1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr <= (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 }; 516 517 #define ELF_HWCAP get_elf_hwcap() 518 519 static uint32_t get_elf_hwcap(void) 520 { 521 ARMCPU *cpu = ARM_CPU(thread_cpu); 522 uint32_t hwcaps = 0; 523 524 hwcaps |= ARM_HWCAP_A64_FP; 525 hwcaps |= ARM_HWCAP_A64_ASIMD; 526 527 /* probe for the extra features */ 528 #define GET_FEATURE(feat, hwcap) \ 529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 535 #undef GET_FEATURE 536 537 return hwcaps; 538 } 539 540 #endif /* not TARGET_AARCH64 */ 541 #endif /* TARGET_ARM */ 542 543 #ifdef TARGET_UNICORE32 544 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_CLASS ELFCLASS32 548 #define ELF_DATA ELFDATA2LSB 549 #define ELF_ARCH EM_UNICORE32 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 abi_long stack = infop->start_stack; 555 memset(regs, 0, sizeof(*regs)); 556 regs->UC32_REG_asr = 0x10; 557 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 558 regs->UC32_REG_sp = infop->start_stack; 559 /* FIXME - what to for failure of get_user()? */ 560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 562 /* XXX: it seems that r0 is zeroed after ! */ 563 regs->UC32_REG_00 = 0; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 570 { 571 (*regs)[0] = env->regs[0]; 572 (*regs)[1] = env->regs[1]; 573 (*regs)[2] = env->regs[2]; 574 (*regs)[3] = env->regs[3]; 575 (*regs)[4] = env->regs[4]; 576 (*regs)[5] = env->regs[5]; 577 (*regs)[6] = env->regs[6]; 578 (*regs)[7] = env->regs[7]; 579 (*regs)[8] = env->regs[8]; 580 (*regs)[9] = env->regs[9]; 581 (*regs)[10] = env->regs[10]; 582 (*regs)[11] = env->regs[11]; 583 (*regs)[12] = env->regs[12]; 584 (*regs)[13] = env->regs[13]; 585 (*regs)[14] = env->regs[14]; 586 (*regs)[15] = env->regs[15]; 587 (*regs)[16] = env->regs[16]; 588 (*regs)[17] = env->regs[17]; 589 (*regs)[18] = env->regs[18]; 590 (*regs)[19] = env->regs[19]; 591 (*regs)[20] = env->regs[20]; 592 (*regs)[21] = env->regs[21]; 593 (*regs)[22] = env->regs[22]; 594 (*regs)[23] = env->regs[23]; 595 (*regs)[24] = env->regs[24]; 596 (*regs)[25] = env->regs[25]; 597 (*regs)[26] = env->regs[26]; 598 (*regs)[27] = env->regs[27]; 599 (*regs)[28] = env->regs[28]; 600 (*regs)[29] = env->regs[29]; 601 (*regs)[30] = env->regs[30]; 602 (*regs)[31] = env->regs[31]; 603 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 605 (*regs)[33] = env->regs[0]; /* XXX */ 606 } 607 608 #define USE_ELF_CORE_DUMP 609 #define ELF_EXEC_PAGESIZE 4096 610 611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 612 613 #endif 614 615 #ifdef TARGET_SPARC 616 #ifdef TARGET_SPARC64 617 618 #define ELF_START_MMAP 0x80000000 619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 621 #ifndef TARGET_ABI32 622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 623 #else 624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 625 #endif 626 627 #define ELF_CLASS ELFCLASS64 628 #define ELF_ARCH EM_SPARCV9 629 630 #define STACK_BIAS 2047 631 632 static inline void init_thread(struct target_pt_regs *regs, 633 struct image_info *infop) 634 { 635 #ifndef TARGET_ABI32 636 regs->tstate = 0; 637 #endif 638 regs->pc = infop->entry; 639 regs->npc = regs->pc + 4; 640 regs->y = 0; 641 #ifdef TARGET_ABI32 642 regs->u_regs[14] = infop->start_stack - 16 * 4; 643 #else 644 if (personality(infop->personality) == PER_LINUX32) 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 else 647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 648 #endif 649 } 650 651 #else 652 #define ELF_START_MMAP 0x80000000 653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 654 | HWCAP_SPARC_MULDIV) 655 656 #define ELF_CLASS ELFCLASS32 657 #define ELF_ARCH EM_SPARC 658 659 static inline void init_thread(struct target_pt_regs *regs, 660 struct image_info *infop) 661 { 662 regs->psr = 0; 663 regs->pc = infop->entry; 664 regs->npc = regs->pc + 4; 665 regs->y = 0; 666 regs->u_regs[14] = infop->start_stack - 16 * 4; 667 } 668 669 #endif 670 #endif 671 672 #ifdef TARGET_PPC 673 674 #define ELF_MACHINE PPC_ELF_MACHINE 675 #define ELF_START_MMAP 0x80000000 676 677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 678 679 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 680 681 #define ELF_CLASS ELFCLASS64 682 683 #else 684 685 #define ELF_CLASS ELFCLASS32 686 687 #endif 688 689 #define ELF_ARCH EM_PPC 690 691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 692 See arch/powerpc/include/asm/cputable.h. */ 693 enum { 694 QEMU_PPC_FEATURE_32 = 0x80000000, 695 QEMU_PPC_FEATURE_64 = 0x40000000, 696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 705 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 706 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 707 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 709 QEMU_PPC_FEATURE_CELL = 0x00010000, 710 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 711 QEMU_PPC_FEATURE_SMT = 0x00004000, 712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 714 QEMU_PPC_FEATURE_PA6T = 0x00000800, 715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 720 721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 723 724 /* Feature definitions in AT_HWCAP2. */ 725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 /* 793 * The requirements here are: 794 * - keep the final alignment of sp (sp & 0xf) 795 * - make sure the 32-bit value at the first 16 byte aligned position of 796 * AUXV is greater than 16 for glibc compatibility. 797 * AT_IGNOREPPC is used for that. 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 800 */ 801 #define DLINFO_ARCH_ITEMS 5 802 #define ARCH_DLINFO \ 803 do { \ 804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 805 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 806 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 807 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 808 /* \ 809 * Now handle glibc compatibility. \ 810 */ \ 811 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 812 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 813 } while (0) 814 815 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 816 { 817 _regs->gpr[1] = infop->start_stack; 818 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 819 if (get_ppc64_abi(infop) < 2) { 820 uint64_t val; 821 get_user_u64(val, infop->entry + 8); 822 _regs->gpr[2] = val + infop->load_bias; 823 get_user_u64(val, infop->entry); 824 infop->entry = val + infop->load_bias; 825 } else { 826 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 827 } 828 #endif 829 _regs->nip = infop->entry; 830 } 831 832 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 833 #define ELF_NREG 48 834 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 835 836 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 837 { 838 int i; 839 target_ulong ccr = 0; 840 841 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 842 (*regs)[i] = tswapreg(env->gpr[i]); 843 } 844 845 (*regs)[32] = tswapreg(env->nip); 846 (*regs)[33] = tswapreg(env->msr); 847 (*regs)[35] = tswapreg(env->ctr); 848 (*regs)[36] = tswapreg(env->lr); 849 (*regs)[37] = tswapreg(env->xer); 850 851 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 852 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 853 } 854 (*regs)[38] = tswapreg(ccr); 855 } 856 857 #define USE_ELF_CORE_DUMP 858 #define ELF_EXEC_PAGESIZE 4096 859 860 #endif 861 862 #ifdef TARGET_MIPS 863 864 #define ELF_START_MMAP 0x80000000 865 866 #ifdef TARGET_MIPS64 867 #define ELF_CLASS ELFCLASS64 868 #else 869 #define ELF_CLASS ELFCLASS32 870 #endif 871 #define ELF_ARCH EM_MIPS 872 873 static inline void init_thread(struct target_pt_regs *regs, 874 struct image_info *infop) 875 { 876 regs->cp0_status = 2 << CP0St_KSU; 877 regs->cp0_epc = infop->entry; 878 regs->regs[29] = infop->start_stack; 879 } 880 881 /* See linux kernel: arch/mips/include/asm/elf.h. */ 882 #define ELF_NREG 45 883 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 884 885 /* See linux kernel: arch/mips/include/asm/reg.h. */ 886 enum { 887 #ifdef TARGET_MIPS64 888 TARGET_EF_R0 = 0, 889 #else 890 TARGET_EF_R0 = 6, 891 #endif 892 TARGET_EF_R26 = TARGET_EF_R0 + 26, 893 TARGET_EF_R27 = TARGET_EF_R0 + 27, 894 TARGET_EF_LO = TARGET_EF_R0 + 32, 895 TARGET_EF_HI = TARGET_EF_R0 + 33, 896 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 897 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 898 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 899 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 900 }; 901 902 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 903 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 904 { 905 int i; 906 907 for (i = 0; i < TARGET_EF_R0; i++) { 908 (*regs)[i] = 0; 909 } 910 (*regs)[TARGET_EF_R0] = 0; 911 912 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 913 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 914 } 915 916 (*regs)[TARGET_EF_R26] = 0; 917 (*regs)[TARGET_EF_R27] = 0; 918 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 919 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 920 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 921 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 922 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 923 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 924 } 925 926 #define USE_ELF_CORE_DUMP 927 #define ELF_EXEC_PAGESIZE 4096 928 929 #endif /* TARGET_MIPS */ 930 931 #ifdef TARGET_MICROBLAZE 932 933 #define ELF_START_MMAP 0x80000000 934 935 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 936 937 #define ELF_CLASS ELFCLASS32 938 #define ELF_ARCH EM_MICROBLAZE 939 940 static inline void init_thread(struct target_pt_regs *regs, 941 struct image_info *infop) 942 { 943 regs->pc = infop->entry; 944 regs->r1 = infop->start_stack; 945 946 } 947 948 #define ELF_EXEC_PAGESIZE 4096 949 950 #define USE_ELF_CORE_DUMP 951 #define ELF_NREG 38 952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 953 954 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 955 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 956 { 957 int i, pos = 0; 958 959 for (i = 0; i < 32; i++) { 960 (*regs)[pos++] = tswapreg(env->regs[i]); 961 } 962 963 for (i = 0; i < 6; i++) { 964 (*regs)[pos++] = tswapreg(env->sregs[i]); 965 } 966 } 967 968 #endif /* TARGET_MICROBLAZE */ 969 970 #ifdef TARGET_OPENRISC 971 972 #define ELF_START_MMAP 0x08000000 973 974 #define ELF_ARCH EM_OPENRISC 975 #define ELF_CLASS ELFCLASS32 976 #define ELF_DATA ELFDATA2MSB 977 978 static inline void init_thread(struct target_pt_regs *regs, 979 struct image_info *infop) 980 { 981 regs->pc = infop->entry; 982 regs->gpr[1] = infop->start_stack; 983 } 984 985 #define USE_ELF_CORE_DUMP 986 #define ELF_EXEC_PAGESIZE 8192 987 988 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 989 #define ELF_NREG 34 /* gprs and pc, sr */ 990 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 991 992 static void elf_core_copy_regs(target_elf_gregset_t *regs, 993 const CPUOpenRISCState *env) 994 { 995 int i; 996 997 for (i = 0; i < 32; i++) { 998 (*regs)[i] = tswapreg(env->gpr[i]); 999 } 1000 1001 (*regs)[32] = tswapreg(env->pc); 1002 (*regs)[33] = tswapreg(env->sr); 1003 } 1004 #define ELF_HWCAP 0 1005 #define ELF_PLATFORM NULL 1006 1007 #endif /* TARGET_OPENRISC */ 1008 1009 #ifdef TARGET_SH4 1010 1011 #define ELF_START_MMAP 0x80000000 1012 1013 #define ELF_CLASS ELFCLASS32 1014 #define ELF_ARCH EM_SH 1015 1016 static inline void init_thread(struct target_pt_regs *regs, 1017 struct image_info *infop) 1018 { 1019 /* Check other registers XXXXX */ 1020 regs->pc = infop->entry; 1021 regs->regs[15] = infop->start_stack; 1022 } 1023 1024 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1025 #define ELF_NREG 23 1026 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1027 1028 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1029 enum { 1030 TARGET_REG_PC = 16, 1031 TARGET_REG_PR = 17, 1032 TARGET_REG_SR = 18, 1033 TARGET_REG_GBR = 19, 1034 TARGET_REG_MACH = 20, 1035 TARGET_REG_MACL = 21, 1036 TARGET_REG_SYSCALL = 22 1037 }; 1038 1039 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1040 const CPUSH4State *env) 1041 { 1042 int i; 1043 1044 for (i = 0; i < 16; i++) { 1045 (*regs[i]) = tswapreg(env->gregs[i]); 1046 } 1047 1048 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1049 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1050 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1051 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1052 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1053 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1054 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1055 } 1056 1057 #define USE_ELF_CORE_DUMP 1058 #define ELF_EXEC_PAGESIZE 4096 1059 1060 enum { 1061 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1062 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1063 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1064 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1065 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1066 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1067 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1068 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1069 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1070 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1071 }; 1072 1073 #define ELF_HWCAP get_elf_hwcap() 1074 1075 static uint32_t get_elf_hwcap(void) 1076 { 1077 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1078 uint32_t hwcap = 0; 1079 1080 hwcap |= SH_CPU_HAS_FPU; 1081 1082 if (cpu->env.features & SH_FEATURE_SH4A) { 1083 hwcap |= SH_CPU_HAS_LLSC; 1084 } 1085 1086 return hwcap; 1087 } 1088 1089 #endif 1090 1091 #ifdef TARGET_CRIS 1092 1093 #define ELF_START_MMAP 0x80000000 1094 1095 #define ELF_CLASS ELFCLASS32 1096 #define ELF_ARCH EM_CRIS 1097 1098 static inline void init_thread(struct target_pt_regs *regs, 1099 struct image_info *infop) 1100 { 1101 regs->erp = infop->entry; 1102 } 1103 1104 #define ELF_EXEC_PAGESIZE 8192 1105 1106 #endif 1107 1108 #ifdef TARGET_M68K 1109 1110 #define ELF_START_MMAP 0x80000000 1111 1112 #define ELF_CLASS ELFCLASS32 1113 #define ELF_ARCH EM_68K 1114 1115 /* ??? Does this need to do anything? 1116 #define ELF_PLAT_INIT(_r) */ 1117 1118 static inline void init_thread(struct target_pt_regs *regs, 1119 struct image_info *infop) 1120 { 1121 regs->usp = infop->start_stack; 1122 regs->sr = 0; 1123 regs->pc = infop->entry; 1124 } 1125 1126 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1127 #define ELF_NREG 20 1128 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1129 1130 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1131 { 1132 (*regs)[0] = tswapreg(env->dregs[1]); 1133 (*regs)[1] = tswapreg(env->dregs[2]); 1134 (*regs)[2] = tswapreg(env->dregs[3]); 1135 (*regs)[3] = tswapreg(env->dregs[4]); 1136 (*regs)[4] = tswapreg(env->dregs[5]); 1137 (*regs)[5] = tswapreg(env->dregs[6]); 1138 (*regs)[6] = tswapreg(env->dregs[7]); 1139 (*regs)[7] = tswapreg(env->aregs[0]); 1140 (*regs)[8] = tswapreg(env->aregs[1]); 1141 (*regs)[9] = tswapreg(env->aregs[2]); 1142 (*regs)[10] = tswapreg(env->aregs[3]); 1143 (*regs)[11] = tswapreg(env->aregs[4]); 1144 (*regs)[12] = tswapreg(env->aregs[5]); 1145 (*regs)[13] = tswapreg(env->aregs[6]); 1146 (*regs)[14] = tswapreg(env->dregs[0]); 1147 (*regs)[15] = tswapreg(env->aregs[7]); 1148 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1149 (*regs)[17] = tswapreg(env->sr); 1150 (*regs)[18] = tswapreg(env->pc); 1151 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1152 } 1153 1154 #define USE_ELF_CORE_DUMP 1155 #define ELF_EXEC_PAGESIZE 8192 1156 1157 #endif 1158 1159 #ifdef TARGET_ALPHA 1160 1161 #define ELF_START_MMAP (0x30000000000ULL) 1162 1163 #define ELF_CLASS ELFCLASS64 1164 #define ELF_ARCH EM_ALPHA 1165 1166 static inline void init_thread(struct target_pt_regs *regs, 1167 struct image_info *infop) 1168 { 1169 regs->pc = infop->entry; 1170 regs->ps = 8; 1171 regs->usp = infop->start_stack; 1172 } 1173 1174 #define ELF_EXEC_PAGESIZE 8192 1175 1176 #endif /* TARGET_ALPHA */ 1177 1178 #ifdef TARGET_S390X 1179 1180 #define ELF_START_MMAP (0x20000000000ULL) 1181 1182 #define ELF_CLASS ELFCLASS64 1183 #define ELF_DATA ELFDATA2MSB 1184 #define ELF_ARCH EM_S390 1185 1186 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1187 { 1188 regs->psw.addr = infop->entry; 1189 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1190 regs->gprs[15] = infop->start_stack; 1191 } 1192 1193 #endif /* TARGET_S390X */ 1194 1195 #ifdef TARGET_TILEGX 1196 1197 /* 42 bits real used address, a half for user mode */ 1198 #define ELF_START_MMAP (0x00000020000000000ULL) 1199 1200 #define elf_check_arch(x) ((x) == EM_TILEGX) 1201 1202 #define ELF_CLASS ELFCLASS64 1203 #define ELF_DATA ELFDATA2LSB 1204 #define ELF_ARCH EM_TILEGX 1205 1206 static inline void init_thread(struct target_pt_regs *regs, 1207 struct image_info *infop) 1208 { 1209 regs->pc = infop->entry; 1210 regs->sp = infop->start_stack; 1211 1212 } 1213 1214 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1215 1216 #endif /* TARGET_TILEGX */ 1217 1218 #ifdef TARGET_HPPA 1219 1220 #define ELF_START_MMAP 0x80000000 1221 #define ELF_CLASS ELFCLASS32 1222 #define ELF_ARCH EM_PARISC 1223 #define ELF_PLATFORM "PARISC" 1224 #define STACK_GROWS_DOWN 0 1225 #define STACK_ALIGNMENT 64 1226 1227 static inline void init_thread(struct target_pt_regs *regs, 1228 struct image_info *infop) 1229 { 1230 regs->iaoq[0] = infop->entry; 1231 regs->iaoq[1] = infop->entry + 4; 1232 regs->gr[23] = 0; 1233 regs->gr[24] = infop->arg_start; 1234 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1235 /* The top-of-stack contains a linkage buffer. */ 1236 regs->gr[30] = infop->start_stack + 64; 1237 regs->gr[31] = infop->entry; 1238 } 1239 1240 #endif /* TARGET_HPPA */ 1241 1242 #ifndef ELF_PLATFORM 1243 #define ELF_PLATFORM (NULL) 1244 #endif 1245 1246 #ifndef ELF_MACHINE 1247 #define ELF_MACHINE ELF_ARCH 1248 #endif 1249 1250 #ifndef elf_check_arch 1251 #define elf_check_arch(x) ((x) == ELF_ARCH) 1252 #endif 1253 1254 #ifndef ELF_HWCAP 1255 #define ELF_HWCAP 0 1256 #endif 1257 1258 #ifndef STACK_GROWS_DOWN 1259 #define STACK_GROWS_DOWN 1 1260 #endif 1261 1262 #ifndef STACK_ALIGNMENT 1263 #define STACK_ALIGNMENT 16 1264 #endif 1265 1266 #ifdef TARGET_ABI32 1267 #undef ELF_CLASS 1268 #define ELF_CLASS ELFCLASS32 1269 #undef bswaptls 1270 #define bswaptls(ptr) bswap32s(ptr) 1271 #endif 1272 1273 #include "elf.h" 1274 1275 struct exec 1276 { 1277 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1278 unsigned int a_text; /* length of text, in bytes */ 1279 unsigned int a_data; /* length of data, in bytes */ 1280 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1281 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1282 unsigned int a_entry; /* start address */ 1283 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1284 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1285 }; 1286 1287 1288 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1289 #define OMAGIC 0407 1290 #define NMAGIC 0410 1291 #define ZMAGIC 0413 1292 #define QMAGIC 0314 1293 1294 /* Necessary parameters */ 1295 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1296 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1297 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1298 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1299 1300 #define DLINFO_ITEMS 14 1301 1302 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1303 { 1304 memcpy(to, from, n); 1305 } 1306 1307 #ifdef BSWAP_NEEDED 1308 static void bswap_ehdr(struct elfhdr *ehdr) 1309 { 1310 bswap16s(&ehdr->e_type); /* Object file type */ 1311 bswap16s(&ehdr->e_machine); /* Architecture */ 1312 bswap32s(&ehdr->e_version); /* Object file version */ 1313 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1314 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1315 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1316 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1317 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1318 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1319 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1320 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1321 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1322 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1323 } 1324 1325 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1326 { 1327 int i; 1328 for (i = 0; i < phnum; ++i, ++phdr) { 1329 bswap32s(&phdr->p_type); /* Segment type */ 1330 bswap32s(&phdr->p_flags); /* Segment flags */ 1331 bswaptls(&phdr->p_offset); /* Segment file offset */ 1332 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1333 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1334 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1335 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1336 bswaptls(&phdr->p_align); /* Segment alignment */ 1337 } 1338 } 1339 1340 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1341 { 1342 int i; 1343 for (i = 0; i < shnum; ++i, ++shdr) { 1344 bswap32s(&shdr->sh_name); 1345 bswap32s(&shdr->sh_type); 1346 bswaptls(&shdr->sh_flags); 1347 bswaptls(&shdr->sh_addr); 1348 bswaptls(&shdr->sh_offset); 1349 bswaptls(&shdr->sh_size); 1350 bswap32s(&shdr->sh_link); 1351 bswap32s(&shdr->sh_info); 1352 bswaptls(&shdr->sh_addralign); 1353 bswaptls(&shdr->sh_entsize); 1354 } 1355 } 1356 1357 static void bswap_sym(struct elf_sym *sym) 1358 { 1359 bswap32s(&sym->st_name); 1360 bswaptls(&sym->st_value); 1361 bswaptls(&sym->st_size); 1362 bswap16s(&sym->st_shndx); 1363 } 1364 #else 1365 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1366 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1367 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1368 static inline void bswap_sym(struct elf_sym *sym) { } 1369 #endif 1370 1371 #ifdef USE_ELF_CORE_DUMP 1372 static int elf_core_dump(int, const CPUArchState *); 1373 #endif /* USE_ELF_CORE_DUMP */ 1374 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1375 1376 /* Verify the portions of EHDR within E_IDENT for the target. 1377 This can be performed before bswapping the entire header. */ 1378 static bool elf_check_ident(struct elfhdr *ehdr) 1379 { 1380 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1381 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1382 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1383 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1384 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1385 && ehdr->e_ident[EI_DATA] == ELF_DATA 1386 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1387 } 1388 1389 /* Verify the portions of EHDR outside of E_IDENT for the target. 1390 This has to wait until after bswapping the header. */ 1391 static bool elf_check_ehdr(struct elfhdr *ehdr) 1392 { 1393 return (elf_check_arch(ehdr->e_machine) 1394 && ehdr->e_ehsize == sizeof(struct elfhdr) 1395 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1396 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1397 } 1398 1399 /* 1400 * 'copy_elf_strings()' copies argument/envelope strings from user 1401 * memory to free pages in kernel mem. These are in a format ready 1402 * to be put directly into the top of new user memory. 1403 * 1404 */ 1405 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1406 abi_ulong p, abi_ulong stack_limit) 1407 { 1408 char *tmp; 1409 int len, i; 1410 abi_ulong top = p; 1411 1412 if (!p) { 1413 return 0; /* bullet-proofing */ 1414 } 1415 1416 if (STACK_GROWS_DOWN) { 1417 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1418 for (i = argc - 1; i >= 0; --i) { 1419 tmp = argv[i]; 1420 if (!tmp) { 1421 fprintf(stderr, "VFS: argc is wrong"); 1422 exit(-1); 1423 } 1424 len = strlen(tmp) + 1; 1425 tmp += len; 1426 1427 if (len > (p - stack_limit)) { 1428 return 0; 1429 } 1430 while (len) { 1431 int bytes_to_copy = (len > offset) ? offset : len; 1432 tmp -= bytes_to_copy; 1433 p -= bytes_to_copy; 1434 offset -= bytes_to_copy; 1435 len -= bytes_to_copy; 1436 1437 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1438 1439 if (offset == 0) { 1440 memcpy_to_target(p, scratch, top - p); 1441 top = p; 1442 offset = TARGET_PAGE_SIZE; 1443 } 1444 } 1445 } 1446 if (p != top) { 1447 memcpy_to_target(p, scratch + offset, top - p); 1448 } 1449 } else { 1450 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1451 for (i = 0; i < argc; ++i) { 1452 tmp = argv[i]; 1453 if (!tmp) { 1454 fprintf(stderr, "VFS: argc is wrong"); 1455 exit(-1); 1456 } 1457 len = strlen(tmp) + 1; 1458 if (len > (stack_limit - p)) { 1459 return 0; 1460 } 1461 while (len) { 1462 int bytes_to_copy = (len > remaining) ? remaining : len; 1463 1464 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1465 1466 tmp += bytes_to_copy; 1467 remaining -= bytes_to_copy; 1468 p += bytes_to_copy; 1469 len -= bytes_to_copy; 1470 1471 if (remaining == 0) { 1472 memcpy_to_target(top, scratch, p - top); 1473 top = p; 1474 remaining = TARGET_PAGE_SIZE; 1475 } 1476 } 1477 } 1478 if (p != top) { 1479 memcpy_to_target(top, scratch, p - top); 1480 } 1481 } 1482 1483 return p; 1484 } 1485 1486 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1487 * argument/environment space. Newer kernels (>2.6.33) allow more, 1488 * dependent on stack size, but guarantee at least 32 pages for 1489 * backwards compatibility. 1490 */ 1491 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1492 1493 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1494 struct image_info *info) 1495 { 1496 abi_ulong size, error, guard; 1497 1498 size = guest_stack_size; 1499 if (size < STACK_LOWER_LIMIT) { 1500 size = STACK_LOWER_LIMIT; 1501 } 1502 guard = TARGET_PAGE_SIZE; 1503 if (guard < qemu_real_host_page_size) { 1504 guard = qemu_real_host_page_size; 1505 } 1506 1507 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1508 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1509 if (error == -1) { 1510 perror("mmap stack"); 1511 exit(-1); 1512 } 1513 1514 /* We reserve one extra page at the top of the stack as guard. */ 1515 if (STACK_GROWS_DOWN) { 1516 target_mprotect(error, guard, PROT_NONE); 1517 info->stack_limit = error + guard; 1518 return info->stack_limit + size - sizeof(void *); 1519 } else { 1520 target_mprotect(error + size, guard, PROT_NONE); 1521 info->stack_limit = error + size; 1522 return error; 1523 } 1524 } 1525 1526 /* Map and zero the bss. We need to explicitly zero any fractional pages 1527 after the data section (i.e. bss). */ 1528 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1529 { 1530 uintptr_t host_start, host_map_start, host_end; 1531 1532 last_bss = TARGET_PAGE_ALIGN(last_bss); 1533 1534 /* ??? There is confusion between qemu_real_host_page_size and 1535 qemu_host_page_size here and elsewhere in target_mmap, which 1536 may lead to the end of the data section mapping from the file 1537 not being mapped. At least there was an explicit test and 1538 comment for that here, suggesting that "the file size must 1539 be known". The comment probably pre-dates the introduction 1540 of the fstat system call in target_mmap which does in fact 1541 find out the size. What isn't clear is if the workaround 1542 here is still actually needed. For now, continue with it, 1543 but merge it with the "normal" mmap that would allocate the bss. */ 1544 1545 host_start = (uintptr_t) g2h(elf_bss); 1546 host_end = (uintptr_t) g2h(last_bss); 1547 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1548 1549 if (host_map_start < host_end) { 1550 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1551 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1552 if (p == MAP_FAILED) { 1553 perror("cannot mmap brk"); 1554 exit(-1); 1555 } 1556 } 1557 1558 /* Ensure that the bss page(s) are valid */ 1559 if ((page_get_flags(last_bss-1) & prot) != prot) { 1560 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1561 } 1562 1563 if (host_start < host_map_start) { 1564 memset((void *)host_start, 0, host_map_start - host_start); 1565 } 1566 } 1567 1568 #ifdef CONFIG_USE_FDPIC 1569 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1570 { 1571 uint16_t n; 1572 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1573 1574 /* elf32_fdpic_loadseg */ 1575 n = info->nsegs; 1576 while (n--) { 1577 sp -= 12; 1578 put_user_u32(loadsegs[n].addr, sp+0); 1579 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1580 put_user_u32(loadsegs[n].p_memsz, sp+8); 1581 } 1582 1583 /* elf32_fdpic_loadmap */ 1584 sp -= 4; 1585 put_user_u16(0, sp+0); /* version */ 1586 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1587 1588 info->personality = PER_LINUX_FDPIC; 1589 info->loadmap_addr = sp; 1590 1591 return sp; 1592 } 1593 #endif 1594 1595 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1596 struct elfhdr *exec, 1597 struct image_info *info, 1598 struct image_info *interp_info) 1599 { 1600 abi_ulong sp; 1601 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1602 int size; 1603 int i; 1604 abi_ulong u_rand_bytes; 1605 uint8_t k_rand_bytes[16]; 1606 abi_ulong u_platform; 1607 const char *k_platform; 1608 const int n = sizeof(elf_addr_t); 1609 1610 sp = p; 1611 1612 #ifdef CONFIG_USE_FDPIC 1613 /* Needs to be before we load the env/argc/... */ 1614 if (elf_is_fdpic(exec)) { 1615 /* Need 4 byte alignment for these structs */ 1616 sp &= ~3; 1617 sp = loader_build_fdpic_loadmap(info, sp); 1618 info->other_info = interp_info; 1619 if (interp_info) { 1620 interp_info->other_info = info; 1621 sp = loader_build_fdpic_loadmap(interp_info, sp); 1622 } 1623 } 1624 #endif 1625 1626 u_platform = 0; 1627 k_platform = ELF_PLATFORM; 1628 if (k_platform) { 1629 size_t len = strlen(k_platform) + 1; 1630 if (STACK_GROWS_DOWN) { 1631 sp -= (len + n - 1) & ~(n - 1); 1632 u_platform = sp; 1633 /* FIXME - check return value of memcpy_to_target() for failure */ 1634 memcpy_to_target(sp, k_platform, len); 1635 } else { 1636 memcpy_to_target(sp, k_platform, len); 1637 u_platform = sp; 1638 sp += len + 1; 1639 } 1640 } 1641 1642 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1643 * the argv and envp pointers. 1644 */ 1645 if (STACK_GROWS_DOWN) { 1646 sp = QEMU_ALIGN_DOWN(sp, 16); 1647 } else { 1648 sp = QEMU_ALIGN_UP(sp, 16); 1649 } 1650 1651 /* 1652 * Generate 16 random bytes for userspace PRNG seeding (not 1653 * cryptically secure but it's not the aim of QEMU). 1654 */ 1655 for (i = 0; i < 16; i++) { 1656 k_rand_bytes[i] = rand(); 1657 } 1658 if (STACK_GROWS_DOWN) { 1659 sp -= 16; 1660 u_rand_bytes = sp; 1661 /* FIXME - check return value of memcpy_to_target() for failure */ 1662 memcpy_to_target(sp, k_rand_bytes, 16); 1663 } else { 1664 memcpy_to_target(sp, k_rand_bytes, 16); 1665 u_rand_bytes = sp; 1666 sp += 16; 1667 } 1668 1669 size = (DLINFO_ITEMS + 1) * 2; 1670 if (k_platform) 1671 size += 2; 1672 #ifdef DLINFO_ARCH_ITEMS 1673 size += DLINFO_ARCH_ITEMS * 2; 1674 #endif 1675 #ifdef ELF_HWCAP2 1676 size += 2; 1677 #endif 1678 size += envc + argc + 2; 1679 size += 1; /* argc itself */ 1680 size *= n; 1681 1682 /* Allocate space and finalize stack alignment for entry now. */ 1683 if (STACK_GROWS_DOWN) { 1684 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1685 sp = u_argc; 1686 } else { 1687 u_argc = sp; 1688 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1689 } 1690 1691 u_argv = u_argc + n; 1692 u_envp = u_argv + (argc + 1) * n; 1693 u_auxv = u_envp + (envc + 1) * n; 1694 info->saved_auxv = u_auxv; 1695 info->arg_start = u_argv; 1696 info->arg_end = u_argv + argc * n; 1697 1698 /* This is correct because Linux defines 1699 * elf_addr_t as Elf32_Off / Elf64_Off 1700 */ 1701 #define NEW_AUX_ENT(id, val) do { \ 1702 put_user_ual(id, u_auxv); u_auxv += n; \ 1703 put_user_ual(val, u_auxv); u_auxv += n; \ 1704 } while(0) 1705 1706 /* There must be exactly DLINFO_ITEMS entries here. */ 1707 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1708 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1709 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1710 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1711 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1712 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1713 NEW_AUX_ENT(AT_ENTRY, info->entry); 1714 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1715 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1716 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1717 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1718 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1719 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1720 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1721 1722 #ifdef ELF_HWCAP2 1723 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1724 #endif 1725 1726 if (u_platform) { 1727 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1728 } 1729 #ifdef ARCH_DLINFO 1730 /* 1731 * ARCH_DLINFO must come last so platform specific code can enforce 1732 * special alignment requirements on the AUXV if necessary (eg. PPC). 1733 */ 1734 ARCH_DLINFO; 1735 #endif 1736 NEW_AUX_ENT (AT_NULL, 0); 1737 #undef NEW_AUX_ENT 1738 1739 info->auxv_len = u_argv - info->saved_auxv; 1740 1741 put_user_ual(argc, u_argc); 1742 1743 p = info->arg_strings; 1744 for (i = 0; i < argc; ++i) { 1745 put_user_ual(p, u_argv); 1746 u_argv += n; 1747 p += target_strlen(p) + 1; 1748 } 1749 put_user_ual(0, u_argv); 1750 1751 p = info->env_strings; 1752 for (i = 0; i < envc; ++i) { 1753 put_user_ual(p, u_envp); 1754 u_envp += n; 1755 p += target_strlen(p) + 1; 1756 } 1757 put_user_ual(0, u_envp); 1758 1759 return sp; 1760 } 1761 1762 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1763 /* If the guest doesn't have a validation function just agree */ 1764 static int validate_guest_space(unsigned long guest_base, 1765 unsigned long guest_size) 1766 { 1767 return 1; 1768 } 1769 #endif 1770 1771 unsigned long init_guest_space(unsigned long host_start, 1772 unsigned long host_size, 1773 unsigned long guest_start, 1774 bool fixed) 1775 { 1776 unsigned long current_start, real_start; 1777 int flags; 1778 1779 assert(host_start || host_size); 1780 1781 /* If just a starting address is given, then just verify that 1782 * address. */ 1783 if (host_start && !host_size) { 1784 if (validate_guest_space(host_start, host_size) == 1) { 1785 return host_start; 1786 } else { 1787 return (unsigned long)-1; 1788 } 1789 } 1790 1791 /* Setup the initial flags and start address. */ 1792 current_start = host_start & qemu_host_page_mask; 1793 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1794 if (fixed) { 1795 flags |= MAP_FIXED; 1796 } 1797 1798 /* Otherwise, a non-zero size region of memory needs to be mapped 1799 * and validated. */ 1800 while (1) { 1801 unsigned long real_size = host_size; 1802 1803 /* Do not use mmap_find_vma here because that is limited to the 1804 * guest address space. We are going to make the 1805 * guest address space fit whatever we're given. 1806 */ 1807 real_start = (unsigned long) 1808 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1809 if (real_start == (unsigned long)-1) { 1810 return (unsigned long)-1; 1811 } 1812 1813 /* Ensure the address is properly aligned. */ 1814 if (real_start & ~qemu_host_page_mask) { 1815 munmap((void *)real_start, host_size); 1816 real_size = host_size + qemu_host_page_size; 1817 real_start = (unsigned long) 1818 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1819 if (real_start == (unsigned long)-1) { 1820 return (unsigned long)-1; 1821 } 1822 real_start = HOST_PAGE_ALIGN(real_start); 1823 } 1824 1825 /* Check to see if the address is valid. */ 1826 if (!host_start || real_start == current_start) { 1827 int valid = validate_guest_space(real_start - guest_start, 1828 real_size); 1829 if (valid == 1) { 1830 break; 1831 } else if (valid == -1) { 1832 return (unsigned long)-1; 1833 } 1834 /* valid == 0, so try again. */ 1835 } 1836 1837 /* That address didn't work. Unmap and try a different one. 1838 * The address the host picked because is typically right at 1839 * the top of the host address space and leaves the guest with 1840 * no usable address space. Resort to a linear search. We 1841 * already compensated for mmap_min_addr, so this should not 1842 * happen often. Probably means we got unlucky and host 1843 * address space randomization put a shared library somewhere 1844 * inconvenient. 1845 */ 1846 munmap((void *)real_start, host_size); 1847 current_start += qemu_host_page_size; 1848 if (host_start == current_start) { 1849 /* Theoretically possible if host doesn't have any suitably 1850 * aligned areas. Normally the first mmap will fail. 1851 */ 1852 return (unsigned long)-1; 1853 } 1854 } 1855 1856 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1857 1858 return real_start; 1859 } 1860 1861 static void probe_guest_base(const char *image_name, 1862 abi_ulong loaddr, abi_ulong hiaddr) 1863 { 1864 /* Probe for a suitable guest base address, if the user has not set 1865 * it explicitly, and set guest_base appropriately. 1866 * In case of error we will print a suitable message and exit. 1867 */ 1868 const char *errmsg; 1869 if (!have_guest_base && !reserved_va) { 1870 unsigned long host_start, real_start, host_size; 1871 1872 /* Round addresses to page boundaries. */ 1873 loaddr &= qemu_host_page_mask; 1874 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1875 1876 if (loaddr < mmap_min_addr) { 1877 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1878 } else { 1879 host_start = loaddr; 1880 if (host_start != loaddr) { 1881 errmsg = "Address overflow loading ELF binary"; 1882 goto exit_errmsg; 1883 } 1884 } 1885 host_size = hiaddr - loaddr; 1886 1887 /* Setup the initial guest memory space with ranges gleaned from 1888 * the ELF image that is being loaded. 1889 */ 1890 real_start = init_guest_space(host_start, host_size, loaddr, false); 1891 if (real_start == (unsigned long)-1) { 1892 errmsg = "Unable to find space for application"; 1893 goto exit_errmsg; 1894 } 1895 guest_base = real_start - loaddr; 1896 1897 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1898 TARGET_ABI_FMT_lx " to 0x%lx\n", 1899 loaddr, real_start); 1900 } 1901 return; 1902 1903 exit_errmsg: 1904 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1905 exit(-1); 1906 } 1907 1908 1909 /* Load an ELF image into the address space. 1910 1911 IMAGE_NAME is the filename of the image, to use in error messages. 1912 IMAGE_FD is the open file descriptor for the image. 1913 1914 BPRM_BUF is a copy of the beginning of the file; this of course 1915 contains the elf file header at offset 0. It is assumed that this 1916 buffer is sufficiently aligned to present no problems to the host 1917 in accessing data at aligned offsets within the buffer. 1918 1919 On return: INFO values will be filled in, as necessary or available. */ 1920 1921 static void load_elf_image(const char *image_name, int image_fd, 1922 struct image_info *info, char **pinterp_name, 1923 char bprm_buf[BPRM_BUF_SIZE]) 1924 { 1925 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1926 struct elf_phdr *phdr; 1927 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1928 int i, retval; 1929 const char *errmsg; 1930 1931 /* First of all, some simple consistency checks */ 1932 errmsg = "Invalid ELF image for this architecture"; 1933 if (!elf_check_ident(ehdr)) { 1934 goto exit_errmsg; 1935 } 1936 bswap_ehdr(ehdr); 1937 if (!elf_check_ehdr(ehdr)) { 1938 goto exit_errmsg; 1939 } 1940 1941 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1942 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1943 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1944 } else { 1945 phdr = (struct elf_phdr *) alloca(i); 1946 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1947 if (retval != i) { 1948 goto exit_read; 1949 } 1950 } 1951 bswap_phdr(phdr, ehdr->e_phnum); 1952 1953 #ifdef CONFIG_USE_FDPIC 1954 info->nsegs = 0; 1955 info->pt_dynamic_addr = 0; 1956 #endif 1957 1958 mmap_lock(); 1959 1960 /* Find the maximum size of the image and allocate an appropriate 1961 amount of memory to handle that. */ 1962 loaddr = -1, hiaddr = 0; 1963 for (i = 0; i < ehdr->e_phnum; ++i) { 1964 if (phdr[i].p_type == PT_LOAD) { 1965 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1966 if (a < loaddr) { 1967 loaddr = a; 1968 } 1969 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1970 if (a > hiaddr) { 1971 hiaddr = a; 1972 } 1973 #ifdef CONFIG_USE_FDPIC 1974 ++info->nsegs; 1975 #endif 1976 } 1977 } 1978 1979 load_addr = loaddr; 1980 if (ehdr->e_type == ET_DYN) { 1981 /* The image indicates that it can be loaded anywhere. Find a 1982 location that can hold the memory space required. If the 1983 image is pre-linked, LOADDR will be non-zero. Since we do 1984 not supply MAP_FIXED here we'll use that address if and 1985 only if it remains available. */ 1986 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1987 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1988 -1, 0); 1989 if (load_addr == -1) { 1990 goto exit_perror; 1991 } 1992 } else if (pinterp_name != NULL) { 1993 /* This is the main executable. Make sure that the low 1994 address does not conflict with MMAP_MIN_ADDR or the 1995 QEMU application itself. */ 1996 probe_guest_base(image_name, loaddr, hiaddr); 1997 } 1998 load_bias = load_addr - loaddr; 1999 2000 #ifdef CONFIG_USE_FDPIC 2001 { 2002 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2003 g_malloc(sizeof(*loadsegs) * info->nsegs); 2004 2005 for (i = 0; i < ehdr->e_phnum; ++i) { 2006 switch (phdr[i].p_type) { 2007 case PT_DYNAMIC: 2008 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2009 break; 2010 case PT_LOAD: 2011 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2012 loadsegs->p_vaddr = phdr[i].p_vaddr; 2013 loadsegs->p_memsz = phdr[i].p_memsz; 2014 ++loadsegs; 2015 break; 2016 } 2017 } 2018 } 2019 #endif 2020 2021 info->load_bias = load_bias; 2022 info->load_addr = load_addr; 2023 info->entry = ehdr->e_entry + load_bias; 2024 info->start_code = -1; 2025 info->end_code = 0; 2026 info->start_data = -1; 2027 info->end_data = 0; 2028 info->brk = 0; 2029 info->elf_flags = ehdr->e_flags; 2030 2031 for (i = 0; i < ehdr->e_phnum; i++) { 2032 struct elf_phdr *eppnt = phdr + i; 2033 if (eppnt->p_type == PT_LOAD) { 2034 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2035 int elf_prot = 0; 2036 2037 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2038 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2039 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2040 2041 vaddr = load_bias + eppnt->p_vaddr; 2042 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2043 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2044 2045 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2046 elf_prot, MAP_PRIVATE | MAP_FIXED, 2047 image_fd, eppnt->p_offset - vaddr_po); 2048 if (error == -1) { 2049 goto exit_perror; 2050 } 2051 2052 vaddr_ef = vaddr + eppnt->p_filesz; 2053 vaddr_em = vaddr + eppnt->p_memsz; 2054 2055 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2056 if (vaddr_ef < vaddr_em) { 2057 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2058 } 2059 2060 /* Find the full program boundaries. */ 2061 if (elf_prot & PROT_EXEC) { 2062 if (vaddr < info->start_code) { 2063 info->start_code = vaddr; 2064 } 2065 if (vaddr_ef > info->end_code) { 2066 info->end_code = vaddr_ef; 2067 } 2068 } 2069 if (elf_prot & PROT_WRITE) { 2070 if (vaddr < info->start_data) { 2071 info->start_data = vaddr; 2072 } 2073 if (vaddr_ef > info->end_data) { 2074 info->end_data = vaddr_ef; 2075 } 2076 if (vaddr_em > info->brk) { 2077 info->brk = vaddr_em; 2078 } 2079 } 2080 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2081 char *interp_name; 2082 2083 if (*pinterp_name) { 2084 errmsg = "Multiple PT_INTERP entries"; 2085 goto exit_errmsg; 2086 } 2087 interp_name = malloc(eppnt->p_filesz); 2088 if (!interp_name) { 2089 goto exit_perror; 2090 } 2091 2092 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2093 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2094 eppnt->p_filesz); 2095 } else { 2096 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2097 eppnt->p_offset); 2098 if (retval != eppnt->p_filesz) { 2099 goto exit_perror; 2100 } 2101 } 2102 if (interp_name[eppnt->p_filesz - 1] != 0) { 2103 errmsg = "Invalid PT_INTERP entry"; 2104 goto exit_errmsg; 2105 } 2106 *pinterp_name = interp_name; 2107 } 2108 } 2109 2110 if (info->end_data == 0) { 2111 info->start_data = info->end_code; 2112 info->end_data = info->end_code; 2113 info->brk = info->end_code; 2114 } 2115 2116 if (qemu_log_enabled()) { 2117 load_symbols(ehdr, image_fd, load_bias); 2118 } 2119 2120 mmap_unlock(); 2121 2122 close(image_fd); 2123 return; 2124 2125 exit_read: 2126 if (retval >= 0) { 2127 errmsg = "Incomplete read of file header"; 2128 goto exit_errmsg; 2129 } 2130 exit_perror: 2131 errmsg = strerror(errno); 2132 exit_errmsg: 2133 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2134 exit(-1); 2135 } 2136 2137 static void load_elf_interp(const char *filename, struct image_info *info, 2138 char bprm_buf[BPRM_BUF_SIZE]) 2139 { 2140 int fd, retval; 2141 2142 fd = open(path(filename), O_RDONLY); 2143 if (fd < 0) { 2144 goto exit_perror; 2145 } 2146 2147 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2148 if (retval < 0) { 2149 goto exit_perror; 2150 } 2151 if (retval < BPRM_BUF_SIZE) { 2152 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2153 } 2154 2155 load_elf_image(filename, fd, info, NULL, bprm_buf); 2156 return; 2157 2158 exit_perror: 2159 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2160 exit(-1); 2161 } 2162 2163 static int symfind(const void *s0, const void *s1) 2164 { 2165 target_ulong addr = *(target_ulong *)s0; 2166 struct elf_sym *sym = (struct elf_sym *)s1; 2167 int result = 0; 2168 if (addr < sym->st_value) { 2169 result = -1; 2170 } else if (addr >= sym->st_value + sym->st_size) { 2171 result = 1; 2172 } 2173 return result; 2174 } 2175 2176 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2177 { 2178 #if ELF_CLASS == ELFCLASS32 2179 struct elf_sym *syms = s->disas_symtab.elf32; 2180 #else 2181 struct elf_sym *syms = s->disas_symtab.elf64; 2182 #endif 2183 2184 // binary search 2185 struct elf_sym *sym; 2186 2187 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2188 if (sym != NULL) { 2189 return s->disas_strtab + sym->st_name; 2190 } 2191 2192 return ""; 2193 } 2194 2195 /* FIXME: This should use elf_ops.h */ 2196 static int symcmp(const void *s0, const void *s1) 2197 { 2198 struct elf_sym *sym0 = (struct elf_sym *)s0; 2199 struct elf_sym *sym1 = (struct elf_sym *)s1; 2200 return (sym0->st_value < sym1->st_value) 2201 ? -1 2202 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2203 } 2204 2205 /* Best attempt to load symbols from this ELF object. */ 2206 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2207 { 2208 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2209 struct elf_shdr *shdr; 2210 char *strings = NULL; 2211 struct syminfo *s = NULL; 2212 struct elf_sym *new_syms, *syms = NULL; 2213 2214 shnum = hdr->e_shnum; 2215 i = shnum * sizeof(struct elf_shdr); 2216 shdr = (struct elf_shdr *)alloca(i); 2217 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2218 return; 2219 } 2220 2221 bswap_shdr(shdr, shnum); 2222 for (i = 0; i < shnum; ++i) { 2223 if (shdr[i].sh_type == SHT_SYMTAB) { 2224 sym_idx = i; 2225 str_idx = shdr[i].sh_link; 2226 goto found; 2227 } 2228 } 2229 2230 /* There will be no symbol table if the file was stripped. */ 2231 return; 2232 2233 found: 2234 /* Now know where the strtab and symtab are. Snarf them. */ 2235 s = g_try_new(struct syminfo, 1); 2236 if (!s) { 2237 goto give_up; 2238 } 2239 2240 i = shdr[str_idx].sh_size; 2241 s->disas_strtab = strings = g_try_malloc(i); 2242 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2243 goto give_up; 2244 } 2245 2246 i = shdr[sym_idx].sh_size; 2247 syms = g_try_malloc(i); 2248 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2249 goto give_up; 2250 } 2251 2252 nsyms = i / sizeof(struct elf_sym); 2253 for (i = 0; i < nsyms; ) { 2254 bswap_sym(syms + i); 2255 /* Throw away entries which we do not need. */ 2256 if (syms[i].st_shndx == SHN_UNDEF 2257 || syms[i].st_shndx >= SHN_LORESERVE 2258 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2259 if (i < --nsyms) { 2260 syms[i] = syms[nsyms]; 2261 } 2262 } else { 2263 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2264 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2265 syms[i].st_value &= ~(target_ulong)1; 2266 #endif 2267 syms[i].st_value += load_bias; 2268 i++; 2269 } 2270 } 2271 2272 /* No "useful" symbol. */ 2273 if (nsyms == 0) { 2274 goto give_up; 2275 } 2276 2277 /* Attempt to free the storage associated with the local symbols 2278 that we threw away. Whether or not this has any effect on the 2279 memory allocation depends on the malloc implementation and how 2280 many symbols we managed to discard. */ 2281 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2282 if (new_syms == NULL) { 2283 goto give_up; 2284 } 2285 syms = new_syms; 2286 2287 qsort(syms, nsyms, sizeof(*syms), symcmp); 2288 2289 s->disas_num_syms = nsyms; 2290 #if ELF_CLASS == ELFCLASS32 2291 s->disas_symtab.elf32 = syms; 2292 #else 2293 s->disas_symtab.elf64 = syms; 2294 #endif 2295 s->lookup_symbol = lookup_symbolxx; 2296 s->next = syminfos; 2297 syminfos = s; 2298 2299 return; 2300 2301 give_up: 2302 g_free(s); 2303 g_free(strings); 2304 g_free(syms); 2305 } 2306 2307 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2308 { 2309 struct image_info interp_info; 2310 struct elfhdr elf_ex; 2311 char *elf_interpreter = NULL; 2312 char *scratch; 2313 2314 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2315 2316 load_elf_image(bprm->filename, bprm->fd, info, 2317 &elf_interpreter, bprm->buf); 2318 2319 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2320 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2321 when we load the interpreter. */ 2322 elf_ex = *(struct elfhdr *)bprm->buf; 2323 2324 /* Do this so that we can load the interpreter, if need be. We will 2325 change some of these later */ 2326 bprm->p = setup_arg_pages(bprm, info); 2327 2328 scratch = g_new0(char, TARGET_PAGE_SIZE); 2329 if (STACK_GROWS_DOWN) { 2330 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2331 bprm->p, info->stack_limit); 2332 info->file_string = bprm->p; 2333 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2334 bprm->p, info->stack_limit); 2335 info->env_strings = bprm->p; 2336 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2337 bprm->p, info->stack_limit); 2338 info->arg_strings = bprm->p; 2339 } else { 2340 info->arg_strings = bprm->p; 2341 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2342 bprm->p, info->stack_limit); 2343 info->env_strings = bprm->p; 2344 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2345 bprm->p, info->stack_limit); 2346 info->file_string = bprm->p; 2347 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2348 bprm->p, info->stack_limit); 2349 } 2350 2351 g_free(scratch); 2352 2353 if (!bprm->p) { 2354 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2355 exit(-1); 2356 } 2357 2358 if (elf_interpreter) { 2359 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2360 2361 /* If the program interpreter is one of these two, then assume 2362 an iBCS2 image. Otherwise assume a native linux image. */ 2363 2364 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2365 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2366 info->personality = PER_SVR4; 2367 2368 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2369 and some applications "depend" upon this behavior. Since 2370 we do not have the power to recompile these, we emulate 2371 the SVr4 behavior. Sigh. */ 2372 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2373 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2374 } 2375 } 2376 2377 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2378 info, (elf_interpreter ? &interp_info : NULL)); 2379 info->start_stack = bprm->p; 2380 2381 /* If we have an interpreter, set that as the program's entry point. 2382 Copy the load_bias as well, to help PPC64 interpret the entry 2383 point as a function descriptor. Do this after creating elf tables 2384 so that we copy the original program entry point into the AUXV. */ 2385 if (elf_interpreter) { 2386 info->load_bias = interp_info.load_bias; 2387 info->entry = interp_info.entry; 2388 free(elf_interpreter); 2389 } 2390 2391 #ifdef USE_ELF_CORE_DUMP 2392 bprm->core_dump = &elf_core_dump; 2393 #endif 2394 2395 return 0; 2396 } 2397 2398 #ifdef USE_ELF_CORE_DUMP 2399 /* 2400 * Definitions to generate Intel SVR4-like core files. 2401 * These mostly have the same names as the SVR4 types with "target_elf_" 2402 * tacked on the front to prevent clashes with linux definitions, 2403 * and the typedef forms have been avoided. This is mostly like 2404 * the SVR4 structure, but more Linuxy, with things that Linux does 2405 * not support and which gdb doesn't really use excluded. 2406 * 2407 * Fields we don't dump (their contents is zero) in linux-user qemu 2408 * are marked with XXX. 2409 * 2410 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2411 * 2412 * Porting ELF coredump for target is (quite) simple process. First you 2413 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2414 * the target resides): 2415 * 2416 * #define USE_ELF_CORE_DUMP 2417 * 2418 * Next you define type of register set used for dumping. ELF specification 2419 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2420 * 2421 * typedef <target_regtype> target_elf_greg_t; 2422 * #define ELF_NREG <number of registers> 2423 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2424 * 2425 * Last step is to implement target specific function that copies registers 2426 * from given cpu into just specified register set. Prototype is: 2427 * 2428 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2429 * const CPUArchState *env); 2430 * 2431 * Parameters: 2432 * regs - copy register values into here (allocated and zeroed by caller) 2433 * env - copy registers from here 2434 * 2435 * Example for ARM target is provided in this file. 2436 */ 2437 2438 /* An ELF note in memory */ 2439 struct memelfnote { 2440 const char *name; 2441 size_t namesz; 2442 size_t namesz_rounded; 2443 int type; 2444 size_t datasz; 2445 size_t datasz_rounded; 2446 void *data; 2447 size_t notesz; 2448 }; 2449 2450 struct target_elf_siginfo { 2451 abi_int si_signo; /* signal number */ 2452 abi_int si_code; /* extra code */ 2453 abi_int si_errno; /* errno */ 2454 }; 2455 2456 struct target_elf_prstatus { 2457 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2458 abi_short pr_cursig; /* Current signal */ 2459 abi_ulong pr_sigpend; /* XXX */ 2460 abi_ulong pr_sighold; /* XXX */ 2461 target_pid_t pr_pid; 2462 target_pid_t pr_ppid; 2463 target_pid_t pr_pgrp; 2464 target_pid_t pr_sid; 2465 struct target_timeval pr_utime; /* XXX User time */ 2466 struct target_timeval pr_stime; /* XXX System time */ 2467 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2468 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2469 target_elf_gregset_t pr_reg; /* GP registers */ 2470 abi_int pr_fpvalid; /* XXX */ 2471 }; 2472 2473 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2474 2475 struct target_elf_prpsinfo { 2476 char pr_state; /* numeric process state */ 2477 char pr_sname; /* char for pr_state */ 2478 char pr_zomb; /* zombie */ 2479 char pr_nice; /* nice val */ 2480 abi_ulong pr_flag; /* flags */ 2481 target_uid_t pr_uid; 2482 target_gid_t pr_gid; 2483 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2484 /* Lots missing */ 2485 char pr_fname[16]; /* filename of executable */ 2486 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2487 }; 2488 2489 /* Here is the structure in which status of each thread is captured. */ 2490 struct elf_thread_status { 2491 QTAILQ_ENTRY(elf_thread_status) ets_link; 2492 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2493 #if 0 2494 elf_fpregset_t fpu; /* NT_PRFPREG */ 2495 struct task_struct *thread; 2496 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2497 #endif 2498 struct memelfnote notes[1]; 2499 int num_notes; 2500 }; 2501 2502 struct elf_note_info { 2503 struct memelfnote *notes; 2504 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2505 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2506 2507 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2508 #if 0 2509 /* 2510 * Current version of ELF coredump doesn't support 2511 * dumping fp regs etc. 2512 */ 2513 elf_fpregset_t *fpu; 2514 elf_fpxregset_t *xfpu; 2515 int thread_status_size; 2516 #endif 2517 int notes_size; 2518 int numnote; 2519 }; 2520 2521 struct vm_area_struct { 2522 target_ulong vma_start; /* start vaddr of memory region */ 2523 target_ulong vma_end; /* end vaddr of memory region */ 2524 abi_ulong vma_flags; /* protection etc. flags for the region */ 2525 QTAILQ_ENTRY(vm_area_struct) vma_link; 2526 }; 2527 2528 struct mm_struct { 2529 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2530 int mm_count; /* number of mappings */ 2531 }; 2532 2533 static struct mm_struct *vma_init(void); 2534 static void vma_delete(struct mm_struct *); 2535 static int vma_add_mapping(struct mm_struct *, target_ulong, 2536 target_ulong, abi_ulong); 2537 static int vma_get_mapping_count(const struct mm_struct *); 2538 static struct vm_area_struct *vma_first(const struct mm_struct *); 2539 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2540 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2541 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2542 unsigned long flags); 2543 2544 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2545 static void fill_note(struct memelfnote *, const char *, int, 2546 unsigned int, void *); 2547 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2548 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2549 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2550 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2551 static size_t note_size(const struct memelfnote *); 2552 static void free_note_info(struct elf_note_info *); 2553 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2554 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2555 static int core_dump_filename(const TaskState *, char *, size_t); 2556 2557 static int dump_write(int, const void *, size_t); 2558 static int write_note(struct memelfnote *, int); 2559 static int write_note_info(struct elf_note_info *, int); 2560 2561 #ifdef BSWAP_NEEDED 2562 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2563 { 2564 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2565 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2566 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2567 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2568 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2569 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2570 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2571 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2572 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2573 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2574 /* cpu times are not filled, so we skip them */ 2575 /* regs should be in correct format already */ 2576 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2577 } 2578 2579 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2580 { 2581 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2582 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2583 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2584 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2585 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2586 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2587 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2588 } 2589 2590 static void bswap_note(struct elf_note *en) 2591 { 2592 bswap32s(&en->n_namesz); 2593 bswap32s(&en->n_descsz); 2594 bswap32s(&en->n_type); 2595 } 2596 #else 2597 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2598 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2599 static inline void bswap_note(struct elf_note *en) { } 2600 #endif /* BSWAP_NEEDED */ 2601 2602 /* 2603 * Minimal support for linux memory regions. These are needed 2604 * when we are finding out what memory exactly belongs to 2605 * emulated process. No locks needed here, as long as 2606 * thread that received the signal is stopped. 2607 */ 2608 2609 static struct mm_struct *vma_init(void) 2610 { 2611 struct mm_struct *mm; 2612 2613 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2614 return (NULL); 2615 2616 mm->mm_count = 0; 2617 QTAILQ_INIT(&mm->mm_mmap); 2618 2619 return (mm); 2620 } 2621 2622 static void vma_delete(struct mm_struct *mm) 2623 { 2624 struct vm_area_struct *vma; 2625 2626 while ((vma = vma_first(mm)) != NULL) { 2627 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2628 g_free(vma); 2629 } 2630 g_free(mm); 2631 } 2632 2633 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2634 target_ulong end, abi_ulong flags) 2635 { 2636 struct vm_area_struct *vma; 2637 2638 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2639 return (-1); 2640 2641 vma->vma_start = start; 2642 vma->vma_end = end; 2643 vma->vma_flags = flags; 2644 2645 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2646 mm->mm_count++; 2647 2648 return (0); 2649 } 2650 2651 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2652 { 2653 return (QTAILQ_FIRST(&mm->mm_mmap)); 2654 } 2655 2656 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2657 { 2658 return (QTAILQ_NEXT(vma, vma_link)); 2659 } 2660 2661 static int vma_get_mapping_count(const struct mm_struct *mm) 2662 { 2663 return (mm->mm_count); 2664 } 2665 2666 /* 2667 * Calculate file (dump) size of given memory region. 2668 */ 2669 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2670 { 2671 /* if we cannot even read the first page, skip it */ 2672 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2673 return (0); 2674 2675 /* 2676 * Usually we don't dump executable pages as they contain 2677 * non-writable code that debugger can read directly from 2678 * target library etc. However, thread stacks are marked 2679 * also executable so we read in first page of given region 2680 * and check whether it contains elf header. If there is 2681 * no elf header, we dump it. 2682 */ 2683 if (vma->vma_flags & PROT_EXEC) { 2684 char page[TARGET_PAGE_SIZE]; 2685 2686 copy_from_user(page, vma->vma_start, sizeof (page)); 2687 if ((page[EI_MAG0] == ELFMAG0) && 2688 (page[EI_MAG1] == ELFMAG1) && 2689 (page[EI_MAG2] == ELFMAG2) && 2690 (page[EI_MAG3] == ELFMAG3)) { 2691 /* 2692 * Mappings are possibly from ELF binary. Don't dump 2693 * them. 2694 */ 2695 return (0); 2696 } 2697 } 2698 2699 return (vma->vma_end - vma->vma_start); 2700 } 2701 2702 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2703 unsigned long flags) 2704 { 2705 struct mm_struct *mm = (struct mm_struct *)priv; 2706 2707 vma_add_mapping(mm, start, end, flags); 2708 return (0); 2709 } 2710 2711 static void fill_note(struct memelfnote *note, const char *name, int type, 2712 unsigned int sz, void *data) 2713 { 2714 unsigned int namesz; 2715 2716 namesz = strlen(name) + 1; 2717 note->name = name; 2718 note->namesz = namesz; 2719 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2720 note->type = type; 2721 note->datasz = sz; 2722 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2723 2724 note->data = data; 2725 2726 /* 2727 * We calculate rounded up note size here as specified by 2728 * ELF document. 2729 */ 2730 note->notesz = sizeof (struct elf_note) + 2731 note->namesz_rounded + note->datasz_rounded; 2732 } 2733 2734 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2735 uint32_t flags) 2736 { 2737 (void) memset(elf, 0, sizeof(*elf)); 2738 2739 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2740 elf->e_ident[EI_CLASS] = ELF_CLASS; 2741 elf->e_ident[EI_DATA] = ELF_DATA; 2742 elf->e_ident[EI_VERSION] = EV_CURRENT; 2743 elf->e_ident[EI_OSABI] = ELF_OSABI; 2744 2745 elf->e_type = ET_CORE; 2746 elf->e_machine = machine; 2747 elf->e_version = EV_CURRENT; 2748 elf->e_phoff = sizeof(struct elfhdr); 2749 elf->e_flags = flags; 2750 elf->e_ehsize = sizeof(struct elfhdr); 2751 elf->e_phentsize = sizeof(struct elf_phdr); 2752 elf->e_phnum = segs; 2753 2754 bswap_ehdr(elf); 2755 } 2756 2757 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2758 { 2759 phdr->p_type = PT_NOTE; 2760 phdr->p_offset = offset; 2761 phdr->p_vaddr = 0; 2762 phdr->p_paddr = 0; 2763 phdr->p_filesz = sz; 2764 phdr->p_memsz = 0; 2765 phdr->p_flags = 0; 2766 phdr->p_align = 0; 2767 2768 bswap_phdr(phdr, 1); 2769 } 2770 2771 static size_t note_size(const struct memelfnote *note) 2772 { 2773 return (note->notesz); 2774 } 2775 2776 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2777 const TaskState *ts, int signr) 2778 { 2779 (void) memset(prstatus, 0, sizeof (*prstatus)); 2780 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2781 prstatus->pr_pid = ts->ts_tid; 2782 prstatus->pr_ppid = getppid(); 2783 prstatus->pr_pgrp = getpgrp(); 2784 prstatus->pr_sid = getsid(0); 2785 2786 bswap_prstatus(prstatus); 2787 } 2788 2789 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2790 { 2791 char *base_filename; 2792 unsigned int i, len; 2793 2794 (void) memset(psinfo, 0, sizeof (*psinfo)); 2795 2796 len = ts->info->arg_end - ts->info->arg_start; 2797 if (len >= ELF_PRARGSZ) 2798 len = ELF_PRARGSZ - 1; 2799 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2800 return -EFAULT; 2801 for (i = 0; i < len; i++) 2802 if (psinfo->pr_psargs[i] == 0) 2803 psinfo->pr_psargs[i] = ' '; 2804 psinfo->pr_psargs[len] = 0; 2805 2806 psinfo->pr_pid = getpid(); 2807 psinfo->pr_ppid = getppid(); 2808 psinfo->pr_pgrp = getpgrp(); 2809 psinfo->pr_sid = getsid(0); 2810 psinfo->pr_uid = getuid(); 2811 psinfo->pr_gid = getgid(); 2812 2813 base_filename = g_path_get_basename(ts->bprm->filename); 2814 /* 2815 * Using strncpy here is fine: at max-length, 2816 * this field is not NUL-terminated. 2817 */ 2818 (void) strncpy(psinfo->pr_fname, base_filename, 2819 sizeof(psinfo->pr_fname)); 2820 2821 g_free(base_filename); 2822 bswap_psinfo(psinfo); 2823 return (0); 2824 } 2825 2826 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2827 { 2828 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2829 elf_addr_t orig_auxv = auxv; 2830 void *ptr; 2831 int len = ts->info->auxv_len; 2832 2833 /* 2834 * Auxiliary vector is stored in target process stack. It contains 2835 * {type, value} pairs that we need to dump into note. This is not 2836 * strictly necessary but we do it here for sake of completeness. 2837 */ 2838 2839 /* read in whole auxv vector and copy it to memelfnote */ 2840 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2841 if (ptr != NULL) { 2842 fill_note(note, "CORE", NT_AUXV, len, ptr); 2843 unlock_user(ptr, auxv, len); 2844 } 2845 } 2846 2847 /* 2848 * Constructs name of coredump file. We have following convention 2849 * for the name: 2850 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2851 * 2852 * Returns 0 in case of success, -1 otherwise (errno is set). 2853 */ 2854 static int core_dump_filename(const TaskState *ts, char *buf, 2855 size_t bufsize) 2856 { 2857 char timestamp[64]; 2858 char *base_filename = NULL; 2859 struct timeval tv; 2860 struct tm tm; 2861 2862 assert(bufsize >= PATH_MAX); 2863 2864 if (gettimeofday(&tv, NULL) < 0) { 2865 (void) fprintf(stderr, "unable to get current timestamp: %s", 2866 strerror(errno)); 2867 return (-1); 2868 } 2869 2870 base_filename = g_path_get_basename(ts->bprm->filename); 2871 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2872 localtime_r(&tv.tv_sec, &tm)); 2873 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2874 base_filename, timestamp, (int)getpid()); 2875 g_free(base_filename); 2876 2877 return (0); 2878 } 2879 2880 static int dump_write(int fd, const void *ptr, size_t size) 2881 { 2882 const char *bufp = (const char *)ptr; 2883 ssize_t bytes_written, bytes_left; 2884 struct rlimit dumpsize; 2885 off_t pos; 2886 2887 bytes_written = 0; 2888 getrlimit(RLIMIT_CORE, &dumpsize); 2889 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2890 if (errno == ESPIPE) { /* not a seekable stream */ 2891 bytes_left = size; 2892 } else { 2893 return pos; 2894 } 2895 } else { 2896 if (dumpsize.rlim_cur <= pos) { 2897 return -1; 2898 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2899 bytes_left = size; 2900 } else { 2901 size_t limit_left=dumpsize.rlim_cur - pos; 2902 bytes_left = limit_left >= size ? size : limit_left ; 2903 } 2904 } 2905 2906 /* 2907 * In normal conditions, single write(2) should do but 2908 * in case of socket etc. this mechanism is more portable. 2909 */ 2910 do { 2911 bytes_written = write(fd, bufp, bytes_left); 2912 if (bytes_written < 0) { 2913 if (errno == EINTR) 2914 continue; 2915 return (-1); 2916 } else if (bytes_written == 0) { /* eof */ 2917 return (-1); 2918 } 2919 bufp += bytes_written; 2920 bytes_left -= bytes_written; 2921 } while (bytes_left > 0); 2922 2923 return (0); 2924 } 2925 2926 static int write_note(struct memelfnote *men, int fd) 2927 { 2928 struct elf_note en; 2929 2930 en.n_namesz = men->namesz; 2931 en.n_type = men->type; 2932 en.n_descsz = men->datasz; 2933 2934 bswap_note(&en); 2935 2936 if (dump_write(fd, &en, sizeof(en)) != 0) 2937 return (-1); 2938 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2939 return (-1); 2940 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2941 return (-1); 2942 2943 return (0); 2944 } 2945 2946 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2947 { 2948 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2949 TaskState *ts = (TaskState *)cpu->opaque; 2950 struct elf_thread_status *ets; 2951 2952 ets = g_malloc0(sizeof (*ets)); 2953 ets->num_notes = 1; /* only prstatus is dumped */ 2954 fill_prstatus(&ets->prstatus, ts, 0); 2955 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2956 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2957 &ets->prstatus); 2958 2959 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2960 2961 info->notes_size += note_size(&ets->notes[0]); 2962 } 2963 2964 static void init_note_info(struct elf_note_info *info) 2965 { 2966 /* Initialize the elf_note_info structure so that it is at 2967 * least safe to call free_note_info() on it. Must be 2968 * called before calling fill_note_info(). 2969 */ 2970 memset(info, 0, sizeof (*info)); 2971 QTAILQ_INIT(&info->thread_list); 2972 } 2973 2974 static int fill_note_info(struct elf_note_info *info, 2975 long signr, const CPUArchState *env) 2976 { 2977 #define NUMNOTES 3 2978 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2979 TaskState *ts = (TaskState *)cpu->opaque; 2980 int i; 2981 2982 info->notes = g_new0(struct memelfnote, NUMNOTES); 2983 if (info->notes == NULL) 2984 return (-ENOMEM); 2985 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2986 if (info->prstatus == NULL) 2987 return (-ENOMEM); 2988 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2989 if (info->prstatus == NULL) 2990 return (-ENOMEM); 2991 2992 /* 2993 * First fill in status (and registers) of current thread 2994 * including process info & aux vector. 2995 */ 2996 fill_prstatus(info->prstatus, ts, signr); 2997 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2998 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2999 sizeof (*info->prstatus), info->prstatus); 3000 fill_psinfo(info->psinfo, ts); 3001 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3002 sizeof (*info->psinfo), info->psinfo); 3003 fill_auxv_note(&info->notes[2], ts); 3004 info->numnote = 3; 3005 3006 info->notes_size = 0; 3007 for (i = 0; i < info->numnote; i++) 3008 info->notes_size += note_size(&info->notes[i]); 3009 3010 /* read and fill status of all threads */ 3011 cpu_list_lock(); 3012 CPU_FOREACH(cpu) { 3013 if (cpu == thread_cpu) { 3014 continue; 3015 } 3016 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3017 } 3018 cpu_list_unlock(); 3019 3020 return (0); 3021 } 3022 3023 static void free_note_info(struct elf_note_info *info) 3024 { 3025 struct elf_thread_status *ets; 3026 3027 while (!QTAILQ_EMPTY(&info->thread_list)) { 3028 ets = QTAILQ_FIRST(&info->thread_list); 3029 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3030 g_free(ets); 3031 } 3032 3033 g_free(info->prstatus); 3034 g_free(info->psinfo); 3035 g_free(info->notes); 3036 } 3037 3038 static int write_note_info(struct elf_note_info *info, int fd) 3039 { 3040 struct elf_thread_status *ets; 3041 int i, error = 0; 3042 3043 /* write prstatus, psinfo and auxv for current thread */ 3044 for (i = 0; i < info->numnote; i++) 3045 if ((error = write_note(&info->notes[i], fd)) != 0) 3046 return (error); 3047 3048 /* write prstatus for each thread */ 3049 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3050 if ((error = write_note(&ets->notes[0], fd)) != 0) 3051 return (error); 3052 } 3053 3054 return (0); 3055 } 3056 3057 /* 3058 * Write out ELF coredump. 3059 * 3060 * See documentation of ELF object file format in: 3061 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3062 * 3063 * Coredump format in linux is following: 3064 * 3065 * 0 +----------------------+ \ 3066 * | ELF header | ET_CORE | 3067 * +----------------------+ | 3068 * | ELF program headers | |--- headers 3069 * | - NOTE section | | 3070 * | - PT_LOAD sections | | 3071 * +----------------------+ / 3072 * | NOTEs: | 3073 * | - NT_PRSTATUS | 3074 * | - NT_PRSINFO | 3075 * | - NT_AUXV | 3076 * +----------------------+ <-- aligned to target page 3077 * | Process memory dump | 3078 * : : 3079 * . . 3080 * : : 3081 * | | 3082 * +----------------------+ 3083 * 3084 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3085 * NT_PRSINFO -> struct elf_prpsinfo 3086 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3087 * 3088 * Format follows System V format as close as possible. Current 3089 * version limitations are as follows: 3090 * - no floating point registers are dumped 3091 * 3092 * Function returns 0 in case of success, negative errno otherwise. 3093 * 3094 * TODO: make this work also during runtime: it should be 3095 * possible to force coredump from running process and then 3096 * continue processing. For example qemu could set up SIGUSR2 3097 * handler (provided that target process haven't registered 3098 * handler for that) that does the dump when signal is received. 3099 */ 3100 static int elf_core_dump(int signr, const CPUArchState *env) 3101 { 3102 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3103 const TaskState *ts = (const TaskState *)cpu->opaque; 3104 struct vm_area_struct *vma = NULL; 3105 char corefile[PATH_MAX]; 3106 struct elf_note_info info; 3107 struct elfhdr elf; 3108 struct elf_phdr phdr; 3109 struct rlimit dumpsize; 3110 struct mm_struct *mm = NULL; 3111 off_t offset = 0, data_offset = 0; 3112 int segs = 0; 3113 int fd = -1; 3114 3115 init_note_info(&info); 3116 3117 errno = 0; 3118 getrlimit(RLIMIT_CORE, &dumpsize); 3119 if (dumpsize.rlim_cur == 0) 3120 return 0; 3121 3122 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3123 return (-errno); 3124 3125 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3126 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3127 return (-errno); 3128 3129 /* 3130 * Walk through target process memory mappings and 3131 * set up structure containing this information. After 3132 * this point vma_xxx functions can be used. 3133 */ 3134 if ((mm = vma_init()) == NULL) 3135 goto out; 3136 3137 walk_memory_regions(mm, vma_walker); 3138 segs = vma_get_mapping_count(mm); 3139 3140 /* 3141 * Construct valid coredump ELF header. We also 3142 * add one more segment for notes. 3143 */ 3144 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3145 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3146 goto out; 3147 3148 /* fill in the in-memory version of notes */ 3149 if (fill_note_info(&info, signr, env) < 0) 3150 goto out; 3151 3152 offset += sizeof (elf); /* elf header */ 3153 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3154 3155 /* write out notes program header */ 3156 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3157 3158 offset += info.notes_size; 3159 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3160 goto out; 3161 3162 /* 3163 * ELF specification wants data to start at page boundary so 3164 * we align it here. 3165 */ 3166 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3167 3168 /* 3169 * Write program headers for memory regions mapped in 3170 * the target process. 3171 */ 3172 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3173 (void) memset(&phdr, 0, sizeof (phdr)); 3174 3175 phdr.p_type = PT_LOAD; 3176 phdr.p_offset = offset; 3177 phdr.p_vaddr = vma->vma_start; 3178 phdr.p_paddr = 0; 3179 phdr.p_filesz = vma_dump_size(vma); 3180 offset += phdr.p_filesz; 3181 phdr.p_memsz = vma->vma_end - vma->vma_start; 3182 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3183 if (vma->vma_flags & PROT_WRITE) 3184 phdr.p_flags |= PF_W; 3185 if (vma->vma_flags & PROT_EXEC) 3186 phdr.p_flags |= PF_X; 3187 phdr.p_align = ELF_EXEC_PAGESIZE; 3188 3189 bswap_phdr(&phdr, 1); 3190 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3191 goto out; 3192 } 3193 } 3194 3195 /* 3196 * Next we write notes just after program headers. No 3197 * alignment needed here. 3198 */ 3199 if (write_note_info(&info, fd) < 0) 3200 goto out; 3201 3202 /* align data to page boundary */ 3203 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3204 goto out; 3205 3206 /* 3207 * Finally we can dump process memory into corefile as well. 3208 */ 3209 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3210 abi_ulong addr; 3211 abi_ulong end; 3212 3213 end = vma->vma_start + vma_dump_size(vma); 3214 3215 for (addr = vma->vma_start; addr < end; 3216 addr += TARGET_PAGE_SIZE) { 3217 char page[TARGET_PAGE_SIZE]; 3218 int error; 3219 3220 /* 3221 * Read in page from target process memory and 3222 * write it to coredump file. 3223 */ 3224 error = copy_from_user(page, addr, sizeof (page)); 3225 if (error != 0) { 3226 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3227 addr); 3228 errno = -error; 3229 goto out; 3230 } 3231 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3232 goto out; 3233 } 3234 } 3235 3236 out: 3237 free_note_info(&info); 3238 if (mm != NULL) 3239 vma_delete(mm); 3240 (void) close(fd); 3241 3242 if (errno != 0) 3243 return (-errno); 3244 return (0); 3245 } 3246 #endif /* USE_ELF_CORE_DUMP */ 3247 3248 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3249 { 3250 init_thread(regs, infop); 3251 } 3252