1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 462 #define GET_FEATURE_ID(feat, hwcap) \ 463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 464 465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 479 * to our VFP_FP16 feature bit. 480 */ 481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 483 484 return hwcaps; 485 } 486 487 static uint32_t get_elf_hwcap2(void) 488 { 489 ARMCPU *cpu = ARM_CPU(thread_cpu); 490 uint32_t hwcaps = 0; 491 492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 497 return hwcaps; 498 } 499 500 #undef GET_FEATURE 501 #undef GET_FEATURE_ID 502 503 #else 504 /* 64 bit ARM definitions */ 505 #define ELF_START_MMAP 0x80000000 506 507 #define ELF_ARCH EM_AARCH64 508 #define ELF_CLASS ELFCLASS64 509 #define ELF_PLATFORM "aarch64" 510 511 static inline void init_thread(struct target_pt_regs *regs, 512 struct image_info *infop) 513 { 514 abi_long stack = infop->start_stack; 515 memset(regs, 0, sizeof(*regs)); 516 517 regs->pc = infop->entry & ~0x3ULL; 518 regs->sp = stack; 519 } 520 521 #define ELF_NREG 34 522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 523 524 static void elf_core_copy_regs(target_elf_gregset_t *regs, 525 const CPUARMState *env) 526 { 527 int i; 528 529 for (i = 0; i < 32; i++) { 530 (*regs)[i] = tswapreg(env->xregs[i]); 531 } 532 (*regs)[32] = tswapreg(env->pc); 533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 534 } 535 536 #define USE_ELF_CORE_DUMP 537 #define ELF_EXEC_PAGESIZE 4096 538 539 enum { 540 ARM_HWCAP_A64_FP = 1 << 0, 541 ARM_HWCAP_A64_ASIMD = 1 << 1, 542 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 543 ARM_HWCAP_A64_AES = 1 << 3, 544 ARM_HWCAP_A64_PMULL = 1 << 4, 545 ARM_HWCAP_A64_SHA1 = 1 << 5, 546 ARM_HWCAP_A64_SHA2 = 1 << 6, 547 ARM_HWCAP_A64_CRC32 = 1 << 7, 548 ARM_HWCAP_A64_ATOMICS = 1 << 8, 549 ARM_HWCAP_A64_FPHP = 1 << 9, 550 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 551 ARM_HWCAP_A64_CPUID = 1 << 11, 552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 553 ARM_HWCAP_A64_JSCVT = 1 << 13, 554 ARM_HWCAP_A64_FCMA = 1 << 14, 555 ARM_HWCAP_A64_LRCPC = 1 << 15, 556 ARM_HWCAP_A64_DCPOP = 1 << 16, 557 ARM_HWCAP_A64_SHA3 = 1 << 17, 558 ARM_HWCAP_A64_SM3 = 1 << 18, 559 ARM_HWCAP_A64_SM4 = 1 << 19, 560 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 561 ARM_HWCAP_A64_SHA512 = 1 << 21, 562 ARM_HWCAP_A64_SVE = 1 << 22, 563 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 564 ARM_HWCAP_A64_DIT = 1 << 24, 565 ARM_HWCAP_A64_USCAT = 1 << 25, 566 ARM_HWCAP_A64_ILRCPC = 1 << 26, 567 ARM_HWCAP_A64_FLAGM = 1 << 27, 568 ARM_HWCAP_A64_SSBS = 1 << 28, 569 ARM_HWCAP_A64_SB = 1 << 29, 570 ARM_HWCAP_A64_PACA = 1 << 30, 571 ARM_HWCAP_A64_PACG = 1UL << 31, 572 }; 573 574 #define ELF_HWCAP get_elf_hwcap() 575 576 static uint32_t get_elf_hwcap(void) 577 { 578 ARMCPU *cpu = ARM_CPU(thread_cpu); 579 uint32_t hwcaps = 0; 580 581 hwcaps |= ARM_HWCAP_A64_FP; 582 hwcaps |= ARM_HWCAP_A64_ASIMD; 583 hwcaps |= ARM_HWCAP_A64_CPUID; 584 585 /* probe for the extra features */ 586 #define GET_FEATURE_ID(feat, hwcap) \ 587 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 588 589 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 590 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 591 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 592 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 593 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 594 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 595 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 596 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 597 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 598 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 599 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 600 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 601 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 602 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 603 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 604 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 605 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 606 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 607 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 608 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 609 610 #undef GET_FEATURE_ID 611 612 return hwcaps; 613 } 614 615 #endif /* not TARGET_AARCH64 */ 616 #endif /* TARGET_ARM */ 617 618 #ifdef TARGET_SPARC 619 #ifdef TARGET_SPARC64 620 621 #define ELF_START_MMAP 0x80000000 622 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 623 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 624 #ifndef TARGET_ABI32 625 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 626 #else 627 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 628 #endif 629 630 #define ELF_CLASS ELFCLASS64 631 #define ELF_ARCH EM_SPARCV9 632 633 #define STACK_BIAS 2047 634 635 static inline void init_thread(struct target_pt_regs *regs, 636 struct image_info *infop) 637 { 638 #ifndef TARGET_ABI32 639 regs->tstate = 0; 640 #endif 641 regs->pc = infop->entry; 642 regs->npc = regs->pc + 4; 643 regs->y = 0; 644 #ifdef TARGET_ABI32 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 #else 647 if (personality(infop->personality) == PER_LINUX32) 648 regs->u_regs[14] = infop->start_stack - 16 * 4; 649 else 650 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 651 #endif 652 } 653 654 #else 655 #define ELF_START_MMAP 0x80000000 656 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 657 | HWCAP_SPARC_MULDIV) 658 659 #define ELF_CLASS ELFCLASS32 660 #define ELF_ARCH EM_SPARC 661 662 static inline void init_thread(struct target_pt_regs *regs, 663 struct image_info *infop) 664 { 665 regs->psr = 0; 666 regs->pc = infop->entry; 667 regs->npc = regs->pc + 4; 668 regs->y = 0; 669 regs->u_regs[14] = infop->start_stack - 16 * 4; 670 } 671 672 #endif 673 #endif 674 675 #ifdef TARGET_PPC 676 677 #define ELF_MACHINE PPC_ELF_MACHINE 678 #define ELF_START_MMAP 0x80000000 679 680 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 681 682 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 683 684 #define ELF_CLASS ELFCLASS64 685 686 #else 687 688 #define ELF_CLASS ELFCLASS32 689 690 #endif 691 692 #define ELF_ARCH EM_PPC 693 694 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 695 See arch/powerpc/include/asm/cputable.h. */ 696 enum { 697 QEMU_PPC_FEATURE_32 = 0x80000000, 698 QEMU_PPC_FEATURE_64 = 0x40000000, 699 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 700 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 701 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 702 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 703 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 704 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 705 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 706 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 707 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 708 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 709 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 710 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 711 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 712 QEMU_PPC_FEATURE_CELL = 0x00010000, 713 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 714 QEMU_PPC_FEATURE_SMT = 0x00004000, 715 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 716 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 717 QEMU_PPC_FEATURE_PA6T = 0x00000800, 718 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 719 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 720 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 721 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 722 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 723 724 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 725 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 726 727 /* Feature definitions in AT_HWCAP2. */ 728 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 729 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 730 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 731 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 732 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 733 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 734 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 735 }; 736 737 #define ELF_HWCAP get_elf_hwcap() 738 739 static uint32_t get_elf_hwcap(void) 740 { 741 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 742 uint32_t features = 0; 743 744 /* We don't have to be terribly complete here; the high points are 745 Altivec/FP/SPE support. Anything else is just a bonus. */ 746 #define GET_FEATURE(flag, feature) \ 747 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 748 #define GET_FEATURE2(flags, feature) \ 749 do { \ 750 if ((cpu->env.insns_flags2 & flags) == flags) { \ 751 features |= feature; \ 752 } \ 753 } while (0) 754 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 755 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 756 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 757 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 758 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 759 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 760 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 761 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 762 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 763 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 764 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 765 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 766 QEMU_PPC_FEATURE_ARCH_2_06); 767 #undef GET_FEATURE 768 #undef GET_FEATURE2 769 770 return features; 771 } 772 773 #define ELF_HWCAP2 get_elf_hwcap2() 774 775 static uint32_t get_elf_hwcap2(void) 776 { 777 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 778 uint32_t features = 0; 779 780 #define GET_FEATURE(flag, feature) \ 781 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 782 #define GET_FEATURE2(flag, feature) \ 783 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 784 785 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 786 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 787 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 788 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 789 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 790 791 #undef GET_FEATURE 792 #undef GET_FEATURE2 793 794 return features; 795 } 796 797 /* 798 * The requirements here are: 799 * - keep the final alignment of sp (sp & 0xf) 800 * - make sure the 32-bit value at the first 16 byte aligned position of 801 * AUXV is greater than 16 for glibc compatibility. 802 * AT_IGNOREPPC is used for that. 803 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 804 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 805 */ 806 #define DLINFO_ARCH_ITEMS 5 807 #define ARCH_DLINFO \ 808 do { \ 809 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 810 /* \ 811 * Handle glibc compatibility: these magic entries must \ 812 * be at the lowest addresses in the final auxv. \ 813 */ \ 814 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 815 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 816 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 817 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 818 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 819 } while (0) 820 821 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 822 { 823 _regs->gpr[1] = infop->start_stack; 824 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 825 if (get_ppc64_abi(infop) < 2) { 826 uint64_t val; 827 get_user_u64(val, infop->entry + 8); 828 _regs->gpr[2] = val + infop->load_bias; 829 get_user_u64(val, infop->entry); 830 infop->entry = val + infop->load_bias; 831 } else { 832 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 833 } 834 #endif 835 _regs->nip = infop->entry; 836 } 837 838 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 839 #define ELF_NREG 48 840 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 841 842 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 843 { 844 int i; 845 target_ulong ccr = 0; 846 847 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 848 (*regs)[i] = tswapreg(env->gpr[i]); 849 } 850 851 (*regs)[32] = tswapreg(env->nip); 852 (*regs)[33] = tswapreg(env->msr); 853 (*regs)[35] = tswapreg(env->ctr); 854 (*regs)[36] = tswapreg(env->lr); 855 (*regs)[37] = tswapreg(env->xer); 856 857 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 858 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 859 } 860 (*regs)[38] = tswapreg(ccr); 861 } 862 863 #define USE_ELF_CORE_DUMP 864 #define ELF_EXEC_PAGESIZE 4096 865 866 #endif 867 868 #ifdef TARGET_MIPS 869 870 #define ELF_START_MMAP 0x80000000 871 872 #ifdef TARGET_MIPS64 873 #define ELF_CLASS ELFCLASS64 874 #else 875 #define ELF_CLASS ELFCLASS32 876 #endif 877 #define ELF_ARCH EM_MIPS 878 879 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 880 881 static inline void init_thread(struct target_pt_regs *regs, 882 struct image_info *infop) 883 { 884 regs->cp0_status = 2 << CP0St_KSU; 885 regs->cp0_epc = infop->entry; 886 regs->regs[29] = infop->start_stack; 887 } 888 889 /* See linux kernel: arch/mips/include/asm/elf.h. */ 890 #define ELF_NREG 45 891 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 892 893 /* See linux kernel: arch/mips/include/asm/reg.h. */ 894 enum { 895 #ifdef TARGET_MIPS64 896 TARGET_EF_R0 = 0, 897 #else 898 TARGET_EF_R0 = 6, 899 #endif 900 TARGET_EF_R26 = TARGET_EF_R0 + 26, 901 TARGET_EF_R27 = TARGET_EF_R0 + 27, 902 TARGET_EF_LO = TARGET_EF_R0 + 32, 903 TARGET_EF_HI = TARGET_EF_R0 + 33, 904 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 905 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 906 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 907 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 908 }; 909 910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 912 { 913 int i; 914 915 for (i = 0; i < TARGET_EF_R0; i++) { 916 (*regs)[i] = 0; 917 } 918 (*regs)[TARGET_EF_R0] = 0; 919 920 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 921 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 922 } 923 924 (*regs)[TARGET_EF_R26] = 0; 925 (*regs)[TARGET_EF_R27] = 0; 926 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 927 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 928 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 929 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 930 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 931 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 932 } 933 934 #define USE_ELF_CORE_DUMP 935 #define ELF_EXEC_PAGESIZE 4096 936 937 /* See arch/mips/include/uapi/asm/hwcap.h. */ 938 enum { 939 HWCAP_MIPS_R6 = (1 << 0), 940 HWCAP_MIPS_MSA = (1 << 1), 941 }; 942 943 #define ELF_HWCAP get_elf_hwcap() 944 945 static uint32_t get_elf_hwcap(void) 946 { 947 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 948 uint32_t hwcaps = 0; 949 950 #define GET_FEATURE(flag, hwcap) \ 951 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 952 953 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 954 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 955 956 #undef GET_FEATURE 957 958 return hwcaps; 959 } 960 961 #endif /* TARGET_MIPS */ 962 963 #ifdef TARGET_MICROBLAZE 964 965 #define ELF_START_MMAP 0x80000000 966 967 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 968 969 #define ELF_CLASS ELFCLASS32 970 #define ELF_ARCH EM_MICROBLAZE 971 972 static inline void init_thread(struct target_pt_regs *regs, 973 struct image_info *infop) 974 { 975 regs->pc = infop->entry; 976 regs->r1 = infop->start_stack; 977 978 } 979 980 #define ELF_EXEC_PAGESIZE 4096 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_NREG 38 984 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 985 986 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 987 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 988 { 989 int i, pos = 0; 990 991 for (i = 0; i < 32; i++) { 992 (*regs)[pos++] = tswapreg(env->regs[i]); 993 } 994 995 for (i = 0; i < 6; i++) { 996 (*regs)[pos++] = tswapreg(env->sregs[i]); 997 } 998 } 999 1000 #endif /* TARGET_MICROBLAZE */ 1001 1002 #ifdef TARGET_NIOS2 1003 1004 #define ELF_START_MMAP 0x80000000 1005 1006 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1007 1008 #define ELF_CLASS ELFCLASS32 1009 #define ELF_ARCH EM_ALTERA_NIOS2 1010 1011 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1012 { 1013 regs->ea = infop->entry; 1014 regs->sp = infop->start_stack; 1015 regs->estatus = 0x3; 1016 } 1017 1018 #define ELF_EXEC_PAGESIZE 4096 1019 1020 #define USE_ELF_CORE_DUMP 1021 #define ELF_NREG 49 1022 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1023 1024 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1025 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1026 const CPUNios2State *env) 1027 { 1028 int i; 1029 1030 (*regs)[0] = -1; 1031 for (i = 1; i < 8; i++) /* r0-r7 */ 1032 (*regs)[i] = tswapreg(env->regs[i + 7]); 1033 1034 for (i = 8; i < 16; i++) /* r8-r15 */ 1035 (*regs)[i] = tswapreg(env->regs[i - 8]); 1036 1037 for (i = 16; i < 24; i++) /* r16-r23 */ 1038 (*regs)[i] = tswapreg(env->regs[i + 7]); 1039 (*regs)[24] = -1; /* R_ET */ 1040 (*regs)[25] = -1; /* R_BT */ 1041 (*regs)[26] = tswapreg(env->regs[R_GP]); 1042 (*regs)[27] = tswapreg(env->regs[R_SP]); 1043 (*regs)[28] = tswapreg(env->regs[R_FP]); 1044 (*regs)[29] = tswapreg(env->regs[R_EA]); 1045 (*regs)[30] = -1; /* R_SSTATUS */ 1046 (*regs)[31] = tswapreg(env->regs[R_RA]); 1047 1048 (*regs)[32] = tswapreg(env->regs[R_PC]); 1049 1050 (*regs)[33] = -1; /* R_STATUS */ 1051 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1052 1053 for (i = 35; i < 49; i++) /* ... */ 1054 (*regs)[i] = -1; 1055 } 1056 1057 #endif /* TARGET_NIOS2 */ 1058 1059 #ifdef TARGET_OPENRISC 1060 1061 #define ELF_START_MMAP 0x08000000 1062 1063 #define ELF_ARCH EM_OPENRISC 1064 #define ELF_CLASS ELFCLASS32 1065 #define ELF_DATA ELFDATA2MSB 1066 1067 static inline void init_thread(struct target_pt_regs *regs, 1068 struct image_info *infop) 1069 { 1070 regs->pc = infop->entry; 1071 regs->gpr[1] = infop->start_stack; 1072 } 1073 1074 #define USE_ELF_CORE_DUMP 1075 #define ELF_EXEC_PAGESIZE 8192 1076 1077 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1078 #define ELF_NREG 34 /* gprs and pc, sr */ 1079 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1080 1081 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1082 const CPUOpenRISCState *env) 1083 { 1084 int i; 1085 1086 for (i = 0; i < 32; i++) { 1087 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1088 } 1089 (*regs)[32] = tswapreg(env->pc); 1090 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1091 } 1092 #define ELF_HWCAP 0 1093 #define ELF_PLATFORM NULL 1094 1095 #endif /* TARGET_OPENRISC */ 1096 1097 #ifdef TARGET_SH4 1098 1099 #define ELF_START_MMAP 0x80000000 1100 1101 #define ELF_CLASS ELFCLASS32 1102 #define ELF_ARCH EM_SH 1103 1104 static inline void init_thread(struct target_pt_regs *regs, 1105 struct image_info *infop) 1106 { 1107 /* Check other registers XXXXX */ 1108 regs->pc = infop->entry; 1109 regs->regs[15] = infop->start_stack; 1110 } 1111 1112 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1113 #define ELF_NREG 23 1114 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1115 1116 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1117 enum { 1118 TARGET_REG_PC = 16, 1119 TARGET_REG_PR = 17, 1120 TARGET_REG_SR = 18, 1121 TARGET_REG_GBR = 19, 1122 TARGET_REG_MACH = 20, 1123 TARGET_REG_MACL = 21, 1124 TARGET_REG_SYSCALL = 22 1125 }; 1126 1127 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1128 const CPUSH4State *env) 1129 { 1130 int i; 1131 1132 for (i = 0; i < 16; i++) { 1133 (*regs)[i] = tswapreg(env->gregs[i]); 1134 } 1135 1136 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1137 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1138 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1139 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1140 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1141 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1142 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1143 } 1144 1145 #define USE_ELF_CORE_DUMP 1146 #define ELF_EXEC_PAGESIZE 4096 1147 1148 enum { 1149 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1150 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1151 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1152 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1153 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1154 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1155 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1156 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1157 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1158 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1159 }; 1160 1161 #define ELF_HWCAP get_elf_hwcap() 1162 1163 static uint32_t get_elf_hwcap(void) 1164 { 1165 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1166 uint32_t hwcap = 0; 1167 1168 hwcap |= SH_CPU_HAS_FPU; 1169 1170 if (cpu->env.features & SH_FEATURE_SH4A) { 1171 hwcap |= SH_CPU_HAS_LLSC; 1172 } 1173 1174 return hwcap; 1175 } 1176 1177 #endif 1178 1179 #ifdef TARGET_CRIS 1180 1181 #define ELF_START_MMAP 0x80000000 1182 1183 #define ELF_CLASS ELFCLASS32 1184 #define ELF_ARCH EM_CRIS 1185 1186 static inline void init_thread(struct target_pt_regs *regs, 1187 struct image_info *infop) 1188 { 1189 regs->erp = infop->entry; 1190 } 1191 1192 #define ELF_EXEC_PAGESIZE 8192 1193 1194 #endif 1195 1196 #ifdef TARGET_M68K 1197 1198 #define ELF_START_MMAP 0x80000000 1199 1200 #define ELF_CLASS ELFCLASS32 1201 #define ELF_ARCH EM_68K 1202 1203 /* ??? Does this need to do anything? 1204 #define ELF_PLAT_INIT(_r) */ 1205 1206 static inline void init_thread(struct target_pt_regs *regs, 1207 struct image_info *infop) 1208 { 1209 regs->usp = infop->start_stack; 1210 regs->sr = 0; 1211 regs->pc = infop->entry; 1212 } 1213 1214 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1215 #define ELF_NREG 20 1216 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1217 1218 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1219 { 1220 (*regs)[0] = tswapreg(env->dregs[1]); 1221 (*regs)[1] = tswapreg(env->dregs[2]); 1222 (*regs)[2] = tswapreg(env->dregs[3]); 1223 (*regs)[3] = tswapreg(env->dregs[4]); 1224 (*regs)[4] = tswapreg(env->dregs[5]); 1225 (*regs)[5] = tswapreg(env->dregs[6]); 1226 (*regs)[6] = tswapreg(env->dregs[7]); 1227 (*regs)[7] = tswapreg(env->aregs[0]); 1228 (*regs)[8] = tswapreg(env->aregs[1]); 1229 (*regs)[9] = tswapreg(env->aregs[2]); 1230 (*regs)[10] = tswapreg(env->aregs[3]); 1231 (*regs)[11] = tswapreg(env->aregs[4]); 1232 (*regs)[12] = tswapreg(env->aregs[5]); 1233 (*regs)[13] = tswapreg(env->aregs[6]); 1234 (*regs)[14] = tswapreg(env->dregs[0]); 1235 (*regs)[15] = tswapreg(env->aregs[7]); 1236 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1237 (*regs)[17] = tswapreg(env->sr); 1238 (*regs)[18] = tswapreg(env->pc); 1239 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1240 } 1241 1242 #define USE_ELF_CORE_DUMP 1243 #define ELF_EXEC_PAGESIZE 8192 1244 1245 #endif 1246 1247 #ifdef TARGET_ALPHA 1248 1249 #define ELF_START_MMAP (0x30000000000ULL) 1250 1251 #define ELF_CLASS ELFCLASS64 1252 #define ELF_ARCH EM_ALPHA 1253 1254 static inline void init_thread(struct target_pt_regs *regs, 1255 struct image_info *infop) 1256 { 1257 regs->pc = infop->entry; 1258 regs->ps = 8; 1259 regs->usp = infop->start_stack; 1260 } 1261 1262 #define ELF_EXEC_PAGESIZE 8192 1263 1264 #endif /* TARGET_ALPHA */ 1265 1266 #ifdef TARGET_S390X 1267 1268 #define ELF_START_MMAP (0x20000000000ULL) 1269 1270 #define ELF_CLASS ELFCLASS64 1271 #define ELF_DATA ELFDATA2MSB 1272 #define ELF_ARCH EM_S390 1273 1274 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1275 { 1276 regs->psw.addr = infop->entry; 1277 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1278 regs->gprs[15] = infop->start_stack; 1279 } 1280 1281 #endif /* TARGET_S390X */ 1282 1283 #ifdef TARGET_TILEGX 1284 1285 /* 42 bits real used address, a half for user mode */ 1286 #define ELF_START_MMAP (0x00000020000000000ULL) 1287 1288 #define elf_check_arch(x) ((x) == EM_TILEGX) 1289 1290 #define ELF_CLASS ELFCLASS64 1291 #define ELF_DATA ELFDATA2LSB 1292 #define ELF_ARCH EM_TILEGX 1293 1294 static inline void init_thread(struct target_pt_regs *regs, 1295 struct image_info *infop) 1296 { 1297 regs->pc = infop->entry; 1298 regs->sp = infop->start_stack; 1299 1300 } 1301 1302 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1303 1304 #endif /* TARGET_TILEGX */ 1305 1306 #ifdef TARGET_RISCV 1307 1308 #define ELF_START_MMAP 0x80000000 1309 #define ELF_ARCH EM_RISCV 1310 1311 #ifdef TARGET_RISCV32 1312 #define ELF_CLASS ELFCLASS32 1313 #else 1314 #define ELF_CLASS ELFCLASS64 1315 #endif 1316 1317 static inline void init_thread(struct target_pt_regs *regs, 1318 struct image_info *infop) 1319 { 1320 regs->sepc = infop->entry; 1321 regs->sp = infop->start_stack; 1322 } 1323 1324 #define ELF_EXEC_PAGESIZE 4096 1325 1326 #endif /* TARGET_RISCV */ 1327 1328 #ifdef TARGET_HPPA 1329 1330 #define ELF_START_MMAP 0x80000000 1331 #define ELF_CLASS ELFCLASS32 1332 #define ELF_ARCH EM_PARISC 1333 #define ELF_PLATFORM "PARISC" 1334 #define STACK_GROWS_DOWN 0 1335 #define STACK_ALIGNMENT 64 1336 1337 static inline void init_thread(struct target_pt_regs *regs, 1338 struct image_info *infop) 1339 { 1340 regs->iaoq[0] = infop->entry; 1341 regs->iaoq[1] = infop->entry + 4; 1342 regs->gr[23] = 0; 1343 regs->gr[24] = infop->arg_start; 1344 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1345 /* The top-of-stack contains a linkage buffer. */ 1346 regs->gr[30] = infop->start_stack + 64; 1347 regs->gr[31] = infop->entry; 1348 } 1349 1350 #endif /* TARGET_HPPA */ 1351 1352 #ifdef TARGET_XTENSA 1353 1354 #define ELF_START_MMAP 0x20000000 1355 1356 #define ELF_CLASS ELFCLASS32 1357 #define ELF_ARCH EM_XTENSA 1358 1359 static inline void init_thread(struct target_pt_regs *regs, 1360 struct image_info *infop) 1361 { 1362 regs->windowbase = 0; 1363 regs->windowstart = 1; 1364 regs->areg[1] = infop->start_stack; 1365 regs->pc = infop->entry; 1366 } 1367 1368 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1369 #define ELF_NREG 128 1370 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1371 1372 enum { 1373 TARGET_REG_PC, 1374 TARGET_REG_PS, 1375 TARGET_REG_LBEG, 1376 TARGET_REG_LEND, 1377 TARGET_REG_LCOUNT, 1378 TARGET_REG_SAR, 1379 TARGET_REG_WINDOWSTART, 1380 TARGET_REG_WINDOWBASE, 1381 TARGET_REG_THREADPTR, 1382 TARGET_REG_AR0 = 64, 1383 }; 1384 1385 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1386 const CPUXtensaState *env) 1387 { 1388 unsigned i; 1389 1390 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1391 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1392 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1393 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1394 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1395 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1396 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1397 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1398 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1399 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1400 for (i = 0; i < env->config->nareg; ++i) { 1401 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1402 } 1403 } 1404 1405 #define USE_ELF_CORE_DUMP 1406 #define ELF_EXEC_PAGESIZE 4096 1407 1408 #endif /* TARGET_XTENSA */ 1409 1410 #ifndef ELF_PLATFORM 1411 #define ELF_PLATFORM (NULL) 1412 #endif 1413 1414 #ifndef ELF_MACHINE 1415 #define ELF_MACHINE ELF_ARCH 1416 #endif 1417 1418 #ifndef elf_check_arch 1419 #define elf_check_arch(x) ((x) == ELF_ARCH) 1420 #endif 1421 1422 #ifndef ELF_HWCAP 1423 #define ELF_HWCAP 0 1424 #endif 1425 1426 #ifndef STACK_GROWS_DOWN 1427 #define STACK_GROWS_DOWN 1 1428 #endif 1429 1430 #ifndef STACK_ALIGNMENT 1431 #define STACK_ALIGNMENT 16 1432 #endif 1433 1434 #ifdef TARGET_ABI32 1435 #undef ELF_CLASS 1436 #define ELF_CLASS ELFCLASS32 1437 #undef bswaptls 1438 #define bswaptls(ptr) bswap32s(ptr) 1439 #endif 1440 1441 #include "elf.h" 1442 1443 struct exec 1444 { 1445 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1446 unsigned int a_text; /* length of text, in bytes */ 1447 unsigned int a_data; /* length of data, in bytes */ 1448 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1449 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1450 unsigned int a_entry; /* start address */ 1451 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1452 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1453 }; 1454 1455 1456 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1457 #define OMAGIC 0407 1458 #define NMAGIC 0410 1459 #define ZMAGIC 0413 1460 #define QMAGIC 0314 1461 1462 /* Necessary parameters */ 1463 #define TARGET_ELF_EXEC_PAGESIZE \ 1464 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1465 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1466 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1467 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1468 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1469 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1470 1471 #define DLINFO_ITEMS 15 1472 1473 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1474 { 1475 memcpy(to, from, n); 1476 } 1477 1478 #ifdef BSWAP_NEEDED 1479 static void bswap_ehdr(struct elfhdr *ehdr) 1480 { 1481 bswap16s(&ehdr->e_type); /* Object file type */ 1482 bswap16s(&ehdr->e_machine); /* Architecture */ 1483 bswap32s(&ehdr->e_version); /* Object file version */ 1484 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1485 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1486 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1487 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1488 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1489 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1490 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1491 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1492 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1493 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1494 } 1495 1496 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1497 { 1498 int i; 1499 for (i = 0; i < phnum; ++i, ++phdr) { 1500 bswap32s(&phdr->p_type); /* Segment type */ 1501 bswap32s(&phdr->p_flags); /* Segment flags */ 1502 bswaptls(&phdr->p_offset); /* Segment file offset */ 1503 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1504 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1505 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1506 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1507 bswaptls(&phdr->p_align); /* Segment alignment */ 1508 } 1509 } 1510 1511 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1512 { 1513 int i; 1514 for (i = 0; i < shnum; ++i, ++shdr) { 1515 bswap32s(&shdr->sh_name); 1516 bswap32s(&shdr->sh_type); 1517 bswaptls(&shdr->sh_flags); 1518 bswaptls(&shdr->sh_addr); 1519 bswaptls(&shdr->sh_offset); 1520 bswaptls(&shdr->sh_size); 1521 bswap32s(&shdr->sh_link); 1522 bswap32s(&shdr->sh_info); 1523 bswaptls(&shdr->sh_addralign); 1524 bswaptls(&shdr->sh_entsize); 1525 } 1526 } 1527 1528 static void bswap_sym(struct elf_sym *sym) 1529 { 1530 bswap32s(&sym->st_name); 1531 bswaptls(&sym->st_value); 1532 bswaptls(&sym->st_size); 1533 bswap16s(&sym->st_shndx); 1534 } 1535 1536 #ifdef TARGET_MIPS 1537 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1538 { 1539 bswap16s(&abiflags->version); 1540 bswap32s(&abiflags->ases); 1541 bswap32s(&abiflags->isa_ext); 1542 bswap32s(&abiflags->flags1); 1543 bswap32s(&abiflags->flags2); 1544 } 1545 #endif 1546 #else 1547 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1548 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1549 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1550 static inline void bswap_sym(struct elf_sym *sym) { } 1551 #ifdef TARGET_MIPS 1552 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1553 #endif 1554 #endif 1555 1556 #ifdef USE_ELF_CORE_DUMP 1557 static int elf_core_dump(int, const CPUArchState *); 1558 #endif /* USE_ELF_CORE_DUMP */ 1559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1560 1561 /* Verify the portions of EHDR within E_IDENT for the target. 1562 This can be performed before bswapping the entire header. */ 1563 static bool elf_check_ident(struct elfhdr *ehdr) 1564 { 1565 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1566 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1567 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1568 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1569 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1570 && ehdr->e_ident[EI_DATA] == ELF_DATA 1571 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1572 } 1573 1574 /* Verify the portions of EHDR outside of E_IDENT for the target. 1575 This has to wait until after bswapping the header. */ 1576 static bool elf_check_ehdr(struct elfhdr *ehdr) 1577 { 1578 return (elf_check_arch(ehdr->e_machine) 1579 && ehdr->e_ehsize == sizeof(struct elfhdr) 1580 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1581 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1582 } 1583 1584 /* 1585 * 'copy_elf_strings()' copies argument/envelope strings from user 1586 * memory to free pages in kernel mem. These are in a format ready 1587 * to be put directly into the top of new user memory. 1588 * 1589 */ 1590 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1591 abi_ulong p, abi_ulong stack_limit) 1592 { 1593 char *tmp; 1594 int len, i; 1595 abi_ulong top = p; 1596 1597 if (!p) { 1598 return 0; /* bullet-proofing */ 1599 } 1600 1601 if (STACK_GROWS_DOWN) { 1602 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1603 for (i = argc - 1; i >= 0; --i) { 1604 tmp = argv[i]; 1605 if (!tmp) { 1606 fprintf(stderr, "VFS: argc is wrong"); 1607 exit(-1); 1608 } 1609 len = strlen(tmp) + 1; 1610 tmp += len; 1611 1612 if (len > (p - stack_limit)) { 1613 return 0; 1614 } 1615 while (len) { 1616 int bytes_to_copy = (len > offset) ? offset : len; 1617 tmp -= bytes_to_copy; 1618 p -= bytes_to_copy; 1619 offset -= bytes_to_copy; 1620 len -= bytes_to_copy; 1621 1622 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1623 1624 if (offset == 0) { 1625 memcpy_to_target(p, scratch, top - p); 1626 top = p; 1627 offset = TARGET_PAGE_SIZE; 1628 } 1629 } 1630 } 1631 if (p != top) { 1632 memcpy_to_target(p, scratch + offset, top - p); 1633 } 1634 } else { 1635 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1636 for (i = 0; i < argc; ++i) { 1637 tmp = argv[i]; 1638 if (!tmp) { 1639 fprintf(stderr, "VFS: argc is wrong"); 1640 exit(-1); 1641 } 1642 len = strlen(tmp) + 1; 1643 if (len > (stack_limit - p)) { 1644 return 0; 1645 } 1646 while (len) { 1647 int bytes_to_copy = (len > remaining) ? remaining : len; 1648 1649 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1650 1651 tmp += bytes_to_copy; 1652 remaining -= bytes_to_copy; 1653 p += bytes_to_copy; 1654 len -= bytes_to_copy; 1655 1656 if (remaining == 0) { 1657 memcpy_to_target(top, scratch, p - top); 1658 top = p; 1659 remaining = TARGET_PAGE_SIZE; 1660 } 1661 } 1662 } 1663 if (p != top) { 1664 memcpy_to_target(top, scratch, p - top); 1665 } 1666 } 1667 1668 return p; 1669 } 1670 1671 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1672 * argument/environment space. Newer kernels (>2.6.33) allow more, 1673 * dependent on stack size, but guarantee at least 32 pages for 1674 * backwards compatibility. 1675 */ 1676 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1677 1678 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1679 struct image_info *info) 1680 { 1681 abi_ulong size, error, guard; 1682 1683 size = guest_stack_size; 1684 if (size < STACK_LOWER_LIMIT) { 1685 size = STACK_LOWER_LIMIT; 1686 } 1687 guard = TARGET_PAGE_SIZE; 1688 if (guard < qemu_real_host_page_size) { 1689 guard = qemu_real_host_page_size; 1690 } 1691 1692 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1693 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1694 if (error == -1) { 1695 perror("mmap stack"); 1696 exit(-1); 1697 } 1698 1699 /* We reserve one extra page at the top of the stack as guard. */ 1700 if (STACK_GROWS_DOWN) { 1701 target_mprotect(error, guard, PROT_NONE); 1702 info->stack_limit = error + guard; 1703 return info->stack_limit + size - sizeof(void *); 1704 } else { 1705 target_mprotect(error + size, guard, PROT_NONE); 1706 info->stack_limit = error + size; 1707 return error; 1708 } 1709 } 1710 1711 /* Map and zero the bss. We need to explicitly zero any fractional pages 1712 after the data section (i.e. bss). */ 1713 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1714 { 1715 uintptr_t host_start, host_map_start, host_end; 1716 1717 last_bss = TARGET_PAGE_ALIGN(last_bss); 1718 1719 /* ??? There is confusion between qemu_real_host_page_size and 1720 qemu_host_page_size here and elsewhere in target_mmap, which 1721 may lead to the end of the data section mapping from the file 1722 not being mapped. At least there was an explicit test and 1723 comment for that here, suggesting that "the file size must 1724 be known". The comment probably pre-dates the introduction 1725 of the fstat system call in target_mmap which does in fact 1726 find out the size. What isn't clear is if the workaround 1727 here is still actually needed. For now, continue with it, 1728 but merge it with the "normal" mmap that would allocate the bss. */ 1729 1730 host_start = (uintptr_t) g2h(elf_bss); 1731 host_end = (uintptr_t) g2h(last_bss); 1732 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1733 1734 if (host_map_start < host_end) { 1735 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1736 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1737 if (p == MAP_FAILED) { 1738 perror("cannot mmap brk"); 1739 exit(-1); 1740 } 1741 } 1742 1743 /* Ensure that the bss page(s) are valid */ 1744 if ((page_get_flags(last_bss-1) & prot) != prot) { 1745 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1746 } 1747 1748 if (host_start < host_map_start) { 1749 memset((void *)host_start, 0, host_map_start - host_start); 1750 } 1751 } 1752 1753 #ifdef TARGET_ARM 1754 static int elf_is_fdpic(struct elfhdr *exec) 1755 { 1756 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1757 } 1758 #else 1759 /* Default implementation, always false. */ 1760 static int elf_is_fdpic(struct elfhdr *exec) 1761 { 1762 return 0; 1763 } 1764 #endif 1765 1766 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1767 { 1768 uint16_t n; 1769 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1770 1771 /* elf32_fdpic_loadseg */ 1772 n = info->nsegs; 1773 while (n--) { 1774 sp -= 12; 1775 put_user_u32(loadsegs[n].addr, sp+0); 1776 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1777 put_user_u32(loadsegs[n].p_memsz, sp+8); 1778 } 1779 1780 /* elf32_fdpic_loadmap */ 1781 sp -= 4; 1782 put_user_u16(0, sp+0); /* version */ 1783 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1784 1785 info->personality = PER_LINUX_FDPIC; 1786 info->loadmap_addr = sp; 1787 1788 return sp; 1789 } 1790 1791 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1792 struct elfhdr *exec, 1793 struct image_info *info, 1794 struct image_info *interp_info) 1795 { 1796 abi_ulong sp; 1797 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1798 int size; 1799 int i; 1800 abi_ulong u_rand_bytes; 1801 uint8_t k_rand_bytes[16]; 1802 abi_ulong u_platform; 1803 const char *k_platform; 1804 const int n = sizeof(elf_addr_t); 1805 1806 sp = p; 1807 1808 /* Needs to be before we load the env/argc/... */ 1809 if (elf_is_fdpic(exec)) { 1810 /* Need 4 byte alignment for these structs */ 1811 sp &= ~3; 1812 sp = loader_build_fdpic_loadmap(info, sp); 1813 info->other_info = interp_info; 1814 if (interp_info) { 1815 interp_info->other_info = info; 1816 sp = loader_build_fdpic_loadmap(interp_info, sp); 1817 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1818 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1819 } else { 1820 info->interpreter_loadmap_addr = 0; 1821 info->interpreter_pt_dynamic_addr = 0; 1822 } 1823 } 1824 1825 u_platform = 0; 1826 k_platform = ELF_PLATFORM; 1827 if (k_platform) { 1828 size_t len = strlen(k_platform) + 1; 1829 if (STACK_GROWS_DOWN) { 1830 sp -= (len + n - 1) & ~(n - 1); 1831 u_platform = sp; 1832 /* FIXME - check return value of memcpy_to_target() for failure */ 1833 memcpy_to_target(sp, k_platform, len); 1834 } else { 1835 memcpy_to_target(sp, k_platform, len); 1836 u_platform = sp; 1837 sp += len + 1; 1838 } 1839 } 1840 1841 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1842 * the argv and envp pointers. 1843 */ 1844 if (STACK_GROWS_DOWN) { 1845 sp = QEMU_ALIGN_DOWN(sp, 16); 1846 } else { 1847 sp = QEMU_ALIGN_UP(sp, 16); 1848 } 1849 1850 /* 1851 * Generate 16 random bytes for userspace PRNG seeding (not 1852 * cryptically secure but it's not the aim of QEMU). 1853 */ 1854 for (i = 0; i < 16; i++) { 1855 k_rand_bytes[i] = rand(); 1856 } 1857 if (STACK_GROWS_DOWN) { 1858 sp -= 16; 1859 u_rand_bytes = sp; 1860 /* FIXME - check return value of memcpy_to_target() for failure */ 1861 memcpy_to_target(sp, k_rand_bytes, 16); 1862 } else { 1863 memcpy_to_target(sp, k_rand_bytes, 16); 1864 u_rand_bytes = sp; 1865 sp += 16; 1866 } 1867 1868 size = (DLINFO_ITEMS + 1) * 2; 1869 if (k_platform) 1870 size += 2; 1871 #ifdef DLINFO_ARCH_ITEMS 1872 size += DLINFO_ARCH_ITEMS * 2; 1873 #endif 1874 #ifdef ELF_HWCAP2 1875 size += 2; 1876 #endif 1877 info->auxv_len = size * n; 1878 1879 size += envc + argc + 2; 1880 size += 1; /* argc itself */ 1881 size *= n; 1882 1883 /* Allocate space and finalize stack alignment for entry now. */ 1884 if (STACK_GROWS_DOWN) { 1885 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1886 sp = u_argc; 1887 } else { 1888 u_argc = sp; 1889 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1890 } 1891 1892 u_argv = u_argc + n; 1893 u_envp = u_argv + (argc + 1) * n; 1894 u_auxv = u_envp + (envc + 1) * n; 1895 info->saved_auxv = u_auxv; 1896 info->arg_start = u_argv; 1897 info->arg_end = u_argv + argc * n; 1898 1899 /* This is correct because Linux defines 1900 * elf_addr_t as Elf32_Off / Elf64_Off 1901 */ 1902 #define NEW_AUX_ENT(id, val) do { \ 1903 put_user_ual(id, u_auxv); u_auxv += n; \ 1904 put_user_ual(val, u_auxv); u_auxv += n; \ 1905 } while(0) 1906 1907 #ifdef ARCH_DLINFO 1908 /* 1909 * ARCH_DLINFO must come first so platform specific code can enforce 1910 * special alignment requirements on the AUXV if necessary (eg. PPC). 1911 */ 1912 ARCH_DLINFO; 1913 #endif 1914 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1915 * on info->auxv_len will trigger. 1916 */ 1917 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1918 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1919 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1920 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1921 /* Target doesn't support host page size alignment */ 1922 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1923 } else { 1924 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1925 qemu_host_page_size))); 1926 } 1927 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1928 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1929 NEW_AUX_ENT(AT_ENTRY, info->entry); 1930 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1931 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1932 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1933 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1934 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1935 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1936 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1937 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1938 1939 #ifdef ELF_HWCAP2 1940 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1941 #endif 1942 1943 if (u_platform) { 1944 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1945 } 1946 NEW_AUX_ENT (AT_NULL, 0); 1947 #undef NEW_AUX_ENT 1948 1949 /* Check that our initial calculation of the auxv length matches how much 1950 * we actually put into it. 1951 */ 1952 assert(info->auxv_len == u_auxv - info->saved_auxv); 1953 1954 put_user_ual(argc, u_argc); 1955 1956 p = info->arg_strings; 1957 for (i = 0; i < argc; ++i) { 1958 put_user_ual(p, u_argv); 1959 u_argv += n; 1960 p += target_strlen(p) + 1; 1961 } 1962 put_user_ual(0, u_argv); 1963 1964 p = info->env_strings; 1965 for (i = 0; i < envc; ++i) { 1966 put_user_ual(p, u_envp); 1967 u_envp += n; 1968 p += target_strlen(p) + 1; 1969 } 1970 put_user_ual(0, u_envp); 1971 1972 return sp; 1973 } 1974 1975 unsigned long init_guest_space(unsigned long host_start, 1976 unsigned long host_size, 1977 unsigned long guest_start, 1978 bool fixed) 1979 { 1980 unsigned long current_start, aligned_start; 1981 int flags; 1982 1983 assert(host_start || host_size); 1984 1985 /* If just a starting address is given, then just verify that 1986 * address. */ 1987 if (host_start && !host_size) { 1988 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1989 if (init_guest_commpage(host_start, host_size) != 1) { 1990 return (unsigned long)-1; 1991 } 1992 #endif 1993 return host_start; 1994 } 1995 1996 /* Setup the initial flags and start address. */ 1997 current_start = host_start & qemu_host_page_mask; 1998 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1999 if (fixed) { 2000 flags |= MAP_FIXED; 2001 } 2002 2003 /* Otherwise, a non-zero size region of memory needs to be mapped 2004 * and validated. */ 2005 2006 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2007 /* On 32-bit ARM, we need to map not just the usable memory, but 2008 * also the commpage. Try to find a suitable place by allocating 2009 * a big chunk for all of it. If host_start, then the naive 2010 * strategy probably does good enough. 2011 */ 2012 if (!host_start) { 2013 unsigned long guest_full_size, host_full_size, real_start; 2014 2015 guest_full_size = 2016 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2017 host_full_size = guest_full_size - guest_start; 2018 real_start = (unsigned long) 2019 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2020 if (real_start == (unsigned long)-1) { 2021 if (host_size < host_full_size - qemu_host_page_size) { 2022 /* We failed to map a continous segment, but we're 2023 * allowed to have a gap between the usable memory and 2024 * the commpage where other things can be mapped. 2025 * This sparseness gives us more flexibility to find 2026 * an address range. 2027 */ 2028 goto naive; 2029 } 2030 return (unsigned long)-1; 2031 } 2032 munmap((void *)real_start, host_full_size); 2033 if (real_start & ~qemu_host_page_mask) { 2034 /* The same thing again, but with an extra qemu_host_page_size 2035 * so that we can shift around alignment. 2036 */ 2037 unsigned long real_size = host_full_size + qemu_host_page_size; 2038 real_start = (unsigned long) 2039 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2040 if (real_start == (unsigned long)-1) { 2041 if (host_size < host_full_size - qemu_host_page_size) { 2042 goto naive; 2043 } 2044 return (unsigned long)-1; 2045 } 2046 munmap((void *)real_start, real_size); 2047 real_start = HOST_PAGE_ALIGN(real_start); 2048 } 2049 current_start = real_start; 2050 } 2051 naive: 2052 #endif 2053 2054 while (1) { 2055 unsigned long real_start, real_size, aligned_size; 2056 aligned_size = real_size = host_size; 2057 2058 /* Do not use mmap_find_vma here because that is limited to the 2059 * guest address space. We are going to make the 2060 * guest address space fit whatever we're given. 2061 */ 2062 real_start = (unsigned long) 2063 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2064 if (real_start == (unsigned long)-1) { 2065 return (unsigned long)-1; 2066 } 2067 2068 /* Check to see if the address is valid. */ 2069 if (host_start && real_start != current_start) { 2070 goto try_again; 2071 } 2072 2073 /* Ensure the address is properly aligned. */ 2074 if (real_start & ~qemu_host_page_mask) { 2075 /* Ideally, we adjust like 2076 * 2077 * pages: [ ][ ][ ][ ][ ] 2078 * old: [ real ] 2079 * [ aligned ] 2080 * new: [ real ] 2081 * [ aligned ] 2082 * 2083 * But if there is something else mapped right after it, 2084 * then obviously it won't have room to grow, and the 2085 * kernel will put the new larger real someplace else with 2086 * unknown alignment (if we made it to here, then 2087 * fixed=false). Which is why we grow real by a full page 2088 * size, instead of by part of one; so that even if we get 2089 * moved, we can still guarantee alignment. But this does 2090 * mean that there is a padding of < 1 page both before 2091 * and after the aligned range; the "after" could could 2092 * cause problems for ARM emulation where it could butt in 2093 * to where we need to put the commpage. 2094 */ 2095 munmap((void *)real_start, host_size); 2096 real_size = aligned_size + qemu_host_page_size; 2097 real_start = (unsigned long) 2098 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2099 if (real_start == (unsigned long)-1) { 2100 return (unsigned long)-1; 2101 } 2102 aligned_start = HOST_PAGE_ALIGN(real_start); 2103 } else { 2104 aligned_start = real_start; 2105 } 2106 2107 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2108 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2109 int valid = init_guest_commpage(aligned_start - guest_start, 2110 aligned_size + guest_start); 2111 if (valid == -1) { 2112 munmap((void *)real_start, real_size); 2113 return (unsigned long)-1; 2114 } else if (valid == 0) { 2115 goto try_again; 2116 } 2117 #endif 2118 2119 /* If nothing has said `return -1` or `goto try_again` yet, 2120 * then the address we have is good. 2121 */ 2122 break; 2123 2124 try_again: 2125 /* That address didn't work. Unmap and try a different one. 2126 * The address the host picked because is typically right at 2127 * the top of the host address space and leaves the guest with 2128 * no usable address space. Resort to a linear search. We 2129 * already compensated for mmap_min_addr, so this should not 2130 * happen often. Probably means we got unlucky and host 2131 * address space randomization put a shared library somewhere 2132 * inconvenient. 2133 * 2134 * This is probably a good strategy if host_start, but is 2135 * probably a bad strategy if not, which means we got here 2136 * because of trouble with ARM commpage setup. 2137 */ 2138 munmap((void *)real_start, real_size); 2139 current_start += qemu_host_page_size; 2140 if (host_start == current_start) { 2141 /* Theoretically possible if host doesn't have any suitably 2142 * aligned areas. Normally the first mmap will fail. 2143 */ 2144 return (unsigned long)-1; 2145 } 2146 } 2147 2148 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2149 2150 return aligned_start; 2151 } 2152 2153 static void probe_guest_base(const char *image_name, 2154 abi_ulong loaddr, abi_ulong hiaddr) 2155 { 2156 /* Probe for a suitable guest base address, if the user has not set 2157 * it explicitly, and set guest_base appropriately. 2158 * In case of error we will print a suitable message and exit. 2159 */ 2160 const char *errmsg; 2161 if (!have_guest_base && !reserved_va) { 2162 unsigned long host_start, real_start, host_size; 2163 2164 /* Round addresses to page boundaries. */ 2165 loaddr &= qemu_host_page_mask; 2166 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2167 2168 if (loaddr < mmap_min_addr) { 2169 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2170 } else { 2171 host_start = loaddr; 2172 if (host_start != loaddr) { 2173 errmsg = "Address overflow loading ELF binary"; 2174 goto exit_errmsg; 2175 } 2176 } 2177 host_size = hiaddr - loaddr; 2178 2179 /* Setup the initial guest memory space with ranges gleaned from 2180 * the ELF image that is being loaded. 2181 */ 2182 real_start = init_guest_space(host_start, host_size, loaddr, false); 2183 if (real_start == (unsigned long)-1) { 2184 errmsg = "Unable to find space for application"; 2185 goto exit_errmsg; 2186 } 2187 guest_base = real_start - loaddr; 2188 2189 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2190 TARGET_ABI_FMT_lx " to 0x%lx\n", 2191 loaddr, real_start); 2192 } 2193 return; 2194 2195 exit_errmsg: 2196 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2197 exit(-1); 2198 } 2199 2200 2201 /* Load an ELF image into the address space. 2202 2203 IMAGE_NAME is the filename of the image, to use in error messages. 2204 IMAGE_FD is the open file descriptor for the image. 2205 2206 BPRM_BUF is a copy of the beginning of the file; this of course 2207 contains the elf file header at offset 0. It is assumed that this 2208 buffer is sufficiently aligned to present no problems to the host 2209 in accessing data at aligned offsets within the buffer. 2210 2211 On return: INFO values will be filled in, as necessary or available. */ 2212 2213 static void load_elf_image(const char *image_name, int image_fd, 2214 struct image_info *info, char **pinterp_name, 2215 char bprm_buf[BPRM_BUF_SIZE]) 2216 { 2217 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2218 struct elf_phdr *phdr; 2219 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2220 int i, retval; 2221 const char *errmsg; 2222 2223 /* First of all, some simple consistency checks */ 2224 errmsg = "Invalid ELF image for this architecture"; 2225 if (!elf_check_ident(ehdr)) { 2226 goto exit_errmsg; 2227 } 2228 bswap_ehdr(ehdr); 2229 if (!elf_check_ehdr(ehdr)) { 2230 goto exit_errmsg; 2231 } 2232 2233 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2234 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2235 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2236 } else { 2237 phdr = (struct elf_phdr *) alloca(i); 2238 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2239 if (retval != i) { 2240 goto exit_read; 2241 } 2242 } 2243 bswap_phdr(phdr, ehdr->e_phnum); 2244 2245 info->nsegs = 0; 2246 info->pt_dynamic_addr = 0; 2247 2248 mmap_lock(); 2249 2250 /* Find the maximum size of the image and allocate an appropriate 2251 amount of memory to handle that. */ 2252 loaddr = -1, hiaddr = 0; 2253 info->alignment = 0; 2254 for (i = 0; i < ehdr->e_phnum; ++i) { 2255 if (phdr[i].p_type == PT_LOAD) { 2256 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2257 if (a < loaddr) { 2258 loaddr = a; 2259 } 2260 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2261 if (a > hiaddr) { 2262 hiaddr = a; 2263 } 2264 ++info->nsegs; 2265 info->alignment |= phdr[i].p_align; 2266 } 2267 } 2268 2269 load_addr = loaddr; 2270 if (ehdr->e_type == ET_DYN) { 2271 /* The image indicates that it can be loaded anywhere. Find a 2272 location that can hold the memory space required. If the 2273 image is pre-linked, LOADDR will be non-zero. Since we do 2274 not supply MAP_FIXED here we'll use that address if and 2275 only if it remains available. */ 2276 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2277 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2278 -1, 0); 2279 if (load_addr == -1) { 2280 goto exit_perror; 2281 } 2282 } else if (pinterp_name != NULL) { 2283 /* This is the main executable. Make sure that the low 2284 address does not conflict with MMAP_MIN_ADDR or the 2285 QEMU application itself. */ 2286 probe_guest_base(image_name, loaddr, hiaddr); 2287 } 2288 load_bias = load_addr - loaddr; 2289 2290 if (elf_is_fdpic(ehdr)) { 2291 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2292 g_malloc(sizeof(*loadsegs) * info->nsegs); 2293 2294 for (i = 0; i < ehdr->e_phnum; ++i) { 2295 switch (phdr[i].p_type) { 2296 case PT_DYNAMIC: 2297 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2298 break; 2299 case PT_LOAD: 2300 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2301 loadsegs->p_vaddr = phdr[i].p_vaddr; 2302 loadsegs->p_memsz = phdr[i].p_memsz; 2303 ++loadsegs; 2304 break; 2305 } 2306 } 2307 } 2308 2309 info->load_bias = load_bias; 2310 info->load_addr = load_addr; 2311 info->entry = ehdr->e_entry + load_bias; 2312 info->start_code = -1; 2313 info->end_code = 0; 2314 info->start_data = -1; 2315 info->end_data = 0; 2316 info->brk = 0; 2317 info->elf_flags = ehdr->e_flags; 2318 2319 for (i = 0; i < ehdr->e_phnum; i++) { 2320 struct elf_phdr *eppnt = phdr + i; 2321 if (eppnt->p_type == PT_LOAD) { 2322 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2323 int elf_prot = 0; 2324 2325 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2326 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2327 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2328 2329 vaddr = load_bias + eppnt->p_vaddr; 2330 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2331 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2332 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2333 2334 error = target_mmap(vaddr_ps, vaddr_len, 2335 elf_prot, MAP_PRIVATE | MAP_FIXED, 2336 image_fd, eppnt->p_offset - vaddr_po); 2337 if (error == -1) { 2338 goto exit_perror; 2339 } 2340 2341 vaddr_ef = vaddr + eppnt->p_filesz; 2342 vaddr_em = vaddr + eppnt->p_memsz; 2343 2344 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2345 if (vaddr_ef < vaddr_em) { 2346 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2347 } 2348 2349 /* Find the full program boundaries. */ 2350 if (elf_prot & PROT_EXEC) { 2351 if (vaddr < info->start_code) { 2352 info->start_code = vaddr; 2353 } 2354 if (vaddr_ef > info->end_code) { 2355 info->end_code = vaddr_ef; 2356 } 2357 } 2358 if (elf_prot & PROT_WRITE) { 2359 if (vaddr < info->start_data) { 2360 info->start_data = vaddr; 2361 } 2362 if (vaddr_ef > info->end_data) { 2363 info->end_data = vaddr_ef; 2364 } 2365 if (vaddr_em > info->brk) { 2366 info->brk = vaddr_em; 2367 } 2368 } 2369 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2370 char *interp_name; 2371 2372 if (*pinterp_name) { 2373 errmsg = "Multiple PT_INTERP entries"; 2374 goto exit_errmsg; 2375 } 2376 interp_name = malloc(eppnt->p_filesz); 2377 if (!interp_name) { 2378 goto exit_perror; 2379 } 2380 2381 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2382 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2383 eppnt->p_filesz); 2384 } else { 2385 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2386 eppnt->p_offset); 2387 if (retval != eppnt->p_filesz) { 2388 goto exit_perror; 2389 } 2390 } 2391 if (interp_name[eppnt->p_filesz - 1] != 0) { 2392 errmsg = "Invalid PT_INTERP entry"; 2393 goto exit_errmsg; 2394 } 2395 *pinterp_name = interp_name; 2396 #ifdef TARGET_MIPS 2397 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2398 Mips_elf_abiflags_v0 abiflags; 2399 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2400 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2401 goto exit_errmsg; 2402 } 2403 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2404 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2405 sizeof(Mips_elf_abiflags_v0)); 2406 } else { 2407 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2408 eppnt->p_offset); 2409 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2410 goto exit_perror; 2411 } 2412 } 2413 bswap_mips_abiflags(&abiflags); 2414 info->fp_abi = abiflags.fp_abi; 2415 #endif 2416 } 2417 } 2418 2419 if (info->end_data == 0) { 2420 info->start_data = info->end_code; 2421 info->end_data = info->end_code; 2422 info->brk = info->end_code; 2423 } 2424 2425 if (qemu_log_enabled()) { 2426 load_symbols(ehdr, image_fd, load_bias); 2427 } 2428 2429 mmap_unlock(); 2430 2431 close(image_fd); 2432 return; 2433 2434 exit_read: 2435 if (retval >= 0) { 2436 errmsg = "Incomplete read of file header"; 2437 goto exit_errmsg; 2438 } 2439 exit_perror: 2440 errmsg = strerror(errno); 2441 exit_errmsg: 2442 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2443 exit(-1); 2444 } 2445 2446 static void load_elf_interp(const char *filename, struct image_info *info, 2447 char bprm_buf[BPRM_BUF_SIZE]) 2448 { 2449 int fd, retval; 2450 2451 fd = open(path(filename), O_RDONLY); 2452 if (fd < 0) { 2453 goto exit_perror; 2454 } 2455 2456 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2457 if (retval < 0) { 2458 goto exit_perror; 2459 } 2460 if (retval < BPRM_BUF_SIZE) { 2461 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2462 } 2463 2464 load_elf_image(filename, fd, info, NULL, bprm_buf); 2465 return; 2466 2467 exit_perror: 2468 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2469 exit(-1); 2470 } 2471 2472 static int symfind(const void *s0, const void *s1) 2473 { 2474 target_ulong addr = *(target_ulong *)s0; 2475 struct elf_sym *sym = (struct elf_sym *)s1; 2476 int result = 0; 2477 if (addr < sym->st_value) { 2478 result = -1; 2479 } else if (addr >= sym->st_value + sym->st_size) { 2480 result = 1; 2481 } 2482 return result; 2483 } 2484 2485 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2486 { 2487 #if ELF_CLASS == ELFCLASS32 2488 struct elf_sym *syms = s->disas_symtab.elf32; 2489 #else 2490 struct elf_sym *syms = s->disas_symtab.elf64; 2491 #endif 2492 2493 // binary search 2494 struct elf_sym *sym; 2495 2496 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2497 if (sym != NULL) { 2498 return s->disas_strtab + sym->st_name; 2499 } 2500 2501 return ""; 2502 } 2503 2504 /* FIXME: This should use elf_ops.h */ 2505 static int symcmp(const void *s0, const void *s1) 2506 { 2507 struct elf_sym *sym0 = (struct elf_sym *)s0; 2508 struct elf_sym *sym1 = (struct elf_sym *)s1; 2509 return (sym0->st_value < sym1->st_value) 2510 ? -1 2511 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2512 } 2513 2514 /* Best attempt to load symbols from this ELF object. */ 2515 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2516 { 2517 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2518 uint64_t segsz; 2519 struct elf_shdr *shdr; 2520 char *strings = NULL; 2521 struct syminfo *s = NULL; 2522 struct elf_sym *new_syms, *syms = NULL; 2523 2524 shnum = hdr->e_shnum; 2525 i = shnum * sizeof(struct elf_shdr); 2526 shdr = (struct elf_shdr *)alloca(i); 2527 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2528 return; 2529 } 2530 2531 bswap_shdr(shdr, shnum); 2532 for (i = 0; i < shnum; ++i) { 2533 if (shdr[i].sh_type == SHT_SYMTAB) { 2534 sym_idx = i; 2535 str_idx = shdr[i].sh_link; 2536 goto found; 2537 } 2538 } 2539 2540 /* There will be no symbol table if the file was stripped. */ 2541 return; 2542 2543 found: 2544 /* Now know where the strtab and symtab are. Snarf them. */ 2545 s = g_try_new(struct syminfo, 1); 2546 if (!s) { 2547 goto give_up; 2548 } 2549 2550 segsz = shdr[str_idx].sh_size; 2551 s->disas_strtab = strings = g_try_malloc(segsz); 2552 if (!strings || 2553 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2554 goto give_up; 2555 } 2556 2557 segsz = shdr[sym_idx].sh_size; 2558 syms = g_try_malloc(segsz); 2559 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2560 goto give_up; 2561 } 2562 2563 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2564 /* Implausibly large symbol table: give up rather than ploughing 2565 * on with the number of symbols calculation overflowing 2566 */ 2567 goto give_up; 2568 } 2569 nsyms = segsz / sizeof(struct elf_sym); 2570 for (i = 0; i < nsyms; ) { 2571 bswap_sym(syms + i); 2572 /* Throw away entries which we do not need. */ 2573 if (syms[i].st_shndx == SHN_UNDEF 2574 || syms[i].st_shndx >= SHN_LORESERVE 2575 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2576 if (i < --nsyms) { 2577 syms[i] = syms[nsyms]; 2578 } 2579 } else { 2580 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2581 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2582 syms[i].st_value &= ~(target_ulong)1; 2583 #endif 2584 syms[i].st_value += load_bias; 2585 i++; 2586 } 2587 } 2588 2589 /* No "useful" symbol. */ 2590 if (nsyms == 0) { 2591 goto give_up; 2592 } 2593 2594 /* Attempt to free the storage associated with the local symbols 2595 that we threw away. Whether or not this has any effect on the 2596 memory allocation depends on the malloc implementation and how 2597 many symbols we managed to discard. */ 2598 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2599 if (new_syms == NULL) { 2600 goto give_up; 2601 } 2602 syms = new_syms; 2603 2604 qsort(syms, nsyms, sizeof(*syms), symcmp); 2605 2606 s->disas_num_syms = nsyms; 2607 #if ELF_CLASS == ELFCLASS32 2608 s->disas_symtab.elf32 = syms; 2609 #else 2610 s->disas_symtab.elf64 = syms; 2611 #endif 2612 s->lookup_symbol = lookup_symbolxx; 2613 s->next = syminfos; 2614 syminfos = s; 2615 2616 return; 2617 2618 give_up: 2619 g_free(s); 2620 g_free(strings); 2621 g_free(syms); 2622 } 2623 2624 uint32_t get_elf_eflags(int fd) 2625 { 2626 struct elfhdr ehdr; 2627 off_t offset; 2628 int ret; 2629 2630 /* Read ELF header */ 2631 offset = lseek(fd, 0, SEEK_SET); 2632 if (offset == (off_t) -1) { 2633 return 0; 2634 } 2635 ret = read(fd, &ehdr, sizeof(ehdr)); 2636 if (ret < sizeof(ehdr)) { 2637 return 0; 2638 } 2639 offset = lseek(fd, offset, SEEK_SET); 2640 if (offset == (off_t) -1) { 2641 return 0; 2642 } 2643 2644 /* Check ELF signature */ 2645 if (!elf_check_ident(&ehdr)) { 2646 return 0; 2647 } 2648 2649 /* check header */ 2650 bswap_ehdr(&ehdr); 2651 if (!elf_check_ehdr(&ehdr)) { 2652 return 0; 2653 } 2654 2655 /* return architecture id */ 2656 return ehdr.e_flags; 2657 } 2658 2659 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2660 { 2661 struct image_info interp_info; 2662 struct elfhdr elf_ex; 2663 char *elf_interpreter = NULL; 2664 char *scratch; 2665 2666 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2667 2668 load_elf_image(bprm->filename, bprm->fd, info, 2669 &elf_interpreter, bprm->buf); 2670 2671 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2672 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2673 when we load the interpreter. */ 2674 elf_ex = *(struct elfhdr *)bprm->buf; 2675 2676 /* Do this so that we can load the interpreter, if need be. We will 2677 change some of these later */ 2678 bprm->p = setup_arg_pages(bprm, info); 2679 2680 scratch = g_new0(char, TARGET_PAGE_SIZE); 2681 if (STACK_GROWS_DOWN) { 2682 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2683 bprm->p, info->stack_limit); 2684 info->file_string = bprm->p; 2685 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2686 bprm->p, info->stack_limit); 2687 info->env_strings = bprm->p; 2688 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2689 bprm->p, info->stack_limit); 2690 info->arg_strings = bprm->p; 2691 } else { 2692 info->arg_strings = bprm->p; 2693 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2694 bprm->p, info->stack_limit); 2695 info->env_strings = bprm->p; 2696 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2697 bprm->p, info->stack_limit); 2698 info->file_string = bprm->p; 2699 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2700 bprm->p, info->stack_limit); 2701 } 2702 2703 g_free(scratch); 2704 2705 if (!bprm->p) { 2706 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2707 exit(-1); 2708 } 2709 2710 if (elf_interpreter) { 2711 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2712 2713 /* If the program interpreter is one of these two, then assume 2714 an iBCS2 image. Otherwise assume a native linux image. */ 2715 2716 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2717 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2718 info->personality = PER_SVR4; 2719 2720 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2721 and some applications "depend" upon this behavior. Since 2722 we do not have the power to recompile these, we emulate 2723 the SVr4 behavior. Sigh. */ 2724 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2725 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2726 } 2727 #ifdef TARGET_MIPS 2728 info->interp_fp_abi = interp_info.fp_abi; 2729 #endif 2730 } 2731 2732 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2733 info, (elf_interpreter ? &interp_info : NULL)); 2734 info->start_stack = bprm->p; 2735 2736 /* If we have an interpreter, set that as the program's entry point. 2737 Copy the load_bias as well, to help PPC64 interpret the entry 2738 point as a function descriptor. Do this after creating elf tables 2739 so that we copy the original program entry point into the AUXV. */ 2740 if (elf_interpreter) { 2741 info->load_bias = interp_info.load_bias; 2742 info->entry = interp_info.entry; 2743 free(elf_interpreter); 2744 } 2745 2746 #ifdef USE_ELF_CORE_DUMP 2747 bprm->core_dump = &elf_core_dump; 2748 #endif 2749 2750 return 0; 2751 } 2752 2753 #ifdef USE_ELF_CORE_DUMP 2754 /* 2755 * Definitions to generate Intel SVR4-like core files. 2756 * These mostly have the same names as the SVR4 types with "target_elf_" 2757 * tacked on the front to prevent clashes with linux definitions, 2758 * and the typedef forms have been avoided. This is mostly like 2759 * the SVR4 structure, but more Linuxy, with things that Linux does 2760 * not support and which gdb doesn't really use excluded. 2761 * 2762 * Fields we don't dump (their contents is zero) in linux-user qemu 2763 * are marked with XXX. 2764 * 2765 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2766 * 2767 * Porting ELF coredump for target is (quite) simple process. First you 2768 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2769 * the target resides): 2770 * 2771 * #define USE_ELF_CORE_DUMP 2772 * 2773 * Next you define type of register set used for dumping. ELF specification 2774 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2775 * 2776 * typedef <target_regtype> target_elf_greg_t; 2777 * #define ELF_NREG <number of registers> 2778 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2779 * 2780 * Last step is to implement target specific function that copies registers 2781 * from given cpu into just specified register set. Prototype is: 2782 * 2783 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2784 * const CPUArchState *env); 2785 * 2786 * Parameters: 2787 * regs - copy register values into here (allocated and zeroed by caller) 2788 * env - copy registers from here 2789 * 2790 * Example for ARM target is provided in this file. 2791 */ 2792 2793 /* An ELF note in memory */ 2794 struct memelfnote { 2795 const char *name; 2796 size_t namesz; 2797 size_t namesz_rounded; 2798 int type; 2799 size_t datasz; 2800 size_t datasz_rounded; 2801 void *data; 2802 size_t notesz; 2803 }; 2804 2805 struct target_elf_siginfo { 2806 abi_int si_signo; /* signal number */ 2807 abi_int si_code; /* extra code */ 2808 abi_int si_errno; /* errno */ 2809 }; 2810 2811 struct target_elf_prstatus { 2812 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2813 abi_short pr_cursig; /* Current signal */ 2814 abi_ulong pr_sigpend; /* XXX */ 2815 abi_ulong pr_sighold; /* XXX */ 2816 target_pid_t pr_pid; 2817 target_pid_t pr_ppid; 2818 target_pid_t pr_pgrp; 2819 target_pid_t pr_sid; 2820 struct target_timeval pr_utime; /* XXX User time */ 2821 struct target_timeval pr_stime; /* XXX System time */ 2822 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2823 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2824 target_elf_gregset_t pr_reg; /* GP registers */ 2825 abi_int pr_fpvalid; /* XXX */ 2826 }; 2827 2828 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2829 2830 struct target_elf_prpsinfo { 2831 char pr_state; /* numeric process state */ 2832 char pr_sname; /* char for pr_state */ 2833 char pr_zomb; /* zombie */ 2834 char pr_nice; /* nice val */ 2835 abi_ulong pr_flag; /* flags */ 2836 target_uid_t pr_uid; 2837 target_gid_t pr_gid; 2838 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2839 /* Lots missing */ 2840 char pr_fname[16]; /* filename of executable */ 2841 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2842 }; 2843 2844 /* Here is the structure in which status of each thread is captured. */ 2845 struct elf_thread_status { 2846 QTAILQ_ENTRY(elf_thread_status) ets_link; 2847 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2848 #if 0 2849 elf_fpregset_t fpu; /* NT_PRFPREG */ 2850 struct task_struct *thread; 2851 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2852 #endif 2853 struct memelfnote notes[1]; 2854 int num_notes; 2855 }; 2856 2857 struct elf_note_info { 2858 struct memelfnote *notes; 2859 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2860 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2861 2862 QTAILQ_HEAD(, elf_thread_status) thread_list; 2863 #if 0 2864 /* 2865 * Current version of ELF coredump doesn't support 2866 * dumping fp regs etc. 2867 */ 2868 elf_fpregset_t *fpu; 2869 elf_fpxregset_t *xfpu; 2870 int thread_status_size; 2871 #endif 2872 int notes_size; 2873 int numnote; 2874 }; 2875 2876 struct vm_area_struct { 2877 target_ulong vma_start; /* start vaddr of memory region */ 2878 target_ulong vma_end; /* end vaddr of memory region */ 2879 abi_ulong vma_flags; /* protection etc. flags for the region */ 2880 QTAILQ_ENTRY(vm_area_struct) vma_link; 2881 }; 2882 2883 struct mm_struct { 2884 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2885 int mm_count; /* number of mappings */ 2886 }; 2887 2888 static struct mm_struct *vma_init(void); 2889 static void vma_delete(struct mm_struct *); 2890 static int vma_add_mapping(struct mm_struct *, target_ulong, 2891 target_ulong, abi_ulong); 2892 static int vma_get_mapping_count(const struct mm_struct *); 2893 static struct vm_area_struct *vma_first(const struct mm_struct *); 2894 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2895 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2896 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2897 unsigned long flags); 2898 2899 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2900 static void fill_note(struct memelfnote *, const char *, int, 2901 unsigned int, void *); 2902 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2903 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2904 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2905 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2906 static size_t note_size(const struct memelfnote *); 2907 static void free_note_info(struct elf_note_info *); 2908 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2909 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2910 static int core_dump_filename(const TaskState *, char *, size_t); 2911 2912 static int dump_write(int, const void *, size_t); 2913 static int write_note(struct memelfnote *, int); 2914 static int write_note_info(struct elf_note_info *, int); 2915 2916 #ifdef BSWAP_NEEDED 2917 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2918 { 2919 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2920 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2921 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2922 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2923 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2924 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2925 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2926 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2927 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2928 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2929 /* cpu times are not filled, so we skip them */ 2930 /* regs should be in correct format already */ 2931 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2932 } 2933 2934 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2935 { 2936 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2937 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2938 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2939 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2940 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2941 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2942 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2943 } 2944 2945 static void bswap_note(struct elf_note *en) 2946 { 2947 bswap32s(&en->n_namesz); 2948 bswap32s(&en->n_descsz); 2949 bswap32s(&en->n_type); 2950 } 2951 #else 2952 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2953 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2954 static inline void bswap_note(struct elf_note *en) { } 2955 #endif /* BSWAP_NEEDED */ 2956 2957 /* 2958 * Minimal support for linux memory regions. These are needed 2959 * when we are finding out what memory exactly belongs to 2960 * emulated process. No locks needed here, as long as 2961 * thread that received the signal is stopped. 2962 */ 2963 2964 static struct mm_struct *vma_init(void) 2965 { 2966 struct mm_struct *mm; 2967 2968 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2969 return (NULL); 2970 2971 mm->mm_count = 0; 2972 QTAILQ_INIT(&mm->mm_mmap); 2973 2974 return (mm); 2975 } 2976 2977 static void vma_delete(struct mm_struct *mm) 2978 { 2979 struct vm_area_struct *vma; 2980 2981 while ((vma = vma_first(mm)) != NULL) { 2982 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2983 g_free(vma); 2984 } 2985 g_free(mm); 2986 } 2987 2988 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2989 target_ulong end, abi_ulong flags) 2990 { 2991 struct vm_area_struct *vma; 2992 2993 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2994 return (-1); 2995 2996 vma->vma_start = start; 2997 vma->vma_end = end; 2998 vma->vma_flags = flags; 2999 3000 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3001 mm->mm_count++; 3002 3003 return (0); 3004 } 3005 3006 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3007 { 3008 return (QTAILQ_FIRST(&mm->mm_mmap)); 3009 } 3010 3011 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3012 { 3013 return (QTAILQ_NEXT(vma, vma_link)); 3014 } 3015 3016 static int vma_get_mapping_count(const struct mm_struct *mm) 3017 { 3018 return (mm->mm_count); 3019 } 3020 3021 /* 3022 * Calculate file (dump) size of given memory region. 3023 */ 3024 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3025 { 3026 /* if we cannot even read the first page, skip it */ 3027 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3028 return (0); 3029 3030 /* 3031 * Usually we don't dump executable pages as they contain 3032 * non-writable code that debugger can read directly from 3033 * target library etc. However, thread stacks are marked 3034 * also executable so we read in first page of given region 3035 * and check whether it contains elf header. If there is 3036 * no elf header, we dump it. 3037 */ 3038 if (vma->vma_flags & PROT_EXEC) { 3039 char page[TARGET_PAGE_SIZE]; 3040 3041 copy_from_user(page, vma->vma_start, sizeof (page)); 3042 if ((page[EI_MAG0] == ELFMAG0) && 3043 (page[EI_MAG1] == ELFMAG1) && 3044 (page[EI_MAG2] == ELFMAG2) && 3045 (page[EI_MAG3] == ELFMAG3)) { 3046 /* 3047 * Mappings are possibly from ELF binary. Don't dump 3048 * them. 3049 */ 3050 return (0); 3051 } 3052 } 3053 3054 return (vma->vma_end - vma->vma_start); 3055 } 3056 3057 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3058 unsigned long flags) 3059 { 3060 struct mm_struct *mm = (struct mm_struct *)priv; 3061 3062 vma_add_mapping(mm, start, end, flags); 3063 return (0); 3064 } 3065 3066 static void fill_note(struct memelfnote *note, const char *name, int type, 3067 unsigned int sz, void *data) 3068 { 3069 unsigned int namesz; 3070 3071 namesz = strlen(name) + 1; 3072 note->name = name; 3073 note->namesz = namesz; 3074 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3075 note->type = type; 3076 note->datasz = sz; 3077 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3078 3079 note->data = data; 3080 3081 /* 3082 * We calculate rounded up note size here as specified by 3083 * ELF document. 3084 */ 3085 note->notesz = sizeof (struct elf_note) + 3086 note->namesz_rounded + note->datasz_rounded; 3087 } 3088 3089 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3090 uint32_t flags) 3091 { 3092 (void) memset(elf, 0, sizeof(*elf)); 3093 3094 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3095 elf->e_ident[EI_CLASS] = ELF_CLASS; 3096 elf->e_ident[EI_DATA] = ELF_DATA; 3097 elf->e_ident[EI_VERSION] = EV_CURRENT; 3098 elf->e_ident[EI_OSABI] = ELF_OSABI; 3099 3100 elf->e_type = ET_CORE; 3101 elf->e_machine = machine; 3102 elf->e_version = EV_CURRENT; 3103 elf->e_phoff = sizeof(struct elfhdr); 3104 elf->e_flags = flags; 3105 elf->e_ehsize = sizeof(struct elfhdr); 3106 elf->e_phentsize = sizeof(struct elf_phdr); 3107 elf->e_phnum = segs; 3108 3109 bswap_ehdr(elf); 3110 } 3111 3112 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3113 { 3114 phdr->p_type = PT_NOTE; 3115 phdr->p_offset = offset; 3116 phdr->p_vaddr = 0; 3117 phdr->p_paddr = 0; 3118 phdr->p_filesz = sz; 3119 phdr->p_memsz = 0; 3120 phdr->p_flags = 0; 3121 phdr->p_align = 0; 3122 3123 bswap_phdr(phdr, 1); 3124 } 3125 3126 static size_t note_size(const struct memelfnote *note) 3127 { 3128 return (note->notesz); 3129 } 3130 3131 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3132 const TaskState *ts, int signr) 3133 { 3134 (void) memset(prstatus, 0, sizeof (*prstatus)); 3135 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3136 prstatus->pr_pid = ts->ts_tid; 3137 prstatus->pr_ppid = getppid(); 3138 prstatus->pr_pgrp = getpgrp(); 3139 prstatus->pr_sid = getsid(0); 3140 3141 bswap_prstatus(prstatus); 3142 } 3143 3144 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3145 { 3146 char *base_filename; 3147 unsigned int i, len; 3148 3149 (void) memset(psinfo, 0, sizeof (*psinfo)); 3150 3151 len = ts->info->arg_end - ts->info->arg_start; 3152 if (len >= ELF_PRARGSZ) 3153 len = ELF_PRARGSZ - 1; 3154 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3155 return -EFAULT; 3156 for (i = 0; i < len; i++) 3157 if (psinfo->pr_psargs[i] == 0) 3158 psinfo->pr_psargs[i] = ' '; 3159 psinfo->pr_psargs[len] = 0; 3160 3161 psinfo->pr_pid = getpid(); 3162 psinfo->pr_ppid = getppid(); 3163 psinfo->pr_pgrp = getpgrp(); 3164 psinfo->pr_sid = getsid(0); 3165 psinfo->pr_uid = getuid(); 3166 psinfo->pr_gid = getgid(); 3167 3168 base_filename = g_path_get_basename(ts->bprm->filename); 3169 /* 3170 * Using strncpy here is fine: at max-length, 3171 * this field is not NUL-terminated. 3172 */ 3173 (void) strncpy(psinfo->pr_fname, base_filename, 3174 sizeof(psinfo->pr_fname)); 3175 3176 g_free(base_filename); 3177 bswap_psinfo(psinfo); 3178 return (0); 3179 } 3180 3181 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3182 { 3183 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3184 elf_addr_t orig_auxv = auxv; 3185 void *ptr; 3186 int len = ts->info->auxv_len; 3187 3188 /* 3189 * Auxiliary vector is stored in target process stack. It contains 3190 * {type, value} pairs that we need to dump into note. This is not 3191 * strictly necessary but we do it here for sake of completeness. 3192 */ 3193 3194 /* read in whole auxv vector and copy it to memelfnote */ 3195 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3196 if (ptr != NULL) { 3197 fill_note(note, "CORE", NT_AUXV, len, ptr); 3198 unlock_user(ptr, auxv, len); 3199 } 3200 } 3201 3202 /* 3203 * Constructs name of coredump file. We have following convention 3204 * for the name: 3205 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3206 * 3207 * Returns 0 in case of success, -1 otherwise (errno is set). 3208 */ 3209 static int core_dump_filename(const TaskState *ts, char *buf, 3210 size_t bufsize) 3211 { 3212 char timestamp[64]; 3213 char *base_filename = NULL; 3214 struct timeval tv; 3215 struct tm tm; 3216 3217 assert(bufsize >= PATH_MAX); 3218 3219 if (gettimeofday(&tv, NULL) < 0) { 3220 (void) fprintf(stderr, "unable to get current timestamp: %s", 3221 strerror(errno)); 3222 return (-1); 3223 } 3224 3225 base_filename = g_path_get_basename(ts->bprm->filename); 3226 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3227 localtime_r(&tv.tv_sec, &tm)); 3228 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3229 base_filename, timestamp, (int)getpid()); 3230 g_free(base_filename); 3231 3232 return (0); 3233 } 3234 3235 static int dump_write(int fd, const void *ptr, size_t size) 3236 { 3237 const char *bufp = (const char *)ptr; 3238 ssize_t bytes_written, bytes_left; 3239 struct rlimit dumpsize; 3240 off_t pos; 3241 3242 bytes_written = 0; 3243 getrlimit(RLIMIT_CORE, &dumpsize); 3244 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3245 if (errno == ESPIPE) { /* not a seekable stream */ 3246 bytes_left = size; 3247 } else { 3248 return pos; 3249 } 3250 } else { 3251 if (dumpsize.rlim_cur <= pos) { 3252 return -1; 3253 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3254 bytes_left = size; 3255 } else { 3256 size_t limit_left=dumpsize.rlim_cur - pos; 3257 bytes_left = limit_left >= size ? size : limit_left ; 3258 } 3259 } 3260 3261 /* 3262 * In normal conditions, single write(2) should do but 3263 * in case of socket etc. this mechanism is more portable. 3264 */ 3265 do { 3266 bytes_written = write(fd, bufp, bytes_left); 3267 if (bytes_written < 0) { 3268 if (errno == EINTR) 3269 continue; 3270 return (-1); 3271 } else if (bytes_written == 0) { /* eof */ 3272 return (-1); 3273 } 3274 bufp += bytes_written; 3275 bytes_left -= bytes_written; 3276 } while (bytes_left > 0); 3277 3278 return (0); 3279 } 3280 3281 static int write_note(struct memelfnote *men, int fd) 3282 { 3283 struct elf_note en; 3284 3285 en.n_namesz = men->namesz; 3286 en.n_type = men->type; 3287 en.n_descsz = men->datasz; 3288 3289 bswap_note(&en); 3290 3291 if (dump_write(fd, &en, sizeof(en)) != 0) 3292 return (-1); 3293 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3294 return (-1); 3295 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3296 return (-1); 3297 3298 return (0); 3299 } 3300 3301 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3302 { 3303 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3304 TaskState *ts = (TaskState *)cpu->opaque; 3305 struct elf_thread_status *ets; 3306 3307 ets = g_malloc0(sizeof (*ets)); 3308 ets->num_notes = 1; /* only prstatus is dumped */ 3309 fill_prstatus(&ets->prstatus, ts, 0); 3310 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3311 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3312 &ets->prstatus); 3313 3314 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3315 3316 info->notes_size += note_size(&ets->notes[0]); 3317 } 3318 3319 static void init_note_info(struct elf_note_info *info) 3320 { 3321 /* Initialize the elf_note_info structure so that it is at 3322 * least safe to call free_note_info() on it. Must be 3323 * called before calling fill_note_info(). 3324 */ 3325 memset(info, 0, sizeof (*info)); 3326 QTAILQ_INIT(&info->thread_list); 3327 } 3328 3329 static int fill_note_info(struct elf_note_info *info, 3330 long signr, const CPUArchState *env) 3331 { 3332 #define NUMNOTES 3 3333 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3334 TaskState *ts = (TaskState *)cpu->opaque; 3335 int i; 3336 3337 info->notes = g_new0(struct memelfnote, NUMNOTES); 3338 if (info->notes == NULL) 3339 return (-ENOMEM); 3340 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3341 if (info->prstatus == NULL) 3342 return (-ENOMEM); 3343 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3344 if (info->prstatus == NULL) 3345 return (-ENOMEM); 3346 3347 /* 3348 * First fill in status (and registers) of current thread 3349 * including process info & aux vector. 3350 */ 3351 fill_prstatus(info->prstatus, ts, signr); 3352 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3353 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3354 sizeof (*info->prstatus), info->prstatus); 3355 fill_psinfo(info->psinfo, ts); 3356 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3357 sizeof (*info->psinfo), info->psinfo); 3358 fill_auxv_note(&info->notes[2], ts); 3359 info->numnote = 3; 3360 3361 info->notes_size = 0; 3362 for (i = 0; i < info->numnote; i++) 3363 info->notes_size += note_size(&info->notes[i]); 3364 3365 /* read and fill status of all threads */ 3366 cpu_list_lock(); 3367 CPU_FOREACH(cpu) { 3368 if (cpu == thread_cpu) { 3369 continue; 3370 } 3371 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3372 } 3373 cpu_list_unlock(); 3374 3375 return (0); 3376 } 3377 3378 static void free_note_info(struct elf_note_info *info) 3379 { 3380 struct elf_thread_status *ets; 3381 3382 while (!QTAILQ_EMPTY(&info->thread_list)) { 3383 ets = QTAILQ_FIRST(&info->thread_list); 3384 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3385 g_free(ets); 3386 } 3387 3388 g_free(info->prstatus); 3389 g_free(info->psinfo); 3390 g_free(info->notes); 3391 } 3392 3393 static int write_note_info(struct elf_note_info *info, int fd) 3394 { 3395 struct elf_thread_status *ets; 3396 int i, error = 0; 3397 3398 /* write prstatus, psinfo and auxv for current thread */ 3399 for (i = 0; i < info->numnote; i++) 3400 if ((error = write_note(&info->notes[i], fd)) != 0) 3401 return (error); 3402 3403 /* write prstatus for each thread */ 3404 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3405 if ((error = write_note(&ets->notes[0], fd)) != 0) 3406 return (error); 3407 } 3408 3409 return (0); 3410 } 3411 3412 /* 3413 * Write out ELF coredump. 3414 * 3415 * See documentation of ELF object file format in: 3416 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3417 * 3418 * Coredump format in linux is following: 3419 * 3420 * 0 +----------------------+ \ 3421 * | ELF header | ET_CORE | 3422 * +----------------------+ | 3423 * | ELF program headers | |--- headers 3424 * | - NOTE section | | 3425 * | - PT_LOAD sections | | 3426 * +----------------------+ / 3427 * | NOTEs: | 3428 * | - NT_PRSTATUS | 3429 * | - NT_PRSINFO | 3430 * | - NT_AUXV | 3431 * +----------------------+ <-- aligned to target page 3432 * | Process memory dump | 3433 * : : 3434 * . . 3435 * : : 3436 * | | 3437 * +----------------------+ 3438 * 3439 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3440 * NT_PRSINFO -> struct elf_prpsinfo 3441 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3442 * 3443 * Format follows System V format as close as possible. Current 3444 * version limitations are as follows: 3445 * - no floating point registers are dumped 3446 * 3447 * Function returns 0 in case of success, negative errno otherwise. 3448 * 3449 * TODO: make this work also during runtime: it should be 3450 * possible to force coredump from running process and then 3451 * continue processing. For example qemu could set up SIGUSR2 3452 * handler (provided that target process haven't registered 3453 * handler for that) that does the dump when signal is received. 3454 */ 3455 static int elf_core_dump(int signr, const CPUArchState *env) 3456 { 3457 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3458 const TaskState *ts = (const TaskState *)cpu->opaque; 3459 struct vm_area_struct *vma = NULL; 3460 char corefile[PATH_MAX]; 3461 struct elf_note_info info; 3462 struct elfhdr elf; 3463 struct elf_phdr phdr; 3464 struct rlimit dumpsize; 3465 struct mm_struct *mm = NULL; 3466 off_t offset = 0, data_offset = 0; 3467 int segs = 0; 3468 int fd = -1; 3469 3470 init_note_info(&info); 3471 3472 errno = 0; 3473 getrlimit(RLIMIT_CORE, &dumpsize); 3474 if (dumpsize.rlim_cur == 0) 3475 return 0; 3476 3477 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3478 return (-errno); 3479 3480 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3481 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3482 return (-errno); 3483 3484 /* 3485 * Walk through target process memory mappings and 3486 * set up structure containing this information. After 3487 * this point vma_xxx functions can be used. 3488 */ 3489 if ((mm = vma_init()) == NULL) 3490 goto out; 3491 3492 walk_memory_regions(mm, vma_walker); 3493 segs = vma_get_mapping_count(mm); 3494 3495 /* 3496 * Construct valid coredump ELF header. We also 3497 * add one more segment for notes. 3498 */ 3499 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3500 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3501 goto out; 3502 3503 /* fill in the in-memory version of notes */ 3504 if (fill_note_info(&info, signr, env) < 0) 3505 goto out; 3506 3507 offset += sizeof (elf); /* elf header */ 3508 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3509 3510 /* write out notes program header */ 3511 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3512 3513 offset += info.notes_size; 3514 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3515 goto out; 3516 3517 /* 3518 * ELF specification wants data to start at page boundary so 3519 * we align it here. 3520 */ 3521 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3522 3523 /* 3524 * Write program headers for memory regions mapped in 3525 * the target process. 3526 */ 3527 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3528 (void) memset(&phdr, 0, sizeof (phdr)); 3529 3530 phdr.p_type = PT_LOAD; 3531 phdr.p_offset = offset; 3532 phdr.p_vaddr = vma->vma_start; 3533 phdr.p_paddr = 0; 3534 phdr.p_filesz = vma_dump_size(vma); 3535 offset += phdr.p_filesz; 3536 phdr.p_memsz = vma->vma_end - vma->vma_start; 3537 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3538 if (vma->vma_flags & PROT_WRITE) 3539 phdr.p_flags |= PF_W; 3540 if (vma->vma_flags & PROT_EXEC) 3541 phdr.p_flags |= PF_X; 3542 phdr.p_align = ELF_EXEC_PAGESIZE; 3543 3544 bswap_phdr(&phdr, 1); 3545 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3546 goto out; 3547 } 3548 } 3549 3550 /* 3551 * Next we write notes just after program headers. No 3552 * alignment needed here. 3553 */ 3554 if (write_note_info(&info, fd) < 0) 3555 goto out; 3556 3557 /* align data to page boundary */ 3558 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3559 goto out; 3560 3561 /* 3562 * Finally we can dump process memory into corefile as well. 3563 */ 3564 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3565 abi_ulong addr; 3566 abi_ulong end; 3567 3568 end = vma->vma_start + vma_dump_size(vma); 3569 3570 for (addr = vma->vma_start; addr < end; 3571 addr += TARGET_PAGE_SIZE) { 3572 char page[TARGET_PAGE_SIZE]; 3573 int error; 3574 3575 /* 3576 * Read in page from target process memory and 3577 * write it to coredump file. 3578 */ 3579 error = copy_from_user(page, addr, sizeof (page)); 3580 if (error != 0) { 3581 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3582 addr); 3583 errno = -error; 3584 goto out; 3585 } 3586 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3587 goto out; 3588 } 3589 } 3590 3591 out: 3592 free_note_info(&info); 3593 if (mm != NULL) 3594 vma_delete(mm); 3595 (void) close(fd); 3596 3597 if (errno != 0) 3598 return (-errno); 3599 return (0); 3600 } 3601 #endif /* USE_ELF_CORE_DUMP */ 3602 3603 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3604 { 3605 init_thread(regs, infop); 3606 } 3607