1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 #include "qemu/queue.h" 12 #include "qemu/guest-random.h" 13 14 #ifdef _ARCH_PPC64 15 #undef ARCH_DLINFO 16 #undef ELF_PLATFORM 17 #undef ELF_HWCAP 18 #undef ELF_HWCAP2 19 #undef ELF_CLASS 20 #undef ELF_DATA 21 #undef ELF_ARCH 22 #endif 23 24 #define ELF_OSABI ELFOSABI_SYSV 25 26 /* from personality.h */ 27 28 /* 29 * Flags for bug emulation. 30 * 31 * These occupy the top three bytes. 32 */ 33 enum { 34 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 35 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 36 descriptors (signal handling) */ 37 MMAP_PAGE_ZERO = 0x0100000, 38 ADDR_COMPAT_LAYOUT = 0x0200000, 39 READ_IMPLIES_EXEC = 0x0400000, 40 ADDR_LIMIT_32BIT = 0x0800000, 41 SHORT_INODE = 0x1000000, 42 WHOLE_SECONDS = 0x2000000, 43 STICKY_TIMEOUTS = 0x4000000, 44 ADDR_LIMIT_3GB = 0x8000000, 45 }; 46 47 /* 48 * Personality types. 49 * 50 * These go in the low byte. Avoid using the top bit, it will 51 * conflict with error returns. 52 */ 53 enum { 54 PER_LINUX = 0x0000, 55 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 56 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 57 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 58 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 60 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 61 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 62 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 63 PER_BSD = 0x0006, 64 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 65 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_LINUX32 = 0x0008, 67 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 68 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 69 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 70 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 71 PER_RISCOS = 0x000c, 72 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 73 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 74 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 75 PER_HPUX = 0x0010, 76 PER_MASK = 0x00ff, 77 }; 78 79 /* 80 * Return the base personality without flags. 81 */ 82 #define personality(pers) (pers & PER_MASK) 83 84 int info_is_fdpic(struct image_info *info) 85 { 86 return info->personality == PER_LINUX_FDPIC; 87 } 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 149 #define ELF_CLASS ELFCLASS64 150 #define ELF_ARCH EM_X86_64 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = env->regs[15]; 172 (*regs)[1] = env->regs[14]; 173 (*regs)[2] = env->regs[13]; 174 (*regs)[3] = env->regs[12]; 175 (*regs)[4] = env->regs[R_EBP]; 176 (*regs)[5] = env->regs[R_EBX]; 177 (*regs)[6] = env->regs[11]; 178 (*regs)[7] = env->regs[10]; 179 (*regs)[8] = env->regs[9]; 180 (*regs)[9] = env->regs[8]; 181 (*regs)[10] = env->regs[R_EAX]; 182 (*regs)[11] = env->regs[R_ECX]; 183 (*regs)[12] = env->regs[R_EDX]; 184 (*regs)[13] = env->regs[R_ESI]; 185 (*regs)[14] = env->regs[R_EDI]; 186 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 187 (*regs)[16] = env->eip; 188 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 189 (*regs)[18] = env->eflags; 190 (*regs)[19] = env->regs[R_ESP]; 191 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 192 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 193 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 194 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 195 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 196 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 198 } 199 200 #else 201 202 #define ELF_START_MMAP 0x80000000 203 204 /* 205 * This is used to ensure we don't load something for the wrong architecture. 206 */ 207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 208 209 /* 210 * These are used to set parameters in the core dumps. 211 */ 212 #define ELF_CLASS ELFCLASS32 213 #define ELF_ARCH EM_386 214 215 static inline void init_thread(struct target_pt_regs *regs, 216 struct image_info *infop) 217 { 218 regs->esp = infop->start_stack; 219 regs->eip = infop->entry; 220 221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 222 starts %edx contains a pointer to a function which might be 223 registered using `atexit'. This provides a mean for the 224 dynamic linker to call DT_FINI functions for shared libraries 225 that have been loaded before the code runs. 226 227 A value of 0 tells we have no such handler. */ 228 regs->edx = 0; 229 } 230 231 #define ELF_NREG 17 232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 233 234 /* 235 * Note that ELF_NREG should be 19 as there should be place for 236 * TRAPNO and ERR "registers" as well but linux doesn't dump 237 * those. 238 * 239 * See linux kernel: arch/x86/include/asm/elf.h 240 */ 241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 242 { 243 (*regs)[0] = env->regs[R_EBX]; 244 (*regs)[1] = env->regs[R_ECX]; 245 (*regs)[2] = env->regs[R_EDX]; 246 (*regs)[3] = env->regs[R_ESI]; 247 (*regs)[4] = env->regs[R_EDI]; 248 (*regs)[5] = env->regs[R_EBP]; 249 (*regs)[6] = env->regs[R_EAX]; 250 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 251 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 252 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 253 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 254 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 255 (*regs)[12] = env->eip; 256 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 257 (*regs)[14] = env->eflags; 258 (*regs)[15] = env->regs[R_ESP]; 259 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 260 } 261 #endif 262 263 #define USE_ELF_CORE_DUMP 264 #define ELF_EXEC_PAGESIZE 4096 265 266 #endif 267 268 #ifdef TARGET_ARM 269 270 #ifndef TARGET_AARCH64 271 /* 32 bit ARM definitions */ 272 273 #define ELF_START_MMAP 0x80000000 274 275 #define ELF_ARCH EM_ARM 276 #define ELF_CLASS ELFCLASS32 277 278 static inline void init_thread(struct target_pt_regs *regs, 279 struct image_info *infop) 280 { 281 abi_long stack = infop->start_stack; 282 memset(regs, 0, sizeof(*regs)); 283 284 regs->uregs[16] = ARM_CPU_MODE_USR; 285 if (infop->entry & 1) { 286 regs->uregs[16] |= CPSR_T; 287 } 288 regs->uregs[15] = infop->entry & 0xfffffffe; 289 regs->uregs[13] = infop->start_stack; 290 /* FIXME - what to for failure of get_user()? */ 291 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 292 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 293 /* XXX: it seems that r0 is zeroed after ! */ 294 regs->uregs[0] = 0; 295 /* For uClinux PIC binaries. */ 296 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 297 regs->uregs[10] = infop->start_data; 298 299 /* Support ARM FDPIC. */ 300 if (info_is_fdpic(infop)) { 301 /* As described in the ABI document, r7 points to the loadmap info 302 * prepared by the kernel. If an interpreter is needed, r8 points 303 * to the interpreter loadmap and r9 points to the interpreter 304 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 305 * r9 points to the main program PT_DYNAMIC info. 306 */ 307 regs->uregs[7] = infop->loadmap_addr; 308 if (infop->interpreter_loadmap_addr) { 309 /* Executable is dynamically loaded. */ 310 regs->uregs[8] = infop->interpreter_loadmap_addr; 311 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 312 } else { 313 regs->uregs[8] = 0; 314 regs->uregs[9] = infop->pt_dynamic_addr; 315 } 316 } 317 } 318 319 #define ELF_NREG 18 320 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 321 322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 323 { 324 (*regs)[0] = tswapreg(env->regs[0]); 325 (*regs)[1] = tswapreg(env->regs[1]); 326 (*regs)[2] = tswapreg(env->regs[2]); 327 (*regs)[3] = tswapreg(env->regs[3]); 328 (*regs)[4] = tswapreg(env->regs[4]); 329 (*regs)[5] = tswapreg(env->regs[5]); 330 (*regs)[6] = tswapreg(env->regs[6]); 331 (*regs)[7] = tswapreg(env->regs[7]); 332 (*regs)[8] = tswapreg(env->regs[8]); 333 (*regs)[9] = tswapreg(env->regs[9]); 334 (*regs)[10] = tswapreg(env->regs[10]); 335 (*regs)[11] = tswapreg(env->regs[11]); 336 (*regs)[12] = tswapreg(env->regs[12]); 337 (*regs)[13] = tswapreg(env->regs[13]); 338 (*regs)[14] = tswapreg(env->regs[14]); 339 (*regs)[15] = tswapreg(env->regs[15]); 340 341 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 342 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 343 } 344 345 #define USE_ELF_CORE_DUMP 346 #define ELF_EXEC_PAGESIZE 4096 347 348 enum 349 { 350 ARM_HWCAP_ARM_SWP = 1 << 0, 351 ARM_HWCAP_ARM_HALF = 1 << 1, 352 ARM_HWCAP_ARM_THUMB = 1 << 2, 353 ARM_HWCAP_ARM_26BIT = 1 << 3, 354 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 355 ARM_HWCAP_ARM_FPA = 1 << 5, 356 ARM_HWCAP_ARM_VFP = 1 << 6, 357 ARM_HWCAP_ARM_EDSP = 1 << 7, 358 ARM_HWCAP_ARM_JAVA = 1 << 8, 359 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 360 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 361 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 362 ARM_HWCAP_ARM_NEON = 1 << 12, 363 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 364 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 365 ARM_HWCAP_ARM_TLS = 1 << 15, 366 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 367 ARM_HWCAP_ARM_IDIVA = 1 << 17, 368 ARM_HWCAP_ARM_IDIVT = 1 << 18, 369 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 370 ARM_HWCAP_ARM_LPAE = 1 << 20, 371 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 372 }; 373 374 enum { 375 ARM_HWCAP2_ARM_AES = 1 << 0, 376 ARM_HWCAP2_ARM_PMULL = 1 << 1, 377 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 378 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 379 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 380 }; 381 382 /* The commpage only exists for 32 bit kernels */ 383 384 /* Return 1 if the proposed guest space is suitable for the guest. 385 * Return 0 if the proposed guest space isn't suitable, but another 386 * address space should be tried. 387 * Return -1 if there is no way the proposed guest space can be 388 * valid regardless of the base. 389 * The guest code may leave a page mapped and populate it if the 390 * address is suitable. 391 */ 392 static int init_guest_commpage(unsigned long guest_base, 393 unsigned long guest_size) 394 { 395 unsigned long real_start, test_page_addr; 396 397 /* We need to check that we can force a fault on access to the 398 * commpage at 0xffff0fxx 399 */ 400 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 401 402 /* If the commpage lies within the already allocated guest space, 403 * then there is no way we can allocate it. 404 * 405 * You may be thinking that that this check is redundant because 406 * we already validated the guest size against MAX_RESERVED_VA; 407 * but if qemu_host_page_mask is unusually large, then 408 * test_page_addr may be lower. 409 */ 410 if (test_page_addr >= guest_base 411 && test_page_addr < (guest_base + guest_size)) { 412 return -1; 413 } 414 415 /* Note it needs to be writeable to let us initialise it */ 416 real_start = (unsigned long) 417 mmap((void *)test_page_addr, qemu_host_page_size, 418 PROT_READ | PROT_WRITE, 419 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 420 421 /* If we can't map it then try another address */ 422 if (real_start == -1ul) { 423 return 0; 424 } 425 426 if (real_start != test_page_addr) { 427 /* OS didn't put the page where we asked - unmap and reject */ 428 munmap((void *)real_start, qemu_host_page_size); 429 return 0; 430 } 431 432 /* Leave the page mapped 433 * Populate it (mmap should have left it all 0'd) 434 */ 435 436 /* Kernel helper versions */ 437 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 438 439 /* Now it's populated make it RO */ 440 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 441 perror("Protecting guest commpage"); 442 exit(-1); 443 } 444 445 return 1; /* All good */ 446 } 447 448 #define ELF_HWCAP get_elf_hwcap() 449 #define ELF_HWCAP2 get_elf_hwcap2() 450 451 static uint32_t get_elf_hwcap(void) 452 { 453 ARMCPU *cpu = ARM_CPU(thread_cpu); 454 uint32_t hwcaps = 0; 455 456 hwcaps |= ARM_HWCAP_ARM_SWP; 457 hwcaps |= ARM_HWCAP_ARM_HALF; 458 hwcaps |= ARM_HWCAP_ARM_THUMB; 459 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 460 461 /* probe for the extra features */ 462 #define GET_FEATURE(feat, hwcap) \ 463 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 464 465 #define GET_FEATURE_ID(feat, hwcap) \ 466 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 467 468 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 469 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 470 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 471 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 472 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 473 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 474 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 476 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 477 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 478 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 479 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 480 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 481 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 482 * to our VFP_FP16 feature bit. 483 */ 484 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 485 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 486 487 return hwcaps; 488 } 489 490 static uint32_t get_elf_hwcap2(void) 491 { 492 ARMCPU *cpu = ARM_CPU(thread_cpu); 493 uint32_t hwcaps = 0; 494 495 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 496 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 497 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 498 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 499 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 500 return hwcaps; 501 } 502 503 #undef GET_FEATURE 504 #undef GET_FEATURE_ID 505 506 #define ELF_PLATFORM get_elf_platform() 507 508 static const char *get_elf_platform(void) 509 { 510 CPUARMState *env = thread_cpu->env_ptr; 511 512 #ifdef TARGET_WORDS_BIGENDIAN 513 # define END "b" 514 #else 515 # define END "l" 516 #endif 517 518 if (arm_feature(env, ARM_FEATURE_V8)) { 519 return "v8" END; 520 } else if (arm_feature(env, ARM_FEATURE_V7)) { 521 if (arm_feature(env, ARM_FEATURE_M)) { 522 return "v7m" END; 523 } else { 524 return "v7" END; 525 } 526 } else if (arm_feature(env, ARM_FEATURE_V6)) { 527 return "v6" END; 528 } else if (arm_feature(env, ARM_FEATURE_V5)) { 529 return "v5" END; 530 } else { 531 return "v4" END; 532 } 533 534 #undef END 535 } 536 537 #else 538 /* 64 bit ARM definitions */ 539 #define ELF_START_MMAP 0x80000000 540 541 #define ELF_ARCH EM_AARCH64 542 #define ELF_CLASS ELFCLASS64 543 #ifdef TARGET_WORDS_BIGENDIAN 544 # define ELF_PLATFORM "aarch64_be" 545 #else 546 # define ELF_PLATFORM "aarch64" 547 #endif 548 549 static inline void init_thread(struct target_pt_regs *regs, 550 struct image_info *infop) 551 { 552 abi_long stack = infop->start_stack; 553 memset(regs, 0, sizeof(*regs)); 554 555 regs->pc = infop->entry & ~0x3ULL; 556 regs->sp = stack; 557 } 558 559 #define ELF_NREG 34 560 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 561 562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 563 const CPUARMState *env) 564 { 565 int i; 566 567 for (i = 0; i < 32; i++) { 568 (*regs)[i] = tswapreg(env->xregs[i]); 569 } 570 (*regs)[32] = tswapreg(env->pc); 571 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 572 } 573 574 #define USE_ELF_CORE_DUMP 575 #define ELF_EXEC_PAGESIZE 4096 576 577 enum { 578 ARM_HWCAP_A64_FP = 1 << 0, 579 ARM_HWCAP_A64_ASIMD = 1 << 1, 580 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 581 ARM_HWCAP_A64_AES = 1 << 3, 582 ARM_HWCAP_A64_PMULL = 1 << 4, 583 ARM_HWCAP_A64_SHA1 = 1 << 5, 584 ARM_HWCAP_A64_SHA2 = 1 << 6, 585 ARM_HWCAP_A64_CRC32 = 1 << 7, 586 ARM_HWCAP_A64_ATOMICS = 1 << 8, 587 ARM_HWCAP_A64_FPHP = 1 << 9, 588 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 589 ARM_HWCAP_A64_CPUID = 1 << 11, 590 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 591 ARM_HWCAP_A64_JSCVT = 1 << 13, 592 ARM_HWCAP_A64_FCMA = 1 << 14, 593 ARM_HWCAP_A64_LRCPC = 1 << 15, 594 ARM_HWCAP_A64_DCPOP = 1 << 16, 595 ARM_HWCAP_A64_SHA3 = 1 << 17, 596 ARM_HWCAP_A64_SM3 = 1 << 18, 597 ARM_HWCAP_A64_SM4 = 1 << 19, 598 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 599 ARM_HWCAP_A64_SHA512 = 1 << 21, 600 ARM_HWCAP_A64_SVE = 1 << 22, 601 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 602 ARM_HWCAP_A64_DIT = 1 << 24, 603 ARM_HWCAP_A64_USCAT = 1 << 25, 604 ARM_HWCAP_A64_ILRCPC = 1 << 26, 605 ARM_HWCAP_A64_FLAGM = 1 << 27, 606 ARM_HWCAP_A64_SSBS = 1 << 28, 607 ARM_HWCAP_A64_SB = 1 << 29, 608 ARM_HWCAP_A64_PACA = 1 << 30, 609 ARM_HWCAP_A64_PACG = 1UL << 31, 610 611 ARM_HWCAP2_A64_DCPODP = 1 << 0, 612 ARM_HWCAP2_A64_SVE2 = 1 << 1, 613 ARM_HWCAP2_A64_SVEAES = 1 << 2, 614 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 615 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 616 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 617 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 618 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 619 ARM_HWCAP2_A64_FRINT = 1 << 8, 620 }; 621 622 #define ELF_HWCAP get_elf_hwcap() 623 #define ELF_HWCAP2 get_elf_hwcap2() 624 625 #define GET_FEATURE_ID(feat, hwcap) \ 626 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 627 628 static uint32_t get_elf_hwcap(void) 629 { 630 ARMCPU *cpu = ARM_CPU(thread_cpu); 631 uint32_t hwcaps = 0; 632 633 hwcaps |= ARM_HWCAP_A64_FP; 634 hwcaps |= ARM_HWCAP_A64_ASIMD; 635 hwcaps |= ARM_HWCAP_A64_CPUID; 636 637 /* probe for the extra features */ 638 639 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 640 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 641 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 642 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 643 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 644 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 645 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 646 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 647 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 648 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 649 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 650 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 651 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 652 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 653 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 654 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 655 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 656 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 657 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 658 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 659 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 660 661 return hwcaps; 662 } 663 664 static uint32_t get_elf_hwcap2(void) 665 { 666 ARMCPU *cpu = ARM_CPU(thread_cpu); 667 uint32_t hwcaps = 0; 668 669 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 670 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 671 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 672 673 return hwcaps; 674 } 675 676 #undef GET_FEATURE_ID 677 678 #endif /* not TARGET_AARCH64 */ 679 #endif /* TARGET_ARM */ 680 681 #ifdef TARGET_SPARC 682 #ifdef TARGET_SPARC64 683 684 #define ELF_START_MMAP 0x80000000 685 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 686 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 687 #ifndef TARGET_ABI32 688 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 689 #else 690 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 691 #endif 692 693 #define ELF_CLASS ELFCLASS64 694 #define ELF_ARCH EM_SPARCV9 695 696 #define STACK_BIAS 2047 697 698 static inline void init_thread(struct target_pt_regs *regs, 699 struct image_info *infop) 700 { 701 #ifndef TARGET_ABI32 702 regs->tstate = 0; 703 #endif 704 regs->pc = infop->entry; 705 regs->npc = regs->pc + 4; 706 regs->y = 0; 707 #ifdef TARGET_ABI32 708 regs->u_regs[14] = infop->start_stack - 16 * 4; 709 #else 710 if (personality(infop->personality) == PER_LINUX32) 711 regs->u_regs[14] = infop->start_stack - 16 * 4; 712 else 713 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 714 #endif 715 } 716 717 #else 718 #define ELF_START_MMAP 0x80000000 719 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 720 | HWCAP_SPARC_MULDIV) 721 722 #define ELF_CLASS ELFCLASS32 723 #define ELF_ARCH EM_SPARC 724 725 static inline void init_thread(struct target_pt_regs *regs, 726 struct image_info *infop) 727 { 728 regs->psr = 0; 729 regs->pc = infop->entry; 730 regs->npc = regs->pc + 4; 731 regs->y = 0; 732 regs->u_regs[14] = infop->start_stack - 16 * 4; 733 } 734 735 #endif 736 #endif 737 738 #ifdef TARGET_PPC 739 740 #define ELF_MACHINE PPC_ELF_MACHINE 741 #define ELF_START_MMAP 0x80000000 742 743 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 744 745 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 746 747 #define ELF_CLASS ELFCLASS64 748 749 #else 750 751 #define ELF_CLASS ELFCLASS32 752 753 #endif 754 755 #define ELF_ARCH EM_PPC 756 757 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 758 See arch/powerpc/include/asm/cputable.h. */ 759 enum { 760 QEMU_PPC_FEATURE_32 = 0x80000000, 761 QEMU_PPC_FEATURE_64 = 0x40000000, 762 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 763 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 764 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 765 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 766 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 767 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 768 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 769 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 770 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 771 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 772 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 773 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 774 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 775 QEMU_PPC_FEATURE_CELL = 0x00010000, 776 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 777 QEMU_PPC_FEATURE_SMT = 0x00004000, 778 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 779 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 780 QEMU_PPC_FEATURE_PA6T = 0x00000800, 781 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 782 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 783 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 784 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 785 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 786 787 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 788 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 789 790 /* Feature definitions in AT_HWCAP2. */ 791 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 792 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 793 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 794 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 795 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 796 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 797 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 798 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 799 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 800 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 801 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 802 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 803 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 804 }; 805 806 #define ELF_HWCAP get_elf_hwcap() 807 808 static uint32_t get_elf_hwcap(void) 809 { 810 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 811 uint32_t features = 0; 812 813 /* We don't have to be terribly complete here; the high points are 814 Altivec/FP/SPE support. Anything else is just a bonus. */ 815 #define GET_FEATURE(flag, feature) \ 816 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 817 #define GET_FEATURE2(flags, feature) \ 818 do { \ 819 if ((cpu->env.insns_flags2 & flags) == flags) { \ 820 features |= feature; \ 821 } \ 822 } while (0) 823 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 824 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 825 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 826 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 827 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 828 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 829 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 830 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 831 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 832 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 833 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 834 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 835 QEMU_PPC_FEATURE_ARCH_2_06); 836 #undef GET_FEATURE 837 #undef GET_FEATURE2 838 839 return features; 840 } 841 842 #define ELF_HWCAP2 get_elf_hwcap2() 843 844 static uint32_t get_elf_hwcap2(void) 845 { 846 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 847 uint32_t features = 0; 848 849 #define GET_FEATURE(flag, feature) \ 850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 851 #define GET_FEATURE2(flag, feature) \ 852 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 853 854 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 855 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 856 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 857 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 858 QEMU_PPC_FEATURE2_VEC_CRYPTO); 859 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 860 QEMU_PPC_FEATURE2_DARN); 861 862 #undef GET_FEATURE 863 #undef GET_FEATURE2 864 865 return features; 866 } 867 868 /* 869 * The requirements here are: 870 * - keep the final alignment of sp (sp & 0xf) 871 * - make sure the 32-bit value at the first 16 byte aligned position of 872 * AUXV is greater than 16 for glibc compatibility. 873 * AT_IGNOREPPC is used for that. 874 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 875 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 876 */ 877 #define DLINFO_ARCH_ITEMS 5 878 #define ARCH_DLINFO \ 879 do { \ 880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 881 /* \ 882 * Handle glibc compatibility: these magic entries must \ 883 * be at the lowest addresses in the final auxv. \ 884 */ \ 885 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 886 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 887 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 888 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 889 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 890 } while (0) 891 892 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 893 { 894 _regs->gpr[1] = infop->start_stack; 895 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 896 if (get_ppc64_abi(infop) < 2) { 897 uint64_t val; 898 get_user_u64(val, infop->entry + 8); 899 _regs->gpr[2] = val + infop->load_bias; 900 get_user_u64(val, infop->entry); 901 infop->entry = val + infop->load_bias; 902 } else { 903 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 904 } 905 #endif 906 _regs->nip = infop->entry; 907 } 908 909 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 910 #define ELF_NREG 48 911 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 912 913 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 914 { 915 int i; 916 target_ulong ccr = 0; 917 918 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 919 (*regs)[i] = tswapreg(env->gpr[i]); 920 } 921 922 (*regs)[32] = tswapreg(env->nip); 923 (*regs)[33] = tswapreg(env->msr); 924 (*regs)[35] = tswapreg(env->ctr); 925 (*regs)[36] = tswapreg(env->lr); 926 (*regs)[37] = tswapreg(env->xer); 927 928 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 929 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 930 } 931 (*regs)[38] = tswapreg(ccr); 932 } 933 934 #define USE_ELF_CORE_DUMP 935 #define ELF_EXEC_PAGESIZE 4096 936 937 #endif 938 939 #ifdef TARGET_MIPS 940 941 #define ELF_START_MMAP 0x80000000 942 943 #ifdef TARGET_MIPS64 944 #define ELF_CLASS ELFCLASS64 945 #else 946 #define ELF_CLASS ELFCLASS32 947 #endif 948 #define ELF_ARCH EM_MIPS 949 950 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 951 952 static inline void init_thread(struct target_pt_regs *regs, 953 struct image_info *infop) 954 { 955 regs->cp0_status = 2 << CP0St_KSU; 956 regs->cp0_epc = infop->entry; 957 regs->regs[29] = infop->start_stack; 958 } 959 960 /* See linux kernel: arch/mips/include/asm/elf.h. */ 961 #define ELF_NREG 45 962 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 963 964 /* See linux kernel: arch/mips/include/asm/reg.h. */ 965 enum { 966 #ifdef TARGET_MIPS64 967 TARGET_EF_R0 = 0, 968 #else 969 TARGET_EF_R0 = 6, 970 #endif 971 TARGET_EF_R26 = TARGET_EF_R0 + 26, 972 TARGET_EF_R27 = TARGET_EF_R0 + 27, 973 TARGET_EF_LO = TARGET_EF_R0 + 32, 974 TARGET_EF_HI = TARGET_EF_R0 + 33, 975 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 976 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 977 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 978 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 979 }; 980 981 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 982 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 983 { 984 int i; 985 986 for (i = 0; i < TARGET_EF_R0; i++) { 987 (*regs)[i] = 0; 988 } 989 (*regs)[TARGET_EF_R0] = 0; 990 991 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 992 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 993 } 994 995 (*regs)[TARGET_EF_R26] = 0; 996 (*regs)[TARGET_EF_R27] = 0; 997 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 998 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 999 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1000 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1001 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1002 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1003 } 1004 1005 #define USE_ELF_CORE_DUMP 1006 #define ELF_EXEC_PAGESIZE 4096 1007 1008 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1009 enum { 1010 HWCAP_MIPS_R6 = (1 << 0), 1011 HWCAP_MIPS_MSA = (1 << 1), 1012 }; 1013 1014 #define ELF_HWCAP get_elf_hwcap() 1015 1016 static uint32_t get_elf_hwcap(void) 1017 { 1018 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1019 uint32_t hwcaps = 0; 1020 1021 #define GET_FEATURE(flag, hwcap) \ 1022 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 1023 1024 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 1025 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 1026 1027 #undef GET_FEATURE 1028 1029 return hwcaps; 1030 } 1031 1032 #endif /* TARGET_MIPS */ 1033 1034 #ifdef TARGET_MICROBLAZE 1035 1036 #define ELF_START_MMAP 0x80000000 1037 1038 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1039 1040 #define ELF_CLASS ELFCLASS32 1041 #define ELF_ARCH EM_MICROBLAZE 1042 1043 static inline void init_thread(struct target_pt_regs *regs, 1044 struct image_info *infop) 1045 { 1046 regs->pc = infop->entry; 1047 regs->r1 = infop->start_stack; 1048 1049 } 1050 1051 #define ELF_EXEC_PAGESIZE 4096 1052 1053 #define USE_ELF_CORE_DUMP 1054 #define ELF_NREG 38 1055 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1056 1057 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1058 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1059 { 1060 int i, pos = 0; 1061 1062 for (i = 0; i < 32; i++) { 1063 (*regs)[pos++] = tswapreg(env->regs[i]); 1064 } 1065 1066 for (i = 0; i < 6; i++) { 1067 (*regs)[pos++] = tswapreg(env->sregs[i]); 1068 } 1069 } 1070 1071 #endif /* TARGET_MICROBLAZE */ 1072 1073 #ifdef TARGET_NIOS2 1074 1075 #define ELF_START_MMAP 0x80000000 1076 1077 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1078 1079 #define ELF_CLASS ELFCLASS32 1080 #define ELF_ARCH EM_ALTERA_NIOS2 1081 1082 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1083 { 1084 regs->ea = infop->entry; 1085 regs->sp = infop->start_stack; 1086 regs->estatus = 0x3; 1087 } 1088 1089 #define ELF_EXEC_PAGESIZE 4096 1090 1091 #define USE_ELF_CORE_DUMP 1092 #define ELF_NREG 49 1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1094 1095 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1096 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1097 const CPUNios2State *env) 1098 { 1099 int i; 1100 1101 (*regs)[0] = -1; 1102 for (i = 1; i < 8; i++) /* r0-r7 */ 1103 (*regs)[i] = tswapreg(env->regs[i + 7]); 1104 1105 for (i = 8; i < 16; i++) /* r8-r15 */ 1106 (*regs)[i] = tswapreg(env->regs[i - 8]); 1107 1108 for (i = 16; i < 24; i++) /* r16-r23 */ 1109 (*regs)[i] = tswapreg(env->regs[i + 7]); 1110 (*regs)[24] = -1; /* R_ET */ 1111 (*regs)[25] = -1; /* R_BT */ 1112 (*regs)[26] = tswapreg(env->regs[R_GP]); 1113 (*regs)[27] = tswapreg(env->regs[R_SP]); 1114 (*regs)[28] = tswapreg(env->regs[R_FP]); 1115 (*regs)[29] = tswapreg(env->regs[R_EA]); 1116 (*regs)[30] = -1; /* R_SSTATUS */ 1117 (*regs)[31] = tswapreg(env->regs[R_RA]); 1118 1119 (*regs)[32] = tswapreg(env->regs[R_PC]); 1120 1121 (*regs)[33] = -1; /* R_STATUS */ 1122 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1123 1124 for (i = 35; i < 49; i++) /* ... */ 1125 (*regs)[i] = -1; 1126 } 1127 1128 #endif /* TARGET_NIOS2 */ 1129 1130 #ifdef TARGET_OPENRISC 1131 1132 #define ELF_START_MMAP 0x08000000 1133 1134 #define ELF_ARCH EM_OPENRISC 1135 #define ELF_CLASS ELFCLASS32 1136 #define ELF_DATA ELFDATA2MSB 1137 1138 static inline void init_thread(struct target_pt_regs *regs, 1139 struct image_info *infop) 1140 { 1141 regs->pc = infop->entry; 1142 regs->gpr[1] = infop->start_stack; 1143 } 1144 1145 #define USE_ELF_CORE_DUMP 1146 #define ELF_EXEC_PAGESIZE 8192 1147 1148 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1149 #define ELF_NREG 34 /* gprs and pc, sr */ 1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1151 1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1153 const CPUOpenRISCState *env) 1154 { 1155 int i; 1156 1157 for (i = 0; i < 32; i++) { 1158 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1159 } 1160 (*regs)[32] = tswapreg(env->pc); 1161 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1162 } 1163 #define ELF_HWCAP 0 1164 #define ELF_PLATFORM NULL 1165 1166 #endif /* TARGET_OPENRISC */ 1167 1168 #ifdef TARGET_SH4 1169 1170 #define ELF_START_MMAP 0x80000000 1171 1172 #define ELF_CLASS ELFCLASS32 1173 #define ELF_ARCH EM_SH 1174 1175 static inline void init_thread(struct target_pt_regs *regs, 1176 struct image_info *infop) 1177 { 1178 /* Check other registers XXXXX */ 1179 regs->pc = infop->entry; 1180 regs->regs[15] = infop->start_stack; 1181 } 1182 1183 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1184 #define ELF_NREG 23 1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1186 1187 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1188 enum { 1189 TARGET_REG_PC = 16, 1190 TARGET_REG_PR = 17, 1191 TARGET_REG_SR = 18, 1192 TARGET_REG_GBR = 19, 1193 TARGET_REG_MACH = 20, 1194 TARGET_REG_MACL = 21, 1195 TARGET_REG_SYSCALL = 22 1196 }; 1197 1198 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1199 const CPUSH4State *env) 1200 { 1201 int i; 1202 1203 for (i = 0; i < 16; i++) { 1204 (*regs)[i] = tswapreg(env->gregs[i]); 1205 } 1206 1207 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1208 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1209 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1210 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1211 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1212 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1213 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1214 } 1215 1216 #define USE_ELF_CORE_DUMP 1217 #define ELF_EXEC_PAGESIZE 4096 1218 1219 enum { 1220 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1221 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1222 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1223 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1224 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1225 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1226 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1227 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1228 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1229 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1230 }; 1231 1232 #define ELF_HWCAP get_elf_hwcap() 1233 1234 static uint32_t get_elf_hwcap(void) 1235 { 1236 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1237 uint32_t hwcap = 0; 1238 1239 hwcap |= SH_CPU_HAS_FPU; 1240 1241 if (cpu->env.features & SH_FEATURE_SH4A) { 1242 hwcap |= SH_CPU_HAS_LLSC; 1243 } 1244 1245 return hwcap; 1246 } 1247 1248 #endif 1249 1250 #ifdef TARGET_CRIS 1251 1252 #define ELF_START_MMAP 0x80000000 1253 1254 #define ELF_CLASS ELFCLASS32 1255 #define ELF_ARCH EM_CRIS 1256 1257 static inline void init_thread(struct target_pt_regs *regs, 1258 struct image_info *infop) 1259 { 1260 regs->erp = infop->entry; 1261 } 1262 1263 #define ELF_EXEC_PAGESIZE 8192 1264 1265 #endif 1266 1267 #ifdef TARGET_M68K 1268 1269 #define ELF_START_MMAP 0x80000000 1270 1271 #define ELF_CLASS ELFCLASS32 1272 #define ELF_ARCH EM_68K 1273 1274 /* ??? Does this need to do anything? 1275 #define ELF_PLAT_INIT(_r) */ 1276 1277 static inline void init_thread(struct target_pt_regs *regs, 1278 struct image_info *infop) 1279 { 1280 regs->usp = infop->start_stack; 1281 regs->sr = 0; 1282 regs->pc = infop->entry; 1283 } 1284 1285 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1286 #define ELF_NREG 20 1287 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1288 1289 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1290 { 1291 (*regs)[0] = tswapreg(env->dregs[1]); 1292 (*regs)[1] = tswapreg(env->dregs[2]); 1293 (*regs)[2] = tswapreg(env->dregs[3]); 1294 (*regs)[3] = tswapreg(env->dregs[4]); 1295 (*regs)[4] = tswapreg(env->dregs[5]); 1296 (*regs)[5] = tswapreg(env->dregs[6]); 1297 (*regs)[6] = tswapreg(env->dregs[7]); 1298 (*regs)[7] = tswapreg(env->aregs[0]); 1299 (*regs)[8] = tswapreg(env->aregs[1]); 1300 (*regs)[9] = tswapreg(env->aregs[2]); 1301 (*regs)[10] = tswapreg(env->aregs[3]); 1302 (*regs)[11] = tswapreg(env->aregs[4]); 1303 (*regs)[12] = tswapreg(env->aregs[5]); 1304 (*regs)[13] = tswapreg(env->aregs[6]); 1305 (*regs)[14] = tswapreg(env->dregs[0]); 1306 (*regs)[15] = tswapreg(env->aregs[7]); 1307 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1308 (*regs)[17] = tswapreg(env->sr); 1309 (*regs)[18] = tswapreg(env->pc); 1310 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1311 } 1312 1313 #define USE_ELF_CORE_DUMP 1314 #define ELF_EXEC_PAGESIZE 8192 1315 1316 #endif 1317 1318 #ifdef TARGET_ALPHA 1319 1320 #define ELF_START_MMAP (0x30000000000ULL) 1321 1322 #define ELF_CLASS ELFCLASS64 1323 #define ELF_ARCH EM_ALPHA 1324 1325 static inline void init_thread(struct target_pt_regs *regs, 1326 struct image_info *infop) 1327 { 1328 regs->pc = infop->entry; 1329 regs->ps = 8; 1330 regs->usp = infop->start_stack; 1331 } 1332 1333 #define ELF_EXEC_PAGESIZE 8192 1334 1335 #endif /* TARGET_ALPHA */ 1336 1337 #ifdef TARGET_S390X 1338 1339 #define ELF_START_MMAP (0x20000000000ULL) 1340 1341 #define ELF_CLASS ELFCLASS64 1342 #define ELF_DATA ELFDATA2MSB 1343 #define ELF_ARCH EM_S390 1344 1345 #include "elf.h" 1346 1347 #define ELF_HWCAP get_elf_hwcap() 1348 1349 #define GET_FEATURE(_feat, _hwcap) \ 1350 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1351 1352 static uint32_t get_elf_hwcap(void) 1353 { 1354 /* 1355 * Let's assume we always have esan3 and zarch. 1356 * 31-bit processes can use 64-bit registers (high gprs). 1357 */ 1358 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1359 1360 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1361 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1362 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1363 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1364 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1365 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1366 hwcap |= HWCAP_S390_ETF3EH; 1367 } 1368 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1369 1370 return hwcap; 1371 } 1372 1373 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1374 { 1375 regs->psw.addr = infop->entry; 1376 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1377 regs->gprs[15] = infop->start_stack; 1378 } 1379 1380 #endif /* TARGET_S390X */ 1381 1382 #ifdef TARGET_TILEGX 1383 1384 /* 42 bits real used address, a half for user mode */ 1385 #define ELF_START_MMAP (0x00000020000000000ULL) 1386 1387 #define elf_check_arch(x) ((x) == EM_TILEGX) 1388 1389 #define ELF_CLASS ELFCLASS64 1390 #define ELF_DATA ELFDATA2LSB 1391 #define ELF_ARCH EM_TILEGX 1392 1393 static inline void init_thread(struct target_pt_regs *regs, 1394 struct image_info *infop) 1395 { 1396 regs->pc = infop->entry; 1397 regs->sp = infop->start_stack; 1398 1399 } 1400 1401 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1402 1403 #endif /* TARGET_TILEGX */ 1404 1405 #ifdef TARGET_RISCV 1406 1407 #define ELF_START_MMAP 0x80000000 1408 #define ELF_ARCH EM_RISCV 1409 1410 #ifdef TARGET_RISCV32 1411 #define ELF_CLASS ELFCLASS32 1412 #else 1413 #define ELF_CLASS ELFCLASS64 1414 #endif 1415 1416 static inline void init_thread(struct target_pt_regs *regs, 1417 struct image_info *infop) 1418 { 1419 regs->sepc = infop->entry; 1420 regs->sp = infop->start_stack; 1421 } 1422 1423 #define ELF_EXEC_PAGESIZE 4096 1424 1425 #endif /* TARGET_RISCV */ 1426 1427 #ifdef TARGET_HPPA 1428 1429 #define ELF_START_MMAP 0x80000000 1430 #define ELF_CLASS ELFCLASS32 1431 #define ELF_ARCH EM_PARISC 1432 #define ELF_PLATFORM "PARISC" 1433 #define STACK_GROWS_DOWN 0 1434 #define STACK_ALIGNMENT 64 1435 1436 static inline void init_thread(struct target_pt_regs *regs, 1437 struct image_info *infop) 1438 { 1439 regs->iaoq[0] = infop->entry; 1440 regs->iaoq[1] = infop->entry + 4; 1441 regs->gr[23] = 0; 1442 regs->gr[24] = infop->arg_start; 1443 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1444 /* The top-of-stack contains a linkage buffer. */ 1445 regs->gr[30] = infop->start_stack + 64; 1446 regs->gr[31] = infop->entry; 1447 } 1448 1449 #endif /* TARGET_HPPA */ 1450 1451 #ifdef TARGET_XTENSA 1452 1453 #define ELF_START_MMAP 0x20000000 1454 1455 #define ELF_CLASS ELFCLASS32 1456 #define ELF_ARCH EM_XTENSA 1457 1458 static inline void init_thread(struct target_pt_regs *regs, 1459 struct image_info *infop) 1460 { 1461 regs->windowbase = 0; 1462 regs->windowstart = 1; 1463 regs->areg[1] = infop->start_stack; 1464 regs->pc = infop->entry; 1465 } 1466 1467 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1468 #define ELF_NREG 128 1469 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1470 1471 enum { 1472 TARGET_REG_PC, 1473 TARGET_REG_PS, 1474 TARGET_REG_LBEG, 1475 TARGET_REG_LEND, 1476 TARGET_REG_LCOUNT, 1477 TARGET_REG_SAR, 1478 TARGET_REG_WINDOWSTART, 1479 TARGET_REG_WINDOWBASE, 1480 TARGET_REG_THREADPTR, 1481 TARGET_REG_AR0 = 64, 1482 }; 1483 1484 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1485 const CPUXtensaState *env) 1486 { 1487 unsigned i; 1488 1489 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1490 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1491 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1492 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1493 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1494 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1495 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1496 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1497 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1498 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1499 for (i = 0; i < env->config->nareg; ++i) { 1500 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1501 } 1502 } 1503 1504 #define USE_ELF_CORE_DUMP 1505 #define ELF_EXEC_PAGESIZE 4096 1506 1507 #endif /* TARGET_XTENSA */ 1508 1509 #ifndef ELF_PLATFORM 1510 #define ELF_PLATFORM (NULL) 1511 #endif 1512 1513 #ifndef ELF_MACHINE 1514 #define ELF_MACHINE ELF_ARCH 1515 #endif 1516 1517 #ifndef elf_check_arch 1518 #define elf_check_arch(x) ((x) == ELF_ARCH) 1519 #endif 1520 1521 #ifndef ELF_HWCAP 1522 #define ELF_HWCAP 0 1523 #endif 1524 1525 #ifndef STACK_GROWS_DOWN 1526 #define STACK_GROWS_DOWN 1 1527 #endif 1528 1529 #ifndef STACK_ALIGNMENT 1530 #define STACK_ALIGNMENT 16 1531 #endif 1532 1533 #ifdef TARGET_ABI32 1534 #undef ELF_CLASS 1535 #define ELF_CLASS ELFCLASS32 1536 #undef bswaptls 1537 #define bswaptls(ptr) bswap32s(ptr) 1538 #endif 1539 1540 #include "elf.h" 1541 1542 struct exec 1543 { 1544 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1545 unsigned int a_text; /* length of text, in bytes */ 1546 unsigned int a_data; /* length of data, in bytes */ 1547 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1548 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1549 unsigned int a_entry; /* start address */ 1550 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1551 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1552 }; 1553 1554 1555 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1556 #define OMAGIC 0407 1557 #define NMAGIC 0410 1558 #define ZMAGIC 0413 1559 #define QMAGIC 0314 1560 1561 /* Necessary parameters */ 1562 #define TARGET_ELF_EXEC_PAGESIZE \ 1563 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1564 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1565 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1566 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1567 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1568 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1569 1570 #define DLINFO_ITEMS 15 1571 1572 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1573 { 1574 memcpy(to, from, n); 1575 } 1576 1577 #ifdef BSWAP_NEEDED 1578 static void bswap_ehdr(struct elfhdr *ehdr) 1579 { 1580 bswap16s(&ehdr->e_type); /* Object file type */ 1581 bswap16s(&ehdr->e_machine); /* Architecture */ 1582 bswap32s(&ehdr->e_version); /* Object file version */ 1583 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1584 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1585 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1586 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1587 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1588 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1589 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1590 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1591 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1592 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1593 } 1594 1595 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1596 { 1597 int i; 1598 for (i = 0; i < phnum; ++i, ++phdr) { 1599 bswap32s(&phdr->p_type); /* Segment type */ 1600 bswap32s(&phdr->p_flags); /* Segment flags */ 1601 bswaptls(&phdr->p_offset); /* Segment file offset */ 1602 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1603 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1604 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1605 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1606 bswaptls(&phdr->p_align); /* Segment alignment */ 1607 } 1608 } 1609 1610 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1611 { 1612 int i; 1613 for (i = 0; i < shnum; ++i, ++shdr) { 1614 bswap32s(&shdr->sh_name); 1615 bswap32s(&shdr->sh_type); 1616 bswaptls(&shdr->sh_flags); 1617 bswaptls(&shdr->sh_addr); 1618 bswaptls(&shdr->sh_offset); 1619 bswaptls(&shdr->sh_size); 1620 bswap32s(&shdr->sh_link); 1621 bswap32s(&shdr->sh_info); 1622 bswaptls(&shdr->sh_addralign); 1623 bswaptls(&shdr->sh_entsize); 1624 } 1625 } 1626 1627 static void bswap_sym(struct elf_sym *sym) 1628 { 1629 bswap32s(&sym->st_name); 1630 bswaptls(&sym->st_value); 1631 bswaptls(&sym->st_size); 1632 bswap16s(&sym->st_shndx); 1633 } 1634 1635 #ifdef TARGET_MIPS 1636 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1637 { 1638 bswap16s(&abiflags->version); 1639 bswap32s(&abiflags->ases); 1640 bswap32s(&abiflags->isa_ext); 1641 bswap32s(&abiflags->flags1); 1642 bswap32s(&abiflags->flags2); 1643 } 1644 #endif 1645 #else 1646 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1647 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1648 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1649 static inline void bswap_sym(struct elf_sym *sym) { } 1650 #ifdef TARGET_MIPS 1651 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1652 #endif 1653 #endif 1654 1655 #ifdef USE_ELF_CORE_DUMP 1656 static int elf_core_dump(int, const CPUArchState *); 1657 #endif /* USE_ELF_CORE_DUMP */ 1658 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1659 1660 /* Verify the portions of EHDR within E_IDENT for the target. 1661 This can be performed before bswapping the entire header. */ 1662 static bool elf_check_ident(struct elfhdr *ehdr) 1663 { 1664 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1665 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1666 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1667 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1668 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1669 && ehdr->e_ident[EI_DATA] == ELF_DATA 1670 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1671 } 1672 1673 /* Verify the portions of EHDR outside of E_IDENT for the target. 1674 This has to wait until after bswapping the header. */ 1675 static bool elf_check_ehdr(struct elfhdr *ehdr) 1676 { 1677 return (elf_check_arch(ehdr->e_machine) 1678 && ehdr->e_ehsize == sizeof(struct elfhdr) 1679 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1680 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1681 } 1682 1683 /* 1684 * 'copy_elf_strings()' copies argument/envelope strings from user 1685 * memory to free pages in kernel mem. These are in a format ready 1686 * to be put directly into the top of new user memory. 1687 * 1688 */ 1689 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1690 abi_ulong p, abi_ulong stack_limit) 1691 { 1692 char *tmp; 1693 int len, i; 1694 abi_ulong top = p; 1695 1696 if (!p) { 1697 return 0; /* bullet-proofing */ 1698 } 1699 1700 if (STACK_GROWS_DOWN) { 1701 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1702 for (i = argc - 1; i >= 0; --i) { 1703 tmp = argv[i]; 1704 if (!tmp) { 1705 fprintf(stderr, "VFS: argc is wrong"); 1706 exit(-1); 1707 } 1708 len = strlen(tmp) + 1; 1709 tmp += len; 1710 1711 if (len > (p - stack_limit)) { 1712 return 0; 1713 } 1714 while (len) { 1715 int bytes_to_copy = (len > offset) ? offset : len; 1716 tmp -= bytes_to_copy; 1717 p -= bytes_to_copy; 1718 offset -= bytes_to_copy; 1719 len -= bytes_to_copy; 1720 1721 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1722 1723 if (offset == 0) { 1724 memcpy_to_target(p, scratch, top - p); 1725 top = p; 1726 offset = TARGET_PAGE_SIZE; 1727 } 1728 } 1729 } 1730 if (p != top) { 1731 memcpy_to_target(p, scratch + offset, top - p); 1732 } 1733 } else { 1734 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1735 for (i = 0; i < argc; ++i) { 1736 tmp = argv[i]; 1737 if (!tmp) { 1738 fprintf(stderr, "VFS: argc is wrong"); 1739 exit(-1); 1740 } 1741 len = strlen(tmp) + 1; 1742 if (len > (stack_limit - p)) { 1743 return 0; 1744 } 1745 while (len) { 1746 int bytes_to_copy = (len > remaining) ? remaining : len; 1747 1748 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1749 1750 tmp += bytes_to_copy; 1751 remaining -= bytes_to_copy; 1752 p += bytes_to_copy; 1753 len -= bytes_to_copy; 1754 1755 if (remaining == 0) { 1756 memcpy_to_target(top, scratch, p - top); 1757 top = p; 1758 remaining = TARGET_PAGE_SIZE; 1759 } 1760 } 1761 } 1762 if (p != top) { 1763 memcpy_to_target(top, scratch, p - top); 1764 } 1765 } 1766 1767 return p; 1768 } 1769 1770 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1771 * argument/environment space. Newer kernels (>2.6.33) allow more, 1772 * dependent on stack size, but guarantee at least 32 pages for 1773 * backwards compatibility. 1774 */ 1775 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1776 1777 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1778 struct image_info *info) 1779 { 1780 abi_ulong size, error, guard; 1781 1782 size = guest_stack_size; 1783 if (size < STACK_LOWER_LIMIT) { 1784 size = STACK_LOWER_LIMIT; 1785 } 1786 guard = TARGET_PAGE_SIZE; 1787 if (guard < qemu_real_host_page_size) { 1788 guard = qemu_real_host_page_size; 1789 } 1790 1791 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1792 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1793 if (error == -1) { 1794 perror("mmap stack"); 1795 exit(-1); 1796 } 1797 1798 /* We reserve one extra page at the top of the stack as guard. */ 1799 if (STACK_GROWS_DOWN) { 1800 target_mprotect(error, guard, PROT_NONE); 1801 info->stack_limit = error + guard; 1802 return info->stack_limit + size - sizeof(void *); 1803 } else { 1804 target_mprotect(error + size, guard, PROT_NONE); 1805 info->stack_limit = error + size; 1806 return error; 1807 } 1808 } 1809 1810 /* Map and zero the bss. We need to explicitly zero any fractional pages 1811 after the data section (i.e. bss). */ 1812 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1813 { 1814 uintptr_t host_start, host_map_start, host_end; 1815 1816 last_bss = TARGET_PAGE_ALIGN(last_bss); 1817 1818 /* ??? There is confusion between qemu_real_host_page_size and 1819 qemu_host_page_size here and elsewhere in target_mmap, which 1820 may lead to the end of the data section mapping from the file 1821 not being mapped. At least there was an explicit test and 1822 comment for that here, suggesting that "the file size must 1823 be known". The comment probably pre-dates the introduction 1824 of the fstat system call in target_mmap which does in fact 1825 find out the size. What isn't clear is if the workaround 1826 here is still actually needed. For now, continue with it, 1827 but merge it with the "normal" mmap that would allocate the bss. */ 1828 1829 host_start = (uintptr_t) g2h(elf_bss); 1830 host_end = (uintptr_t) g2h(last_bss); 1831 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1832 1833 if (host_map_start < host_end) { 1834 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1835 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1836 if (p == MAP_FAILED) { 1837 perror("cannot mmap brk"); 1838 exit(-1); 1839 } 1840 } 1841 1842 /* Ensure that the bss page(s) are valid */ 1843 if ((page_get_flags(last_bss-1) & prot) != prot) { 1844 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1845 } 1846 1847 if (host_start < host_map_start) { 1848 memset((void *)host_start, 0, host_map_start - host_start); 1849 } 1850 } 1851 1852 #ifdef TARGET_ARM 1853 static int elf_is_fdpic(struct elfhdr *exec) 1854 { 1855 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1856 } 1857 #else 1858 /* Default implementation, always false. */ 1859 static int elf_is_fdpic(struct elfhdr *exec) 1860 { 1861 return 0; 1862 } 1863 #endif 1864 1865 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1866 { 1867 uint16_t n; 1868 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1869 1870 /* elf32_fdpic_loadseg */ 1871 n = info->nsegs; 1872 while (n--) { 1873 sp -= 12; 1874 put_user_u32(loadsegs[n].addr, sp+0); 1875 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1876 put_user_u32(loadsegs[n].p_memsz, sp+8); 1877 } 1878 1879 /* elf32_fdpic_loadmap */ 1880 sp -= 4; 1881 put_user_u16(0, sp+0); /* version */ 1882 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1883 1884 info->personality = PER_LINUX_FDPIC; 1885 info->loadmap_addr = sp; 1886 1887 return sp; 1888 } 1889 1890 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1891 struct elfhdr *exec, 1892 struct image_info *info, 1893 struct image_info *interp_info) 1894 { 1895 abi_ulong sp; 1896 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1897 int size; 1898 int i; 1899 abi_ulong u_rand_bytes; 1900 uint8_t k_rand_bytes[16]; 1901 abi_ulong u_platform; 1902 const char *k_platform; 1903 const int n = sizeof(elf_addr_t); 1904 1905 sp = p; 1906 1907 /* Needs to be before we load the env/argc/... */ 1908 if (elf_is_fdpic(exec)) { 1909 /* Need 4 byte alignment for these structs */ 1910 sp &= ~3; 1911 sp = loader_build_fdpic_loadmap(info, sp); 1912 info->other_info = interp_info; 1913 if (interp_info) { 1914 interp_info->other_info = info; 1915 sp = loader_build_fdpic_loadmap(interp_info, sp); 1916 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1917 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1918 } else { 1919 info->interpreter_loadmap_addr = 0; 1920 info->interpreter_pt_dynamic_addr = 0; 1921 } 1922 } 1923 1924 u_platform = 0; 1925 k_platform = ELF_PLATFORM; 1926 if (k_platform) { 1927 size_t len = strlen(k_platform) + 1; 1928 if (STACK_GROWS_DOWN) { 1929 sp -= (len + n - 1) & ~(n - 1); 1930 u_platform = sp; 1931 /* FIXME - check return value of memcpy_to_target() for failure */ 1932 memcpy_to_target(sp, k_platform, len); 1933 } else { 1934 memcpy_to_target(sp, k_platform, len); 1935 u_platform = sp; 1936 sp += len + 1; 1937 } 1938 } 1939 1940 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1941 * the argv and envp pointers. 1942 */ 1943 if (STACK_GROWS_DOWN) { 1944 sp = QEMU_ALIGN_DOWN(sp, 16); 1945 } else { 1946 sp = QEMU_ALIGN_UP(sp, 16); 1947 } 1948 1949 /* 1950 * Generate 16 random bytes for userspace PRNG seeding. 1951 */ 1952 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 1953 if (STACK_GROWS_DOWN) { 1954 sp -= 16; 1955 u_rand_bytes = sp; 1956 /* FIXME - check return value of memcpy_to_target() for failure */ 1957 memcpy_to_target(sp, k_rand_bytes, 16); 1958 } else { 1959 memcpy_to_target(sp, k_rand_bytes, 16); 1960 u_rand_bytes = sp; 1961 sp += 16; 1962 } 1963 1964 size = (DLINFO_ITEMS + 1) * 2; 1965 if (k_platform) 1966 size += 2; 1967 #ifdef DLINFO_ARCH_ITEMS 1968 size += DLINFO_ARCH_ITEMS * 2; 1969 #endif 1970 #ifdef ELF_HWCAP2 1971 size += 2; 1972 #endif 1973 info->auxv_len = size * n; 1974 1975 size += envc + argc + 2; 1976 size += 1; /* argc itself */ 1977 size *= n; 1978 1979 /* Allocate space and finalize stack alignment for entry now. */ 1980 if (STACK_GROWS_DOWN) { 1981 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1982 sp = u_argc; 1983 } else { 1984 u_argc = sp; 1985 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1986 } 1987 1988 u_argv = u_argc + n; 1989 u_envp = u_argv + (argc + 1) * n; 1990 u_auxv = u_envp + (envc + 1) * n; 1991 info->saved_auxv = u_auxv; 1992 info->arg_start = u_argv; 1993 info->arg_end = u_argv + argc * n; 1994 1995 /* This is correct because Linux defines 1996 * elf_addr_t as Elf32_Off / Elf64_Off 1997 */ 1998 #define NEW_AUX_ENT(id, val) do { \ 1999 put_user_ual(id, u_auxv); u_auxv += n; \ 2000 put_user_ual(val, u_auxv); u_auxv += n; \ 2001 } while(0) 2002 2003 #ifdef ARCH_DLINFO 2004 /* 2005 * ARCH_DLINFO must come first so platform specific code can enforce 2006 * special alignment requirements on the AUXV if necessary (eg. PPC). 2007 */ 2008 ARCH_DLINFO; 2009 #endif 2010 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2011 * on info->auxv_len will trigger. 2012 */ 2013 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2014 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2015 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2016 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2017 /* Target doesn't support host page size alignment */ 2018 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2019 } else { 2020 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2021 qemu_host_page_size))); 2022 } 2023 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2024 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2025 NEW_AUX_ENT(AT_ENTRY, info->entry); 2026 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2027 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2028 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2029 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2030 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2031 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2032 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2033 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2034 2035 #ifdef ELF_HWCAP2 2036 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2037 #endif 2038 2039 if (u_platform) { 2040 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2041 } 2042 NEW_AUX_ENT (AT_NULL, 0); 2043 #undef NEW_AUX_ENT 2044 2045 /* Check that our initial calculation of the auxv length matches how much 2046 * we actually put into it. 2047 */ 2048 assert(info->auxv_len == u_auxv - info->saved_auxv); 2049 2050 put_user_ual(argc, u_argc); 2051 2052 p = info->arg_strings; 2053 for (i = 0; i < argc; ++i) { 2054 put_user_ual(p, u_argv); 2055 u_argv += n; 2056 p += target_strlen(p) + 1; 2057 } 2058 put_user_ual(0, u_argv); 2059 2060 p = info->env_strings; 2061 for (i = 0; i < envc; ++i) { 2062 put_user_ual(p, u_envp); 2063 u_envp += n; 2064 p += target_strlen(p) + 1; 2065 } 2066 put_user_ual(0, u_envp); 2067 2068 return sp; 2069 } 2070 2071 unsigned long init_guest_space(unsigned long host_start, 2072 unsigned long host_size, 2073 unsigned long guest_start, 2074 bool fixed) 2075 { 2076 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2077 unsigned long align = MAX(SHMLBA, qemu_host_page_size); 2078 unsigned long current_start, aligned_start; 2079 int flags; 2080 2081 assert(host_start || host_size); 2082 2083 /* If just a starting address is given, then just verify that 2084 * address. */ 2085 if (host_start && !host_size) { 2086 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2087 if (init_guest_commpage(host_start, host_size) != 1) { 2088 return (unsigned long)-1; 2089 } 2090 #endif 2091 return host_start; 2092 } 2093 2094 /* Setup the initial flags and start address. */ 2095 current_start = host_start & -align; 2096 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2097 if (fixed) { 2098 flags |= MAP_FIXED; 2099 } 2100 2101 /* Otherwise, a non-zero size region of memory needs to be mapped 2102 * and validated. */ 2103 2104 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2105 /* On 32-bit ARM, we need to map not just the usable memory, but 2106 * also the commpage. Try to find a suitable place by allocating 2107 * a big chunk for all of it. If host_start, then the naive 2108 * strategy probably does good enough. 2109 */ 2110 if (!host_start) { 2111 unsigned long guest_full_size, host_full_size, real_start; 2112 2113 guest_full_size = 2114 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2115 host_full_size = guest_full_size - guest_start; 2116 real_start = (unsigned long) 2117 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2118 if (real_start == (unsigned long)-1) { 2119 if (host_size < host_full_size - qemu_host_page_size) { 2120 /* We failed to map a continous segment, but we're 2121 * allowed to have a gap between the usable memory and 2122 * the commpage where other things can be mapped. 2123 * This sparseness gives us more flexibility to find 2124 * an address range. 2125 */ 2126 goto naive; 2127 } 2128 return (unsigned long)-1; 2129 } 2130 munmap((void *)real_start, host_full_size); 2131 if (real_start & (align - 1)) { 2132 /* The same thing again, but with extra 2133 * so that we can shift around alignment. 2134 */ 2135 unsigned long real_size = host_full_size + qemu_host_page_size; 2136 real_start = (unsigned long) 2137 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2138 if (real_start == (unsigned long)-1) { 2139 if (host_size < host_full_size - qemu_host_page_size) { 2140 goto naive; 2141 } 2142 return (unsigned long)-1; 2143 } 2144 munmap((void *)real_start, real_size); 2145 real_start = ROUND_UP(real_start, align); 2146 } 2147 current_start = real_start; 2148 } 2149 naive: 2150 #endif 2151 2152 while (1) { 2153 unsigned long real_start, real_size, aligned_size; 2154 aligned_size = real_size = host_size; 2155 2156 /* Do not use mmap_find_vma here because that is limited to the 2157 * guest address space. We are going to make the 2158 * guest address space fit whatever we're given. 2159 */ 2160 real_start = (unsigned long) 2161 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2162 if (real_start == (unsigned long)-1) { 2163 return (unsigned long)-1; 2164 } 2165 2166 /* Check to see if the address is valid. */ 2167 if (host_start && real_start != current_start) { 2168 goto try_again; 2169 } 2170 2171 /* Ensure the address is properly aligned. */ 2172 if (real_start & (align - 1)) { 2173 /* Ideally, we adjust like 2174 * 2175 * pages: [ ][ ][ ][ ][ ] 2176 * old: [ real ] 2177 * [ aligned ] 2178 * new: [ real ] 2179 * [ aligned ] 2180 * 2181 * But if there is something else mapped right after it, 2182 * then obviously it won't have room to grow, and the 2183 * kernel will put the new larger real someplace else with 2184 * unknown alignment (if we made it to here, then 2185 * fixed=false). Which is why we grow real by a full page 2186 * size, instead of by part of one; so that even if we get 2187 * moved, we can still guarantee alignment. But this does 2188 * mean that there is a padding of < 1 page both before 2189 * and after the aligned range; the "after" could could 2190 * cause problems for ARM emulation where it could butt in 2191 * to where we need to put the commpage. 2192 */ 2193 munmap((void *)real_start, host_size); 2194 real_size = aligned_size + qemu_host_page_size; 2195 real_start = (unsigned long) 2196 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2197 if (real_start == (unsigned long)-1) { 2198 return (unsigned long)-1; 2199 } 2200 aligned_start = ROUND_UP(real_start, align); 2201 } else { 2202 aligned_start = real_start; 2203 } 2204 2205 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2206 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2207 int valid = init_guest_commpage(aligned_start - guest_start, 2208 aligned_size + guest_start); 2209 if (valid == -1) { 2210 munmap((void *)real_start, real_size); 2211 return (unsigned long)-1; 2212 } else if (valid == 0) { 2213 goto try_again; 2214 } 2215 #endif 2216 2217 /* If nothing has said `return -1` or `goto try_again` yet, 2218 * then the address we have is good. 2219 */ 2220 break; 2221 2222 try_again: 2223 /* That address didn't work. Unmap and try a different one. 2224 * The address the host picked because is typically right at 2225 * the top of the host address space and leaves the guest with 2226 * no usable address space. Resort to a linear search. We 2227 * already compensated for mmap_min_addr, so this should not 2228 * happen often. Probably means we got unlucky and host 2229 * address space randomization put a shared library somewhere 2230 * inconvenient. 2231 * 2232 * This is probably a good strategy if host_start, but is 2233 * probably a bad strategy if not, which means we got here 2234 * because of trouble with ARM commpage setup. 2235 */ 2236 munmap((void *)real_start, real_size); 2237 current_start += align; 2238 if (host_start == current_start) { 2239 /* Theoretically possible if host doesn't have any suitably 2240 * aligned areas. Normally the first mmap will fail. 2241 */ 2242 return (unsigned long)-1; 2243 } 2244 } 2245 2246 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2247 2248 return aligned_start; 2249 } 2250 2251 static void probe_guest_base(const char *image_name, 2252 abi_ulong loaddr, abi_ulong hiaddr) 2253 { 2254 /* Probe for a suitable guest base address, if the user has not set 2255 * it explicitly, and set guest_base appropriately. 2256 * In case of error we will print a suitable message and exit. 2257 */ 2258 const char *errmsg; 2259 if (!have_guest_base && !reserved_va) { 2260 unsigned long host_start, real_start, host_size; 2261 2262 /* Round addresses to page boundaries. */ 2263 loaddr &= qemu_host_page_mask; 2264 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2265 2266 if (loaddr < mmap_min_addr) { 2267 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2268 } else { 2269 host_start = loaddr; 2270 if (host_start != loaddr) { 2271 errmsg = "Address overflow loading ELF binary"; 2272 goto exit_errmsg; 2273 } 2274 } 2275 host_size = hiaddr - loaddr; 2276 2277 /* Setup the initial guest memory space with ranges gleaned from 2278 * the ELF image that is being loaded. 2279 */ 2280 real_start = init_guest_space(host_start, host_size, loaddr, false); 2281 if (real_start == (unsigned long)-1) { 2282 errmsg = "Unable to find space for application"; 2283 goto exit_errmsg; 2284 } 2285 guest_base = real_start - loaddr; 2286 2287 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2288 TARGET_ABI_FMT_lx " to 0x%lx\n", 2289 loaddr, real_start); 2290 } 2291 return; 2292 2293 exit_errmsg: 2294 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2295 exit(-1); 2296 } 2297 2298 2299 /* Load an ELF image into the address space. 2300 2301 IMAGE_NAME is the filename of the image, to use in error messages. 2302 IMAGE_FD is the open file descriptor for the image. 2303 2304 BPRM_BUF is a copy of the beginning of the file; this of course 2305 contains the elf file header at offset 0. It is assumed that this 2306 buffer is sufficiently aligned to present no problems to the host 2307 in accessing data at aligned offsets within the buffer. 2308 2309 On return: INFO values will be filled in, as necessary or available. */ 2310 2311 static void load_elf_image(const char *image_name, int image_fd, 2312 struct image_info *info, char **pinterp_name, 2313 char bprm_buf[BPRM_BUF_SIZE]) 2314 { 2315 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2316 struct elf_phdr *phdr; 2317 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2318 int i, retval; 2319 const char *errmsg; 2320 2321 /* First of all, some simple consistency checks */ 2322 errmsg = "Invalid ELF image for this architecture"; 2323 if (!elf_check_ident(ehdr)) { 2324 goto exit_errmsg; 2325 } 2326 bswap_ehdr(ehdr); 2327 if (!elf_check_ehdr(ehdr)) { 2328 goto exit_errmsg; 2329 } 2330 2331 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2332 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2333 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2334 } else { 2335 phdr = (struct elf_phdr *) alloca(i); 2336 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2337 if (retval != i) { 2338 goto exit_read; 2339 } 2340 } 2341 bswap_phdr(phdr, ehdr->e_phnum); 2342 2343 info->nsegs = 0; 2344 info->pt_dynamic_addr = 0; 2345 2346 mmap_lock(); 2347 2348 /* Find the maximum size of the image and allocate an appropriate 2349 amount of memory to handle that. */ 2350 loaddr = -1, hiaddr = 0; 2351 info->alignment = 0; 2352 for (i = 0; i < ehdr->e_phnum; ++i) { 2353 if (phdr[i].p_type == PT_LOAD) { 2354 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2355 if (a < loaddr) { 2356 loaddr = a; 2357 } 2358 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2359 if (a > hiaddr) { 2360 hiaddr = a; 2361 } 2362 ++info->nsegs; 2363 info->alignment |= phdr[i].p_align; 2364 } 2365 } 2366 2367 load_addr = loaddr; 2368 if (ehdr->e_type == ET_DYN) { 2369 /* The image indicates that it can be loaded anywhere. Find a 2370 location that can hold the memory space required. If the 2371 image is pre-linked, LOADDR will be non-zero. Since we do 2372 not supply MAP_FIXED here we'll use that address if and 2373 only if it remains available. */ 2374 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2375 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2376 -1, 0); 2377 if (load_addr == -1) { 2378 goto exit_perror; 2379 } 2380 } else if (pinterp_name != NULL) { 2381 /* This is the main executable. Make sure that the low 2382 address does not conflict with MMAP_MIN_ADDR or the 2383 QEMU application itself. */ 2384 probe_guest_base(image_name, loaddr, hiaddr); 2385 } 2386 load_bias = load_addr - loaddr; 2387 2388 if (elf_is_fdpic(ehdr)) { 2389 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2390 g_malloc(sizeof(*loadsegs) * info->nsegs); 2391 2392 for (i = 0; i < ehdr->e_phnum; ++i) { 2393 switch (phdr[i].p_type) { 2394 case PT_DYNAMIC: 2395 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2396 break; 2397 case PT_LOAD: 2398 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2399 loadsegs->p_vaddr = phdr[i].p_vaddr; 2400 loadsegs->p_memsz = phdr[i].p_memsz; 2401 ++loadsegs; 2402 break; 2403 } 2404 } 2405 } 2406 2407 info->load_bias = load_bias; 2408 info->code_offset = load_bias; 2409 info->data_offset = load_bias; 2410 info->load_addr = load_addr; 2411 info->entry = ehdr->e_entry + load_bias; 2412 info->start_code = -1; 2413 info->end_code = 0; 2414 info->start_data = -1; 2415 info->end_data = 0; 2416 info->brk = 0; 2417 info->elf_flags = ehdr->e_flags; 2418 2419 for (i = 0; i < ehdr->e_phnum; i++) { 2420 struct elf_phdr *eppnt = phdr + i; 2421 if (eppnt->p_type == PT_LOAD) { 2422 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2423 int elf_prot = 0; 2424 2425 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2426 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2427 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2428 2429 vaddr = load_bias + eppnt->p_vaddr; 2430 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2431 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2432 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2433 2434 /* 2435 * Some segments may be completely empty without any backing file 2436 * segment, in that case just let zero_bss allocate an empty buffer 2437 * for it. 2438 */ 2439 if (eppnt->p_filesz != 0) { 2440 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 2441 MAP_PRIVATE | MAP_FIXED, 2442 image_fd, eppnt->p_offset - vaddr_po); 2443 2444 if (error == -1) { 2445 goto exit_perror; 2446 } 2447 } 2448 2449 vaddr_ef = vaddr + eppnt->p_filesz; 2450 vaddr_em = vaddr + eppnt->p_memsz; 2451 2452 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2453 if (vaddr_ef < vaddr_em) { 2454 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2455 } 2456 2457 /* Find the full program boundaries. */ 2458 if (elf_prot & PROT_EXEC) { 2459 if (vaddr < info->start_code) { 2460 info->start_code = vaddr; 2461 } 2462 if (vaddr_ef > info->end_code) { 2463 info->end_code = vaddr_ef; 2464 } 2465 } 2466 if (elf_prot & PROT_WRITE) { 2467 if (vaddr < info->start_data) { 2468 info->start_data = vaddr; 2469 } 2470 if (vaddr_ef > info->end_data) { 2471 info->end_data = vaddr_ef; 2472 } 2473 if (vaddr_em > info->brk) { 2474 info->brk = vaddr_em; 2475 } 2476 } 2477 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2478 char *interp_name; 2479 2480 if (*pinterp_name) { 2481 errmsg = "Multiple PT_INTERP entries"; 2482 goto exit_errmsg; 2483 } 2484 interp_name = malloc(eppnt->p_filesz); 2485 if (!interp_name) { 2486 goto exit_perror; 2487 } 2488 2489 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2490 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2491 eppnt->p_filesz); 2492 } else { 2493 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2494 eppnt->p_offset); 2495 if (retval != eppnt->p_filesz) { 2496 goto exit_perror; 2497 } 2498 } 2499 if (interp_name[eppnt->p_filesz - 1] != 0) { 2500 errmsg = "Invalid PT_INTERP entry"; 2501 goto exit_errmsg; 2502 } 2503 *pinterp_name = interp_name; 2504 #ifdef TARGET_MIPS 2505 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2506 Mips_elf_abiflags_v0 abiflags; 2507 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2508 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2509 goto exit_errmsg; 2510 } 2511 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2512 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2513 sizeof(Mips_elf_abiflags_v0)); 2514 } else { 2515 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2516 eppnt->p_offset); 2517 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2518 goto exit_perror; 2519 } 2520 } 2521 bswap_mips_abiflags(&abiflags); 2522 info->fp_abi = abiflags.fp_abi; 2523 #endif 2524 } 2525 } 2526 2527 if (info->end_data == 0) { 2528 info->start_data = info->end_code; 2529 info->end_data = info->end_code; 2530 info->brk = info->end_code; 2531 } 2532 2533 if (qemu_log_enabled()) { 2534 load_symbols(ehdr, image_fd, load_bias); 2535 } 2536 2537 mmap_unlock(); 2538 2539 close(image_fd); 2540 return; 2541 2542 exit_read: 2543 if (retval >= 0) { 2544 errmsg = "Incomplete read of file header"; 2545 goto exit_errmsg; 2546 } 2547 exit_perror: 2548 errmsg = strerror(errno); 2549 exit_errmsg: 2550 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2551 exit(-1); 2552 } 2553 2554 static void load_elf_interp(const char *filename, struct image_info *info, 2555 char bprm_buf[BPRM_BUF_SIZE]) 2556 { 2557 int fd, retval; 2558 2559 fd = open(path(filename), O_RDONLY); 2560 if (fd < 0) { 2561 goto exit_perror; 2562 } 2563 2564 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2565 if (retval < 0) { 2566 goto exit_perror; 2567 } 2568 if (retval < BPRM_BUF_SIZE) { 2569 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2570 } 2571 2572 load_elf_image(filename, fd, info, NULL, bprm_buf); 2573 return; 2574 2575 exit_perror: 2576 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2577 exit(-1); 2578 } 2579 2580 static int symfind(const void *s0, const void *s1) 2581 { 2582 target_ulong addr = *(target_ulong *)s0; 2583 struct elf_sym *sym = (struct elf_sym *)s1; 2584 int result = 0; 2585 if (addr < sym->st_value) { 2586 result = -1; 2587 } else if (addr >= sym->st_value + sym->st_size) { 2588 result = 1; 2589 } 2590 return result; 2591 } 2592 2593 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2594 { 2595 #if ELF_CLASS == ELFCLASS32 2596 struct elf_sym *syms = s->disas_symtab.elf32; 2597 #else 2598 struct elf_sym *syms = s->disas_symtab.elf64; 2599 #endif 2600 2601 // binary search 2602 struct elf_sym *sym; 2603 2604 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2605 if (sym != NULL) { 2606 return s->disas_strtab + sym->st_name; 2607 } 2608 2609 return ""; 2610 } 2611 2612 /* FIXME: This should use elf_ops.h */ 2613 static int symcmp(const void *s0, const void *s1) 2614 { 2615 struct elf_sym *sym0 = (struct elf_sym *)s0; 2616 struct elf_sym *sym1 = (struct elf_sym *)s1; 2617 return (sym0->st_value < sym1->st_value) 2618 ? -1 2619 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2620 } 2621 2622 /* Best attempt to load symbols from this ELF object. */ 2623 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2624 { 2625 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2626 uint64_t segsz; 2627 struct elf_shdr *shdr; 2628 char *strings = NULL; 2629 struct syminfo *s = NULL; 2630 struct elf_sym *new_syms, *syms = NULL; 2631 2632 shnum = hdr->e_shnum; 2633 i = shnum * sizeof(struct elf_shdr); 2634 shdr = (struct elf_shdr *)alloca(i); 2635 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2636 return; 2637 } 2638 2639 bswap_shdr(shdr, shnum); 2640 for (i = 0; i < shnum; ++i) { 2641 if (shdr[i].sh_type == SHT_SYMTAB) { 2642 sym_idx = i; 2643 str_idx = shdr[i].sh_link; 2644 goto found; 2645 } 2646 } 2647 2648 /* There will be no symbol table if the file was stripped. */ 2649 return; 2650 2651 found: 2652 /* Now know where the strtab and symtab are. Snarf them. */ 2653 s = g_try_new(struct syminfo, 1); 2654 if (!s) { 2655 goto give_up; 2656 } 2657 2658 segsz = shdr[str_idx].sh_size; 2659 s->disas_strtab = strings = g_try_malloc(segsz); 2660 if (!strings || 2661 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2662 goto give_up; 2663 } 2664 2665 segsz = shdr[sym_idx].sh_size; 2666 syms = g_try_malloc(segsz); 2667 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2668 goto give_up; 2669 } 2670 2671 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2672 /* Implausibly large symbol table: give up rather than ploughing 2673 * on with the number of symbols calculation overflowing 2674 */ 2675 goto give_up; 2676 } 2677 nsyms = segsz / sizeof(struct elf_sym); 2678 for (i = 0; i < nsyms; ) { 2679 bswap_sym(syms + i); 2680 /* Throw away entries which we do not need. */ 2681 if (syms[i].st_shndx == SHN_UNDEF 2682 || syms[i].st_shndx >= SHN_LORESERVE 2683 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2684 if (i < --nsyms) { 2685 syms[i] = syms[nsyms]; 2686 } 2687 } else { 2688 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2689 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2690 syms[i].st_value &= ~(target_ulong)1; 2691 #endif 2692 syms[i].st_value += load_bias; 2693 i++; 2694 } 2695 } 2696 2697 /* No "useful" symbol. */ 2698 if (nsyms == 0) { 2699 goto give_up; 2700 } 2701 2702 /* Attempt to free the storage associated with the local symbols 2703 that we threw away. Whether or not this has any effect on the 2704 memory allocation depends on the malloc implementation and how 2705 many symbols we managed to discard. */ 2706 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2707 if (new_syms == NULL) { 2708 goto give_up; 2709 } 2710 syms = new_syms; 2711 2712 qsort(syms, nsyms, sizeof(*syms), symcmp); 2713 2714 s->disas_num_syms = nsyms; 2715 #if ELF_CLASS == ELFCLASS32 2716 s->disas_symtab.elf32 = syms; 2717 #else 2718 s->disas_symtab.elf64 = syms; 2719 #endif 2720 s->lookup_symbol = lookup_symbolxx; 2721 s->next = syminfos; 2722 syminfos = s; 2723 2724 return; 2725 2726 give_up: 2727 g_free(s); 2728 g_free(strings); 2729 g_free(syms); 2730 } 2731 2732 uint32_t get_elf_eflags(int fd) 2733 { 2734 struct elfhdr ehdr; 2735 off_t offset; 2736 int ret; 2737 2738 /* Read ELF header */ 2739 offset = lseek(fd, 0, SEEK_SET); 2740 if (offset == (off_t) -1) { 2741 return 0; 2742 } 2743 ret = read(fd, &ehdr, sizeof(ehdr)); 2744 if (ret < sizeof(ehdr)) { 2745 return 0; 2746 } 2747 offset = lseek(fd, offset, SEEK_SET); 2748 if (offset == (off_t) -1) { 2749 return 0; 2750 } 2751 2752 /* Check ELF signature */ 2753 if (!elf_check_ident(&ehdr)) { 2754 return 0; 2755 } 2756 2757 /* check header */ 2758 bswap_ehdr(&ehdr); 2759 if (!elf_check_ehdr(&ehdr)) { 2760 return 0; 2761 } 2762 2763 /* return architecture id */ 2764 return ehdr.e_flags; 2765 } 2766 2767 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2768 { 2769 struct image_info interp_info; 2770 struct elfhdr elf_ex; 2771 char *elf_interpreter = NULL; 2772 char *scratch; 2773 2774 memset(&interp_info, 0, sizeof(interp_info)); 2775 #ifdef TARGET_MIPS 2776 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 2777 #endif 2778 2779 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2780 2781 load_elf_image(bprm->filename, bprm->fd, info, 2782 &elf_interpreter, bprm->buf); 2783 2784 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2785 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2786 when we load the interpreter. */ 2787 elf_ex = *(struct elfhdr *)bprm->buf; 2788 2789 /* Do this so that we can load the interpreter, if need be. We will 2790 change some of these later */ 2791 bprm->p = setup_arg_pages(bprm, info); 2792 2793 scratch = g_new0(char, TARGET_PAGE_SIZE); 2794 if (STACK_GROWS_DOWN) { 2795 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2796 bprm->p, info->stack_limit); 2797 info->file_string = bprm->p; 2798 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2799 bprm->p, info->stack_limit); 2800 info->env_strings = bprm->p; 2801 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2802 bprm->p, info->stack_limit); 2803 info->arg_strings = bprm->p; 2804 } else { 2805 info->arg_strings = bprm->p; 2806 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2807 bprm->p, info->stack_limit); 2808 info->env_strings = bprm->p; 2809 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2810 bprm->p, info->stack_limit); 2811 info->file_string = bprm->p; 2812 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2813 bprm->p, info->stack_limit); 2814 } 2815 2816 g_free(scratch); 2817 2818 if (!bprm->p) { 2819 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2820 exit(-1); 2821 } 2822 2823 if (elf_interpreter) { 2824 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2825 2826 /* If the program interpreter is one of these two, then assume 2827 an iBCS2 image. Otherwise assume a native linux image. */ 2828 2829 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2830 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2831 info->personality = PER_SVR4; 2832 2833 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2834 and some applications "depend" upon this behavior. Since 2835 we do not have the power to recompile these, we emulate 2836 the SVr4 behavior. Sigh. */ 2837 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2838 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2839 } 2840 #ifdef TARGET_MIPS 2841 info->interp_fp_abi = interp_info.fp_abi; 2842 #endif 2843 } 2844 2845 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2846 info, (elf_interpreter ? &interp_info : NULL)); 2847 info->start_stack = bprm->p; 2848 2849 /* If we have an interpreter, set that as the program's entry point. 2850 Copy the load_bias as well, to help PPC64 interpret the entry 2851 point as a function descriptor. Do this after creating elf tables 2852 so that we copy the original program entry point into the AUXV. */ 2853 if (elf_interpreter) { 2854 info->load_bias = interp_info.load_bias; 2855 info->entry = interp_info.entry; 2856 free(elf_interpreter); 2857 } 2858 2859 #ifdef USE_ELF_CORE_DUMP 2860 bprm->core_dump = &elf_core_dump; 2861 #endif 2862 2863 return 0; 2864 } 2865 2866 #ifdef USE_ELF_CORE_DUMP 2867 /* 2868 * Definitions to generate Intel SVR4-like core files. 2869 * These mostly have the same names as the SVR4 types with "target_elf_" 2870 * tacked on the front to prevent clashes with linux definitions, 2871 * and the typedef forms have been avoided. This is mostly like 2872 * the SVR4 structure, but more Linuxy, with things that Linux does 2873 * not support and which gdb doesn't really use excluded. 2874 * 2875 * Fields we don't dump (their contents is zero) in linux-user qemu 2876 * are marked with XXX. 2877 * 2878 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2879 * 2880 * Porting ELF coredump for target is (quite) simple process. First you 2881 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2882 * the target resides): 2883 * 2884 * #define USE_ELF_CORE_DUMP 2885 * 2886 * Next you define type of register set used for dumping. ELF specification 2887 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2888 * 2889 * typedef <target_regtype> target_elf_greg_t; 2890 * #define ELF_NREG <number of registers> 2891 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2892 * 2893 * Last step is to implement target specific function that copies registers 2894 * from given cpu into just specified register set. Prototype is: 2895 * 2896 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2897 * const CPUArchState *env); 2898 * 2899 * Parameters: 2900 * regs - copy register values into here (allocated and zeroed by caller) 2901 * env - copy registers from here 2902 * 2903 * Example for ARM target is provided in this file. 2904 */ 2905 2906 /* An ELF note in memory */ 2907 struct memelfnote { 2908 const char *name; 2909 size_t namesz; 2910 size_t namesz_rounded; 2911 int type; 2912 size_t datasz; 2913 size_t datasz_rounded; 2914 void *data; 2915 size_t notesz; 2916 }; 2917 2918 struct target_elf_siginfo { 2919 abi_int si_signo; /* signal number */ 2920 abi_int si_code; /* extra code */ 2921 abi_int si_errno; /* errno */ 2922 }; 2923 2924 struct target_elf_prstatus { 2925 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2926 abi_short pr_cursig; /* Current signal */ 2927 abi_ulong pr_sigpend; /* XXX */ 2928 abi_ulong pr_sighold; /* XXX */ 2929 target_pid_t pr_pid; 2930 target_pid_t pr_ppid; 2931 target_pid_t pr_pgrp; 2932 target_pid_t pr_sid; 2933 struct target_timeval pr_utime; /* XXX User time */ 2934 struct target_timeval pr_stime; /* XXX System time */ 2935 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2936 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2937 target_elf_gregset_t pr_reg; /* GP registers */ 2938 abi_int pr_fpvalid; /* XXX */ 2939 }; 2940 2941 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2942 2943 struct target_elf_prpsinfo { 2944 char pr_state; /* numeric process state */ 2945 char pr_sname; /* char for pr_state */ 2946 char pr_zomb; /* zombie */ 2947 char pr_nice; /* nice val */ 2948 abi_ulong pr_flag; /* flags */ 2949 target_uid_t pr_uid; 2950 target_gid_t pr_gid; 2951 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2952 /* Lots missing */ 2953 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 2954 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2955 }; 2956 2957 /* Here is the structure in which status of each thread is captured. */ 2958 struct elf_thread_status { 2959 QTAILQ_ENTRY(elf_thread_status) ets_link; 2960 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2961 #if 0 2962 elf_fpregset_t fpu; /* NT_PRFPREG */ 2963 struct task_struct *thread; 2964 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2965 #endif 2966 struct memelfnote notes[1]; 2967 int num_notes; 2968 }; 2969 2970 struct elf_note_info { 2971 struct memelfnote *notes; 2972 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2973 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2974 2975 QTAILQ_HEAD(, elf_thread_status) thread_list; 2976 #if 0 2977 /* 2978 * Current version of ELF coredump doesn't support 2979 * dumping fp regs etc. 2980 */ 2981 elf_fpregset_t *fpu; 2982 elf_fpxregset_t *xfpu; 2983 int thread_status_size; 2984 #endif 2985 int notes_size; 2986 int numnote; 2987 }; 2988 2989 struct vm_area_struct { 2990 target_ulong vma_start; /* start vaddr of memory region */ 2991 target_ulong vma_end; /* end vaddr of memory region */ 2992 abi_ulong vma_flags; /* protection etc. flags for the region */ 2993 QTAILQ_ENTRY(vm_area_struct) vma_link; 2994 }; 2995 2996 struct mm_struct { 2997 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2998 int mm_count; /* number of mappings */ 2999 }; 3000 3001 static struct mm_struct *vma_init(void); 3002 static void vma_delete(struct mm_struct *); 3003 static int vma_add_mapping(struct mm_struct *, target_ulong, 3004 target_ulong, abi_ulong); 3005 static int vma_get_mapping_count(const struct mm_struct *); 3006 static struct vm_area_struct *vma_first(const struct mm_struct *); 3007 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3008 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3009 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3010 unsigned long flags); 3011 3012 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3013 static void fill_note(struct memelfnote *, const char *, int, 3014 unsigned int, void *); 3015 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3016 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3017 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3018 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3019 static size_t note_size(const struct memelfnote *); 3020 static void free_note_info(struct elf_note_info *); 3021 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3022 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3023 static int core_dump_filename(const TaskState *, char *, size_t); 3024 3025 static int dump_write(int, const void *, size_t); 3026 static int write_note(struct memelfnote *, int); 3027 static int write_note_info(struct elf_note_info *, int); 3028 3029 #ifdef BSWAP_NEEDED 3030 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3031 { 3032 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3033 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3034 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3035 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3036 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3037 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3038 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3039 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3040 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3041 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3042 /* cpu times are not filled, so we skip them */ 3043 /* regs should be in correct format already */ 3044 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3045 } 3046 3047 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3048 { 3049 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3050 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3051 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3052 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3053 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3054 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3055 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3056 } 3057 3058 static void bswap_note(struct elf_note *en) 3059 { 3060 bswap32s(&en->n_namesz); 3061 bswap32s(&en->n_descsz); 3062 bswap32s(&en->n_type); 3063 } 3064 #else 3065 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3066 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3067 static inline void bswap_note(struct elf_note *en) { } 3068 #endif /* BSWAP_NEEDED */ 3069 3070 /* 3071 * Minimal support for linux memory regions. These are needed 3072 * when we are finding out what memory exactly belongs to 3073 * emulated process. No locks needed here, as long as 3074 * thread that received the signal is stopped. 3075 */ 3076 3077 static struct mm_struct *vma_init(void) 3078 { 3079 struct mm_struct *mm; 3080 3081 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3082 return (NULL); 3083 3084 mm->mm_count = 0; 3085 QTAILQ_INIT(&mm->mm_mmap); 3086 3087 return (mm); 3088 } 3089 3090 static void vma_delete(struct mm_struct *mm) 3091 { 3092 struct vm_area_struct *vma; 3093 3094 while ((vma = vma_first(mm)) != NULL) { 3095 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3096 g_free(vma); 3097 } 3098 g_free(mm); 3099 } 3100 3101 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3102 target_ulong end, abi_ulong flags) 3103 { 3104 struct vm_area_struct *vma; 3105 3106 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3107 return (-1); 3108 3109 vma->vma_start = start; 3110 vma->vma_end = end; 3111 vma->vma_flags = flags; 3112 3113 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3114 mm->mm_count++; 3115 3116 return (0); 3117 } 3118 3119 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3120 { 3121 return (QTAILQ_FIRST(&mm->mm_mmap)); 3122 } 3123 3124 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3125 { 3126 return (QTAILQ_NEXT(vma, vma_link)); 3127 } 3128 3129 static int vma_get_mapping_count(const struct mm_struct *mm) 3130 { 3131 return (mm->mm_count); 3132 } 3133 3134 /* 3135 * Calculate file (dump) size of given memory region. 3136 */ 3137 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3138 { 3139 /* if we cannot even read the first page, skip it */ 3140 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3141 return (0); 3142 3143 /* 3144 * Usually we don't dump executable pages as they contain 3145 * non-writable code that debugger can read directly from 3146 * target library etc. However, thread stacks are marked 3147 * also executable so we read in first page of given region 3148 * and check whether it contains elf header. If there is 3149 * no elf header, we dump it. 3150 */ 3151 if (vma->vma_flags & PROT_EXEC) { 3152 char page[TARGET_PAGE_SIZE]; 3153 3154 copy_from_user(page, vma->vma_start, sizeof (page)); 3155 if ((page[EI_MAG0] == ELFMAG0) && 3156 (page[EI_MAG1] == ELFMAG1) && 3157 (page[EI_MAG2] == ELFMAG2) && 3158 (page[EI_MAG3] == ELFMAG3)) { 3159 /* 3160 * Mappings are possibly from ELF binary. Don't dump 3161 * them. 3162 */ 3163 return (0); 3164 } 3165 } 3166 3167 return (vma->vma_end - vma->vma_start); 3168 } 3169 3170 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3171 unsigned long flags) 3172 { 3173 struct mm_struct *mm = (struct mm_struct *)priv; 3174 3175 vma_add_mapping(mm, start, end, flags); 3176 return (0); 3177 } 3178 3179 static void fill_note(struct memelfnote *note, const char *name, int type, 3180 unsigned int sz, void *data) 3181 { 3182 unsigned int namesz; 3183 3184 namesz = strlen(name) + 1; 3185 note->name = name; 3186 note->namesz = namesz; 3187 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3188 note->type = type; 3189 note->datasz = sz; 3190 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3191 3192 note->data = data; 3193 3194 /* 3195 * We calculate rounded up note size here as specified by 3196 * ELF document. 3197 */ 3198 note->notesz = sizeof (struct elf_note) + 3199 note->namesz_rounded + note->datasz_rounded; 3200 } 3201 3202 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3203 uint32_t flags) 3204 { 3205 (void) memset(elf, 0, sizeof(*elf)); 3206 3207 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3208 elf->e_ident[EI_CLASS] = ELF_CLASS; 3209 elf->e_ident[EI_DATA] = ELF_DATA; 3210 elf->e_ident[EI_VERSION] = EV_CURRENT; 3211 elf->e_ident[EI_OSABI] = ELF_OSABI; 3212 3213 elf->e_type = ET_CORE; 3214 elf->e_machine = machine; 3215 elf->e_version = EV_CURRENT; 3216 elf->e_phoff = sizeof(struct elfhdr); 3217 elf->e_flags = flags; 3218 elf->e_ehsize = sizeof(struct elfhdr); 3219 elf->e_phentsize = sizeof(struct elf_phdr); 3220 elf->e_phnum = segs; 3221 3222 bswap_ehdr(elf); 3223 } 3224 3225 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3226 { 3227 phdr->p_type = PT_NOTE; 3228 phdr->p_offset = offset; 3229 phdr->p_vaddr = 0; 3230 phdr->p_paddr = 0; 3231 phdr->p_filesz = sz; 3232 phdr->p_memsz = 0; 3233 phdr->p_flags = 0; 3234 phdr->p_align = 0; 3235 3236 bswap_phdr(phdr, 1); 3237 } 3238 3239 static size_t note_size(const struct memelfnote *note) 3240 { 3241 return (note->notesz); 3242 } 3243 3244 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3245 const TaskState *ts, int signr) 3246 { 3247 (void) memset(prstatus, 0, sizeof (*prstatus)); 3248 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3249 prstatus->pr_pid = ts->ts_tid; 3250 prstatus->pr_ppid = getppid(); 3251 prstatus->pr_pgrp = getpgrp(); 3252 prstatus->pr_sid = getsid(0); 3253 3254 bswap_prstatus(prstatus); 3255 } 3256 3257 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3258 { 3259 char *base_filename; 3260 unsigned int i, len; 3261 3262 (void) memset(psinfo, 0, sizeof (*psinfo)); 3263 3264 len = ts->info->arg_end - ts->info->arg_start; 3265 if (len >= ELF_PRARGSZ) 3266 len = ELF_PRARGSZ - 1; 3267 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3268 return -EFAULT; 3269 for (i = 0; i < len; i++) 3270 if (psinfo->pr_psargs[i] == 0) 3271 psinfo->pr_psargs[i] = ' '; 3272 psinfo->pr_psargs[len] = 0; 3273 3274 psinfo->pr_pid = getpid(); 3275 psinfo->pr_ppid = getppid(); 3276 psinfo->pr_pgrp = getpgrp(); 3277 psinfo->pr_sid = getsid(0); 3278 psinfo->pr_uid = getuid(); 3279 psinfo->pr_gid = getgid(); 3280 3281 base_filename = g_path_get_basename(ts->bprm->filename); 3282 /* 3283 * Using strncpy here is fine: at max-length, 3284 * this field is not NUL-terminated. 3285 */ 3286 (void) strncpy(psinfo->pr_fname, base_filename, 3287 sizeof(psinfo->pr_fname)); 3288 3289 g_free(base_filename); 3290 bswap_psinfo(psinfo); 3291 return (0); 3292 } 3293 3294 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3295 { 3296 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3297 elf_addr_t orig_auxv = auxv; 3298 void *ptr; 3299 int len = ts->info->auxv_len; 3300 3301 /* 3302 * Auxiliary vector is stored in target process stack. It contains 3303 * {type, value} pairs that we need to dump into note. This is not 3304 * strictly necessary but we do it here for sake of completeness. 3305 */ 3306 3307 /* read in whole auxv vector and copy it to memelfnote */ 3308 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3309 if (ptr != NULL) { 3310 fill_note(note, "CORE", NT_AUXV, len, ptr); 3311 unlock_user(ptr, auxv, len); 3312 } 3313 } 3314 3315 /* 3316 * Constructs name of coredump file. We have following convention 3317 * for the name: 3318 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3319 * 3320 * Returns 0 in case of success, -1 otherwise (errno is set). 3321 */ 3322 static int core_dump_filename(const TaskState *ts, char *buf, 3323 size_t bufsize) 3324 { 3325 char timestamp[64]; 3326 char *base_filename = NULL; 3327 struct timeval tv; 3328 struct tm tm; 3329 3330 assert(bufsize >= PATH_MAX); 3331 3332 if (gettimeofday(&tv, NULL) < 0) { 3333 (void) fprintf(stderr, "unable to get current timestamp: %s", 3334 strerror(errno)); 3335 return (-1); 3336 } 3337 3338 base_filename = g_path_get_basename(ts->bprm->filename); 3339 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3340 localtime_r(&tv.tv_sec, &tm)); 3341 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3342 base_filename, timestamp, (int)getpid()); 3343 g_free(base_filename); 3344 3345 return (0); 3346 } 3347 3348 static int dump_write(int fd, const void *ptr, size_t size) 3349 { 3350 const char *bufp = (const char *)ptr; 3351 ssize_t bytes_written, bytes_left; 3352 struct rlimit dumpsize; 3353 off_t pos; 3354 3355 bytes_written = 0; 3356 getrlimit(RLIMIT_CORE, &dumpsize); 3357 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3358 if (errno == ESPIPE) { /* not a seekable stream */ 3359 bytes_left = size; 3360 } else { 3361 return pos; 3362 } 3363 } else { 3364 if (dumpsize.rlim_cur <= pos) { 3365 return -1; 3366 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3367 bytes_left = size; 3368 } else { 3369 size_t limit_left=dumpsize.rlim_cur - pos; 3370 bytes_left = limit_left >= size ? size : limit_left ; 3371 } 3372 } 3373 3374 /* 3375 * In normal conditions, single write(2) should do but 3376 * in case of socket etc. this mechanism is more portable. 3377 */ 3378 do { 3379 bytes_written = write(fd, bufp, bytes_left); 3380 if (bytes_written < 0) { 3381 if (errno == EINTR) 3382 continue; 3383 return (-1); 3384 } else if (bytes_written == 0) { /* eof */ 3385 return (-1); 3386 } 3387 bufp += bytes_written; 3388 bytes_left -= bytes_written; 3389 } while (bytes_left > 0); 3390 3391 return (0); 3392 } 3393 3394 static int write_note(struct memelfnote *men, int fd) 3395 { 3396 struct elf_note en; 3397 3398 en.n_namesz = men->namesz; 3399 en.n_type = men->type; 3400 en.n_descsz = men->datasz; 3401 3402 bswap_note(&en); 3403 3404 if (dump_write(fd, &en, sizeof(en)) != 0) 3405 return (-1); 3406 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3407 return (-1); 3408 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3409 return (-1); 3410 3411 return (0); 3412 } 3413 3414 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3415 { 3416 CPUState *cpu = env_cpu((CPUArchState *)env); 3417 TaskState *ts = (TaskState *)cpu->opaque; 3418 struct elf_thread_status *ets; 3419 3420 ets = g_malloc0(sizeof (*ets)); 3421 ets->num_notes = 1; /* only prstatus is dumped */ 3422 fill_prstatus(&ets->prstatus, ts, 0); 3423 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3424 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3425 &ets->prstatus); 3426 3427 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3428 3429 info->notes_size += note_size(&ets->notes[0]); 3430 } 3431 3432 static void init_note_info(struct elf_note_info *info) 3433 { 3434 /* Initialize the elf_note_info structure so that it is at 3435 * least safe to call free_note_info() on it. Must be 3436 * called before calling fill_note_info(). 3437 */ 3438 memset(info, 0, sizeof (*info)); 3439 QTAILQ_INIT(&info->thread_list); 3440 } 3441 3442 static int fill_note_info(struct elf_note_info *info, 3443 long signr, const CPUArchState *env) 3444 { 3445 #define NUMNOTES 3 3446 CPUState *cpu = env_cpu((CPUArchState *)env); 3447 TaskState *ts = (TaskState *)cpu->opaque; 3448 int i; 3449 3450 info->notes = g_new0(struct memelfnote, NUMNOTES); 3451 if (info->notes == NULL) 3452 return (-ENOMEM); 3453 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3454 if (info->prstatus == NULL) 3455 return (-ENOMEM); 3456 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3457 if (info->prstatus == NULL) 3458 return (-ENOMEM); 3459 3460 /* 3461 * First fill in status (and registers) of current thread 3462 * including process info & aux vector. 3463 */ 3464 fill_prstatus(info->prstatus, ts, signr); 3465 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3466 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3467 sizeof (*info->prstatus), info->prstatus); 3468 fill_psinfo(info->psinfo, ts); 3469 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3470 sizeof (*info->psinfo), info->psinfo); 3471 fill_auxv_note(&info->notes[2], ts); 3472 info->numnote = 3; 3473 3474 info->notes_size = 0; 3475 for (i = 0; i < info->numnote; i++) 3476 info->notes_size += note_size(&info->notes[i]); 3477 3478 /* read and fill status of all threads */ 3479 cpu_list_lock(); 3480 CPU_FOREACH(cpu) { 3481 if (cpu == thread_cpu) { 3482 continue; 3483 } 3484 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3485 } 3486 cpu_list_unlock(); 3487 3488 return (0); 3489 } 3490 3491 static void free_note_info(struct elf_note_info *info) 3492 { 3493 struct elf_thread_status *ets; 3494 3495 while (!QTAILQ_EMPTY(&info->thread_list)) { 3496 ets = QTAILQ_FIRST(&info->thread_list); 3497 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3498 g_free(ets); 3499 } 3500 3501 g_free(info->prstatus); 3502 g_free(info->psinfo); 3503 g_free(info->notes); 3504 } 3505 3506 static int write_note_info(struct elf_note_info *info, int fd) 3507 { 3508 struct elf_thread_status *ets; 3509 int i, error = 0; 3510 3511 /* write prstatus, psinfo and auxv for current thread */ 3512 for (i = 0; i < info->numnote; i++) 3513 if ((error = write_note(&info->notes[i], fd)) != 0) 3514 return (error); 3515 3516 /* write prstatus for each thread */ 3517 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3518 if ((error = write_note(&ets->notes[0], fd)) != 0) 3519 return (error); 3520 } 3521 3522 return (0); 3523 } 3524 3525 /* 3526 * Write out ELF coredump. 3527 * 3528 * See documentation of ELF object file format in: 3529 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3530 * 3531 * Coredump format in linux is following: 3532 * 3533 * 0 +----------------------+ \ 3534 * | ELF header | ET_CORE | 3535 * +----------------------+ | 3536 * | ELF program headers | |--- headers 3537 * | - NOTE section | | 3538 * | - PT_LOAD sections | | 3539 * +----------------------+ / 3540 * | NOTEs: | 3541 * | - NT_PRSTATUS | 3542 * | - NT_PRSINFO | 3543 * | - NT_AUXV | 3544 * +----------------------+ <-- aligned to target page 3545 * | Process memory dump | 3546 * : : 3547 * . . 3548 * : : 3549 * | | 3550 * +----------------------+ 3551 * 3552 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3553 * NT_PRSINFO -> struct elf_prpsinfo 3554 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3555 * 3556 * Format follows System V format as close as possible. Current 3557 * version limitations are as follows: 3558 * - no floating point registers are dumped 3559 * 3560 * Function returns 0 in case of success, negative errno otherwise. 3561 * 3562 * TODO: make this work also during runtime: it should be 3563 * possible to force coredump from running process and then 3564 * continue processing. For example qemu could set up SIGUSR2 3565 * handler (provided that target process haven't registered 3566 * handler for that) that does the dump when signal is received. 3567 */ 3568 static int elf_core_dump(int signr, const CPUArchState *env) 3569 { 3570 const CPUState *cpu = env_cpu((CPUArchState *)env); 3571 const TaskState *ts = (const TaskState *)cpu->opaque; 3572 struct vm_area_struct *vma = NULL; 3573 char corefile[PATH_MAX]; 3574 struct elf_note_info info; 3575 struct elfhdr elf; 3576 struct elf_phdr phdr; 3577 struct rlimit dumpsize; 3578 struct mm_struct *mm = NULL; 3579 off_t offset = 0, data_offset = 0; 3580 int segs = 0; 3581 int fd = -1; 3582 3583 init_note_info(&info); 3584 3585 errno = 0; 3586 getrlimit(RLIMIT_CORE, &dumpsize); 3587 if (dumpsize.rlim_cur == 0) 3588 return 0; 3589 3590 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3591 return (-errno); 3592 3593 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3594 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3595 return (-errno); 3596 3597 /* 3598 * Walk through target process memory mappings and 3599 * set up structure containing this information. After 3600 * this point vma_xxx functions can be used. 3601 */ 3602 if ((mm = vma_init()) == NULL) 3603 goto out; 3604 3605 walk_memory_regions(mm, vma_walker); 3606 segs = vma_get_mapping_count(mm); 3607 3608 /* 3609 * Construct valid coredump ELF header. We also 3610 * add one more segment for notes. 3611 */ 3612 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3613 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3614 goto out; 3615 3616 /* fill in the in-memory version of notes */ 3617 if (fill_note_info(&info, signr, env) < 0) 3618 goto out; 3619 3620 offset += sizeof (elf); /* elf header */ 3621 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3622 3623 /* write out notes program header */ 3624 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3625 3626 offset += info.notes_size; 3627 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3628 goto out; 3629 3630 /* 3631 * ELF specification wants data to start at page boundary so 3632 * we align it here. 3633 */ 3634 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3635 3636 /* 3637 * Write program headers for memory regions mapped in 3638 * the target process. 3639 */ 3640 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3641 (void) memset(&phdr, 0, sizeof (phdr)); 3642 3643 phdr.p_type = PT_LOAD; 3644 phdr.p_offset = offset; 3645 phdr.p_vaddr = vma->vma_start; 3646 phdr.p_paddr = 0; 3647 phdr.p_filesz = vma_dump_size(vma); 3648 offset += phdr.p_filesz; 3649 phdr.p_memsz = vma->vma_end - vma->vma_start; 3650 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3651 if (vma->vma_flags & PROT_WRITE) 3652 phdr.p_flags |= PF_W; 3653 if (vma->vma_flags & PROT_EXEC) 3654 phdr.p_flags |= PF_X; 3655 phdr.p_align = ELF_EXEC_PAGESIZE; 3656 3657 bswap_phdr(&phdr, 1); 3658 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3659 goto out; 3660 } 3661 } 3662 3663 /* 3664 * Next we write notes just after program headers. No 3665 * alignment needed here. 3666 */ 3667 if (write_note_info(&info, fd) < 0) 3668 goto out; 3669 3670 /* align data to page boundary */ 3671 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3672 goto out; 3673 3674 /* 3675 * Finally we can dump process memory into corefile as well. 3676 */ 3677 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3678 abi_ulong addr; 3679 abi_ulong end; 3680 3681 end = vma->vma_start + vma_dump_size(vma); 3682 3683 for (addr = vma->vma_start; addr < end; 3684 addr += TARGET_PAGE_SIZE) { 3685 char page[TARGET_PAGE_SIZE]; 3686 int error; 3687 3688 /* 3689 * Read in page from target process memory and 3690 * write it to coredump file. 3691 */ 3692 error = copy_from_user(page, addr, sizeof (page)); 3693 if (error != 0) { 3694 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3695 addr); 3696 errno = -error; 3697 goto out; 3698 } 3699 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3700 goto out; 3701 } 3702 } 3703 3704 out: 3705 free_note_info(&info); 3706 if (mm != NULL) 3707 vma_delete(mm); 3708 (void) close(fd); 3709 3710 if (errno != 0) 3711 return (-errno); 3712 return (0); 3713 } 3714 #endif /* USE_ELF_CORE_DUMP */ 3715 3716 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3717 { 3718 init_thread(regs, infop); 3719 } 3720