1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr < (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 }; 516 517 #define ELF_HWCAP get_elf_hwcap() 518 519 static uint32_t get_elf_hwcap(void) 520 { 521 ARMCPU *cpu = ARM_CPU(thread_cpu); 522 uint32_t hwcaps = 0; 523 524 hwcaps |= ARM_HWCAP_A64_FP; 525 hwcaps |= ARM_HWCAP_A64_ASIMD; 526 527 /* probe for the extra features */ 528 #define GET_FEATURE(feat, hwcap) \ 529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 535 #undef GET_FEATURE 536 537 return hwcaps; 538 } 539 540 #endif /* not TARGET_AARCH64 */ 541 #endif /* TARGET_ARM */ 542 543 #ifdef TARGET_UNICORE32 544 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_CLASS ELFCLASS32 548 #define ELF_DATA ELFDATA2LSB 549 #define ELF_ARCH EM_UNICORE32 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 abi_long stack = infop->start_stack; 555 memset(regs, 0, sizeof(*regs)); 556 regs->UC32_REG_asr = 0x10; 557 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 558 regs->UC32_REG_sp = infop->start_stack; 559 /* FIXME - what to for failure of get_user()? */ 560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 562 /* XXX: it seems that r0 is zeroed after ! */ 563 regs->UC32_REG_00 = 0; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 570 { 571 (*regs)[0] = env->regs[0]; 572 (*regs)[1] = env->regs[1]; 573 (*regs)[2] = env->regs[2]; 574 (*regs)[3] = env->regs[3]; 575 (*regs)[4] = env->regs[4]; 576 (*regs)[5] = env->regs[5]; 577 (*regs)[6] = env->regs[6]; 578 (*regs)[7] = env->regs[7]; 579 (*regs)[8] = env->regs[8]; 580 (*regs)[9] = env->regs[9]; 581 (*regs)[10] = env->regs[10]; 582 (*regs)[11] = env->regs[11]; 583 (*regs)[12] = env->regs[12]; 584 (*regs)[13] = env->regs[13]; 585 (*regs)[14] = env->regs[14]; 586 (*regs)[15] = env->regs[15]; 587 (*regs)[16] = env->regs[16]; 588 (*regs)[17] = env->regs[17]; 589 (*regs)[18] = env->regs[18]; 590 (*regs)[19] = env->regs[19]; 591 (*regs)[20] = env->regs[20]; 592 (*regs)[21] = env->regs[21]; 593 (*regs)[22] = env->regs[22]; 594 (*regs)[23] = env->regs[23]; 595 (*regs)[24] = env->regs[24]; 596 (*regs)[25] = env->regs[25]; 597 (*regs)[26] = env->regs[26]; 598 (*regs)[27] = env->regs[27]; 599 (*regs)[28] = env->regs[28]; 600 (*regs)[29] = env->regs[29]; 601 (*regs)[30] = env->regs[30]; 602 (*regs)[31] = env->regs[31]; 603 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 605 (*regs)[33] = env->regs[0]; /* XXX */ 606 } 607 608 #define USE_ELF_CORE_DUMP 609 #define ELF_EXEC_PAGESIZE 4096 610 611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 612 613 #endif 614 615 #ifdef TARGET_SPARC 616 #ifdef TARGET_SPARC64 617 618 #define ELF_START_MMAP 0x80000000 619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 621 #ifndef TARGET_ABI32 622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 623 #else 624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 625 #endif 626 627 #define ELF_CLASS ELFCLASS64 628 #define ELF_ARCH EM_SPARCV9 629 630 #define STACK_BIAS 2047 631 632 static inline void init_thread(struct target_pt_regs *regs, 633 struct image_info *infop) 634 { 635 #ifndef TARGET_ABI32 636 regs->tstate = 0; 637 #endif 638 regs->pc = infop->entry; 639 regs->npc = regs->pc + 4; 640 regs->y = 0; 641 #ifdef TARGET_ABI32 642 regs->u_regs[14] = infop->start_stack - 16 * 4; 643 #else 644 if (personality(infop->personality) == PER_LINUX32) 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 else 647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 648 #endif 649 } 650 651 #else 652 #define ELF_START_MMAP 0x80000000 653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 654 | HWCAP_SPARC_MULDIV) 655 656 #define ELF_CLASS ELFCLASS32 657 #define ELF_ARCH EM_SPARC 658 659 static inline void init_thread(struct target_pt_regs *regs, 660 struct image_info *infop) 661 { 662 regs->psr = 0; 663 regs->pc = infop->entry; 664 regs->npc = regs->pc + 4; 665 regs->y = 0; 666 regs->u_regs[14] = infop->start_stack - 16 * 4; 667 } 668 669 #endif 670 #endif 671 672 #ifdef TARGET_PPC 673 674 #define ELF_MACHINE PPC_ELF_MACHINE 675 #define ELF_START_MMAP 0x80000000 676 677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 678 679 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 680 681 #define ELF_CLASS ELFCLASS64 682 683 #else 684 685 #define ELF_CLASS ELFCLASS32 686 687 #endif 688 689 #define ELF_ARCH EM_PPC 690 691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 692 See arch/powerpc/include/asm/cputable.h. */ 693 enum { 694 QEMU_PPC_FEATURE_32 = 0x80000000, 695 QEMU_PPC_FEATURE_64 = 0x40000000, 696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 705 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 706 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 707 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 709 QEMU_PPC_FEATURE_CELL = 0x00010000, 710 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 711 QEMU_PPC_FEATURE_SMT = 0x00004000, 712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 714 QEMU_PPC_FEATURE_PA6T = 0x00000800, 715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 720 721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 723 724 /* Feature definitions in AT_HWCAP2. */ 725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 /* 793 * The requirements here are: 794 * - keep the final alignment of sp (sp & 0xf) 795 * - make sure the 32-bit value at the first 16 byte aligned position of 796 * AUXV is greater than 16 for glibc compatibility. 797 * AT_IGNOREPPC is used for that. 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 800 */ 801 #define DLINFO_ARCH_ITEMS 5 802 #define ARCH_DLINFO \ 803 do { \ 804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 805 /* \ 806 * Handle glibc compatibility: these magic entries must \ 807 * be at the lowest addresses in the final auxv. \ 808 */ \ 809 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 811 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 812 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 813 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 814 } while (0) 815 816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 817 { 818 _regs->gpr[1] = infop->start_stack; 819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 820 if (get_ppc64_abi(infop) < 2) { 821 uint64_t val; 822 get_user_u64(val, infop->entry + 8); 823 _regs->gpr[2] = val + infop->load_bias; 824 get_user_u64(val, infop->entry); 825 infop->entry = val + infop->load_bias; 826 } else { 827 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 828 } 829 #endif 830 _regs->nip = infop->entry; 831 } 832 833 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 834 #define ELF_NREG 48 835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 836 837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 838 { 839 int i; 840 target_ulong ccr = 0; 841 842 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 843 (*regs)[i] = tswapreg(env->gpr[i]); 844 } 845 846 (*regs)[32] = tswapreg(env->nip); 847 (*regs)[33] = tswapreg(env->msr); 848 (*regs)[35] = tswapreg(env->ctr); 849 (*regs)[36] = tswapreg(env->lr); 850 (*regs)[37] = tswapreg(env->xer); 851 852 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 853 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 854 } 855 (*regs)[38] = tswapreg(ccr); 856 } 857 858 #define USE_ELF_CORE_DUMP 859 #define ELF_EXEC_PAGESIZE 4096 860 861 #endif 862 863 #ifdef TARGET_MIPS 864 865 #define ELF_START_MMAP 0x80000000 866 867 #ifdef TARGET_MIPS64 868 #define ELF_CLASS ELFCLASS64 869 #else 870 #define ELF_CLASS ELFCLASS32 871 #endif 872 #define ELF_ARCH EM_MIPS 873 874 static inline void init_thread(struct target_pt_regs *regs, 875 struct image_info *infop) 876 { 877 regs->cp0_status = 2 << CP0St_KSU; 878 regs->cp0_epc = infop->entry; 879 regs->regs[29] = infop->start_stack; 880 } 881 882 /* See linux kernel: arch/mips/include/asm/elf.h. */ 883 #define ELF_NREG 45 884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 885 886 /* See linux kernel: arch/mips/include/asm/reg.h. */ 887 enum { 888 #ifdef TARGET_MIPS64 889 TARGET_EF_R0 = 0, 890 #else 891 TARGET_EF_R0 = 6, 892 #endif 893 TARGET_EF_R26 = TARGET_EF_R0 + 26, 894 TARGET_EF_R27 = TARGET_EF_R0 + 27, 895 TARGET_EF_LO = TARGET_EF_R0 + 32, 896 TARGET_EF_HI = TARGET_EF_R0 + 33, 897 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 898 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 899 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 900 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 901 }; 902 903 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 904 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 905 { 906 int i; 907 908 for (i = 0; i < TARGET_EF_R0; i++) { 909 (*regs)[i] = 0; 910 } 911 (*regs)[TARGET_EF_R0] = 0; 912 913 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 914 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 915 } 916 917 (*regs)[TARGET_EF_R26] = 0; 918 (*regs)[TARGET_EF_R27] = 0; 919 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 920 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 921 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 922 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 923 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 924 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 925 } 926 927 #define USE_ELF_CORE_DUMP 928 #define ELF_EXEC_PAGESIZE 4096 929 930 #endif /* TARGET_MIPS */ 931 932 #ifdef TARGET_MICROBLAZE 933 934 #define ELF_START_MMAP 0x80000000 935 936 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 937 938 #define ELF_CLASS ELFCLASS32 939 #define ELF_ARCH EM_MICROBLAZE 940 941 static inline void init_thread(struct target_pt_regs *regs, 942 struct image_info *infop) 943 { 944 regs->pc = infop->entry; 945 regs->r1 = infop->start_stack; 946 947 } 948 949 #define ELF_EXEC_PAGESIZE 4096 950 951 #define USE_ELF_CORE_DUMP 952 #define ELF_NREG 38 953 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 954 955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 957 { 958 int i, pos = 0; 959 960 for (i = 0; i < 32; i++) { 961 (*regs)[pos++] = tswapreg(env->regs[i]); 962 } 963 964 for (i = 0; i < 6; i++) { 965 (*regs)[pos++] = tswapreg(env->sregs[i]); 966 } 967 } 968 969 #endif /* TARGET_MICROBLAZE */ 970 971 #ifdef TARGET_NIOS2 972 973 #define ELF_START_MMAP 0x80000000 974 975 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 976 977 #define ELF_CLASS ELFCLASS32 978 #define ELF_ARCH EM_ALTERA_NIOS2 979 980 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 981 { 982 regs->ea = infop->entry; 983 regs->sp = infop->start_stack; 984 regs->estatus = 0x3; 985 } 986 987 #define ELF_EXEC_PAGESIZE 4096 988 989 #define USE_ELF_CORE_DUMP 990 #define ELF_NREG 49 991 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 992 993 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 994 static void elf_core_copy_regs(target_elf_gregset_t *regs, 995 const CPUNios2State *env) 996 { 997 int i; 998 999 (*regs)[0] = -1; 1000 for (i = 1; i < 8; i++) /* r0-r7 */ 1001 (*regs)[i] = tswapreg(env->regs[i + 7]); 1002 1003 for (i = 8; i < 16; i++) /* r8-r15 */ 1004 (*regs)[i] = tswapreg(env->regs[i - 8]); 1005 1006 for (i = 16; i < 24; i++) /* r16-r23 */ 1007 (*regs)[i] = tswapreg(env->regs[i + 7]); 1008 (*regs)[24] = -1; /* R_ET */ 1009 (*regs)[25] = -1; /* R_BT */ 1010 (*regs)[26] = tswapreg(env->regs[R_GP]); 1011 (*regs)[27] = tswapreg(env->regs[R_SP]); 1012 (*regs)[28] = tswapreg(env->regs[R_FP]); 1013 (*regs)[29] = tswapreg(env->regs[R_EA]); 1014 (*regs)[30] = -1; /* R_SSTATUS */ 1015 (*regs)[31] = tswapreg(env->regs[R_RA]); 1016 1017 (*regs)[32] = tswapreg(env->regs[R_PC]); 1018 1019 (*regs)[33] = -1; /* R_STATUS */ 1020 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1021 1022 for (i = 35; i < 49; i++) /* ... */ 1023 (*regs)[i] = -1; 1024 } 1025 1026 #endif /* TARGET_NIOS2 */ 1027 1028 #ifdef TARGET_OPENRISC 1029 1030 #define ELF_START_MMAP 0x08000000 1031 1032 #define ELF_ARCH EM_OPENRISC 1033 #define ELF_CLASS ELFCLASS32 1034 #define ELF_DATA ELFDATA2MSB 1035 1036 static inline void init_thread(struct target_pt_regs *regs, 1037 struct image_info *infop) 1038 { 1039 regs->pc = infop->entry; 1040 regs->gpr[1] = infop->start_stack; 1041 } 1042 1043 #define USE_ELF_CORE_DUMP 1044 #define ELF_EXEC_PAGESIZE 8192 1045 1046 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1047 #define ELF_NREG 34 /* gprs and pc, sr */ 1048 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1049 1050 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1051 const CPUOpenRISCState *env) 1052 { 1053 int i; 1054 1055 for (i = 0; i < 32; i++) { 1056 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1057 } 1058 (*regs)[32] = tswapreg(env->pc); 1059 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1060 } 1061 #define ELF_HWCAP 0 1062 #define ELF_PLATFORM NULL 1063 1064 #endif /* TARGET_OPENRISC */ 1065 1066 #ifdef TARGET_SH4 1067 1068 #define ELF_START_MMAP 0x80000000 1069 1070 #define ELF_CLASS ELFCLASS32 1071 #define ELF_ARCH EM_SH 1072 1073 static inline void init_thread(struct target_pt_regs *regs, 1074 struct image_info *infop) 1075 { 1076 /* Check other registers XXXXX */ 1077 regs->pc = infop->entry; 1078 regs->regs[15] = infop->start_stack; 1079 } 1080 1081 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1082 #define ELF_NREG 23 1083 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1084 1085 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1086 enum { 1087 TARGET_REG_PC = 16, 1088 TARGET_REG_PR = 17, 1089 TARGET_REG_SR = 18, 1090 TARGET_REG_GBR = 19, 1091 TARGET_REG_MACH = 20, 1092 TARGET_REG_MACL = 21, 1093 TARGET_REG_SYSCALL = 22 1094 }; 1095 1096 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1097 const CPUSH4State *env) 1098 { 1099 int i; 1100 1101 for (i = 0; i < 16; i++) { 1102 (*regs)[i] = tswapreg(env->gregs[i]); 1103 } 1104 1105 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1106 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1107 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1108 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1109 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1110 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1111 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 4096 1116 1117 enum { 1118 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1119 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1120 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1121 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1122 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1123 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1124 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1125 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1126 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1127 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1128 }; 1129 1130 #define ELF_HWCAP get_elf_hwcap() 1131 1132 static uint32_t get_elf_hwcap(void) 1133 { 1134 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1135 uint32_t hwcap = 0; 1136 1137 hwcap |= SH_CPU_HAS_FPU; 1138 1139 if (cpu->env.features & SH_FEATURE_SH4A) { 1140 hwcap |= SH_CPU_HAS_LLSC; 1141 } 1142 1143 return hwcap; 1144 } 1145 1146 #endif 1147 1148 #ifdef TARGET_CRIS 1149 1150 #define ELF_START_MMAP 0x80000000 1151 1152 #define ELF_CLASS ELFCLASS32 1153 #define ELF_ARCH EM_CRIS 1154 1155 static inline void init_thread(struct target_pt_regs *regs, 1156 struct image_info *infop) 1157 { 1158 regs->erp = infop->entry; 1159 } 1160 1161 #define ELF_EXEC_PAGESIZE 8192 1162 1163 #endif 1164 1165 #ifdef TARGET_M68K 1166 1167 #define ELF_START_MMAP 0x80000000 1168 1169 #define ELF_CLASS ELFCLASS32 1170 #define ELF_ARCH EM_68K 1171 1172 /* ??? Does this need to do anything? 1173 #define ELF_PLAT_INIT(_r) */ 1174 1175 static inline void init_thread(struct target_pt_regs *regs, 1176 struct image_info *infop) 1177 { 1178 regs->usp = infop->start_stack; 1179 regs->sr = 0; 1180 regs->pc = infop->entry; 1181 } 1182 1183 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1184 #define ELF_NREG 20 1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1186 1187 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1188 { 1189 (*regs)[0] = tswapreg(env->dregs[1]); 1190 (*regs)[1] = tswapreg(env->dregs[2]); 1191 (*regs)[2] = tswapreg(env->dregs[3]); 1192 (*regs)[3] = tswapreg(env->dregs[4]); 1193 (*regs)[4] = tswapreg(env->dregs[5]); 1194 (*regs)[5] = tswapreg(env->dregs[6]); 1195 (*regs)[6] = tswapreg(env->dregs[7]); 1196 (*regs)[7] = tswapreg(env->aregs[0]); 1197 (*regs)[8] = tswapreg(env->aregs[1]); 1198 (*regs)[9] = tswapreg(env->aregs[2]); 1199 (*regs)[10] = tswapreg(env->aregs[3]); 1200 (*regs)[11] = tswapreg(env->aregs[4]); 1201 (*regs)[12] = tswapreg(env->aregs[5]); 1202 (*regs)[13] = tswapreg(env->aregs[6]); 1203 (*regs)[14] = tswapreg(env->dregs[0]); 1204 (*regs)[15] = tswapreg(env->aregs[7]); 1205 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1206 (*regs)[17] = tswapreg(env->sr); 1207 (*regs)[18] = tswapreg(env->pc); 1208 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1209 } 1210 1211 #define USE_ELF_CORE_DUMP 1212 #define ELF_EXEC_PAGESIZE 8192 1213 1214 #endif 1215 1216 #ifdef TARGET_ALPHA 1217 1218 #define ELF_START_MMAP (0x30000000000ULL) 1219 1220 #define ELF_CLASS ELFCLASS64 1221 #define ELF_ARCH EM_ALPHA 1222 1223 static inline void init_thread(struct target_pt_regs *regs, 1224 struct image_info *infop) 1225 { 1226 regs->pc = infop->entry; 1227 regs->ps = 8; 1228 regs->usp = infop->start_stack; 1229 } 1230 1231 #define ELF_EXEC_PAGESIZE 8192 1232 1233 #endif /* TARGET_ALPHA */ 1234 1235 #ifdef TARGET_S390X 1236 1237 #define ELF_START_MMAP (0x20000000000ULL) 1238 1239 #define ELF_CLASS ELFCLASS64 1240 #define ELF_DATA ELFDATA2MSB 1241 #define ELF_ARCH EM_S390 1242 1243 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1244 { 1245 regs->psw.addr = infop->entry; 1246 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1247 regs->gprs[15] = infop->start_stack; 1248 } 1249 1250 #endif /* TARGET_S390X */ 1251 1252 #ifdef TARGET_TILEGX 1253 1254 /* 42 bits real used address, a half for user mode */ 1255 #define ELF_START_MMAP (0x00000020000000000ULL) 1256 1257 #define elf_check_arch(x) ((x) == EM_TILEGX) 1258 1259 #define ELF_CLASS ELFCLASS64 1260 #define ELF_DATA ELFDATA2LSB 1261 #define ELF_ARCH EM_TILEGX 1262 1263 static inline void init_thread(struct target_pt_regs *regs, 1264 struct image_info *infop) 1265 { 1266 regs->pc = infop->entry; 1267 regs->sp = infop->start_stack; 1268 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1272 1273 #endif /* TARGET_TILEGX */ 1274 1275 #ifdef TARGET_HPPA 1276 1277 #define ELF_START_MMAP 0x80000000 1278 #define ELF_CLASS ELFCLASS32 1279 #define ELF_ARCH EM_PARISC 1280 #define ELF_PLATFORM "PARISC" 1281 #define STACK_GROWS_DOWN 0 1282 #define STACK_ALIGNMENT 64 1283 1284 static inline void init_thread(struct target_pt_regs *regs, 1285 struct image_info *infop) 1286 { 1287 regs->iaoq[0] = infop->entry; 1288 regs->iaoq[1] = infop->entry + 4; 1289 regs->gr[23] = 0; 1290 regs->gr[24] = infop->arg_start; 1291 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1292 /* The top-of-stack contains a linkage buffer. */ 1293 regs->gr[30] = infop->start_stack + 64; 1294 regs->gr[31] = infop->entry; 1295 } 1296 1297 #endif /* TARGET_HPPA */ 1298 1299 #ifndef ELF_PLATFORM 1300 #define ELF_PLATFORM (NULL) 1301 #endif 1302 1303 #ifndef ELF_MACHINE 1304 #define ELF_MACHINE ELF_ARCH 1305 #endif 1306 1307 #ifndef elf_check_arch 1308 #define elf_check_arch(x) ((x) == ELF_ARCH) 1309 #endif 1310 1311 #ifndef ELF_HWCAP 1312 #define ELF_HWCAP 0 1313 #endif 1314 1315 #ifndef STACK_GROWS_DOWN 1316 #define STACK_GROWS_DOWN 1 1317 #endif 1318 1319 #ifndef STACK_ALIGNMENT 1320 #define STACK_ALIGNMENT 16 1321 #endif 1322 1323 #ifdef TARGET_ABI32 1324 #undef ELF_CLASS 1325 #define ELF_CLASS ELFCLASS32 1326 #undef bswaptls 1327 #define bswaptls(ptr) bswap32s(ptr) 1328 #endif 1329 1330 #include "elf.h" 1331 1332 struct exec 1333 { 1334 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1335 unsigned int a_text; /* length of text, in bytes */ 1336 unsigned int a_data; /* length of data, in bytes */ 1337 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1338 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1339 unsigned int a_entry; /* start address */ 1340 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1341 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1342 }; 1343 1344 1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1346 #define OMAGIC 0407 1347 #define NMAGIC 0410 1348 #define ZMAGIC 0413 1349 #define QMAGIC 0314 1350 1351 /* Necessary parameters */ 1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1354 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1356 1357 #define DLINFO_ITEMS 14 1358 1359 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1360 { 1361 memcpy(to, from, n); 1362 } 1363 1364 #ifdef BSWAP_NEEDED 1365 static void bswap_ehdr(struct elfhdr *ehdr) 1366 { 1367 bswap16s(&ehdr->e_type); /* Object file type */ 1368 bswap16s(&ehdr->e_machine); /* Architecture */ 1369 bswap32s(&ehdr->e_version); /* Object file version */ 1370 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1371 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1372 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1373 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1374 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1375 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1376 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1377 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1378 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1379 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1380 } 1381 1382 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1383 { 1384 int i; 1385 for (i = 0; i < phnum; ++i, ++phdr) { 1386 bswap32s(&phdr->p_type); /* Segment type */ 1387 bswap32s(&phdr->p_flags); /* Segment flags */ 1388 bswaptls(&phdr->p_offset); /* Segment file offset */ 1389 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1390 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1391 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1392 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1393 bswaptls(&phdr->p_align); /* Segment alignment */ 1394 } 1395 } 1396 1397 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1398 { 1399 int i; 1400 for (i = 0; i < shnum; ++i, ++shdr) { 1401 bswap32s(&shdr->sh_name); 1402 bswap32s(&shdr->sh_type); 1403 bswaptls(&shdr->sh_flags); 1404 bswaptls(&shdr->sh_addr); 1405 bswaptls(&shdr->sh_offset); 1406 bswaptls(&shdr->sh_size); 1407 bswap32s(&shdr->sh_link); 1408 bswap32s(&shdr->sh_info); 1409 bswaptls(&shdr->sh_addralign); 1410 bswaptls(&shdr->sh_entsize); 1411 } 1412 } 1413 1414 static void bswap_sym(struct elf_sym *sym) 1415 { 1416 bswap32s(&sym->st_name); 1417 bswaptls(&sym->st_value); 1418 bswaptls(&sym->st_size); 1419 bswap16s(&sym->st_shndx); 1420 } 1421 #else 1422 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1423 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1424 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1425 static inline void bswap_sym(struct elf_sym *sym) { } 1426 #endif 1427 1428 #ifdef USE_ELF_CORE_DUMP 1429 static int elf_core_dump(int, const CPUArchState *); 1430 #endif /* USE_ELF_CORE_DUMP */ 1431 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1432 1433 /* Verify the portions of EHDR within E_IDENT for the target. 1434 This can be performed before bswapping the entire header. */ 1435 static bool elf_check_ident(struct elfhdr *ehdr) 1436 { 1437 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1438 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1439 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1440 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1441 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1442 && ehdr->e_ident[EI_DATA] == ELF_DATA 1443 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1444 } 1445 1446 /* Verify the portions of EHDR outside of E_IDENT for the target. 1447 This has to wait until after bswapping the header. */ 1448 static bool elf_check_ehdr(struct elfhdr *ehdr) 1449 { 1450 return (elf_check_arch(ehdr->e_machine) 1451 && ehdr->e_ehsize == sizeof(struct elfhdr) 1452 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1453 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1454 } 1455 1456 /* 1457 * 'copy_elf_strings()' copies argument/envelope strings from user 1458 * memory to free pages in kernel mem. These are in a format ready 1459 * to be put directly into the top of new user memory. 1460 * 1461 */ 1462 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1463 abi_ulong p, abi_ulong stack_limit) 1464 { 1465 char *tmp; 1466 int len, i; 1467 abi_ulong top = p; 1468 1469 if (!p) { 1470 return 0; /* bullet-proofing */ 1471 } 1472 1473 if (STACK_GROWS_DOWN) { 1474 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1475 for (i = argc - 1; i >= 0; --i) { 1476 tmp = argv[i]; 1477 if (!tmp) { 1478 fprintf(stderr, "VFS: argc is wrong"); 1479 exit(-1); 1480 } 1481 len = strlen(tmp) + 1; 1482 tmp += len; 1483 1484 if (len > (p - stack_limit)) { 1485 return 0; 1486 } 1487 while (len) { 1488 int bytes_to_copy = (len > offset) ? offset : len; 1489 tmp -= bytes_to_copy; 1490 p -= bytes_to_copy; 1491 offset -= bytes_to_copy; 1492 len -= bytes_to_copy; 1493 1494 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1495 1496 if (offset == 0) { 1497 memcpy_to_target(p, scratch, top - p); 1498 top = p; 1499 offset = TARGET_PAGE_SIZE; 1500 } 1501 } 1502 } 1503 if (p != top) { 1504 memcpy_to_target(p, scratch + offset, top - p); 1505 } 1506 } else { 1507 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1508 for (i = 0; i < argc; ++i) { 1509 tmp = argv[i]; 1510 if (!tmp) { 1511 fprintf(stderr, "VFS: argc is wrong"); 1512 exit(-1); 1513 } 1514 len = strlen(tmp) + 1; 1515 if (len > (stack_limit - p)) { 1516 return 0; 1517 } 1518 while (len) { 1519 int bytes_to_copy = (len > remaining) ? remaining : len; 1520 1521 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1522 1523 tmp += bytes_to_copy; 1524 remaining -= bytes_to_copy; 1525 p += bytes_to_copy; 1526 len -= bytes_to_copy; 1527 1528 if (remaining == 0) { 1529 memcpy_to_target(top, scratch, p - top); 1530 top = p; 1531 remaining = TARGET_PAGE_SIZE; 1532 } 1533 } 1534 } 1535 if (p != top) { 1536 memcpy_to_target(top, scratch, p - top); 1537 } 1538 } 1539 1540 return p; 1541 } 1542 1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1544 * argument/environment space. Newer kernels (>2.6.33) allow more, 1545 * dependent on stack size, but guarantee at least 32 pages for 1546 * backwards compatibility. 1547 */ 1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1549 1550 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1551 struct image_info *info) 1552 { 1553 abi_ulong size, error, guard; 1554 1555 size = guest_stack_size; 1556 if (size < STACK_LOWER_LIMIT) { 1557 size = STACK_LOWER_LIMIT; 1558 } 1559 guard = TARGET_PAGE_SIZE; 1560 if (guard < qemu_real_host_page_size) { 1561 guard = qemu_real_host_page_size; 1562 } 1563 1564 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1565 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1566 if (error == -1) { 1567 perror("mmap stack"); 1568 exit(-1); 1569 } 1570 1571 /* We reserve one extra page at the top of the stack as guard. */ 1572 if (STACK_GROWS_DOWN) { 1573 target_mprotect(error, guard, PROT_NONE); 1574 info->stack_limit = error + guard; 1575 return info->stack_limit + size - sizeof(void *); 1576 } else { 1577 target_mprotect(error + size, guard, PROT_NONE); 1578 info->stack_limit = error + size; 1579 return error; 1580 } 1581 } 1582 1583 /* Map and zero the bss. We need to explicitly zero any fractional pages 1584 after the data section (i.e. bss). */ 1585 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1586 { 1587 uintptr_t host_start, host_map_start, host_end; 1588 1589 last_bss = TARGET_PAGE_ALIGN(last_bss); 1590 1591 /* ??? There is confusion between qemu_real_host_page_size and 1592 qemu_host_page_size here and elsewhere in target_mmap, which 1593 may lead to the end of the data section mapping from the file 1594 not being mapped. At least there was an explicit test and 1595 comment for that here, suggesting that "the file size must 1596 be known". The comment probably pre-dates the introduction 1597 of the fstat system call in target_mmap which does in fact 1598 find out the size. What isn't clear is if the workaround 1599 here is still actually needed. For now, continue with it, 1600 but merge it with the "normal" mmap that would allocate the bss. */ 1601 1602 host_start = (uintptr_t) g2h(elf_bss); 1603 host_end = (uintptr_t) g2h(last_bss); 1604 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1605 1606 if (host_map_start < host_end) { 1607 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1608 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1609 if (p == MAP_FAILED) { 1610 perror("cannot mmap brk"); 1611 exit(-1); 1612 } 1613 } 1614 1615 /* Ensure that the bss page(s) are valid */ 1616 if ((page_get_flags(last_bss-1) & prot) != prot) { 1617 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1618 } 1619 1620 if (host_start < host_map_start) { 1621 memset((void *)host_start, 0, host_map_start - host_start); 1622 } 1623 } 1624 1625 #ifdef CONFIG_USE_FDPIC 1626 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1627 { 1628 uint16_t n; 1629 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1630 1631 /* elf32_fdpic_loadseg */ 1632 n = info->nsegs; 1633 while (n--) { 1634 sp -= 12; 1635 put_user_u32(loadsegs[n].addr, sp+0); 1636 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1637 put_user_u32(loadsegs[n].p_memsz, sp+8); 1638 } 1639 1640 /* elf32_fdpic_loadmap */ 1641 sp -= 4; 1642 put_user_u16(0, sp+0); /* version */ 1643 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1644 1645 info->personality = PER_LINUX_FDPIC; 1646 info->loadmap_addr = sp; 1647 1648 return sp; 1649 } 1650 #endif 1651 1652 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1653 struct elfhdr *exec, 1654 struct image_info *info, 1655 struct image_info *interp_info) 1656 { 1657 abi_ulong sp; 1658 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1659 int size; 1660 int i; 1661 abi_ulong u_rand_bytes; 1662 uint8_t k_rand_bytes[16]; 1663 abi_ulong u_platform; 1664 const char *k_platform; 1665 const int n = sizeof(elf_addr_t); 1666 1667 sp = p; 1668 1669 #ifdef CONFIG_USE_FDPIC 1670 /* Needs to be before we load the env/argc/... */ 1671 if (elf_is_fdpic(exec)) { 1672 /* Need 4 byte alignment for these structs */ 1673 sp &= ~3; 1674 sp = loader_build_fdpic_loadmap(info, sp); 1675 info->other_info = interp_info; 1676 if (interp_info) { 1677 interp_info->other_info = info; 1678 sp = loader_build_fdpic_loadmap(interp_info, sp); 1679 } 1680 } 1681 #endif 1682 1683 u_platform = 0; 1684 k_platform = ELF_PLATFORM; 1685 if (k_platform) { 1686 size_t len = strlen(k_platform) + 1; 1687 if (STACK_GROWS_DOWN) { 1688 sp -= (len + n - 1) & ~(n - 1); 1689 u_platform = sp; 1690 /* FIXME - check return value of memcpy_to_target() for failure */ 1691 memcpy_to_target(sp, k_platform, len); 1692 } else { 1693 memcpy_to_target(sp, k_platform, len); 1694 u_platform = sp; 1695 sp += len + 1; 1696 } 1697 } 1698 1699 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1700 * the argv and envp pointers. 1701 */ 1702 if (STACK_GROWS_DOWN) { 1703 sp = QEMU_ALIGN_DOWN(sp, 16); 1704 } else { 1705 sp = QEMU_ALIGN_UP(sp, 16); 1706 } 1707 1708 /* 1709 * Generate 16 random bytes for userspace PRNG seeding (not 1710 * cryptically secure but it's not the aim of QEMU). 1711 */ 1712 for (i = 0; i < 16; i++) { 1713 k_rand_bytes[i] = rand(); 1714 } 1715 if (STACK_GROWS_DOWN) { 1716 sp -= 16; 1717 u_rand_bytes = sp; 1718 /* FIXME - check return value of memcpy_to_target() for failure */ 1719 memcpy_to_target(sp, k_rand_bytes, 16); 1720 } else { 1721 memcpy_to_target(sp, k_rand_bytes, 16); 1722 u_rand_bytes = sp; 1723 sp += 16; 1724 } 1725 1726 size = (DLINFO_ITEMS + 1) * 2; 1727 if (k_platform) 1728 size += 2; 1729 #ifdef DLINFO_ARCH_ITEMS 1730 size += DLINFO_ARCH_ITEMS * 2; 1731 #endif 1732 #ifdef ELF_HWCAP2 1733 size += 2; 1734 #endif 1735 info->auxv_len = size * n; 1736 1737 size += envc + argc + 2; 1738 size += 1; /* argc itself */ 1739 size *= n; 1740 1741 /* Allocate space and finalize stack alignment for entry now. */ 1742 if (STACK_GROWS_DOWN) { 1743 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1744 sp = u_argc; 1745 } else { 1746 u_argc = sp; 1747 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1748 } 1749 1750 u_argv = u_argc + n; 1751 u_envp = u_argv + (argc + 1) * n; 1752 u_auxv = u_envp + (envc + 1) * n; 1753 info->saved_auxv = u_auxv; 1754 info->arg_start = u_argv; 1755 info->arg_end = u_argv + argc * n; 1756 1757 /* This is correct because Linux defines 1758 * elf_addr_t as Elf32_Off / Elf64_Off 1759 */ 1760 #define NEW_AUX_ENT(id, val) do { \ 1761 put_user_ual(id, u_auxv); u_auxv += n; \ 1762 put_user_ual(val, u_auxv); u_auxv += n; \ 1763 } while(0) 1764 1765 #ifdef ARCH_DLINFO 1766 /* 1767 * ARCH_DLINFO must come first so platform specific code can enforce 1768 * special alignment requirements on the AUXV if necessary (eg. PPC). 1769 */ 1770 ARCH_DLINFO; 1771 #endif 1772 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1773 * on info->auxv_len will trigger. 1774 */ 1775 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1776 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1777 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1778 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1779 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1780 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1781 NEW_AUX_ENT(AT_ENTRY, info->entry); 1782 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1783 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1784 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1785 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1786 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1787 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1788 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1789 1790 #ifdef ELF_HWCAP2 1791 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1792 #endif 1793 1794 if (u_platform) { 1795 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1796 } 1797 NEW_AUX_ENT (AT_NULL, 0); 1798 #undef NEW_AUX_ENT 1799 1800 /* Check that our initial calculation of the auxv length matches how much 1801 * we actually put into it. 1802 */ 1803 assert(info->auxv_len == u_auxv - info->saved_auxv); 1804 1805 put_user_ual(argc, u_argc); 1806 1807 p = info->arg_strings; 1808 for (i = 0; i < argc; ++i) { 1809 put_user_ual(p, u_argv); 1810 u_argv += n; 1811 p += target_strlen(p) + 1; 1812 } 1813 put_user_ual(0, u_argv); 1814 1815 p = info->env_strings; 1816 for (i = 0; i < envc; ++i) { 1817 put_user_ual(p, u_envp); 1818 u_envp += n; 1819 p += target_strlen(p) + 1; 1820 } 1821 put_user_ual(0, u_envp); 1822 1823 return sp; 1824 } 1825 1826 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1827 /* If the guest doesn't have a validation function just agree */ 1828 static int validate_guest_space(unsigned long guest_base, 1829 unsigned long guest_size) 1830 { 1831 return 1; 1832 } 1833 #endif 1834 1835 unsigned long init_guest_space(unsigned long host_start, 1836 unsigned long host_size, 1837 unsigned long guest_start, 1838 bool fixed) 1839 { 1840 unsigned long current_start, real_start; 1841 int flags; 1842 1843 assert(host_start || host_size); 1844 1845 /* If just a starting address is given, then just verify that 1846 * address. */ 1847 if (host_start && !host_size) { 1848 if (validate_guest_space(host_start, host_size) == 1) { 1849 return host_start; 1850 } else { 1851 return (unsigned long)-1; 1852 } 1853 } 1854 1855 /* Setup the initial flags and start address. */ 1856 current_start = host_start & qemu_host_page_mask; 1857 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1858 if (fixed) { 1859 flags |= MAP_FIXED; 1860 } 1861 1862 /* Otherwise, a non-zero size region of memory needs to be mapped 1863 * and validated. */ 1864 while (1) { 1865 unsigned long real_size = host_size; 1866 1867 /* Do not use mmap_find_vma here because that is limited to the 1868 * guest address space. We are going to make the 1869 * guest address space fit whatever we're given. 1870 */ 1871 real_start = (unsigned long) 1872 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1873 if (real_start == (unsigned long)-1) { 1874 return (unsigned long)-1; 1875 } 1876 1877 /* Ensure the address is properly aligned. */ 1878 if (real_start & ~qemu_host_page_mask) { 1879 munmap((void *)real_start, host_size); 1880 real_size = host_size + qemu_host_page_size; 1881 real_start = (unsigned long) 1882 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1883 if (real_start == (unsigned long)-1) { 1884 return (unsigned long)-1; 1885 } 1886 real_start = HOST_PAGE_ALIGN(real_start); 1887 } 1888 1889 /* Check to see if the address is valid. */ 1890 if (!host_start || real_start == current_start) { 1891 int valid = validate_guest_space(real_start - guest_start, 1892 real_size); 1893 if (valid == 1) { 1894 break; 1895 } else if (valid == -1) { 1896 return (unsigned long)-1; 1897 } 1898 /* valid == 0, so try again. */ 1899 } 1900 1901 /* That address didn't work. Unmap and try a different one. 1902 * The address the host picked because is typically right at 1903 * the top of the host address space and leaves the guest with 1904 * no usable address space. Resort to a linear search. We 1905 * already compensated for mmap_min_addr, so this should not 1906 * happen often. Probably means we got unlucky and host 1907 * address space randomization put a shared library somewhere 1908 * inconvenient. 1909 */ 1910 munmap((void *)real_start, host_size); 1911 current_start += qemu_host_page_size; 1912 if (host_start == current_start) { 1913 /* Theoretically possible if host doesn't have any suitably 1914 * aligned areas. Normally the first mmap will fail. 1915 */ 1916 return (unsigned long)-1; 1917 } 1918 } 1919 1920 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1921 1922 return real_start; 1923 } 1924 1925 static void probe_guest_base(const char *image_name, 1926 abi_ulong loaddr, abi_ulong hiaddr) 1927 { 1928 /* Probe for a suitable guest base address, if the user has not set 1929 * it explicitly, and set guest_base appropriately. 1930 * In case of error we will print a suitable message and exit. 1931 */ 1932 const char *errmsg; 1933 if (!have_guest_base && !reserved_va) { 1934 unsigned long host_start, real_start, host_size; 1935 1936 /* Round addresses to page boundaries. */ 1937 loaddr &= qemu_host_page_mask; 1938 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1939 1940 if (loaddr < mmap_min_addr) { 1941 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1942 } else { 1943 host_start = loaddr; 1944 if (host_start != loaddr) { 1945 errmsg = "Address overflow loading ELF binary"; 1946 goto exit_errmsg; 1947 } 1948 } 1949 host_size = hiaddr - loaddr; 1950 1951 /* Setup the initial guest memory space with ranges gleaned from 1952 * the ELF image that is being loaded. 1953 */ 1954 real_start = init_guest_space(host_start, host_size, loaddr, false); 1955 if (real_start == (unsigned long)-1) { 1956 errmsg = "Unable to find space for application"; 1957 goto exit_errmsg; 1958 } 1959 guest_base = real_start - loaddr; 1960 1961 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1962 TARGET_ABI_FMT_lx " to 0x%lx\n", 1963 loaddr, real_start); 1964 } 1965 return; 1966 1967 exit_errmsg: 1968 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1969 exit(-1); 1970 } 1971 1972 1973 /* Load an ELF image into the address space. 1974 1975 IMAGE_NAME is the filename of the image, to use in error messages. 1976 IMAGE_FD is the open file descriptor for the image. 1977 1978 BPRM_BUF is a copy of the beginning of the file; this of course 1979 contains the elf file header at offset 0. It is assumed that this 1980 buffer is sufficiently aligned to present no problems to the host 1981 in accessing data at aligned offsets within the buffer. 1982 1983 On return: INFO values will be filled in, as necessary or available. */ 1984 1985 static void load_elf_image(const char *image_name, int image_fd, 1986 struct image_info *info, char **pinterp_name, 1987 char bprm_buf[BPRM_BUF_SIZE]) 1988 { 1989 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1990 struct elf_phdr *phdr; 1991 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1992 int i, retval; 1993 const char *errmsg; 1994 1995 /* First of all, some simple consistency checks */ 1996 errmsg = "Invalid ELF image for this architecture"; 1997 if (!elf_check_ident(ehdr)) { 1998 goto exit_errmsg; 1999 } 2000 bswap_ehdr(ehdr); 2001 if (!elf_check_ehdr(ehdr)) { 2002 goto exit_errmsg; 2003 } 2004 2005 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2006 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2007 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2008 } else { 2009 phdr = (struct elf_phdr *) alloca(i); 2010 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2011 if (retval != i) { 2012 goto exit_read; 2013 } 2014 } 2015 bswap_phdr(phdr, ehdr->e_phnum); 2016 2017 #ifdef CONFIG_USE_FDPIC 2018 info->nsegs = 0; 2019 info->pt_dynamic_addr = 0; 2020 #endif 2021 2022 mmap_lock(); 2023 2024 /* Find the maximum size of the image and allocate an appropriate 2025 amount of memory to handle that. */ 2026 loaddr = -1, hiaddr = 0; 2027 for (i = 0; i < ehdr->e_phnum; ++i) { 2028 if (phdr[i].p_type == PT_LOAD) { 2029 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2030 if (a < loaddr) { 2031 loaddr = a; 2032 } 2033 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2034 if (a > hiaddr) { 2035 hiaddr = a; 2036 } 2037 #ifdef CONFIG_USE_FDPIC 2038 ++info->nsegs; 2039 #endif 2040 } 2041 } 2042 2043 load_addr = loaddr; 2044 if (ehdr->e_type == ET_DYN) { 2045 /* The image indicates that it can be loaded anywhere. Find a 2046 location that can hold the memory space required. If the 2047 image is pre-linked, LOADDR will be non-zero. Since we do 2048 not supply MAP_FIXED here we'll use that address if and 2049 only if it remains available. */ 2050 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2051 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2052 -1, 0); 2053 if (load_addr == -1) { 2054 goto exit_perror; 2055 } 2056 } else if (pinterp_name != NULL) { 2057 /* This is the main executable. Make sure that the low 2058 address does not conflict with MMAP_MIN_ADDR or the 2059 QEMU application itself. */ 2060 probe_guest_base(image_name, loaddr, hiaddr); 2061 } 2062 load_bias = load_addr - loaddr; 2063 2064 #ifdef CONFIG_USE_FDPIC 2065 { 2066 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2067 g_malloc(sizeof(*loadsegs) * info->nsegs); 2068 2069 for (i = 0; i < ehdr->e_phnum; ++i) { 2070 switch (phdr[i].p_type) { 2071 case PT_DYNAMIC: 2072 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2073 break; 2074 case PT_LOAD: 2075 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2076 loadsegs->p_vaddr = phdr[i].p_vaddr; 2077 loadsegs->p_memsz = phdr[i].p_memsz; 2078 ++loadsegs; 2079 break; 2080 } 2081 } 2082 } 2083 #endif 2084 2085 info->load_bias = load_bias; 2086 info->load_addr = load_addr; 2087 info->entry = ehdr->e_entry + load_bias; 2088 info->start_code = -1; 2089 info->end_code = 0; 2090 info->start_data = -1; 2091 info->end_data = 0; 2092 info->brk = 0; 2093 info->elf_flags = ehdr->e_flags; 2094 2095 for (i = 0; i < ehdr->e_phnum; i++) { 2096 struct elf_phdr *eppnt = phdr + i; 2097 if (eppnt->p_type == PT_LOAD) { 2098 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2099 int elf_prot = 0; 2100 2101 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2102 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2103 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2104 2105 vaddr = load_bias + eppnt->p_vaddr; 2106 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2107 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2108 2109 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2110 elf_prot, MAP_PRIVATE | MAP_FIXED, 2111 image_fd, eppnt->p_offset - vaddr_po); 2112 if (error == -1) { 2113 goto exit_perror; 2114 } 2115 2116 vaddr_ef = vaddr + eppnt->p_filesz; 2117 vaddr_em = vaddr + eppnt->p_memsz; 2118 2119 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2120 if (vaddr_ef < vaddr_em) { 2121 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2122 } 2123 2124 /* Find the full program boundaries. */ 2125 if (elf_prot & PROT_EXEC) { 2126 if (vaddr < info->start_code) { 2127 info->start_code = vaddr; 2128 } 2129 if (vaddr_ef > info->end_code) { 2130 info->end_code = vaddr_ef; 2131 } 2132 } 2133 if (elf_prot & PROT_WRITE) { 2134 if (vaddr < info->start_data) { 2135 info->start_data = vaddr; 2136 } 2137 if (vaddr_ef > info->end_data) { 2138 info->end_data = vaddr_ef; 2139 } 2140 if (vaddr_em > info->brk) { 2141 info->brk = vaddr_em; 2142 } 2143 } 2144 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2145 char *interp_name; 2146 2147 if (*pinterp_name) { 2148 errmsg = "Multiple PT_INTERP entries"; 2149 goto exit_errmsg; 2150 } 2151 interp_name = malloc(eppnt->p_filesz); 2152 if (!interp_name) { 2153 goto exit_perror; 2154 } 2155 2156 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2157 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2158 eppnt->p_filesz); 2159 } else { 2160 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2161 eppnt->p_offset); 2162 if (retval != eppnt->p_filesz) { 2163 goto exit_perror; 2164 } 2165 } 2166 if (interp_name[eppnt->p_filesz - 1] != 0) { 2167 errmsg = "Invalid PT_INTERP entry"; 2168 goto exit_errmsg; 2169 } 2170 *pinterp_name = interp_name; 2171 } 2172 } 2173 2174 if (info->end_data == 0) { 2175 info->start_data = info->end_code; 2176 info->end_data = info->end_code; 2177 info->brk = info->end_code; 2178 } 2179 2180 if (qemu_log_enabled()) { 2181 load_symbols(ehdr, image_fd, load_bias); 2182 } 2183 2184 mmap_unlock(); 2185 2186 close(image_fd); 2187 return; 2188 2189 exit_read: 2190 if (retval >= 0) { 2191 errmsg = "Incomplete read of file header"; 2192 goto exit_errmsg; 2193 } 2194 exit_perror: 2195 errmsg = strerror(errno); 2196 exit_errmsg: 2197 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2198 exit(-1); 2199 } 2200 2201 static void load_elf_interp(const char *filename, struct image_info *info, 2202 char bprm_buf[BPRM_BUF_SIZE]) 2203 { 2204 int fd, retval; 2205 2206 fd = open(path(filename), O_RDONLY); 2207 if (fd < 0) { 2208 goto exit_perror; 2209 } 2210 2211 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2212 if (retval < 0) { 2213 goto exit_perror; 2214 } 2215 if (retval < BPRM_BUF_SIZE) { 2216 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2217 } 2218 2219 load_elf_image(filename, fd, info, NULL, bprm_buf); 2220 return; 2221 2222 exit_perror: 2223 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2224 exit(-1); 2225 } 2226 2227 static int symfind(const void *s0, const void *s1) 2228 { 2229 target_ulong addr = *(target_ulong *)s0; 2230 struct elf_sym *sym = (struct elf_sym *)s1; 2231 int result = 0; 2232 if (addr < sym->st_value) { 2233 result = -1; 2234 } else if (addr >= sym->st_value + sym->st_size) { 2235 result = 1; 2236 } 2237 return result; 2238 } 2239 2240 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2241 { 2242 #if ELF_CLASS == ELFCLASS32 2243 struct elf_sym *syms = s->disas_symtab.elf32; 2244 #else 2245 struct elf_sym *syms = s->disas_symtab.elf64; 2246 #endif 2247 2248 // binary search 2249 struct elf_sym *sym; 2250 2251 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2252 if (sym != NULL) { 2253 return s->disas_strtab + sym->st_name; 2254 } 2255 2256 return ""; 2257 } 2258 2259 /* FIXME: This should use elf_ops.h */ 2260 static int symcmp(const void *s0, const void *s1) 2261 { 2262 struct elf_sym *sym0 = (struct elf_sym *)s0; 2263 struct elf_sym *sym1 = (struct elf_sym *)s1; 2264 return (sym0->st_value < sym1->st_value) 2265 ? -1 2266 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2267 } 2268 2269 /* Best attempt to load symbols from this ELF object. */ 2270 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2271 { 2272 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2273 uint64_t segsz; 2274 struct elf_shdr *shdr; 2275 char *strings = NULL; 2276 struct syminfo *s = NULL; 2277 struct elf_sym *new_syms, *syms = NULL; 2278 2279 shnum = hdr->e_shnum; 2280 i = shnum * sizeof(struct elf_shdr); 2281 shdr = (struct elf_shdr *)alloca(i); 2282 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2283 return; 2284 } 2285 2286 bswap_shdr(shdr, shnum); 2287 for (i = 0; i < shnum; ++i) { 2288 if (shdr[i].sh_type == SHT_SYMTAB) { 2289 sym_idx = i; 2290 str_idx = shdr[i].sh_link; 2291 goto found; 2292 } 2293 } 2294 2295 /* There will be no symbol table if the file was stripped. */ 2296 return; 2297 2298 found: 2299 /* Now know where the strtab and symtab are. Snarf them. */ 2300 s = g_try_new(struct syminfo, 1); 2301 if (!s) { 2302 goto give_up; 2303 } 2304 2305 segsz = shdr[str_idx].sh_size; 2306 s->disas_strtab = strings = g_try_malloc(segsz); 2307 if (!strings || 2308 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2309 goto give_up; 2310 } 2311 2312 segsz = shdr[sym_idx].sh_size; 2313 syms = g_try_malloc(segsz); 2314 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2315 goto give_up; 2316 } 2317 2318 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2319 /* Implausibly large symbol table: give up rather than ploughing 2320 * on with the number of symbols calculation overflowing 2321 */ 2322 goto give_up; 2323 } 2324 nsyms = segsz / sizeof(struct elf_sym); 2325 for (i = 0; i < nsyms; ) { 2326 bswap_sym(syms + i); 2327 /* Throw away entries which we do not need. */ 2328 if (syms[i].st_shndx == SHN_UNDEF 2329 || syms[i].st_shndx >= SHN_LORESERVE 2330 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2331 if (i < --nsyms) { 2332 syms[i] = syms[nsyms]; 2333 } 2334 } else { 2335 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2336 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2337 syms[i].st_value &= ~(target_ulong)1; 2338 #endif 2339 syms[i].st_value += load_bias; 2340 i++; 2341 } 2342 } 2343 2344 /* No "useful" symbol. */ 2345 if (nsyms == 0) { 2346 goto give_up; 2347 } 2348 2349 /* Attempt to free the storage associated with the local symbols 2350 that we threw away. Whether or not this has any effect on the 2351 memory allocation depends on the malloc implementation and how 2352 many symbols we managed to discard. */ 2353 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2354 if (new_syms == NULL) { 2355 goto give_up; 2356 } 2357 syms = new_syms; 2358 2359 qsort(syms, nsyms, sizeof(*syms), symcmp); 2360 2361 s->disas_num_syms = nsyms; 2362 #if ELF_CLASS == ELFCLASS32 2363 s->disas_symtab.elf32 = syms; 2364 #else 2365 s->disas_symtab.elf64 = syms; 2366 #endif 2367 s->lookup_symbol = lookup_symbolxx; 2368 s->next = syminfos; 2369 syminfos = s; 2370 2371 return; 2372 2373 give_up: 2374 g_free(s); 2375 g_free(strings); 2376 g_free(syms); 2377 } 2378 2379 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2380 { 2381 struct image_info interp_info; 2382 struct elfhdr elf_ex; 2383 char *elf_interpreter = NULL; 2384 char *scratch; 2385 2386 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2387 2388 load_elf_image(bprm->filename, bprm->fd, info, 2389 &elf_interpreter, bprm->buf); 2390 2391 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2392 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2393 when we load the interpreter. */ 2394 elf_ex = *(struct elfhdr *)bprm->buf; 2395 2396 /* Do this so that we can load the interpreter, if need be. We will 2397 change some of these later */ 2398 bprm->p = setup_arg_pages(bprm, info); 2399 2400 scratch = g_new0(char, TARGET_PAGE_SIZE); 2401 if (STACK_GROWS_DOWN) { 2402 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2403 bprm->p, info->stack_limit); 2404 info->file_string = bprm->p; 2405 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2406 bprm->p, info->stack_limit); 2407 info->env_strings = bprm->p; 2408 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2409 bprm->p, info->stack_limit); 2410 info->arg_strings = bprm->p; 2411 } else { 2412 info->arg_strings = bprm->p; 2413 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2414 bprm->p, info->stack_limit); 2415 info->env_strings = bprm->p; 2416 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2417 bprm->p, info->stack_limit); 2418 info->file_string = bprm->p; 2419 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2420 bprm->p, info->stack_limit); 2421 } 2422 2423 g_free(scratch); 2424 2425 if (!bprm->p) { 2426 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2427 exit(-1); 2428 } 2429 2430 if (elf_interpreter) { 2431 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2432 2433 /* If the program interpreter is one of these two, then assume 2434 an iBCS2 image. Otherwise assume a native linux image. */ 2435 2436 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2437 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2438 info->personality = PER_SVR4; 2439 2440 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2441 and some applications "depend" upon this behavior. Since 2442 we do not have the power to recompile these, we emulate 2443 the SVr4 behavior. Sigh. */ 2444 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2445 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2446 } 2447 } 2448 2449 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2450 info, (elf_interpreter ? &interp_info : NULL)); 2451 info->start_stack = bprm->p; 2452 2453 /* If we have an interpreter, set that as the program's entry point. 2454 Copy the load_bias as well, to help PPC64 interpret the entry 2455 point as a function descriptor. Do this after creating elf tables 2456 so that we copy the original program entry point into the AUXV. */ 2457 if (elf_interpreter) { 2458 info->load_bias = interp_info.load_bias; 2459 info->entry = interp_info.entry; 2460 free(elf_interpreter); 2461 } 2462 2463 #ifdef USE_ELF_CORE_DUMP 2464 bprm->core_dump = &elf_core_dump; 2465 #endif 2466 2467 return 0; 2468 } 2469 2470 #ifdef USE_ELF_CORE_DUMP 2471 /* 2472 * Definitions to generate Intel SVR4-like core files. 2473 * These mostly have the same names as the SVR4 types with "target_elf_" 2474 * tacked on the front to prevent clashes with linux definitions, 2475 * and the typedef forms have been avoided. This is mostly like 2476 * the SVR4 structure, but more Linuxy, with things that Linux does 2477 * not support and which gdb doesn't really use excluded. 2478 * 2479 * Fields we don't dump (their contents is zero) in linux-user qemu 2480 * are marked with XXX. 2481 * 2482 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2483 * 2484 * Porting ELF coredump for target is (quite) simple process. First you 2485 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2486 * the target resides): 2487 * 2488 * #define USE_ELF_CORE_DUMP 2489 * 2490 * Next you define type of register set used for dumping. ELF specification 2491 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2492 * 2493 * typedef <target_regtype> target_elf_greg_t; 2494 * #define ELF_NREG <number of registers> 2495 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2496 * 2497 * Last step is to implement target specific function that copies registers 2498 * from given cpu into just specified register set. Prototype is: 2499 * 2500 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2501 * const CPUArchState *env); 2502 * 2503 * Parameters: 2504 * regs - copy register values into here (allocated and zeroed by caller) 2505 * env - copy registers from here 2506 * 2507 * Example for ARM target is provided in this file. 2508 */ 2509 2510 /* An ELF note in memory */ 2511 struct memelfnote { 2512 const char *name; 2513 size_t namesz; 2514 size_t namesz_rounded; 2515 int type; 2516 size_t datasz; 2517 size_t datasz_rounded; 2518 void *data; 2519 size_t notesz; 2520 }; 2521 2522 struct target_elf_siginfo { 2523 abi_int si_signo; /* signal number */ 2524 abi_int si_code; /* extra code */ 2525 abi_int si_errno; /* errno */ 2526 }; 2527 2528 struct target_elf_prstatus { 2529 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2530 abi_short pr_cursig; /* Current signal */ 2531 abi_ulong pr_sigpend; /* XXX */ 2532 abi_ulong pr_sighold; /* XXX */ 2533 target_pid_t pr_pid; 2534 target_pid_t pr_ppid; 2535 target_pid_t pr_pgrp; 2536 target_pid_t pr_sid; 2537 struct target_timeval pr_utime; /* XXX User time */ 2538 struct target_timeval pr_stime; /* XXX System time */ 2539 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2540 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2541 target_elf_gregset_t pr_reg; /* GP registers */ 2542 abi_int pr_fpvalid; /* XXX */ 2543 }; 2544 2545 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2546 2547 struct target_elf_prpsinfo { 2548 char pr_state; /* numeric process state */ 2549 char pr_sname; /* char for pr_state */ 2550 char pr_zomb; /* zombie */ 2551 char pr_nice; /* nice val */ 2552 abi_ulong pr_flag; /* flags */ 2553 target_uid_t pr_uid; 2554 target_gid_t pr_gid; 2555 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2556 /* Lots missing */ 2557 char pr_fname[16]; /* filename of executable */ 2558 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2559 }; 2560 2561 /* Here is the structure in which status of each thread is captured. */ 2562 struct elf_thread_status { 2563 QTAILQ_ENTRY(elf_thread_status) ets_link; 2564 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2565 #if 0 2566 elf_fpregset_t fpu; /* NT_PRFPREG */ 2567 struct task_struct *thread; 2568 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2569 #endif 2570 struct memelfnote notes[1]; 2571 int num_notes; 2572 }; 2573 2574 struct elf_note_info { 2575 struct memelfnote *notes; 2576 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2577 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2578 2579 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2580 #if 0 2581 /* 2582 * Current version of ELF coredump doesn't support 2583 * dumping fp regs etc. 2584 */ 2585 elf_fpregset_t *fpu; 2586 elf_fpxregset_t *xfpu; 2587 int thread_status_size; 2588 #endif 2589 int notes_size; 2590 int numnote; 2591 }; 2592 2593 struct vm_area_struct { 2594 target_ulong vma_start; /* start vaddr of memory region */ 2595 target_ulong vma_end; /* end vaddr of memory region */ 2596 abi_ulong vma_flags; /* protection etc. flags for the region */ 2597 QTAILQ_ENTRY(vm_area_struct) vma_link; 2598 }; 2599 2600 struct mm_struct { 2601 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2602 int mm_count; /* number of mappings */ 2603 }; 2604 2605 static struct mm_struct *vma_init(void); 2606 static void vma_delete(struct mm_struct *); 2607 static int vma_add_mapping(struct mm_struct *, target_ulong, 2608 target_ulong, abi_ulong); 2609 static int vma_get_mapping_count(const struct mm_struct *); 2610 static struct vm_area_struct *vma_first(const struct mm_struct *); 2611 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2612 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2613 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2614 unsigned long flags); 2615 2616 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2617 static void fill_note(struct memelfnote *, const char *, int, 2618 unsigned int, void *); 2619 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2620 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2621 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2622 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2623 static size_t note_size(const struct memelfnote *); 2624 static void free_note_info(struct elf_note_info *); 2625 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2626 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2627 static int core_dump_filename(const TaskState *, char *, size_t); 2628 2629 static int dump_write(int, const void *, size_t); 2630 static int write_note(struct memelfnote *, int); 2631 static int write_note_info(struct elf_note_info *, int); 2632 2633 #ifdef BSWAP_NEEDED 2634 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2635 { 2636 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2637 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2638 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2639 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2640 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2641 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2642 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2643 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2644 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2645 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2646 /* cpu times are not filled, so we skip them */ 2647 /* regs should be in correct format already */ 2648 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2649 } 2650 2651 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2652 { 2653 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2654 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2655 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2656 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2657 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2658 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2659 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2660 } 2661 2662 static void bswap_note(struct elf_note *en) 2663 { 2664 bswap32s(&en->n_namesz); 2665 bswap32s(&en->n_descsz); 2666 bswap32s(&en->n_type); 2667 } 2668 #else 2669 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2670 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2671 static inline void bswap_note(struct elf_note *en) { } 2672 #endif /* BSWAP_NEEDED */ 2673 2674 /* 2675 * Minimal support for linux memory regions. These are needed 2676 * when we are finding out what memory exactly belongs to 2677 * emulated process. No locks needed here, as long as 2678 * thread that received the signal is stopped. 2679 */ 2680 2681 static struct mm_struct *vma_init(void) 2682 { 2683 struct mm_struct *mm; 2684 2685 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2686 return (NULL); 2687 2688 mm->mm_count = 0; 2689 QTAILQ_INIT(&mm->mm_mmap); 2690 2691 return (mm); 2692 } 2693 2694 static void vma_delete(struct mm_struct *mm) 2695 { 2696 struct vm_area_struct *vma; 2697 2698 while ((vma = vma_first(mm)) != NULL) { 2699 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2700 g_free(vma); 2701 } 2702 g_free(mm); 2703 } 2704 2705 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2706 target_ulong end, abi_ulong flags) 2707 { 2708 struct vm_area_struct *vma; 2709 2710 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2711 return (-1); 2712 2713 vma->vma_start = start; 2714 vma->vma_end = end; 2715 vma->vma_flags = flags; 2716 2717 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2718 mm->mm_count++; 2719 2720 return (0); 2721 } 2722 2723 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2724 { 2725 return (QTAILQ_FIRST(&mm->mm_mmap)); 2726 } 2727 2728 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2729 { 2730 return (QTAILQ_NEXT(vma, vma_link)); 2731 } 2732 2733 static int vma_get_mapping_count(const struct mm_struct *mm) 2734 { 2735 return (mm->mm_count); 2736 } 2737 2738 /* 2739 * Calculate file (dump) size of given memory region. 2740 */ 2741 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2742 { 2743 /* if we cannot even read the first page, skip it */ 2744 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2745 return (0); 2746 2747 /* 2748 * Usually we don't dump executable pages as they contain 2749 * non-writable code that debugger can read directly from 2750 * target library etc. However, thread stacks are marked 2751 * also executable so we read in first page of given region 2752 * and check whether it contains elf header. If there is 2753 * no elf header, we dump it. 2754 */ 2755 if (vma->vma_flags & PROT_EXEC) { 2756 char page[TARGET_PAGE_SIZE]; 2757 2758 copy_from_user(page, vma->vma_start, sizeof (page)); 2759 if ((page[EI_MAG0] == ELFMAG0) && 2760 (page[EI_MAG1] == ELFMAG1) && 2761 (page[EI_MAG2] == ELFMAG2) && 2762 (page[EI_MAG3] == ELFMAG3)) { 2763 /* 2764 * Mappings are possibly from ELF binary. Don't dump 2765 * them. 2766 */ 2767 return (0); 2768 } 2769 } 2770 2771 return (vma->vma_end - vma->vma_start); 2772 } 2773 2774 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2775 unsigned long flags) 2776 { 2777 struct mm_struct *mm = (struct mm_struct *)priv; 2778 2779 vma_add_mapping(mm, start, end, flags); 2780 return (0); 2781 } 2782 2783 static void fill_note(struct memelfnote *note, const char *name, int type, 2784 unsigned int sz, void *data) 2785 { 2786 unsigned int namesz; 2787 2788 namesz = strlen(name) + 1; 2789 note->name = name; 2790 note->namesz = namesz; 2791 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2792 note->type = type; 2793 note->datasz = sz; 2794 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2795 2796 note->data = data; 2797 2798 /* 2799 * We calculate rounded up note size here as specified by 2800 * ELF document. 2801 */ 2802 note->notesz = sizeof (struct elf_note) + 2803 note->namesz_rounded + note->datasz_rounded; 2804 } 2805 2806 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2807 uint32_t flags) 2808 { 2809 (void) memset(elf, 0, sizeof(*elf)); 2810 2811 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2812 elf->e_ident[EI_CLASS] = ELF_CLASS; 2813 elf->e_ident[EI_DATA] = ELF_DATA; 2814 elf->e_ident[EI_VERSION] = EV_CURRENT; 2815 elf->e_ident[EI_OSABI] = ELF_OSABI; 2816 2817 elf->e_type = ET_CORE; 2818 elf->e_machine = machine; 2819 elf->e_version = EV_CURRENT; 2820 elf->e_phoff = sizeof(struct elfhdr); 2821 elf->e_flags = flags; 2822 elf->e_ehsize = sizeof(struct elfhdr); 2823 elf->e_phentsize = sizeof(struct elf_phdr); 2824 elf->e_phnum = segs; 2825 2826 bswap_ehdr(elf); 2827 } 2828 2829 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2830 { 2831 phdr->p_type = PT_NOTE; 2832 phdr->p_offset = offset; 2833 phdr->p_vaddr = 0; 2834 phdr->p_paddr = 0; 2835 phdr->p_filesz = sz; 2836 phdr->p_memsz = 0; 2837 phdr->p_flags = 0; 2838 phdr->p_align = 0; 2839 2840 bswap_phdr(phdr, 1); 2841 } 2842 2843 static size_t note_size(const struct memelfnote *note) 2844 { 2845 return (note->notesz); 2846 } 2847 2848 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2849 const TaskState *ts, int signr) 2850 { 2851 (void) memset(prstatus, 0, sizeof (*prstatus)); 2852 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2853 prstatus->pr_pid = ts->ts_tid; 2854 prstatus->pr_ppid = getppid(); 2855 prstatus->pr_pgrp = getpgrp(); 2856 prstatus->pr_sid = getsid(0); 2857 2858 bswap_prstatus(prstatus); 2859 } 2860 2861 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2862 { 2863 char *base_filename; 2864 unsigned int i, len; 2865 2866 (void) memset(psinfo, 0, sizeof (*psinfo)); 2867 2868 len = ts->info->arg_end - ts->info->arg_start; 2869 if (len >= ELF_PRARGSZ) 2870 len = ELF_PRARGSZ - 1; 2871 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2872 return -EFAULT; 2873 for (i = 0; i < len; i++) 2874 if (psinfo->pr_psargs[i] == 0) 2875 psinfo->pr_psargs[i] = ' '; 2876 psinfo->pr_psargs[len] = 0; 2877 2878 psinfo->pr_pid = getpid(); 2879 psinfo->pr_ppid = getppid(); 2880 psinfo->pr_pgrp = getpgrp(); 2881 psinfo->pr_sid = getsid(0); 2882 psinfo->pr_uid = getuid(); 2883 psinfo->pr_gid = getgid(); 2884 2885 base_filename = g_path_get_basename(ts->bprm->filename); 2886 /* 2887 * Using strncpy here is fine: at max-length, 2888 * this field is not NUL-terminated. 2889 */ 2890 (void) strncpy(psinfo->pr_fname, base_filename, 2891 sizeof(psinfo->pr_fname)); 2892 2893 g_free(base_filename); 2894 bswap_psinfo(psinfo); 2895 return (0); 2896 } 2897 2898 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2899 { 2900 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2901 elf_addr_t orig_auxv = auxv; 2902 void *ptr; 2903 int len = ts->info->auxv_len; 2904 2905 /* 2906 * Auxiliary vector is stored in target process stack. It contains 2907 * {type, value} pairs that we need to dump into note. This is not 2908 * strictly necessary but we do it here for sake of completeness. 2909 */ 2910 2911 /* read in whole auxv vector and copy it to memelfnote */ 2912 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2913 if (ptr != NULL) { 2914 fill_note(note, "CORE", NT_AUXV, len, ptr); 2915 unlock_user(ptr, auxv, len); 2916 } 2917 } 2918 2919 /* 2920 * Constructs name of coredump file. We have following convention 2921 * for the name: 2922 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2923 * 2924 * Returns 0 in case of success, -1 otherwise (errno is set). 2925 */ 2926 static int core_dump_filename(const TaskState *ts, char *buf, 2927 size_t bufsize) 2928 { 2929 char timestamp[64]; 2930 char *base_filename = NULL; 2931 struct timeval tv; 2932 struct tm tm; 2933 2934 assert(bufsize >= PATH_MAX); 2935 2936 if (gettimeofday(&tv, NULL) < 0) { 2937 (void) fprintf(stderr, "unable to get current timestamp: %s", 2938 strerror(errno)); 2939 return (-1); 2940 } 2941 2942 base_filename = g_path_get_basename(ts->bprm->filename); 2943 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2944 localtime_r(&tv.tv_sec, &tm)); 2945 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2946 base_filename, timestamp, (int)getpid()); 2947 g_free(base_filename); 2948 2949 return (0); 2950 } 2951 2952 static int dump_write(int fd, const void *ptr, size_t size) 2953 { 2954 const char *bufp = (const char *)ptr; 2955 ssize_t bytes_written, bytes_left; 2956 struct rlimit dumpsize; 2957 off_t pos; 2958 2959 bytes_written = 0; 2960 getrlimit(RLIMIT_CORE, &dumpsize); 2961 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2962 if (errno == ESPIPE) { /* not a seekable stream */ 2963 bytes_left = size; 2964 } else { 2965 return pos; 2966 } 2967 } else { 2968 if (dumpsize.rlim_cur <= pos) { 2969 return -1; 2970 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2971 bytes_left = size; 2972 } else { 2973 size_t limit_left=dumpsize.rlim_cur - pos; 2974 bytes_left = limit_left >= size ? size : limit_left ; 2975 } 2976 } 2977 2978 /* 2979 * In normal conditions, single write(2) should do but 2980 * in case of socket etc. this mechanism is more portable. 2981 */ 2982 do { 2983 bytes_written = write(fd, bufp, bytes_left); 2984 if (bytes_written < 0) { 2985 if (errno == EINTR) 2986 continue; 2987 return (-1); 2988 } else if (bytes_written == 0) { /* eof */ 2989 return (-1); 2990 } 2991 bufp += bytes_written; 2992 bytes_left -= bytes_written; 2993 } while (bytes_left > 0); 2994 2995 return (0); 2996 } 2997 2998 static int write_note(struct memelfnote *men, int fd) 2999 { 3000 struct elf_note en; 3001 3002 en.n_namesz = men->namesz; 3003 en.n_type = men->type; 3004 en.n_descsz = men->datasz; 3005 3006 bswap_note(&en); 3007 3008 if (dump_write(fd, &en, sizeof(en)) != 0) 3009 return (-1); 3010 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3011 return (-1); 3012 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3013 return (-1); 3014 3015 return (0); 3016 } 3017 3018 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3019 { 3020 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3021 TaskState *ts = (TaskState *)cpu->opaque; 3022 struct elf_thread_status *ets; 3023 3024 ets = g_malloc0(sizeof (*ets)); 3025 ets->num_notes = 1; /* only prstatus is dumped */ 3026 fill_prstatus(&ets->prstatus, ts, 0); 3027 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3028 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3029 &ets->prstatus); 3030 3031 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3032 3033 info->notes_size += note_size(&ets->notes[0]); 3034 } 3035 3036 static void init_note_info(struct elf_note_info *info) 3037 { 3038 /* Initialize the elf_note_info structure so that it is at 3039 * least safe to call free_note_info() on it. Must be 3040 * called before calling fill_note_info(). 3041 */ 3042 memset(info, 0, sizeof (*info)); 3043 QTAILQ_INIT(&info->thread_list); 3044 } 3045 3046 static int fill_note_info(struct elf_note_info *info, 3047 long signr, const CPUArchState *env) 3048 { 3049 #define NUMNOTES 3 3050 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3051 TaskState *ts = (TaskState *)cpu->opaque; 3052 int i; 3053 3054 info->notes = g_new0(struct memelfnote, NUMNOTES); 3055 if (info->notes == NULL) 3056 return (-ENOMEM); 3057 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3058 if (info->prstatus == NULL) 3059 return (-ENOMEM); 3060 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3061 if (info->prstatus == NULL) 3062 return (-ENOMEM); 3063 3064 /* 3065 * First fill in status (and registers) of current thread 3066 * including process info & aux vector. 3067 */ 3068 fill_prstatus(info->prstatus, ts, signr); 3069 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3070 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3071 sizeof (*info->prstatus), info->prstatus); 3072 fill_psinfo(info->psinfo, ts); 3073 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3074 sizeof (*info->psinfo), info->psinfo); 3075 fill_auxv_note(&info->notes[2], ts); 3076 info->numnote = 3; 3077 3078 info->notes_size = 0; 3079 for (i = 0; i < info->numnote; i++) 3080 info->notes_size += note_size(&info->notes[i]); 3081 3082 /* read and fill status of all threads */ 3083 cpu_list_lock(); 3084 CPU_FOREACH(cpu) { 3085 if (cpu == thread_cpu) { 3086 continue; 3087 } 3088 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3089 } 3090 cpu_list_unlock(); 3091 3092 return (0); 3093 } 3094 3095 static void free_note_info(struct elf_note_info *info) 3096 { 3097 struct elf_thread_status *ets; 3098 3099 while (!QTAILQ_EMPTY(&info->thread_list)) { 3100 ets = QTAILQ_FIRST(&info->thread_list); 3101 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3102 g_free(ets); 3103 } 3104 3105 g_free(info->prstatus); 3106 g_free(info->psinfo); 3107 g_free(info->notes); 3108 } 3109 3110 static int write_note_info(struct elf_note_info *info, int fd) 3111 { 3112 struct elf_thread_status *ets; 3113 int i, error = 0; 3114 3115 /* write prstatus, psinfo and auxv for current thread */ 3116 for (i = 0; i < info->numnote; i++) 3117 if ((error = write_note(&info->notes[i], fd)) != 0) 3118 return (error); 3119 3120 /* write prstatus for each thread */ 3121 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3122 if ((error = write_note(&ets->notes[0], fd)) != 0) 3123 return (error); 3124 } 3125 3126 return (0); 3127 } 3128 3129 /* 3130 * Write out ELF coredump. 3131 * 3132 * See documentation of ELF object file format in: 3133 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3134 * 3135 * Coredump format in linux is following: 3136 * 3137 * 0 +----------------------+ \ 3138 * | ELF header | ET_CORE | 3139 * +----------------------+ | 3140 * | ELF program headers | |--- headers 3141 * | - NOTE section | | 3142 * | - PT_LOAD sections | | 3143 * +----------------------+ / 3144 * | NOTEs: | 3145 * | - NT_PRSTATUS | 3146 * | - NT_PRSINFO | 3147 * | - NT_AUXV | 3148 * +----------------------+ <-- aligned to target page 3149 * | Process memory dump | 3150 * : : 3151 * . . 3152 * : : 3153 * | | 3154 * +----------------------+ 3155 * 3156 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3157 * NT_PRSINFO -> struct elf_prpsinfo 3158 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3159 * 3160 * Format follows System V format as close as possible. Current 3161 * version limitations are as follows: 3162 * - no floating point registers are dumped 3163 * 3164 * Function returns 0 in case of success, negative errno otherwise. 3165 * 3166 * TODO: make this work also during runtime: it should be 3167 * possible to force coredump from running process and then 3168 * continue processing. For example qemu could set up SIGUSR2 3169 * handler (provided that target process haven't registered 3170 * handler for that) that does the dump when signal is received. 3171 */ 3172 static int elf_core_dump(int signr, const CPUArchState *env) 3173 { 3174 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3175 const TaskState *ts = (const TaskState *)cpu->opaque; 3176 struct vm_area_struct *vma = NULL; 3177 char corefile[PATH_MAX]; 3178 struct elf_note_info info; 3179 struct elfhdr elf; 3180 struct elf_phdr phdr; 3181 struct rlimit dumpsize; 3182 struct mm_struct *mm = NULL; 3183 off_t offset = 0, data_offset = 0; 3184 int segs = 0; 3185 int fd = -1; 3186 3187 init_note_info(&info); 3188 3189 errno = 0; 3190 getrlimit(RLIMIT_CORE, &dumpsize); 3191 if (dumpsize.rlim_cur == 0) 3192 return 0; 3193 3194 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3195 return (-errno); 3196 3197 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3198 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3199 return (-errno); 3200 3201 /* 3202 * Walk through target process memory mappings and 3203 * set up structure containing this information. After 3204 * this point vma_xxx functions can be used. 3205 */ 3206 if ((mm = vma_init()) == NULL) 3207 goto out; 3208 3209 walk_memory_regions(mm, vma_walker); 3210 segs = vma_get_mapping_count(mm); 3211 3212 /* 3213 * Construct valid coredump ELF header. We also 3214 * add one more segment for notes. 3215 */ 3216 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3217 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3218 goto out; 3219 3220 /* fill in the in-memory version of notes */ 3221 if (fill_note_info(&info, signr, env) < 0) 3222 goto out; 3223 3224 offset += sizeof (elf); /* elf header */ 3225 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3226 3227 /* write out notes program header */ 3228 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3229 3230 offset += info.notes_size; 3231 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3232 goto out; 3233 3234 /* 3235 * ELF specification wants data to start at page boundary so 3236 * we align it here. 3237 */ 3238 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3239 3240 /* 3241 * Write program headers for memory regions mapped in 3242 * the target process. 3243 */ 3244 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3245 (void) memset(&phdr, 0, sizeof (phdr)); 3246 3247 phdr.p_type = PT_LOAD; 3248 phdr.p_offset = offset; 3249 phdr.p_vaddr = vma->vma_start; 3250 phdr.p_paddr = 0; 3251 phdr.p_filesz = vma_dump_size(vma); 3252 offset += phdr.p_filesz; 3253 phdr.p_memsz = vma->vma_end - vma->vma_start; 3254 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3255 if (vma->vma_flags & PROT_WRITE) 3256 phdr.p_flags |= PF_W; 3257 if (vma->vma_flags & PROT_EXEC) 3258 phdr.p_flags |= PF_X; 3259 phdr.p_align = ELF_EXEC_PAGESIZE; 3260 3261 bswap_phdr(&phdr, 1); 3262 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3263 goto out; 3264 } 3265 } 3266 3267 /* 3268 * Next we write notes just after program headers. No 3269 * alignment needed here. 3270 */ 3271 if (write_note_info(&info, fd) < 0) 3272 goto out; 3273 3274 /* align data to page boundary */ 3275 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3276 goto out; 3277 3278 /* 3279 * Finally we can dump process memory into corefile as well. 3280 */ 3281 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3282 abi_ulong addr; 3283 abi_ulong end; 3284 3285 end = vma->vma_start + vma_dump_size(vma); 3286 3287 for (addr = vma->vma_start; addr < end; 3288 addr += TARGET_PAGE_SIZE) { 3289 char page[TARGET_PAGE_SIZE]; 3290 int error; 3291 3292 /* 3293 * Read in page from target process memory and 3294 * write it to coredump file. 3295 */ 3296 error = copy_from_user(page, addr, sizeof (page)); 3297 if (error != 0) { 3298 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3299 addr); 3300 errno = -error; 3301 goto out; 3302 } 3303 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3304 goto out; 3305 } 3306 } 3307 3308 out: 3309 free_note_info(&info); 3310 if (mm != NULL) 3311 vma_delete(mm); 3312 (void) close(fd); 3313 3314 if (errno != 0) 3315 return (-errno); 3316 return (0); 3317 } 3318 #endif /* USE_ELF_CORE_DUMP */ 3319 3320 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3321 { 3322 init_thread(regs, infop); 3323 } 3324