xref: /openbmc/qemu/linux-user/i386/cpu_loop.c (revision 6016b7b4)
1 /*
2  *  qemu user cpu loop
3  *
4  *  Copyright (c) 2003-2008 Fabrice Bellard
5  *
6  *  This program is free software; you can redistribute it and/or modify
7  *  it under the terms of the GNU General Public License as published by
8  *  the Free Software Foundation; either version 2 of the License, or
9  *  (at your option) any later version.
10  *
11  *  This program is distributed in the hope that it will be useful,
12  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  *  GNU General Public License for more details.
15  *
16  *  You should have received a copy of the GNU General Public License
17  *  along with this program; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu.h"
23 #include "user-internals.h"
24 #include "cpu_loop-common.h"
25 #include "signal-common.h"
26 #include "user-mmap.h"
27 
28 /***********************************************************/
29 /* CPUX86 core interface */
30 
31 uint64_t cpu_get_tsc(CPUX86State *env)
32 {
33     return cpu_get_host_ticks();
34 }
35 
36 static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
37               int flags)
38 {
39     unsigned int e1, e2;
40     uint32_t *p;
41     e1 = (addr << 16) | (limit & 0xffff);
42     e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
43     e2 |= flags;
44     p = ptr;
45     p[0] = tswap32(e1);
46     p[1] = tswap32(e2);
47 }
48 
49 static uint64_t *idt_table;
50 #ifdef TARGET_X86_64
51 static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
52                        uint64_t addr, unsigned int sel)
53 {
54     uint32_t *p, e1, e2;
55     e1 = (addr & 0xffff) | (sel << 16);
56     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
57     p = ptr;
58     p[0] = tswap32(e1);
59     p[1] = tswap32(e2);
60     p[2] = tswap32(addr >> 32);
61     p[3] = 0;
62 }
63 /* only dpl matters as we do only user space emulation */
64 static void set_idt(int n, unsigned int dpl)
65 {
66     set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
67 }
68 #else
69 static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
70                      uint32_t addr, unsigned int sel)
71 {
72     uint32_t *p, e1, e2;
73     e1 = (addr & 0xffff) | (sel << 16);
74     e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
75     p = ptr;
76     p[0] = tswap32(e1);
77     p[1] = tswap32(e2);
78 }
79 
80 /* only dpl matters as we do only user space emulation */
81 static void set_idt(int n, unsigned int dpl)
82 {
83     set_gate(idt_table + n, 0, dpl, 0, 0);
84 }
85 #endif
86 
87 static void gen_signal(CPUX86State *env, int sig, int code, abi_ptr addr)
88 {
89     target_siginfo_t info = {
90         .si_signo = sig,
91         .si_code = code,
92         ._sifields._sigfault._addr = addr
93     };
94 
95     queue_signal(env, info.si_signo, QEMU_SI_FAULT, &info);
96 }
97 
98 #ifdef TARGET_X86_64
99 static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
100 {
101     /*
102      * For all the vsyscalls, NULL means "don't write anything" not
103      * "write it at address 0".
104      */
105     if (addr == 0 || access_ok(env_cpu(env), VERIFY_WRITE, addr, len)) {
106         return true;
107     }
108 
109     env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
110     gen_signal(env, TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
111     return false;
112 }
113 
114 /*
115  * Since v3.1, the kernel traps and emulates the vsyscall page.
116  * Entry points other than the official generate SIGSEGV.
117  */
118 static void emulate_vsyscall(CPUX86State *env)
119 {
120     int syscall;
121     abi_ulong ret;
122     uint64_t caller;
123 
124     /*
125      * Validate the entry point.  We have already validated the page
126      * during translation to get here; now verify the offset.
127      */
128     switch (env->eip & ~TARGET_PAGE_MASK) {
129     case 0x000:
130         syscall = TARGET_NR_gettimeofday;
131         break;
132     case 0x400:
133         syscall = TARGET_NR_time;
134         break;
135     case 0x800:
136         syscall = TARGET_NR_getcpu;
137         break;
138     default:
139         goto sigsegv;
140     }
141 
142     /*
143      * Validate the return address.
144      * Note that the kernel treats this the same as an invalid entry point.
145      */
146     if (get_user_u64(caller, env->regs[R_ESP])) {
147         goto sigsegv;
148     }
149 
150     /*
151      * Validate the the pointer arguments.
152      */
153     switch (syscall) {
154     case TARGET_NR_gettimeofday:
155         if (!write_ok_or_segv(env, env->regs[R_EDI],
156                               sizeof(struct target_timeval)) ||
157             !write_ok_or_segv(env, env->regs[R_ESI],
158                               sizeof(struct target_timezone))) {
159             return;
160         }
161         break;
162     case TARGET_NR_time:
163         if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
164             return;
165         }
166         break;
167     case TARGET_NR_getcpu:
168         if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
169             !write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
170             return;
171         }
172         break;
173     default:
174         g_assert_not_reached();
175     }
176 
177     /*
178      * Perform the syscall.  None of the vsyscalls should need restarting.
179      */
180     ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
181                      env->regs[R_EDX], env->regs[10], env->regs[8],
182                      env->regs[9], 0, 0);
183     g_assert(ret != -QEMU_ERESTARTSYS);
184     g_assert(ret != -QEMU_ESIGRETURN);
185     if (ret == -TARGET_EFAULT) {
186         goto sigsegv;
187     }
188     env->regs[R_EAX] = ret;
189 
190     /* Emulate a ret instruction to leave the vsyscall page.  */
191     env->eip = caller;
192     env->regs[R_ESP] += 8;
193     return;
194 
195  sigsegv:
196     /* Like force_sig(SIGSEGV).  */
197     gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
198 }
199 #endif
200 
201 void cpu_loop(CPUX86State *env)
202 {
203     CPUState *cs = env_cpu(env);
204     int trapnr;
205     abi_ulong pc;
206     abi_ulong ret;
207 
208     for(;;) {
209         cpu_exec_start(cs);
210         trapnr = cpu_exec(cs);
211         cpu_exec_end(cs);
212         process_queued_cpu_work(cs);
213 
214         switch(trapnr) {
215         case 0x80:
216             /* linux syscall from int $0x80 */
217             ret = do_syscall(env,
218                              env->regs[R_EAX],
219                              env->regs[R_EBX],
220                              env->regs[R_ECX],
221                              env->regs[R_EDX],
222                              env->regs[R_ESI],
223                              env->regs[R_EDI],
224                              env->regs[R_EBP],
225                              0, 0);
226             if (ret == -QEMU_ERESTARTSYS) {
227                 env->eip -= 2;
228             } else if (ret != -QEMU_ESIGRETURN) {
229                 env->regs[R_EAX] = ret;
230             }
231             break;
232 #ifndef TARGET_ABI32
233         case EXCP_SYSCALL:
234             /* linux syscall from syscall instruction */
235             ret = do_syscall(env,
236                              env->regs[R_EAX],
237                              env->regs[R_EDI],
238                              env->regs[R_ESI],
239                              env->regs[R_EDX],
240                              env->regs[10],
241                              env->regs[8],
242                              env->regs[9],
243                              0, 0);
244             if (ret == -QEMU_ERESTARTSYS) {
245                 env->eip -= 2;
246             } else if (ret != -QEMU_ESIGRETURN) {
247                 env->regs[R_EAX] = ret;
248             }
249             break;
250 #endif
251 #ifdef TARGET_X86_64
252         case EXCP_VSYSCALL:
253             emulate_vsyscall(env);
254             break;
255 #endif
256         case EXCP0B_NOSEG:
257         case EXCP0C_STACK:
258             gen_signal(env, TARGET_SIGBUS, TARGET_SI_KERNEL, 0);
259             break;
260         case EXCP0D_GPF:
261             /* XXX: potential problem if ABI32 */
262 #ifndef TARGET_X86_64
263             if (env->eflags & VM_MASK) {
264                 handle_vm86_fault(env);
265                 break;
266             }
267 #endif
268             gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
269             break;
270         case EXCP0E_PAGE:
271             gen_signal(env, TARGET_SIGSEGV,
272                        (env->error_code & 1 ?
273                         TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
274                        env->cr[2]);
275             break;
276         case EXCP00_DIVZ:
277 #ifndef TARGET_X86_64
278             if (env->eflags & VM_MASK) {
279                 handle_vm86_trap(env, trapnr);
280                 break;
281             }
282 #endif
283             gen_signal(env, TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
284             break;
285         case EXCP01_DB:
286         case EXCP03_INT3:
287 #ifndef TARGET_X86_64
288             if (env->eflags & VM_MASK) {
289                 handle_vm86_trap(env, trapnr);
290                 break;
291             }
292 #endif
293             if (trapnr == EXCP01_DB) {
294                 gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
295             } else {
296                 gen_signal(env, TARGET_SIGTRAP, TARGET_SI_KERNEL, 0);
297             }
298             break;
299         case EXCP04_INTO:
300         case EXCP05_BOUND:
301 #ifndef TARGET_X86_64
302             if (env->eflags & VM_MASK) {
303                 handle_vm86_trap(env, trapnr);
304                 break;
305             }
306 #endif
307             gen_signal(env, TARGET_SIGSEGV, TARGET_SI_KERNEL, 0);
308             break;
309         case EXCP06_ILLOP:
310             gen_signal(env, TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
311             break;
312         case EXCP_INTERRUPT:
313             /* just indicate that signals should be handled asap */
314             break;
315         case EXCP_DEBUG:
316             gen_signal(env, TARGET_SIGTRAP, TARGET_TRAP_BRKPT, 0);
317             break;
318         case EXCP_ATOMIC:
319             cpu_exec_step_atomic(cs);
320             break;
321         default:
322             pc = env->segs[R_CS].base + env->eip;
323             EXCP_DUMP(env, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
324                       (long)pc, trapnr);
325             abort();
326         }
327         process_pending_signals(env);
328     }
329 }
330 
331 void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
332 {
333     env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
334     env->hflags |= HF_PE_MASK | HF_CPL_MASK;
335     if (env->features[FEAT_1_EDX] & CPUID_SSE) {
336         env->cr[4] |= CR4_OSFXSR_MASK;
337         env->hflags |= HF_OSFXSR_MASK;
338     }
339 #ifndef TARGET_ABI32
340     /* enable 64 bit mode if possible */
341     if (!(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) {
342         fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
343         exit(EXIT_FAILURE);
344     }
345     env->cr[4] |= CR4_PAE_MASK;
346     env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
347     env->hflags |= HF_LMA_MASK;
348 #endif
349 
350     /* flags setup : we activate the IRQs by default as in user mode */
351     env->eflags |= IF_MASK;
352 
353     /* linux register setup */
354 #ifndef TARGET_ABI32
355     env->regs[R_EAX] = regs->rax;
356     env->regs[R_EBX] = regs->rbx;
357     env->regs[R_ECX] = regs->rcx;
358     env->regs[R_EDX] = regs->rdx;
359     env->regs[R_ESI] = regs->rsi;
360     env->regs[R_EDI] = regs->rdi;
361     env->regs[R_EBP] = regs->rbp;
362     env->regs[R_ESP] = regs->rsp;
363     env->eip = regs->rip;
364 #else
365     env->regs[R_EAX] = regs->eax;
366     env->regs[R_EBX] = regs->ebx;
367     env->regs[R_ECX] = regs->ecx;
368     env->regs[R_EDX] = regs->edx;
369     env->regs[R_ESI] = regs->esi;
370     env->regs[R_EDI] = regs->edi;
371     env->regs[R_EBP] = regs->ebp;
372     env->regs[R_ESP] = regs->esp;
373     env->eip = regs->eip;
374 #endif
375 
376     /* linux interrupt setup */
377 #ifndef TARGET_ABI32
378     env->idt.limit = 511;
379 #else
380     env->idt.limit = 255;
381 #endif
382     env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
383                                 PROT_READ|PROT_WRITE,
384                                 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
385     idt_table = g2h_untagged(env->idt.base);
386     set_idt(0, 0);
387     set_idt(1, 0);
388     set_idt(2, 0);
389     set_idt(3, 3);
390     set_idt(4, 3);
391     set_idt(5, 0);
392     set_idt(6, 0);
393     set_idt(7, 0);
394     set_idt(8, 0);
395     set_idt(9, 0);
396     set_idt(10, 0);
397     set_idt(11, 0);
398     set_idt(12, 0);
399     set_idt(13, 0);
400     set_idt(14, 0);
401     set_idt(15, 0);
402     set_idt(16, 0);
403     set_idt(17, 0);
404     set_idt(18, 0);
405     set_idt(19, 0);
406     set_idt(0x80, 3);
407 
408     /* linux segment setup */
409     {
410         uint64_t *gdt_table;
411         env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
412                                     PROT_READ|PROT_WRITE,
413                                     MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
414         env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
415         gdt_table = g2h_untagged(env->gdt.base);
416 #ifdef TARGET_ABI32
417         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
418                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
419                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
420 #else
421         /* 64 bit code segment */
422         write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
423                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
424                  DESC_L_MASK |
425                  (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
426 #endif
427         write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
428                  DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
429                  (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
430     }
431     cpu_x86_load_seg(env, R_CS, __USER_CS);
432     cpu_x86_load_seg(env, R_SS, __USER_DS);
433 #ifdef TARGET_ABI32
434     cpu_x86_load_seg(env, R_DS, __USER_DS);
435     cpu_x86_load_seg(env, R_ES, __USER_DS);
436     cpu_x86_load_seg(env, R_FS, __USER_DS);
437     cpu_x86_load_seg(env, R_GS, __USER_DS);
438     /* This hack makes Wine work... */
439     env->segs[R_FS].selector = 0;
440 #else
441     cpu_x86_load_seg(env, R_DS, 0);
442     cpu_x86_load_seg(env, R_ES, 0);
443     cpu_x86_load_seg(env, R_FS, 0);
444     cpu_x86_load_seg(env, R_GS, 0);
445 #endif
446 }
447