segv:
1046             info.si_signo = SIGSEGV;
1047             info.si_errno = 0;
1048             /* XXX: check env->error_code */
1049             info.si_code = TARGET_SEGV_MAPERR;
1050             info._sifields._sigfault._addr = addr;
1051             queue_signal(env, info.si_signo, &info);
1052             break;
1053         case EXCP_DEBUG:
1054         case EXCP_BKPT:
1055             sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1056             if (sig) {
1057                 info.si_signo = sig;
1058                 info.si_errno = 0;
1059                 info.si_code = TARGET_TRAP_BRKPT;
1060                 queue_signal(env, info.si_signo, &info);
1061             }
1062             break;
1063         case EXCP_STREX:
1064             if (do_strex_a64(env)) {
1065                 addr = env->cp15.c6_data;
1066                 goto do_segv;
1067             }
1068             break;
1069         default:
1070             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
1071                     trapnr);
1072             cpu_dump_state(cs, stderr, fprintf, 0);
1073             abort();
1074         }
1075         process_pending_signals(env);
1076         /* Exception return on AArch64 always clears the exclusive monitor,
1077          * so any return to running guest code implies this.
1078          * A strex (successful or otherwise) also clears the monitor, so
1079          * we don't need to specialcase EXCP_STREX.
1080          */
1081         env->exclusive_addr = -1;
1082     }
1083 }
1084 #endif /* ndef TARGET_ABI32 */
1085 
1086 #endif
1087 
1088 #ifdef TARGET_UNICORE32
1089 
1090 void cpu_loop(CPUUniCore32State *env)
1091 {
1092     CPUState *cs = CPU(uc32_env_get_cpu(env));
1093     int trapnr;
1094     unsigned int n, insn;
1095     target_siginfo_t info;
1096 
1097     for (;;) {
1098         cpu_exec_start(cs);
1099         trapnr = uc32_cpu_exec(env);
1100         cpu_exec_end(cs);
1101         switch (trapnr) {
1102         case UC32_EXCP_PRIV:
1103             {
1104                 /* system call */
1105                 get_user_u32(insn, env->regs[31] - 4);
1106                 n = insn & 0xffffff;
1107 
1108                 if (n >= UC32_SYSCALL_BASE) {
1109                     /* linux syscall */
1110                     n -= UC32_SYSCALL_BASE;
1111                     if (n == UC32_SYSCALL_NR_set_tls) {
1112                             cpu_set_tls(env, env->regs[0]);
1113                             env->regs[0] = 0;
1114                     } else {
1115                         env->regs[0] = do_syscall(env,
1116                                                   n,
1117                                                   env->regs[0],
1118                                                   env->regs[1],
1119                                                   env->regs[2],
1120                                                   env->regs[3],
1121                                                   env->regs[4],
1122                                                   env->regs[5],
1123                                                   0, 0);
1124                     }
1125                 } else {
1126                     goto error;
1127                 }
1128             }
1129             break;
1130         case UC32_EXCP_DTRAP:
1131         case UC32_EXCP_ITRAP:
1132             info.si_signo = SIGSEGV;
1133             info.si_errno = 0;
1134             /* XXX: check env->error_code */
1135             info.si_code = TARGET_SEGV_MAPERR;
1136             info._sifields._sigfault._addr = env->cp0.c4_faultaddr;
1137             queue_signal(env, info.si_signo, &info);
1138             break;
1139         case EXCP_INTERRUPT:
1140             /* just indicate that signals should be handled asap */
1141             break;
1142         case EXCP_DEBUG:
1143             {
1144                 int sig;
1145 
1146                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1147                 if (sig) {
1148                     info.si_signo = sig;
1149                     info.si_errno = 0;
1150                     info.si_code = TARGET_TRAP_BRKPT;
1151                     queue_signal(env, info.si_signo, &info);
1152                 }
1153             }
1154             break;
1155         default:
1156             goto error;
1157         }
1158         process_pending_signals(env);
1159     }
1160 
1161 error:
1162     fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n", trapnr);
1163     cpu_dump_state(cs, stderr, fprintf, 0);
1164     abort();
1165 }
1166 #endif
1167 
1168 #ifdef TARGET_SPARC
1169 #define SPARC64_STACK_BIAS 2047
1170 
1171 //#define DEBUG_WIN
1172 
1173 /* WARNING: dealing with register windows _is_ complicated. More info
1174    can be found at http://www.sics.se/~psm/sparcstack.html */
1175 static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
1176 {
1177     index = (index + cwp * 16) % (16 * env->nwindows);
1178     /* wrap handling : if cwp is on the last window, then we use the
1179        registers 'after' the end */
1180     if (index < 8 && env->cwp == env->nwindows - 1)
1181         index += 16 * env->nwindows;
1182     return index;
1183 }
1184 
1185 /* save the register window 'cwp1' */
1186 static inline void save_window_offset(CPUSPARCState *env, int cwp1)
1187 {
1188     unsigned int i;
1189     abi_ulong sp_ptr;
1190 
1191     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1192 #ifdef TARGET_SPARC64
1193     if (sp_ptr & 3)
1194         sp_ptr += SPARC64_STACK_BIAS;
1195 #endif
1196 #if defined(DEBUG_WIN)
1197     printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
1198            sp_ptr, cwp1);
1199 #endif
1200     for(i = 0; i < 16; i++) {
1201         /* FIXME - what to do if put_user() fails? */
1202         put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1203         sp_ptr += sizeof(abi_ulong);
1204     }
1205 }
1206 
1207 static void save_window(CPUSPARCState *env)
1208 {
1209 #ifndef TARGET_SPARC64
1210     unsigned int new_wim;
1211     new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
1212         ((1LL << env->nwindows) - 1);
1213     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1214     env->wim = new_wim;
1215 #else
1216     save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
1217     env->cansave++;
1218     env->canrestore--;
1219 #endif
1220 }
1221 
1222 static void restore_window(CPUSPARCState *env)
1223 {
1224 #ifndef TARGET_SPARC64
1225     unsigned int new_wim;
1226 #endif
1227     unsigned int i, cwp1;
1228     abi_ulong sp_ptr;
1229 
1230 #ifndef TARGET_SPARC64
1231     new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
1232         ((1LL << env->nwindows) - 1);
1233 #endif
1234 
1235     /* restore the invalid window */
1236     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1237     sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
1238 #ifdef TARGET_SPARC64
1239     if (sp_ptr & 3)
1240         sp_ptr += SPARC64_STACK_BIAS;
1241 #endif
1242 #if defined(DEBUG_WIN)
1243     printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
1244            sp_ptr, cwp1);
1245 #endif
1246     for(i = 0; i < 16; i++) {
1247         /* FIXME - what to do if get_user() fails? */
1248         get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
1249         sp_ptr += sizeof(abi_ulong);
1250     }
1251 #ifdef TARGET_SPARC64
1252     env->canrestore++;
1253     if (env->cleanwin < env->nwindows - 1)
1254         env->cleanwin++;
1255     env->cansave--;
1256 #else
1257     env->wim = new_wim;
1258 #endif
1259 }
1260 
1261 static void flush_windows(CPUSPARCState *env)
1262 {
1263     int offset, cwp1;
1264 
1265     offset = 1;
1266     for(;;) {
1267         /* if restore would invoke restore_window(), then we can stop */
1268         cwp1 = cpu_cwp_inc(env, env->cwp + offset);
1269 #ifndef TARGET_SPARC64
1270         if (env->wim & (1 << cwp1))
1271             break;
1272 #else
1273         if (env->canrestore == 0)
1274             break;
1275         env->cansave++;
1276         env->canrestore--;
1277 #endif
1278         save_window_offset(env, cwp1);
1279         offset++;
1280     }
1281     cwp1 = cpu_cwp_inc(env, env->cwp + 1);
1282 #ifndef TARGET_SPARC64
1283     /* set wim so that restore will reload the registers */
1284     env->wim = 1 << cwp1;
1285 #endif
1286 #if defined(DEBUG_WIN)
1287     printf("flush_windows: nb=%d\n", offset - 1);
1288 #endif
1289 }
1290 
1291 void cpu_loop (CPUSPARCState *env)
1292 {
1293     CPUState *cs = CPU(sparc_env_get_cpu(env));
1294     int trapnr;
1295     abi_long ret;
1296     target_siginfo_t info;
1297 
1298     while (1) {
1299         trapnr = cpu_sparc_exec (env);
1300 
1301         /* Compute PSR before exposing state.  */
1302         if (env->cc_op != CC_OP_FLAGS) {
1303             cpu_get_psr(env);
1304         }
1305 
1306         switch (trapnr) {
1307 #ifndef TARGET_SPARC64
1308         case 0x88:
1309         case 0x90:
1310 #else
1311         case 0x110:
1312         case 0x16d:
1313 #endif
1314             ret = do_syscall (env, env->gregs[1],
1315                               env->regwptr[0], env->regwptr[1],
1316                               env->regwptr[2], env->regwptr[3],
1317                               env->regwptr[4], env->regwptr[5],
1318                               0, 0);
1319             if ((abi_ulong)ret >= (abi_ulong)(-515)) {
1320 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1321                 env->xcc |= PSR_CARRY;
1322 #else
1323                 env->psr |= PSR_CARRY;
1324 #endif
1325                 ret = -ret;
1326             } else {
1327 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
1328                 env->xcc &= ~PSR_CARRY;
1329 #else
1330                 env->psr &= ~PSR_CARRY;
1331 #endif
1332             }
1333             env->regwptr[0] = ret;
1334             /* next instruction */
1335             env->pc = env->npc;
1336             env->npc = env->npc + 4;
1337             break;
1338         case 0x83: /* flush windows */
1339 #ifdef TARGET_ABI32
1340         case 0x103:
1341 #endif
1342             flush_windows(env);
1343             /* next instruction */
1344             env->pc = env->npc;
1345             env->npc = env->npc + 4;
1346             break;
1347 #ifndef TARGET_SPARC64
1348         case TT_WIN_OVF: /* window overflow */
1349             save_window(env);
1350             break;
1351         case TT_WIN_UNF: /* window underflow */
1352             restore_window(env);
1353             break;
1354         case TT_TFAULT:
1355         case TT_DFAULT:
1356             {
1357                 info.si_signo = TARGET_SIGSEGV;
1358                 info.si_errno = 0;
1359                 /* XXX: check env->error_code */
1360                 info.si_code = TARGET_SEGV_MAPERR;
1361                 info._sifields._sigfault._addr = env->mmuregs[4];
1362                 queue_signal(env, info.si_signo, &info);
1363             }
1364             break;
1365 #else
1366         case TT_SPILL: /* window overflow */
1367             save_window(env);
1368             break;
1369         case TT_FILL: /* window underflow */
1370             restore_window(env);
1371             break;
1372         case TT_TFAULT:
1373         case TT_DFAULT:
1374             {
1375                 info.si_signo = TARGET_SIGSEGV;
1376                 info.si_errno = 0;
1377                 /* XXX: check env->error_code */
1378                 info.si_code = TARGET_SEGV_MAPERR;
1379                 if (trapnr == TT_DFAULT)
1380                     info._sifields._sigfault._addr = env->dmmuregs[4];
1381                 else
1382                     info._sifields._sigfault._addr = cpu_tsptr(env)->tpc;
1383                 queue_signal(env, info.si_signo, &info);
1384             }
1385             break;
1386 #ifndef TARGET_ABI32
1387         case 0x16e:
1388             flush_windows(env);
1389             sparc64_get_context(env);
1390             break;
1391         case 0x16f:
1392             flush_windows(env);
1393             sparc64_set_context(env);
1394             break;
1395 #endif
1396 #endif
1397         case EXCP_INTERRUPT:
1398             /* just indicate that signals should be handled asap */
1399             break;
1400         case TT_ILL_INSN:
1401             {
1402                 info.si_signo = TARGET_SIGILL;
1403                 info.si_errno = 0;
1404                 info.si_code = TARGET_ILL_ILLOPC;
1405                 info._sifields._sigfault._addr = env->pc;
1406                 queue_signal(env, info.si_signo, &info);
1407             }
1408             break;
1409         case EXCP_DEBUG:
1410             {
1411                 int sig;
1412 
1413                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1414                 if (sig)
1415                   {
1416                     info.si_signo = sig;
1417                     info.si_errno = 0;
1418                     info.si_code = TARGET_TRAP_BRKPT;
1419                     queue_signal(env, info.si_signo, &info);
1420                   }
1421             }
1422             break;
1423         default:
1424             printf ("Unhandled trap: 0x%x\n", trapnr);
1425             cpu_dump_state(cs, stderr, fprintf, 0);
1426             exit (1);
1427         }
1428         process_pending_signals (env);
1429     }
1430 }
1431 
1432 #endif
1433 
1434 #ifdef TARGET_PPC
1435 static inline uint64_t cpu_ppc_get_tb(CPUPPCState *env)
1436 {
1437     /* TO FIX */
1438     return 0;
1439 }
1440 
1441 uint64_t cpu_ppc_load_tbl(CPUPPCState *env)
1442 {
1443     return cpu_ppc_get_tb(env);
1444 }
1445 
1446 uint32_t cpu_ppc_load_tbu(CPUPPCState *env)
1447 {
1448     return cpu_ppc_get_tb(env) >> 32;
1449 }
1450 
1451 uint64_t cpu_ppc_load_atbl(CPUPPCState *env)
1452 {
1453     return cpu_ppc_get_tb(env);
1454 }
1455 
1456 uint32_t cpu_ppc_load_atbu(CPUPPCState *env)
1457 {
1458     return cpu_ppc_get_tb(env) >> 32;
1459 }
1460 
1461 uint32_t cpu_ppc601_load_rtcu(CPUPPCState *env)
1462 __attribute__ (( alias ("cpu_ppc_load_tbu") ));
1463 
1464 uint32_t cpu_ppc601_load_rtcl(CPUPPCState *env)
1465 {
1466     return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1467 }
1468 
1469 /* XXX: to be fixed */
1470 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1471 {
1472     return -1;
1473 }
1474 
1475 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1476 {
1477     return -1;
1478 }
1479 
1480 #define EXCP_DUMP(env, fmt, ...)                                        \
1481 do {                                                                    \
1482     CPUState *cs = ENV_GET_CPU(env);                                    \
1483     fprintf(stderr, fmt , ## __VA_ARGS__);                              \
1484     cpu_dump_state(cs, stderr, fprintf, 0);                             \
1485     qemu_log(fmt, ## __VA_ARGS__);                                      \
1486     if (qemu_log_enabled()) {                                           \
1487         log_cpu_state(cs, 0);                                           \
1488     }                                                                   \
1489 } while (0)
1490 
1491 static int do_store_exclusive(CPUPPCState *env)
1492 {
1493     target_ulong addr;
1494     target_ulong page_addr;
1495     target_ulong val, val2 __attribute__((unused));
1496     int flags;
1497     int segv = 0;
1498 
1499     addr = env->reserve_ea;
1500     page_addr = addr & TARGET_PAGE_MASK;
1501     start_exclusive();
1502     mmap_lock();
1503     flags = page_get_flags(page_addr);
1504     if ((flags & PAGE_READ) == 0) {
1505         segv = 1;
1506     } else {
1507         int reg = env->reserve_info & 0x1f;
1508         int size = (env->reserve_info >> 5) & 0xf;
1509         int stored = 0;
1510 
1511         if (addr == env->reserve_addr) {
1512             switch (size) {
1513             case 1: segv = get_user_u8(val, addr); break;
1514             case 2: segv = get_user_u16(val, addr); break;
1515             case 4: segv = get_user_u32(val, addr); break;
1516 #if defined(TARGET_PPC64)
1517             case 8: segv = get_user_u64(val, addr); break;
1518             case 16: {
1519                 segv = get_user_u64(val, addr);
1520                 if (!segv) {
1521                     segv = get_user_u64(val2, addr + 8);
1522                 }
1523                 break;
1524             }
1525 #endif
1526             default: abort();
1527             }
1528             if (!segv && val == env->reserve_val) {
1529                 val = env->gpr[reg];
1530                 switch (size) {
1531                 case 1: segv = put_user_u8(val, addr); break;
1532                 case 2: segv = put_user_u16(val, addr); break;
1533                 case 4: segv = put_user_u32(val, addr); break;
1534 #if defined(TARGET_PPC64)
1535                 case 8: segv = put_user_u64(val, addr); break;
1536                 case 16: {
1537                     if (val2 == env->reserve_val2) {
1538                         segv = put_user_u64(val, addr);
1539                         if (!segv) {
1540                             segv = put_user_u64(val2, addr + 8);
1541                         }
1542                     }
1543                     break;
1544                 }
1545 #endif
1546                 default: abort();
1547                 }
1548                 if (!segv) {
1549                     stored = 1;
1550                 }
1551             }
1552         }
1553         env->crf[0] = (stored << 1) | xer_so;
1554         env->reserve_addr = (target_ulong)-1;
1555     }
1556     if (!segv) {
1557         env->nip += 4;
1558     }
1559     mmap_unlock();
1560     end_exclusive();
1561     return segv;
1562 }
1563 
1564 void cpu_loop(CPUPPCState *env)
1565 {
1566     CPUState *cs = CPU(ppc_env_get_cpu(env));
1567     target_siginfo_t info;
1568     int trapnr;
1569     target_ulong ret;
1570 
1571     for(;;) {
1572         cpu_exec_start(cs);
1573         trapnr = cpu_ppc_exec(env);
1574         cpu_exec_end(cs);
1575         switch(trapnr) {
1576         case POWERPC_EXCP_NONE:
1577             /* Just go on */
1578             break;
1579         case POWERPC_EXCP_CRITICAL: /* Critical input                        */
1580             cpu_abort(cs, "Critical interrupt while in user mode. "
1581                       "Aborting\n");
1582             break;
1583         case POWERPC_EXCP_MCHECK:   /* Machine check exception               */
1584             cpu_abort(cs, "Machine check exception while in user mode. "
1585                       "Aborting\n");
1586             break;
1587         case POWERPC_EXCP_DSI:      /* Data storage exception                */
1588             EXCP_DUMP(env, "Invalid data memory access: 0x" TARGET_FMT_lx "\n",
1589                       env->spr[SPR_DAR]);
1590             /* XXX: check this. Seems bugged */
1591             switch (env->error_code & 0xFF000000) {
1592             case 0x40000000:
1593                 info.si_signo = TARGET_SIGSEGV;
1594                 info.si_errno = 0;
1595                 info.si_code = TARGET_SEGV_MAPERR;
1596                 break;
1597             case 0x04000000:
1598                 info.si_signo = TARGET_SIGILL;
1599                 info.si_errno = 0;
1600                 info.si_code = TARGET_ILL_ILLADR;
1601                 break;
1602             case 0x08000000:
1603                 info.si_signo = TARGET_SIGSEGV;
1604                 info.si_errno = 0;
1605                 info.si_code = TARGET_SEGV_ACCERR;
1606                 break;
1607             default:
1608                 /* Let's send a regular segfault... */
1609                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1610                           env->error_code);
1611                 info.si_signo = TARGET_SIGSEGV;
1612                 info.si_errno = 0;
1613                 info.si_code = TARGET_SEGV_MAPERR;
1614                 break;
1615             }
1616             info._sifields._sigfault._addr = env->nip;
1617             queue_signal(env, info.si_signo, &info);
1618             break;
1619         case POWERPC_EXCP_ISI:      /* Instruction storage exception         */
1620             EXCP_DUMP(env, "Invalid instruction fetch: 0x\n" TARGET_FMT_lx
1621                       "\n", env->spr[SPR_SRR0]);
1622             /* XXX: check this */
1623             switch (env->error_code & 0xFF000000) {
1624             case 0x40000000:
1625                 info.si_signo = TARGET_SIGSEGV;
1626             info.si_errno = 0;
1627                 info.si_code = TARGET_SEGV_MAPERR;
1628                 break;
1629             case 0x10000000:
1630             case 0x08000000:
1631                 info.si_signo = TARGET_SIGSEGV;
1632                 info.si_errno = 0;
1633                 info.si_code = TARGET_SEGV_ACCERR;
1634                 break;
1635             default:
1636                 /* Let's send a regular segfault... */
1637                 EXCP_DUMP(env, "Invalid segfault errno (%02x)\n",
1638                           env->error_code);
1639                 info.si_signo = TARGET_SIGSEGV;
1640                 info.si_errno = 0;
1641                 info.si_code = TARGET_SEGV_MAPERR;
1642                 break;
1643             }
1644             info._sifields._sigfault._addr = env->nip - 4;
1645             queue_signal(env, info.si_signo, &info);
1646             break;
1647         case POWERPC_EXCP_EXTERNAL: /* External input                        */
1648             cpu_abort(cs, "External interrupt while in user mode. "
1649                       "Aborting\n");
1650             break;
1651         case POWERPC_EXCP_ALIGN:    /* Alignment exception                   */
1652             EXCP_DUMP(env, "Unaligned memory access\n");
1653             /* XXX: check this */
1654             info.si_signo = TARGET_SIGBUS;
1655             info.si_errno = 0;
1656             info.si_code = TARGET_BUS_ADRALN;
1657             info._sifields._sigfault._addr = env->nip - 4;
1658             queue_signal(env, info.si_signo, &info);
1659             break;
1660         case POWERPC_EXCP_PROGRAM:  /* Program exception                     */
1661             /* XXX: check this */
1662             switch (env->error_code & ~0xF) {
1663             case POWERPC_EXCP_FP:
1664                 EXCP_DUMP(env, "Floating point program exception\n");
1665                 info.si_signo = TARGET_SIGFPE;
1666                 info.si_errno = 0;
1667                 switch (env->error_code & 0xF) {
1668                 case POWERPC_EXCP_FP_OX:
1669                     info.si_code = TARGET_FPE_FLTOVF;
1670                     break;
1671                 case POWERPC_EXCP_FP_UX:
1672                     info.si_code = TARGET_FPE_FLTUND;
1673                     break;
1674                 case POWERPC_EXCP_FP_ZX:
1675                 case POWERPC_EXCP_FP_VXZDZ:
1676                     info.si_code = TARGET_FPE_FLTDIV;
1677                     break;
1678                 case POWERPC_EXCP_FP_XX:
1679                     info.si_code = TARGET_FPE_FLTRES;
1680                     break;
1681                 case POWERPC_EXCP_FP_VXSOFT:
1682                     info.si_code = TARGET_FPE_FLTINV;
1683                     break;
1684                 case POWERPC_EXCP_FP_VXSNAN:
1685                 case POWERPC_EXCP_FP_VXISI:
1686                 case POWERPC_EXCP_FP_VXIDI:
1687                 case POWERPC_EXCP_FP_VXIMZ:
1688                 case POWERPC_EXCP_FP_VXVC:
1689                 case POWERPC_EXCP_FP_VXSQRT:
1690                 case POWERPC_EXCP_FP_VXCVI:
1691                     info.si_code = TARGET_FPE_FLTSUB;
1692                     break;
1693                 default:
1694                     EXCP_DUMP(env, "Unknown floating point exception (%02x)\n",
1695                               env->error_code);
1696                     break;
1697                 }
1698                 break;
1699             case POWERPC_EXCP_INVAL:
1700                 EXCP_DUMP(env, "Invalid instruction\n");
1701                 info.si_signo = TARGET_SIGILL;
1702                 info.si_errno = 0;
1703                 switch (env->error_code & 0xF) {
1704                 case POWERPC_EXCP_INVAL_INVAL:
1705                     info.si_code = TARGET_ILL_ILLOPC;
1706                     break;
1707                 case POWERPC_EXCP_INVAL_LSWX:
1708                     info.si_code = TARGET_ILL_ILLOPN;
1709                     break;
1710                 case POWERPC_EXCP_INVAL_SPR:
1711                     info.si_code = TARGET_ILL_PRVREG;
1712                     break;
1713                 case POWERPC_EXCP_INVAL_FP:
1714                     info.si_code = TARGET_ILL_COPROC;
1715                     break;
1716                 default:
1717                     EXCP_DUMP(env, "Unknown invalid operation (%02x)\n",
1718                               env->error_code & 0xF);
1719                     info.si_code = TARGET_ILL_ILLADR;
1720                     break;
1721                 }
1722                 break;
1723             case POWERPC_EXCP_PRIV:
1724                 EXCP_DUMP(env, "Privilege violation\n");
1725                 info.si_signo = TARGET_SIGILL;
1726                 info.si_errno = 0;
1727                 switch (env->error_code & 0xF) {
1728                 case POWERPC_EXCP_PRIV_OPC:
1729                     info.si_code = TARGET_ILL_PRVOPC;
1730                     break;
1731                 case POWERPC_EXCP_PRIV_REG:
1732                     info.si_code = TARGET_ILL_PRVREG;
1733                     break;
1734                 default:
1735                     EXCP_DUMP(env, "Unknown privilege violation (%02x)\n",
1736                               env->error_code & 0xF);
1737                     info.si_code = TARGET_ILL_PRVOPC;
1738                     break;
1739                 }
1740                 break;
1741             case POWERPC_EXCP_TRAP:
1742                 cpu_abort(cs, "Tried to call a TRAP\n");
1743                 break;
1744             default:
1745                 /* Should not happen ! */
1746                 cpu_abort(cs, "Unknown program exception (%02x)\n",
1747                           env->error_code);
1748                 break;
1749             }
1750             info._sifields._sigfault._addr = env->nip - 4;
1751             queue_signal(env, info.si_signo, &info);
1752             break;
1753         case POWERPC_EXCP_FPU:      /* Floating-point unavailable exception  */
1754             EXCP_DUMP(env, "No floating point allowed\n");
1755             info.si_signo = TARGET_SIGILL;
1756             info.si_errno = 0;
1757             info.si_code = TARGET_ILL_COPROC;
1758             info._sifields._sigfault._addr = env->nip - 4;
1759             queue_signal(env, info.si_signo, &info);
1760             break;
1761         case POWERPC_EXCP_SYSCALL:  /* System call exception                 */
1762             cpu_abort(cs, "Syscall exception while in user mode. "
1763                       "Aborting\n");
1764             break;
1765         case POWERPC_EXCP_APU:      /* Auxiliary processor unavailable       */
1766             EXCP_DUMP(env, "No APU instruction allowed\n");
1767             info.si_signo = TARGET_SIGILL;
1768             info.si_errno = 0;
1769             info.si_code = TARGET_ILL_COPROC;
1770             info._sifields._sigfault._addr = env->nip - 4;
1771             queue_signal(env, info.si_signo, &info);
1772             break;
1773         case POWERPC_EXCP_DECR:     /* Decrementer exception                 */
1774             cpu_abort(cs, "Decrementer interrupt while in user mode. "
1775                       "Aborting\n");
1776             break;
1777         case POWERPC_EXCP_FIT:      /* Fixed-interval timer interrupt        */
1778             cpu_abort(cs, "Fix interval timer interrupt while in user mode. "
1779                       "Aborting\n");
1780             break;
1781         case POWERPC_EXCP_WDT:      /* Watchdog timer interrupt              */
1782             cpu_abort(cs, "Watchdog timer interrupt while in user mode. "
1783                       "Aborting\n");
1784             break;
1785         case POWERPC_EXCP_DTLB:     /* Data TLB error                        */
1786             cpu_abort(cs, "Data TLB exception while in user mode. "
1787                       "Aborting\n");
1788             break;
1789         case POWERPC_EXCP_ITLB:     /* Instruction TLB error                 */
1790             cpu_abort(cs, "Instruction TLB exception while in user mode. "
1791                       "Aborting\n");
1792             break;
1793         case POWERPC_EXCP_SPEU:     /* SPE/embedded floating-point unavail.  */
1794             EXCP_DUMP(env, "No SPE/floating-point instruction allowed\n");
1795             info.si_signo = TARGET_SIGILL;
1796             info.si_errno = 0;
1797             info.si_code = TARGET_ILL_COPROC;
1798             info._sifields._sigfault._addr = env->nip - 4;
1799             queue_signal(env, info.si_signo, &info);
1800             break;
1801         case POWERPC_EXCP_EFPDI:    /* Embedded floating-point data IRQ      */
1802             cpu_abort(cs, "Embedded floating-point data IRQ not handled\n");
1803             break;
1804         case POWERPC_EXCP_EFPRI:    /* Embedded floating-point round IRQ     */
1805             cpu_abort(cs, "Embedded floating-point round IRQ not handled\n");
1806             break;
1807         case POWERPC_EXCP_EPERFM:   /* Embedded performance monitor IRQ      */
1808             cpu_abort(cs, "Performance monitor exception not handled\n");
1809             break;
1810         case POWERPC_EXCP_DOORI:    /* Embedded doorbell interrupt           */
1811             cpu_abort(cs, "Doorbell interrupt while in user mode. "
1812                        "Aborting\n");
1813             break;
1814         case POWERPC_EXCP_DOORCI:   /* Embedded doorbell critical interrupt  */
1815             cpu_abort(cs, "Doorbell critical interrupt while in user mode. "
1816                       "Aborting\n");
1817             break;
1818         case POWERPC_EXCP_RESET:    /* System reset exception                */
1819             cpu_abort(cs, "Reset interrupt while in user mode. "
1820                       "Aborting\n");
1821             break;
1822         case POWERPC_EXCP_DSEG:     /* Data segment exception                */
1823             cpu_abort(cs, "Data segment exception while in user mode. "
1824                       "Aborting\n");
1825             break;
1826         case POWERPC_EXCP_ISEG:     /* Instruction segment exception         */
1827             cpu_abort(cs, "Instruction segment exception "
1828                       "while in user mode. Aborting\n");
1829             break;
1830         /* PowerPC 64 with hypervisor mode support */
1831         case POWERPC_EXCP_HDECR:    /* Hypervisor decrementer exception      */
1832             cpu_abort(cs, "Hypervisor decrementer interrupt "
1833                       "while in user mode. Aborting\n");
1834             break;
1835         case POWERPC_EXCP_TRACE:    /* Trace exception                       */
1836             /* Nothing to do:
1837              * we use this exception to emulate step-by-step execution mode.
1838              */
1839             break;
1840         /* PowerPC 64 with hypervisor mode support */
1841         case POWERPC_EXCP_HDSI:     /* Hypervisor data storage exception     */
1842             cpu_abort(cs, "Hypervisor data storage exception "
1843                       "while in user mode. Aborting\n");
1844             break;
1845         case POWERPC_EXCP_HISI:     /* Hypervisor instruction storage excp   */
1846             cpu_abort(cs, "Hypervisor instruction storage exception "
1847                       "while in user mode. Aborting\n");
1848             break;
1849         case POWERPC_EXCP_HDSEG:    /* Hypervisor data segment exception     */
1850             cpu_abort(cs, "Hypervisor data segment exception "
1851                       "while in user mode. Aborting\n");
1852             break;
1853         case POWERPC_EXCP_HISEG:    /* Hypervisor instruction segment excp   */
1854             cpu_abort(cs, "Hypervisor instruction segment exception "
1855                       "while in user mode. Aborting\n");
1856             break;
1857         case POWERPC_EXCP_VPU:      /* Vector unavailable exception          */
1858             EXCP_DUMP(env, "No Altivec instructions allowed\n");
1859             info.si_signo = TARGET_SIGILL;
1860             info.si_errno = 0;
1861             info.si_code = TARGET_ILL_COPROC;
1862             info._sifields._sigfault._addr = env->nip - 4;
1863             queue_signal(env, info.si_signo, &info);
1864             break;
1865         case POWERPC_EXCP_PIT:      /* Programmable interval timer IRQ       */
1866             cpu_abort(cs, "Programmable interval timer interrupt "
1867                       "while in user mode. Aborting\n");
1868             break;
1869         case POWERPC_EXCP_IO:       /* IO error exception                    */
1870             cpu_abort(cs, "IO error exception while in user mode. "
1871                       "Aborting\n");
1872             break;
1873         case POWERPC_EXCP_RUNM:     /* Run mode exception                    */
1874             cpu_abort(cs, "Run mode exception while in user mode. "
1875                       "Aborting\n");
1876             break;
1877         case POWERPC_EXCP_EMUL:     /* Emulation trap exception              */
1878             cpu_abort(cs, "Emulation trap exception not handled\n");
1879             break;
1880         case POWERPC_EXCP_IFTLB:    /* Instruction fetch TLB error           */
1881             cpu_abort(cs, "Instruction fetch TLB exception "
1882                       "while in user-mode. Aborting");
1883             break;
1884         case POWERPC_EXCP_DLTLB:    /* Data load TLB miss                    */
1885             cpu_abort(cs, "Data load TLB exception while in user-mode. "
1886                       "Aborting");
1887             break;
1888         case POWERPC_EXCP_DSTLB:    /* Data store TLB miss                   */
1889             cpu_abort(cs, "Data store TLB exception while in user-mode. "
1890                       "Aborting");
1891             break;
1892         case POWERPC_EXCP_FPA:      /* Floating-point assist exception       */
1893             cpu_abort(cs, "Floating-point assist exception not handled\n");
1894             break;
1895         case POWERPC_EXCP_IABR:     /* Instruction address breakpoint        */
1896             cpu_abort(cs, "Instruction address breakpoint exception "
1897                       "not handled\n");
1898             break;
1899         case POWERPC_EXCP_SMI:      /* System management interrupt           */
1900             cpu_abort(cs, "System management interrupt while in user mode. "
1901                       "Aborting\n");
1902             break;
1903         case POWERPC_EXCP_THERM:    /* Thermal interrupt                     */
1904             cpu_abort(cs, "Thermal interrupt interrupt while in user mode. "
1905                       "Aborting\n");
1906             break;
1907         case POWERPC_EXCP_PERFM:   /* Embedded performance monitor IRQ      */
1908             cpu_abort(cs, "Performance monitor exception not handled\n");
1909             break;
1910         case POWERPC_EXCP_VPUA:     /* Vector assist exception               */
1911             cpu_abort(cs, "Vector assist exception not handled\n");
1912             break;
1913         case POWERPC_EXCP_SOFTP:    /* Soft patch exception                  */
1914             cpu_abort(cs, "Soft patch exception not handled\n");
1915             break;
1916         case POWERPC_EXCP_MAINT:    /* Maintenance exception                 */
1917             cpu_abort(cs, "Maintenance exception while in user mode. "
1918                       "Aborting\n");
1919             break;
1920         case POWERPC_EXCP_STOP:     /* stop translation                      */
1921             /* We did invalidate the instruction cache. Go on */
1922             break;
1923         case POWERPC_EXCP_BRANCH:   /* branch instruction:                   */
1924             /* We just stopped because of a branch. Go on */
1925             break;
1926         case POWERPC_EXCP_SYSCALL_USER:
1927             /* system call in user-mode emulation */
1928             /* WARNING:
1929              * PPC ABI uses overflow flag in cr0 to signal an error
1930              * in syscalls.
1931              */
1932             env->crf[0] &= ~0x1;
1933             ret = do_syscall(env, env->gpr[0], env->gpr[3], env->gpr[4],
1934                              env->gpr[5], env->gpr[6], env->gpr[7],
1935                              env->gpr[8], 0, 0);
1936             if (ret == (target_ulong)(-TARGET_QEMU_ESIGRETURN)) {
1937                 /* Returning from a successful sigreturn syscall.
1938                    Avoid corrupting register state.  */
1939                 break;
1940             }
1941             if (ret > (target_ulong)(-515)) {
1942                 env->crf[0] |= 0x1;
1943                 ret = -ret;
1944             }
1945             env->gpr[3] = ret;
1946             break;
1947         case POWERPC_EXCP_STCX:
1948             if (do_store_exclusive(env)) {
1949                 info.si_signo = TARGET_SIGSEGV;
1950                 info.si_errno = 0;
1951                 info.si_code = TARGET_SEGV_MAPERR;
1952                 info._sifields._sigfault._addr = env->nip;
1953                 queue_signal(env, info.si_signo, &info);
1954             }
1955             break;
1956         case EXCP_DEBUG:
1957             {
1958                 int sig;
1959 
1960                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
1961                 if (sig) {
1962                     info.si_signo = sig;
1963                     info.si_errno = 0;
1964                     info.si_code = TARGET_TRAP_BRKPT;
1965                     queue_signal(env, info.si_signo, &info);
1966                   }
1967             }
1968             break;
1969         case EXCP_INTERRUPT:
1970             /* just indicate that signals should be handled asap */
1971             break;
1972         default:
1973             cpu_abort(cs, "Unknown exception 0x%d. Aborting\n", trapnr);
1974             break;
1975         }
1976         process_pending_signals(env);
1977     }
1978 }
1979 #endif
1980 
1981 #ifdef TARGET_MIPS
1982 
1983 # ifdef TARGET_ABI_MIPSO32
1984 #  define MIPS_SYS(name, args) args,
1985 static const uint8_t mips_syscall_args[] = {
1986 	MIPS_SYS(sys_syscall	, 8)	/* 4000 */
1987 	MIPS_SYS(sys_exit	, 1)
1988 	MIPS_SYS(sys_fork	, 0)
1989 	MIPS_SYS(sys_read	, 3)
1990 	MIPS_SYS(sys_write	, 3)
1991 	MIPS_SYS(sys_open	, 3)	/* 4005 */
1992 	MIPS_SYS(sys_close	, 1)
1993 	MIPS_SYS(sys_waitpid	, 3)
1994 	MIPS_SYS(sys_creat	, 2)
1995 	MIPS_SYS(sys_link	, 2)
1996 	MIPS_SYS(sys_unlink	, 1)	/* 4010 */
1997 	MIPS_SYS(sys_execve	, 0)
1998 	MIPS_SYS(sys_chdir	, 1)
1999 	MIPS_SYS(sys_time	, 1)
2000 	MIPS_SYS(sys_mknod	, 3)
2001 	MIPS_SYS(sys_chmod	, 2)	/* 4015 */
2002 	MIPS_SYS(sys_lchown	, 3)
2003 	MIPS_SYS(sys_ni_syscall	, 0)
2004 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_stat */
2005 	MIPS_SYS(sys_lseek	, 3)
2006 	MIPS_SYS(sys_getpid	, 0)	/* 4020 */
2007 	MIPS_SYS(sys_mount	, 5)
2008 	MIPS_SYS(sys_umount	, 1)
2009 	MIPS_SYS(sys_setuid	, 1)
2010 	MIPS_SYS(sys_getuid	, 0)
2011 	MIPS_SYS(sys_stime	, 1)	/* 4025 */
2012 	MIPS_SYS(sys_ptrace	, 4)
2013 	MIPS_SYS(sys_alarm	, 1)
2014 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_fstat */
2015 	MIPS_SYS(sys_pause	, 0)
2016 	MIPS_SYS(sys_utime	, 2)	/* 4030 */
2017 	MIPS_SYS(sys_ni_syscall	, 0)
2018 	MIPS_SYS(sys_ni_syscall	, 0)
2019 	MIPS_SYS(sys_access	, 2)
2020 	MIPS_SYS(sys_nice	, 1)
2021 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4035 */
2022 	MIPS_SYS(sys_sync	, 0)
2023 	MIPS_SYS(sys_kill	, 2)
2024 	MIPS_SYS(sys_rename	, 2)
2025 	MIPS_SYS(sys_mkdir	, 2)
2026 	MIPS_SYS(sys_rmdir	, 1)	/* 4040 */
2027 	MIPS_SYS(sys_dup		, 1)
2028 	MIPS_SYS(sys_pipe	, 0)
2029 	MIPS_SYS(sys_times	, 1)
2030 	MIPS_SYS(sys_ni_syscall	, 0)
2031 	MIPS_SYS(sys_brk		, 1)	/* 4045 */
2032 	MIPS_SYS(sys_setgid	, 1)
2033 	MIPS_SYS(sys_getgid	, 0)
2034 	MIPS_SYS(sys_ni_syscall	, 0)	/* was signal(2) */
2035 	MIPS_SYS(sys_geteuid	, 0)
2036 	MIPS_SYS(sys_getegid	, 0)	/* 4050 */
2037 	MIPS_SYS(sys_acct	, 0)
2038 	MIPS_SYS(sys_umount2	, 2)
2039 	MIPS_SYS(sys_ni_syscall	, 0)
2040 	MIPS_SYS(sys_ioctl	, 3)
2041 	MIPS_SYS(sys_fcntl	, 3)	/* 4055 */
2042 	MIPS_SYS(sys_ni_syscall	, 2)
2043 	MIPS_SYS(sys_setpgid	, 2)
2044 	MIPS_SYS(sys_ni_syscall	, 0)
2045 	MIPS_SYS(sys_olduname	, 1)
2046 	MIPS_SYS(sys_umask	, 1)	/* 4060 */
2047 	MIPS_SYS(sys_chroot	, 1)
2048 	MIPS_SYS(sys_ustat	, 2)
2049 	MIPS_SYS(sys_dup2	, 2)
2050 	MIPS_SYS(sys_getppid	, 0)
2051 	MIPS_SYS(sys_getpgrp	, 0)	/* 4065 */
2052 	MIPS_SYS(sys_setsid	, 0)
2053 	MIPS_SYS(sys_sigaction	, 3)
2054 	MIPS_SYS(sys_sgetmask	, 0)
2055 	MIPS_SYS(sys_ssetmask	, 1)
2056 	MIPS_SYS(sys_setreuid	, 2)	/* 4070 */
2057 	MIPS_SYS(sys_setregid	, 2)
2058 	MIPS_SYS(sys_sigsuspend	, 0)
2059 	MIPS_SYS(sys_sigpending	, 1)
2060 	MIPS_SYS(sys_sethostname	, 2)
2061 	MIPS_SYS(sys_setrlimit	, 2)	/* 4075 */
2062 	MIPS_SYS(sys_getrlimit	, 2)
2063 	MIPS_SYS(sys_getrusage	, 2)
2064 	MIPS_SYS(sys_gettimeofday, 2)
2065 	MIPS_SYS(sys_settimeofday, 2)
2066 	MIPS_SYS(sys_getgroups	, 2)	/* 4080 */
2067 	MIPS_SYS(sys_setgroups	, 2)
2068 	MIPS_SYS(sys_ni_syscall	, 0)	/* old_select */
2069 	MIPS_SYS(sys_symlink	, 2)
2070 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_lstat */
2071 	MIPS_SYS(sys_readlink	, 3)	/* 4085 */
2072 	MIPS_SYS(sys_uselib	, 1)
2073 	MIPS_SYS(sys_swapon	, 2)
2074 	MIPS_SYS(sys_reboot	, 3)
2075 	MIPS_SYS(old_readdir	, 3)
2076 	MIPS_SYS(old_mmap	, 6)	/* 4090 */
2077 	MIPS_SYS(sys_munmap	, 2)
2078 	MIPS_SYS(sys_truncate	, 2)
2079 	MIPS_SYS(sys_ftruncate	, 2)
2080 	MIPS_SYS(sys_fchmod	, 2)
2081 	MIPS_SYS(sys_fchown	, 3)	/* 4095 */
2082 	MIPS_SYS(sys_getpriority	, 2)
2083 	MIPS_SYS(sys_setpriority	, 3)
2084 	MIPS_SYS(sys_ni_syscall	, 0)
2085 	MIPS_SYS(sys_statfs	, 2)
2086 	MIPS_SYS(sys_fstatfs	, 2)	/* 4100 */
2087 	MIPS_SYS(sys_ni_syscall	, 0)	/* was ioperm(2) */
2088 	MIPS_SYS(sys_socketcall	, 2)
2089 	MIPS_SYS(sys_syslog	, 3)
2090 	MIPS_SYS(sys_setitimer	, 3)
2091 	MIPS_SYS(sys_getitimer	, 2)	/* 4105 */
2092 	MIPS_SYS(sys_newstat	, 2)
2093 	MIPS_SYS(sys_newlstat	, 2)
2094 	MIPS_SYS(sys_newfstat	, 2)
2095 	MIPS_SYS(sys_uname	, 1)
2096 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4110 was iopl(2) */
2097 	MIPS_SYS(sys_vhangup	, 0)
2098 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_idle() */
2099 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_vm86 */
2100 	MIPS_SYS(sys_wait4	, 4)
2101 	MIPS_SYS(sys_swapoff	, 1)	/* 4115 */
2102 	MIPS_SYS(sys_sysinfo	, 1)
2103 	MIPS_SYS(sys_ipc		, 6)
2104 	MIPS_SYS(sys_fsync	, 1)
2105 	MIPS_SYS(sys_sigreturn	, 0)
2106 	MIPS_SYS(sys_clone	, 6)	/* 4120 */
2107 	MIPS_SYS(sys_setdomainname, 2)
2108 	MIPS_SYS(sys_newuname	, 1)
2109 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_modify_ldt */
2110 	MIPS_SYS(sys_adjtimex	, 1)
2111 	MIPS_SYS(sys_mprotect	, 3)	/* 4125 */
2112 	MIPS_SYS(sys_sigprocmask	, 3)
2113 	MIPS_SYS(sys_ni_syscall	, 0)	/* was create_module */
2114 	MIPS_SYS(sys_init_module	, 5)
2115 	MIPS_SYS(sys_delete_module, 1)
2116 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4130	was get_kernel_syms */
2117 	MIPS_SYS(sys_quotactl	, 0)
2118 	MIPS_SYS(sys_getpgid	, 1)
2119 	MIPS_SYS(sys_fchdir	, 1)
2120 	MIPS_SYS(sys_bdflush	, 2)
2121 	MIPS_SYS(sys_sysfs	, 3)	/* 4135 */
2122 	MIPS_SYS(sys_personality	, 1)
2123 	MIPS_SYS(sys_ni_syscall	, 0)	/* for afs_syscall */
2124 	MIPS_SYS(sys_setfsuid	, 1)
2125 	MIPS_SYS(sys_setfsgid	, 1)
2126 	MIPS_SYS(sys_llseek	, 5)	/* 4140 */
2127 	MIPS_SYS(sys_getdents	, 3)
2128 	MIPS_SYS(sys_select	, 5)
2129 	MIPS_SYS(sys_flock	, 2)
2130 	MIPS_SYS(sys_msync	, 3)
2131 	MIPS_SYS(sys_readv	, 3)	/* 4145 */
2132 	MIPS_SYS(sys_writev	, 3)
2133 	MIPS_SYS(sys_cacheflush	, 3)
2134 	MIPS_SYS(sys_cachectl	, 3)
2135 	MIPS_SYS(sys_sysmips	, 4)
2136 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4150 */
2137 	MIPS_SYS(sys_getsid	, 1)
2138 	MIPS_SYS(sys_fdatasync	, 0)
2139 	MIPS_SYS(sys_sysctl	, 1)
2140 	MIPS_SYS(sys_mlock	, 2)
2141 	MIPS_SYS(sys_munlock	, 2)	/* 4155 */
2142 	MIPS_SYS(sys_mlockall	, 1)
2143 	MIPS_SYS(sys_munlockall	, 0)
2144 	MIPS_SYS(sys_sched_setparam, 2)
2145 	MIPS_SYS(sys_sched_getparam, 2)
2146 	MIPS_SYS(sys_sched_setscheduler, 3)	/* 4160 */
2147 	MIPS_SYS(sys_sched_getscheduler, 1)
2148 	MIPS_SYS(sys_sched_yield	, 0)
2149 	MIPS_SYS(sys_sched_get_priority_max, 1)
2150 	MIPS_SYS(sys_sched_get_priority_min, 1)
2151 	MIPS_SYS(sys_sched_rr_get_interval, 2)	/* 4165 */
2152 	MIPS_SYS(sys_nanosleep,	2)
2153 	MIPS_SYS(sys_mremap	, 5)
2154 	MIPS_SYS(sys_accept	, 3)
2155 	MIPS_SYS(sys_bind	, 3)
2156 	MIPS_SYS(sys_connect	, 3)	/* 4170 */
2157 	MIPS_SYS(sys_getpeername	, 3)
2158 	MIPS_SYS(sys_getsockname	, 3)
2159 	MIPS_SYS(sys_getsockopt	, 5)
2160 	MIPS_SYS(sys_listen	, 2)
2161 	MIPS_SYS(sys_recv	, 4)	/* 4175 */
2162 	MIPS_SYS(sys_recvfrom	, 6)
2163 	MIPS_SYS(sys_recvmsg	, 3)
2164 	MIPS_SYS(sys_send	, 4)
2165 	MIPS_SYS(sys_sendmsg	, 3)
2166 	MIPS_SYS(sys_sendto	, 6)	/* 4180 */
2167 	MIPS_SYS(sys_setsockopt	, 5)
2168 	MIPS_SYS(sys_shutdown	, 2)
2169 	MIPS_SYS(sys_socket	, 3)
2170 	MIPS_SYS(sys_socketpair	, 4)
2171 	MIPS_SYS(sys_setresuid	, 3)	/* 4185 */
2172 	MIPS_SYS(sys_getresuid	, 3)
2173 	MIPS_SYS(sys_ni_syscall	, 0)	/* was sys_query_module */
2174 	MIPS_SYS(sys_poll	, 3)
2175 	MIPS_SYS(sys_nfsservctl	, 3)
2176 	MIPS_SYS(sys_setresgid	, 3)	/* 4190 */
2177 	MIPS_SYS(sys_getresgid	, 3)
2178 	MIPS_SYS(sys_prctl	, 5)
2179 	MIPS_SYS(sys_rt_sigreturn, 0)
2180 	MIPS_SYS(sys_rt_sigaction, 4)
2181 	MIPS_SYS(sys_rt_sigprocmask, 4)	/* 4195 */
2182 	MIPS_SYS(sys_rt_sigpending, 2)
2183 	MIPS_SYS(sys_rt_sigtimedwait, 4)
2184 	MIPS_SYS(sys_rt_sigqueueinfo, 3)
2185 	MIPS_SYS(sys_rt_sigsuspend, 0)
2186 	MIPS_SYS(sys_pread64	, 6)	/* 4200 */
2187 	MIPS_SYS(sys_pwrite64	, 6)
2188 	MIPS_SYS(sys_chown	, 3)
2189 	MIPS_SYS(sys_getcwd	, 2)
2190 	MIPS_SYS(sys_capget	, 2)
2191 	MIPS_SYS(sys_capset	, 2)	/* 4205 */
2192 	MIPS_SYS(sys_sigaltstack	, 2)
2193 	MIPS_SYS(sys_sendfile	, 4)
2194 	MIPS_SYS(sys_ni_syscall	, 0)
2195 	MIPS_SYS(sys_ni_syscall	, 0)
2196 	MIPS_SYS(sys_mmap2	, 6)	/* 4210 */
2197 	MIPS_SYS(sys_truncate64	, 4)
2198 	MIPS_SYS(sys_ftruncate64	, 4)
2199 	MIPS_SYS(sys_stat64	, 2)
2200 	MIPS_SYS(sys_lstat64	, 2)
2201 	MIPS_SYS(sys_fstat64	, 2)	/* 4215 */
2202 	MIPS_SYS(sys_pivot_root	, 2)
2203 	MIPS_SYS(sys_mincore	, 3)
2204 	MIPS_SYS(sys_madvise	, 3)
2205 	MIPS_SYS(sys_getdents64	, 3)
2206 	MIPS_SYS(sys_fcntl64	, 3)	/* 4220 */
2207 	MIPS_SYS(sys_ni_syscall	, 0)
2208 	MIPS_SYS(sys_gettid	, 0)
2209 	MIPS_SYS(sys_readahead	, 5)
2210 	MIPS_SYS(sys_setxattr	, 5)
2211 	MIPS_SYS(sys_lsetxattr	, 5)	/* 4225 */
2212 	MIPS_SYS(sys_fsetxattr	, 5)
2213 	MIPS_SYS(sys_getxattr	, 4)
2214 	MIPS_SYS(sys_lgetxattr	, 4)
2215 	MIPS_SYS(sys_fgetxattr	, 4)
2216 	MIPS_SYS(sys_listxattr	, 3)	/* 4230 */
2217 	MIPS_SYS(sys_llistxattr	, 3)
2218 	MIPS_SYS(sys_flistxattr	, 3)
2219 	MIPS_SYS(sys_removexattr	, 2)
2220 	MIPS_SYS(sys_lremovexattr, 2)
2221 	MIPS_SYS(sys_fremovexattr, 2)	/* 4235 */
2222 	MIPS_SYS(sys_tkill	, 2)
2223 	MIPS_SYS(sys_sendfile64	, 5)
2224 	MIPS_SYS(sys_futex	, 6)
2225 	MIPS_SYS(sys_sched_setaffinity, 3)
2226 	MIPS_SYS(sys_sched_getaffinity, 3)	/* 4240 */
2227 	MIPS_SYS(sys_io_setup	, 2)
2228 	MIPS_SYS(sys_io_destroy	, 1)
2229 	MIPS_SYS(sys_io_getevents, 5)
2230 	MIPS_SYS(sys_io_submit	, 3)
2231 	MIPS_SYS(sys_io_cancel	, 3)	/* 4245 */
2232 	MIPS_SYS(sys_exit_group	, 1)
2233 	MIPS_SYS(sys_lookup_dcookie, 3)
2234 	MIPS_SYS(sys_epoll_create, 1)
2235 	MIPS_SYS(sys_epoll_ctl	, 4)
2236 	MIPS_SYS(sys_epoll_wait	, 3)	/* 4250 */
2237 	MIPS_SYS(sys_remap_file_pages, 5)
2238 	MIPS_SYS(sys_set_tid_address, 1)
2239 	MIPS_SYS(sys_restart_syscall, 0)
2240 	MIPS_SYS(sys_fadvise64_64, 7)
2241 	MIPS_SYS(sys_statfs64	, 3)	/* 4255 */
2242 	MIPS_SYS(sys_fstatfs64	, 2)
2243 	MIPS_SYS(sys_timer_create, 3)
2244 	MIPS_SYS(sys_timer_settime, 4)
2245 	MIPS_SYS(sys_timer_gettime, 2)
2246 	MIPS_SYS(sys_timer_getoverrun, 1)	/* 4260 */
2247 	MIPS_SYS(sys_timer_delete, 1)
2248 	MIPS_SYS(sys_clock_settime, 2)
2249 	MIPS_SYS(sys_clock_gettime, 2)
2250 	MIPS_SYS(sys_clock_getres, 2)
2251 	MIPS_SYS(sys_clock_nanosleep, 4)	/* 4265 */
2252 	MIPS_SYS(sys_tgkill	, 3)
2253 	MIPS_SYS(sys_utimes	, 2)
2254 	MIPS_SYS(sys_mbind	, 4)
2255 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_get_mempolicy */
2256 	MIPS_SYS(sys_ni_syscall	, 0)	/* 4270 sys_set_mempolicy */
2257 	MIPS_SYS(sys_mq_open	, 4)
2258 	MIPS_SYS(sys_mq_unlink	, 1)
2259 	MIPS_SYS(sys_mq_timedsend, 5)
2260 	MIPS_SYS(sys_mq_timedreceive, 5)
2261 	MIPS_SYS(sys_mq_notify	, 2)	/* 4275 */
2262 	MIPS_SYS(sys_mq_getsetattr, 3)
2263 	MIPS_SYS(sys_ni_syscall	, 0)	/* sys_vserver */
2264 	MIPS_SYS(sys_waitid	, 4)
2265 	MIPS_SYS(sys_ni_syscall	, 0)	/* available, was setaltroot */
2266 	MIPS_SYS(sys_add_key	, 5)
2267 	MIPS_SYS(sys_request_key, 4)
2268 	MIPS_SYS(sys_keyctl	, 5)
2269 	MIPS_SYS(sys_set_thread_area, 1)
2270 	MIPS_SYS(sys_inotify_init, 0)
2271 	MIPS_SYS(sys_inotify_add_watch, 3) /* 4285 */
2272 	MIPS_SYS(sys_inotify_rm_watch, 2)
2273 	MIPS_SYS(sys_migrate_pages, 4)
2274 	MIPS_SYS(sys_openat, 4)
2275 	MIPS_SYS(sys_mkdirat, 3)
2276 	MIPS_SYS(sys_mknodat, 4)	/* 4290 */
2277 	MIPS_SYS(sys_fchownat, 5)
2278 	MIPS_SYS(sys_futimesat, 3)
2279 	MIPS_SYS(sys_fstatat64, 4)
2280 	MIPS_SYS(sys_unlinkat, 3)
2281 	MIPS_SYS(sys_renameat, 4)	/* 4295 */
2282 	MIPS_SYS(sys_linkat, 5)
2283 	MIPS_SYS(sys_symlinkat, 3)
2284 	MIPS_SYS(sys_readlinkat, 4)
2285 	MIPS_SYS(sys_fchmodat, 3)
2286 	MIPS_SYS(sys_faccessat, 3)	/* 4300 */
2287 	MIPS_SYS(sys_pselect6, 6)
2288 	MIPS_SYS(sys_ppoll, 5)
2289 	MIPS_SYS(sys_unshare, 1)
2290 	MIPS_SYS(sys_splice, 6)
2291 	MIPS_SYS(sys_sync_file_range, 7) /* 4305 */
2292 	MIPS_SYS(sys_tee, 4)
2293 	MIPS_SYS(sys_vmsplice, 4)
2294 	MIPS_SYS(sys_move_pages, 6)
2295 	MIPS_SYS(sys_set_robust_list, 2)
2296 	MIPS_SYS(sys_get_robust_list, 3) /* 4310 */
2297 	MIPS_SYS(sys_kexec_load, 4)
2298 	MIPS_SYS(sys_getcpu, 3)
2299 	MIPS_SYS(sys_epoll_pwait, 6)
2300 	MIPS_SYS(sys_ioprio_set, 3)
2301 	MIPS_SYS(sys_ioprio_get, 2)
2302         MIPS_SYS(sys_utimensat, 4)
2303         MIPS_SYS(sys_signalfd, 3)
2304         MIPS_SYS(sys_ni_syscall, 0)     /* was timerfd */
2305         MIPS_SYS(sys_eventfd, 1)
2306         MIPS_SYS(sys_fallocate, 6)      /* 4320 */
2307         MIPS_SYS(sys_timerfd_create, 2)
2308         MIPS_SYS(sys_timerfd_gettime, 2)
2309         MIPS_SYS(sys_timerfd_settime, 4)
2310         MIPS_SYS(sys_signalfd4, 4)
2311         MIPS_SYS(sys_eventfd2, 2)       /* 4325 */
2312         MIPS_SYS(sys_epoll_create1, 1)
2313         MIPS_SYS(sys_dup3, 3)
2314         MIPS_SYS(sys_pipe2, 2)
2315         MIPS_SYS(sys_inotify_init1, 1)
2316         MIPS_SYS(sys_preadv, 6)         /* 4330 */
2317         MIPS_SYS(sys_pwritev, 6)
2318         MIPS_SYS(sys_rt_tgsigqueueinfo, 4)
2319         MIPS_SYS(sys_perf_event_open, 5)
2320         MIPS_SYS(sys_accept4, 4)
2321         MIPS_SYS(sys_recvmmsg, 5)       /* 4335 */
2322         MIPS_SYS(sys_fanotify_init, 2)
2323         MIPS_SYS(sys_fanotify_mark, 6)
2324         MIPS_SYS(sys_prlimit64, 4)
2325         MIPS_SYS(sys_name_to_handle_at, 5)
2326         MIPS_SYS(sys_open_by_handle_at, 3) /* 4340 */
2327         MIPS_SYS(sys_clock_adjtime, 2)
2328         MIPS_SYS(sys_syncfs, 1)
2329 };
2330 #  undef MIPS_SYS
2331 # endif /* O32 */
2332 
2333 static int do_store_exclusive(CPUMIPSState *env)
2334 {
2335     target_ulong addr;
2336     target_ulong page_addr;
2337     target_ulong val;
2338     int flags;
2339     int segv = 0;
2340     int reg;
2341     int d;
2342 
2343     addr = env->lladdr;
2344     page_addr = addr & TARGET_PAGE_MASK;
2345     start_exclusive();
2346     mmap_lock();
2347     flags = page_get_flags(page_addr);
2348     if ((flags & PAGE_READ) == 0) {
2349         segv = 1;
2350     } else {
2351         reg = env->llreg & 0x1f;
2352         d = (env->llreg & 0x20) != 0;
2353         if (d) {
2354             segv = get_user_s64(val, addr);
2355         } else {
2356             segv = get_user_s32(val, addr);
2357         }
2358         if (!segv) {
2359             if (val != env->llval) {
2360                 env->active_tc.gpr[reg] = 0;
2361             } else {
2362                 if (d) {
2363                     segv = put_user_u64(env->llnewval, addr);
2364                 } else {
2365                     segv = put_user_u32(env->llnewval, addr);
2366                 }
2367                 if (!segv) {
2368                     env->active_tc.gpr[reg] = 1;
2369                 }
2370             }
2371         }
2372     }
2373     env->lladdr = -1;
2374     if (!segv) {
2375         env->active_tc.PC += 4;
2376     }
2377     mmap_unlock();
2378     end_exclusive();
2379     return segv;
2380 }
2381 
2382 /* Break codes */
2383 enum {
2384     BRK_OVERFLOW = 6,
2385     BRK_DIVZERO = 7
2386 };
2387 
2388 static int do_break(CPUMIPSState *env, target_siginfo_t *info,
2389                     unsigned int code)
2390 {
2391     int ret = -1;
2392 
2393     switch (code) {
2394     case BRK_OVERFLOW:
2395     case BRK_DIVZERO:
2396         info->si_signo = TARGET_SIGFPE;
2397         info->si_errno = 0;
2398         info->si_code = (code == BRK_OVERFLOW) ? FPE_INTOVF : FPE_INTDIV;
2399         queue_signal(env, info->si_signo, &*info);
2400         ret = 0;
2401         break;
2402     default:
2403         info->si_signo = TARGET_SIGTRAP;
2404         info->si_errno = 0;
2405         queue_signal(env, info->si_signo, &*info);
2406         ret = 0;
2407         break;
2408     }
2409 
2410     return ret;
2411 }
2412 
2413 void cpu_loop(CPUMIPSState *env)
2414 {
2415     CPUState *cs = CPU(mips_env_get_cpu(env));
2416     target_siginfo_t info;
2417     int trapnr;
2418     abi_long ret;
2419 # ifdef TARGET_ABI_MIPSO32
2420     unsigned int syscall_num;
2421 # endif
2422 
2423     for(;;) {
2424         cpu_exec_start(cs);
2425         trapnr = cpu_mips_exec(env);
2426         cpu_exec_end(cs);
2427         switch(trapnr) {
2428         case EXCP_SYSCALL:
2429             env->active_tc.PC += 4;
2430 # ifdef TARGET_ABI_MIPSO32
2431             syscall_num = env->active_tc.gpr[2] - 4000;
2432             if (syscall_num >= sizeof(mips_syscall_args)) {
2433                 ret = -TARGET_ENOSYS;
2434             } else {
2435                 int nb_args;
2436                 abi_ulong sp_reg;
2437                 abi_ulong arg5 = 0, arg6 = 0, arg7 = 0, arg8 = 0;
2438 
2439                 nb_args = mips_syscall_args[syscall_num];
2440                 sp_reg = env->active_tc.gpr[29];
2441                 switch (nb_args) {
2442                 /* these arguments are taken from the stack */
2443                 case 8:
2444                     if ((ret = get_user_ual(arg8, sp_reg + 28)) != 0) {
2445                         goto done_syscall;
2446                     }
2447                 case 7:
2448                     if ((ret = get_user_ual(arg7, sp_reg + 24)) != 0) {
2449                         goto done_syscall;
2450                     }
2451                 case 6:
2452                     if ((ret = get_user_ual(arg6, sp_reg + 20)) != 0) {
2453                         goto done_syscall;
2454                     }
2455                 case 5:
2456                     if ((ret = get_user_ual(arg5, sp_reg + 16)) != 0) {
2457                         goto done_syscall;
2458                     }
2459                 default:
2460                     break;
2461                 }
2462                 ret = do_syscall(env, env->active_tc.gpr[2],
2463                                  env->active_tc.gpr[4],
2464                                  env->active_tc.gpr[5],
2465                                  env->active_tc.gpr[6],
2466                                  env->active_tc.gpr[7],
2467                                  arg5, arg6, arg7, arg8);
2468             }
2469 done_syscall:
2470 # else
2471             ret = do_syscall(env, env->active_tc.gpr[2],
2472                              env->active_tc.gpr[4], env->active_tc.gpr[5],
2473                              env->active_tc.gpr[6], env->active_tc.gpr[7],
2474                              env->active_tc.gpr[8], env->active_tc.gpr[9],
2475                              env->active_tc.gpr[10], env->active_tc.gpr[11]);
2476 # endif /* O32 */
2477             if (ret == -TARGET_QEMU_ESIGRETURN) {
2478                 /* Returning from a successful sigreturn syscall.
2479                    Avoid clobbering register state.  */
2480                 break;
2481             }
2482             if ((abi_ulong)ret >= (abi_ulong)-1133) {
2483                 env->active_tc.gpr[7] = 1; /* error flag */
2484                 ret = -ret;
2485             } else {
2486                 env->active_tc.gpr[7] = 0; /* error flag */
2487             }
2488             env->active_tc.gpr[2] = ret;
2489             break;
2490         case EXCP_TLBL:
2491         case EXCP_TLBS:
2492         case EXCP_AdEL:
2493         case EXCP_AdES:
2494             info.si_signo = TARGET_SIGSEGV;
2495             info.si_errno = 0;
2496             /* XXX: check env->error_code */
2497             info.si_code = TARGET_SEGV_MAPERR;
2498             info._sifields._sigfault._addr = env->CP0_BadVAddr;
2499             queue_signal(env, info.si_signo, &info);
2500             break;
2501         case EXCP_CpU:
2502         case EXCP_RI:
2503             info.si_signo = TARGET_SIGILL;
2504             info.si_errno = 0;
2505             info.si_code = 0;
2506             queue_signal(env, info.si_signo, &info);
2507             break;
2508         case EXCP_INTERRUPT:
2509             /* just indicate that signals should be handled asap */
2510             break;
2511         case EXCP_DEBUG:
2512             {
2513                 int sig;
2514 
2515                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2516                 if (sig)
2517                   {
2518                     info.si_signo = sig;
2519                     info.si_errno = 0;
2520                     info.si_code = TARGET_TRAP_BRKPT;
2521                     queue_signal(env, info.si_signo, &info);
2522                   }
2523             }
2524             break;
2525         case EXCP_SC:
2526             if (do_store_exclusive(env)) {
2527                 info.si_signo = TARGET_SIGSEGV;
2528                 info.si_errno = 0;
2529                 info.si_code = TARGET_SEGV_MAPERR;
2530                 info._sifields._sigfault._addr = env->active_tc.PC;
2531                 queue_signal(env, info.si_signo, &info);
2532             }
2533             break;
2534         case EXCP_DSPDIS:
2535             info.si_signo = TARGET_SIGILL;
2536             info.si_errno = 0;
2537             info.si_code = TARGET_ILL_ILLOPC;
2538             queue_signal(env, info.si_signo, &info);
2539             break;
2540         /* The code below was inspired by the MIPS Linux kernel trap
2541          * handling code in arch/mips/kernel/traps.c.
2542          */
2543         case EXCP_BREAK:
2544             {
2545                 abi_ulong trap_instr;
2546                 unsigned int code;
2547 
2548                 if (env->hflags & MIPS_HFLAG_M16) {
2549                     if (env->insn_flags & ASE_MICROMIPS) {
2550                         /* microMIPS mode */
2551                         ret = get_user_u16(trap_instr, env->active_tc.PC);
2552                         if (ret != 0) {
2553                             goto error;
2554                         }
2555 
2556                         if ((trap_instr >> 10) == 0x11) {
2557                             /* 16-bit instruction */
2558                             code = trap_instr & 0xf;
2559                         } else {
2560                             /* 32-bit instruction */
2561                             abi_ulong instr_lo;
2562 
2563                             ret = get_user_u16(instr_lo,
2564                                                env->active_tc.PC + 2);
2565                             if (ret != 0) {
2566                                 goto error;
2567                             }
2568                             trap_instr = (trap_instr << 16) | instr_lo;
2569                             code = ((trap_instr >> 6) & ((1 << 20) - 1));
2570                             /* Unfortunately, microMIPS also suffers from
2571                                the old assembler bug...  */
2572                             if (code >= (1 << 10)) {
2573                                 code >>= 10;
2574                             }
2575                         }
2576                     } else {
2577                         /* MIPS16e mode */
2578                         ret = get_user_u16(trap_instr, env->active_tc.PC);
2579                         if (ret != 0) {
2580                             goto error;
2581                         }
2582                         code = (trap_instr >> 6) & 0x3f;
2583                     }
2584                 } else {
2585                     ret = get_user_ual(trap_instr, env->active_tc.PC);
2586                     if (ret != 0) {
2587                         goto error;
2588                     }
2589 
2590                     /* As described in the original Linux kernel code, the
2591                      * below checks on 'code' are to work around an old
2592                      * assembly bug.
2593                      */
2594                     code = ((trap_instr >> 6) & ((1 << 20) - 1));
2595                     if (code >= (1 << 10)) {
2596                         code >>= 10;
2597                     }
2598                 }
2599 
2600                 if (do_break(env, &info, code) != 0) {
2601                     goto error;
2602                 }
2603             }
2604             break;
2605         case EXCP_TRAP:
2606             {
2607                 abi_ulong trap_instr;
2608                 unsigned int code = 0;
2609 
2610                 if (env->hflags & MIPS_HFLAG_M16) {
2611                     /* microMIPS mode */
2612                     abi_ulong instr[2];
2613 
2614                     ret = get_user_u16(instr[0], env->active_tc.PC) ||
2615                           get_user_u16(instr[1], env->active_tc.PC + 2);
2616 
2617                     trap_instr = (instr[0] << 16) | instr[1];
2618                 } else {
2619                     ret = get_user_ual(trap_instr, env->active_tc.PC);
2620                 }
2621 
2622                 if (ret != 0) {
2623                     goto error;
2624                 }
2625 
2626                 /* The immediate versions don't provide a code.  */
2627                 if (!(trap_instr & 0xFC000000)) {
2628                     if (env->hflags & MIPS_HFLAG_M16) {
2629                         /* microMIPS mode */
2630                         code = ((trap_instr >> 12) & ((1 << 4) - 1));
2631                     } else {
2632                         code = ((trap_instr >> 6) & ((1 << 10) - 1));
2633                     }
2634                 }
2635 
2636                 if (do_break(env, &info, code) != 0) {
2637                     goto error;
2638                 }
2639             }
2640             break;
2641         default:
2642 error:
2643             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
2644                     trapnr);
2645             cpu_dump_state(cs, stderr, fprintf, 0);
2646             abort();
2647         }
2648         process_pending_signals(env);
2649     }
2650 }
2651 #endif
2652 
2653 #ifdef TARGET_OPENRISC
2654 
2655 void cpu_loop(CPUOpenRISCState *env)
2656 {
2657     CPUState *cs = CPU(openrisc_env_get_cpu(env));
2658     int trapnr, gdbsig;
2659 
2660     for (;;) {
2661         trapnr = cpu_exec(env);
2662         gdbsig = 0;
2663 
2664         switch (trapnr) {
2665         case EXCP_RESET:
2666             qemu_log("\nReset request, exit, pc is %#x\n", env->pc);
2667             exit(1);
2668             break;
2669         case EXCP_BUSERR:
2670             qemu_log("\nBus error, exit, pc is %#x\n", env->pc);
2671             gdbsig = SIGBUS;
2672             break;
2673         case EXCP_DPF:
2674         case EXCP_IPF:
2675             cpu_dump_state(cs, stderr, fprintf, 0);
2676             gdbsig = TARGET_SIGSEGV;
2677             break;
2678         case EXCP_TICK:
2679             qemu_log("\nTick time interrupt pc is %#x\n", env->pc);
2680             break;
2681         case EXCP_ALIGN:
2682             qemu_log("\nAlignment pc is %#x\n", env->pc);
2683             gdbsig = SIGBUS;
2684             break;
2685         case EXCP_ILLEGAL:
2686             qemu_log("\nIllegal instructionpc is %#x\n", env->pc);
2687             gdbsig = SIGILL;
2688             break;
2689         case EXCP_INT:
2690             qemu_log("\nExternal interruptpc is %#x\n", env->pc);
2691             break;
2692         case EXCP_DTLBMISS:
2693         case EXCP_ITLBMISS:
2694             qemu_log("\nTLB miss\n");
2695             break;
2696         case EXCP_RANGE:
2697             qemu_log("\nRange\n");
2698             gdbsig = SIGSEGV;
2699             break;
2700         case EXCP_SYSCALL:
2701             env->pc += 4;   /* 0xc00; */
2702             env->gpr[11] = do_syscall(env,
2703                                       env->gpr[11], /* return value       */
2704                                       env->gpr[3],  /* r3 - r7 are params */
2705                                       env->gpr[4],
2706                                       env->gpr[5],
2707                                       env->gpr[6],
2708                                       env->gpr[7],
2709                                       env->gpr[8], 0, 0);
2710             break;
2711         case EXCP_FPE:
2712             qemu_log("\nFloating point error\n");
2713             break;
2714         case EXCP_TRAP:
2715             qemu_log("\nTrap\n");
2716             gdbsig = SIGTRAP;
2717             break;
2718         case EXCP_NR:
2719             qemu_log("\nNR\n");
2720             break;
2721         default:
2722             qemu_log("\nqemu: unhandled CPU exception %#x - aborting\n",
2723                      trapnr);
2724             cpu_dump_state(cs, stderr, fprintf, 0);
2725             gdbsig = TARGET_SIGILL;
2726             break;
2727         }
2728         if (gdbsig) {
2729             gdb_handlesig(cs, gdbsig);
2730             if (gdbsig != TARGET_SIGTRAP) {
2731                 exit(1);
2732             }
2733         }
2734 
2735         process_pending_signals(env);
2736     }
2737 }
2738 
2739 #endif /* TARGET_OPENRISC */
2740 
2741 #ifdef TARGET_SH4
2742 void cpu_loop(CPUSH4State *env)
2743 {
2744     CPUState *cs = CPU(sh_env_get_cpu(env));
2745     int trapnr, ret;
2746     target_siginfo_t info;
2747 
2748     while (1) {
2749         trapnr = cpu_sh4_exec (env);
2750 
2751         switch (trapnr) {
2752         case 0x160:
2753             env->pc += 2;
2754             ret = do_syscall(env,
2755                              env->gregs[3],
2756                              env->gregs[4],
2757                              env->gregs[5],
2758                              env->gregs[6],
2759                              env->gregs[7],
2760                              env->gregs[0],
2761                              env->gregs[1],
2762                              0, 0);
2763             env->gregs[0] = ret;
2764             break;
2765         case EXCP_INTERRUPT:
2766             /* just indicate that signals should be handled asap */
2767             break;
2768         case EXCP_DEBUG:
2769             {
2770                 int sig;
2771 
2772                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2773                 if (sig)
2774                   {
2775                     info.si_signo = sig;
2776                     info.si_errno = 0;
2777                     info.si_code = TARGET_TRAP_BRKPT;
2778                     queue_signal(env, info.si_signo, &info);
2779                   }
2780             }
2781             break;
2782 	case 0xa0:
2783 	case 0xc0:
2784             info.si_signo = SIGSEGV;
2785             info.si_errno = 0;
2786             info.si_code = TARGET_SEGV_MAPERR;
2787             info._sifields._sigfault._addr = env->tea;
2788             queue_signal(env, info.si_signo, &info);
2789 	    break;
2790 
2791         default:
2792             printf ("Unhandled trap: 0x%x\n", trapnr);
2793             cpu_dump_state(cs, stderr, fprintf, 0);
2794             exit (1);
2795         }
2796         process_pending_signals (env);
2797     }
2798 }
2799 #endif
2800 
2801 #ifdef TARGET_CRIS
2802 void cpu_loop(CPUCRISState *env)
2803 {
2804     CPUState *cs = CPU(cris_env_get_cpu(env));
2805     int trapnr, ret;
2806     target_siginfo_t info;
2807 
2808     while (1) {
2809         trapnr = cpu_cris_exec (env);
2810         switch (trapnr) {
2811         case 0xaa:
2812             {
2813                 info.si_signo = SIGSEGV;
2814                 info.si_errno = 0;
2815                 /* XXX: check env->error_code */
2816                 info.si_code = TARGET_SEGV_MAPERR;
2817                 info._sifields._sigfault._addr = env->pregs[PR_EDA];
2818                 queue_signal(env, info.si_signo, &info);
2819             }
2820             break;
2821 	case EXCP_INTERRUPT:
2822 	  /* just indicate that signals should be handled asap */
2823 	  break;
2824         case EXCP_BREAK:
2825             ret = do_syscall(env,
2826                              env->regs[9],
2827                              env->regs[10],
2828                              env->regs[11],
2829                              env->regs[12],
2830                              env->regs[13],
2831                              env->pregs[7],
2832                              env->pregs[11],
2833                              0, 0);
2834             env->regs[10] = ret;
2835             break;
2836         case EXCP_DEBUG:
2837             {
2838                 int sig;
2839 
2840                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2841                 if (sig)
2842                   {
2843                     info.si_signo = sig;
2844                     info.si_errno = 0;
2845                     info.si_code = TARGET_TRAP_BRKPT;
2846                     queue_signal(env, info.si_signo, &info);
2847                   }
2848             }
2849             break;
2850         default:
2851             printf ("Unhandled trap: 0x%x\n", trapnr);
2852             cpu_dump_state(cs, stderr, fprintf, 0);
2853             exit (1);
2854         }
2855         process_pending_signals (env);
2856     }
2857 }
2858 #endif
2859 
2860 #ifdef TARGET_MICROBLAZE
2861 void cpu_loop(CPUMBState *env)
2862 {
2863     CPUState *cs = CPU(mb_env_get_cpu(env));
2864     int trapnr, ret;
2865     target_siginfo_t info;
2866 
2867     while (1) {
2868         trapnr = cpu_mb_exec (env);
2869         switch (trapnr) {
2870         case 0xaa:
2871             {
2872                 info.si_signo = SIGSEGV;
2873                 info.si_errno = 0;
2874                 /* XXX: check env->error_code */
2875                 info.si_code = TARGET_SEGV_MAPERR;
2876                 info._sifields._sigfault._addr = 0;
2877                 queue_signal(env, info.si_signo, &info);
2878             }
2879             break;
2880 	case EXCP_INTERRUPT:
2881 	  /* just indicate that signals should be handled asap */
2882 	  break;
2883         case EXCP_BREAK:
2884             /* Return address is 4 bytes after the call.  */
2885             env->regs[14] += 4;
2886             env->sregs[SR_PC] = env->regs[14];
2887             ret = do_syscall(env,
2888                              env->regs[12],
2889                              env->regs[5],
2890                              env->regs[6],
2891                              env->regs[7],
2892                              env->regs[8],
2893                              env->regs[9],
2894                              env->regs[10],
2895                              0, 0);
2896             env->regs[3] = ret;
2897             break;
2898         case EXCP_HW_EXCP:
2899             env->regs[17] = env->sregs[SR_PC] + 4;
2900             if (env->iflags & D_FLAG) {
2901                 env->sregs[SR_ESR] |= 1 << 12;
2902                 env->sregs[SR_PC] -= 4;
2903                 /* FIXME: if branch was immed, replay the imm as well.  */
2904             }
2905 
2906             env->iflags &= ~(IMM_FLAG | D_FLAG);
2907 
2908             switch (env->sregs[SR_ESR] & 31) {
2909                 case ESR_EC_DIVZERO:
2910                     info.si_signo = SIGFPE;
2911                     info.si_errno = 0;
2912                     info.si_code = TARGET_FPE_FLTDIV;
2913                     info._sifields._sigfault._addr = 0;
2914                     queue_signal(env, info.si_signo, &info);
2915                     break;
2916                 case ESR_EC_FPU:
2917                     info.si_signo = SIGFPE;
2918                     info.si_errno = 0;
2919                     if (env->sregs[SR_FSR] & FSR_IO) {
2920                         info.si_code = TARGET_FPE_FLTINV;
2921                     }
2922                     if (env->sregs[SR_FSR] & FSR_DZ) {
2923                         info.si_code = TARGET_FPE_FLTDIV;
2924                     }
2925                     info._sifields._sigfault._addr = 0;
2926                     queue_signal(env, info.si_signo, &info);
2927                     break;
2928                 default:
2929                     printf ("Unhandled hw-exception: 0x%x\n",
2930                             env->sregs[SR_ESR] & ESR_EC_MASK);
2931                     cpu_dump_state(cs, stderr, fprintf, 0);
2932                     exit (1);
2933                     break;
2934             }
2935             break;
2936         case EXCP_DEBUG:
2937             {
2938                 int sig;
2939 
2940                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
2941                 if (sig)
2942                   {
2943                     info.si_signo = sig;
2944                     info.si_errno = 0;
2945                     info.si_code = TARGET_TRAP_BRKPT;
2946                     queue_signal(env, info.si_signo, &info);
2947                   }
2948             }
2949             break;
2950         default:
2951             printf ("Unhandled trap: 0x%x\n", trapnr);
2952             cpu_dump_state(cs, stderr, fprintf, 0);
2953             exit (1);
2954         }
2955         process_pending_signals (env);
2956     }
2957 }
2958 #endif
2959 
2960 #ifdef TARGET_M68K
2961 
2962 void cpu_loop(CPUM68KState *env)
2963 {
2964     CPUState *cs = CPU(m68k_env_get_cpu(env));
2965     int trapnr;
2966     unsigned int n;
2967     target_siginfo_t info;
2968     TaskState *ts = cs->opaque;
2969 
2970     for(;;) {
2971         trapnr = cpu_m68k_exec(env);
2972         switch(trapnr) {
2973         case EXCP_ILLEGAL:
2974             {
2975                 if (ts->sim_syscalls) {
2976                     uint16_t nr;
2977                     nr = lduw(env->pc + 2);
2978                     env->pc += 4;
2979                     do_m68k_simcall(env, nr);
2980                 } else {
2981                     goto do_sigill;
2982                 }
2983             }
2984             break;
2985         case EXCP_HALT_INSN:
2986             /* Semihosing syscall.  */
2987             env->pc += 4;
2988             do_m68k_semihosting(env, env->dregs[0]);
2989             break;
2990         case EXCP_LINEA:
2991         case EXCP_LINEF:
2992         case EXCP_UNSUPPORTED:
2993         do_sigill:
2994             info.si_signo = SIGILL;
2995             info.si_errno = 0;
2996             info.si_code = TARGET_ILL_ILLOPN;
2997             info._sifields._sigfault._addr = env->pc;
2998             queue_signal(env, info.si_signo, &info);
2999             break;
3000         case EXCP_TRAP0:
3001             {
3002                 ts->sim_syscalls = 0;
3003                 n = env->dregs[0];
3004                 env->pc += 2;
3005                 env->dregs[0] = do_syscall(env,
3006                                           n,
3007                                           env->dregs[1],
3008                                           env->dregs[2],
3009                                           env->dregs[3],
3010                                           env->dregs[4],
3011                                           env->dregs[5],
3012                                           env->aregs[0],
3013                                           0, 0);
3014             }
3015             break;
3016         case EXCP_INTERRUPT:
3017             /* just indicate that signals should be handled asap */
3018             break;
3019         case EXCP_ACCESS:
3020             {
3021                 info.si_signo = SIGSEGV;
3022                 info.si_errno = 0;
3023                 /* XXX: check env->error_code */
3024                 info.si_code = TARGET_SEGV_MAPERR;
3025                 info._sifields._sigfault._addr = env->mmu.ar;
3026                 queue_signal(env, info.si_signo, &info);
3027             }
3028             break;
3029         case EXCP_DEBUG:
3030             {
3031                 int sig;
3032 
3033                 sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3034                 if (sig)
3035                   {
3036                     info.si_signo = sig;
3037                     info.si_errno = 0;
3038                     info.si_code = TARGET_TRAP_BRKPT;
3039                     queue_signal(env, info.si_signo, &info);
3040                   }
3041             }
3042             break;
3043         default:
3044             fprintf(stderr, "qemu: unhandled CPU exception 0x%x - aborting\n",
3045                     trapnr);
3046             cpu_dump_state(cs, stderr, fprintf, 0);
3047             abort();
3048         }
3049         process_pending_signals(env);
3050     }
3051 }
3052 #endif /* TARGET_M68K */
3053 
3054 #ifdef TARGET_ALPHA
3055 static void do_store_exclusive(CPUAlphaState *env, int reg, int quad)
3056 {
3057     target_ulong addr, val, tmp;
3058     target_siginfo_t info;
3059     int ret = 0;
3060 
3061     addr = env->lock_addr;
3062     tmp = env->lock_st_addr;
3063     env->lock_addr = -1;
3064     env->lock_st_addr = 0;
3065 
3066     start_exclusive();
3067     mmap_lock();
3068 
3069     if (addr == tmp) {
3070         if (quad ? get_user_s64(val, addr) : get_user_s32(val, addr)) {
3071             goto do_sigsegv;
3072         }
3073 
3074         if (val == env->lock_value) {
3075             tmp = env->ir[reg];
3076             if (quad ? put_user_u64(tmp, addr) : put_user_u32(tmp, addr)) {
3077                 goto do_sigsegv;
3078             }
3079             ret = 1;
3080         }
3081     }
3082     env->ir[reg] = ret;
3083     env->pc += 4;
3084 
3085     mmap_unlock();
3086     end_exclusive();
3087     return;
3088 
3089  do_sigsegv:
3090     mmap_unlock();
3091     end_exclusive();
3092 
3093     info.si_signo = TARGET_SIGSEGV;
3094     info.si_errno = 0;
3095     info.si_code = TARGET_SEGV_MAPERR;
3096     info._sifields._sigfault._addr = addr;
3097     queue_signal(env, TARGET_SIGSEGV, &info);
3098 }
3099 
3100 void cpu_loop(CPUAlphaState *env)
3101 {
3102     CPUState *cs = CPU(alpha_env_get_cpu(env));
3103     int trapnr;
3104     target_siginfo_t info;
3105     abi_long sysret;
3106 
3107     while (1) {
3108         trapnr = cpu_alpha_exec (env);
3109 
3110         /* All of the traps imply a transition through PALcode, which
3111            implies an REI instruction has been executed.  Which means
3112            that the intr_flag should be cleared.  */
3113         env->intr_flag = 0;
3114 
3115         switch (trapnr) {
3116         case EXCP_RESET:
3117             fprintf(stderr, "Reset requested. Exit\n");
3118             exit(1);
3119             break;
3120         case EXCP_MCHK:
3121             fprintf(stderr, "Machine check exception. Exit\n");
3122             exit(1);
3123             break;
3124         case EXCP_SMP_INTERRUPT:
3125         case EXCP_CLK_INTERRUPT:
3126         case EXCP_DEV_INTERRUPT:
3127             fprintf(stderr, "External interrupt. Exit\n");
3128             exit(1);
3129             break;
3130         case EXCP_MMFAULT:
3131             env->lock_addr = -1;
3132             info.si_signo = TARGET_SIGSEGV;
3133             info.si_errno = 0;
3134             info.si_code = (page_get_flags(env->trap_arg0) & PAGE_VALID
3135                             ? TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR);
3136             info._sifields._sigfault._addr = env->trap_arg0;
3137             queue_signal(env, info.si_signo, &info);
3138             break;
3139         case EXCP_UNALIGN:
3140             env->lock_addr = -1;
3141             info.si_signo = TARGET_SIGBUS;
3142             info.si_errno = 0;
3143             info.si_code = TARGET_BUS_ADRALN;
3144             info._sifields._sigfault._addr = env->trap_arg0;
3145             queue_signal(env, info.si_signo, &info);
3146             break;
3147         case EXCP_OPCDEC:
3148         do_sigill:
3149             env->lock_addr = -1;
3150             info.si_signo = TARGET_SIGILL;
3151             info.si_errno = 0;
3152             info.si_code = TARGET_ILL_ILLOPC;
3153             info._sifields._sigfault._addr = env->pc;
3154             queue_signal(env, info.si_signo, &info);
3155             break;
3156         case EXCP_ARITH:
3157             env->lock_addr = -1;
3158             info.si_signo = TARGET_SIGFPE;
3159             info.si_errno = 0;
3160             info.si_code = TARGET_FPE_FLTINV;
3161             info._sifields._sigfault._addr = env->pc;
3162             queue_signal(env, info.si_signo, &info);
3163             break;
3164         case EXCP_FEN:
3165             /* No-op.  Linux simply re-enables the FPU.  */
3166             break;
3167         case EXCP_CALL_PAL:
3168             env->lock_addr = -1;
3169             switch (env->error_code) {
3170             case 0x80:
3171                 /* BPT */
3172                 info.si_signo = TARGET_SIGTRAP;
3173                 info.si_errno = 0;
3174                 info.si_code = TARGET_TRAP_BRKPT;
3175                 info._sifields._sigfault._addr = env->pc;
3176                 queue_signal(env, info.si_signo, &info);
3177                 break;
3178             case 0x81:
3179                 /* BUGCHK */
3180                 info.si_signo = TARGET_SIGTRAP;
3181                 info.si_errno = 0;
3182                 info.si_code = 0;
3183                 info._sifields._sigfault._addr = env->pc;
3184                 queue_signal(env, info.si_signo, &info);
3185                 break;
3186             case 0x83:
3187                 /* CALLSYS */
3188                 trapnr = env->ir[IR_V0];
3189                 sysret = do_syscall(env, trapnr,
3190                                     env->ir[IR_A0], env->ir[IR_A1],
3191                                     env->ir[IR_A2], env->ir[IR_A3],
3192                                     env->ir[IR_A4], env->ir[IR_A5],
3193                                     0, 0);
3194                 if (trapnr == TARGET_NR_sigreturn
3195                     || trapnr == TARGET_NR_rt_sigreturn) {
3196                     break;
3197                 }
3198                 /* Syscall writes 0 to V0 to bypass error check, similar
3199                    to how this is handled internal to Linux kernel.
3200                    (Ab)use trapnr temporarily as boolean indicating error.  */
3201                 trapnr = (env->ir[IR_V0] != 0 && sysret < 0);
3202                 env->ir[IR_V0] = (trapnr ? -sysret : sysret);
3203                 env->ir[IR_A3] = trapnr;
3204                 break;
3205             case 0x86:
3206                 /* IMB */
3207                 /* ??? We can probably elide the code using page_unprotect
3208                    that is checking for self-modifying code.  Instead we
3209                    could simply call tb_flush here.  Until we work out the
3210                    changes required to turn off the extra write protection,
3211                    this can be a no-op.  */
3212                 break;
3213             case 0x9E:
3214                 /* RDUNIQUE */
3215                 /* Handled in the translator for usermode.  */
3216                 abort();
3217             case 0x9F:
3218                 /* WRUNIQUE */
3219                 /* Handled in the translator for usermode.  */
3220                 abort();
3221             case 0xAA:
3222                 /* GENTRAP */
3223                 info.si_signo = TARGET_SIGFPE;
3224                 switch (env->ir[IR_A0]) {
3225                 case TARGET_GEN_INTOVF:
3226                     info.si_code = TARGET_FPE_INTOVF;
3227                     break;
3228                 case TARGET_GEN_INTDIV:
3229                     info.si_code = TARGET_FPE_INTDIV;
3230                     break;
3231                 case TARGET_GEN_FLTOVF:
3232                     info.si_code = TARGET_FPE_FLTOVF;
3233                     break;
3234                 case TARGET_GEN_FLTUND:
3235                     info.si_code = TARGET_FPE_FLTUND;
3236                     break;
3237                 case TARGET_GEN_FLTINV:
3238                     info.si_code = TARGET_FPE_FLTINV;
3239                     break;
3240                 case TARGET_GEN_FLTINE:
3241                     info.si_code = TARGET_FPE_FLTRES;
3242                     break;
3243                 case TARGET_GEN_ROPRAND:
3244                     info.si_code = 0;
3245                     break;
3246                 default:
3247                     info.si_signo = TARGET_SIGTRAP;
3248                     info.si_code = 0;
3249                     break;
3250                 }
3251                 info.si_errno = 0;
3252                 info._sifields._sigfault._addr = env->pc;
3253                 queue_signal(env, info.si_signo, &info);
3254                 break;
3255             default:
3256                 goto do_sigill;
3257             }
3258             break;
3259         case EXCP_DEBUG:
3260             info.si_signo = gdb_handlesig(cs, TARGET_SIGTRAP);
3261             if (info.si_signo) {
3262                 env->lock_addr = -1;
3263                 info.si_errno = 0;
3264                 info.si_code = TARGET_TRAP_BRKPT;
3265                 queue_signal(env, info.si_signo, &info);
3266             }
3267             break;
3268         case EXCP_STL_C:
3269         case EXCP_STQ_C:
3270             do_store_exclusive(env, env->error_code, trapnr - EXCP_STL_C);
3271             break;
3272         case EXCP_INTERRUPT:
3273             /* Just indicate that signals should be handled asap.  */
3274             break;
3275         default:
3276             printf ("Unhandled trap: 0x%x\n", trapnr);
3277             cpu_dump_state(cs, stderr, fprintf, 0);
3278             exit (1);
3279         }
3280         process_pending_signals (env);
3281     }
3282 }
3283 #endif /* TARGET_ALPHA */
3284 
3285 #ifdef TARGET_S390X
3286 void cpu_loop(CPUS390XState *env)
3287 {
3288     CPUState *cs = CPU(s390_env_get_cpu(env));
3289     int trapnr, n, sig;
3290     target_siginfo_t info;
3291     target_ulong addr;
3292 
3293     while (1) {
3294         trapnr = cpu_s390x_exec(env);
3295         switch (trapnr) {
3296         case EXCP_INTERRUPT:
3297             /* Just indicate that signals should be handled asap.  */
3298             break;
3299 
3300         case EXCP_SVC:
3301             n = env->int_svc_code;
3302             if (!n) {
3303                 /* syscalls > 255 */
3304                 n = env->regs[1];
3305             }
3306             env->psw.addr += env->int_svc_ilen;
3307             env->regs[2] = do_syscall(env, n, env->regs[2], env->regs[3],
3308                                       env->regs[4], env->regs[5],
3309                                       env->regs[6], env->regs[7], 0, 0);
3310             break;
3311 
3312         case EXCP_DEBUG:
3313             sig = gdb_handlesig(cs, TARGET_SIGTRAP);
3314             if (sig) {
3315                 n = TARGET_TRAP_BRKPT;
3316                 goto do_signal_pc;
3317             }
3318             break;
3319         case EXCP_PGM:
3320             n = env->int_pgm_code;
3321             switch (n) {
3322             case PGM_OPERATION:
3323             case PGM_PRIVILEGED:
3324                 sig = SIGILL;
3325                 n = TARGET_ILL_ILLOPC;
3326                 goto do_signal_pc;
3327             case PGM_PROTECTION:
3328             case PGM_ADDRESSING:
3329                 sig = SIGSEGV;
3330                 /* XXX: check env->error_code */
3331                 n = TARGET_SEGV_MAPERR;
3332                 addr = env->__excp_addr;
3333                 goto do_signal;
3334             case PGM_EXECUTE:
3335             case PGM_SPECIFICATION:
3336             case PGM_SPECIAL_OP:
3337             case PGM_OPERAND:
3338             do_sigill_opn:
3339                 sig = SIGILL;
3340                 n = TARGET_ILL_ILLOPN;
3341                 goto do_signal_pc;
3342 
3343             case PGM_FIXPT_OVERFLOW:
3344                 sig = SIGFPE;
3345                 n = TARGET_FPE_INTOVF;
3346                 goto do_signal_pc;
3347             case PGM_FIXPT_DIVIDE:
3348                 sig = SIGFPE;
3349                 n = TARGET_FPE_INTDIV;
3350                 goto do_signal_pc;
3351 
3352             case PGM_DATA:
3353                 n = (env->fpc >> 8) & 0xff;
3354                 if (n == 0xff) {
3355                     /* compare-and-trap */
3356                     goto do_sigill_opn;
3357                 } else {
3358                     /* An IEEE exception, simulated or otherwise.  */
3359                     if (n & 0x80) {
3360                         n = TARGET_FPE_FLTINV;
3361                     } else if (n & 0x40) {
3362                         n = TARGET_FPE_FLTDIV;
3363                     } else if (n & 0x20) {
3364                         n = TARGET_FPE_FLTOVF;
3365                     } else if (n & 0x10) {
3366                         n = TARGET_FPE_FLTUND;
3367                     } else if (n & 0x08) {
3368                         n = TARGET_FPE_FLTRES;
3369                     } else {
3370                         /* ??? Quantum exception; BFP, DFP error.  */
3371                         goto do_sigill_opn;
3372                     }
3373                     sig = SIGFPE;
3374                     goto do_signal_pc;
3375                 }
3376 
3377             default:
3378                 fprintf(stderr, "Unhandled program exception: %#x\n", n);
3379                 cpu_dump_state(cs, stderr, fprintf, 0);
3380                 exit(1);
3381             }
3382             break;
3383 
3384         do_signal_pc:
3385             addr = env->psw.addr;
3386         do_signal:
3387             info.si_signo = sig;
3388             info.si_errno = 0;
3389             info.si_code = n;
3390             info._sifields._sigfault._addr = addr;
3391             queue_signal(env, info.si_signo, &info);
3392             break;
3393 
3394         default:
3395             fprintf(stderr, "Unhandled trap: 0x%x\n", trapnr);
3396             cpu_dump_state(cs, stderr, fprintf, 0);
3397             exit(1);
3398         }
3399         process_pending_signals (env);
3400     }
3401 }
3402 
3403 #endif /* TARGET_S390X */
3404 
3405 THREAD CPUState *thread_cpu;
3406 
3407 void task_settid(TaskState *ts)
3408 {
3409     if (ts->ts_tid == 0) {
3410         ts->ts_tid = (pid_t)syscall(SYS_gettid);
3411     }
3412 }
3413 
3414 void stop_all_tasks(void)
3415 {
3416     /*
3417      * We trust that when using NPTL, start_exclusive()
3418      * handles thread stopping correctly.
3419      */
3420     start_exclusive();
3421 }
3422 
3423 /* Assumes contents are already zeroed.  */
3424 void init_task_state(TaskState *ts)
3425 {
3426     int i;
3427 
3428     ts->used = 1;
3429     ts->first_free = ts->sigqueue_table;
3430     for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
3431         ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
3432     }
3433     ts->sigqueue_table[i].next = NULL;
3434 }
3435 
3436 CPUArchState *cpu_copy(CPUArchState *env)
3437 {
3438     CPUState *cpu = ENV_GET_CPU(env);
3439     CPUArchState *new_env = cpu_init(cpu_model);
3440     CPUState *new_cpu = ENV_GET_CPU(new_env);
3441 #if defined(TARGET_HAS_ICE)
3442     CPUBreakpoint *bp;
3443     CPUWatchpoint *wp;
3444 #endif
3445 
3446     /* Reset non arch specific state */
3447     cpu_reset(new_cpu);
3448 
3449     memcpy(new_env, env, sizeof(CPUArchState));
3450 
3451     /* Clone all break/watchpoints.
3452        Note: Once we support ptrace with hw-debug register access, make sure
3453        BP_CPU break/watchpoints are handled correctly on clone. */
3454     QTAILQ_INIT(&cpu->breakpoints);
3455     QTAILQ_INIT(&cpu->watchpoints);
3456 #if defined(TARGET_HAS_ICE)
3457     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
3458         cpu_breakpoint_insert(new_cpu, bp->pc, bp->flags, NULL);
3459     }
3460     QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
3461         cpu_watchpoint_insert(new_cpu, wp->vaddr, (~wp->len_mask) + 1,
3462                               wp->flags, NULL);
3463     }
3464 #endif
3465 
3466     return new_env;
3467 }
3468 
3469 static void handle_arg_help(const char *arg)
3470 {
3471     usage();
3472 }
3473 
3474 static void handle_arg_log(const char *arg)
3475 {
3476     int mask;
3477 
3478     mask = qemu_str_to_log_mask(arg);
3479     if (!mask) {
3480         qemu_print_log_usage(stdout);
3481         exit(1);
3482     }
3483     qemu_set_log(mask);
3484 }
3485 
3486 static void handle_arg_log_filename(const char *arg)
3487 {
3488     qemu_set_log_filename(arg);
3489 }
3490 
3491 static void handle_arg_set_env(const char *arg)
3492 {
3493     char *r, *p, *token;
3494     r = p = strdup(arg);
3495     while ((token = strsep(&p, ",")) != NULL) {
3496         if (envlist_setenv(envlist, token) != 0) {
3497             usage();
3498         }
3499     }
3500     free(r);
3501 }
3502 
3503 static void handle_arg_unset_env(const char *arg)
3504 {
3505     char *r, *p, *token;
3506     r = p = strdup(arg);
3507     while ((token = strsep(&p, ",")) != NULL) {
3508         if (envlist_unsetenv(envlist, token) != 0) {
3509             usage();
3510         }
3511     }
3512     free(r);
3513 }
3514 
3515 static void handle_arg_argv0(const char *arg)
3516 {
3517     argv0 = strdup(arg);
3518 }
3519 
3520 static void handle_arg_stack_size(const char *arg)
3521 {
3522     char *p;
3523     guest_stack_size = strtoul(arg, &p, 0);
3524     if (guest_stack_size == 0) {
3525         usage();
3526     }
3527 
3528     if (*p == 'M') {
3529         guest_stack_size *= 1024 * 1024;
3530     } else if (*p == 'k' || *p == 'K') {
3531         guest_stack_size *= 1024;
3532     }
3533 }
3534 
3535 static void handle_arg_ld_prefix(const char *arg)
3536 {
3537     interp_prefix = strdup(arg);
3538 }
3539 
3540 static void handle_arg_pagesize(const char *arg)
3541 {
3542     qemu_host_page_size = atoi(arg);
3543     if (qemu_host_page_size == 0 ||
3544         (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
3545         fprintf(stderr, "page size must be a power of two\n");
3546         exit(1);
3547     }
3548 }
3549 
3550 static void handle_arg_gdb(const char *arg)
3551 {
3552     gdbstub_port = atoi(arg);
3553 }
3554 
3555 static void handle_arg_uname(const char *arg)
3556 {
3557     qemu_uname_release = strdup(arg);
3558 }
3559 
3560 static void handle_arg_cpu(const char *arg)
3561 {
3562     cpu_model = strdup(arg);
3563     if (cpu_model == NULL || is_help_option(cpu_model)) {
3564         /* XXX: implement xxx_cpu_list for targets that still miss it */
3565 #if defined(cpu_list)
3566         cpu_list(stdout, &fprintf);
3567 #endif
3568         exit(1);
3569     }
3570 }
3571 
3572 #if defined(CONFIG_USE_GUEST_BASE)
3573 static void handle_arg_guest_base(const char *arg)
3574 {
3575     guest_base = strtol(arg, NULL, 0);
3576     have_guest_base = 1;
3577 }
3578 
3579 static void handle_arg_reserved_va(const char *arg)
3580 {
3581     char *p;
3582     int shift = 0;
3583     reserved_va = strtoul(arg, &p, 0);
3584     switch (*p) {
3585     case 'k':
3586     case 'K':
3587         shift = 10;
3588         break;
3589     case 'M':
3590         shift = 20;
3591         break;
3592     case 'G':
3593         shift = 30;
3594         break;
3595     }
3596     if (shift) {
3597         unsigned long unshifted = reserved_va;
3598         p++;
3599         reserved_va <<= shift;
3600         if (((reserved_va >> shift) != unshifted)
3601 #if HOST_LONG_BITS > TARGET_VIRT_ADDR_SPACE_BITS
3602             || (reserved_va > (1ul << TARGET_VIRT_ADDR_SPACE_BITS))
3603 #endif
3604             ) {
3605             fprintf(stderr, "Reserved virtual address too big\n");
3606             exit(1);
3607         }
3608     }
3609     if (*p) {
3610         fprintf(stderr, "Unrecognised -R size suffix '%s'\n", p);
3611         exit(1);
3612     }
3613 }
3614 #endif
3615 
3616 static void handle_arg_singlestep(const char *arg)
3617 {
3618     singlestep = 1;
3619 }
3620 
3621 static void handle_arg_strace(const char *arg)
3622 {
3623     do_strace = 1;
3624 }
3625 
3626 static void handle_arg_version(const char *arg)
3627 {
3628     printf("qemu-" TARGET_NAME " version " QEMU_VERSION QEMU_PKGVERSION
3629            ", Copyright (c) 2003-2008 Fabrice Bellard\n");
3630     exit(0);
3631 }
3632 
3633 struct qemu_argument {
3634     const char *argv;
3635     const char *env;
3636     bool has_arg;
3637     void (*handle_opt)(const char *arg);
3638     const char *example;
3639     const char *help;
3640 };
3641 
3642 static const struct qemu_argument arg_table[] = {
3643     {"h",          "",                 false, handle_arg_help,
3644      "",           "print this help"},
3645     {"g",          "QEMU_GDB",         true,  handle_arg_gdb,
3646      "port",       "wait gdb connection to 'port'"},
3647     {"L",          "QEMU_LD_PREFIX",   true,  handle_arg_ld_prefix,
3648      "path",       "set the elf interpreter prefix to 'path'"},
3649     {"s",          "QEMU_STACK_SIZE",  true,  handle_arg_stack_size,
3650      "size",       "set the stack size to 'size' bytes"},
3651     {"cpu",        "QEMU_CPU",         true,  handle_arg_cpu,
3652      "model",      "select CPU (-cpu help for list)"},
3653     {"E",          "QEMU_SET_ENV",     true,  handle_arg_set_env,
3654      "var=value",  "sets targets environment variable (see below)"},
3655     {"U",          "QEMU_UNSET_ENV",   true,  handle_arg_unset_env,
3656      "var",        "unsets targets environment variable (see below)"},
3657     {"0",          "QEMU_ARGV0",       true,  handle_arg_argv0,
3658      "argv0",      "forces target process argv[0] to be 'argv0'"},
3659     {"r",          "QEMU_UNAME",       true,  handle_arg_uname,
3660      "uname",      "set qemu uname release string to 'uname'"},
3661 #if defined(CONFIG_USE_GUEST_BASE)
3662     {"B",          "QEMU_GUEST_BASE",  true,  handle_arg_guest_base,
3663      "address",    "set guest_base address to 'address'"},
3664     {"R",          "QEMU_RESERVED_VA", true,  handle_arg_reserved_va,
3665      "size",       "reserve 'size' bytes for guest virtual address space"},
3666 #endif
3667     {"d",          "QEMU_LOG",         true,  handle_arg_log,
3668      "item[,...]", "enable logging of specified items "
3669      "(use '-d help' for a list of items)"},
3670     {"D",          "QEMU_LOG_FILENAME", true, handle_arg_log_filename,
3671      "logfile",     "write logs to 'logfile' (default stderr)"},
3672     {"p",          "QEMU_PAGESIZE",    true,  handle_arg_pagesize,
3673      "pagesize",   "set the host page size to 'pagesize'"},
3674     {"singlestep", "QEMU_SINGLESTEP",  false, handle_arg_singlestep,
3675      "",           "run in singlestep mode"},
3676     {"strace",     "QEMU_STRACE",      false, handle_arg_strace,
3677      "",           "log system calls"},
3678     {"version",    "QEMU_VERSION",     false, handle_arg_version,
3679      "",           "display version information and exit"},
3680     {NULL, NULL, false, NULL, NULL, NULL}
3681 };
3682 
3683 static void usage(void)
3684 {
3685     const struct qemu_argument *arginfo;
3686     int maxarglen;
3687     int maxenvlen;
3688 
3689     printf("usage: qemu-" TARGET_NAME " [options] program [arguments...]\n"
3690            "Linux CPU emulator (compiled for " TARGET_NAME " emulation)\n"
3691            "\n"
3692            "Options and associated environment variables:\n"
3693            "\n");
3694 
3695     /* Calculate column widths. We must always have at least enough space
3696      * for the column header.
3697      */
3698     maxarglen = strlen("Argument");
3699     maxenvlen = strlen("Env-variable");
3700 
3701     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3702         int arglen = strlen(arginfo->argv);
3703         if (arginfo->has_arg) {
3704             arglen += strlen(arginfo->example) + 1;
3705         }
3706         if (strlen(arginfo->env) > maxenvlen) {
3707             maxenvlen = strlen(arginfo->env);
3708         }
3709         if (arglen > maxarglen) {
3710             maxarglen = arglen;
3711         }
3712     }
3713 
3714     printf("%-*s %-*s Description\n", maxarglen+1, "Argument",
3715             maxenvlen, "Env-variable");
3716 
3717     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3718         if (arginfo->has_arg) {
3719             printf("-%s %-*s %-*s %s\n", arginfo->argv,
3720                    (int)(maxarglen - strlen(arginfo->argv) - 1),
3721                    arginfo->example, maxenvlen, arginfo->env, arginfo->help);
3722         } else {
3723             printf("-%-*s %-*s %s\n", maxarglen, arginfo->argv,
3724                     maxenvlen, arginfo->env,
3725                     arginfo->help);
3726         }
3727     }
3728 
3729     printf("\n"
3730            "Defaults:\n"
3731            "QEMU_LD_PREFIX  = %s\n"
3732            "QEMU_STACK_SIZE = %ld byte\n",
3733            interp_prefix,
3734            guest_stack_size);
3735 
3736     printf("\n"
3737            "You can use -E and -U options or the QEMU_SET_ENV and\n"
3738            "QEMU_UNSET_ENV environment variables to set and unset\n"
3739            "environment variables for the target process.\n"
3740            "It is possible to provide several variables by separating them\n"
3741            "by commas in getsubopt(3) style. Additionally it is possible to\n"
3742            "provide the -E and -U options multiple times.\n"
3743            "The following lines are equivalent:\n"
3744            "    -E var1=val2 -E var2=val2 -U LD_PRELOAD -U LD_DEBUG\n"
3745            "    -E var1=val2,var2=val2 -U LD_PRELOAD,LD_DEBUG\n"
3746            "    QEMU_SET_ENV=var1=val2,var2=val2 QEMU_UNSET_ENV=LD_PRELOAD,LD_DEBUG\n"
3747            "Note that if you provide several changes to a single variable\n"
3748            "the last change will stay in effect.\n");
3749 
3750     exit(1);
3751 }
3752 
3753 static int parse_args(int argc, char **argv)
3754 {
3755     const char *r;
3756     int optind;
3757     const struct qemu_argument *arginfo;
3758 
3759     for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3760         if (arginfo->env == NULL) {
3761             continue;
3762         }
3763 
3764         r = getenv(arginfo->env);
3765         if (r != NULL) {
3766             arginfo->handle_opt(r);
3767         }
3768     }
3769 
3770     optind = 1;
3771     for (;;) {
3772         if (optind >= argc) {
3773             break;
3774         }
3775         r = argv[optind];
3776         if (r[0] != '-') {
3777             break;
3778         }
3779         optind++;
3780         r++;
3781         if (!strcmp(r, "-")) {
3782             break;
3783         }
3784 
3785         for (arginfo = arg_table; arginfo->handle_opt != NULL; arginfo++) {
3786             if (!strcmp(r, arginfo->argv)) {
3787                 if (arginfo->has_arg) {
3788                     if (optind >= argc) {
3789                         usage();
3790                     }
3791                     arginfo->handle_opt(argv[optind]);
3792                     optind++;
3793                 } else {
3794                     arginfo->handle_opt(NULL);
3795                 }
3796                 break;
3797             }
3798         }
3799 
3800         /* no option matched the current argv */
3801         if (arginfo->handle_opt == NULL) {
3802             usage();
3803         }
3804     }
3805 
3806     if (optind >= argc) {
3807         usage();
3808     }
3809 
3810     filename = argv[optind];
3811     exec_path = argv[optind];
3812 
3813     return optind;
3814 }
3815 
3816 int main(int argc, char **argv, char **envp)
3817 {
3818     struct target_pt_regs regs1, *regs = &regs1;
3819     struct image_info info1, *info = &info1;
3820     struct linux_binprm bprm;
3821     TaskState *ts;
3822     CPUArchState *env;
3823     CPUState *cpu;
3824     int optind;
3825     char **target_environ, **wrk;
3826     char **target_argv;
3827     int target_argc;
3828     int i;
3829     int ret;
3830     int execfd;
3831 
3832     module_call_init(MODULE_INIT_QOM);
3833 
3834     qemu_init_auxval(envp);
3835     qemu_cache_utils_init();
3836 
3837     if ((envlist = envlist_create()) == NULL) {
3838         (void) fprintf(stderr, "Unable to allocate envlist\n");
3839         exit(1);
3840     }
3841 
3842     /* add current environment into the list */
3843     for (wrk = environ; *wrk != NULL; wrk++) {
3844         (void) envlist_setenv(envlist, *wrk);
3845     }
3846 
3847     /* Read the stack limit from the kernel.  If it's "unlimited",
3848        then we can do little else besides use the default.  */
3849     {
3850         struct rlimit lim;
3851         if (getrlimit(RLIMIT_STACK, &lim) == 0
3852             && lim.rlim_cur != RLIM_INFINITY
3853             && lim.rlim_cur == (target_long)lim.rlim_cur) {
3854             guest_stack_size = lim.rlim_cur;
3855         }
3856     }
3857 
3858     cpu_model = NULL;
3859 #if defined(cpudef_setup)
3860     cpudef_setup(); /* parse cpu definitions in target config file (TBD) */
3861 #endif
3862 
3863     optind = parse_args(argc, argv);
3864 
3865     /* Zero out regs */
3866     memset(regs, 0, sizeof(struct target_pt_regs));
3867 
3868     /* Zero out image_info */
3869     memset(info, 0, sizeof(struct image_info));
3870 
3871     memset(&bprm, 0, sizeof (bprm));
3872 
3873     /* Scan interp_prefix dir for replacement files. */
3874     init_paths(interp_prefix);
3875 
3876     init_qemu_uname_release();
3877 
3878     if (cpu_model == NULL) {
3879 #if defined(TARGET_I386)
3880 #ifdef TARGET_X86_64
3881         cpu_model = "qemu64";
3882 #else
3883         cpu_model = "qemu32";
3884 #endif
3885 #elif defined(TARGET_ARM)
3886         cpu_model = "any";
3887 #elif defined(TARGET_UNICORE32)
3888         cpu_model = "any";
3889 #elif defined(TARGET_M68K)
3890         cpu_model = "any";
3891 #elif defined(TARGET_SPARC)
3892 #ifdef TARGET_SPARC64
3893         cpu_model = "TI UltraSparc II";
3894 #else
3895         cpu_model = "Fujitsu MB86904";
3896 #endif
3897 #elif defined(TARGET_MIPS)
3898 #if defined(TARGET_ABI_MIPSN32) || defined(TARGET_ABI_MIPSN64)
3899         cpu_model = "20Kc";
3900 #else
3901         cpu_model = "24Kf";
3902 #endif
3903 #elif defined TARGET_OPENRISC
3904         cpu_model = "or1200";
3905 #elif defined(TARGET_PPC)
3906 #ifdef TARGET_PPC64
3907         cpu_model = "970fx";
3908 #else
3909         cpu_model = "750";
3910 #endif
3911 #else
3912         cpu_model = "any";
3913 #endif
3914     }
3915     tcg_exec_init(0);
3916     cpu_exec_init_all();
3917     /* NOTE: we need to init the CPU at this stage to get
3918        qemu_host_page_size */
3919     env = cpu_init(cpu_model);
3920     if (!env) {
3921         fprintf(stderr, "Unable to find CPU definition\n");
3922         exit(1);
3923     }
3924     cpu = ENV_GET_CPU(env);
3925     cpu_reset(cpu);
3926 
3927     thread_cpu = cpu;
3928 
3929     if (getenv("QEMU_STRACE")) {
3930         do_strace = 1;
3931     }
3932 
3933     target_environ = envlist_to_environ(envlist, NULL);
3934     envlist_free(envlist);
3935 
3936 #if defined(CONFIG_USE_GUEST_BASE)
3937     /*
3938      * Now that page sizes are configured in cpu_init() we can do
3939      * proper page alignment for guest_base.
3940      */
3941     guest_base = HOST_PAGE_ALIGN(guest_base);
3942 
3943     if (reserved_va || have_guest_base) {
3944         guest_base = init_guest_space(guest_base, reserved_va, 0,
3945                                       have_guest_base);
3946         if (guest_base == (unsigned long)-1) {
3947             fprintf(stderr, "Unable to reserve 0x%lx bytes of virtual address "
3948                     "space for use as guest address space (check your virtual "
3949                     "memory ulimit setting or reserve less using -R option)\n",
3950                     reserved_va);
3951             exit(1);
3952         }
3953 
3954         if (reserved_va) {
3955             mmap_next_start = reserved_va;
3956         }
3957     }
3958 #endif /* CONFIG_USE_GUEST_BASE */
3959 
3960     /*
3961      * Read in mmap_min_addr kernel parameter.  This value is used
3962      * When loading the ELF image to determine whether guest_base
3963      * is needed.  It is also used in mmap_find_vma.
3964      */
3965     {
3966         FILE *fp;
3967 
3968         if ((fp = fopen("/proc/sys/vm/mmap_min_addr", "r")) != NULL) {
3969             unsigned long tmp;
3970             if (fscanf(fp, "%lu", &tmp) == 1) {
3971                 mmap_min_addr = tmp;
3972                 qemu_log("host mmap_min_addr=0x%lx\n", mmap_min_addr);
3973             }
3974             fclose(fp);
3975         }
3976     }
3977 
3978     /*
3979      * Prepare copy of argv vector for target.
3980      */
3981     target_argc = argc - optind;
3982     target_argv = calloc(target_argc + 1, sizeof (char *));
3983     if (target_argv == NULL) {
3984 	(void) fprintf(stderr, "Unable to allocate memory for target_argv\n");
3985 	exit(1);
3986     }
3987 
3988     /*
3989      * If argv0 is specified (using '-0' switch) we replace
3990      * argv[0] pointer with the given one.
3991      */
3992     i = 0;
3993     if (argv0 != NULL) {
3994         target_argv[i++] = strdup(argv0);
3995     }
3996     for (; i < target_argc; i++) {
3997         target_argv[i] = strdup(argv[optind + i]);
3998     }
3999     target_argv[target_argc] = NULL;
4000 
4001     ts = g_malloc0 (sizeof(TaskState));
4002     init_task_state(ts);
4003     /* build Task State */
4004     ts->info = info;
4005     ts->bprm = &bprm;
4006     cpu->opaque = ts;
4007     task_settid(ts);
4008 
4009     execfd = qemu_getauxval(AT_EXECFD);
4010     if (execfd == 0) {
4011         execfd = open(filename, O_RDONLY);
4012         if (execfd < 0) {
4013             printf("Error while loading %s: %s\n", filename, strerror(errno));
4014             _exit(1);
4015         }
4016     }
4017 
4018     ret = loader_exec(execfd, filename, target_argv, target_environ, regs,
4019         info, &bprm);
4020     if (ret != 0) {
4021         printf("Error while loading %s: %s\n", filename, strerror(-ret));
4022         _exit(1);
4023     }
4024 
4025     for (wrk = target_environ; *wrk; wrk++) {
4026         free(*wrk);
4027     }
4028 
4029     free(target_environ);
4030 
4031     if (qemu_log_enabled()) {
4032 #if defined(CONFIG_USE_GUEST_BASE)
4033         qemu_log("guest_base  0x%lx\n", guest_base);
4034 #endif
4035         log_page_dump();
4036 
4037         qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
4038         qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
4039         qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
4040                  info->start_code);
4041         qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
4042                  info->start_data);
4043         qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
4044         qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
4045                  info->start_stack);
4046         qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
4047         qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
4048     }
4049 
4050     target_set_brk(info->brk);
4051     syscall_init();
4052     signal_init();
4053 
4054 #if defined(CONFIG_USE_GUEST_BASE)
4055     /* Now that we've loaded the binary, GUEST_BASE is fixed.  Delay
4056        generating the prologue until now so that the prologue can take
4057        the real value of GUEST_BASE into account.  */
4058     tcg_prologue_init(&tcg_ctx);
4059 #endif
4060 
4061 #if defined(TARGET_I386)
4062     cpu_x86_set_cpl(env, 3);
4063 
4064     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
4065     env->hflags |= HF_PE_MASK;
4066     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
4067         env->cr[4] |= CR4_OSFXSR_MASK;
4068         env->hflags |= HF_OSFXSR_MASK;
4069     }
4070 #ifndef TARGET_ABI32
4071     /* enable 64 bit mode if possible */
4072     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
4073         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
4074         exit(1);
4075     }
4076     env->cr[4] |= CR4_PAE_MASK;
4077     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
4078     env->hflags |= HF_LMA_MASK;
4079 #endif
4080 
4081     /* flags setup : we activate the IRQs by default as in user mode */
4082     env->eflags |= IF_MASK;
4083 
4084     /* linux register setup */
4085 #ifndef TARGET_ABI32
4086     env->regs[R_EAX] = regs->rax;
4087     env->regs[R_EBX] = regs->rbx;
4088     env->regs[R_ECX] = regs->rcx;
4089     env->regs[R_EDX] = regs->rdx;
4090     env->regs[R_ESI] = regs->rsi;
4091     env->regs[R_EDI] = regs->rdi;
4092     env->regs[R_EBP] = regs->rbp;
4093     env->regs[R_ESP] = regs->rsp;
4094     env->eip = regs->rip;
4095 #else
4096     env->regs[R_EAX] = regs->eax;
4097     env->regs[R_EBX] = regs->ebx;
4098     env->regs[R_ECX] = regs->ecx;
4099     env->regs[R_EDX] = regs->edx;
4100     env->regs[R_ESI] = regs->esi;
4101     env->regs[R_EDI] = regs->edi;
4102     env->regs[R_EBP] = regs->ebp;
4103     env->regs[R_ESP] = regs->esp;
4104     env->eip = regs->eip;
4105 #endif
4106 
4107     /* linux interrupt setup */
4108 #ifndef TARGET_ABI32
4109     env->idt.limit = 511;
4110 #else
4111     env->idt.limit = 255;
4112 #endif
4113     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
4114                                 PROT_READ|PROT_WRITE,
4115                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4116     idt_table = g2h(env->idt.base);
4117     set_idt(0, 0);
4118     set_idt(1, 0);
4119     set_idt(2, 0);
4120     set_idt(3, 3);
4121     set_idt(4, 3);
4122     set_idt(5, 0);
4123     set_idt(6, 0);
4124     set_idt(7, 0);
4125     set_idt(8, 0);
4126     set_idt(9, 0);
4127     set_idt(10, 0);
4128     set_idt(11, 0);
4129     set_idt(12, 0);
4130     set_idt(13, 0);
4131     set_idt(14, 0);
4132     set_idt(15, 0);
4133     set_idt(16, 0);
4134     set_idt(17, 0);
4135     set_idt(18, 0);
4136     set_idt(19, 0);
4137     set_idt(0x80, 3);
4138 
4139     /* linux segment setup */
4140     {
4141         uint64_t *gdt_table;
4142         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
4143                                     PROT_READ|PROT_WRITE,
4144                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
4145         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
4146         gdt_table = g2h(env->gdt.base);
4147 #ifdef TARGET_ABI32
4148         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4149                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4150                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4151 #else
4152         /* 64 bit code segment */
4153         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
4154                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4155                  DESC_L_MASK |
4156                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
4157 #endif
4158         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
4159                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
4160                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
4161     }
4162     cpu_x86_load_seg(env, R_CS, __USER_CS);
4163     cpu_x86_load_seg(env, R_SS, __USER_DS);
4164 #ifdef TARGET_ABI32
4165     cpu_x86_load_seg(env, R_DS, __USER_DS);
4166     cpu_x86_load_seg(env, R_ES, __USER_DS);
4167     cpu_x86_load_seg(env, R_FS, __USER_DS);
4168     cpu_x86_load_seg(env, R_GS, __USER_DS);
4169     /* This hack makes Wine work... */
4170     env->segs[R_FS].selector = 0;
4171 #else
4172     cpu_x86_load_seg(env, R_DS, 0);
4173     cpu_x86_load_seg(env, R_ES, 0);
4174     cpu_x86_load_seg(env, R_FS, 0);
4175     cpu_x86_load_seg(env, R_GS, 0);
4176 #endif
4177 #elif defined(TARGET_AARCH64)
4178     {
4179         int i;
4180 
4181         if (!(arm_feature(env, ARM_FEATURE_AARCH64))) {
4182             fprintf(stderr,
4183                     "The selected ARM CPU does not support 64 bit mode\n");
4184             exit(1);
4185         }
4186 
4187         for (i = 0; i < 31; i++) {
4188             env->xregs[i] = regs->regs[i];
4189         }
4190         env->pc = regs->pc;
4191         env->xregs[31] = regs->sp;
4192     }
4193 #elif defined(TARGET_ARM)
4194     {
4195         int i;
4196         cpsr_write(env, regs->uregs[16], 0xffffffff);
4197         for(i = 0; i < 16; i++) {
4198             env->regs[i] = regs->uregs[i];
4199         }
4200         /* Enable BE8.  */
4201         if (EF_ARM_EABI_VERSION(info->elf_flags) >= EF_ARM_EABI_VER4
4202             && (info->elf_flags & EF_ARM_BE8)) {
4203             env->bswap_code = 1;
4204         }
4205     }
4206 #elif defined(TARGET_UNICORE32)
4207     {
4208         int i;
4209         cpu_asr_write(env, regs->uregs[32], 0xffffffff);
4210         for (i = 0; i < 32; i++) {
4211             env->regs[i] = regs->uregs[i];
4212         }
4213     }
4214 #elif defined(TARGET_SPARC)
4215     {
4216         int i;
4217 	env->pc = regs->pc;
4218 	env->npc = regs->npc;
4219         env->y = regs->y;
4220         for(i = 0; i < 8; i++)
4221             env->gregs[i] = regs->u_regs[i];
4222         for(i = 0; i < 8; i++)
4223             env->regwptr[i] = regs->u_regs[i + 8];
4224     }
4225 #elif defined(TARGET_PPC)
4226     {
4227         int i;
4228 
4229 #if defined(TARGET_PPC64)
4230 #if defined(TARGET_ABI32)
4231         env->msr &= ~((target_ulong)1 << MSR_SF);
4232 #else
4233         env->msr |= (target_ulong)1 << MSR_SF;
4234 #endif
4235 #endif
4236         env->nip = regs->nip;
4237         for(i = 0; i < 32; i++) {
4238             env->gpr[i] = regs->gpr[i];
4239         }
4240     }
4241 #elif defined(TARGET_M68K)
4242     {
4243         env->pc = regs->pc;
4244         env->dregs[0] = regs->d0;
4245         env->dregs[1] = regs->d1;
4246         env->dregs[2] = regs->d2;
4247         env->dregs[3] = regs->d3;
4248         env->dregs[4] = regs->d4;
4249         env->dregs[5] = regs->d5;
4250         env->dregs[6] = regs->d6;
4251         env->dregs[7] = regs->d7;
4252         env->aregs[0] = regs->a0;
4253         env->aregs[1] = regs->a1;
4254         env->aregs[2] = regs->a2;
4255         env->aregs[3] = regs->a3;
4256         env->aregs[4] = regs->a4;
4257         env->aregs[5] = regs->a5;
4258         env->aregs[6] = regs->a6;
4259         env->aregs[7] = regs->usp;
4260         env->sr = regs->sr;
4261         ts->sim_syscalls = 1;
4262     }
4263 #elif defined(TARGET_MICROBLAZE)
4264     {
4265         env->regs[0] = regs->r0;
4266         env->regs[1] = regs->r1;
4267         env->regs[2] = regs->r2;
4268         env->regs[3] = regs->r3;
4269         env->regs[4] = regs->r4;
4270         env->regs[5] = regs->r5;
4271         env->regs[6] = regs->r6;
4272         env->regs[7] = regs->r7;
4273         env->regs[8] = regs->r8;
4274         env->regs[9] = regs->r9;
4275         env->regs[10] = regs->r10;
4276         env->regs[11] = regs->r11;
4277         env->regs[12] = regs->r12;
4278         env->regs[13] = regs->r13;
4279         env->regs[14] = regs->r14;
4280         env->regs[15] = regs->r15;
4281         env->regs[16] = regs->r16;
4282         env->regs[17] = regs->r17;
4283         env->regs[18] = regs->r18;
4284         env->regs[19] = regs->r19;
4285         env->regs[20] = regs->r20;
4286         env->regs[21] = regs->r21;
4287         env->regs[22] = regs->r22;
4288         env->regs[23] = regs->r23;
4289         env->regs[24] = regs->r24;
4290         env->regs[25] = regs->r25;
4291         env->regs[26] = regs->r26;
4292         env->regs[27] = regs->r27;
4293         env->regs[28] = regs->r28;
4294         env->regs[29] = regs->r29;
4295         env->regs[30] = regs->r30;
4296         env->regs[31] = regs->r31;
4297         env->sregs[SR_PC] = regs->pc;
4298     }
4299 #elif defined(TARGET_MIPS)
4300     {
4301         int i;
4302 
4303         for(i = 0; i < 32; i++) {
4304             env->active_tc.gpr[i] = regs->regs[i];
4305         }
4306         env->active_tc.PC = regs->cp0_epc & ~(target_ulong)1;
4307         if (regs->cp0_epc & 1) {
4308             env->hflags |= MIPS_HFLAG_M16;
4309         }
4310     }
4311 #elif defined(TARGET_OPENRISC)
4312     {
4313         int i;
4314 
4315         for (i = 0; i < 32; i++) {
4316             env->gpr[i] = regs->gpr[i];
4317         }
4318 
4319         env->sr = regs->sr;
4320         env->pc = regs->pc;
4321     }
4322 #elif defined(TARGET_SH4)
4323     {
4324         int i;
4325 
4326         for(i = 0; i < 16; i++) {
4327             env->gregs[i] = regs->regs[i];
4328         }
4329         env->pc = regs->pc;
4330     }
4331 #elif defined(TARGET_ALPHA)
4332     {
4333         int i;
4334 
4335         for(i = 0; i < 28; i++) {
4336             env->ir[i] = ((abi_ulong *)regs)[i];
4337         }
4338         env->ir[IR_SP] = regs->usp;
4339         env->pc = regs->pc;
4340     }
4341 #elif defined(TARGET_CRIS)
4342     {
4343 	    env->regs[0] = regs->r0;
4344 	    env->regs[1] = regs->r1;
4345 	    env->regs[2] = regs->r2;
4346 	    env->regs[3] = regs->r3;
4347 	    env->regs[4] = regs->r4;
4348 	    env->regs[5] = regs->r5;
4349 	    env->regs[6] = regs->r6;
4350 	    env->regs[7] = regs->r7;
4351 	    env->regs[8] = regs->r8;
4352 	    env->regs[9] = regs->r9;
4353 	    env->regs[10] = regs->r10;
4354 	    env->regs[11] = regs->r11;
4355 	    env->regs[12] = regs->r12;
4356 	    env->regs[13] = regs->r13;
4357 	    env->regs[14] = info->start_stack;
4358 	    env->regs[15] = regs->acr;
4359 	    env->pc = regs->erp;
4360     }
4361 #elif defined(TARGET_S390X)
4362     {
4363             int i;
4364             for (i = 0; i < 16; i++) {
4365                 env->regs[i] = regs->gprs[i];
4366             }
4367             env->psw.mask = regs->psw.mask;
4368             env->psw.addr = regs->psw.addr;
4369     }
4370 #else
4371 #error unsupported target CPU
4372 #endif
4373 
4374 #if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
4375     ts->stack_base = info->start_stack;
4376     ts->heap_base = info->brk;
4377     /* This will be filled in on the first SYS_HEAPINFO call.  */
4378     ts->heap_limit = 0;
4379 #endif
4380 
4381     if (gdbstub_port) {
4382         if (gdbserver_start(gdbstub_port) < 0) {
4383             fprintf(stderr, "qemu: could not open gdbserver on port %d\n",
4384                     gdbstub_port);
4385             exit(1);
4386         }
4387         gdb_handlesig(cpu, 0);
4388     }
4389     cpu_loop(env);
4390     /* never exits */
4391     return 0;
4392 }
4393