xref: /openbmc/qemu/linux-user/elfload.c (revision fa59483d)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461 
462 #define GET_FEATURE_ID(feat, hwcap) \
463     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
464 
465     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
466     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
467     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
468     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
469     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
470     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
471     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
472     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
473     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
474     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
475     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
476     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
477      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
478      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
479      * to our VFP_FP16 feature bit.
480      */
481     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
482     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
483 
484     return hwcaps;
485 }
486 
487 static uint32_t get_elf_hwcap2(void)
488 {
489     ARMCPU *cpu = ARM_CPU(thread_cpu);
490     uint32_t hwcaps = 0;
491 
492     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
493     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
494     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
495     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
496     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
497     return hwcaps;
498 }
499 
500 #undef GET_FEATURE
501 #undef GET_FEATURE_ID
502 
503 #else
504 /* 64 bit ARM definitions */
505 #define ELF_START_MMAP 0x80000000
506 
507 #define ELF_ARCH        EM_AARCH64
508 #define ELF_CLASS       ELFCLASS64
509 #define ELF_PLATFORM    "aarch64"
510 
511 static inline void init_thread(struct target_pt_regs *regs,
512                                struct image_info *infop)
513 {
514     abi_long stack = infop->start_stack;
515     memset(regs, 0, sizeof(*regs));
516 
517     regs->pc = infop->entry & ~0x3ULL;
518     regs->sp = stack;
519 }
520 
521 #define ELF_NREG    34
522 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
523 
524 static void elf_core_copy_regs(target_elf_gregset_t *regs,
525                                const CPUARMState *env)
526 {
527     int i;
528 
529     for (i = 0; i < 32; i++) {
530         (*regs)[i] = tswapreg(env->xregs[i]);
531     }
532     (*regs)[32] = tswapreg(env->pc);
533     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
534 }
535 
536 #define USE_ELF_CORE_DUMP
537 #define ELF_EXEC_PAGESIZE       4096
538 
539 enum {
540     ARM_HWCAP_A64_FP            = 1 << 0,
541     ARM_HWCAP_A64_ASIMD         = 1 << 1,
542     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
543     ARM_HWCAP_A64_AES           = 1 << 3,
544     ARM_HWCAP_A64_PMULL         = 1 << 4,
545     ARM_HWCAP_A64_SHA1          = 1 << 5,
546     ARM_HWCAP_A64_SHA2          = 1 << 6,
547     ARM_HWCAP_A64_CRC32         = 1 << 7,
548     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
549     ARM_HWCAP_A64_FPHP          = 1 << 9,
550     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
551     ARM_HWCAP_A64_CPUID         = 1 << 11,
552     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
553     ARM_HWCAP_A64_JSCVT         = 1 << 13,
554     ARM_HWCAP_A64_FCMA          = 1 << 14,
555     ARM_HWCAP_A64_LRCPC         = 1 << 15,
556     ARM_HWCAP_A64_DCPOP         = 1 << 16,
557     ARM_HWCAP_A64_SHA3          = 1 << 17,
558     ARM_HWCAP_A64_SM3           = 1 << 18,
559     ARM_HWCAP_A64_SM4           = 1 << 19,
560     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
561     ARM_HWCAP_A64_SHA512        = 1 << 21,
562     ARM_HWCAP_A64_SVE           = 1 << 22,
563     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
564     ARM_HWCAP_A64_DIT           = 1 << 24,
565     ARM_HWCAP_A64_USCAT         = 1 << 25,
566     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
567     ARM_HWCAP_A64_FLAGM         = 1 << 27,
568     ARM_HWCAP_A64_SSBS          = 1 << 28,
569     ARM_HWCAP_A64_SB            = 1 << 29,
570     ARM_HWCAP_A64_PACA          = 1 << 30,
571     ARM_HWCAP_A64_PACG          = 1UL << 31,
572 };
573 
574 #define ELF_HWCAP get_elf_hwcap()
575 
576 static uint32_t get_elf_hwcap(void)
577 {
578     ARMCPU *cpu = ARM_CPU(thread_cpu);
579     uint32_t hwcaps = 0;
580 
581     hwcaps |= ARM_HWCAP_A64_FP;
582     hwcaps |= ARM_HWCAP_A64_ASIMD;
583     hwcaps |= ARM_HWCAP_A64_CPUID;
584 
585     /* probe for the extra features */
586 #define GET_FEATURE_ID(feat, hwcap) \
587     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
588 
589     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
590     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
591     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
592     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
593     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
594     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
595     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
596     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
597     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
598     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
599     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
600     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
601     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
602     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
603     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
604     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
605     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
606     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
607     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
608     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
609 
610 #undef GET_FEATURE_ID
611 
612     return hwcaps;
613 }
614 
615 #endif /* not TARGET_AARCH64 */
616 #endif /* TARGET_ARM */
617 
618 #ifdef TARGET_SPARC
619 #ifdef TARGET_SPARC64
620 
621 #define ELF_START_MMAP 0x80000000
622 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
623                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
624 #ifndef TARGET_ABI32
625 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
626 #else
627 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
628 #endif
629 
630 #define ELF_CLASS   ELFCLASS64
631 #define ELF_ARCH    EM_SPARCV9
632 
633 #define STACK_BIAS              2047
634 
635 static inline void init_thread(struct target_pt_regs *regs,
636                                struct image_info *infop)
637 {
638 #ifndef TARGET_ABI32
639     regs->tstate = 0;
640 #endif
641     regs->pc = infop->entry;
642     regs->npc = regs->pc + 4;
643     regs->y = 0;
644 #ifdef TARGET_ABI32
645     regs->u_regs[14] = infop->start_stack - 16 * 4;
646 #else
647     if (personality(infop->personality) == PER_LINUX32)
648         regs->u_regs[14] = infop->start_stack - 16 * 4;
649     else
650         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
651 #endif
652 }
653 
654 #else
655 #define ELF_START_MMAP 0x80000000
656 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
657                     | HWCAP_SPARC_MULDIV)
658 
659 #define ELF_CLASS   ELFCLASS32
660 #define ELF_ARCH    EM_SPARC
661 
662 static inline void init_thread(struct target_pt_regs *regs,
663                                struct image_info *infop)
664 {
665     regs->psr = 0;
666     regs->pc = infop->entry;
667     regs->npc = regs->pc + 4;
668     regs->y = 0;
669     regs->u_regs[14] = infop->start_stack - 16 * 4;
670 }
671 
672 #endif
673 #endif
674 
675 #ifdef TARGET_PPC
676 
677 #define ELF_MACHINE    PPC_ELF_MACHINE
678 #define ELF_START_MMAP 0x80000000
679 
680 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
681 
682 #define elf_check_arch(x) ( (x) == EM_PPC64 )
683 
684 #define ELF_CLASS       ELFCLASS64
685 
686 #else
687 
688 #define ELF_CLASS       ELFCLASS32
689 
690 #endif
691 
692 #define ELF_ARCH        EM_PPC
693 
694 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
695    See arch/powerpc/include/asm/cputable.h.  */
696 enum {
697     QEMU_PPC_FEATURE_32 = 0x80000000,
698     QEMU_PPC_FEATURE_64 = 0x40000000,
699     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
700     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
701     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
702     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
703     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
704     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
705     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
706     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
707     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
708     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
709     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
710     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
711     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
712     QEMU_PPC_FEATURE_CELL = 0x00010000,
713     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
714     QEMU_PPC_FEATURE_SMT = 0x00004000,
715     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
716     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
717     QEMU_PPC_FEATURE_PA6T = 0x00000800,
718     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
719     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
720     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
721     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
722     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
723 
724     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
725     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
726 
727     /* Feature definitions in AT_HWCAP2.  */
728     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
729     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
730     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
731     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
732     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
733     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
734     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
735 };
736 
737 #define ELF_HWCAP get_elf_hwcap()
738 
739 static uint32_t get_elf_hwcap(void)
740 {
741     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
742     uint32_t features = 0;
743 
744     /* We don't have to be terribly complete here; the high points are
745        Altivec/FP/SPE support.  Anything else is just a bonus.  */
746 #define GET_FEATURE(flag, feature)                                      \
747     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
748 #define GET_FEATURE2(flags, feature) \
749     do { \
750         if ((cpu->env.insns_flags2 & flags) == flags) { \
751             features |= feature; \
752         } \
753     } while (0)
754     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
755     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
756     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
757     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
758     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
759     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
760     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
761     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
762     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
763     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
764     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
765                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
766                   QEMU_PPC_FEATURE_ARCH_2_06);
767 #undef GET_FEATURE
768 #undef GET_FEATURE2
769 
770     return features;
771 }
772 
773 #define ELF_HWCAP2 get_elf_hwcap2()
774 
775 static uint32_t get_elf_hwcap2(void)
776 {
777     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
778     uint32_t features = 0;
779 
780 #define GET_FEATURE(flag, feature)                                      \
781     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
782 #define GET_FEATURE2(flag, feature)                                      \
783     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
784 
785     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
786     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
787     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
788                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
789     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00);
790 
791 #undef GET_FEATURE
792 #undef GET_FEATURE2
793 
794     return features;
795 }
796 
797 /*
798  * The requirements here are:
799  * - keep the final alignment of sp (sp & 0xf)
800  * - make sure the 32-bit value at the first 16 byte aligned position of
801  *   AUXV is greater than 16 for glibc compatibility.
802  *   AT_IGNOREPPC is used for that.
803  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
804  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
805  */
806 #define DLINFO_ARCH_ITEMS       5
807 #define ARCH_DLINFO                                     \
808     do {                                                \
809         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
810         /*                                              \
811          * Handle glibc compatibility: these magic entries must \
812          * be at the lowest addresses in the final auxv.        \
813          */                                             \
814         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
815         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
816         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
817         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
818         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
819     } while (0)
820 
821 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
822 {
823     _regs->gpr[1] = infop->start_stack;
824 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
825     if (get_ppc64_abi(infop) < 2) {
826         uint64_t val;
827         get_user_u64(val, infop->entry + 8);
828         _regs->gpr[2] = val + infop->load_bias;
829         get_user_u64(val, infop->entry);
830         infop->entry = val + infop->load_bias;
831     } else {
832         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
833     }
834 #endif
835     _regs->nip = infop->entry;
836 }
837 
838 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
839 #define ELF_NREG 48
840 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
841 
842 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
843 {
844     int i;
845     target_ulong ccr = 0;
846 
847     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
848         (*regs)[i] = tswapreg(env->gpr[i]);
849     }
850 
851     (*regs)[32] = tswapreg(env->nip);
852     (*regs)[33] = tswapreg(env->msr);
853     (*regs)[35] = tswapreg(env->ctr);
854     (*regs)[36] = tswapreg(env->lr);
855     (*regs)[37] = tswapreg(env->xer);
856 
857     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
858         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
859     }
860     (*regs)[38] = tswapreg(ccr);
861 }
862 
863 #define USE_ELF_CORE_DUMP
864 #define ELF_EXEC_PAGESIZE       4096
865 
866 #endif
867 
868 #ifdef TARGET_MIPS
869 
870 #define ELF_START_MMAP 0x80000000
871 
872 #ifdef TARGET_MIPS64
873 #define ELF_CLASS   ELFCLASS64
874 #else
875 #define ELF_CLASS   ELFCLASS32
876 #endif
877 #define ELF_ARCH    EM_MIPS
878 
879 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
880 
881 static inline void init_thread(struct target_pt_regs *regs,
882                                struct image_info *infop)
883 {
884     regs->cp0_status = 2 << CP0St_KSU;
885     regs->cp0_epc = infop->entry;
886     regs->regs[29] = infop->start_stack;
887 }
888 
889 /* See linux kernel: arch/mips/include/asm/elf.h.  */
890 #define ELF_NREG 45
891 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
892 
893 /* See linux kernel: arch/mips/include/asm/reg.h.  */
894 enum {
895 #ifdef TARGET_MIPS64
896     TARGET_EF_R0 = 0,
897 #else
898     TARGET_EF_R0 = 6,
899 #endif
900     TARGET_EF_R26 = TARGET_EF_R0 + 26,
901     TARGET_EF_R27 = TARGET_EF_R0 + 27,
902     TARGET_EF_LO = TARGET_EF_R0 + 32,
903     TARGET_EF_HI = TARGET_EF_R0 + 33,
904     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
905     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
906     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
907     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
908 };
909 
910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
912 {
913     int i;
914 
915     for (i = 0; i < TARGET_EF_R0; i++) {
916         (*regs)[i] = 0;
917     }
918     (*regs)[TARGET_EF_R0] = 0;
919 
920     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
921         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
922     }
923 
924     (*regs)[TARGET_EF_R26] = 0;
925     (*regs)[TARGET_EF_R27] = 0;
926     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
927     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
928     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
929     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
930     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
931     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
932 }
933 
934 #define USE_ELF_CORE_DUMP
935 #define ELF_EXEC_PAGESIZE        4096
936 
937 /* See arch/mips/include/uapi/asm/hwcap.h.  */
938 enum {
939     HWCAP_MIPS_R6           = (1 << 0),
940     HWCAP_MIPS_MSA          = (1 << 1),
941 };
942 
943 #define ELF_HWCAP get_elf_hwcap()
944 
945 static uint32_t get_elf_hwcap(void)
946 {
947     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
948     uint32_t hwcaps = 0;
949 
950 #define GET_FEATURE(flag, hwcap) \
951     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
952 
953     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
954     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
955 
956 #undef GET_FEATURE
957 
958     return hwcaps;
959 }
960 
961 #endif /* TARGET_MIPS */
962 
963 #ifdef TARGET_MICROBLAZE
964 
965 #define ELF_START_MMAP 0x80000000
966 
967 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
968 
969 #define ELF_CLASS   ELFCLASS32
970 #define ELF_ARCH    EM_MICROBLAZE
971 
972 static inline void init_thread(struct target_pt_regs *regs,
973                                struct image_info *infop)
974 {
975     regs->pc = infop->entry;
976     regs->r1 = infop->start_stack;
977 
978 }
979 
980 #define ELF_EXEC_PAGESIZE        4096
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_NREG 38
984 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
985 
986 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
987 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
988 {
989     int i, pos = 0;
990 
991     for (i = 0; i < 32; i++) {
992         (*regs)[pos++] = tswapreg(env->regs[i]);
993     }
994 
995     for (i = 0; i < 6; i++) {
996         (*regs)[pos++] = tswapreg(env->sregs[i]);
997     }
998 }
999 
1000 #endif /* TARGET_MICROBLAZE */
1001 
1002 #ifdef TARGET_NIOS2
1003 
1004 #define ELF_START_MMAP 0x80000000
1005 
1006 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1007 
1008 #define ELF_CLASS   ELFCLASS32
1009 #define ELF_ARCH    EM_ALTERA_NIOS2
1010 
1011 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1012 {
1013     regs->ea = infop->entry;
1014     regs->sp = infop->start_stack;
1015     regs->estatus = 0x3;
1016 }
1017 
1018 #define ELF_EXEC_PAGESIZE        4096
1019 
1020 #define USE_ELF_CORE_DUMP
1021 #define ELF_NREG 49
1022 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1023 
1024 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1025 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1026                                const CPUNios2State *env)
1027 {
1028     int i;
1029 
1030     (*regs)[0] = -1;
1031     for (i = 1; i < 8; i++)    /* r0-r7 */
1032         (*regs)[i] = tswapreg(env->regs[i + 7]);
1033 
1034     for (i = 8; i < 16; i++)   /* r8-r15 */
1035         (*regs)[i] = tswapreg(env->regs[i - 8]);
1036 
1037     for (i = 16; i < 24; i++)  /* r16-r23 */
1038         (*regs)[i] = tswapreg(env->regs[i + 7]);
1039     (*regs)[24] = -1;    /* R_ET */
1040     (*regs)[25] = -1;    /* R_BT */
1041     (*regs)[26] = tswapreg(env->regs[R_GP]);
1042     (*regs)[27] = tswapreg(env->regs[R_SP]);
1043     (*regs)[28] = tswapreg(env->regs[R_FP]);
1044     (*regs)[29] = tswapreg(env->regs[R_EA]);
1045     (*regs)[30] = -1;    /* R_SSTATUS */
1046     (*regs)[31] = tswapreg(env->regs[R_RA]);
1047 
1048     (*regs)[32] = tswapreg(env->regs[R_PC]);
1049 
1050     (*regs)[33] = -1; /* R_STATUS */
1051     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1052 
1053     for (i = 35; i < 49; i++)    /* ... */
1054         (*regs)[i] = -1;
1055 }
1056 
1057 #endif /* TARGET_NIOS2 */
1058 
1059 #ifdef TARGET_OPENRISC
1060 
1061 #define ELF_START_MMAP 0x08000000
1062 
1063 #define ELF_ARCH EM_OPENRISC
1064 #define ELF_CLASS ELFCLASS32
1065 #define ELF_DATA  ELFDATA2MSB
1066 
1067 static inline void init_thread(struct target_pt_regs *regs,
1068                                struct image_info *infop)
1069 {
1070     regs->pc = infop->entry;
1071     regs->gpr[1] = infop->start_stack;
1072 }
1073 
1074 #define USE_ELF_CORE_DUMP
1075 #define ELF_EXEC_PAGESIZE 8192
1076 
1077 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1078 #define ELF_NREG 34 /* gprs and pc, sr */
1079 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1080 
1081 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1082                                const CPUOpenRISCState *env)
1083 {
1084     int i;
1085 
1086     for (i = 0; i < 32; i++) {
1087         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1088     }
1089     (*regs)[32] = tswapreg(env->pc);
1090     (*regs)[33] = tswapreg(cpu_get_sr(env));
1091 }
1092 #define ELF_HWCAP 0
1093 #define ELF_PLATFORM NULL
1094 
1095 #endif /* TARGET_OPENRISC */
1096 
1097 #ifdef TARGET_SH4
1098 
1099 #define ELF_START_MMAP 0x80000000
1100 
1101 #define ELF_CLASS ELFCLASS32
1102 #define ELF_ARCH  EM_SH
1103 
1104 static inline void init_thread(struct target_pt_regs *regs,
1105                                struct image_info *infop)
1106 {
1107     /* Check other registers XXXXX */
1108     regs->pc = infop->entry;
1109     regs->regs[15] = infop->start_stack;
1110 }
1111 
1112 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1113 #define ELF_NREG 23
1114 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1115 
1116 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1117 enum {
1118     TARGET_REG_PC = 16,
1119     TARGET_REG_PR = 17,
1120     TARGET_REG_SR = 18,
1121     TARGET_REG_GBR = 19,
1122     TARGET_REG_MACH = 20,
1123     TARGET_REG_MACL = 21,
1124     TARGET_REG_SYSCALL = 22
1125 };
1126 
1127 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1128                                       const CPUSH4State *env)
1129 {
1130     int i;
1131 
1132     for (i = 0; i < 16; i++) {
1133         (*regs)[i] = tswapreg(env->gregs[i]);
1134     }
1135 
1136     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1137     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1138     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1139     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1140     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1141     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1142     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1143 }
1144 
1145 #define USE_ELF_CORE_DUMP
1146 #define ELF_EXEC_PAGESIZE        4096
1147 
1148 enum {
1149     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1150     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1151     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1152     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1153     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1154     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1155     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1156     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1157     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1158     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1159 };
1160 
1161 #define ELF_HWCAP get_elf_hwcap()
1162 
1163 static uint32_t get_elf_hwcap(void)
1164 {
1165     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1166     uint32_t hwcap = 0;
1167 
1168     hwcap |= SH_CPU_HAS_FPU;
1169 
1170     if (cpu->env.features & SH_FEATURE_SH4A) {
1171         hwcap |= SH_CPU_HAS_LLSC;
1172     }
1173 
1174     return hwcap;
1175 }
1176 
1177 #endif
1178 
1179 #ifdef TARGET_CRIS
1180 
1181 #define ELF_START_MMAP 0x80000000
1182 
1183 #define ELF_CLASS ELFCLASS32
1184 #define ELF_ARCH  EM_CRIS
1185 
1186 static inline void init_thread(struct target_pt_regs *regs,
1187                                struct image_info *infop)
1188 {
1189     regs->erp = infop->entry;
1190 }
1191 
1192 #define ELF_EXEC_PAGESIZE        8192
1193 
1194 #endif
1195 
1196 #ifdef TARGET_M68K
1197 
1198 #define ELF_START_MMAP 0x80000000
1199 
1200 #define ELF_CLASS       ELFCLASS32
1201 #define ELF_ARCH        EM_68K
1202 
1203 /* ??? Does this need to do anything?
1204    #define ELF_PLAT_INIT(_r) */
1205 
1206 static inline void init_thread(struct target_pt_regs *regs,
1207                                struct image_info *infop)
1208 {
1209     regs->usp = infop->start_stack;
1210     regs->sr = 0;
1211     regs->pc = infop->entry;
1212 }
1213 
1214 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1215 #define ELF_NREG 20
1216 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1217 
1218 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1219 {
1220     (*regs)[0] = tswapreg(env->dregs[1]);
1221     (*regs)[1] = tswapreg(env->dregs[2]);
1222     (*regs)[2] = tswapreg(env->dregs[3]);
1223     (*regs)[3] = tswapreg(env->dregs[4]);
1224     (*regs)[4] = tswapreg(env->dregs[5]);
1225     (*regs)[5] = tswapreg(env->dregs[6]);
1226     (*regs)[6] = tswapreg(env->dregs[7]);
1227     (*regs)[7] = tswapreg(env->aregs[0]);
1228     (*regs)[8] = tswapreg(env->aregs[1]);
1229     (*regs)[9] = tswapreg(env->aregs[2]);
1230     (*regs)[10] = tswapreg(env->aregs[3]);
1231     (*regs)[11] = tswapreg(env->aregs[4]);
1232     (*regs)[12] = tswapreg(env->aregs[5]);
1233     (*regs)[13] = tswapreg(env->aregs[6]);
1234     (*regs)[14] = tswapreg(env->dregs[0]);
1235     (*regs)[15] = tswapreg(env->aregs[7]);
1236     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1237     (*regs)[17] = tswapreg(env->sr);
1238     (*regs)[18] = tswapreg(env->pc);
1239     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1240 }
1241 
1242 #define USE_ELF_CORE_DUMP
1243 #define ELF_EXEC_PAGESIZE       8192
1244 
1245 #endif
1246 
1247 #ifdef TARGET_ALPHA
1248 
1249 #define ELF_START_MMAP (0x30000000000ULL)
1250 
1251 #define ELF_CLASS      ELFCLASS64
1252 #define ELF_ARCH       EM_ALPHA
1253 
1254 static inline void init_thread(struct target_pt_regs *regs,
1255                                struct image_info *infop)
1256 {
1257     regs->pc = infop->entry;
1258     regs->ps = 8;
1259     regs->usp = infop->start_stack;
1260 }
1261 
1262 #define ELF_EXEC_PAGESIZE        8192
1263 
1264 #endif /* TARGET_ALPHA */
1265 
1266 #ifdef TARGET_S390X
1267 
1268 #define ELF_START_MMAP (0x20000000000ULL)
1269 
1270 #define ELF_CLASS	ELFCLASS64
1271 #define ELF_DATA	ELFDATA2MSB
1272 #define ELF_ARCH	EM_S390
1273 
1274 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1275 {
1276     regs->psw.addr = infop->entry;
1277     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1278     regs->gprs[15] = infop->start_stack;
1279 }
1280 
1281 #endif /* TARGET_S390X */
1282 
1283 #ifdef TARGET_TILEGX
1284 
1285 /* 42 bits real used address, a half for user mode */
1286 #define ELF_START_MMAP (0x00000020000000000ULL)
1287 
1288 #define elf_check_arch(x) ((x) == EM_TILEGX)
1289 
1290 #define ELF_CLASS   ELFCLASS64
1291 #define ELF_DATA    ELFDATA2LSB
1292 #define ELF_ARCH    EM_TILEGX
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->pc = infop->entry;
1298     regs->sp = infop->start_stack;
1299 
1300 }
1301 
1302 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1303 
1304 #endif /* TARGET_TILEGX */
1305 
1306 #ifdef TARGET_RISCV
1307 
1308 #define ELF_START_MMAP 0x80000000
1309 #define ELF_ARCH  EM_RISCV
1310 
1311 #ifdef TARGET_RISCV32
1312 #define ELF_CLASS ELFCLASS32
1313 #else
1314 #define ELF_CLASS ELFCLASS64
1315 #endif
1316 
1317 static inline void init_thread(struct target_pt_regs *regs,
1318                                struct image_info *infop)
1319 {
1320     regs->sepc = infop->entry;
1321     regs->sp = infop->start_stack;
1322 }
1323 
1324 #define ELF_EXEC_PAGESIZE 4096
1325 
1326 #endif /* TARGET_RISCV */
1327 
1328 #ifdef TARGET_HPPA
1329 
1330 #define ELF_START_MMAP  0x80000000
1331 #define ELF_CLASS       ELFCLASS32
1332 #define ELF_ARCH        EM_PARISC
1333 #define ELF_PLATFORM    "PARISC"
1334 #define STACK_GROWS_DOWN 0
1335 #define STACK_ALIGNMENT  64
1336 
1337 static inline void init_thread(struct target_pt_regs *regs,
1338                                struct image_info *infop)
1339 {
1340     regs->iaoq[0] = infop->entry;
1341     regs->iaoq[1] = infop->entry + 4;
1342     regs->gr[23] = 0;
1343     regs->gr[24] = infop->arg_start;
1344     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1345     /* The top-of-stack contains a linkage buffer.  */
1346     regs->gr[30] = infop->start_stack + 64;
1347     regs->gr[31] = infop->entry;
1348 }
1349 
1350 #endif /* TARGET_HPPA */
1351 
1352 #ifdef TARGET_XTENSA
1353 
1354 #define ELF_START_MMAP 0x20000000
1355 
1356 #define ELF_CLASS       ELFCLASS32
1357 #define ELF_ARCH        EM_XTENSA
1358 
1359 static inline void init_thread(struct target_pt_regs *regs,
1360                                struct image_info *infop)
1361 {
1362     regs->windowbase = 0;
1363     regs->windowstart = 1;
1364     regs->areg[1] = infop->start_stack;
1365     regs->pc = infop->entry;
1366 }
1367 
1368 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1369 #define ELF_NREG 128
1370 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1371 
1372 enum {
1373     TARGET_REG_PC,
1374     TARGET_REG_PS,
1375     TARGET_REG_LBEG,
1376     TARGET_REG_LEND,
1377     TARGET_REG_LCOUNT,
1378     TARGET_REG_SAR,
1379     TARGET_REG_WINDOWSTART,
1380     TARGET_REG_WINDOWBASE,
1381     TARGET_REG_THREADPTR,
1382     TARGET_REG_AR0 = 64,
1383 };
1384 
1385 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1386                                const CPUXtensaState *env)
1387 {
1388     unsigned i;
1389 
1390     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1391     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1392     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1393     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1394     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1395     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1396     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1397     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1398     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1399     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1400     for (i = 0; i < env->config->nareg; ++i) {
1401         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1402     }
1403 }
1404 
1405 #define USE_ELF_CORE_DUMP
1406 #define ELF_EXEC_PAGESIZE       4096
1407 
1408 #endif /* TARGET_XTENSA */
1409 
1410 #ifndef ELF_PLATFORM
1411 #define ELF_PLATFORM (NULL)
1412 #endif
1413 
1414 #ifndef ELF_MACHINE
1415 #define ELF_MACHINE ELF_ARCH
1416 #endif
1417 
1418 #ifndef elf_check_arch
1419 #define elf_check_arch(x) ((x) == ELF_ARCH)
1420 #endif
1421 
1422 #ifndef ELF_HWCAP
1423 #define ELF_HWCAP 0
1424 #endif
1425 
1426 #ifndef STACK_GROWS_DOWN
1427 #define STACK_GROWS_DOWN 1
1428 #endif
1429 
1430 #ifndef STACK_ALIGNMENT
1431 #define STACK_ALIGNMENT 16
1432 #endif
1433 
1434 #ifdef TARGET_ABI32
1435 #undef ELF_CLASS
1436 #define ELF_CLASS ELFCLASS32
1437 #undef bswaptls
1438 #define bswaptls(ptr) bswap32s(ptr)
1439 #endif
1440 
1441 #include "elf.h"
1442 
1443 struct exec
1444 {
1445     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1446     unsigned int a_text;   /* length of text, in bytes */
1447     unsigned int a_data;   /* length of data, in bytes */
1448     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1449     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1450     unsigned int a_entry;  /* start address */
1451     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1452     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1453 };
1454 
1455 
1456 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1457 #define OMAGIC 0407
1458 #define NMAGIC 0410
1459 #define ZMAGIC 0413
1460 #define QMAGIC 0314
1461 
1462 /* Necessary parameters */
1463 #define TARGET_ELF_EXEC_PAGESIZE \
1464         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1465          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1466 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1467 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1468                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1469 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1470 
1471 #define DLINFO_ITEMS 15
1472 
1473 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1474 {
1475     memcpy(to, from, n);
1476 }
1477 
1478 #ifdef BSWAP_NEEDED
1479 static void bswap_ehdr(struct elfhdr *ehdr)
1480 {
1481     bswap16s(&ehdr->e_type);            /* Object file type */
1482     bswap16s(&ehdr->e_machine);         /* Architecture */
1483     bswap32s(&ehdr->e_version);         /* Object file version */
1484     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1485     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1486     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1487     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1488     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1489     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1490     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1491     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1492     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1493     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1494 }
1495 
1496 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1497 {
1498     int i;
1499     for (i = 0; i < phnum; ++i, ++phdr) {
1500         bswap32s(&phdr->p_type);        /* Segment type */
1501         bswap32s(&phdr->p_flags);       /* Segment flags */
1502         bswaptls(&phdr->p_offset);      /* Segment file offset */
1503         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1504         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1505         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1506         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1507         bswaptls(&phdr->p_align);       /* Segment alignment */
1508     }
1509 }
1510 
1511 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1512 {
1513     int i;
1514     for (i = 0; i < shnum; ++i, ++shdr) {
1515         bswap32s(&shdr->sh_name);
1516         bswap32s(&shdr->sh_type);
1517         bswaptls(&shdr->sh_flags);
1518         bswaptls(&shdr->sh_addr);
1519         bswaptls(&shdr->sh_offset);
1520         bswaptls(&shdr->sh_size);
1521         bswap32s(&shdr->sh_link);
1522         bswap32s(&shdr->sh_info);
1523         bswaptls(&shdr->sh_addralign);
1524         bswaptls(&shdr->sh_entsize);
1525     }
1526 }
1527 
1528 static void bswap_sym(struct elf_sym *sym)
1529 {
1530     bswap32s(&sym->st_name);
1531     bswaptls(&sym->st_value);
1532     bswaptls(&sym->st_size);
1533     bswap16s(&sym->st_shndx);
1534 }
1535 
1536 #ifdef TARGET_MIPS
1537 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1538 {
1539     bswap16s(&abiflags->version);
1540     bswap32s(&abiflags->ases);
1541     bswap32s(&abiflags->isa_ext);
1542     bswap32s(&abiflags->flags1);
1543     bswap32s(&abiflags->flags2);
1544 }
1545 #endif
1546 #else
1547 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1548 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1549 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1550 static inline void bswap_sym(struct elf_sym *sym) { }
1551 #ifdef TARGET_MIPS
1552 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1553 #endif
1554 #endif
1555 
1556 #ifdef USE_ELF_CORE_DUMP
1557 static int elf_core_dump(int, const CPUArchState *);
1558 #endif /* USE_ELF_CORE_DUMP */
1559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1560 
1561 /* Verify the portions of EHDR within E_IDENT for the target.
1562    This can be performed before bswapping the entire header.  */
1563 static bool elf_check_ident(struct elfhdr *ehdr)
1564 {
1565     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1566             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1567             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1568             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1569             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1570             && ehdr->e_ident[EI_DATA] == ELF_DATA
1571             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1572 }
1573 
1574 /* Verify the portions of EHDR outside of E_IDENT for the target.
1575    This has to wait until after bswapping the header.  */
1576 static bool elf_check_ehdr(struct elfhdr *ehdr)
1577 {
1578     return (elf_check_arch(ehdr->e_machine)
1579             && ehdr->e_ehsize == sizeof(struct elfhdr)
1580             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1581             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1582 }
1583 
1584 /*
1585  * 'copy_elf_strings()' copies argument/envelope strings from user
1586  * memory to free pages in kernel mem. These are in a format ready
1587  * to be put directly into the top of new user memory.
1588  *
1589  */
1590 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1591                                   abi_ulong p, abi_ulong stack_limit)
1592 {
1593     char *tmp;
1594     int len, i;
1595     abi_ulong top = p;
1596 
1597     if (!p) {
1598         return 0;       /* bullet-proofing */
1599     }
1600 
1601     if (STACK_GROWS_DOWN) {
1602         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1603         for (i = argc - 1; i >= 0; --i) {
1604             tmp = argv[i];
1605             if (!tmp) {
1606                 fprintf(stderr, "VFS: argc is wrong");
1607                 exit(-1);
1608             }
1609             len = strlen(tmp) + 1;
1610             tmp += len;
1611 
1612             if (len > (p - stack_limit)) {
1613                 return 0;
1614             }
1615             while (len) {
1616                 int bytes_to_copy = (len > offset) ? offset : len;
1617                 tmp -= bytes_to_copy;
1618                 p -= bytes_to_copy;
1619                 offset -= bytes_to_copy;
1620                 len -= bytes_to_copy;
1621 
1622                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1623 
1624                 if (offset == 0) {
1625                     memcpy_to_target(p, scratch, top - p);
1626                     top = p;
1627                     offset = TARGET_PAGE_SIZE;
1628                 }
1629             }
1630         }
1631         if (p != top) {
1632             memcpy_to_target(p, scratch + offset, top - p);
1633         }
1634     } else {
1635         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1636         for (i = 0; i < argc; ++i) {
1637             tmp = argv[i];
1638             if (!tmp) {
1639                 fprintf(stderr, "VFS: argc is wrong");
1640                 exit(-1);
1641             }
1642             len = strlen(tmp) + 1;
1643             if (len > (stack_limit - p)) {
1644                 return 0;
1645             }
1646             while (len) {
1647                 int bytes_to_copy = (len > remaining) ? remaining : len;
1648 
1649                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1650 
1651                 tmp += bytes_to_copy;
1652                 remaining -= bytes_to_copy;
1653                 p += bytes_to_copy;
1654                 len -= bytes_to_copy;
1655 
1656                 if (remaining == 0) {
1657                     memcpy_to_target(top, scratch, p - top);
1658                     top = p;
1659                     remaining = TARGET_PAGE_SIZE;
1660                 }
1661             }
1662         }
1663         if (p != top) {
1664             memcpy_to_target(top, scratch, p - top);
1665         }
1666     }
1667 
1668     return p;
1669 }
1670 
1671 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1672  * argument/environment space. Newer kernels (>2.6.33) allow more,
1673  * dependent on stack size, but guarantee at least 32 pages for
1674  * backwards compatibility.
1675  */
1676 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1677 
1678 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1679                                  struct image_info *info)
1680 {
1681     abi_ulong size, error, guard;
1682 
1683     size = guest_stack_size;
1684     if (size < STACK_LOWER_LIMIT) {
1685         size = STACK_LOWER_LIMIT;
1686     }
1687     guard = TARGET_PAGE_SIZE;
1688     if (guard < qemu_real_host_page_size) {
1689         guard = qemu_real_host_page_size;
1690     }
1691 
1692     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1693                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1694     if (error == -1) {
1695         perror("mmap stack");
1696         exit(-1);
1697     }
1698 
1699     /* We reserve one extra page at the top of the stack as guard.  */
1700     if (STACK_GROWS_DOWN) {
1701         target_mprotect(error, guard, PROT_NONE);
1702         info->stack_limit = error + guard;
1703         return info->stack_limit + size - sizeof(void *);
1704     } else {
1705         target_mprotect(error + size, guard, PROT_NONE);
1706         info->stack_limit = error + size;
1707         return error;
1708     }
1709 }
1710 
1711 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1712    after the data section (i.e. bss).  */
1713 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1714 {
1715     uintptr_t host_start, host_map_start, host_end;
1716 
1717     last_bss = TARGET_PAGE_ALIGN(last_bss);
1718 
1719     /* ??? There is confusion between qemu_real_host_page_size and
1720        qemu_host_page_size here and elsewhere in target_mmap, which
1721        may lead to the end of the data section mapping from the file
1722        not being mapped.  At least there was an explicit test and
1723        comment for that here, suggesting that "the file size must
1724        be known".  The comment probably pre-dates the introduction
1725        of the fstat system call in target_mmap which does in fact
1726        find out the size.  What isn't clear is if the workaround
1727        here is still actually needed.  For now, continue with it,
1728        but merge it with the "normal" mmap that would allocate the bss.  */
1729 
1730     host_start = (uintptr_t) g2h(elf_bss);
1731     host_end = (uintptr_t) g2h(last_bss);
1732     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1733 
1734     if (host_map_start < host_end) {
1735         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1736                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1737         if (p == MAP_FAILED) {
1738             perror("cannot mmap brk");
1739             exit(-1);
1740         }
1741     }
1742 
1743     /* Ensure that the bss page(s) are valid */
1744     if ((page_get_flags(last_bss-1) & prot) != prot) {
1745         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1746     }
1747 
1748     if (host_start < host_map_start) {
1749         memset((void *)host_start, 0, host_map_start - host_start);
1750     }
1751 }
1752 
1753 #ifdef TARGET_ARM
1754 static int elf_is_fdpic(struct elfhdr *exec)
1755 {
1756     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1757 }
1758 #else
1759 /* Default implementation, always false.  */
1760 static int elf_is_fdpic(struct elfhdr *exec)
1761 {
1762     return 0;
1763 }
1764 #endif
1765 
1766 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1767 {
1768     uint16_t n;
1769     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1770 
1771     /* elf32_fdpic_loadseg */
1772     n = info->nsegs;
1773     while (n--) {
1774         sp -= 12;
1775         put_user_u32(loadsegs[n].addr, sp+0);
1776         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1777         put_user_u32(loadsegs[n].p_memsz, sp+8);
1778     }
1779 
1780     /* elf32_fdpic_loadmap */
1781     sp -= 4;
1782     put_user_u16(0, sp+0); /* version */
1783     put_user_u16(info->nsegs, sp+2); /* nsegs */
1784 
1785     info->personality = PER_LINUX_FDPIC;
1786     info->loadmap_addr = sp;
1787 
1788     return sp;
1789 }
1790 
1791 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1792                                    struct elfhdr *exec,
1793                                    struct image_info *info,
1794                                    struct image_info *interp_info)
1795 {
1796     abi_ulong sp;
1797     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1798     int size;
1799     int i;
1800     abi_ulong u_rand_bytes;
1801     uint8_t k_rand_bytes[16];
1802     abi_ulong u_platform;
1803     const char *k_platform;
1804     const int n = sizeof(elf_addr_t);
1805 
1806     sp = p;
1807 
1808     /* Needs to be before we load the env/argc/... */
1809     if (elf_is_fdpic(exec)) {
1810         /* Need 4 byte alignment for these structs */
1811         sp &= ~3;
1812         sp = loader_build_fdpic_loadmap(info, sp);
1813         info->other_info = interp_info;
1814         if (interp_info) {
1815             interp_info->other_info = info;
1816             sp = loader_build_fdpic_loadmap(interp_info, sp);
1817             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1818             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1819         } else {
1820             info->interpreter_loadmap_addr = 0;
1821             info->interpreter_pt_dynamic_addr = 0;
1822         }
1823     }
1824 
1825     u_platform = 0;
1826     k_platform = ELF_PLATFORM;
1827     if (k_platform) {
1828         size_t len = strlen(k_platform) + 1;
1829         if (STACK_GROWS_DOWN) {
1830             sp -= (len + n - 1) & ~(n - 1);
1831             u_platform = sp;
1832             /* FIXME - check return value of memcpy_to_target() for failure */
1833             memcpy_to_target(sp, k_platform, len);
1834         } else {
1835             memcpy_to_target(sp, k_platform, len);
1836             u_platform = sp;
1837             sp += len + 1;
1838         }
1839     }
1840 
1841     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1842      * the argv and envp pointers.
1843      */
1844     if (STACK_GROWS_DOWN) {
1845         sp = QEMU_ALIGN_DOWN(sp, 16);
1846     } else {
1847         sp = QEMU_ALIGN_UP(sp, 16);
1848     }
1849 
1850     /*
1851      * Generate 16 random bytes for userspace PRNG seeding (not
1852      * cryptically secure but it's not the aim of QEMU).
1853      */
1854     for (i = 0; i < 16; i++) {
1855         k_rand_bytes[i] = rand();
1856     }
1857     if (STACK_GROWS_DOWN) {
1858         sp -= 16;
1859         u_rand_bytes = sp;
1860         /* FIXME - check return value of memcpy_to_target() for failure */
1861         memcpy_to_target(sp, k_rand_bytes, 16);
1862     } else {
1863         memcpy_to_target(sp, k_rand_bytes, 16);
1864         u_rand_bytes = sp;
1865         sp += 16;
1866     }
1867 
1868     size = (DLINFO_ITEMS + 1) * 2;
1869     if (k_platform)
1870         size += 2;
1871 #ifdef DLINFO_ARCH_ITEMS
1872     size += DLINFO_ARCH_ITEMS * 2;
1873 #endif
1874 #ifdef ELF_HWCAP2
1875     size += 2;
1876 #endif
1877     info->auxv_len = size * n;
1878 
1879     size += envc + argc + 2;
1880     size += 1;  /* argc itself */
1881     size *= n;
1882 
1883     /* Allocate space and finalize stack alignment for entry now.  */
1884     if (STACK_GROWS_DOWN) {
1885         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1886         sp = u_argc;
1887     } else {
1888         u_argc = sp;
1889         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1890     }
1891 
1892     u_argv = u_argc + n;
1893     u_envp = u_argv + (argc + 1) * n;
1894     u_auxv = u_envp + (envc + 1) * n;
1895     info->saved_auxv = u_auxv;
1896     info->arg_start = u_argv;
1897     info->arg_end = u_argv + argc * n;
1898 
1899     /* This is correct because Linux defines
1900      * elf_addr_t as Elf32_Off / Elf64_Off
1901      */
1902 #define NEW_AUX_ENT(id, val) do {               \
1903         put_user_ual(id, u_auxv);  u_auxv += n; \
1904         put_user_ual(val, u_auxv); u_auxv += n; \
1905     } while(0)
1906 
1907 #ifdef ARCH_DLINFO
1908     /*
1909      * ARCH_DLINFO must come first so platform specific code can enforce
1910      * special alignment requirements on the AUXV if necessary (eg. PPC).
1911      */
1912     ARCH_DLINFO;
1913 #endif
1914     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1915      * on info->auxv_len will trigger.
1916      */
1917     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1918     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1919     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1920     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1921         /* Target doesn't support host page size alignment */
1922         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1923     } else {
1924         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1925                                                qemu_host_page_size)));
1926     }
1927     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1928     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1929     NEW_AUX_ENT(AT_ENTRY, info->entry);
1930     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1931     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1932     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1933     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1934     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1935     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1936     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1937     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1938 
1939 #ifdef ELF_HWCAP2
1940     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1941 #endif
1942 
1943     if (u_platform) {
1944         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1945     }
1946     NEW_AUX_ENT (AT_NULL, 0);
1947 #undef NEW_AUX_ENT
1948 
1949     /* Check that our initial calculation of the auxv length matches how much
1950      * we actually put into it.
1951      */
1952     assert(info->auxv_len == u_auxv - info->saved_auxv);
1953 
1954     put_user_ual(argc, u_argc);
1955 
1956     p = info->arg_strings;
1957     for (i = 0; i < argc; ++i) {
1958         put_user_ual(p, u_argv);
1959         u_argv += n;
1960         p += target_strlen(p) + 1;
1961     }
1962     put_user_ual(0, u_argv);
1963 
1964     p = info->env_strings;
1965     for (i = 0; i < envc; ++i) {
1966         put_user_ual(p, u_envp);
1967         u_envp += n;
1968         p += target_strlen(p) + 1;
1969     }
1970     put_user_ual(0, u_envp);
1971 
1972     return sp;
1973 }
1974 
1975 unsigned long init_guest_space(unsigned long host_start,
1976                                unsigned long host_size,
1977                                unsigned long guest_start,
1978                                bool fixed)
1979 {
1980     unsigned long current_start, aligned_start;
1981     int flags;
1982 
1983     assert(host_start || host_size);
1984 
1985     /* If just a starting address is given, then just verify that
1986      * address.  */
1987     if (host_start && !host_size) {
1988 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1989         if (init_guest_commpage(host_start, host_size) != 1) {
1990             return (unsigned long)-1;
1991         }
1992 #endif
1993         return host_start;
1994     }
1995 
1996     /* Setup the initial flags and start address.  */
1997     current_start = host_start & qemu_host_page_mask;
1998     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1999     if (fixed) {
2000         flags |= MAP_FIXED;
2001     }
2002 
2003     /* Otherwise, a non-zero size region of memory needs to be mapped
2004      * and validated.  */
2005 
2006 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2007     /* On 32-bit ARM, we need to map not just the usable memory, but
2008      * also the commpage.  Try to find a suitable place by allocating
2009      * a big chunk for all of it.  If host_start, then the naive
2010      * strategy probably does good enough.
2011      */
2012     if (!host_start) {
2013         unsigned long guest_full_size, host_full_size, real_start;
2014 
2015         guest_full_size =
2016             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2017         host_full_size = guest_full_size - guest_start;
2018         real_start = (unsigned long)
2019             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2020         if (real_start == (unsigned long)-1) {
2021             if (host_size < host_full_size - qemu_host_page_size) {
2022                 /* We failed to map a continous segment, but we're
2023                  * allowed to have a gap between the usable memory and
2024                  * the commpage where other things can be mapped.
2025                  * This sparseness gives us more flexibility to find
2026                  * an address range.
2027                  */
2028                 goto naive;
2029             }
2030             return (unsigned long)-1;
2031         }
2032         munmap((void *)real_start, host_full_size);
2033         if (real_start & ~qemu_host_page_mask) {
2034             /* The same thing again, but with an extra qemu_host_page_size
2035              * so that we can shift around alignment.
2036              */
2037             unsigned long real_size = host_full_size + qemu_host_page_size;
2038             real_start = (unsigned long)
2039                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2040             if (real_start == (unsigned long)-1) {
2041                 if (host_size < host_full_size - qemu_host_page_size) {
2042                     goto naive;
2043                 }
2044                 return (unsigned long)-1;
2045             }
2046             munmap((void *)real_start, real_size);
2047             real_start = HOST_PAGE_ALIGN(real_start);
2048         }
2049         current_start = real_start;
2050     }
2051  naive:
2052 #endif
2053 
2054     while (1) {
2055         unsigned long real_start, real_size, aligned_size;
2056         aligned_size = real_size = host_size;
2057 
2058         /* Do not use mmap_find_vma here because that is limited to the
2059          * guest address space.  We are going to make the
2060          * guest address space fit whatever we're given.
2061          */
2062         real_start = (unsigned long)
2063             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2064         if (real_start == (unsigned long)-1) {
2065             return (unsigned long)-1;
2066         }
2067 
2068         /* Check to see if the address is valid.  */
2069         if (host_start && real_start != current_start) {
2070             goto try_again;
2071         }
2072 
2073         /* Ensure the address is properly aligned.  */
2074         if (real_start & ~qemu_host_page_mask) {
2075             /* Ideally, we adjust like
2076              *
2077              *    pages: [  ][  ][  ][  ][  ]
2078              *      old:   [   real   ]
2079              *             [ aligned  ]
2080              *      new:   [     real     ]
2081              *               [ aligned  ]
2082              *
2083              * But if there is something else mapped right after it,
2084              * then obviously it won't have room to grow, and the
2085              * kernel will put the new larger real someplace else with
2086              * unknown alignment (if we made it to here, then
2087              * fixed=false).  Which is why we grow real by a full page
2088              * size, instead of by part of one; so that even if we get
2089              * moved, we can still guarantee alignment.  But this does
2090              * mean that there is a padding of < 1 page both before
2091              * and after the aligned range; the "after" could could
2092              * cause problems for ARM emulation where it could butt in
2093              * to where we need to put the commpage.
2094              */
2095             munmap((void *)real_start, host_size);
2096             real_size = aligned_size + qemu_host_page_size;
2097             real_start = (unsigned long)
2098                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2099             if (real_start == (unsigned long)-1) {
2100                 return (unsigned long)-1;
2101             }
2102             aligned_start = HOST_PAGE_ALIGN(real_start);
2103         } else {
2104             aligned_start = real_start;
2105         }
2106 
2107 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2108         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2109         int valid = init_guest_commpage(aligned_start - guest_start,
2110                                         aligned_size + guest_start);
2111         if (valid == -1) {
2112             munmap((void *)real_start, real_size);
2113             return (unsigned long)-1;
2114         } else if (valid == 0) {
2115             goto try_again;
2116         }
2117 #endif
2118 
2119         /* If nothing has said `return -1` or `goto try_again` yet,
2120          * then the address we have is good.
2121          */
2122         break;
2123 
2124     try_again:
2125         /* That address didn't work.  Unmap and try a different one.
2126          * The address the host picked because is typically right at
2127          * the top of the host address space and leaves the guest with
2128          * no usable address space.  Resort to a linear search.  We
2129          * already compensated for mmap_min_addr, so this should not
2130          * happen often.  Probably means we got unlucky and host
2131          * address space randomization put a shared library somewhere
2132          * inconvenient.
2133          *
2134          * This is probably a good strategy if host_start, but is
2135          * probably a bad strategy if not, which means we got here
2136          * because of trouble with ARM commpage setup.
2137          */
2138         munmap((void *)real_start, real_size);
2139         current_start += qemu_host_page_size;
2140         if (host_start == current_start) {
2141             /* Theoretically possible if host doesn't have any suitably
2142              * aligned areas.  Normally the first mmap will fail.
2143              */
2144             return (unsigned long)-1;
2145         }
2146     }
2147 
2148     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2149 
2150     return aligned_start;
2151 }
2152 
2153 static void probe_guest_base(const char *image_name,
2154                              abi_ulong loaddr, abi_ulong hiaddr)
2155 {
2156     /* Probe for a suitable guest base address, if the user has not set
2157      * it explicitly, and set guest_base appropriately.
2158      * In case of error we will print a suitable message and exit.
2159      */
2160     const char *errmsg;
2161     if (!have_guest_base && !reserved_va) {
2162         unsigned long host_start, real_start, host_size;
2163 
2164         /* Round addresses to page boundaries.  */
2165         loaddr &= qemu_host_page_mask;
2166         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2167 
2168         if (loaddr < mmap_min_addr) {
2169             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2170         } else {
2171             host_start = loaddr;
2172             if (host_start != loaddr) {
2173                 errmsg = "Address overflow loading ELF binary";
2174                 goto exit_errmsg;
2175             }
2176         }
2177         host_size = hiaddr - loaddr;
2178 
2179         /* Setup the initial guest memory space with ranges gleaned from
2180          * the ELF image that is being loaded.
2181          */
2182         real_start = init_guest_space(host_start, host_size, loaddr, false);
2183         if (real_start == (unsigned long)-1) {
2184             errmsg = "Unable to find space for application";
2185             goto exit_errmsg;
2186         }
2187         guest_base = real_start - loaddr;
2188 
2189         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2190                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2191                       loaddr, real_start);
2192     }
2193     return;
2194 
2195 exit_errmsg:
2196     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2197     exit(-1);
2198 }
2199 
2200 
2201 /* Load an ELF image into the address space.
2202 
2203    IMAGE_NAME is the filename of the image, to use in error messages.
2204    IMAGE_FD is the open file descriptor for the image.
2205 
2206    BPRM_BUF is a copy of the beginning of the file; this of course
2207    contains the elf file header at offset 0.  It is assumed that this
2208    buffer is sufficiently aligned to present no problems to the host
2209    in accessing data at aligned offsets within the buffer.
2210 
2211    On return: INFO values will be filled in, as necessary or available.  */
2212 
2213 static void load_elf_image(const char *image_name, int image_fd,
2214                            struct image_info *info, char **pinterp_name,
2215                            char bprm_buf[BPRM_BUF_SIZE])
2216 {
2217     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2218     struct elf_phdr *phdr;
2219     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2220     int i, retval;
2221     const char *errmsg;
2222 
2223     /* First of all, some simple consistency checks */
2224     errmsg = "Invalid ELF image for this architecture";
2225     if (!elf_check_ident(ehdr)) {
2226         goto exit_errmsg;
2227     }
2228     bswap_ehdr(ehdr);
2229     if (!elf_check_ehdr(ehdr)) {
2230         goto exit_errmsg;
2231     }
2232 
2233     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2234     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2235         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2236     } else {
2237         phdr = (struct elf_phdr *) alloca(i);
2238         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2239         if (retval != i) {
2240             goto exit_read;
2241         }
2242     }
2243     bswap_phdr(phdr, ehdr->e_phnum);
2244 
2245     info->nsegs = 0;
2246     info->pt_dynamic_addr = 0;
2247 
2248     mmap_lock();
2249 
2250     /* Find the maximum size of the image and allocate an appropriate
2251        amount of memory to handle that.  */
2252     loaddr = -1, hiaddr = 0;
2253     info->alignment = 0;
2254     for (i = 0; i < ehdr->e_phnum; ++i) {
2255         if (phdr[i].p_type == PT_LOAD) {
2256             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2257             if (a < loaddr) {
2258                 loaddr = a;
2259             }
2260             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2261             if (a > hiaddr) {
2262                 hiaddr = a;
2263             }
2264             ++info->nsegs;
2265             info->alignment |= phdr[i].p_align;
2266         }
2267     }
2268 
2269     load_addr = loaddr;
2270     if (ehdr->e_type == ET_DYN) {
2271         /* The image indicates that it can be loaded anywhere.  Find a
2272            location that can hold the memory space required.  If the
2273            image is pre-linked, LOADDR will be non-zero.  Since we do
2274            not supply MAP_FIXED here we'll use that address if and
2275            only if it remains available.  */
2276         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2277                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2278                                 -1, 0);
2279         if (load_addr == -1) {
2280             goto exit_perror;
2281         }
2282     } else if (pinterp_name != NULL) {
2283         /* This is the main executable.  Make sure that the low
2284            address does not conflict with MMAP_MIN_ADDR or the
2285            QEMU application itself.  */
2286         probe_guest_base(image_name, loaddr, hiaddr);
2287     }
2288     load_bias = load_addr - loaddr;
2289 
2290     if (elf_is_fdpic(ehdr)) {
2291         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2292             g_malloc(sizeof(*loadsegs) * info->nsegs);
2293 
2294         for (i = 0; i < ehdr->e_phnum; ++i) {
2295             switch (phdr[i].p_type) {
2296             case PT_DYNAMIC:
2297                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2298                 break;
2299             case PT_LOAD:
2300                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2301                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2302                 loadsegs->p_memsz = phdr[i].p_memsz;
2303                 ++loadsegs;
2304                 break;
2305             }
2306         }
2307     }
2308 
2309     info->load_bias = load_bias;
2310     info->load_addr = load_addr;
2311     info->entry = ehdr->e_entry + load_bias;
2312     info->start_code = -1;
2313     info->end_code = 0;
2314     info->start_data = -1;
2315     info->end_data = 0;
2316     info->brk = 0;
2317     info->elf_flags = ehdr->e_flags;
2318 
2319     for (i = 0; i < ehdr->e_phnum; i++) {
2320         struct elf_phdr *eppnt = phdr + i;
2321         if (eppnt->p_type == PT_LOAD) {
2322             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2323             int elf_prot = 0;
2324 
2325             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2326             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2327             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2328 
2329             vaddr = load_bias + eppnt->p_vaddr;
2330             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2331             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2332             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2333 
2334             error = target_mmap(vaddr_ps, vaddr_len,
2335                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2336                                 image_fd, eppnt->p_offset - vaddr_po);
2337             if (error == -1) {
2338                 goto exit_perror;
2339             }
2340 
2341             vaddr_ef = vaddr + eppnt->p_filesz;
2342             vaddr_em = vaddr + eppnt->p_memsz;
2343 
2344             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2345             if (vaddr_ef < vaddr_em) {
2346                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2347             }
2348 
2349             /* Find the full program boundaries.  */
2350             if (elf_prot & PROT_EXEC) {
2351                 if (vaddr < info->start_code) {
2352                     info->start_code = vaddr;
2353                 }
2354                 if (vaddr_ef > info->end_code) {
2355                     info->end_code = vaddr_ef;
2356                 }
2357             }
2358             if (elf_prot & PROT_WRITE) {
2359                 if (vaddr < info->start_data) {
2360                     info->start_data = vaddr;
2361                 }
2362                 if (vaddr_ef > info->end_data) {
2363                     info->end_data = vaddr_ef;
2364                 }
2365                 if (vaddr_em > info->brk) {
2366                     info->brk = vaddr_em;
2367                 }
2368             }
2369         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2370             char *interp_name;
2371 
2372             if (*pinterp_name) {
2373                 errmsg = "Multiple PT_INTERP entries";
2374                 goto exit_errmsg;
2375             }
2376             interp_name = malloc(eppnt->p_filesz);
2377             if (!interp_name) {
2378                 goto exit_perror;
2379             }
2380 
2381             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2382                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2383                        eppnt->p_filesz);
2384             } else {
2385                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2386                                eppnt->p_offset);
2387                 if (retval != eppnt->p_filesz) {
2388                     goto exit_perror;
2389                 }
2390             }
2391             if (interp_name[eppnt->p_filesz - 1] != 0) {
2392                 errmsg = "Invalid PT_INTERP entry";
2393                 goto exit_errmsg;
2394             }
2395             *pinterp_name = interp_name;
2396 #ifdef TARGET_MIPS
2397         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2398             Mips_elf_abiflags_v0 abiflags;
2399             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2400                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2401                 goto exit_errmsg;
2402             }
2403             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2404                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2405                        sizeof(Mips_elf_abiflags_v0));
2406             } else {
2407                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2408                                eppnt->p_offset);
2409                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2410                     goto exit_perror;
2411                 }
2412             }
2413             bswap_mips_abiflags(&abiflags);
2414             info->fp_abi = abiflags.fp_abi;
2415 #endif
2416         }
2417     }
2418 
2419     if (info->end_data == 0) {
2420         info->start_data = info->end_code;
2421         info->end_data = info->end_code;
2422         info->brk = info->end_code;
2423     }
2424 
2425     if (qemu_log_enabled()) {
2426         load_symbols(ehdr, image_fd, load_bias);
2427     }
2428 
2429     mmap_unlock();
2430 
2431     close(image_fd);
2432     return;
2433 
2434  exit_read:
2435     if (retval >= 0) {
2436         errmsg = "Incomplete read of file header";
2437         goto exit_errmsg;
2438     }
2439  exit_perror:
2440     errmsg = strerror(errno);
2441  exit_errmsg:
2442     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2443     exit(-1);
2444 }
2445 
2446 static void load_elf_interp(const char *filename, struct image_info *info,
2447                             char bprm_buf[BPRM_BUF_SIZE])
2448 {
2449     int fd, retval;
2450 
2451     fd = open(path(filename), O_RDONLY);
2452     if (fd < 0) {
2453         goto exit_perror;
2454     }
2455 
2456     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2457     if (retval < 0) {
2458         goto exit_perror;
2459     }
2460     if (retval < BPRM_BUF_SIZE) {
2461         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2462     }
2463 
2464     load_elf_image(filename, fd, info, NULL, bprm_buf);
2465     return;
2466 
2467  exit_perror:
2468     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2469     exit(-1);
2470 }
2471 
2472 static int symfind(const void *s0, const void *s1)
2473 {
2474     target_ulong addr = *(target_ulong *)s0;
2475     struct elf_sym *sym = (struct elf_sym *)s1;
2476     int result = 0;
2477     if (addr < sym->st_value) {
2478         result = -1;
2479     } else if (addr >= sym->st_value + sym->st_size) {
2480         result = 1;
2481     }
2482     return result;
2483 }
2484 
2485 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2486 {
2487 #if ELF_CLASS == ELFCLASS32
2488     struct elf_sym *syms = s->disas_symtab.elf32;
2489 #else
2490     struct elf_sym *syms = s->disas_symtab.elf64;
2491 #endif
2492 
2493     // binary search
2494     struct elf_sym *sym;
2495 
2496     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2497     if (sym != NULL) {
2498         return s->disas_strtab + sym->st_name;
2499     }
2500 
2501     return "";
2502 }
2503 
2504 /* FIXME: This should use elf_ops.h  */
2505 static int symcmp(const void *s0, const void *s1)
2506 {
2507     struct elf_sym *sym0 = (struct elf_sym *)s0;
2508     struct elf_sym *sym1 = (struct elf_sym *)s1;
2509     return (sym0->st_value < sym1->st_value)
2510         ? -1
2511         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2512 }
2513 
2514 /* Best attempt to load symbols from this ELF object. */
2515 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2516 {
2517     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2518     uint64_t segsz;
2519     struct elf_shdr *shdr;
2520     char *strings = NULL;
2521     struct syminfo *s = NULL;
2522     struct elf_sym *new_syms, *syms = NULL;
2523 
2524     shnum = hdr->e_shnum;
2525     i = shnum * sizeof(struct elf_shdr);
2526     shdr = (struct elf_shdr *)alloca(i);
2527     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2528         return;
2529     }
2530 
2531     bswap_shdr(shdr, shnum);
2532     for (i = 0; i < shnum; ++i) {
2533         if (shdr[i].sh_type == SHT_SYMTAB) {
2534             sym_idx = i;
2535             str_idx = shdr[i].sh_link;
2536             goto found;
2537         }
2538     }
2539 
2540     /* There will be no symbol table if the file was stripped.  */
2541     return;
2542 
2543  found:
2544     /* Now know where the strtab and symtab are.  Snarf them.  */
2545     s = g_try_new(struct syminfo, 1);
2546     if (!s) {
2547         goto give_up;
2548     }
2549 
2550     segsz = shdr[str_idx].sh_size;
2551     s->disas_strtab = strings = g_try_malloc(segsz);
2552     if (!strings ||
2553         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2554         goto give_up;
2555     }
2556 
2557     segsz = shdr[sym_idx].sh_size;
2558     syms = g_try_malloc(segsz);
2559     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2560         goto give_up;
2561     }
2562 
2563     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2564         /* Implausibly large symbol table: give up rather than ploughing
2565          * on with the number of symbols calculation overflowing
2566          */
2567         goto give_up;
2568     }
2569     nsyms = segsz / sizeof(struct elf_sym);
2570     for (i = 0; i < nsyms; ) {
2571         bswap_sym(syms + i);
2572         /* Throw away entries which we do not need.  */
2573         if (syms[i].st_shndx == SHN_UNDEF
2574             || syms[i].st_shndx >= SHN_LORESERVE
2575             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2576             if (i < --nsyms) {
2577                 syms[i] = syms[nsyms];
2578             }
2579         } else {
2580 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2581             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2582             syms[i].st_value &= ~(target_ulong)1;
2583 #endif
2584             syms[i].st_value += load_bias;
2585             i++;
2586         }
2587     }
2588 
2589     /* No "useful" symbol.  */
2590     if (nsyms == 0) {
2591         goto give_up;
2592     }
2593 
2594     /* Attempt to free the storage associated with the local symbols
2595        that we threw away.  Whether or not this has any effect on the
2596        memory allocation depends on the malloc implementation and how
2597        many symbols we managed to discard.  */
2598     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2599     if (new_syms == NULL) {
2600         goto give_up;
2601     }
2602     syms = new_syms;
2603 
2604     qsort(syms, nsyms, sizeof(*syms), symcmp);
2605 
2606     s->disas_num_syms = nsyms;
2607 #if ELF_CLASS == ELFCLASS32
2608     s->disas_symtab.elf32 = syms;
2609 #else
2610     s->disas_symtab.elf64 = syms;
2611 #endif
2612     s->lookup_symbol = lookup_symbolxx;
2613     s->next = syminfos;
2614     syminfos = s;
2615 
2616     return;
2617 
2618 give_up:
2619     g_free(s);
2620     g_free(strings);
2621     g_free(syms);
2622 }
2623 
2624 uint32_t get_elf_eflags(int fd)
2625 {
2626     struct elfhdr ehdr;
2627     off_t offset;
2628     int ret;
2629 
2630     /* Read ELF header */
2631     offset = lseek(fd, 0, SEEK_SET);
2632     if (offset == (off_t) -1) {
2633         return 0;
2634     }
2635     ret = read(fd, &ehdr, sizeof(ehdr));
2636     if (ret < sizeof(ehdr)) {
2637         return 0;
2638     }
2639     offset = lseek(fd, offset, SEEK_SET);
2640     if (offset == (off_t) -1) {
2641         return 0;
2642     }
2643 
2644     /* Check ELF signature */
2645     if (!elf_check_ident(&ehdr)) {
2646         return 0;
2647     }
2648 
2649     /* check header */
2650     bswap_ehdr(&ehdr);
2651     if (!elf_check_ehdr(&ehdr)) {
2652         return 0;
2653     }
2654 
2655     /* return architecture id */
2656     return ehdr.e_flags;
2657 }
2658 
2659 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2660 {
2661     struct image_info interp_info;
2662     struct elfhdr elf_ex;
2663     char *elf_interpreter = NULL;
2664     char *scratch;
2665 
2666     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2667 
2668     load_elf_image(bprm->filename, bprm->fd, info,
2669                    &elf_interpreter, bprm->buf);
2670 
2671     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2672        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2673        when we load the interpreter.  */
2674     elf_ex = *(struct elfhdr *)bprm->buf;
2675 
2676     /* Do this so that we can load the interpreter, if need be.  We will
2677        change some of these later */
2678     bprm->p = setup_arg_pages(bprm, info);
2679 
2680     scratch = g_new0(char, TARGET_PAGE_SIZE);
2681     if (STACK_GROWS_DOWN) {
2682         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2683                                    bprm->p, info->stack_limit);
2684         info->file_string = bprm->p;
2685         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2686                                    bprm->p, info->stack_limit);
2687         info->env_strings = bprm->p;
2688         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2689                                    bprm->p, info->stack_limit);
2690         info->arg_strings = bprm->p;
2691     } else {
2692         info->arg_strings = bprm->p;
2693         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2694                                    bprm->p, info->stack_limit);
2695         info->env_strings = bprm->p;
2696         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2697                                    bprm->p, info->stack_limit);
2698         info->file_string = bprm->p;
2699         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2700                                    bprm->p, info->stack_limit);
2701     }
2702 
2703     g_free(scratch);
2704 
2705     if (!bprm->p) {
2706         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2707         exit(-1);
2708     }
2709 
2710     if (elf_interpreter) {
2711         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2712 
2713         /* If the program interpreter is one of these two, then assume
2714            an iBCS2 image.  Otherwise assume a native linux image.  */
2715 
2716         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2717             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2718             info->personality = PER_SVR4;
2719 
2720             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2721                and some applications "depend" upon this behavior.  Since
2722                we do not have the power to recompile these, we emulate
2723                the SVr4 behavior.  Sigh.  */
2724             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2725                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2726         }
2727 #ifdef TARGET_MIPS
2728         info->interp_fp_abi = interp_info.fp_abi;
2729 #endif
2730     }
2731 
2732     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2733                                 info, (elf_interpreter ? &interp_info : NULL));
2734     info->start_stack = bprm->p;
2735 
2736     /* If we have an interpreter, set that as the program's entry point.
2737        Copy the load_bias as well, to help PPC64 interpret the entry
2738        point as a function descriptor.  Do this after creating elf tables
2739        so that we copy the original program entry point into the AUXV.  */
2740     if (elf_interpreter) {
2741         info->load_bias = interp_info.load_bias;
2742         info->entry = interp_info.entry;
2743         free(elf_interpreter);
2744     }
2745 
2746 #ifdef USE_ELF_CORE_DUMP
2747     bprm->core_dump = &elf_core_dump;
2748 #endif
2749 
2750     return 0;
2751 }
2752 
2753 #ifdef USE_ELF_CORE_DUMP
2754 /*
2755  * Definitions to generate Intel SVR4-like core files.
2756  * These mostly have the same names as the SVR4 types with "target_elf_"
2757  * tacked on the front to prevent clashes with linux definitions,
2758  * and the typedef forms have been avoided.  This is mostly like
2759  * the SVR4 structure, but more Linuxy, with things that Linux does
2760  * not support and which gdb doesn't really use excluded.
2761  *
2762  * Fields we don't dump (their contents is zero) in linux-user qemu
2763  * are marked with XXX.
2764  *
2765  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2766  *
2767  * Porting ELF coredump for target is (quite) simple process.  First you
2768  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2769  * the target resides):
2770  *
2771  * #define USE_ELF_CORE_DUMP
2772  *
2773  * Next you define type of register set used for dumping.  ELF specification
2774  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2775  *
2776  * typedef <target_regtype> target_elf_greg_t;
2777  * #define ELF_NREG <number of registers>
2778  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2779  *
2780  * Last step is to implement target specific function that copies registers
2781  * from given cpu into just specified register set.  Prototype is:
2782  *
2783  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2784  *                                const CPUArchState *env);
2785  *
2786  * Parameters:
2787  *     regs - copy register values into here (allocated and zeroed by caller)
2788  *     env - copy registers from here
2789  *
2790  * Example for ARM target is provided in this file.
2791  */
2792 
2793 /* An ELF note in memory */
2794 struct memelfnote {
2795     const char *name;
2796     size_t     namesz;
2797     size_t     namesz_rounded;
2798     int        type;
2799     size_t     datasz;
2800     size_t     datasz_rounded;
2801     void       *data;
2802     size_t     notesz;
2803 };
2804 
2805 struct target_elf_siginfo {
2806     abi_int    si_signo; /* signal number */
2807     abi_int    si_code;  /* extra code */
2808     abi_int    si_errno; /* errno */
2809 };
2810 
2811 struct target_elf_prstatus {
2812     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2813     abi_short          pr_cursig;    /* Current signal */
2814     abi_ulong          pr_sigpend;   /* XXX */
2815     abi_ulong          pr_sighold;   /* XXX */
2816     target_pid_t       pr_pid;
2817     target_pid_t       pr_ppid;
2818     target_pid_t       pr_pgrp;
2819     target_pid_t       pr_sid;
2820     struct target_timeval pr_utime;  /* XXX User time */
2821     struct target_timeval pr_stime;  /* XXX System time */
2822     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2823     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2824     target_elf_gregset_t      pr_reg;       /* GP registers */
2825     abi_int            pr_fpvalid;   /* XXX */
2826 };
2827 
2828 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2829 
2830 struct target_elf_prpsinfo {
2831     char         pr_state;       /* numeric process state */
2832     char         pr_sname;       /* char for pr_state */
2833     char         pr_zomb;        /* zombie */
2834     char         pr_nice;        /* nice val */
2835     abi_ulong    pr_flag;        /* flags */
2836     target_uid_t pr_uid;
2837     target_gid_t pr_gid;
2838     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2839     /* Lots missing */
2840     char    pr_fname[16];           /* filename of executable */
2841     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2842 };
2843 
2844 /* Here is the structure in which status of each thread is captured. */
2845 struct elf_thread_status {
2846     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2847     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2848 #if 0
2849     elf_fpregset_t fpu;             /* NT_PRFPREG */
2850     struct task_struct *thread;
2851     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2852 #endif
2853     struct memelfnote notes[1];
2854     int num_notes;
2855 };
2856 
2857 struct elf_note_info {
2858     struct memelfnote   *notes;
2859     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2860     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2861 
2862     QTAILQ_HEAD(, elf_thread_status) thread_list;
2863 #if 0
2864     /*
2865      * Current version of ELF coredump doesn't support
2866      * dumping fp regs etc.
2867      */
2868     elf_fpregset_t *fpu;
2869     elf_fpxregset_t *xfpu;
2870     int thread_status_size;
2871 #endif
2872     int notes_size;
2873     int numnote;
2874 };
2875 
2876 struct vm_area_struct {
2877     target_ulong   vma_start;  /* start vaddr of memory region */
2878     target_ulong   vma_end;    /* end vaddr of memory region */
2879     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2880     QTAILQ_ENTRY(vm_area_struct) vma_link;
2881 };
2882 
2883 struct mm_struct {
2884     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2885     int mm_count;           /* number of mappings */
2886 };
2887 
2888 static struct mm_struct *vma_init(void);
2889 static void vma_delete(struct mm_struct *);
2890 static int vma_add_mapping(struct mm_struct *, target_ulong,
2891                            target_ulong, abi_ulong);
2892 static int vma_get_mapping_count(const struct mm_struct *);
2893 static struct vm_area_struct *vma_first(const struct mm_struct *);
2894 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2895 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2896 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2897                       unsigned long flags);
2898 
2899 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2900 static void fill_note(struct memelfnote *, const char *, int,
2901                       unsigned int, void *);
2902 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2903 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2904 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2905 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2906 static size_t note_size(const struct memelfnote *);
2907 static void free_note_info(struct elf_note_info *);
2908 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2909 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2910 static int core_dump_filename(const TaskState *, char *, size_t);
2911 
2912 static int dump_write(int, const void *, size_t);
2913 static int write_note(struct memelfnote *, int);
2914 static int write_note_info(struct elf_note_info *, int);
2915 
2916 #ifdef BSWAP_NEEDED
2917 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2918 {
2919     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2920     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2921     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2922     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2923     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2924     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2925     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2926     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2927     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2928     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2929     /* cpu times are not filled, so we skip them */
2930     /* regs should be in correct format already */
2931     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2932 }
2933 
2934 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2935 {
2936     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2937     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2938     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2939     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2940     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2941     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2942     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2943 }
2944 
2945 static void bswap_note(struct elf_note *en)
2946 {
2947     bswap32s(&en->n_namesz);
2948     bswap32s(&en->n_descsz);
2949     bswap32s(&en->n_type);
2950 }
2951 #else
2952 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2953 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2954 static inline void bswap_note(struct elf_note *en) { }
2955 #endif /* BSWAP_NEEDED */
2956 
2957 /*
2958  * Minimal support for linux memory regions.  These are needed
2959  * when we are finding out what memory exactly belongs to
2960  * emulated process.  No locks needed here, as long as
2961  * thread that received the signal is stopped.
2962  */
2963 
2964 static struct mm_struct *vma_init(void)
2965 {
2966     struct mm_struct *mm;
2967 
2968     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2969         return (NULL);
2970 
2971     mm->mm_count = 0;
2972     QTAILQ_INIT(&mm->mm_mmap);
2973 
2974     return (mm);
2975 }
2976 
2977 static void vma_delete(struct mm_struct *mm)
2978 {
2979     struct vm_area_struct *vma;
2980 
2981     while ((vma = vma_first(mm)) != NULL) {
2982         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2983         g_free(vma);
2984     }
2985     g_free(mm);
2986 }
2987 
2988 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2989                            target_ulong end, abi_ulong flags)
2990 {
2991     struct vm_area_struct *vma;
2992 
2993     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2994         return (-1);
2995 
2996     vma->vma_start = start;
2997     vma->vma_end = end;
2998     vma->vma_flags = flags;
2999 
3000     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3001     mm->mm_count++;
3002 
3003     return (0);
3004 }
3005 
3006 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3007 {
3008     return (QTAILQ_FIRST(&mm->mm_mmap));
3009 }
3010 
3011 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3012 {
3013     return (QTAILQ_NEXT(vma, vma_link));
3014 }
3015 
3016 static int vma_get_mapping_count(const struct mm_struct *mm)
3017 {
3018     return (mm->mm_count);
3019 }
3020 
3021 /*
3022  * Calculate file (dump) size of given memory region.
3023  */
3024 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3025 {
3026     /* if we cannot even read the first page, skip it */
3027     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3028         return (0);
3029 
3030     /*
3031      * Usually we don't dump executable pages as they contain
3032      * non-writable code that debugger can read directly from
3033      * target library etc.  However, thread stacks are marked
3034      * also executable so we read in first page of given region
3035      * and check whether it contains elf header.  If there is
3036      * no elf header, we dump it.
3037      */
3038     if (vma->vma_flags & PROT_EXEC) {
3039         char page[TARGET_PAGE_SIZE];
3040 
3041         copy_from_user(page, vma->vma_start, sizeof (page));
3042         if ((page[EI_MAG0] == ELFMAG0) &&
3043             (page[EI_MAG1] == ELFMAG1) &&
3044             (page[EI_MAG2] == ELFMAG2) &&
3045             (page[EI_MAG3] == ELFMAG3)) {
3046             /*
3047              * Mappings are possibly from ELF binary.  Don't dump
3048              * them.
3049              */
3050             return (0);
3051         }
3052     }
3053 
3054     return (vma->vma_end - vma->vma_start);
3055 }
3056 
3057 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3058                       unsigned long flags)
3059 {
3060     struct mm_struct *mm = (struct mm_struct *)priv;
3061 
3062     vma_add_mapping(mm, start, end, flags);
3063     return (0);
3064 }
3065 
3066 static void fill_note(struct memelfnote *note, const char *name, int type,
3067                       unsigned int sz, void *data)
3068 {
3069     unsigned int namesz;
3070 
3071     namesz = strlen(name) + 1;
3072     note->name = name;
3073     note->namesz = namesz;
3074     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3075     note->type = type;
3076     note->datasz = sz;
3077     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3078 
3079     note->data = data;
3080 
3081     /*
3082      * We calculate rounded up note size here as specified by
3083      * ELF document.
3084      */
3085     note->notesz = sizeof (struct elf_note) +
3086         note->namesz_rounded + note->datasz_rounded;
3087 }
3088 
3089 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3090                             uint32_t flags)
3091 {
3092     (void) memset(elf, 0, sizeof(*elf));
3093 
3094     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3095     elf->e_ident[EI_CLASS] = ELF_CLASS;
3096     elf->e_ident[EI_DATA] = ELF_DATA;
3097     elf->e_ident[EI_VERSION] = EV_CURRENT;
3098     elf->e_ident[EI_OSABI] = ELF_OSABI;
3099 
3100     elf->e_type = ET_CORE;
3101     elf->e_machine = machine;
3102     elf->e_version = EV_CURRENT;
3103     elf->e_phoff = sizeof(struct elfhdr);
3104     elf->e_flags = flags;
3105     elf->e_ehsize = sizeof(struct elfhdr);
3106     elf->e_phentsize = sizeof(struct elf_phdr);
3107     elf->e_phnum = segs;
3108 
3109     bswap_ehdr(elf);
3110 }
3111 
3112 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3113 {
3114     phdr->p_type = PT_NOTE;
3115     phdr->p_offset = offset;
3116     phdr->p_vaddr = 0;
3117     phdr->p_paddr = 0;
3118     phdr->p_filesz = sz;
3119     phdr->p_memsz = 0;
3120     phdr->p_flags = 0;
3121     phdr->p_align = 0;
3122 
3123     bswap_phdr(phdr, 1);
3124 }
3125 
3126 static size_t note_size(const struct memelfnote *note)
3127 {
3128     return (note->notesz);
3129 }
3130 
3131 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3132                           const TaskState *ts, int signr)
3133 {
3134     (void) memset(prstatus, 0, sizeof (*prstatus));
3135     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3136     prstatus->pr_pid = ts->ts_tid;
3137     prstatus->pr_ppid = getppid();
3138     prstatus->pr_pgrp = getpgrp();
3139     prstatus->pr_sid = getsid(0);
3140 
3141     bswap_prstatus(prstatus);
3142 }
3143 
3144 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3145 {
3146     char *base_filename;
3147     unsigned int i, len;
3148 
3149     (void) memset(psinfo, 0, sizeof (*psinfo));
3150 
3151     len = ts->info->arg_end - ts->info->arg_start;
3152     if (len >= ELF_PRARGSZ)
3153         len = ELF_PRARGSZ - 1;
3154     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3155         return -EFAULT;
3156     for (i = 0; i < len; i++)
3157         if (psinfo->pr_psargs[i] == 0)
3158             psinfo->pr_psargs[i] = ' ';
3159     psinfo->pr_psargs[len] = 0;
3160 
3161     psinfo->pr_pid = getpid();
3162     psinfo->pr_ppid = getppid();
3163     psinfo->pr_pgrp = getpgrp();
3164     psinfo->pr_sid = getsid(0);
3165     psinfo->pr_uid = getuid();
3166     psinfo->pr_gid = getgid();
3167 
3168     base_filename = g_path_get_basename(ts->bprm->filename);
3169     /*
3170      * Using strncpy here is fine: at max-length,
3171      * this field is not NUL-terminated.
3172      */
3173     (void) strncpy(psinfo->pr_fname, base_filename,
3174                    sizeof(psinfo->pr_fname));
3175 
3176     g_free(base_filename);
3177     bswap_psinfo(psinfo);
3178     return (0);
3179 }
3180 
3181 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3182 {
3183     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3184     elf_addr_t orig_auxv = auxv;
3185     void *ptr;
3186     int len = ts->info->auxv_len;
3187 
3188     /*
3189      * Auxiliary vector is stored in target process stack.  It contains
3190      * {type, value} pairs that we need to dump into note.  This is not
3191      * strictly necessary but we do it here for sake of completeness.
3192      */
3193 
3194     /* read in whole auxv vector and copy it to memelfnote */
3195     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3196     if (ptr != NULL) {
3197         fill_note(note, "CORE", NT_AUXV, len, ptr);
3198         unlock_user(ptr, auxv, len);
3199     }
3200 }
3201 
3202 /*
3203  * Constructs name of coredump file.  We have following convention
3204  * for the name:
3205  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3206  *
3207  * Returns 0 in case of success, -1 otherwise (errno is set).
3208  */
3209 static int core_dump_filename(const TaskState *ts, char *buf,
3210                               size_t bufsize)
3211 {
3212     char timestamp[64];
3213     char *base_filename = NULL;
3214     struct timeval tv;
3215     struct tm tm;
3216 
3217     assert(bufsize >= PATH_MAX);
3218 
3219     if (gettimeofday(&tv, NULL) < 0) {
3220         (void) fprintf(stderr, "unable to get current timestamp: %s",
3221                        strerror(errno));
3222         return (-1);
3223     }
3224 
3225     base_filename = g_path_get_basename(ts->bprm->filename);
3226     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3227                     localtime_r(&tv.tv_sec, &tm));
3228     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3229                     base_filename, timestamp, (int)getpid());
3230     g_free(base_filename);
3231 
3232     return (0);
3233 }
3234 
3235 static int dump_write(int fd, const void *ptr, size_t size)
3236 {
3237     const char *bufp = (const char *)ptr;
3238     ssize_t bytes_written, bytes_left;
3239     struct rlimit dumpsize;
3240     off_t pos;
3241 
3242     bytes_written = 0;
3243     getrlimit(RLIMIT_CORE, &dumpsize);
3244     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3245         if (errno == ESPIPE) { /* not a seekable stream */
3246             bytes_left = size;
3247         } else {
3248             return pos;
3249         }
3250     } else {
3251         if (dumpsize.rlim_cur <= pos) {
3252             return -1;
3253         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3254             bytes_left = size;
3255         } else {
3256             size_t limit_left=dumpsize.rlim_cur - pos;
3257             bytes_left = limit_left >= size ? size : limit_left ;
3258         }
3259     }
3260 
3261     /*
3262      * In normal conditions, single write(2) should do but
3263      * in case of socket etc. this mechanism is more portable.
3264      */
3265     do {
3266         bytes_written = write(fd, bufp, bytes_left);
3267         if (bytes_written < 0) {
3268             if (errno == EINTR)
3269                 continue;
3270             return (-1);
3271         } else if (bytes_written == 0) { /* eof */
3272             return (-1);
3273         }
3274         bufp += bytes_written;
3275         bytes_left -= bytes_written;
3276     } while (bytes_left > 0);
3277 
3278     return (0);
3279 }
3280 
3281 static int write_note(struct memelfnote *men, int fd)
3282 {
3283     struct elf_note en;
3284 
3285     en.n_namesz = men->namesz;
3286     en.n_type = men->type;
3287     en.n_descsz = men->datasz;
3288 
3289     bswap_note(&en);
3290 
3291     if (dump_write(fd, &en, sizeof(en)) != 0)
3292         return (-1);
3293     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3294         return (-1);
3295     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3296         return (-1);
3297 
3298     return (0);
3299 }
3300 
3301 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3302 {
3303     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3304     TaskState *ts = (TaskState *)cpu->opaque;
3305     struct elf_thread_status *ets;
3306 
3307     ets = g_malloc0(sizeof (*ets));
3308     ets->num_notes = 1; /* only prstatus is dumped */
3309     fill_prstatus(&ets->prstatus, ts, 0);
3310     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3311     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3312               &ets->prstatus);
3313 
3314     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3315 
3316     info->notes_size += note_size(&ets->notes[0]);
3317 }
3318 
3319 static void init_note_info(struct elf_note_info *info)
3320 {
3321     /* Initialize the elf_note_info structure so that it is at
3322      * least safe to call free_note_info() on it. Must be
3323      * called before calling fill_note_info().
3324      */
3325     memset(info, 0, sizeof (*info));
3326     QTAILQ_INIT(&info->thread_list);
3327 }
3328 
3329 static int fill_note_info(struct elf_note_info *info,
3330                           long signr, const CPUArchState *env)
3331 {
3332 #define NUMNOTES 3
3333     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3334     TaskState *ts = (TaskState *)cpu->opaque;
3335     int i;
3336 
3337     info->notes = g_new0(struct memelfnote, NUMNOTES);
3338     if (info->notes == NULL)
3339         return (-ENOMEM);
3340     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3341     if (info->prstatus == NULL)
3342         return (-ENOMEM);
3343     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3344     if (info->prstatus == NULL)
3345         return (-ENOMEM);
3346 
3347     /*
3348      * First fill in status (and registers) of current thread
3349      * including process info & aux vector.
3350      */
3351     fill_prstatus(info->prstatus, ts, signr);
3352     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3353     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3354               sizeof (*info->prstatus), info->prstatus);
3355     fill_psinfo(info->psinfo, ts);
3356     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3357               sizeof (*info->psinfo), info->psinfo);
3358     fill_auxv_note(&info->notes[2], ts);
3359     info->numnote = 3;
3360 
3361     info->notes_size = 0;
3362     for (i = 0; i < info->numnote; i++)
3363         info->notes_size += note_size(&info->notes[i]);
3364 
3365     /* read and fill status of all threads */
3366     cpu_list_lock();
3367     CPU_FOREACH(cpu) {
3368         if (cpu == thread_cpu) {
3369             continue;
3370         }
3371         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3372     }
3373     cpu_list_unlock();
3374 
3375     return (0);
3376 }
3377 
3378 static void free_note_info(struct elf_note_info *info)
3379 {
3380     struct elf_thread_status *ets;
3381 
3382     while (!QTAILQ_EMPTY(&info->thread_list)) {
3383         ets = QTAILQ_FIRST(&info->thread_list);
3384         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3385         g_free(ets);
3386     }
3387 
3388     g_free(info->prstatus);
3389     g_free(info->psinfo);
3390     g_free(info->notes);
3391 }
3392 
3393 static int write_note_info(struct elf_note_info *info, int fd)
3394 {
3395     struct elf_thread_status *ets;
3396     int i, error = 0;
3397 
3398     /* write prstatus, psinfo and auxv for current thread */
3399     for (i = 0; i < info->numnote; i++)
3400         if ((error = write_note(&info->notes[i], fd)) != 0)
3401             return (error);
3402 
3403     /* write prstatus for each thread */
3404     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3405         if ((error = write_note(&ets->notes[0], fd)) != 0)
3406             return (error);
3407     }
3408 
3409     return (0);
3410 }
3411 
3412 /*
3413  * Write out ELF coredump.
3414  *
3415  * See documentation of ELF object file format in:
3416  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3417  *
3418  * Coredump format in linux is following:
3419  *
3420  * 0   +----------------------+         \
3421  *     | ELF header           | ET_CORE  |
3422  *     +----------------------+          |
3423  *     | ELF program headers  |          |--- headers
3424  *     | - NOTE section       |          |
3425  *     | - PT_LOAD sections   |          |
3426  *     +----------------------+         /
3427  *     | NOTEs:               |
3428  *     | - NT_PRSTATUS        |
3429  *     | - NT_PRSINFO         |
3430  *     | - NT_AUXV            |
3431  *     +----------------------+ <-- aligned to target page
3432  *     | Process memory dump  |
3433  *     :                      :
3434  *     .                      .
3435  *     :                      :
3436  *     |                      |
3437  *     +----------------------+
3438  *
3439  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3440  * NT_PRSINFO  -> struct elf_prpsinfo
3441  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3442  *
3443  * Format follows System V format as close as possible.  Current
3444  * version limitations are as follows:
3445  *     - no floating point registers are dumped
3446  *
3447  * Function returns 0 in case of success, negative errno otherwise.
3448  *
3449  * TODO: make this work also during runtime: it should be
3450  * possible to force coredump from running process and then
3451  * continue processing.  For example qemu could set up SIGUSR2
3452  * handler (provided that target process haven't registered
3453  * handler for that) that does the dump when signal is received.
3454  */
3455 static int elf_core_dump(int signr, const CPUArchState *env)
3456 {
3457     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3458     const TaskState *ts = (const TaskState *)cpu->opaque;
3459     struct vm_area_struct *vma = NULL;
3460     char corefile[PATH_MAX];
3461     struct elf_note_info info;
3462     struct elfhdr elf;
3463     struct elf_phdr phdr;
3464     struct rlimit dumpsize;
3465     struct mm_struct *mm = NULL;
3466     off_t offset = 0, data_offset = 0;
3467     int segs = 0;
3468     int fd = -1;
3469 
3470     init_note_info(&info);
3471 
3472     errno = 0;
3473     getrlimit(RLIMIT_CORE, &dumpsize);
3474     if (dumpsize.rlim_cur == 0)
3475         return 0;
3476 
3477     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3478         return (-errno);
3479 
3480     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3481                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3482         return (-errno);
3483 
3484     /*
3485      * Walk through target process memory mappings and
3486      * set up structure containing this information.  After
3487      * this point vma_xxx functions can be used.
3488      */
3489     if ((mm = vma_init()) == NULL)
3490         goto out;
3491 
3492     walk_memory_regions(mm, vma_walker);
3493     segs = vma_get_mapping_count(mm);
3494 
3495     /*
3496      * Construct valid coredump ELF header.  We also
3497      * add one more segment for notes.
3498      */
3499     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3500     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3501         goto out;
3502 
3503     /* fill in the in-memory version of notes */
3504     if (fill_note_info(&info, signr, env) < 0)
3505         goto out;
3506 
3507     offset += sizeof (elf);                             /* elf header */
3508     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3509 
3510     /* write out notes program header */
3511     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3512 
3513     offset += info.notes_size;
3514     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3515         goto out;
3516 
3517     /*
3518      * ELF specification wants data to start at page boundary so
3519      * we align it here.
3520      */
3521     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3522 
3523     /*
3524      * Write program headers for memory regions mapped in
3525      * the target process.
3526      */
3527     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3528         (void) memset(&phdr, 0, sizeof (phdr));
3529 
3530         phdr.p_type = PT_LOAD;
3531         phdr.p_offset = offset;
3532         phdr.p_vaddr = vma->vma_start;
3533         phdr.p_paddr = 0;
3534         phdr.p_filesz = vma_dump_size(vma);
3535         offset += phdr.p_filesz;
3536         phdr.p_memsz = vma->vma_end - vma->vma_start;
3537         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3538         if (vma->vma_flags & PROT_WRITE)
3539             phdr.p_flags |= PF_W;
3540         if (vma->vma_flags & PROT_EXEC)
3541             phdr.p_flags |= PF_X;
3542         phdr.p_align = ELF_EXEC_PAGESIZE;
3543 
3544         bswap_phdr(&phdr, 1);
3545         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3546             goto out;
3547         }
3548     }
3549 
3550     /*
3551      * Next we write notes just after program headers.  No
3552      * alignment needed here.
3553      */
3554     if (write_note_info(&info, fd) < 0)
3555         goto out;
3556 
3557     /* align data to page boundary */
3558     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3559         goto out;
3560 
3561     /*
3562      * Finally we can dump process memory into corefile as well.
3563      */
3564     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3565         abi_ulong addr;
3566         abi_ulong end;
3567 
3568         end = vma->vma_start + vma_dump_size(vma);
3569 
3570         for (addr = vma->vma_start; addr < end;
3571              addr += TARGET_PAGE_SIZE) {
3572             char page[TARGET_PAGE_SIZE];
3573             int error;
3574 
3575             /*
3576              *  Read in page from target process memory and
3577              *  write it to coredump file.
3578              */
3579             error = copy_from_user(page, addr, sizeof (page));
3580             if (error != 0) {
3581                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3582                                addr);
3583                 errno = -error;
3584                 goto out;
3585             }
3586             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3587                 goto out;
3588         }
3589     }
3590 
3591  out:
3592     free_note_info(&info);
3593     if (mm != NULL)
3594         vma_delete(mm);
3595     (void) close(fd);
3596 
3597     if (errno != 0)
3598         return (-errno);
3599     return (0);
3600 }
3601 #endif /* USE_ELF_CORE_DUMP */
3602 
3603 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3604 {
3605     init_thread(regs, infop);
3606 }
3607