1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qemu/lockable.h" 21 #include "qapi/error.h" 22 #include "qemu/error-report.h" 23 #include "target_signal.h" 24 #include "accel/tcg/debuginfo.h" 25 26 #ifdef TARGET_ARM 27 #include "target/arm/cpu-features.h" 28 #endif 29 30 #ifdef _ARCH_PPC64 31 #undef ARCH_DLINFO 32 #undef ELF_PLATFORM 33 #undef ELF_HWCAP 34 #undef ELF_HWCAP2 35 #undef ELF_CLASS 36 #undef ELF_DATA 37 #undef ELF_ARCH 38 #endif 39 40 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE 41 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0 42 #endif 43 44 typedef struct { 45 const uint8_t *image; 46 const uint32_t *relocs; 47 unsigned image_size; 48 unsigned reloc_count; 49 unsigned sigreturn_ofs; 50 unsigned rt_sigreturn_ofs; 51 } VdsoImageInfo; 52 53 #define ELF_OSABI ELFOSABI_SYSV 54 55 /* from personality.h */ 56 57 /* 58 * Flags for bug emulation. 59 * 60 * These occupy the top three bytes. 61 */ 62 enum { 63 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 64 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 65 descriptors (signal handling) */ 66 MMAP_PAGE_ZERO = 0x0100000, 67 ADDR_COMPAT_LAYOUT = 0x0200000, 68 READ_IMPLIES_EXEC = 0x0400000, 69 ADDR_LIMIT_32BIT = 0x0800000, 70 SHORT_INODE = 0x1000000, 71 WHOLE_SECONDS = 0x2000000, 72 STICKY_TIMEOUTS = 0x4000000, 73 ADDR_LIMIT_3GB = 0x8000000, 74 }; 75 76 /* 77 * Personality types. 78 * 79 * These go in the low byte. Avoid using the top bit, it will 80 * conflict with error returns. 81 */ 82 enum { 83 PER_LINUX = 0x0000, 84 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 85 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 86 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 87 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 88 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 89 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 90 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 91 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 92 PER_BSD = 0x0006, 93 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 94 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 95 PER_LINUX32 = 0x0008, 96 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 97 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 98 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 99 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 100 PER_RISCOS = 0x000c, 101 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 102 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 103 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 104 PER_HPUX = 0x0010, 105 PER_MASK = 0x00ff, 106 }; 107 108 /* 109 * Return the base personality without flags. 110 */ 111 #define personality(pers) (pers & PER_MASK) 112 113 int info_is_fdpic(struct image_info *info) 114 { 115 return info->personality == PER_LINUX_FDPIC; 116 } 117 118 /* this flag is uneffective under linux too, should be deleted */ 119 #ifndef MAP_DENYWRITE 120 #define MAP_DENYWRITE 0 121 #endif 122 123 /* should probably go in elf.h */ 124 #ifndef ELIBBAD 125 #define ELIBBAD 80 126 #endif 127 128 #if TARGET_BIG_ENDIAN 129 #define ELF_DATA ELFDATA2MSB 130 #else 131 #define ELF_DATA ELFDATA2LSB 132 #endif 133 134 #ifdef TARGET_ABI_MIPSN32 135 typedef abi_ullong target_elf_greg_t; 136 #define tswapreg(ptr) tswap64(ptr) 137 #else 138 typedef abi_ulong target_elf_greg_t; 139 #define tswapreg(ptr) tswapal(ptr) 140 #endif 141 142 #ifdef USE_UID16 143 typedef abi_ushort target_uid_t; 144 typedef abi_ushort target_gid_t; 145 #else 146 typedef abi_uint target_uid_t; 147 typedef abi_uint target_gid_t; 148 #endif 149 typedef abi_int target_pid_t; 150 151 #ifdef TARGET_I386 152 153 #define ELF_HWCAP get_elf_hwcap() 154 155 static uint32_t get_elf_hwcap(void) 156 { 157 X86CPU *cpu = X86_CPU(thread_cpu); 158 159 return cpu->env.features[FEAT_1_EDX]; 160 } 161 162 #ifdef TARGET_X86_64 163 #define ELF_CLASS ELFCLASS64 164 #define ELF_ARCH EM_X86_64 165 166 #define ELF_PLATFORM "x86_64" 167 168 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 169 { 170 regs->rax = 0; 171 regs->rsp = infop->start_stack; 172 regs->rip = infop->entry; 173 } 174 175 #define ELF_NREG 27 176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 177 178 /* 179 * Note that ELF_NREG should be 29 as there should be place for 180 * TRAPNO and ERR "registers" as well but linux doesn't dump 181 * those. 182 * 183 * See linux kernel: arch/x86/include/asm/elf.h 184 */ 185 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 186 { 187 (*regs)[0] = tswapreg(env->regs[15]); 188 (*regs)[1] = tswapreg(env->regs[14]); 189 (*regs)[2] = tswapreg(env->regs[13]); 190 (*regs)[3] = tswapreg(env->regs[12]); 191 (*regs)[4] = tswapreg(env->regs[R_EBP]); 192 (*regs)[5] = tswapreg(env->regs[R_EBX]); 193 (*regs)[6] = tswapreg(env->regs[11]); 194 (*regs)[7] = tswapreg(env->regs[10]); 195 (*regs)[8] = tswapreg(env->regs[9]); 196 (*regs)[9] = tswapreg(env->regs[8]); 197 (*regs)[10] = tswapreg(env->regs[R_EAX]); 198 (*regs)[11] = tswapreg(env->regs[R_ECX]); 199 (*regs)[12] = tswapreg(env->regs[R_EDX]); 200 (*regs)[13] = tswapreg(env->regs[R_ESI]); 201 (*regs)[14] = tswapreg(env->regs[R_EDI]); 202 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 203 (*regs)[16] = tswapreg(env->eip); 204 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 205 (*regs)[18] = tswapreg(env->eflags); 206 (*regs)[19] = tswapreg(env->regs[R_ESP]); 207 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 208 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 209 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 210 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 211 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 212 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 213 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 214 } 215 216 #if ULONG_MAX > UINT32_MAX 217 #define INIT_GUEST_COMMPAGE 218 static bool init_guest_commpage(void) 219 { 220 /* 221 * The vsyscall page is at a high negative address aka kernel space, 222 * which means that we cannot actually allocate it with target_mmap. 223 * We still should be able to use page_set_flags, unless the user 224 * has specified -R reserved_va, which would trigger an assert(). 225 */ 226 if (reserved_va != 0 && 227 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 228 error_report("Cannot allocate vsyscall page"); 229 exit(EXIT_FAILURE); 230 } 231 page_set_flags(TARGET_VSYSCALL_PAGE, 232 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 233 PAGE_EXEC | PAGE_VALID); 234 return true; 235 } 236 #endif 237 #else 238 239 /* 240 * This is used to ensure we don't load something for the wrong architecture. 241 */ 242 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 243 244 /* 245 * These are used to set parameters in the core dumps. 246 */ 247 #define ELF_CLASS ELFCLASS32 248 #define ELF_ARCH EM_386 249 250 #define ELF_PLATFORM get_elf_platform() 251 #define EXSTACK_DEFAULT true 252 253 static const char *get_elf_platform(void) 254 { 255 static char elf_platform[] = "i386"; 256 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 257 if (family > 6) { 258 family = 6; 259 } 260 if (family >= 3) { 261 elf_platform[1] = '0' + family; 262 } 263 return elf_platform; 264 } 265 266 static inline void init_thread(struct target_pt_regs *regs, 267 struct image_info *infop) 268 { 269 regs->esp = infop->start_stack; 270 regs->eip = infop->entry; 271 272 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 273 starts %edx contains a pointer to a function which might be 274 registered using `atexit'. This provides a mean for the 275 dynamic linker to call DT_FINI functions for shared libraries 276 that have been loaded before the code runs. 277 278 A value of 0 tells we have no such handler. */ 279 regs->edx = 0; 280 } 281 282 #define ELF_NREG 17 283 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 284 285 /* 286 * Note that ELF_NREG should be 19 as there should be place for 287 * TRAPNO and ERR "registers" as well but linux doesn't dump 288 * those. 289 * 290 * See linux kernel: arch/x86/include/asm/elf.h 291 */ 292 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 293 { 294 (*regs)[0] = tswapreg(env->regs[R_EBX]); 295 (*regs)[1] = tswapreg(env->regs[R_ECX]); 296 (*regs)[2] = tswapreg(env->regs[R_EDX]); 297 (*regs)[3] = tswapreg(env->regs[R_ESI]); 298 (*regs)[4] = tswapreg(env->regs[R_EDI]); 299 (*regs)[5] = tswapreg(env->regs[R_EBP]); 300 (*regs)[6] = tswapreg(env->regs[R_EAX]); 301 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 302 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 303 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 304 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 305 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 306 (*regs)[12] = tswapreg(env->eip); 307 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 308 (*regs)[14] = tswapreg(env->eflags); 309 (*regs)[15] = tswapreg(env->regs[R_ESP]); 310 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 311 } 312 313 /* 314 * i386 is the only target which supplies AT_SYSINFO for the vdso. 315 * All others only supply AT_SYSINFO_EHDR. 316 */ 317 #define DLINFO_ARCH_ITEMS (vdso_info != NULL) 318 #define ARCH_DLINFO \ 319 do { \ 320 if (vdso_info) { \ 321 NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry); \ 322 } \ 323 } while (0) 324 325 #endif /* TARGET_X86_64 */ 326 327 #define VDSO_HEADER "vdso.c.inc" 328 329 #define USE_ELF_CORE_DUMP 330 #define ELF_EXEC_PAGESIZE 4096 331 332 #endif /* TARGET_I386 */ 333 334 #ifdef TARGET_ARM 335 336 #ifndef TARGET_AARCH64 337 /* 32 bit ARM definitions */ 338 339 #define ELF_ARCH EM_ARM 340 #define ELF_CLASS ELFCLASS32 341 #define EXSTACK_DEFAULT true 342 343 static inline void init_thread(struct target_pt_regs *regs, 344 struct image_info *infop) 345 { 346 abi_long stack = infop->start_stack; 347 memset(regs, 0, sizeof(*regs)); 348 349 regs->uregs[16] = ARM_CPU_MODE_USR; 350 if (infop->entry & 1) { 351 regs->uregs[16] |= CPSR_T; 352 } 353 regs->uregs[15] = infop->entry & 0xfffffffe; 354 regs->uregs[13] = infop->start_stack; 355 /* FIXME - what to for failure of get_user()? */ 356 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 357 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 358 /* XXX: it seems that r0 is zeroed after ! */ 359 regs->uregs[0] = 0; 360 /* For uClinux PIC binaries. */ 361 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 362 regs->uregs[10] = infop->start_data; 363 364 /* Support ARM FDPIC. */ 365 if (info_is_fdpic(infop)) { 366 /* As described in the ABI document, r7 points to the loadmap info 367 * prepared by the kernel. If an interpreter is needed, r8 points 368 * to the interpreter loadmap and r9 points to the interpreter 369 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 370 * r9 points to the main program PT_DYNAMIC info. 371 */ 372 regs->uregs[7] = infop->loadmap_addr; 373 if (infop->interpreter_loadmap_addr) { 374 /* Executable is dynamically loaded. */ 375 regs->uregs[8] = infop->interpreter_loadmap_addr; 376 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 377 } else { 378 regs->uregs[8] = 0; 379 regs->uregs[9] = infop->pt_dynamic_addr; 380 } 381 } 382 } 383 384 #define ELF_NREG 18 385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 386 387 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 388 { 389 (*regs)[0] = tswapreg(env->regs[0]); 390 (*regs)[1] = tswapreg(env->regs[1]); 391 (*regs)[2] = tswapreg(env->regs[2]); 392 (*regs)[3] = tswapreg(env->regs[3]); 393 (*regs)[4] = tswapreg(env->regs[4]); 394 (*regs)[5] = tswapreg(env->regs[5]); 395 (*regs)[6] = tswapreg(env->regs[6]); 396 (*regs)[7] = tswapreg(env->regs[7]); 397 (*regs)[8] = tswapreg(env->regs[8]); 398 (*regs)[9] = tswapreg(env->regs[9]); 399 (*regs)[10] = tswapreg(env->regs[10]); 400 (*regs)[11] = tswapreg(env->regs[11]); 401 (*regs)[12] = tswapreg(env->regs[12]); 402 (*regs)[13] = tswapreg(env->regs[13]); 403 (*regs)[14] = tswapreg(env->regs[14]); 404 (*regs)[15] = tswapreg(env->regs[15]); 405 406 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 407 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 408 } 409 410 #define USE_ELF_CORE_DUMP 411 #define ELF_EXEC_PAGESIZE 4096 412 413 enum 414 { 415 ARM_HWCAP_ARM_SWP = 1 << 0, 416 ARM_HWCAP_ARM_HALF = 1 << 1, 417 ARM_HWCAP_ARM_THUMB = 1 << 2, 418 ARM_HWCAP_ARM_26BIT = 1 << 3, 419 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 420 ARM_HWCAP_ARM_FPA = 1 << 5, 421 ARM_HWCAP_ARM_VFP = 1 << 6, 422 ARM_HWCAP_ARM_EDSP = 1 << 7, 423 ARM_HWCAP_ARM_JAVA = 1 << 8, 424 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 425 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 426 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 427 ARM_HWCAP_ARM_NEON = 1 << 12, 428 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 429 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 430 ARM_HWCAP_ARM_TLS = 1 << 15, 431 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 432 ARM_HWCAP_ARM_IDIVA = 1 << 17, 433 ARM_HWCAP_ARM_IDIVT = 1 << 18, 434 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 435 ARM_HWCAP_ARM_LPAE = 1 << 20, 436 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 437 ARM_HWCAP_ARM_FPHP = 1 << 22, 438 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 439 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 440 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 441 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 442 ARM_HWCAP_ARM_I8MM = 1 << 27, 443 }; 444 445 enum { 446 ARM_HWCAP2_ARM_AES = 1 << 0, 447 ARM_HWCAP2_ARM_PMULL = 1 << 1, 448 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 449 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 450 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 451 ARM_HWCAP2_ARM_SB = 1 << 5, 452 ARM_HWCAP2_ARM_SSBS = 1 << 6, 453 }; 454 455 /* The commpage only exists for 32 bit kernels */ 456 457 #define HI_COMMPAGE (intptr_t)0xffff0f00u 458 459 static bool init_guest_commpage(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 abi_ptr commpage; 463 void *want; 464 void *addr; 465 466 /* 467 * M-profile allocates maximum of 2GB address space, so can never 468 * allocate the commpage. Skip it. 469 */ 470 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 471 return true; 472 } 473 474 commpage = HI_COMMPAGE & -qemu_host_page_size; 475 want = g2h_untagged(commpage); 476 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 477 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 478 479 if (addr == MAP_FAILED) { 480 perror("Allocating guest commpage"); 481 exit(EXIT_FAILURE); 482 } 483 if (addr != want) { 484 return false; 485 } 486 487 /* Set kernel helper versions; rest of page is 0. */ 488 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 489 490 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 491 perror("Protecting guest commpage"); 492 exit(EXIT_FAILURE); 493 } 494 495 page_set_flags(commpage, commpage | ~qemu_host_page_mask, 496 PAGE_READ | PAGE_EXEC | PAGE_VALID); 497 return true; 498 } 499 500 #define ELF_HWCAP get_elf_hwcap() 501 #define ELF_HWCAP2 get_elf_hwcap2() 502 503 uint32_t get_elf_hwcap(void) 504 { 505 ARMCPU *cpu = ARM_CPU(thread_cpu); 506 uint32_t hwcaps = 0; 507 508 hwcaps |= ARM_HWCAP_ARM_SWP; 509 hwcaps |= ARM_HWCAP_ARM_HALF; 510 hwcaps |= ARM_HWCAP_ARM_THUMB; 511 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 512 513 /* probe for the extra features */ 514 #define GET_FEATURE(feat, hwcap) \ 515 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 516 517 #define GET_FEATURE_ID(feat, hwcap) \ 518 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 519 520 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 521 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 522 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 523 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 524 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 525 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 526 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 527 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 528 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 529 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 530 531 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 532 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 533 hwcaps |= ARM_HWCAP_ARM_VFPv3; 534 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 535 hwcaps |= ARM_HWCAP_ARM_VFPD32; 536 } else { 537 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 538 } 539 } 540 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 541 /* 542 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 543 * isar_feature function for both. The kernel reports them as two hwcaps. 544 */ 545 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 546 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 547 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 548 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 549 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 550 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 551 552 return hwcaps; 553 } 554 555 uint32_t get_elf_hwcap2(void) 556 { 557 ARMCPU *cpu = ARM_CPU(thread_cpu); 558 uint32_t hwcaps = 0; 559 560 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 561 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 562 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 563 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 564 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 565 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 566 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 567 return hwcaps; 568 } 569 570 const char *elf_hwcap_str(uint32_t bit) 571 { 572 static const char *hwcap_str[] = { 573 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 574 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 575 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 576 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 577 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 578 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 579 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 580 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 581 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 582 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 583 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 584 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 585 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 586 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 587 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 588 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 589 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 590 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 591 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 592 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 593 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 594 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 595 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 596 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 597 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 598 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 599 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 600 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 601 }; 602 603 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 604 } 605 606 const char *elf_hwcap2_str(uint32_t bit) 607 { 608 static const char *hwcap_str[] = { 609 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 610 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 611 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 612 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 613 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 614 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 615 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 616 }; 617 618 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 619 } 620 621 #undef GET_FEATURE 622 #undef GET_FEATURE_ID 623 624 #define ELF_PLATFORM get_elf_platform() 625 626 static const char *get_elf_platform(void) 627 { 628 CPUARMState *env = cpu_env(thread_cpu); 629 630 #if TARGET_BIG_ENDIAN 631 # define END "b" 632 #else 633 # define END "l" 634 #endif 635 636 if (arm_feature(env, ARM_FEATURE_V8)) { 637 return "v8" END; 638 } else if (arm_feature(env, ARM_FEATURE_V7)) { 639 if (arm_feature(env, ARM_FEATURE_M)) { 640 return "v7m" END; 641 } else { 642 return "v7" END; 643 } 644 } else if (arm_feature(env, ARM_FEATURE_V6)) { 645 return "v6" END; 646 } else if (arm_feature(env, ARM_FEATURE_V5)) { 647 return "v5" END; 648 } else { 649 return "v4" END; 650 } 651 652 #undef END 653 } 654 655 #else 656 /* 64 bit ARM definitions */ 657 658 #define ELF_ARCH EM_AARCH64 659 #define ELF_CLASS ELFCLASS64 660 #if TARGET_BIG_ENDIAN 661 # define ELF_PLATFORM "aarch64_be" 662 #else 663 # define ELF_PLATFORM "aarch64" 664 #endif 665 666 static inline void init_thread(struct target_pt_regs *regs, 667 struct image_info *infop) 668 { 669 abi_long stack = infop->start_stack; 670 memset(regs, 0, sizeof(*regs)); 671 672 regs->pc = infop->entry & ~0x3ULL; 673 regs->sp = stack; 674 } 675 676 #define ELF_NREG 34 677 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 678 679 static void elf_core_copy_regs(target_elf_gregset_t *regs, 680 const CPUARMState *env) 681 { 682 int i; 683 684 for (i = 0; i < 32; i++) { 685 (*regs)[i] = tswapreg(env->xregs[i]); 686 } 687 (*regs)[32] = tswapreg(env->pc); 688 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 689 } 690 691 #define USE_ELF_CORE_DUMP 692 #define ELF_EXEC_PAGESIZE 4096 693 694 enum { 695 ARM_HWCAP_A64_FP = 1 << 0, 696 ARM_HWCAP_A64_ASIMD = 1 << 1, 697 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 698 ARM_HWCAP_A64_AES = 1 << 3, 699 ARM_HWCAP_A64_PMULL = 1 << 4, 700 ARM_HWCAP_A64_SHA1 = 1 << 5, 701 ARM_HWCAP_A64_SHA2 = 1 << 6, 702 ARM_HWCAP_A64_CRC32 = 1 << 7, 703 ARM_HWCAP_A64_ATOMICS = 1 << 8, 704 ARM_HWCAP_A64_FPHP = 1 << 9, 705 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 706 ARM_HWCAP_A64_CPUID = 1 << 11, 707 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 708 ARM_HWCAP_A64_JSCVT = 1 << 13, 709 ARM_HWCAP_A64_FCMA = 1 << 14, 710 ARM_HWCAP_A64_LRCPC = 1 << 15, 711 ARM_HWCAP_A64_DCPOP = 1 << 16, 712 ARM_HWCAP_A64_SHA3 = 1 << 17, 713 ARM_HWCAP_A64_SM3 = 1 << 18, 714 ARM_HWCAP_A64_SM4 = 1 << 19, 715 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 716 ARM_HWCAP_A64_SHA512 = 1 << 21, 717 ARM_HWCAP_A64_SVE = 1 << 22, 718 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 719 ARM_HWCAP_A64_DIT = 1 << 24, 720 ARM_HWCAP_A64_USCAT = 1 << 25, 721 ARM_HWCAP_A64_ILRCPC = 1 << 26, 722 ARM_HWCAP_A64_FLAGM = 1 << 27, 723 ARM_HWCAP_A64_SSBS = 1 << 28, 724 ARM_HWCAP_A64_SB = 1 << 29, 725 ARM_HWCAP_A64_PACA = 1 << 30, 726 ARM_HWCAP_A64_PACG = 1UL << 31, 727 728 ARM_HWCAP2_A64_DCPODP = 1 << 0, 729 ARM_HWCAP2_A64_SVE2 = 1 << 1, 730 ARM_HWCAP2_A64_SVEAES = 1 << 2, 731 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 732 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 733 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 734 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 735 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 736 ARM_HWCAP2_A64_FRINT = 1 << 8, 737 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 738 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 739 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 740 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 741 ARM_HWCAP2_A64_I8MM = 1 << 13, 742 ARM_HWCAP2_A64_BF16 = 1 << 14, 743 ARM_HWCAP2_A64_DGH = 1 << 15, 744 ARM_HWCAP2_A64_RNG = 1 << 16, 745 ARM_HWCAP2_A64_BTI = 1 << 17, 746 ARM_HWCAP2_A64_MTE = 1 << 18, 747 ARM_HWCAP2_A64_ECV = 1 << 19, 748 ARM_HWCAP2_A64_AFP = 1 << 20, 749 ARM_HWCAP2_A64_RPRES = 1 << 21, 750 ARM_HWCAP2_A64_MTE3 = 1 << 22, 751 ARM_HWCAP2_A64_SME = 1 << 23, 752 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 753 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 754 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 755 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 756 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 757 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 758 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 759 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 760 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 761 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 762 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 763 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 764 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 765 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 766 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 767 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 768 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 769 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 770 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 771 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 772 ARM_HWCAP2_A64_HBC = 1ULL << 44, 773 }; 774 775 #define ELF_HWCAP get_elf_hwcap() 776 #define ELF_HWCAP2 get_elf_hwcap2() 777 778 #define GET_FEATURE_ID(feat, hwcap) \ 779 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 780 781 uint32_t get_elf_hwcap(void) 782 { 783 ARMCPU *cpu = ARM_CPU(thread_cpu); 784 uint32_t hwcaps = 0; 785 786 hwcaps |= ARM_HWCAP_A64_FP; 787 hwcaps |= ARM_HWCAP_A64_ASIMD; 788 hwcaps |= ARM_HWCAP_A64_CPUID; 789 790 /* probe for the extra features */ 791 792 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 793 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 794 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 795 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 796 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 797 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 798 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 799 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 800 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 801 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 802 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 803 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 804 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 805 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 806 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 807 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 808 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 809 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 810 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 811 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 812 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 813 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 814 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 815 816 return hwcaps; 817 } 818 819 uint32_t get_elf_hwcap2(void) 820 { 821 ARMCPU *cpu = ARM_CPU(thread_cpu); 822 uint32_t hwcaps = 0; 823 824 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 825 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 826 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 827 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 828 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 829 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 830 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 831 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 832 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 833 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 834 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 835 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 836 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 837 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 838 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 839 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 840 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 841 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 842 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 843 ARM_HWCAP2_A64_SME_F32F32 | 844 ARM_HWCAP2_A64_SME_B16F32 | 845 ARM_HWCAP2_A64_SME_F16F32 | 846 ARM_HWCAP2_A64_SME_I8I32)); 847 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 848 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 849 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 850 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 851 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 852 853 return hwcaps; 854 } 855 856 const char *elf_hwcap_str(uint32_t bit) 857 { 858 static const char *hwcap_str[] = { 859 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 860 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 861 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 862 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 863 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 864 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 865 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 866 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 867 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 868 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 869 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 870 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 871 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 872 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 873 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 874 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 875 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 876 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 877 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 878 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 879 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 880 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 881 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 882 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 883 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 884 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 885 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 886 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 887 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 888 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 889 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 890 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 891 }; 892 893 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 894 } 895 896 const char *elf_hwcap2_str(uint32_t bit) 897 { 898 static const char *hwcap_str[] = { 899 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 900 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 901 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 902 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 903 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 904 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 905 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 906 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 907 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 908 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 909 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 910 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 911 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 912 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 913 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 914 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 915 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 916 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 917 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 918 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 919 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 920 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 921 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 922 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 923 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 924 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 925 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 926 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 927 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 928 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 929 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 930 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 931 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 932 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 933 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 934 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 935 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 936 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 937 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 938 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 939 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 940 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 941 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 942 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 943 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 944 }; 945 946 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 947 } 948 949 #undef GET_FEATURE_ID 950 951 #endif /* not TARGET_AARCH64 */ 952 953 #if TARGET_BIG_ENDIAN 954 # define VDSO_HEADER "vdso-be.c.inc" 955 #else 956 # define VDSO_HEADER "vdso-le.c.inc" 957 #endif 958 959 #endif /* TARGET_ARM */ 960 961 #ifdef TARGET_SPARC 962 #ifdef TARGET_SPARC64 963 964 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 965 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 966 #ifndef TARGET_ABI32 967 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 968 #else 969 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 970 #endif 971 972 #define ELF_CLASS ELFCLASS64 973 #define ELF_ARCH EM_SPARCV9 974 #else 975 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 976 | HWCAP_SPARC_MULDIV) 977 #define ELF_CLASS ELFCLASS32 978 #define ELF_ARCH EM_SPARC 979 #endif /* TARGET_SPARC64 */ 980 981 static inline void init_thread(struct target_pt_regs *regs, 982 struct image_info *infop) 983 { 984 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 985 regs->pc = infop->entry; 986 regs->npc = regs->pc + 4; 987 regs->y = 0; 988 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 989 - TARGET_STACK_BIAS); 990 } 991 #endif /* TARGET_SPARC */ 992 993 #ifdef TARGET_PPC 994 995 #define ELF_MACHINE PPC_ELF_MACHINE 996 997 #if defined(TARGET_PPC64) 998 999 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 1000 1001 #define ELF_CLASS ELFCLASS64 1002 1003 #else 1004 1005 #define ELF_CLASS ELFCLASS32 1006 #define EXSTACK_DEFAULT true 1007 1008 #endif 1009 1010 #define ELF_ARCH EM_PPC 1011 1012 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 1013 See arch/powerpc/include/asm/cputable.h. */ 1014 enum { 1015 QEMU_PPC_FEATURE_32 = 0x80000000, 1016 QEMU_PPC_FEATURE_64 = 0x40000000, 1017 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 1018 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 1019 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 1020 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 1021 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 1022 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 1023 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 1024 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 1025 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 1026 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 1027 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 1028 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 1029 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 1030 QEMU_PPC_FEATURE_CELL = 0x00010000, 1031 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 1032 QEMU_PPC_FEATURE_SMT = 0x00004000, 1033 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 1034 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 1035 QEMU_PPC_FEATURE_PA6T = 0x00000800, 1036 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 1037 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 1038 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1039 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1040 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1041 1042 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1043 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1044 1045 /* Feature definitions in AT_HWCAP2. */ 1046 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1047 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1048 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1049 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1050 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1051 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1052 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1053 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1054 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1055 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1056 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1057 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1058 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1059 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1060 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1061 }; 1062 1063 #define ELF_HWCAP get_elf_hwcap() 1064 1065 static uint32_t get_elf_hwcap(void) 1066 { 1067 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1068 uint32_t features = 0; 1069 1070 /* We don't have to be terribly complete here; the high points are 1071 Altivec/FP/SPE support. Anything else is just a bonus. */ 1072 #define GET_FEATURE(flag, feature) \ 1073 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1074 #define GET_FEATURE2(flags, feature) \ 1075 do { \ 1076 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1077 features |= feature; \ 1078 } \ 1079 } while (0) 1080 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1081 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1082 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1083 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1084 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1085 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1086 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1087 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1088 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1089 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1090 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1091 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1092 QEMU_PPC_FEATURE_ARCH_2_06); 1093 #undef GET_FEATURE 1094 #undef GET_FEATURE2 1095 1096 return features; 1097 } 1098 1099 #define ELF_HWCAP2 get_elf_hwcap2() 1100 1101 static uint32_t get_elf_hwcap2(void) 1102 { 1103 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1104 uint32_t features = 0; 1105 1106 #define GET_FEATURE(flag, feature) \ 1107 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1108 #define GET_FEATURE2(flag, feature) \ 1109 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1110 1111 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1112 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1113 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1114 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1115 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1116 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1117 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1118 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1119 QEMU_PPC_FEATURE2_MMA); 1120 1121 #undef GET_FEATURE 1122 #undef GET_FEATURE2 1123 1124 return features; 1125 } 1126 1127 /* 1128 * The requirements here are: 1129 * - keep the final alignment of sp (sp & 0xf) 1130 * - make sure the 32-bit value at the first 16 byte aligned position of 1131 * AUXV is greater than 16 for glibc compatibility. 1132 * AT_IGNOREPPC is used for that. 1133 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1134 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1135 */ 1136 #define DLINFO_ARCH_ITEMS 5 1137 #define ARCH_DLINFO \ 1138 do { \ 1139 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1140 /* \ 1141 * Handle glibc compatibility: these magic entries must \ 1142 * be at the lowest addresses in the final auxv. \ 1143 */ \ 1144 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1145 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1146 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1147 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1148 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1149 } while (0) 1150 1151 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1152 { 1153 _regs->gpr[1] = infop->start_stack; 1154 #if defined(TARGET_PPC64) 1155 if (get_ppc64_abi(infop) < 2) { 1156 uint64_t val; 1157 get_user_u64(val, infop->entry + 8); 1158 _regs->gpr[2] = val + infop->load_bias; 1159 get_user_u64(val, infop->entry); 1160 infop->entry = val + infop->load_bias; 1161 } else { 1162 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1163 } 1164 #endif 1165 _regs->nip = infop->entry; 1166 } 1167 1168 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1169 #define ELF_NREG 48 1170 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1171 1172 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1173 { 1174 int i; 1175 target_ulong ccr = 0; 1176 1177 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1178 (*regs)[i] = tswapreg(env->gpr[i]); 1179 } 1180 1181 (*regs)[32] = tswapreg(env->nip); 1182 (*regs)[33] = tswapreg(env->msr); 1183 (*regs)[35] = tswapreg(env->ctr); 1184 (*regs)[36] = tswapreg(env->lr); 1185 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1186 1187 ccr = ppc_get_cr(env); 1188 (*regs)[38] = tswapreg(ccr); 1189 } 1190 1191 #define USE_ELF_CORE_DUMP 1192 #define ELF_EXEC_PAGESIZE 4096 1193 1194 #ifndef TARGET_PPC64 1195 # define VDSO_HEADER "vdso-32.c.inc" 1196 #elif TARGET_BIG_ENDIAN 1197 # define VDSO_HEADER "vdso-64.c.inc" 1198 #else 1199 # define VDSO_HEADER "vdso-64le.c.inc" 1200 #endif 1201 1202 #endif 1203 1204 #ifdef TARGET_LOONGARCH64 1205 1206 #define ELF_CLASS ELFCLASS64 1207 #define ELF_ARCH EM_LOONGARCH 1208 #define EXSTACK_DEFAULT true 1209 1210 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1211 1212 #define VDSO_HEADER "vdso.c.inc" 1213 1214 static inline void init_thread(struct target_pt_regs *regs, 1215 struct image_info *infop) 1216 { 1217 /*Set crmd PG,DA = 1,0 */ 1218 regs->csr.crmd = 2 << 3; 1219 regs->csr.era = infop->entry; 1220 regs->regs[3] = infop->start_stack; 1221 } 1222 1223 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1224 #define ELF_NREG 45 1225 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1226 1227 enum { 1228 TARGET_EF_R0 = 0, 1229 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1230 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1231 }; 1232 1233 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1234 const CPULoongArchState *env) 1235 { 1236 int i; 1237 1238 (*regs)[TARGET_EF_R0] = 0; 1239 1240 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1241 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1242 } 1243 1244 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1245 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1246 } 1247 1248 #define USE_ELF_CORE_DUMP 1249 #define ELF_EXEC_PAGESIZE 4096 1250 1251 #define ELF_HWCAP get_elf_hwcap() 1252 1253 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1254 enum { 1255 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1256 HWCAP_LOONGARCH_LAM = (1 << 1), 1257 HWCAP_LOONGARCH_UAL = (1 << 2), 1258 HWCAP_LOONGARCH_FPU = (1 << 3), 1259 HWCAP_LOONGARCH_LSX = (1 << 4), 1260 HWCAP_LOONGARCH_LASX = (1 << 5), 1261 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1262 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1263 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1264 HWCAP_LOONGARCH_LVZ = (1 << 9), 1265 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1266 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1267 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1268 }; 1269 1270 static uint32_t get_elf_hwcap(void) 1271 { 1272 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1273 uint32_t hwcaps = 0; 1274 1275 hwcaps |= HWCAP_LOONGARCH_CRC32; 1276 1277 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1278 hwcaps |= HWCAP_LOONGARCH_UAL; 1279 } 1280 1281 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1282 hwcaps |= HWCAP_LOONGARCH_FPU; 1283 } 1284 1285 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1286 hwcaps |= HWCAP_LOONGARCH_LAM; 1287 } 1288 1289 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) { 1290 hwcaps |= HWCAP_LOONGARCH_LSX; 1291 } 1292 1293 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) { 1294 hwcaps |= HWCAP_LOONGARCH_LASX; 1295 } 1296 1297 return hwcaps; 1298 } 1299 1300 #define ELF_PLATFORM "loongarch" 1301 1302 #endif /* TARGET_LOONGARCH64 */ 1303 1304 #ifdef TARGET_MIPS 1305 1306 #ifdef TARGET_MIPS64 1307 #define ELF_CLASS ELFCLASS64 1308 #else 1309 #define ELF_CLASS ELFCLASS32 1310 #endif 1311 #define ELF_ARCH EM_MIPS 1312 #define EXSTACK_DEFAULT true 1313 1314 #ifdef TARGET_ABI_MIPSN32 1315 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1316 #else 1317 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1318 #endif 1319 1320 #define ELF_BASE_PLATFORM get_elf_base_platform() 1321 1322 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1323 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1324 { return _base_platform; } } while (0) 1325 1326 static const char *get_elf_base_platform(void) 1327 { 1328 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1329 1330 /* 64 bit ISAs goes first */ 1331 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1332 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1333 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1334 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1335 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1336 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1337 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1338 1339 /* 32 bit ISAs */ 1340 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1341 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1342 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1343 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1344 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1345 1346 /* Fallback */ 1347 return "mips"; 1348 } 1349 #undef MATCH_PLATFORM_INSN 1350 1351 static inline void init_thread(struct target_pt_regs *regs, 1352 struct image_info *infop) 1353 { 1354 regs->cp0_status = 2 << CP0St_KSU; 1355 regs->cp0_epc = infop->entry; 1356 regs->regs[29] = infop->start_stack; 1357 } 1358 1359 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1360 #define ELF_NREG 45 1361 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1362 1363 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1364 enum { 1365 #ifdef TARGET_MIPS64 1366 TARGET_EF_R0 = 0, 1367 #else 1368 TARGET_EF_R0 = 6, 1369 #endif 1370 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1371 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1372 TARGET_EF_LO = TARGET_EF_R0 + 32, 1373 TARGET_EF_HI = TARGET_EF_R0 + 33, 1374 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1375 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1376 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1377 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1378 }; 1379 1380 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1381 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1382 { 1383 int i; 1384 1385 for (i = 0; i < TARGET_EF_R0; i++) { 1386 (*regs)[i] = 0; 1387 } 1388 (*regs)[TARGET_EF_R0] = 0; 1389 1390 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1391 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1392 } 1393 1394 (*regs)[TARGET_EF_R26] = 0; 1395 (*regs)[TARGET_EF_R27] = 0; 1396 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1397 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1398 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1399 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1400 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1401 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1402 } 1403 1404 #define USE_ELF_CORE_DUMP 1405 #define ELF_EXEC_PAGESIZE 4096 1406 1407 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1408 enum { 1409 HWCAP_MIPS_R6 = (1 << 0), 1410 HWCAP_MIPS_MSA = (1 << 1), 1411 HWCAP_MIPS_CRC32 = (1 << 2), 1412 HWCAP_MIPS_MIPS16 = (1 << 3), 1413 HWCAP_MIPS_MDMX = (1 << 4), 1414 HWCAP_MIPS_MIPS3D = (1 << 5), 1415 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1416 HWCAP_MIPS_DSP = (1 << 7), 1417 HWCAP_MIPS_DSP2 = (1 << 8), 1418 HWCAP_MIPS_DSP3 = (1 << 9), 1419 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1420 HWCAP_LOONGSON_MMI = (1 << 11), 1421 HWCAP_LOONGSON_EXT = (1 << 12), 1422 HWCAP_LOONGSON_EXT2 = (1 << 13), 1423 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1424 }; 1425 1426 #define ELF_HWCAP get_elf_hwcap() 1427 1428 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1429 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1430 1431 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1432 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1433 1434 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1435 do { \ 1436 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1437 hwcaps |= _hwcap; \ 1438 } \ 1439 } while (0) 1440 1441 static uint32_t get_elf_hwcap(void) 1442 { 1443 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1444 uint32_t hwcaps = 0; 1445 1446 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1447 2, HWCAP_MIPS_R6); 1448 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1449 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1450 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1451 1452 return hwcaps; 1453 } 1454 1455 #undef GET_FEATURE_REG_EQU 1456 #undef GET_FEATURE_REG_SET 1457 #undef GET_FEATURE_INSN 1458 1459 #endif /* TARGET_MIPS */ 1460 1461 #ifdef TARGET_MICROBLAZE 1462 1463 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1464 1465 #define ELF_CLASS ELFCLASS32 1466 #define ELF_ARCH EM_MICROBLAZE 1467 1468 static inline void init_thread(struct target_pt_regs *regs, 1469 struct image_info *infop) 1470 { 1471 regs->pc = infop->entry; 1472 regs->r1 = infop->start_stack; 1473 1474 } 1475 1476 #define ELF_EXEC_PAGESIZE 4096 1477 1478 #define USE_ELF_CORE_DUMP 1479 #define ELF_NREG 38 1480 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1481 1482 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1483 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1484 { 1485 int i, pos = 0; 1486 1487 for (i = 0; i < 32; i++) { 1488 (*regs)[pos++] = tswapreg(env->regs[i]); 1489 } 1490 1491 (*regs)[pos++] = tswapreg(env->pc); 1492 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1493 (*regs)[pos++] = 0; 1494 (*regs)[pos++] = tswapreg(env->ear); 1495 (*regs)[pos++] = 0; 1496 (*regs)[pos++] = tswapreg(env->esr); 1497 } 1498 1499 #endif /* TARGET_MICROBLAZE */ 1500 1501 #ifdef TARGET_NIOS2 1502 1503 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1504 1505 #define ELF_CLASS ELFCLASS32 1506 #define ELF_ARCH EM_ALTERA_NIOS2 1507 1508 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1509 { 1510 regs->ea = infop->entry; 1511 regs->sp = infop->start_stack; 1512 } 1513 1514 #define LO_COMMPAGE TARGET_PAGE_SIZE 1515 1516 static bool init_guest_commpage(void) 1517 { 1518 static const uint8_t kuser_page[4 + 2 * 64] = { 1519 /* __kuser_helper_version */ 1520 [0x00] = 0x02, 0x00, 0x00, 0x00, 1521 1522 /* __kuser_cmpxchg */ 1523 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1524 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1525 1526 /* __kuser_sigtramp */ 1527 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1528 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1529 }; 1530 1531 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1532 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1533 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1534 1535 if (addr == MAP_FAILED) { 1536 perror("Allocating guest commpage"); 1537 exit(EXIT_FAILURE); 1538 } 1539 if (addr != want) { 1540 return false; 1541 } 1542 1543 memcpy(addr, kuser_page, sizeof(kuser_page)); 1544 1545 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1546 perror("Protecting guest commpage"); 1547 exit(EXIT_FAILURE); 1548 } 1549 1550 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1551 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1552 return true; 1553 } 1554 1555 #define ELF_EXEC_PAGESIZE 4096 1556 1557 #define USE_ELF_CORE_DUMP 1558 #define ELF_NREG 49 1559 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1560 1561 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1562 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1563 const CPUNios2State *env) 1564 { 1565 int i; 1566 1567 (*regs)[0] = -1; 1568 for (i = 1; i < 8; i++) /* r0-r7 */ 1569 (*regs)[i] = tswapreg(env->regs[i + 7]); 1570 1571 for (i = 8; i < 16; i++) /* r8-r15 */ 1572 (*regs)[i] = tswapreg(env->regs[i - 8]); 1573 1574 for (i = 16; i < 24; i++) /* r16-r23 */ 1575 (*regs)[i] = tswapreg(env->regs[i + 7]); 1576 (*regs)[24] = -1; /* R_ET */ 1577 (*regs)[25] = -1; /* R_BT */ 1578 (*regs)[26] = tswapreg(env->regs[R_GP]); 1579 (*regs)[27] = tswapreg(env->regs[R_SP]); 1580 (*regs)[28] = tswapreg(env->regs[R_FP]); 1581 (*regs)[29] = tswapreg(env->regs[R_EA]); 1582 (*regs)[30] = -1; /* R_SSTATUS */ 1583 (*regs)[31] = tswapreg(env->regs[R_RA]); 1584 1585 (*regs)[32] = tswapreg(env->pc); 1586 1587 (*regs)[33] = -1; /* R_STATUS */ 1588 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1589 1590 for (i = 35; i < 49; i++) /* ... */ 1591 (*regs)[i] = -1; 1592 } 1593 1594 #endif /* TARGET_NIOS2 */ 1595 1596 #ifdef TARGET_OPENRISC 1597 1598 #define ELF_ARCH EM_OPENRISC 1599 #define ELF_CLASS ELFCLASS32 1600 #define ELF_DATA ELFDATA2MSB 1601 1602 static inline void init_thread(struct target_pt_regs *regs, 1603 struct image_info *infop) 1604 { 1605 regs->pc = infop->entry; 1606 regs->gpr[1] = infop->start_stack; 1607 } 1608 1609 #define USE_ELF_CORE_DUMP 1610 #define ELF_EXEC_PAGESIZE 8192 1611 1612 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1613 #define ELF_NREG 34 /* gprs and pc, sr */ 1614 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1615 1616 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1617 const CPUOpenRISCState *env) 1618 { 1619 int i; 1620 1621 for (i = 0; i < 32; i++) { 1622 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1623 } 1624 (*regs)[32] = tswapreg(env->pc); 1625 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1626 } 1627 #define ELF_HWCAP 0 1628 #define ELF_PLATFORM NULL 1629 1630 #endif /* TARGET_OPENRISC */ 1631 1632 #ifdef TARGET_SH4 1633 1634 #define ELF_CLASS ELFCLASS32 1635 #define ELF_ARCH EM_SH 1636 1637 static inline void init_thread(struct target_pt_regs *regs, 1638 struct image_info *infop) 1639 { 1640 /* Check other registers XXXXX */ 1641 regs->pc = infop->entry; 1642 regs->regs[15] = infop->start_stack; 1643 } 1644 1645 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1646 #define ELF_NREG 23 1647 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1648 1649 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1650 enum { 1651 TARGET_REG_PC = 16, 1652 TARGET_REG_PR = 17, 1653 TARGET_REG_SR = 18, 1654 TARGET_REG_GBR = 19, 1655 TARGET_REG_MACH = 20, 1656 TARGET_REG_MACL = 21, 1657 TARGET_REG_SYSCALL = 22 1658 }; 1659 1660 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1661 const CPUSH4State *env) 1662 { 1663 int i; 1664 1665 for (i = 0; i < 16; i++) { 1666 (*regs)[i] = tswapreg(env->gregs[i]); 1667 } 1668 1669 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1670 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1671 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1672 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1673 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1674 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1675 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1676 } 1677 1678 #define USE_ELF_CORE_DUMP 1679 #define ELF_EXEC_PAGESIZE 4096 1680 1681 enum { 1682 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1683 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1684 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1685 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1686 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1687 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1688 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1689 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1690 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1691 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1692 }; 1693 1694 #define ELF_HWCAP get_elf_hwcap() 1695 1696 static uint32_t get_elf_hwcap(void) 1697 { 1698 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1699 uint32_t hwcap = 0; 1700 1701 hwcap |= SH_CPU_HAS_FPU; 1702 1703 if (cpu->env.features & SH_FEATURE_SH4A) { 1704 hwcap |= SH_CPU_HAS_LLSC; 1705 } 1706 1707 return hwcap; 1708 } 1709 1710 #endif 1711 1712 #ifdef TARGET_CRIS 1713 1714 #define ELF_CLASS ELFCLASS32 1715 #define ELF_ARCH EM_CRIS 1716 1717 static inline void init_thread(struct target_pt_regs *regs, 1718 struct image_info *infop) 1719 { 1720 regs->erp = infop->entry; 1721 } 1722 1723 #define ELF_EXEC_PAGESIZE 8192 1724 1725 #endif 1726 1727 #ifdef TARGET_M68K 1728 1729 #define ELF_CLASS ELFCLASS32 1730 #define ELF_ARCH EM_68K 1731 1732 /* ??? Does this need to do anything? 1733 #define ELF_PLAT_INIT(_r) */ 1734 1735 static inline void init_thread(struct target_pt_regs *regs, 1736 struct image_info *infop) 1737 { 1738 regs->usp = infop->start_stack; 1739 regs->sr = 0; 1740 regs->pc = infop->entry; 1741 } 1742 1743 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1744 #define ELF_NREG 20 1745 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1746 1747 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1748 { 1749 (*regs)[0] = tswapreg(env->dregs[1]); 1750 (*regs)[1] = tswapreg(env->dregs[2]); 1751 (*regs)[2] = tswapreg(env->dregs[3]); 1752 (*regs)[3] = tswapreg(env->dregs[4]); 1753 (*regs)[4] = tswapreg(env->dregs[5]); 1754 (*regs)[5] = tswapreg(env->dregs[6]); 1755 (*regs)[6] = tswapreg(env->dregs[7]); 1756 (*regs)[7] = tswapreg(env->aregs[0]); 1757 (*regs)[8] = tswapreg(env->aregs[1]); 1758 (*regs)[9] = tswapreg(env->aregs[2]); 1759 (*regs)[10] = tswapreg(env->aregs[3]); 1760 (*regs)[11] = tswapreg(env->aregs[4]); 1761 (*regs)[12] = tswapreg(env->aregs[5]); 1762 (*regs)[13] = tswapreg(env->aregs[6]); 1763 (*regs)[14] = tswapreg(env->dregs[0]); 1764 (*regs)[15] = tswapreg(env->aregs[7]); 1765 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1766 (*regs)[17] = tswapreg(env->sr); 1767 (*regs)[18] = tswapreg(env->pc); 1768 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1769 } 1770 1771 #define USE_ELF_CORE_DUMP 1772 #define ELF_EXEC_PAGESIZE 8192 1773 1774 #endif 1775 1776 #ifdef TARGET_ALPHA 1777 1778 #define ELF_CLASS ELFCLASS64 1779 #define ELF_ARCH EM_ALPHA 1780 1781 static inline void init_thread(struct target_pt_regs *regs, 1782 struct image_info *infop) 1783 { 1784 regs->pc = infop->entry; 1785 regs->ps = 8; 1786 regs->usp = infop->start_stack; 1787 } 1788 1789 #define ELF_EXEC_PAGESIZE 8192 1790 1791 #endif /* TARGET_ALPHA */ 1792 1793 #ifdef TARGET_S390X 1794 1795 #define ELF_CLASS ELFCLASS64 1796 #define ELF_DATA ELFDATA2MSB 1797 #define ELF_ARCH EM_S390 1798 1799 #include "elf.h" 1800 1801 #define ELF_HWCAP get_elf_hwcap() 1802 1803 #define GET_FEATURE(_feat, _hwcap) \ 1804 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1805 1806 uint32_t get_elf_hwcap(void) 1807 { 1808 /* 1809 * Let's assume we always have esan3 and zarch. 1810 * 31-bit processes can use 64-bit registers (high gprs). 1811 */ 1812 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1813 1814 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1815 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1816 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1817 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1818 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1819 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1820 hwcap |= HWCAP_S390_ETF3EH; 1821 } 1822 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1823 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1824 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1825 1826 return hwcap; 1827 } 1828 1829 const char *elf_hwcap_str(uint32_t bit) 1830 { 1831 static const char *hwcap_str[] = { 1832 [HWCAP_S390_NR_ESAN3] = "esan3", 1833 [HWCAP_S390_NR_ZARCH] = "zarch", 1834 [HWCAP_S390_NR_STFLE] = "stfle", 1835 [HWCAP_S390_NR_MSA] = "msa", 1836 [HWCAP_S390_NR_LDISP] = "ldisp", 1837 [HWCAP_S390_NR_EIMM] = "eimm", 1838 [HWCAP_S390_NR_DFP] = "dfp", 1839 [HWCAP_S390_NR_HPAGE] = "edat", 1840 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1841 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1842 [HWCAP_S390_NR_TE] = "te", 1843 [HWCAP_S390_NR_VXRS] = "vx", 1844 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1845 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1846 [HWCAP_S390_NR_GS] = "gs", 1847 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1848 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1849 [HWCAP_S390_NR_SORT] = "sort", 1850 [HWCAP_S390_NR_DFLT] = "dflt", 1851 [HWCAP_S390_NR_NNPA] = "nnpa", 1852 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1853 [HWCAP_S390_NR_SIE] = "sie", 1854 }; 1855 1856 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1857 } 1858 1859 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1860 { 1861 regs->psw.addr = infop->entry; 1862 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1863 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1864 PSW_MASK_32; 1865 regs->gprs[15] = infop->start_stack; 1866 } 1867 1868 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1869 #define ELF_NREG 27 1870 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1871 1872 enum { 1873 TARGET_REG_PSWM = 0, 1874 TARGET_REG_PSWA = 1, 1875 TARGET_REG_GPRS = 2, 1876 TARGET_REG_ARS = 18, 1877 TARGET_REG_ORIG_R2 = 26, 1878 }; 1879 1880 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1881 const CPUS390XState *env) 1882 { 1883 int i; 1884 uint32_t *aregs; 1885 1886 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1887 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1888 for (i = 0; i < 16; i++) { 1889 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1890 } 1891 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1892 for (i = 0; i < 16; i++) { 1893 aregs[i] = tswap32(env->aregs[i]); 1894 } 1895 (*regs)[TARGET_REG_ORIG_R2] = 0; 1896 } 1897 1898 #define USE_ELF_CORE_DUMP 1899 #define ELF_EXEC_PAGESIZE 4096 1900 1901 #define VDSO_HEADER "vdso.c.inc" 1902 1903 #endif /* TARGET_S390X */ 1904 1905 #ifdef TARGET_RISCV 1906 1907 #define ELF_ARCH EM_RISCV 1908 1909 #ifdef TARGET_RISCV32 1910 #define ELF_CLASS ELFCLASS32 1911 #define VDSO_HEADER "vdso-32.c.inc" 1912 #else 1913 #define ELF_CLASS ELFCLASS64 1914 #define VDSO_HEADER "vdso-64.c.inc" 1915 #endif 1916 1917 #define ELF_HWCAP get_elf_hwcap() 1918 1919 static uint32_t get_elf_hwcap(void) 1920 { 1921 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1922 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1923 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1924 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1925 | MISA_BIT('V'); 1926 1927 return cpu->env.misa_ext & mask; 1928 #undef MISA_BIT 1929 } 1930 1931 static inline void init_thread(struct target_pt_regs *regs, 1932 struct image_info *infop) 1933 { 1934 regs->sepc = infop->entry; 1935 regs->sp = infop->start_stack; 1936 } 1937 1938 #define ELF_EXEC_PAGESIZE 4096 1939 1940 #endif /* TARGET_RISCV */ 1941 1942 #ifdef TARGET_HPPA 1943 1944 #define ELF_CLASS ELFCLASS32 1945 #define ELF_ARCH EM_PARISC 1946 #define ELF_PLATFORM "PARISC" 1947 #define STACK_GROWS_DOWN 0 1948 #define STACK_ALIGNMENT 64 1949 1950 #define VDSO_HEADER "vdso.c.inc" 1951 1952 static inline void init_thread(struct target_pt_regs *regs, 1953 struct image_info *infop) 1954 { 1955 regs->iaoq[0] = infop->entry; 1956 regs->iaoq[1] = infop->entry + 4; 1957 regs->gr[23] = 0; 1958 regs->gr[24] = infop->argv; 1959 regs->gr[25] = infop->argc; 1960 /* The top-of-stack contains a linkage buffer. */ 1961 regs->gr[30] = infop->start_stack + 64; 1962 regs->gr[31] = infop->entry; 1963 } 1964 1965 #define LO_COMMPAGE 0 1966 1967 static bool init_guest_commpage(void) 1968 { 1969 void *want = g2h_untagged(LO_COMMPAGE); 1970 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1971 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1972 1973 if (addr == MAP_FAILED) { 1974 perror("Allocating guest commpage"); 1975 exit(EXIT_FAILURE); 1976 } 1977 if (addr != want) { 1978 return false; 1979 } 1980 1981 /* 1982 * On Linux, page zero is normally marked execute only + gateway. 1983 * Normal read or write is supposed to fail (thus PROT_NONE above), 1984 * but specific offsets have kernel code mapped to raise permissions 1985 * and implement syscalls. Here, simply mark the page executable. 1986 * Special case the entry points during translation (see do_page_zero). 1987 */ 1988 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1989 PAGE_EXEC | PAGE_VALID); 1990 return true; 1991 } 1992 1993 #endif /* TARGET_HPPA */ 1994 1995 #ifdef TARGET_XTENSA 1996 1997 #define ELF_CLASS ELFCLASS32 1998 #define ELF_ARCH EM_XTENSA 1999 2000 static inline void init_thread(struct target_pt_regs *regs, 2001 struct image_info *infop) 2002 { 2003 regs->windowbase = 0; 2004 regs->windowstart = 1; 2005 regs->areg[1] = infop->start_stack; 2006 regs->pc = infop->entry; 2007 if (info_is_fdpic(infop)) { 2008 regs->areg[4] = infop->loadmap_addr; 2009 regs->areg[5] = infop->interpreter_loadmap_addr; 2010 if (infop->interpreter_loadmap_addr) { 2011 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 2012 } else { 2013 regs->areg[6] = infop->pt_dynamic_addr; 2014 } 2015 } 2016 } 2017 2018 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 2019 #define ELF_NREG 128 2020 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2021 2022 enum { 2023 TARGET_REG_PC, 2024 TARGET_REG_PS, 2025 TARGET_REG_LBEG, 2026 TARGET_REG_LEND, 2027 TARGET_REG_LCOUNT, 2028 TARGET_REG_SAR, 2029 TARGET_REG_WINDOWSTART, 2030 TARGET_REG_WINDOWBASE, 2031 TARGET_REG_THREADPTR, 2032 TARGET_REG_AR0 = 64, 2033 }; 2034 2035 static void elf_core_copy_regs(target_elf_gregset_t *regs, 2036 const CPUXtensaState *env) 2037 { 2038 unsigned i; 2039 2040 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 2041 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 2042 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 2043 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 2044 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 2045 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 2046 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 2047 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 2048 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 2049 xtensa_sync_phys_from_window((CPUXtensaState *)env); 2050 for (i = 0; i < env->config->nareg; ++i) { 2051 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 2052 } 2053 } 2054 2055 #define USE_ELF_CORE_DUMP 2056 #define ELF_EXEC_PAGESIZE 4096 2057 2058 #endif /* TARGET_XTENSA */ 2059 2060 #ifdef TARGET_HEXAGON 2061 2062 #define ELF_CLASS ELFCLASS32 2063 #define ELF_ARCH EM_HEXAGON 2064 2065 static inline void init_thread(struct target_pt_regs *regs, 2066 struct image_info *infop) 2067 { 2068 regs->sepc = infop->entry; 2069 regs->sp = infop->start_stack; 2070 } 2071 2072 #endif /* TARGET_HEXAGON */ 2073 2074 #ifndef ELF_BASE_PLATFORM 2075 #define ELF_BASE_PLATFORM (NULL) 2076 #endif 2077 2078 #ifndef ELF_PLATFORM 2079 #define ELF_PLATFORM (NULL) 2080 #endif 2081 2082 #ifndef ELF_MACHINE 2083 #define ELF_MACHINE ELF_ARCH 2084 #endif 2085 2086 #ifndef elf_check_arch 2087 #define elf_check_arch(x) ((x) == ELF_ARCH) 2088 #endif 2089 2090 #ifndef elf_check_abi 2091 #define elf_check_abi(x) (1) 2092 #endif 2093 2094 #ifndef ELF_HWCAP 2095 #define ELF_HWCAP 0 2096 #endif 2097 2098 #ifndef STACK_GROWS_DOWN 2099 #define STACK_GROWS_DOWN 1 2100 #endif 2101 2102 #ifndef STACK_ALIGNMENT 2103 #define STACK_ALIGNMENT 16 2104 #endif 2105 2106 #ifdef TARGET_ABI32 2107 #undef ELF_CLASS 2108 #define ELF_CLASS ELFCLASS32 2109 #undef bswaptls 2110 #define bswaptls(ptr) bswap32s(ptr) 2111 #endif 2112 2113 #ifndef EXSTACK_DEFAULT 2114 #define EXSTACK_DEFAULT false 2115 #endif 2116 2117 #include "elf.h" 2118 2119 /* We must delay the following stanzas until after "elf.h". */ 2120 #if defined(TARGET_AARCH64) 2121 2122 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2123 const uint32_t *data, 2124 struct image_info *info, 2125 Error **errp) 2126 { 2127 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2128 if (pr_datasz != sizeof(uint32_t)) { 2129 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2130 return false; 2131 } 2132 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2133 info->note_flags = *data; 2134 } 2135 return true; 2136 } 2137 #define ARCH_USE_GNU_PROPERTY 1 2138 2139 #else 2140 2141 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2142 const uint32_t *data, 2143 struct image_info *info, 2144 Error **errp) 2145 { 2146 g_assert_not_reached(); 2147 } 2148 #define ARCH_USE_GNU_PROPERTY 0 2149 2150 #endif 2151 2152 struct exec 2153 { 2154 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2155 unsigned int a_text; /* length of text, in bytes */ 2156 unsigned int a_data; /* length of data, in bytes */ 2157 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2158 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2159 unsigned int a_entry; /* start address */ 2160 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2161 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2162 }; 2163 2164 2165 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2166 #define OMAGIC 0407 2167 #define NMAGIC 0410 2168 #define ZMAGIC 0413 2169 #define QMAGIC 0314 2170 2171 #define DLINFO_ITEMS 16 2172 2173 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2174 { 2175 memcpy(to, from, n); 2176 } 2177 2178 #ifdef BSWAP_NEEDED 2179 static void bswap_ehdr(struct elfhdr *ehdr) 2180 { 2181 bswap16s(&ehdr->e_type); /* Object file type */ 2182 bswap16s(&ehdr->e_machine); /* Architecture */ 2183 bswap32s(&ehdr->e_version); /* Object file version */ 2184 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2185 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2186 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2187 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2188 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2189 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2190 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2191 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2192 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2193 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2194 } 2195 2196 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2197 { 2198 int i; 2199 for (i = 0; i < phnum; ++i, ++phdr) { 2200 bswap32s(&phdr->p_type); /* Segment type */ 2201 bswap32s(&phdr->p_flags); /* Segment flags */ 2202 bswaptls(&phdr->p_offset); /* Segment file offset */ 2203 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2204 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2205 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2206 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2207 bswaptls(&phdr->p_align); /* Segment alignment */ 2208 } 2209 } 2210 2211 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2212 { 2213 int i; 2214 for (i = 0; i < shnum; ++i, ++shdr) { 2215 bswap32s(&shdr->sh_name); 2216 bswap32s(&shdr->sh_type); 2217 bswaptls(&shdr->sh_flags); 2218 bswaptls(&shdr->sh_addr); 2219 bswaptls(&shdr->sh_offset); 2220 bswaptls(&shdr->sh_size); 2221 bswap32s(&shdr->sh_link); 2222 bswap32s(&shdr->sh_info); 2223 bswaptls(&shdr->sh_addralign); 2224 bswaptls(&shdr->sh_entsize); 2225 } 2226 } 2227 2228 static void bswap_sym(struct elf_sym *sym) 2229 { 2230 bswap32s(&sym->st_name); 2231 bswaptls(&sym->st_value); 2232 bswaptls(&sym->st_size); 2233 bswap16s(&sym->st_shndx); 2234 } 2235 2236 #ifdef TARGET_MIPS 2237 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2238 { 2239 bswap16s(&abiflags->version); 2240 bswap32s(&abiflags->ases); 2241 bswap32s(&abiflags->isa_ext); 2242 bswap32s(&abiflags->flags1); 2243 bswap32s(&abiflags->flags2); 2244 } 2245 #endif 2246 #else 2247 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2248 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2249 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2250 static inline void bswap_sym(struct elf_sym *sym) { } 2251 #ifdef TARGET_MIPS 2252 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2253 #endif 2254 #endif 2255 2256 #ifdef USE_ELF_CORE_DUMP 2257 static int elf_core_dump(int, const CPUArchState *); 2258 #endif /* USE_ELF_CORE_DUMP */ 2259 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 2260 abi_ulong load_bias); 2261 2262 /* Verify the portions of EHDR within E_IDENT for the target. 2263 This can be performed before bswapping the entire header. */ 2264 static bool elf_check_ident(struct elfhdr *ehdr) 2265 { 2266 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2267 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2268 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2269 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2270 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2271 && ehdr->e_ident[EI_DATA] == ELF_DATA 2272 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2273 } 2274 2275 /* Verify the portions of EHDR outside of E_IDENT for the target. 2276 This has to wait until after bswapping the header. */ 2277 static bool elf_check_ehdr(struct elfhdr *ehdr) 2278 { 2279 return (elf_check_arch(ehdr->e_machine) 2280 && elf_check_abi(ehdr->e_flags) 2281 && ehdr->e_ehsize == sizeof(struct elfhdr) 2282 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2283 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2284 } 2285 2286 /* 2287 * 'copy_elf_strings()' copies argument/envelope strings from user 2288 * memory to free pages in kernel mem. These are in a format ready 2289 * to be put directly into the top of new user memory. 2290 * 2291 */ 2292 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2293 abi_ulong p, abi_ulong stack_limit) 2294 { 2295 char *tmp; 2296 int len, i; 2297 abi_ulong top = p; 2298 2299 if (!p) { 2300 return 0; /* bullet-proofing */ 2301 } 2302 2303 if (STACK_GROWS_DOWN) { 2304 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2305 for (i = argc - 1; i >= 0; --i) { 2306 tmp = argv[i]; 2307 if (!tmp) { 2308 fprintf(stderr, "VFS: argc is wrong"); 2309 exit(-1); 2310 } 2311 len = strlen(tmp) + 1; 2312 tmp += len; 2313 2314 if (len > (p - stack_limit)) { 2315 return 0; 2316 } 2317 while (len) { 2318 int bytes_to_copy = (len > offset) ? offset : len; 2319 tmp -= bytes_to_copy; 2320 p -= bytes_to_copy; 2321 offset -= bytes_to_copy; 2322 len -= bytes_to_copy; 2323 2324 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2325 2326 if (offset == 0) { 2327 memcpy_to_target(p, scratch, top - p); 2328 top = p; 2329 offset = TARGET_PAGE_SIZE; 2330 } 2331 } 2332 } 2333 if (p != top) { 2334 memcpy_to_target(p, scratch + offset, top - p); 2335 } 2336 } else { 2337 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2338 for (i = 0; i < argc; ++i) { 2339 tmp = argv[i]; 2340 if (!tmp) { 2341 fprintf(stderr, "VFS: argc is wrong"); 2342 exit(-1); 2343 } 2344 len = strlen(tmp) + 1; 2345 if (len > (stack_limit - p)) { 2346 return 0; 2347 } 2348 while (len) { 2349 int bytes_to_copy = (len > remaining) ? remaining : len; 2350 2351 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2352 2353 tmp += bytes_to_copy; 2354 remaining -= bytes_to_copy; 2355 p += bytes_to_copy; 2356 len -= bytes_to_copy; 2357 2358 if (remaining == 0) { 2359 memcpy_to_target(top, scratch, p - top); 2360 top = p; 2361 remaining = TARGET_PAGE_SIZE; 2362 } 2363 } 2364 } 2365 if (p != top) { 2366 memcpy_to_target(top, scratch, p - top); 2367 } 2368 } 2369 2370 return p; 2371 } 2372 2373 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2374 * argument/environment space. Newer kernels (>2.6.33) allow more, 2375 * dependent on stack size, but guarantee at least 32 pages for 2376 * backwards compatibility. 2377 */ 2378 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2379 2380 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2381 struct image_info *info) 2382 { 2383 abi_ulong size, error, guard; 2384 int prot; 2385 2386 size = guest_stack_size; 2387 if (size < STACK_LOWER_LIMIT) { 2388 size = STACK_LOWER_LIMIT; 2389 } 2390 2391 if (STACK_GROWS_DOWN) { 2392 guard = TARGET_PAGE_SIZE; 2393 if (guard < qemu_real_host_page_size()) { 2394 guard = qemu_real_host_page_size(); 2395 } 2396 } else { 2397 /* no guard page for hppa target where stack grows upwards. */ 2398 guard = 0; 2399 } 2400 2401 prot = PROT_READ | PROT_WRITE; 2402 if (info->exec_stack) { 2403 prot |= PROT_EXEC; 2404 } 2405 error = target_mmap(0, size + guard, prot, 2406 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2407 if (error == -1) { 2408 perror("mmap stack"); 2409 exit(-1); 2410 } 2411 2412 /* We reserve one extra page at the top of the stack as guard. */ 2413 if (STACK_GROWS_DOWN) { 2414 target_mprotect(error, guard, PROT_NONE); 2415 info->stack_limit = error + guard; 2416 return info->stack_limit + size - sizeof(void *); 2417 } else { 2418 info->stack_limit = error + size; 2419 return error; 2420 } 2421 } 2422 2423 /** 2424 * zero_bss: 2425 * 2426 * Map and zero the bss. We need to explicitly zero any fractional pages 2427 * after the data section (i.e. bss). Return false on mapping failure. 2428 */ 2429 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, 2430 int prot, Error **errp) 2431 { 2432 abi_ulong align_bss; 2433 2434 /* We only expect writable bss; the code segment shouldn't need this. */ 2435 if (!(prot & PROT_WRITE)) { 2436 error_setg(errp, "PT_LOAD with non-writable bss"); 2437 return false; 2438 } 2439 2440 align_bss = TARGET_PAGE_ALIGN(start_bss); 2441 end_bss = TARGET_PAGE_ALIGN(end_bss); 2442 2443 if (start_bss < align_bss) { 2444 int flags = page_get_flags(start_bss); 2445 2446 if (!(flags & PAGE_BITS)) { 2447 /* 2448 * The whole address space of the executable was reserved 2449 * at the start, therefore all pages will be VALID. 2450 * But assuming there are no PROT_NONE PT_LOAD segments, 2451 * a PROT_NONE page means no data all bss, and we can 2452 * simply extend the new anon mapping back to the start 2453 * of the page of bss. 2454 */ 2455 align_bss -= TARGET_PAGE_SIZE; 2456 } else { 2457 /* 2458 * The start of the bss shares a page with something. 2459 * The only thing that we expect is the data section, 2460 * which would already be marked writable. 2461 * Overlapping the RX code segment seems malformed. 2462 */ 2463 if (!(flags & PAGE_WRITE)) { 2464 error_setg(errp, "PT_LOAD with bss overlapping " 2465 "non-writable page"); 2466 return false; 2467 } 2468 2469 /* The page is already mapped and writable. */ 2470 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2471 } 2472 } 2473 2474 if (align_bss < end_bss && 2475 target_mmap(align_bss, end_bss - align_bss, prot, 2476 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) { 2477 error_setg_errno(errp, errno, "Error mapping bss"); 2478 return false; 2479 } 2480 return true; 2481 } 2482 2483 #if defined(TARGET_ARM) 2484 static int elf_is_fdpic(struct elfhdr *exec) 2485 { 2486 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2487 } 2488 #elif defined(TARGET_XTENSA) 2489 static int elf_is_fdpic(struct elfhdr *exec) 2490 { 2491 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2492 } 2493 #else 2494 /* Default implementation, always false. */ 2495 static int elf_is_fdpic(struct elfhdr *exec) 2496 { 2497 return 0; 2498 } 2499 #endif 2500 2501 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2502 { 2503 uint16_t n; 2504 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2505 2506 /* elf32_fdpic_loadseg */ 2507 n = info->nsegs; 2508 while (n--) { 2509 sp -= 12; 2510 put_user_u32(loadsegs[n].addr, sp+0); 2511 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2512 put_user_u32(loadsegs[n].p_memsz, sp+8); 2513 } 2514 2515 /* elf32_fdpic_loadmap */ 2516 sp -= 4; 2517 put_user_u16(0, sp+0); /* version */ 2518 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2519 2520 info->personality = PER_LINUX_FDPIC; 2521 info->loadmap_addr = sp; 2522 2523 return sp; 2524 } 2525 2526 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2527 struct elfhdr *exec, 2528 struct image_info *info, 2529 struct image_info *interp_info, 2530 struct image_info *vdso_info) 2531 { 2532 abi_ulong sp; 2533 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2534 int size; 2535 int i; 2536 abi_ulong u_rand_bytes; 2537 uint8_t k_rand_bytes[16]; 2538 abi_ulong u_platform, u_base_platform; 2539 const char *k_platform, *k_base_platform; 2540 const int n = sizeof(elf_addr_t); 2541 2542 sp = p; 2543 2544 /* Needs to be before we load the env/argc/... */ 2545 if (elf_is_fdpic(exec)) { 2546 /* Need 4 byte alignment for these structs */ 2547 sp &= ~3; 2548 sp = loader_build_fdpic_loadmap(info, sp); 2549 info->other_info = interp_info; 2550 if (interp_info) { 2551 interp_info->other_info = info; 2552 sp = loader_build_fdpic_loadmap(interp_info, sp); 2553 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2554 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2555 } else { 2556 info->interpreter_loadmap_addr = 0; 2557 info->interpreter_pt_dynamic_addr = 0; 2558 } 2559 } 2560 2561 u_base_platform = 0; 2562 k_base_platform = ELF_BASE_PLATFORM; 2563 if (k_base_platform) { 2564 size_t len = strlen(k_base_platform) + 1; 2565 if (STACK_GROWS_DOWN) { 2566 sp -= (len + n - 1) & ~(n - 1); 2567 u_base_platform = sp; 2568 /* FIXME - check return value of memcpy_to_target() for failure */ 2569 memcpy_to_target(sp, k_base_platform, len); 2570 } else { 2571 memcpy_to_target(sp, k_base_platform, len); 2572 u_base_platform = sp; 2573 sp += len + 1; 2574 } 2575 } 2576 2577 u_platform = 0; 2578 k_platform = ELF_PLATFORM; 2579 if (k_platform) { 2580 size_t len = strlen(k_platform) + 1; 2581 if (STACK_GROWS_DOWN) { 2582 sp -= (len + n - 1) & ~(n - 1); 2583 u_platform = sp; 2584 /* FIXME - check return value of memcpy_to_target() for failure */ 2585 memcpy_to_target(sp, k_platform, len); 2586 } else { 2587 memcpy_to_target(sp, k_platform, len); 2588 u_platform = sp; 2589 sp += len + 1; 2590 } 2591 } 2592 2593 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2594 * the argv and envp pointers. 2595 */ 2596 if (STACK_GROWS_DOWN) { 2597 sp = QEMU_ALIGN_DOWN(sp, 16); 2598 } else { 2599 sp = QEMU_ALIGN_UP(sp, 16); 2600 } 2601 2602 /* 2603 * Generate 16 random bytes for userspace PRNG seeding. 2604 */ 2605 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2606 if (STACK_GROWS_DOWN) { 2607 sp -= 16; 2608 u_rand_bytes = sp; 2609 /* FIXME - check return value of memcpy_to_target() for failure */ 2610 memcpy_to_target(sp, k_rand_bytes, 16); 2611 } else { 2612 memcpy_to_target(sp, k_rand_bytes, 16); 2613 u_rand_bytes = sp; 2614 sp += 16; 2615 } 2616 2617 size = (DLINFO_ITEMS + 1) * 2; 2618 if (k_base_platform) { 2619 size += 2; 2620 } 2621 if (k_platform) { 2622 size += 2; 2623 } 2624 if (vdso_info) { 2625 size += 2; 2626 } 2627 #ifdef DLINFO_ARCH_ITEMS 2628 size += DLINFO_ARCH_ITEMS * 2; 2629 #endif 2630 #ifdef ELF_HWCAP2 2631 size += 2; 2632 #endif 2633 info->auxv_len = size * n; 2634 2635 size += envc + argc + 2; 2636 size += 1; /* argc itself */ 2637 size *= n; 2638 2639 /* Allocate space and finalize stack alignment for entry now. */ 2640 if (STACK_GROWS_DOWN) { 2641 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2642 sp = u_argc; 2643 } else { 2644 u_argc = sp; 2645 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2646 } 2647 2648 u_argv = u_argc + n; 2649 u_envp = u_argv + (argc + 1) * n; 2650 u_auxv = u_envp + (envc + 1) * n; 2651 info->saved_auxv = u_auxv; 2652 info->argc = argc; 2653 info->envc = envc; 2654 info->argv = u_argv; 2655 info->envp = u_envp; 2656 2657 /* This is correct because Linux defines 2658 * elf_addr_t as Elf32_Off / Elf64_Off 2659 */ 2660 #define NEW_AUX_ENT(id, val) do { \ 2661 put_user_ual(id, u_auxv); u_auxv += n; \ 2662 put_user_ual(val, u_auxv); u_auxv += n; \ 2663 } while(0) 2664 2665 #ifdef ARCH_DLINFO 2666 /* 2667 * ARCH_DLINFO must come first so platform specific code can enforce 2668 * special alignment requirements on the AUXV if necessary (eg. PPC). 2669 */ 2670 ARCH_DLINFO; 2671 #endif 2672 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2673 * on info->auxv_len will trigger. 2674 */ 2675 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2676 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2677 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2678 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2679 /* Target doesn't support host page size alignment */ 2680 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2681 } else { 2682 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2683 qemu_host_page_size))); 2684 } 2685 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2686 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2687 NEW_AUX_ENT(AT_ENTRY, info->entry); 2688 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2689 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2690 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2691 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2692 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2693 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2694 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2695 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2696 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2697 2698 #ifdef ELF_HWCAP2 2699 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2700 #endif 2701 2702 if (u_base_platform) { 2703 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2704 } 2705 if (u_platform) { 2706 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2707 } 2708 if (vdso_info) { 2709 NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr); 2710 } 2711 NEW_AUX_ENT (AT_NULL, 0); 2712 #undef NEW_AUX_ENT 2713 2714 /* Check that our initial calculation of the auxv length matches how much 2715 * we actually put into it. 2716 */ 2717 assert(info->auxv_len == u_auxv - info->saved_auxv); 2718 2719 put_user_ual(argc, u_argc); 2720 2721 p = info->arg_strings; 2722 for (i = 0; i < argc; ++i) { 2723 put_user_ual(p, u_argv); 2724 u_argv += n; 2725 p += target_strlen(p) + 1; 2726 } 2727 put_user_ual(0, u_argv); 2728 2729 p = info->env_strings; 2730 for (i = 0; i < envc; ++i) { 2731 put_user_ual(p, u_envp); 2732 u_envp += n; 2733 p += target_strlen(p) + 1; 2734 } 2735 put_user_ual(0, u_envp); 2736 2737 return sp; 2738 } 2739 2740 #if defined(HI_COMMPAGE) 2741 #define LO_COMMPAGE -1 2742 #elif defined(LO_COMMPAGE) 2743 #define HI_COMMPAGE 0 2744 #else 2745 #define HI_COMMPAGE 0 2746 #define LO_COMMPAGE -1 2747 #ifndef INIT_GUEST_COMMPAGE 2748 #define init_guest_commpage() true 2749 #endif 2750 #endif 2751 2752 /** 2753 * pgb_try_mmap: 2754 * @addr: host start address 2755 * @addr_last: host last address 2756 * @keep: do not unmap the probe region 2757 * 2758 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2759 * return 0 if it is not available to map, and -1 on mmap error. 2760 * If @keep, the region is left mapped on success, otherwise unmapped. 2761 */ 2762 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2763 { 2764 size_t size = addr_last - addr + 1; 2765 void *p = mmap((void *)addr, size, PROT_NONE, 2766 MAP_ANONYMOUS | MAP_PRIVATE | 2767 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2768 int ret; 2769 2770 if (p == MAP_FAILED) { 2771 return errno == EEXIST ? 0 : -1; 2772 } 2773 ret = p == (void *)addr; 2774 if (!keep || !ret) { 2775 munmap(p, size); 2776 } 2777 return ret; 2778 } 2779 2780 /** 2781 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2782 * @addr: host address 2783 * @addr_last: host last address 2784 * @brk: host brk 2785 * 2786 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2787 */ 2788 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2789 uintptr_t brk, bool keep) 2790 { 2791 uintptr_t brk_last = brk + 16 * MiB - 1; 2792 2793 /* Do not map anything close to the host brk. */ 2794 if (addr <= brk_last && brk <= addr_last) { 2795 return 0; 2796 } 2797 return pgb_try_mmap(addr, addr_last, keep); 2798 } 2799 2800 /** 2801 * pgb_try_mmap_set: 2802 * @ga: set of guest addrs 2803 * @base: guest_base 2804 * @brk: host brk 2805 * 2806 * Return true if all @ga can be mapped by the host at @base. 2807 * On success, retain the mapping at index 0 for reserved_va. 2808 */ 2809 2810 typedef struct PGBAddrs { 2811 uintptr_t bounds[3][2]; /* start/last pairs */ 2812 int nbounds; 2813 } PGBAddrs; 2814 2815 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2816 { 2817 for (int i = ga->nbounds - 1; i >= 0; --i) { 2818 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2819 ga->bounds[i][1] + base, 2820 brk, i == 0 && reserved_va) <= 0) { 2821 return false; 2822 } 2823 } 2824 return true; 2825 } 2826 2827 /** 2828 * pgb_addr_set: 2829 * @ga: output set of guest addrs 2830 * @guest_loaddr: guest image low address 2831 * @guest_loaddr: guest image high address 2832 * @identity: create for identity mapping 2833 * 2834 * Fill in @ga with the image, COMMPAGE and NULL page. 2835 */ 2836 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2837 abi_ulong guest_hiaddr, bool try_identity) 2838 { 2839 int n; 2840 2841 /* 2842 * With a low commpage, or a guest mapped very low, 2843 * we may not be able to use the identity map. 2844 */ 2845 if (try_identity) { 2846 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2847 return false; 2848 } 2849 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2850 return false; 2851 } 2852 } 2853 2854 memset(ga, 0, sizeof(*ga)); 2855 n = 0; 2856 2857 if (reserved_va) { 2858 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2859 ga->bounds[n][1] = reserved_va; 2860 n++; 2861 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2862 } else { 2863 /* Add any LO_COMMPAGE or NULL page. */ 2864 if (LO_COMMPAGE != -1) { 2865 ga->bounds[n][0] = 0; 2866 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2867 n++; 2868 } else if (!try_identity) { 2869 ga->bounds[n][0] = 0; 2870 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2871 n++; 2872 } 2873 2874 /* Add the guest image for ET_EXEC. */ 2875 if (guest_loaddr) { 2876 ga->bounds[n][0] = guest_loaddr; 2877 ga->bounds[n][1] = guest_hiaddr; 2878 n++; 2879 } 2880 } 2881 2882 /* 2883 * Temporarily disable 2884 * "comparison is always false due to limited range of data type" 2885 * due to comparison between unsigned and (possible) 0. 2886 */ 2887 #pragma GCC diagnostic push 2888 #pragma GCC diagnostic ignored "-Wtype-limits" 2889 2890 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2891 if (reserved_va < HI_COMMPAGE) { 2892 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask; 2893 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2894 n++; 2895 } 2896 2897 #pragma GCC diagnostic pop 2898 2899 ga->nbounds = n; 2900 return true; 2901 } 2902 2903 static void pgb_fail_in_use(const char *image_name) 2904 { 2905 error_report("%s: requires virtual address space that is in use " 2906 "(omit the -B option or choose a different value)", 2907 image_name); 2908 exit(EXIT_FAILURE); 2909 } 2910 2911 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2912 uintptr_t guest_hiaddr, uintptr_t align) 2913 { 2914 PGBAddrs ga; 2915 uintptr_t brk = (uintptr_t)sbrk(0); 2916 2917 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2918 fprintf(stderr, "Requested guest base %p does not satisfy " 2919 "host minimum alignment (0x%" PRIxPTR ")\n", 2920 (void *)guest_base, align); 2921 exit(EXIT_FAILURE); 2922 } 2923 2924 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2925 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2926 pgb_fail_in_use(image_name); 2927 } 2928 } 2929 2930 /** 2931 * pgb_find_fallback: 2932 * 2933 * This is a fallback method for finding holes in the host address space 2934 * if we don't have the benefit of being able to access /proc/self/map. 2935 * It can potentially take a very long time as we can only dumbly iterate 2936 * up the host address space seeing if the allocation would work. 2937 */ 2938 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2939 uintptr_t brk) 2940 { 2941 /* TODO: come up with a better estimate of how much to skip. */ 2942 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2943 2944 for (uintptr_t base = skip; ; base += skip) { 2945 base = ROUND_UP(base, align); 2946 if (pgb_try_mmap_set(ga, base, brk)) { 2947 return base; 2948 } 2949 if (base >= -skip) { 2950 return -1; 2951 } 2952 } 2953 } 2954 2955 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2956 IntervalTreeRoot *root) 2957 { 2958 for (int i = ga->nbounds - 1; i >= 0; --i) { 2959 uintptr_t s = base + ga->bounds[i][0]; 2960 uintptr_t l = base + ga->bounds[i][1]; 2961 IntervalTreeNode *n; 2962 2963 if (l < s) { 2964 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2965 return mmap_min_addr - s; 2966 } 2967 2968 n = interval_tree_iter_first(root, s, l); 2969 if (n != NULL) { 2970 /* Conflict. Skip to advance S to LAST + 1. */ 2971 return n->last - s + 1; 2972 } 2973 } 2974 return 0; /* success */ 2975 } 2976 2977 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2978 uintptr_t align, uintptr_t brk) 2979 { 2980 uintptr_t last = mmap_min_addr; 2981 uintptr_t base, skip; 2982 2983 while (true) { 2984 base = ROUND_UP(last, align); 2985 if (base < last) { 2986 return -1; 2987 } 2988 2989 skip = pgb_try_itree(ga, base, root); 2990 if (skip == 0) { 2991 break; 2992 } 2993 2994 last = base + skip; 2995 if (last < base) { 2996 return -1; 2997 } 2998 } 2999 3000 /* 3001 * We've chosen 'base' based on holes in the interval tree, 3002 * but we don't yet know if it is a valid host address. 3003 * Because it is the first matching hole, if the host addresses 3004 * are invalid we know there are no further matches. 3005 */ 3006 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 3007 } 3008 3009 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 3010 uintptr_t guest_hiaddr, uintptr_t align) 3011 { 3012 IntervalTreeRoot *root; 3013 uintptr_t brk, ret; 3014 PGBAddrs ga; 3015 3016 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 3017 3018 /* Try the identity map first. */ 3019 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 3020 brk = (uintptr_t)sbrk(0); 3021 if (pgb_try_mmap_set(&ga, 0, brk)) { 3022 guest_base = 0; 3023 return; 3024 } 3025 } 3026 3027 /* 3028 * Rebuild the address set for non-identity map. 3029 * This differs in the mapping of the guest NULL page. 3030 */ 3031 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 3032 3033 root = read_self_maps(); 3034 3035 /* Read brk after we've read the maps, which will malloc. */ 3036 brk = (uintptr_t)sbrk(0); 3037 3038 if (!root) { 3039 ret = pgb_find_fallback(&ga, align, brk); 3040 } else { 3041 /* 3042 * Reserve the area close to the host brk. 3043 * This will be freed with the rest of the tree. 3044 */ 3045 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 3046 b->start = brk; 3047 b->last = brk + 16 * MiB - 1; 3048 interval_tree_insert(b, root); 3049 3050 ret = pgb_find_itree(&ga, root, align, brk); 3051 free_self_maps(root); 3052 } 3053 3054 if (ret == -1) { 3055 int w = TARGET_LONG_BITS / 4; 3056 3057 error_report("%s: Unable to find a guest_base to satisfy all " 3058 "guest address mapping requirements", image_name); 3059 3060 for (int i = 0; i < ga.nbounds; ++i) { 3061 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 3062 w, (uint64_t)ga.bounds[i][0], 3063 w, (uint64_t)ga.bounds[i][1]); 3064 } 3065 exit(EXIT_FAILURE); 3066 } 3067 guest_base = ret; 3068 } 3069 3070 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 3071 abi_ulong guest_hiaddr) 3072 { 3073 /* In order to use host shmat, we must be able to honor SHMLBA. */ 3074 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 3075 3076 /* Sanity check the guest binary. */ 3077 if (reserved_va) { 3078 if (guest_hiaddr > reserved_va) { 3079 error_report("%s: requires more than reserved virtual " 3080 "address space (0x%" PRIx64 " > 0x%lx)", 3081 image_name, (uint64_t)guest_hiaddr, reserved_va); 3082 exit(EXIT_FAILURE); 3083 } 3084 } else { 3085 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 3086 error_report("%s: requires more virtual address space " 3087 "than the host can provide (0x%" PRIx64 ")", 3088 image_name, (uint64_t)guest_hiaddr + 1); 3089 exit(EXIT_FAILURE); 3090 } 3091 } 3092 3093 if (have_guest_base) { 3094 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 3095 } else { 3096 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 3097 } 3098 3099 /* Reserve and initialize the commpage. */ 3100 if (!init_guest_commpage()) { 3101 /* We have already probed for the commpage being free. */ 3102 g_assert_not_reached(); 3103 } 3104 3105 assert(QEMU_IS_ALIGNED(guest_base, align)); 3106 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3107 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3108 } 3109 3110 enum { 3111 /* The string "GNU\0" as a magic number. */ 3112 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3113 NOTE_DATA_SZ = 1 * KiB, 3114 NOTE_NAME_SZ = 4, 3115 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3116 }; 3117 3118 /* 3119 * Process a single gnu_property entry. 3120 * Return false for error. 3121 */ 3122 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3123 struct image_info *info, bool have_prev_type, 3124 uint32_t *prev_type, Error **errp) 3125 { 3126 uint32_t pr_type, pr_datasz, step; 3127 3128 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3129 goto error_data; 3130 } 3131 datasz -= *off; 3132 data += *off / sizeof(uint32_t); 3133 3134 if (datasz < 2 * sizeof(uint32_t)) { 3135 goto error_data; 3136 } 3137 pr_type = data[0]; 3138 pr_datasz = data[1]; 3139 data += 2; 3140 datasz -= 2 * sizeof(uint32_t); 3141 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3142 if (step > datasz) { 3143 goto error_data; 3144 } 3145 3146 /* Properties are supposed to be unique and sorted on pr_type. */ 3147 if (have_prev_type && pr_type <= *prev_type) { 3148 if (pr_type == *prev_type) { 3149 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3150 } else { 3151 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3152 } 3153 return false; 3154 } 3155 *prev_type = pr_type; 3156 3157 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3158 return false; 3159 } 3160 3161 *off += 2 * sizeof(uint32_t) + step; 3162 return true; 3163 3164 error_data: 3165 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3166 return false; 3167 } 3168 3169 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3170 static bool parse_elf_properties(const ImageSource *src, 3171 struct image_info *info, 3172 const struct elf_phdr *phdr, 3173 Error **errp) 3174 { 3175 union { 3176 struct elf_note nhdr; 3177 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3178 } note; 3179 3180 int n, off, datasz; 3181 bool have_prev_type; 3182 uint32_t prev_type; 3183 3184 /* Unless the arch requires properties, ignore them. */ 3185 if (!ARCH_USE_GNU_PROPERTY) { 3186 return true; 3187 } 3188 3189 /* If the properties are crazy large, that's too bad. */ 3190 n = phdr->p_filesz; 3191 if (n > sizeof(note)) { 3192 error_setg(errp, "PT_GNU_PROPERTY too large"); 3193 return false; 3194 } 3195 if (n < sizeof(note.nhdr)) { 3196 error_setg(errp, "PT_GNU_PROPERTY too small"); 3197 return false; 3198 } 3199 3200 if (!imgsrc_read(¬e, phdr->p_offset, n, src, errp)) { 3201 return false; 3202 } 3203 3204 /* 3205 * The contents of a valid PT_GNU_PROPERTY is a sequence 3206 * of uint32_t -- swap them all now. 3207 */ 3208 #ifdef BSWAP_NEEDED 3209 for (int i = 0; i < n / 4; i++) { 3210 bswap32s(note.data + i); 3211 } 3212 #endif 3213 3214 /* 3215 * Note that nhdr is 3 words, and that the "name" described by namesz 3216 * immediately follows nhdr and is thus at the 4th word. Further, all 3217 * of the inputs to the kernel's round_up are multiples of 4. 3218 */ 3219 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3220 note.nhdr.n_namesz != NOTE_NAME_SZ || 3221 note.data[3] != GNU0_MAGIC) { 3222 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3223 return false; 3224 } 3225 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3226 3227 datasz = note.nhdr.n_descsz + off; 3228 if (datasz > n) { 3229 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3230 return false; 3231 } 3232 3233 have_prev_type = false; 3234 prev_type = 0; 3235 while (1) { 3236 if (off == datasz) { 3237 return true; /* end, exit ok */ 3238 } 3239 if (!parse_elf_property(note.data, &off, datasz, info, 3240 have_prev_type, &prev_type, errp)) { 3241 return false; 3242 } 3243 have_prev_type = true; 3244 } 3245 } 3246 3247 /** 3248 * load_elf_image: Load an ELF image into the address space. 3249 * @image_name: the filename of the image, to use in error messages. 3250 * @src: the ImageSource from which to read. 3251 * @info: info collected from the loaded image. 3252 * @ehdr: the ELF header, not yet bswapped. 3253 * @pinterp_name: record any PT_INTERP string found. 3254 * 3255 * On return: @info values will be filled in, as necessary or available. 3256 */ 3257 3258 static void load_elf_image(const char *image_name, const ImageSource *src, 3259 struct image_info *info, struct elfhdr *ehdr, 3260 char **pinterp_name) 3261 { 3262 g_autofree struct elf_phdr *phdr = NULL; 3263 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3264 int i, prot_exec; 3265 Error *err = NULL; 3266 3267 /* 3268 * First of all, some simple consistency checks. 3269 * Note that we rely on the bswapped ehdr staying in bprm_buf, 3270 * for later use by load_elf_binary and create_elf_tables. 3271 */ 3272 if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) { 3273 goto exit_errmsg; 3274 } 3275 if (!elf_check_ident(ehdr)) { 3276 error_setg(&err, "Invalid ELF image for this architecture"); 3277 goto exit_errmsg; 3278 } 3279 bswap_ehdr(ehdr); 3280 if (!elf_check_ehdr(ehdr)) { 3281 error_setg(&err, "Invalid ELF image for this architecture"); 3282 goto exit_errmsg; 3283 } 3284 3285 phdr = imgsrc_read_alloc(ehdr->e_phoff, 3286 ehdr->e_phnum * sizeof(struct elf_phdr), 3287 src, &err); 3288 if (phdr == NULL) { 3289 goto exit_errmsg; 3290 } 3291 bswap_phdr(phdr, ehdr->e_phnum); 3292 3293 info->nsegs = 0; 3294 info->pt_dynamic_addr = 0; 3295 3296 mmap_lock(); 3297 3298 /* 3299 * Find the maximum size of the image and allocate an appropriate 3300 * amount of memory to handle that. Locate the interpreter, if any. 3301 */ 3302 loaddr = -1, hiaddr = 0; 3303 info->alignment = 0; 3304 info->exec_stack = EXSTACK_DEFAULT; 3305 for (i = 0; i < ehdr->e_phnum; ++i) { 3306 struct elf_phdr *eppnt = phdr + i; 3307 if (eppnt->p_type == PT_LOAD) { 3308 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3309 if (a < loaddr) { 3310 loaddr = a; 3311 } 3312 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3313 if (a > hiaddr) { 3314 hiaddr = a; 3315 } 3316 ++info->nsegs; 3317 info->alignment |= eppnt->p_align; 3318 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3319 g_autofree char *interp_name = NULL; 3320 3321 if (*pinterp_name) { 3322 error_setg(&err, "Multiple PT_INTERP entries"); 3323 goto exit_errmsg; 3324 } 3325 3326 interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz, 3327 src, &err); 3328 if (interp_name == NULL) { 3329 goto exit_errmsg; 3330 } 3331 if (interp_name[eppnt->p_filesz - 1] != 0) { 3332 error_setg(&err, "Invalid PT_INTERP entry"); 3333 goto exit_errmsg; 3334 } 3335 *pinterp_name = g_steal_pointer(&interp_name); 3336 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3337 if (!parse_elf_properties(src, info, eppnt, &err)) { 3338 goto exit_errmsg; 3339 } 3340 } else if (eppnt->p_type == PT_GNU_STACK) { 3341 info->exec_stack = eppnt->p_flags & PF_X; 3342 } 3343 } 3344 3345 load_addr = loaddr; 3346 3347 if (pinterp_name != NULL) { 3348 if (ehdr->e_type == ET_EXEC) { 3349 /* 3350 * Make sure that the low address does not conflict with 3351 * MMAP_MIN_ADDR or the QEMU application itself. 3352 */ 3353 probe_guest_base(image_name, loaddr, hiaddr); 3354 } else { 3355 abi_ulong align; 3356 3357 /* 3358 * The binary is dynamic, but we still need to 3359 * select guest_base. In this case we pass a size. 3360 */ 3361 probe_guest_base(image_name, 0, hiaddr - loaddr); 3362 3363 /* 3364 * Avoid collision with the loader by providing a different 3365 * default load address. 3366 */ 3367 load_addr += elf_et_dyn_base; 3368 3369 /* 3370 * TODO: Better support for mmap alignment is desirable. 3371 * Since we do not have complete control over the guest 3372 * address space, we prefer the kernel to choose some address 3373 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3374 * But without MAP_FIXED we cannot guarantee alignment, 3375 * only suggest it. 3376 */ 3377 align = pow2ceil(info->alignment); 3378 if (align) { 3379 load_addr &= -align; 3380 } 3381 } 3382 } 3383 3384 /* 3385 * Reserve address space for all of this. 3386 * 3387 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3388 * exactly the address range that is required. Without reserved_va, 3389 * the guest address space is not isolated. We have attempted to avoid 3390 * conflict with the host program itself via probe_guest_base, but using 3391 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3392 * 3393 * Otherwise this is ET_DYN, and we are searching for a location 3394 * that can hold the memory space required. If the image is 3395 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3396 * honor that address if it happens to be free. 3397 * 3398 * In both cases, we will overwrite pages in this range with mappings 3399 * from the executable. 3400 */ 3401 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3402 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3403 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3404 -1, 0); 3405 if (load_addr == -1) { 3406 goto exit_mmap; 3407 } 3408 load_bias = load_addr - loaddr; 3409 3410 if (elf_is_fdpic(ehdr)) { 3411 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3412 g_malloc(sizeof(*loadsegs) * info->nsegs); 3413 3414 for (i = 0; i < ehdr->e_phnum; ++i) { 3415 switch (phdr[i].p_type) { 3416 case PT_DYNAMIC: 3417 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3418 break; 3419 case PT_LOAD: 3420 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3421 loadsegs->p_vaddr = phdr[i].p_vaddr; 3422 loadsegs->p_memsz = phdr[i].p_memsz; 3423 ++loadsegs; 3424 break; 3425 } 3426 } 3427 } 3428 3429 info->load_bias = load_bias; 3430 info->code_offset = load_bias; 3431 info->data_offset = load_bias; 3432 info->load_addr = load_addr; 3433 info->entry = ehdr->e_entry + load_bias; 3434 info->start_code = -1; 3435 info->end_code = 0; 3436 info->start_data = -1; 3437 info->end_data = 0; 3438 /* Usual start for brk is after all sections of the main executable. */ 3439 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3440 info->elf_flags = ehdr->e_flags; 3441 3442 prot_exec = PROT_EXEC; 3443 #ifdef TARGET_AARCH64 3444 /* 3445 * If the BTI feature is present, this indicates that the executable 3446 * pages of the startup binary should be mapped with PROT_BTI, so that 3447 * branch targets are enforced. 3448 * 3449 * The startup binary is either the interpreter or the static executable. 3450 * The interpreter is responsible for all pages of a dynamic executable. 3451 * 3452 * Elf notes are backward compatible to older cpus. 3453 * Do not enable BTI unless it is supported. 3454 */ 3455 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3456 && (pinterp_name == NULL || *pinterp_name == 0) 3457 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3458 prot_exec |= TARGET_PROT_BTI; 3459 } 3460 #endif 3461 3462 for (i = 0; i < ehdr->e_phnum; i++) { 3463 struct elf_phdr *eppnt = phdr + i; 3464 if (eppnt->p_type == PT_LOAD) { 3465 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3466 int elf_prot = 0; 3467 3468 if (eppnt->p_flags & PF_R) { 3469 elf_prot |= PROT_READ; 3470 } 3471 if (eppnt->p_flags & PF_W) { 3472 elf_prot |= PROT_WRITE; 3473 } 3474 if (eppnt->p_flags & PF_X) { 3475 elf_prot |= prot_exec; 3476 } 3477 3478 vaddr = load_bias + eppnt->p_vaddr; 3479 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3480 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3481 3482 vaddr_ef = vaddr + eppnt->p_filesz; 3483 vaddr_em = vaddr + eppnt->p_memsz; 3484 3485 /* 3486 * Some segments may be completely empty, with a non-zero p_memsz 3487 * but no backing file segment. 3488 */ 3489 if (eppnt->p_filesz != 0) { 3490 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3491 elf_prot, MAP_PRIVATE | MAP_FIXED, 3492 src, eppnt->p_offset - vaddr_po); 3493 if (error == -1) { 3494 goto exit_mmap; 3495 } 3496 } 3497 3498 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3499 if (vaddr_ef < vaddr_em && 3500 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) { 3501 goto exit_errmsg; 3502 } 3503 3504 /* Find the full program boundaries. */ 3505 if (elf_prot & PROT_EXEC) { 3506 if (vaddr < info->start_code) { 3507 info->start_code = vaddr; 3508 } 3509 if (vaddr_ef > info->end_code) { 3510 info->end_code = vaddr_ef; 3511 } 3512 } 3513 if (elf_prot & PROT_WRITE) { 3514 if (vaddr < info->start_data) { 3515 info->start_data = vaddr; 3516 } 3517 if (vaddr_ef > info->end_data) { 3518 info->end_data = vaddr_ef; 3519 } 3520 } 3521 #ifdef TARGET_MIPS 3522 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3523 Mips_elf_abiflags_v0 abiflags; 3524 3525 if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags), 3526 src, &err)) { 3527 goto exit_errmsg; 3528 } 3529 bswap_mips_abiflags(&abiflags); 3530 info->fp_abi = abiflags.fp_abi; 3531 #endif 3532 } 3533 } 3534 3535 if (info->end_data == 0) { 3536 info->start_data = info->end_code; 3537 info->end_data = info->end_code; 3538 } 3539 3540 if (qemu_log_enabled()) { 3541 load_symbols(ehdr, src, load_bias); 3542 } 3543 3544 debuginfo_report_elf(image_name, src->fd, load_bias); 3545 3546 mmap_unlock(); 3547 3548 close(src->fd); 3549 return; 3550 3551 exit_mmap: 3552 error_setg_errno(&err, errno, "Error mapping file"); 3553 goto exit_errmsg; 3554 exit_errmsg: 3555 error_reportf_err(err, "%s: ", image_name); 3556 exit(-1); 3557 } 3558 3559 static void load_elf_interp(const char *filename, struct image_info *info, 3560 char bprm_buf[BPRM_BUF_SIZE]) 3561 { 3562 struct elfhdr ehdr; 3563 ImageSource src; 3564 int fd, retval; 3565 Error *err = NULL; 3566 3567 fd = open(path(filename), O_RDONLY); 3568 if (fd < 0) { 3569 error_setg_file_open(&err, errno, filename); 3570 error_report_err(err); 3571 exit(-1); 3572 } 3573 3574 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3575 if (retval < 0) { 3576 error_setg_errno(&err, errno, "Error reading file header"); 3577 error_reportf_err(err, "%s: ", filename); 3578 exit(-1); 3579 } 3580 3581 src.fd = fd; 3582 src.cache = bprm_buf; 3583 src.cache_size = retval; 3584 3585 load_elf_image(filename, &src, info, &ehdr, NULL); 3586 } 3587 3588 #ifdef VDSO_HEADER 3589 #include VDSO_HEADER 3590 #define vdso_image_info() &vdso_image_info 3591 #else 3592 #define vdso_image_info() NULL 3593 #endif 3594 3595 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso) 3596 { 3597 ImageSource src; 3598 struct elfhdr ehdr; 3599 abi_ulong load_bias, load_addr; 3600 3601 src.fd = -1; 3602 src.cache = vdso->image; 3603 src.cache_size = vdso->image_size; 3604 3605 load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL); 3606 load_addr = info->load_addr; 3607 load_bias = info->load_bias; 3608 3609 /* 3610 * We need to relocate the VDSO image. The one built into the kernel 3611 * is built for a fixed address. The one built for QEMU is not, since 3612 * that requires close control of the guest address space. 3613 * We pre-processed the image to locate all of the addresses that need 3614 * to be updated. 3615 */ 3616 for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) { 3617 abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]); 3618 *addr = tswapal(tswapal(*addr) + load_bias); 3619 } 3620 3621 /* Install signal trampolines, if present. */ 3622 if (vdso->sigreturn_ofs) { 3623 default_sigreturn = load_addr + vdso->sigreturn_ofs; 3624 } 3625 if (vdso->rt_sigreturn_ofs) { 3626 default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs; 3627 } 3628 3629 /* Remove write from VDSO segment. */ 3630 target_mprotect(info->start_data, info->end_data - info->start_data, 3631 PROT_READ | PROT_EXEC); 3632 } 3633 3634 static int symfind(const void *s0, const void *s1) 3635 { 3636 struct elf_sym *sym = (struct elf_sym *)s1; 3637 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3638 int result = 0; 3639 3640 if (addr < sym->st_value) { 3641 result = -1; 3642 } else if (addr >= sym->st_value + sym->st_size) { 3643 result = 1; 3644 } 3645 return result; 3646 } 3647 3648 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3649 { 3650 #if ELF_CLASS == ELFCLASS32 3651 struct elf_sym *syms = s->disas_symtab.elf32; 3652 #else 3653 struct elf_sym *syms = s->disas_symtab.elf64; 3654 #endif 3655 3656 // binary search 3657 struct elf_sym *sym; 3658 3659 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3660 if (sym != NULL) { 3661 return s->disas_strtab + sym->st_name; 3662 } 3663 3664 return ""; 3665 } 3666 3667 /* FIXME: This should use elf_ops.h */ 3668 static int symcmp(const void *s0, const void *s1) 3669 { 3670 struct elf_sym *sym0 = (struct elf_sym *)s0; 3671 struct elf_sym *sym1 = (struct elf_sym *)s1; 3672 return (sym0->st_value < sym1->st_value) 3673 ? -1 3674 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3675 } 3676 3677 /* Best attempt to load symbols from this ELF object. */ 3678 static void load_symbols(struct elfhdr *hdr, const ImageSource *src, 3679 abi_ulong load_bias) 3680 { 3681 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3682 g_autofree struct elf_shdr *shdr = NULL; 3683 char *strings = NULL; 3684 struct elf_sym *syms = NULL; 3685 struct elf_sym *new_syms; 3686 uint64_t segsz; 3687 3688 shnum = hdr->e_shnum; 3689 shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr), 3690 src, NULL); 3691 if (shdr == NULL) { 3692 return; 3693 } 3694 3695 bswap_shdr(shdr, shnum); 3696 for (i = 0; i < shnum; ++i) { 3697 if (shdr[i].sh_type == SHT_SYMTAB) { 3698 sym_idx = i; 3699 str_idx = shdr[i].sh_link; 3700 goto found; 3701 } 3702 } 3703 3704 /* There will be no symbol table if the file was stripped. */ 3705 return; 3706 3707 found: 3708 /* Now know where the strtab and symtab are. Snarf them. */ 3709 3710 segsz = shdr[str_idx].sh_size; 3711 strings = g_try_malloc(segsz); 3712 if (!strings) { 3713 goto give_up; 3714 } 3715 if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) { 3716 goto give_up; 3717 } 3718 3719 segsz = shdr[sym_idx].sh_size; 3720 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3721 /* 3722 * Implausibly large symbol table: give up rather than ploughing 3723 * on with the number of symbols calculation overflowing. 3724 */ 3725 goto give_up; 3726 } 3727 nsyms = segsz / sizeof(struct elf_sym); 3728 syms = g_try_malloc(segsz); 3729 if (!syms) { 3730 goto give_up; 3731 } 3732 if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) { 3733 goto give_up; 3734 } 3735 3736 for (i = 0; i < nsyms; ) { 3737 bswap_sym(syms + i); 3738 /* Throw away entries which we do not need. */ 3739 if (syms[i].st_shndx == SHN_UNDEF 3740 || syms[i].st_shndx >= SHN_LORESERVE 3741 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3742 if (i < --nsyms) { 3743 syms[i] = syms[nsyms]; 3744 } 3745 } else { 3746 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3747 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3748 syms[i].st_value &= ~(target_ulong)1; 3749 #endif 3750 syms[i].st_value += load_bias; 3751 i++; 3752 } 3753 } 3754 3755 /* No "useful" symbol. */ 3756 if (nsyms == 0) { 3757 goto give_up; 3758 } 3759 3760 /* 3761 * Attempt to free the storage associated with the local symbols 3762 * that we threw away. Whether or not this has any effect on the 3763 * memory allocation depends on the malloc implementation and how 3764 * many symbols we managed to discard. 3765 */ 3766 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3767 if (new_syms == NULL) { 3768 goto give_up; 3769 } 3770 syms = new_syms; 3771 3772 qsort(syms, nsyms, sizeof(*syms), symcmp); 3773 3774 { 3775 struct syminfo *s = g_new(struct syminfo, 1); 3776 3777 s->disas_strtab = strings; 3778 s->disas_num_syms = nsyms; 3779 #if ELF_CLASS == ELFCLASS32 3780 s->disas_symtab.elf32 = syms; 3781 #else 3782 s->disas_symtab.elf64 = syms; 3783 #endif 3784 s->lookup_symbol = lookup_symbolxx; 3785 s->next = syminfos; 3786 syminfos = s; 3787 } 3788 return; 3789 3790 give_up: 3791 g_free(strings); 3792 g_free(syms); 3793 } 3794 3795 uint32_t get_elf_eflags(int fd) 3796 { 3797 struct elfhdr ehdr; 3798 off_t offset; 3799 int ret; 3800 3801 /* Read ELF header */ 3802 offset = lseek(fd, 0, SEEK_SET); 3803 if (offset == (off_t) -1) { 3804 return 0; 3805 } 3806 ret = read(fd, &ehdr, sizeof(ehdr)); 3807 if (ret < sizeof(ehdr)) { 3808 return 0; 3809 } 3810 offset = lseek(fd, offset, SEEK_SET); 3811 if (offset == (off_t) -1) { 3812 return 0; 3813 } 3814 3815 /* Check ELF signature */ 3816 if (!elf_check_ident(&ehdr)) { 3817 return 0; 3818 } 3819 3820 /* check header */ 3821 bswap_ehdr(&ehdr); 3822 if (!elf_check_ehdr(&ehdr)) { 3823 return 0; 3824 } 3825 3826 /* return architecture id */ 3827 return ehdr.e_flags; 3828 } 3829 3830 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3831 { 3832 /* 3833 * We need a copy of the elf header for passing to create_elf_tables. 3834 * We will have overwritten the original when we re-use bprm->buf 3835 * while loading the interpreter. Allocate the storage for this now 3836 * and let elf_load_image do any swapping that may be required. 3837 */ 3838 struct elfhdr ehdr; 3839 struct image_info interp_info, vdso_info; 3840 char *elf_interpreter = NULL; 3841 char *scratch; 3842 3843 memset(&interp_info, 0, sizeof(interp_info)); 3844 #ifdef TARGET_MIPS 3845 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3846 #endif 3847 3848 load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter); 3849 3850 /* Do this so that we can load the interpreter, if need be. We will 3851 change some of these later */ 3852 bprm->p = setup_arg_pages(bprm, info); 3853 3854 scratch = g_new0(char, TARGET_PAGE_SIZE); 3855 if (STACK_GROWS_DOWN) { 3856 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3857 bprm->p, info->stack_limit); 3858 info->file_string = bprm->p; 3859 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3860 bprm->p, info->stack_limit); 3861 info->env_strings = bprm->p; 3862 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3863 bprm->p, info->stack_limit); 3864 info->arg_strings = bprm->p; 3865 } else { 3866 info->arg_strings = bprm->p; 3867 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3868 bprm->p, info->stack_limit); 3869 info->env_strings = bprm->p; 3870 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3871 bprm->p, info->stack_limit); 3872 info->file_string = bprm->p; 3873 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3874 bprm->p, info->stack_limit); 3875 } 3876 3877 g_free(scratch); 3878 3879 if (!bprm->p) { 3880 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3881 exit(-1); 3882 } 3883 3884 if (elf_interpreter) { 3885 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3886 3887 /* 3888 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3889 * with the mappings the interpreter can be loaded above but 3890 * near the main executable, which can leave very little room 3891 * for the heap. 3892 * If the current brk has less than 16MB, use the end of the 3893 * interpreter. 3894 */ 3895 if (interp_info.brk > info->brk && 3896 interp_info.load_bias - info->brk < 16 * MiB) { 3897 info->brk = interp_info.brk; 3898 } 3899 3900 /* If the program interpreter is one of these two, then assume 3901 an iBCS2 image. Otherwise assume a native linux image. */ 3902 3903 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3904 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3905 info->personality = PER_SVR4; 3906 3907 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3908 and some applications "depend" upon this behavior. Since 3909 we do not have the power to recompile these, we emulate 3910 the SVr4 behavior. Sigh. */ 3911 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3912 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3913 } 3914 #ifdef TARGET_MIPS 3915 info->interp_fp_abi = interp_info.fp_abi; 3916 #endif 3917 } 3918 3919 /* 3920 * Load a vdso if available, which will amongst other things contain the 3921 * signal trampolines. Otherwise, allocate a separate page for them. 3922 */ 3923 const VdsoImageInfo *vdso = vdso_image_info(); 3924 if (vdso) { 3925 load_elf_vdso(&vdso_info, vdso); 3926 info->vdso = vdso_info.load_bias; 3927 } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3928 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3929 PROT_READ | PROT_WRITE, 3930 MAP_PRIVATE | MAP_ANON, -1, 0); 3931 if (tramp_page == -1) { 3932 return -errno; 3933 } 3934 3935 setup_sigtramp(tramp_page); 3936 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3937 } 3938 3939 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info, 3940 elf_interpreter ? &interp_info : NULL, 3941 vdso ? &vdso_info : NULL); 3942 info->start_stack = bprm->p; 3943 3944 /* If we have an interpreter, set that as the program's entry point. 3945 Copy the load_bias as well, to help PPC64 interpret the entry 3946 point as a function descriptor. Do this after creating elf tables 3947 so that we copy the original program entry point into the AUXV. */ 3948 if (elf_interpreter) { 3949 info->load_bias = interp_info.load_bias; 3950 info->entry = interp_info.entry; 3951 g_free(elf_interpreter); 3952 } 3953 3954 #ifdef USE_ELF_CORE_DUMP 3955 bprm->core_dump = &elf_core_dump; 3956 #endif 3957 3958 return 0; 3959 } 3960 3961 #ifdef USE_ELF_CORE_DUMP 3962 /* 3963 * Definitions to generate Intel SVR4-like core files. 3964 * These mostly have the same names as the SVR4 types with "target_elf_" 3965 * tacked on the front to prevent clashes with linux definitions, 3966 * and the typedef forms have been avoided. This is mostly like 3967 * the SVR4 structure, but more Linuxy, with things that Linux does 3968 * not support and which gdb doesn't really use excluded. 3969 * 3970 * Fields we don't dump (their contents is zero) in linux-user qemu 3971 * are marked with XXX. 3972 * 3973 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3974 * 3975 * Porting ELF coredump for target is (quite) simple process. First you 3976 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3977 * the target resides): 3978 * 3979 * #define USE_ELF_CORE_DUMP 3980 * 3981 * Next you define type of register set used for dumping. ELF specification 3982 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3983 * 3984 * typedef <target_regtype> target_elf_greg_t; 3985 * #define ELF_NREG <number of registers> 3986 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3987 * 3988 * Last step is to implement target specific function that copies registers 3989 * from given cpu into just specified register set. Prototype is: 3990 * 3991 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3992 * const CPUArchState *env); 3993 * 3994 * Parameters: 3995 * regs - copy register values into here (allocated and zeroed by caller) 3996 * env - copy registers from here 3997 * 3998 * Example for ARM target is provided in this file. 3999 */ 4000 4001 /* An ELF note in memory */ 4002 struct memelfnote { 4003 const char *name; 4004 size_t namesz; 4005 size_t namesz_rounded; 4006 int type; 4007 size_t datasz; 4008 size_t datasz_rounded; 4009 void *data; 4010 size_t notesz; 4011 }; 4012 4013 struct target_elf_siginfo { 4014 abi_int si_signo; /* signal number */ 4015 abi_int si_code; /* extra code */ 4016 abi_int si_errno; /* errno */ 4017 }; 4018 4019 struct target_elf_prstatus { 4020 struct target_elf_siginfo pr_info; /* Info associated with signal */ 4021 abi_short pr_cursig; /* Current signal */ 4022 abi_ulong pr_sigpend; /* XXX */ 4023 abi_ulong pr_sighold; /* XXX */ 4024 target_pid_t pr_pid; 4025 target_pid_t pr_ppid; 4026 target_pid_t pr_pgrp; 4027 target_pid_t pr_sid; 4028 struct target_timeval pr_utime; /* XXX User time */ 4029 struct target_timeval pr_stime; /* XXX System time */ 4030 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 4031 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 4032 target_elf_gregset_t pr_reg; /* GP registers */ 4033 abi_int pr_fpvalid; /* XXX */ 4034 }; 4035 4036 #define ELF_PRARGSZ (80) /* Number of chars for args */ 4037 4038 struct target_elf_prpsinfo { 4039 char pr_state; /* numeric process state */ 4040 char pr_sname; /* char for pr_state */ 4041 char pr_zomb; /* zombie */ 4042 char pr_nice; /* nice val */ 4043 abi_ulong pr_flag; /* flags */ 4044 target_uid_t pr_uid; 4045 target_gid_t pr_gid; 4046 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 4047 /* Lots missing */ 4048 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 4049 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 4050 }; 4051 4052 /* Here is the structure in which status of each thread is captured. */ 4053 struct elf_thread_status { 4054 QTAILQ_ENTRY(elf_thread_status) ets_link; 4055 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 4056 #if 0 4057 elf_fpregset_t fpu; /* NT_PRFPREG */ 4058 struct task_struct *thread; 4059 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 4060 #endif 4061 struct memelfnote notes[1]; 4062 int num_notes; 4063 }; 4064 4065 struct elf_note_info { 4066 struct memelfnote *notes; 4067 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 4068 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 4069 4070 QTAILQ_HEAD(, elf_thread_status) thread_list; 4071 #if 0 4072 /* 4073 * Current version of ELF coredump doesn't support 4074 * dumping fp regs etc. 4075 */ 4076 elf_fpregset_t *fpu; 4077 elf_fpxregset_t *xfpu; 4078 int thread_status_size; 4079 #endif 4080 int notes_size; 4081 int numnote; 4082 }; 4083 4084 struct vm_area_struct { 4085 target_ulong vma_start; /* start vaddr of memory region */ 4086 target_ulong vma_end; /* end vaddr of memory region */ 4087 abi_ulong vma_flags; /* protection etc. flags for the region */ 4088 QTAILQ_ENTRY(vm_area_struct) vma_link; 4089 }; 4090 4091 struct mm_struct { 4092 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 4093 int mm_count; /* number of mappings */ 4094 }; 4095 4096 static struct mm_struct *vma_init(void); 4097 static void vma_delete(struct mm_struct *); 4098 static int vma_add_mapping(struct mm_struct *, target_ulong, 4099 target_ulong, abi_ulong); 4100 static int vma_get_mapping_count(const struct mm_struct *); 4101 static struct vm_area_struct *vma_first(const struct mm_struct *); 4102 static struct vm_area_struct *vma_next(struct vm_area_struct *); 4103 static abi_ulong vma_dump_size(const struct vm_area_struct *); 4104 static int vma_walker(void *priv, target_ulong start, target_ulong end, 4105 unsigned long flags); 4106 4107 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 4108 static void fill_note(struct memelfnote *, const char *, int, 4109 unsigned int, void *); 4110 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 4111 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 4112 static void fill_auxv_note(struct memelfnote *, const TaskState *); 4113 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 4114 static size_t note_size(const struct memelfnote *); 4115 static void free_note_info(struct elf_note_info *); 4116 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 4117 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 4118 4119 static int dump_write(int, const void *, size_t); 4120 static int write_note(struct memelfnote *, int); 4121 static int write_note_info(struct elf_note_info *, int); 4122 4123 #ifdef BSWAP_NEEDED 4124 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 4125 { 4126 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 4127 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 4128 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 4129 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 4130 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 4131 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 4132 prstatus->pr_pid = tswap32(prstatus->pr_pid); 4133 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 4134 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 4135 prstatus->pr_sid = tswap32(prstatus->pr_sid); 4136 /* cpu times are not filled, so we skip them */ 4137 /* regs should be in correct format already */ 4138 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 4139 } 4140 4141 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 4142 { 4143 psinfo->pr_flag = tswapal(psinfo->pr_flag); 4144 psinfo->pr_uid = tswap16(psinfo->pr_uid); 4145 psinfo->pr_gid = tswap16(psinfo->pr_gid); 4146 psinfo->pr_pid = tswap32(psinfo->pr_pid); 4147 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 4148 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 4149 psinfo->pr_sid = tswap32(psinfo->pr_sid); 4150 } 4151 4152 static void bswap_note(struct elf_note *en) 4153 { 4154 bswap32s(&en->n_namesz); 4155 bswap32s(&en->n_descsz); 4156 bswap32s(&en->n_type); 4157 } 4158 #else 4159 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 4160 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4161 static inline void bswap_note(struct elf_note *en) { } 4162 #endif /* BSWAP_NEEDED */ 4163 4164 /* 4165 * Minimal support for linux memory regions. These are needed 4166 * when we are finding out what memory exactly belongs to 4167 * emulated process. No locks needed here, as long as 4168 * thread that received the signal is stopped. 4169 */ 4170 4171 static struct mm_struct *vma_init(void) 4172 { 4173 struct mm_struct *mm; 4174 4175 if ((mm = g_malloc(sizeof (*mm))) == NULL) 4176 return (NULL); 4177 4178 mm->mm_count = 0; 4179 QTAILQ_INIT(&mm->mm_mmap); 4180 4181 return (mm); 4182 } 4183 4184 static void vma_delete(struct mm_struct *mm) 4185 { 4186 struct vm_area_struct *vma; 4187 4188 while ((vma = vma_first(mm)) != NULL) { 4189 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 4190 g_free(vma); 4191 } 4192 g_free(mm); 4193 } 4194 4195 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 4196 target_ulong end, abi_ulong flags) 4197 { 4198 struct vm_area_struct *vma; 4199 4200 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 4201 return (-1); 4202 4203 vma->vma_start = start; 4204 vma->vma_end = end; 4205 vma->vma_flags = flags; 4206 4207 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 4208 mm->mm_count++; 4209 4210 return (0); 4211 } 4212 4213 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 4214 { 4215 return (QTAILQ_FIRST(&mm->mm_mmap)); 4216 } 4217 4218 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 4219 { 4220 return (QTAILQ_NEXT(vma, vma_link)); 4221 } 4222 4223 static int vma_get_mapping_count(const struct mm_struct *mm) 4224 { 4225 return (mm->mm_count); 4226 } 4227 4228 /* 4229 * Calculate file (dump) size of given memory region. 4230 */ 4231 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 4232 { 4233 /* if we cannot even read the first page, skip it */ 4234 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 4235 return (0); 4236 4237 /* 4238 * Usually we don't dump executable pages as they contain 4239 * non-writable code that debugger can read directly from 4240 * target library etc. However, thread stacks are marked 4241 * also executable so we read in first page of given region 4242 * and check whether it contains elf header. If there is 4243 * no elf header, we dump it. 4244 */ 4245 if (vma->vma_flags & PROT_EXEC) { 4246 char page[TARGET_PAGE_SIZE]; 4247 4248 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 4249 return 0; 4250 } 4251 if ((page[EI_MAG0] == ELFMAG0) && 4252 (page[EI_MAG1] == ELFMAG1) && 4253 (page[EI_MAG2] == ELFMAG2) && 4254 (page[EI_MAG3] == ELFMAG3)) { 4255 /* 4256 * Mappings are possibly from ELF binary. Don't dump 4257 * them. 4258 */ 4259 return (0); 4260 } 4261 } 4262 4263 return (vma->vma_end - vma->vma_start); 4264 } 4265 4266 static int vma_walker(void *priv, target_ulong start, target_ulong end, 4267 unsigned long flags) 4268 { 4269 struct mm_struct *mm = (struct mm_struct *)priv; 4270 4271 vma_add_mapping(mm, start, end, flags); 4272 return (0); 4273 } 4274 4275 static void fill_note(struct memelfnote *note, const char *name, int type, 4276 unsigned int sz, void *data) 4277 { 4278 unsigned int namesz; 4279 4280 namesz = strlen(name) + 1; 4281 note->name = name; 4282 note->namesz = namesz; 4283 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 4284 note->type = type; 4285 note->datasz = sz; 4286 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 4287 4288 note->data = data; 4289 4290 /* 4291 * We calculate rounded up note size here as specified by 4292 * ELF document. 4293 */ 4294 note->notesz = sizeof (struct elf_note) + 4295 note->namesz_rounded + note->datasz_rounded; 4296 } 4297 4298 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4299 uint32_t flags) 4300 { 4301 (void) memset(elf, 0, sizeof(*elf)); 4302 4303 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 4304 elf->e_ident[EI_CLASS] = ELF_CLASS; 4305 elf->e_ident[EI_DATA] = ELF_DATA; 4306 elf->e_ident[EI_VERSION] = EV_CURRENT; 4307 elf->e_ident[EI_OSABI] = ELF_OSABI; 4308 4309 elf->e_type = ET_CORE; 4310 elf->e_machine = machine; 4311 elf->e_version = EV_CURRENT; 4312 elf->e_phoff = sizeof(struct elfhdr); 4313 elf->e_flags = flags; 4314 elf->e_ehsize = sizeof(struct elfhdr); 4315 elf->e_phentsize = sizeof(struct elf_phdr); 4316 elf->e_phnum = segs; 4317 4318 bswap_ehdr(elf); 4319 } 4320 4321 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4322 { 4323 phdr->p_type = PT_NOTE; 4324 phdr->p_offset = offset; 4325 phdr->p_vaddr = 0; 4326 phdr->p_paddr = 0; 4327 phdr->p_filesz = sz; 4328 phdr->p_memsz = 0; 4329 phdr->p_flags = 0; 4330 phdr->p_align = 0; 4331 4332 bswap_phdr(phdr, 1); 4333 } 4334 4335 static size_t note_size(const struct memelfnote *note) 4336 { 4337 return (note->notesz); 4338 } 4339 4340 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4341 const TaskState *ts, int signr) 4342 { 4343 (void) memset(prstatus, 0, sizeof (*prstatus)); 4344 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4345 prstatus->pr_pid = ts->ts_tid; 4346 prstatus->pr_ppid = getppid(); 4347 prstatus->pr_pgrp = getpgrp(); 4348 prstatus->pr_sid = getsid(0); 4349 4350 bswap_prstatus(prstatus); 4351 } 4352 4353 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4354 { 4355 char *base_filename; 4356 unsigned int i, len; 4357 4358 (void) memset(psinfo, 0, sizeof (*psinfo)); 4359 4360 len = ts->info->env_strings - ts->info->arg_strings; 4361 if (len >= ELF_PRARGSZ) 4362 len = ELF_PRARGSZ - 1; 4363 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4364 return -EFAULT; 4365 } 4366 for (i = 0; i < len; i++) 4367 if (psinfo->pr_psargs[i] == 0) 4368 psinfo->pr_psargs[i] = ' '; 4369 psinfo->pr_psargs[len] = 0; 4370 4371 psinfo->pr_pid = getpid(); 4372 psinfo->pr_ppid = getppid(); 4373 psinfo->pr_pgrp = getpgrp(); 4374 psinfo->pr_sid = getsid(0); 4375 psinfo->pr_uid = getuid(); 4376 psinfo->pr_gid = getgid(); 4377 4378 base_filename = g_path_get_basename(ts->bprm->filename); 4379 /* 4380 * Using strncpy here is fine: at max-length, 4381 * this field is not NUL-terminated. 4382 */ 4383 (void) strncpy(psinfo->pr_fname, base_filename, 4384 sizeof(psinfo->pr_fname)); 4385 4386 g_free(base_filename); 4387 bswap_psinfo(psinfo); 4388 return (0); 4389 } 4390 4391 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4392 { 4393 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4394 elf_addr_t orig_auxv = auxv; 4395 void *ptr; 4396 int len = ts->info->auxv_len; 4397 4398 /* 4399 * Auxiliary vector is stored in target process stack. It contains 4400 * {type, value} pairs that we need to dump into note. This is not 4401 * strictly necessary but we do it here for sake of completeness. 4402 */ 4403 4404 /* read in whole auxv vector and copy it to memelfnote */ 4405 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4406 if (ptr != NULL) { 4407 fill_note(note, "CORE", NT_AUXV, len, ptr); 4408 unlock_user(ptr, auxv, len); 4409 } 4410 } 4411 4412 /* 4413 * Constructs name of coredump file. We have following convention 4414 * for the name: 4415 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4416 * 4417 * Returns the filename 4418 */ 4419 static char *core_dump_filename(const TaskState *ts) 4420 { 4421 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4422 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4423 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4424 4425 return g_strdup_printf("qemu_%s_%s_%d.core", 4426 base_filename, nowstr, (int)getpid()); 4427 } 4428 4429 static int dump_write(int fd, const void *ptr, size_t size) 4430 { 4431 const char *bufp = (const char *)ptr; 4432 ssize_t bytes_written, bytes_left; 4433 struct rlimit dumpsize; 4434 off_t pos; 4435 4436 bytes_written = 0; 4437 getrlimit(RLIMIT_CORE, &dumpsize); 4438 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4439 if (errno == ESPIPE) { /* not a seekable stream */ 4440 bytes_left = size; 4441 } else { 4442 return pos; 4443 } 4444 } else { 4445 if (dumpsize.rlim_cur <= pos) { 4446 return -1; 4447 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4448 bytes_left = size; 4449 } else { 4450 size_t limit_left=dumpsize.rlim_cur - pos; 4451 bytes_left = limit_left >= size ? size : limit_left ; 4452 } 4453 } 4454 4455 /* 4456 * In normal conditions, single write(2) should do but 4457 * in case of socket etc. this mechanism is more portable. 4458 */ 4459 do { 4460 bytes_written = write(fd, bufp, bytes_left); 4461 if (bytes_written < 0) { 4462 if (errno == EINTR) 4463 continue; 4464 return (-1); 4465 } else if (bytes_written == 0) { /* eof */ 4466 return (-1); 4467 } 4468 bufp += bytes_written; 4469 bytes_left -= bytes_written; 4470 } while (bytes_left > 0); 4471 4472 return (0); 4473 } 4474 4475 static int write_note(struct memelfnote *men, int fd) 4476 { 4477 struct elf_note en; 4478 4479 en.n_namesz = men->namesz; 4480 en.n_type = men->type; 4481 en.n_descsz = men->datasz; 4482 4483 bswap_note(&en); 4484 4485 if (dump_write(fd, &en, sizeof(en)) != 0) 4486 return (-1); 4487 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4488 return (-1); 4489 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4490 return (-1); 4491 4492 return (0); 4493 } 4494 4495 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4496 { 4497 CPUState *cpu = env_cpu((CPUArchState *)env); 4498 TaskState *ts = (TaskState *)cpu->opaque; 4499 struct elf_thread_status *ets; 4500 4501 ets = g_malloc0(sizeof (*ets)); 4502 ets->num_notes = 1; /* only prstatus is dumped */ 4503 fill_prstatus(&ets->prstatus, ts, 0); 4504 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4505 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4506 &ets->prstatus); 4507 4508 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4509 4510 info->notes_size += note_size(&ets->notes[0]); 4511 } 4512 4513 static void init_note_info(struct elf_note_info *info) 4514 { 4515 /* Initialize the elf_note_info structure so that it is at 4516 * least safe to call free_note_info() on it. Must be 4517 * called before calling fill_note_info(). 4518 */ 4519 memset(info, 0, sizeof (*info)); 4520 QTAILQ_INIT(&info->thread_list); 4521 } 4522 4523 static int fill_note_info(struct elf_note_info *info, 4524 long signr, const CPUArchState *env) 4525 { 4526 #define NUMNOTES 3 4527 CPUState *cpu = env_cpu((CPUArchState *)env); 4528 TaskState *ts = (TaskState *)cpu->opaque; 4529 int i; 4530 4531 info->notes = g_new0(struct memelfnote, NUMNOTES); 4532 if (info->notes == NULL) 4533 return (-ENOMEM); 4534 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4535 if (info->prstatus == NULL) 4536 return (-ENOMEM); 4537 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4538 if (info->prstatus == NULL) 4539 return (-ENOMEM); 4540 4541 /* 4542 * First fill in status (and registers) of current thread 4543 * including process info & aux vector. 4544 */ 4545 fill_prstatus(info->prstatus, ts, signr); 4546 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4547 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4548 sizeof (*info->prstatus), info->prstatus); 4549 fill_psinfo(info->psinfo, ts); 4550 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4551 sizeof (*info->psinfo), info->psinfo); 4552 fill_auxv_note(&info->notes[2], ts); 4553 info->numnote = 3; 4554 4555 info->notes_size = 0; 4556 for (i = 0; i < info->numnote; i++) 4557 info->notes_size += note_size(&info->notes[i]); 4558 4559 /* read and fill status of all threads */ 4560 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) { 4561 CPU_FOREACH(cpu) { 4562 if (cpu == thread_cpu) { 4563 continue; 4564 } 4565 fill_thread_info(info, cpu_env(cpu)); 4566 } 4567 } 4568 4569 return (0); 4570 } 4571 4572 static void free_note_info(struct elf_note_info *info) 4573 { 4574 struct elf_thread_status *ets; 4575 4576 while (!QTAILQ_EMPTY(&info->thread_list)) { 4577 ets = QTAILQ_FIRST(&info->thread_list); 4578 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4579 g_free(ets); 4580 } 4581 4582 g_free(info->prstatus); 4583 g_free(info->psinfo); 4584 g_free(info->notes); 4585 } 4586 4587 static int write_note_info(struct elf_note_info *info, int fd) 4588 { 4589 struct elf_thread_status *ets; 4590 int i, error = 0; 4591 4592 /* write prstatus, psinfo and auxv for current thread */ 4593 for (i = 0; i < info->numnote; i++) 4594 if ((error = write_note(&info->notes[i], fd)) != 0) 4595 return (error); 4596 4597 /* write prstatus for each thread */ 4598 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4599 if ((error = write_note(&ets->notes[0], fd)) != 0) 4600 return (error); 4601 } 4602 4603 return (0); 4604 } 4605 4606 /* 4607 * Write out ELF coredump. 4608 * 4609 * See documentation of ELF object file format in: 4610 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4611 * 4612 * Coredump format in linux is following: 4613 * 4614 * 0 +----------------------+ \ 4615 * | ELF header | ET_CORE | 4616 * +----------------------+ | 4617 * | ELF program headers | |--- headers 4618 * | - NOTE section | | 4619 * | - PT_LOAD sections | | 4620 * +----------------------+ / 4621 * | NOTEs: | 4622 * | - NT_PRSTATUS | 4623 * | - NT_PRSINFO | 4624 * | - NT_AUXV | 4625 * +----------------------+ <-- aligned to target page 4626 * | Process memory dump | 4627 * : : 4628 * . . 4629 * : : 4630 * | | 4631 * +----------------------+ 4632 * 4633 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4634 * NT_PRSINFO -> struct elf_prpsinfo 4635 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4636 * 4637 * Format follows System V format as close as possible. Current 4638 * version limitations are as follows: 4639 * - no floating point registers are dumped 4640 * 4641 * Function returns 0 in case of success, negative errno otherwise. 4642 * 4643 * TODO: make this work also during runtime: it should be 4644 * possible to force coredump from running process and then 4645 * continue processing. For example qemu could set up SIGUSR2 4646 * handler (provided that target process haven't registered 4647 * handler for that) that does the dump when signal is received. 4648 */ 4649 static int elf_core_dump(int signr, const CPUArchState *env) 4650 { 4651 const CPUState *cpu = env_cpu((CPUArchState *)env); 4652 const TaskState *ts = (const TaskState *)cpu->opaque; 4653 struct vm_area_struct *vma = NULL; 4654 g_autofree char *corefile = NULL; 4655 struct elf_note_info info; 4656 struct elfhdr elf; 4657 struct elf_phdr phdr; 4658 struct rlimit dumpsize; 4659 struct mm_struct *mm = NULL; 4660 off_t offset = 0, data_offset = 0; 4661 int segs = 0; 4662 int fd = -1; 4663 4664 init_note_info(&info); 4665 4666 errno = 0; 4667 getrlimit(RLIMIT_CORE, &dumpsize); 4668 if (dumpsize.rlim_cur == 0) 4669 return 0; 4670 4671 corefile = core_dump_filename(ts); 4672 4673 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4674 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4675 return (-errno); 4676 4677 /* 4678 * Walk through target process memory mappings and 4679 * set up structure containing this information. After 4680 * this point vma_xxx functions can be used. 4681 */ 4682 if ((mm = vma_init()) == NULL) 4683 goto out; 4684 4685 walk_memory_regions(mm, vma_walker); 4686 segs = vma_get_mapping_count(mm); 4687 4688 /* 4689 * Construct valid coredump ELF header. We also 4690 * add one more segment for notes. 4691 */ 4692 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4693 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4694 goto out; 4695 4696 /* fill in the in-memory version of notes */ 4697 if (fill_note_info(&info, signr, env) < 0) 4698 goto out; 4699 4700 offset += sizeof (elf); /* elf header */ 4701 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4702 4703 /* write out notes program header */ 4704 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4705 4706 offset += info.notes_size; 4707 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4708 goto out; 4709 4710 /* 4711 * ELF specification wants data to start at page boundary so 4712 * we align it here. 4713 */ 4714 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4715 4716 /* 4717 * Write program headers for memory regions mapped in 4718 * the target process. 4719 */ 4720 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4721 (void) memset(&phdr, 0, sizeof (phdr)); 4722 4723 phdr.p_type = PT_LOAD; 4724 phdr.p_offset = offset; 4725 phdr.p_vaddr = vma->vma_start; 4726 phdr.p_paddr = 0; 4727 phdr.p_filesz = vma_dump_size(vma); 4728 offset += phdr.p_filesz; 4729 phdr.p_memsz = vma->vma_end - vma->vma_start; 4730 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4731 if (vma->vma_flags & PROT_WRITE) 4732 phdr.p_flags |= PF_W; 4733 if (vma->vma_flags & PROT_EXEC) 4734 phdr.p_flags |= PF_X; 4735 phdr.p_align = ELF_EXEC_PAGESIZE; 4736 4737 bswap_phdr(&phdr, 1); 4738 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4739 goto out; 4740 } 4741 } 4742 4743 /* 4744 * Next we write notes just after program headers. No 4745 * alignment needed here. 4746 */ 4747 if (write_note_info(&info, fd) < 0) 4748 goto out; 4749 4750 /* align data to page boundary */ 4751 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4752 goto out; 4753 4754 /* 4755 * Finally we can dump process memory into corefile as well. 4756 */ 4757 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4758 abi_ulong addr; 4759 abi_ulong end; 4760 4761 end = vma->vma_start + vma_dump_size(vma); 4762 4763 for (addr = vma->vma_start; addr < end; 4764 addr += TARGET_PAGE_SIZE) { 4765 char page[TARGET_PAGE_SIZE]; 4766 int error; 4767 4768 /* 4769 * Read in page from target process memory and 4770 * write it to coredump file. 4771 */ 4772 error = copy_from_user(page, addr, sizeof (page)); 4773 if (error != 0) { 4774 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4775 addr); 4776 errno = -error; 4777 goto out; 4778 } 4779 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4780 goto out; 4781 } 4782 } 4783 4784 out: 4785 free_note_info(&info); 4786 if (mm != NULL) 4787 vma_delete(mm); 4788 (void) close(fd); 4789 4790 if (errno != 0) 4791 return (-errno); 4792 return (0); 4793 } 4794 #endif /* USE_ELF_CORE_DUMP */ 4795 4796 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4797 { 4798 init_thread(regs, infop); 4799 } 4800