xref: /openbmc/qemu/linux-user/elfload.c (revision f7214f99)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "exec/page-protection.h"
12 #include "user/guest-base.h"
13 #include "user-internals.h"
14 #include "signal-common.h"
15 #include "loader.h"
16 #include "user-mmap.h"
17 #include "disas/disas.h"
18 #include "qemu/bitops.h"
19 #include "qemu/path.h"
20 #include "qemu/queue.h"
21 #include "qemu/guest-random.h"
22 #include "qemu/units.h"
23 #include "qemu/selfmap.h"
24 #include "qemu/lockable.h"
25 #include "qapi/error.h"
26 #include "qemu/error-report.h"
27 #include "target_signal.h"
28 #include "tcg/debuginfo.h"
29 
30 #ifdef TARGET_ARM
31 #include "target/arm/cpu-features.h"
32 #endif
33 
34 #ifdef _ARCH_PPC64
35 #undef ARCH_DLINFO
36 #undef ELF_PLATFORM
37 #undef ELF_HWCAP
38 #undef ELF_HWCAP2
39 #undef ELF_CLASS
40 #undef ELF_DATA
41 #undef ELF_ARCH
42 #endif
43 
44 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
45 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
46 #endif
47 
48 typedef struct {
49     const uint8_t *image;
50     const uint32_t *relocs;
51     unsigned image_size;
52     unsigned reloc_count;
53     unsigned sigreturn_ofs;
54     unsigned rt_sigreturn_ofs;
55 } VdsoImageInfo;
56 
57 #define ELF_OSABI   ELFOSABI_SYSV
58 
59 /* from personality.h */
60 
61 /*
62  * Flags for bug emulation.
63  *
64  * These occupy the top three bytes.
65  */
66 enum {
67     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
68     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
69                                            descriptors (signal handling) */
70     MMAP_PAGE_ZERO =    0x0100000,
71     ADDR_COMPAT_LAYOUT = 0x0200000,
72     READ_IMPLIES_EXEC = 0x0400000,
73     ADDR_LIMIT_32BIT =  0x0800000,
74     SHORT_INODE =       0x1000000,
75     WHOLE_SECONDS =     0x2000000,
76     STICKY_TIMEOUTS =   0x4000000,
77     ADDR_LIMIT_3GB =    0x8000000,
78 };
79 
80 /*
81  * Personality types.
82  *
83  * These go in the low byte.  Avoid using the top bit, it will
84  * conflict with error returns.
85  */
86 enum {
87     PER_LINUX =         0x0000,
88     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
89     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
90     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
91     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
92     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
93     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
94     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
95     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
96     PER_BSD =           0x0006,
97     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
98     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
99     PER_LINUX32 =       0x0008,
100     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
101     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
102     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
103     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
104     PER_RISCOS =        0x000c,
105     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
106     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
107     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
108     PER_HPUX =          0x0010,
109     PER_MASK =          0x00ff,
110 };
111 
112 /*
113  * Return the base personality without flags.
114  */
115 #define personality(pers)       (pers & PER_MASK)
116 
117 int info_is_fdpic(struct image_info *info)
118 {
119     return info->personality == PER_LINUX_FDPIC;
120 }
121 
122 /* this flag is uneffective under linux too, should be deleted */
123 #ifndef MAP_DENYWRITE
124 #define MAP_DENYWRITE 0
125 #endif
126 
127 /* should probably go in elf.h */
128 #ifndef ELIBBAD
129 #define ELIBBAD 80
130 #endif
131 
132 #if TARGET_BIG_ENDIAN
133 #define ELF_DATA        ELFDATA2MSB
134 #else
135 #define ELF_DATA        ELFDATA2LSB
136 #endif
137 
138 #ifdef TARGET_ABI_MIPSN32
139 typedef abi_ullong      target_elf_greg_t;
140 #define tswapreg(ptr)   tswap64(ptr)
141 #else
142 typedef abi_ulong       target_elf_greg_t;
143 #define tswapreg(ptr)   tswapal(ptr)
144 #endif
145 
146 #ifdef USE_UID16
147 typedef abi_ushort      target_uid_t;
148 typedef abi_ushort      target_gid_t;
149 #else
150 typedef abi_uint        target_uid_t;
151 typedef abi_uint        target_gid_t;
152 #endif
153 typedef abi_int         target_pid_t;
154 
155 #ifdef TARGET_I386
156 
157 #define ELF_HWCAP get_elf_hwcap()
158 
159 static uint32_t get_elf_hwcap(void)
160 {
161     X86CPU *cpu = X86_CPU(thread_cpu);
162 
163     return cpu->env.features[FEAT_1_EDX];
164 }
165 
166 #ifdef TARGET_X86_64
167 #define ELF_CLASS      ELFCLASS64
168 #define ELF_ARCH       EM_X86_64
169 
170 #define ELF_PLATFORM   "x86_64"
171 
172 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
173 {
174     regs->rax = 0;
175     regs->rsp = infop->start_stack;
176     regs->rip = infop->entry;
177 }
178 
179 #define ELF_NREG    27
180 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
181 
182 /*
183  * Note that ELF_NREG should be 29 as there should be place for
184  * TRAPNO and ERR "registers" as well but linux doesn't dump
185  * those.
186  *
187  * See linux kernel: arch/x86/include/asm/elf.h
188  */
189 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
190 {
191     (*regs)[0] = tswapreg(env->regs[15]);
192     (*regs)[1] = tswapreg(env->regs[14]);
193     (*regs)[2] = tswapreg(env->regs[13]);
194     (*regs)[3] = tswapreg(env->regs[12]);
195     (*regs)[4] = tswapreg(env->regs[R_EBP]);
196     (*regs)[5] = tswapreg(env->regs[R_EBX]);
197     (*regs)[6] = tswapreg(env->regs[11]);
198     (*regs)[7] = tswapreg(env->regs[10]);
199     (*regs)[8] = tswapreg(env->regs[9]);
200     (*regs)[9] = tswapreg(env->regs[8]);
201     (*regs)[10] = tswapreg(env->regs[R_EAX]);
202     (*regs)[11] = tswapreg(env->regs[R_ECX]);
203     (*regs)[12] = tswapreg(env->regs[R_EDX]);
204     (*regs)[13] = tswapreg(env->regs[R_ESI]);
205     (*regs)[14] = tswapreg(env->regs[R_EDI]);
206     (*regs)[15] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
207     (*regs)[16] = tswapreg(env->eip);
208     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
209     (*regs)[18] = tswapreg(env->eflags);
210     (*regs)[19] = tswapreg(env->regs[R_ESP]);
211     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
212     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
213     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
214     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
215     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
216     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
217     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
218 }
219 
220 #if ULONG_MAX > UINT32_MAX
221 #define INIT_GUEST_COMMPAGE
222 static bool init_guest_commpage(void)
223 {
224     /*
225      * The vsyscall page is at a high negative address aka kernel space,
226      * which means that we cannot actually allocate it with target_mmap.
227      * We still should be able to use page_set_flags, unless the user
228      * has specified -R reserved_va, which would trigger an assert().
229      */
230     if (reserved_va != 0 &&
231         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
232         error_report("Cannot allocate vsyscall page");
233         exit(EXIT_FAILURE);
234     }
235     page_set_flags(TARGET_VSYSCALL_PAGE,
236                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
237                    PAGE_EXEC | PAGE_VALID);
238     return true;
239 }
240 #endif
241 #else
242 
243 /*
244  * This is used to ensure we don't load something for the wrong architecture.
245  */
246 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
247 
248 /*
249  * These are used to set parameters in the core dumps.
250  */
251 #define ELF_CLASS       ELFCLASS32
252 #define ELF_ARCH        EM_386
253 
254 #define ELF_PLATFORM get_elf_platform()
255 #define EXSTACK_DEFAULT true
256 
257 static const char *get_elf_platform(void)
258 {
259     static char elf_platform[] = "i386";
260     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
261     if (family > 6) {
262         family = 6;
263     }
264     if (family >= 3) {
265         elf_platform[1] = '0' + family;
266     }
267     return elf_platform;
268 }
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     regs->esp = infop->start_stack;
274     regs->eip = infop->entry;
275 
276     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
277        starts %edx contains a pointer to a function which might be
278        registered using `atexit'.  This provides a mean for the
279        dynamic linker to call DT_FINI functions for shared libraries
280        that have been loaded before the code runs.
281 
282        A value of 0 tells we have no such handler.  */
283     regs->edx = 0;
284 }
285 
286 #define ELF_NREG    17
287 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
288 
289 /*
290  * Note that ELF_NREG should be 19 as there should be place for
291  * TRAPNO and ERR "registers" as well but linux doesn't dump
292  * those.
293  *
294  * See linux kernel: arch/x86/include/asm/elf.h
295  */
296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
297 {
298     (*regs)[0] = tswapreg(env->regs[R_EBX]);
299     (*regs)[1] = tswapreg(env->regs[R_ECX]);
300     (*regs)[2] = tswapreg(env->regs[R_EDX]);
301     (*regs)[3] = tswapreg(env->regs[R_ESI]);
302     (*regs)[4] = tswapreg(env->regs[R_EDI]);
303     (*regs)[5] = tswapreg(env->regs[R_EBP]);
304     (*regs)[6] = tswapreg(env->regs[R_EAX]);
305     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
306     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
307     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
308     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
309     (*regs)[11] = tswapreg(get_task_state(env_cpu_const(env))->orig_ax);
310     (*regs)[12] = tswapreg(env->eip);
311     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
312     (*regs)[14] = tswapreg(env->eflags);
313     (*regs)[15] = tswapreg(env->regs[R_ESP]);
314     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
315 }
316 
317 /*
318  * i386 is the only target which supplies AT_SYSINFO for the vdso.
319  * All others only supply AT_SYSINFO_EHDR.
320  */
321 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
322 #define ARCH_DLINFO                                     \
323     do {                                                \
324         if (vdso_info) {                                \
325             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
326         }                                               \
327     } while (0)
328 
329 #endif /* TARGET_X86_64 */
330 
331 #define VDSO_HEADER "vdso.c.inc"
332 
333 #define USE_ELF_CORE_DUMP
334 #define ELF_EXEC_PAGESIZE       4096
335 
336 #endif /* TARGET_I386 */
337 
338 #ifdef TARGET_ARM
339 
340 #ifndef TARGET_AARCH64
341 /* 32 bit ARM definitions */
342 
343 #define ELF_ARCH        EM_ARM
344 #define ELF_CLASS       ELFCLASS32
345 #define EXSTACK_DEFAULT true
346 
347 static inline void init_thread(struct target_pt_regs *regs,
348                                struct image_info *infop)
349 {
350     abi_long stack = infop->start_stack;
351     memset(regs, 0, sizeof(*regs));
352 
353     regs->uregs[16] = ARM_CPU_MODE_USR;
354     if (infop->entry & 1) {
355         regs->uregs[16] |= CPSR_T;
356     }
357     regs->uregs[15] = infop->entry & 0xfffffffe;
358     regs->uregs[13] = infop->start_stack;
359     /* FIXME - what to for failure of get_user()? */
360     get_user_ual(regs->uregs[2], stack + 8); /* envp */
361     get_user_ual(regs->uregs[1], stack + 4); /* envp */
362     /* XXX: it seems that r0 is zeroed after ! */
363     regs->uregs[0] = 0;
364     /* For uClinux PIC binaries.  */
365     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
366     regs->uregs[10] = infop->start_data;
367 
368     /* Support ARM FDPIC.  */
369     if (info_is_fdpic(infop)) {
370         /* As described in the ABI document, r7 points to the loadmap info
371          * prepared by the kernel. If an interpreter is needed, r8 points
372          * to the interpreter loadmap and r9 points to the interpreter
373          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
374          * r9 points to the main program PT_DYNAMIC info.
375          */
376         regs->uregs[7] = infop->loadmap_addr;
377         if (infop->interpreter_loadmap_addr) {
378             /* Executable is dynamically loaded.  */
379             regs->uregs[8] = infop->interpreter_loadmap_addr;
380             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
381         } else {
382             regs->uregs[8] = 0;
383             regs->uregs[9] = infop->pt_dynamic_addr;
384         }
385     }
386 }
387 
388 #define ELF_NREG    18
389 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
390 
391 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
392 {
393     (*regs)[0] = tswapreg(env->regs[0]);
394     (*regs)[1] = tswapreg(env->regs[1]);
395     (*regs)[2] = tswapreg(env->regs[2]);
396     (*regs)[3] = tswapreg(env->regs[3]);
397     (*regs)[4] = tswapreg(env->regs[4]);
398     (*regs)[5] = tswapreg(env->regs[5]);
399     (*regs)[6] = tswapreg(env->regs[6]);
400     (*regs)[7] = tswapreg(env->regs[7]);
401     (*regs)[8] = tswapreg(env->regs[8]);
402     (*regs)[9] = tswapreg(env->regs[9]);
403     (*regs)[10] = tswapreg(env->regs[10]);
404     (*regs)[11] = tswapreg(env->regs[11]);
405     (*regs)[12] = tswapreg(env->regs[12]);
406     (*regs)[13] = tswapreg(env->regs[13]);
407     (*regs)[14] = tswapreg(env->regs[14]);
408     (*regs)[15] = tswapreg(env->regs[15]);
409 
410     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
411     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
412 }
413 
414 #define USE_ELF_CORE_DUMP
415 #define ELF_EXEC_PAGESIZE       4096
416 
417 enum
418 {
419     ARM_HWCAP_ARM_SWP       = 1 << 0,
420     ARM_HWCAP_ARM_HALF      = 1 << 1,
421     ARM_HWCAP_ARM_THUMB     = 1 << 2,
422     ARM_HWCAP_ARM_26BIT     = 1 << 3,
423     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
424     ARM_HWCAP_ARM_FPA       = 1 << 5,
425     ARM_HWCAP_ARM_VFP       = 1 << 6,
426     ARM_HWCAP_ARM_EDSP      = 1 << 7,
427     ARM_HWCAP_ARM_JAVA      = 1 << 8,
428     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
429     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
430     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
431     ARM_HWCAP_ARM_NEON      = 1 << 12,
432     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
433     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
434     ARM_HWCAP_ARM_TLS       = 1 << 15,
435     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
436     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
437     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
438     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
439     ARM_HWCAP_ARM_LPAE      = 1 << 20,
440     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
441     ARM_HWCAP_ARM_FPHP      = 1 << 22,
442     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
443     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
444     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
445     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
446     ARM_HWCAP_ARM_I8MM      = 1 << 27,
447 };
448 
449 enum {
450     ARM_HWCAP2_ARM_AES      = 1 << 0,
451     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
452     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
453     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
454     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
455     ARM_HWCAP2_ARM_SB       = 1 << 5,
456     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
457 };
458 
459 /* The commpage only exists for 32 bit kernels */
460 
461 #define HI_COMMPAGE (intptr_t)0xffff0f00u
462 
463 static bool init_guest_commpage(void)
464 {
465     ARMCPU *cpu = ARM_CPU(thread_cpu);
466     int host_page_size = qemu_real_host_page_size();
467     abi_ptr commpage;
468     void *want;
469     void *addr;
470 
471     /*
472      * M-profile allocates maximum of 2GB address space, so can never
473      * allocate the commpage.  Skip it.
474      */
475     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
476         return true;
477     }
478 
479     commpage = HI_COMMPAGE & -host_page_size;
480     want = g2h_untagged(commpage);
481     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
482                 MAP_ANONYMOUS | MAP_PRIVATE |
483                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
484                 -1, 0);
485 
486     if (addr == MAP_FAILED) {
487         perror("Allocating guest commpage");
488         exit(EXIT_FAILURE);
489     }
490     if (addr != want) {
491         return false;
492     }
493 
494     /* Set kernel helper versions; rest of page is 0.  */
495     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
496 
497     if (mprotect(addr, host_page_size, PROT_READ)) {
498         perror("Protecting guest commpage");
499         exit(EXIT_FAILURE);
500     }
501 
502     page_set_flags(commpage, commpage | (host_page_size - 1),
503                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
504     return true;
505 }
506 
507 #define ELF_HWCAP get_elf_hwcap()
508 #define ELF_HWCAP2 get_elf_hwcap2()
509 
510 uint32_t get_elf_hwcap(void)
511 {
512     ARMCPU *cpu = ARM_CPU(thread_cpu);
513     uint32_t hwcaps = 0;
514 
515     hwcaps |= ARM_HWCAP_ARM_SWP;
516     hwcaps |= ARM_HWCAP_ARM_HALF;
517     hwcaps |= ARM_HWCAP_ARM_THUMB;
518     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
519 
520     /* probe for the extra features */
521 #define GET_FEATURE(feat, hwcap) \
522     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
523 
524 #define GET_FEATURE_ID(feat, hwcap) \
525     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
526 
527     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
528     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
529     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
530     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
531     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
532     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
533     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
534     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
535     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
536     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
537 
538     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
539         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
540         hwcaps |= ARM_HWCAP_ARM_VFPv3;
541         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
542             hwcaps |= ARM_HWCAP_ARM_VFPD32;
543         } else {
544             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
545         }
546     }
547     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
548     /*
549      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
550      * isar_feature function for both. The kernel reports them as two hwcaps.
551      */
552     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
553     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
554     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
555     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
556     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
557     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
558 
559     return hwcaps;
560 }
561 
562 uint64_t get_elf_hwcap2(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint64_t hwcaps = 0;
566 
567     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
568     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
569     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
570     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
571     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
572     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
573     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
574     return hwcaps;
575 }
576 
577 const char *elf_hwcap_str(uint32_t bit)
578 {
579     static const char *hwcap_str[] = {
580     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
581     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
582     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
583     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
584     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
585     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
586     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
587     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
588     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
589     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
590     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
591     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
592     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
593     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
594     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
595     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
596     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
597     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
598     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
599     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
600     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
601     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
602     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
603     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
604     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
605     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
606     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
607     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
608     };
609 
610     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
611 }
612 
613 const char *elf_hwcap2_str(uint32_t bit)
614 {
615     static const char *hwcap_str[] = {
616     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
617     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
618     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
619     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
620     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
622     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
623     };
624 
625     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
626 }
627 
628 #undef GET_FEATURE
629 #undef GET_FEATURE_ID
630 
631 #define ELF_PLATFORM get_elf_platform()
632 
633 static const char *get_elf_platform(void)
634 {
635     CPUARMState *env = cpu_env(thread_cpu);
636 
637 #if TARGET_BIG_ENDIAN
638 # define END  "b"
639 #else
640 # define END  "l"
641 #endif
642 
643     if (arm_feature(env, ARM_FEATURE_V8)) {
644         return "v8" END;
645     } else if (arm_feature(env, ARM_FEATURE_V7)) {
646         if (arm_feature(env, ARM_FEATURE_M)) {
647             return "v7m" END;
648         } else {
649             return "v7" END;
650         }
651     } else if (arm_feature(env, ARM_FEATURE_V6)) {
652         return "v6" END;
653     } else if (arm_feature(env, ARM_FEATURE_V5)) {
654         return "v5" END;
655     } else {
656         return "v4" END;
657     }
658 
659 #undef END
660 }
661 
662 #else
663 /* 64 bit ARM definitions */
664 
665 #define ELF_ARCH        EM_AARCH64
666 #define ELF_CLASS       ELFCLASS64
667 #if TARGET_BIG_ENDIAN
668 # define ELF_PLATFORM    "aarch64_be"
669 #else
670 # define ELF_PLATFORM    "aarch64"
671 #endif
672 
673 static inline void init_thread(struct target_pt_regs *regs,
674                                struct image_info *infop)
675 {
676     abi_long stack = infop->start_stack;
677     memset(regs, 0, sizeof(*regs));
678 
679     regs->pc = infop->entry & ~0x3ULL;
680     regs->sp = stack;
681 }
682 
683 #define ELF_NREG    34
684 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
685 
686 static void elf_core_copy_regs(target_elf_gregset_t *regs,
687                                const CPUARMState *env)
688 {
689     int i;
690 
691     for (i = 0; i < 32; i++) {
692         (*regs)[i] = tswapreg(env->xregs[i]);
693     }
694     (*regs)[32] = tswapreg(env->pc);
695     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
696 }
697 
698 #define USE_ELF_CORE_DUMP
699 #define ELF_EXEC_PAGESIZE       4096
700 
701 enum {
702     ARM_HWCAP_A64_FP            = 1 << 0,
703     ARM_HWCAP_A64_ASIMD         = 1 << 1,
704     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
705     ARM_HWCAP_A64_AES           = 1 << 3,
706     ARM_HWCAP_A64_PMULL         = 1 << 4,
707     ARM_HWCAP_A64_SHA1          = 1 << 5,
708     ARM_HWCAP_A64_SHA2          = 1 << 6,
709     ARM_HWCAP_A64_CRC32         = 1 << 7,
710     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
711     ARM_HWCAP_A64_FPHP          = 1 << 9,
712     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
713     ARM_HWCAP_A64_CPUID         = 1 << 11,
714     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
715     ARM_HWCAP_A64_JSCVT         = 1 << 13,
716     ARM_HWCAP_A64_FCMA          = 1 << 14,
717     ARM_HWCAP_A64_LRCPC         = 1 << 15,
718     ARM_HWCAP_A64_DCPOP         = 1 << 16,
719     ARM_HWCAP_A64_SHA3          = 1 << 17,
720     ARM_HWCAP_A64_SM3           = 1 << 18,
721     ARM_HWCAP_A64_SM4           = 1 << 19,
722     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
723     ARM_HWCAP_A64_SHA512        = 1 << 21,
724     ARM_HWCAP_A64_SVE           = 1 << 22,
725     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
726     ARM_HWCAP_A64_DIT           = 1 << 24,
727     ARM_HWCAP_A64_USCAT         = 1 << 25,
728     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
729     ARM_HWCAP_A64_FLAGM         = 1 << 27,
730     ARM_HWCAP_A64_SSBS          = 1 << 28,
731     ARM_HWCAP_A64_SB            = 1 << 29,
732     ARM_HWCAP_A64_PACA          = 1 << 30,
733     ARM_HWCAP_A64_PACG          = 1UL << 31,
734 
735     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
736     ARM_HWCAP2_A64_SVE2         = 1 << 1,
737     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
738     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
739     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
740     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
741     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
742     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
743     ARM_HWCAP2_A64_FRINT        = 1 << 8,
744     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
745     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
746     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
747     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
748     ARM_HWCAP2_A64_I8MM         = 1 << 13,
749     ARM_HWCAP2_A64_BF16         = 1 << 14,
750     ARM_HWCAP2_A64_DGH          = 1 << 15,
751     ARM_HWCAP2_A64_RNG          = 1 << 16,
752     ARM_HWCAP2_A64_BTI          = 1 << 17,
753     ARM_HWCAP2_A64_MTE          = 1 << 18,
754     ARM_HWCAP2_A64_ECV          = 1 << 19,
755     ARM_HWCAP2_A64_AFP          = 1 << 20,
756     ARM_HWCAP2_A64_RPRES        = 1 << 21,
757     ARM_HWCAP2_A64_MTE3         = 1 << 22,
758     ARM_HWCAP2_A64_SME          = 1 << 23,
759     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
760     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
761     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
762     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
763     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
764     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
765     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
766     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
767     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
768     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
769     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
770     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
771     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
772     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
773     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
774     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
775     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
776     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
777     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
778     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
779     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
780 };
781 
782 #define ELF_HWCAP   get_elf_hwcap()
783 #define ELF_HWCAP2  get_elf_hwcap2()
784 
785 #define GET_FEATURE_ID(feat, hwcap) \
786     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
787 
788 uint32_t get_elf_hwcap(void)
789 {
790     ARMCPU *cpu = ARM_CPU(thread_cpu);
791     uint32_t hwcaps = 0;
792 
793     hwcaps |= ARM_HWCAP_A64_FP;
794     hwcaps |= ARM_HWCAP_A64_ASIMD;
795     hwcaps |= ARM_HWCAP_A64_CPUID;
796 
797     /* probe for the extra features */
798 
799     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
800     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
801     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
802     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
803     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
804     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
805     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
806     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
807     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
808     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
809     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
810     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
811     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
812     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
813     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
814     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
815     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
816     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
817     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
818     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
819     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
820     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
821     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
822     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
823     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
824 
825     return hwcaps;
826 }
827 
828 uint64_t get_elf_hwcap2(void)
829 {
830     ARMCPU *cpu = ARM_CPU(thread_cpu);
831     uint64_t hwcaps = 0;
832 
833     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
834     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
835     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
836     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
837     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
838     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
839     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
840     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
841     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
842     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
843     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
844     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
845     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
846     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
847     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
848     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
849     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
850     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
851     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
852     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
853                               ARM_HWCAP2_A64_SME_F32F32 |
854                               ARM_HWCAP2_A64_SME_B16F32 |
855                               ARM_HWCAP2_A64_SME_F16F32 |
856                               ARM_HWCAP2_A64_SME_I8I32));
857     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
858     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
859     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
860     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
861     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
862 
863     return hwcaps;
864 }
865 
866 const char *elf_hwcap_str(uint32_t bit)
867 {
868     static const char *hwcap_str[] = {
869     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
870     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
871     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
872     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
873     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
874     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
875     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
876     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
877     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
878     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
879     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
880     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
881     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
882     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
883     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
884     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
885     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
886     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
887     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
888     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
889     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
890     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
891     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
892     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
893     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
894     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
895     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
896     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
897     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
898     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
899     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
900     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
901     };
902 
903     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
904 }
905 
906 const char *elf_hwcap2_str(uint32_t bit)
907 {
908     static const char *hwcap_str[] = {
909     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
910     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
911     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
912     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
913     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
914     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
915     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
916     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
917     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
918     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
919     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
920     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
921     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
922     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
923     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
924     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
925     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
926     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
927     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
928     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
929     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
930     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
931     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
932     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
933     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
934     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
935     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
936     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
937     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
938     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
939     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
940     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
941     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
942     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
943     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
944     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
945     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
946     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
947     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
948     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
949     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
950     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
951     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
952     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
953     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
954     };
955 
956     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
957 }
958 
959 #undef GET_FEATURE_ID
960 
961 #endif /* not TARGET_AARCH64 */
962 
963 #if TARGET_BIG_ENDIAN
964 # define VDSO_HEADER  "vdso-be.c.inc"
965 #else
966 # define VDSO_HEADER  "vdso-le.c.inc"
967 #endif
968 
969 #endif /* TARGET_ARM */
970 
971 #ifdef TARGET_SPARC
972 
973 #ifndef TARGET_SPARC64
974 # define ELF_CLASS  ELFCLASS32
975 # define ELF_ARCH   EM_SPARC
976 #elif defined(TARGET_ABI32)
977 # define ELF_CLASS  ELFCLASS32
978 # define elf_check_arch(x) ((x) == EM_SPARC32PLUS || (x) == EM_SPARC)
979 #else
980 # define ELF_CLASS  ELFCLASS64
981 # define ELF_ARCH   EM_SPARCV9
982 #endif
983 
984 #include "elf.h"
985 
986 #define ELF_HWCAP get_elf_hwcap()
987 
988 static uint32_t get_elf_hwcap(void)
989 {
990     /* There are not many sparc32 hwcap bits -- we have all of them. */
991     uint32_t r = HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR |
992                  HWCAP_SPARC_SWAP | HWCAP_SPARC_MULDIV;
993 
994 #ifdef TARGET_SPARC64
995     CPUSPARCState *env = cpu_env(thread_cpu);
996     uint32_t features = env->def.features;
997 
998     r |= HWCAP_SPARC_V9 | HWCAP_SPARC_V8PLUS;
999     /* 32x32 multiply and divide are efficient. */
1000     r |= HWCAP_SPARC_MUL32 | HWCAP_SPARC_DIV32;
1001     /* We don't have an internal feature bit for this. */
1002     r |= HWCAP_SPARC_POPC;
1003     r |= features & CPU_FEATURE_FSMULD ? HWCAP_SPARC_FSMULD : 0;
1004     r |= features & CPU_FEATURE_VIS1 ? HWCAP_SPARC_VIS : 0;
1005     r |= features & CPU_FEATURE_VIS2 ? HWCAP_SPARC_VIS2 : 0;
1006     r |= features & CPU_FEATURE_FMAF ? HWCAP_SPARC_FMAF : 0;
1007     r |= features & CPU_FEATURE_VIS3 ? HWCAP_SPARC_VIS3 : 0;
1008     r |= features & CPU_FEATURE_IMA ? HWCAP_SPARC_IMA : 0;
1009 #endif
1010 
1011     return r;
1012 }
1013 
1014 static inline void init_thread(struct target_pt_regs *regs,
1015                                struct image_info *infop)
1016 {
1017     /* Note that target_cpu_copy_regs does not read psr/tstate. */
1018     regs->pc = infop->entry;
1019     regs->npc = regs->pc + 4;
1020     regs->y = 0;
1021     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
1022                         - TARGET_STACK_BIAS);
1023 }
1024 #endif /* TARGET_SPARC */
1025 
1026 #ifdef TARGET_PPC
1027 
1028 #define ELF_MACHINE    PPC_ELF_MACHINE
1029 
1030 #if defined(TARGET_PPC64)
1031 
1032 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1033 
1034 #define ELF_CLASS       ELFCLASS64
1035 
1036 #else
1037 
1038 #define ELF_CLASS       ELFCLASS32
1039 #define EXSTACK_DEFAULT true
1040 
1041 #endif
1042 
1043 #define ELF_ARCH        EM_PPC
1044 
1045 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1046    See arch/powerpc/include/asm/cputable.h.  */
1047 enum {
1048     QEMU_PPC_FEATURE_32 = 0x80000000,
1049     QEMU_PPC_FEATURE_64 = 0x40000000,
1050     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1051     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1052     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1053     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1054     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1055     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1056     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1057     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1058     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1059     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1060     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1061     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1062     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1063     QEMU_PPC_FEATURE_CELL = 0x00010000,
1064     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1065     QEMU_PPC_FEATURE_SMT = 0x00004000,
1066     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1067     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1068     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1069     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1070     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1071     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1072     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1073     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1074 
1075     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1076     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1077 
1078     /* Feature definitions in AT_HWCAP2.  */
1079     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1080     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1081     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1082     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1083     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1084     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1085     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1086     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1087     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1088     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1089     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1090     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1091     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1092     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1093     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1094 };
1095 
1096 #define ELF_HWCAP get_elf_hwcap()
1097 
1098 static uint32_t get_elf_hwcap(void)
1099 {
1100     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1101     uint32_t features = 0;
1102 
1103     /* We don't have to be terribly complete here; the high points are
1104        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1105 #define GET_FEATURE(flag, feature)                                      \
1106     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1107 #define GET_FEATURE2(flags, feature) \
1108     do { \
1109         if ((cpu->env.insns_flags2 & flags) == flags) { \
1110             features |= feature; \
1111         } \
1112     } while (0)
1113     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1114     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1115     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1116     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1117     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1118     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1119     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1120     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1121     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1122     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1123     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1124                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1125                   QEMU_PPC_FEATURE_ARCH_2_06);
1126 #undef GET_FEATURE
1127 #undef GET_FEATURE2
1128 
1129     return features;
1130 }
1131 
1132 #define ELF_HWCAP2 get_elf_hwcap2()
1133 
1134 static uint32_t get_elf_hwcap2(void)
1135 {
1136     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1137     uint32_t features = 0;
1138 
1139 #define GET_FEATURE(flag, feature)                                      \
1140     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1141 #define GET_FEATURE2(flag, feature)                                      \
1142     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1143 
1144     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1145     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1146     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1147                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1148                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1149     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1150                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1151     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1152                  QEMU_PPC_FEATURE2_MMA);
1153 
1154 #undef GET_FEATURE
1155 #undef GET_FEATURE2
1156 
1157     return features;
1158 }
1159 
1160 /*
1161  * The requirements here are:
1162  * - keep the final alignment of sp (sp & 0xf)
1163  * - make sure the 32-bit value at the first 16 byte aligned position of
1164  *   AUXV is greater than 16 for glibc compatibility.
1165  *   AT_IGNOREPPC is used for that.
1166  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1167  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1168  */
1169 #define DLINFO_ARCH_ITEMS       5
1170 #define ARCH_DLINFO                                     \
1171     do {                                                \
1172         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1173         /*                                              \
1174          * Handle glibc compatibility: these magic entries must \
1175          * be at the lowest addresses in the final auxv.        \
1176          */                                             \
1177         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1178         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1179         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1180         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1181         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1182     } while (0)
1183 
1184 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1185 {
1186     _regs->gpr[1] = infop->start_stack;
1187 #if defined(TARGET_PPC64)
1188     if (get_ppc64_abi(infop) < 2) {
1189         uint64_t val;
1190         get_user_u64(val, infop->entry + 8);
1191         _regs->gpr[2] = val + infop->load_bias;
1192         get_user_u64(val, infop->entry);
1193         infop->entry = val + infop->load_bias;
1194     } else {
1195         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1196     }
1197 #endif
1198     _regs->nip = infop->entry;
1199 }
1200 
1201 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1202 #define ELF_NREG 48
1203 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1204 
1205 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1206 {
1207     int i;
1208     target_ulong ccr = 0;
1209 
1210     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1211         (*regs)[i] = tswapreg(env->gpr[i]);
1212     }
1213 
1214     (*regs)[32] = tswapreg(env->nip);
1215     (*regs)[33] = tswapreg(env->msr);
1216     (*regs)[35] = tswapreg(env->ctr);
1217     (*regs)[36] = tswapreg(env->lr);
1218     (*regs)[37] = tswapreg(cpu_read_xer(env));
1219 
1220     ccr = ppc_get_cr(env);
1221     (*regs)[38] = tswapreg(ccr);
1222 }
1223 
1224 #define USE_ELF_CORE_DUMP
1225 #define ELF_EXEC_PAGESIZE       4096
1226 
1227 #ifndef TARGET_PPC64
1228 # define VDSO_HEADER  "vdso-32.c.inc"
1229 #elif TARGET_BIG_ENDIAN
1230 # define VDSO_HEADER  "vdso-64.c.inc"
1231 #else
1232 # define VDSO_HEADER  "vdso-64le.c.inc"
1233 #endif
1234 
1235 #endif
1236 
1237 #ifdef TARGET_LOONGARCH64
1238 
1239 #define ELF_CLASS   ELFCLASS64
1240 #define ELF_ARCH    EM_LOONGARCH
1241 #define EXSTACK_DEFAULT true
1242 
1243 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1244 
1245 #define VDSO_HEADER "vdso.c.inc"
1246 
1247 static inline void init_thread(struct target_pt_regs *regs,
1248                                struct image_info *infop)
1249 {
1250     /*Set crmd PG,DA = 1,0 */
1251     regs->csr.crmd = 2 << 3;
1252     regs->csr.era = infop->entry;
1253     regs->regs[3] = infop->start_stack;
1254 }
1255 
1256 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1257 #define ELF_NREG 45
1258 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1259 
1260 enum {
1261     TARGET_EF_R0 = 0,
1262     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1263     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1264 };
1265 
1266 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1267                                const CPULoongArchState *env)
1268 {
1269     int i;
1270 
1271     (*regs)[TARGET_EF_R0] = 0;
1272 
1273     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1274         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1275     }
1276 
1277     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1278     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1279 }
1280 
1281 #define USE_ELF_CORE_DUMP
1282 #define ELF_EXEC_PAGESIZE        4096
1283 
1284 #define ELF_HWCAP get_elf_hwcap()
1285 
1286 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1287 enum {
1288     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1289     HWCAP_LOONGARCH_LAM      = (1 << 1),
1290     HWCAP_LOONGARCH_UAL      = (1 << 2),
1291     HWCAP_LOONGARCH_FPU      = (1 << 3),
1292     HWCAP_LOONGARCH_LSX      = (1 << 4),
1293     HWCAP_LOONGARCH_LASX     = (1 << 5),
1294     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1295     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1296     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1297     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1298     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1299     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1300     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1301 };
1302 
1303 static uint32_t get_elf_hwcap(void)
1304 {
1305     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1306     uint32_t hwcaps = 0;
1307 
1308     hwcaps |= HWCAP_LOONGARCH_CRC32;
1309 
1310     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1311         hwcaps |= HWCAP_LOONGARCH_UAL;
1312     }
1313 
1314     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1315         hwcaps |= HWCAP_LOONGARCH_FPU;
1316     }
1317 
1318     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1319         hwcaps |= HWCAP_LOONGARCH_LAM;
1320     }
1321 
1322     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1323         hwcaps |= HWCAP_LOONGARCH_LSX;
1324     }
1325 
1326     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1327         hwcaps |= HWCAP_LOONGARCH_LASX;
1328     }
1329 
1330     return hwcaps;
1331 }
1332 
1333 #define ELF_PLATFORM "loongarch"
1334 
1335 #endif /* TARGET_LOONGARCH64 */
1336 
1337 #ifdef TARGET_MIPS
1338 
1339 #ifdef TARGET_MIPS64
1340 #define ELF_CLASS   ELFCLASS64
1341 #else
1342 #define ELF_CLASS   ELFCLASS32
1343 #endif
1344 #define ELF_ARCH    EM_MIPS
1345 #define EXSTACK_DEFAULT true
1346 
1347 #ifdef TARGET_ABI_MIPSN32
1348 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1349 #else
1350 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1351 #endif
1352 
1353 #define ELF_BASE_PLATFORM get_elf_base_platform()
1354 
1355 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1356     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1357     { return _base_platform; } } while (0)
1358 
1359 static const char *get_elf_base_platform(void)
1360 {
1361     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1362 
1363     /* 64 bit ISAs goes first */
1364     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1365     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1366     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1367     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1368     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1369     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1370     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1371 
1372     /* 32 bit ISAs */
1373     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1374     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1375     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1376     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1377     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1378 
1379     /* Fallback */
1380     return "mips";
1381 }
1382 #undef MATCH_PLATFORM_INSN
1383 
1384 static inline void init_thread(struct target_pt_regs *regs,
1385                                struct image_info *infop)
1386 {
1387     regs->cp0_status = 2 << CP0St_KSU;
1388     regs->cp0_epc = infop->entry;
1389     regs->regs[29] = infop->start_stack;
1390 }
1391 
1392 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1393 #define ELF_NREG 45
1394 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1395 
1396 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1397 enum {
1398 #ifdef TARGET_MIPS64
1399     TARGET_EF_R0 = 0,
1400 #else
1401     TARGET_EF_R0 = 6,
1402 #endif
1403     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1404     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1405     TARGET_EF_LO = TARGET_EF_R0 + 32,
1406     TARGET_EF_HI = TARGET_EF_R0 + 33,
1407     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1408     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1409     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1410     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1411 };
1412 
1413 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1414 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1415 {
1416     int i;
1417 
1418     for (i = 0; i < TARGET_EF_R0; i++) {
1419         (*regs)[i] = 0;
1420     }
1421     (*regs)[TARGET_EF_R0] = 0;
1422 
1423     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1424         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1425     }
1426 
1427     (*regs)[TARGET_EF_R26] = 0;
1428     (*regs)[TARGET_EF_R27] = 0;
1429     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1430     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1431     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1432     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1433     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1434     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1435 }
1436 
1437 #define USE_ELF_CORE_DUMP
1438 #define ELF_EXEC_PAGESIZE        4096
1439 
1440 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1441 enum {
1442     HWCAP_MIPS_R6           = (1 << 0),
1443     HWCAP_MIPS_MSA          = (1 << 1),
1444     HWCAP_MIPS_CRC32        = (1 << 2),
1445     HWCAP_MIPS_MIPS16       = (1 << 3),
1446     HWCAP_MIPS_MDMX         = (1 << 4),
1447     HWCAP_MIPS_MIPS3D       = (1 << 5),
1448     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1449     HWCAP_MIPS_DSP          = (1 << 7),
1450     HWCAP_MIPS_DSP2         = (1 << 8),
1451     HWCAP_MIPS_DSP3         = (1 << 9),
1452     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1453     HWCAP_LOONGSON_MMI      = (1 << 11),
1454     HWCAP_LOONGSON_EXT      = (1 << 12),
1455     HWCAP_LOONGSON_EXT2     = (1 << 13),
1456     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1457 };
1458 
1459 #define ELF_HWCAP get_elf_hwcap()
1460 
1461 #define GET_FEATURE_INSN(_flag, _hwcap) \
1462     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1463 
1464 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1465     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1466 
1467 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1468     do { \
1469         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1470             hwcaps |= _hwcap; \
1471         } \
1472     } while (0)
1473 
1474 static uint32_t get_elf_hwcap(void)
1475 {
1476     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1477     uint32_t hwcaps = 0;
1478 
1479     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1480                         2, HWCAP_MIPS_R6);
1481     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1482     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1483     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1484 
1485     return hwcaps;
1486 }
1487 
1488 #undef GET_FEATURE_REG_EQU
1489 #undef GET_FEATURE_REG_SET
1490 #undef GET_FEATURE_INSN
1491 
1492 #endif /* TARGET_MIPS */
1493 
1494 #ifdef TARGET_MICROBLAZE
1495 
1496 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1497 
1498 #define ELF_CLASS   ELFCLASS32
1499 #define ELF_ARCH    EM_MICROBLAZE
1500 
1501 static inline void init_thread(struct target_pt_regs *regs,
1502                                struct image_info *infop)
1503 {
1504     regs->pc = infop->entry;
1505     regs->r1 = infop->start_stack;
1506 
1507 }
1508 
1509 #define ELF_EXEC_PAGESIZE        4096
1510 
1511 #define USE_ELF_CORE_DUMP
1512 #define ELF_NREG 38
1513 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1514 
1515 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1516 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1517 {
1518     int i, pos = 0;
1519 
1520     for (i = 0; i < 32; i++) {
1521         (*regs)[pos++] = tswapreg(env->regs[i]);
1522     }
1523 
1524     (*regs)[pos++] = tswapreg(env->pc);
1525     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1526     (*regs)[pos++] = 0;
1527     (*regs)[pos++] = tswapreg(env->ear);
1528     (*regs)[pos++] = 0;
1529     (*regs)[pos++] = tswapreg(env->esr);
1530 }
1531 
1532 #endif /* TARGET_MICROBLAZE */
1533 
1534 #ifdef TARGET_OPENRISC
1535 
1536 #define ELF_ARCH EM_OPENRISC
1537 #define ELF_CLASS ELFCLASS32
1538 #define ELF_DATA  ELFDATA2MSB
1539 
1540 static inline void init_thread(struct target_pt_regs *regs,
1541                                struct image_info *infop)
1542 {
1543     regs->pc = infop->entry;
1544     regs->gpr[1] = infop->start_stack;
1545 }
1546 
1547 #define USE_ELF_CORE_DUMP
1548 #define ELF_EXEC_PAGESIZE 8192
1549 
1550 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1551 #define ELF_NREG 34 /* gprs and pc, sr */
1552 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1553 
1554 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1555                                const CPUOpenRISCState *env)
1556 {
1557     int i;
1558 
1559     for (i = 0; i < 32; i++) {
1560         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1561     }
1562     (*regs)[32] = tswapreg(env->pc);
1563     (*regs)[33] = tswapreg(cpu_get_sr(env));
1564 }
1565 #define ELF_HWCAP 0
1566 #define ELF_PLATFORM NULL
1567 
1568 #endif /* TARGET_OPENRISC */
1569 
1570 #ifdef TARGET_SH4
1571 
1572 #define ELF_CLASS ELFCLASS32
1573 #define ELF_ARCH  EM_SH
1574 
1575 static inline void init_thread(struct target_pt_regs *regs,
1576                                struct image_info *infop)
1577 {
1578     /* Check other registers XXXXX */
1579     regs->pc = infop->entry;
1580     regs->regs[15] = infop->start_stack;
1581 }
1582 
1583 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1584 #define ELF_NREG 23
1585 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1586 
1587 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1588 enum {
1589     TARGET_REG_PC = 16,
1590     TARGET_REG_PR = 17,
1591     TARGET_REG_SR = 18,
1592     TARGET_REG_GBR = 19,
1593     TARGET_REG_MACH = 20,
1594     TARGET_REG_MACL = 21,
1595     TARGET_REG_SYSCALL = 22
1596 };
1597 
1598 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1599                                       const CPUSH4State *env)
1600 {
1601     int i;
1602 
1603     for (i = 0; i < 16; i++) {
1604         (*regs)[i] = tswapreg(env->gregs[i]);
1605     }
1606 
1607     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1608     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1609     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1610     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1611     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1612     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1613     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1614 }
1615 
1616 #define USE_ELF_CORE_DUMP
1617 #define ELF_EXEC_PAGESIZE        4096
1618 
1619 enum {
1620     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1621     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1622     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1623     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1624     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1625     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1626     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1627     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1628     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1629     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1630 };
1631 
1632 #define ELF_HWCAP get_elf_hwcap()
1633 
1634 static uint32_t get_elf_hwcap(void)
1635 {
1636     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1637     uint32_t hwcap = 0;
1638 
1639     hwcap |= SH_CPU_HAS_FPU;
1640 
1641     if (cpu->env.features & SH_FEATURE_SH4A) {
1642         hwcap |= SH_CPU_HAS_LLSC;
1643     }
1644 
1645     return hwcap;
1646 }
1647 
1648 #endif
1649 
1650 #ifdef TARGET_M68K
1651 
1652 #define ELF_CLASS       ELFCLASS32
1653 #define ELF_ARCH        EM_68K
1654 
1655 /* ??? Does this need to do anything?
1656    #define ELF_PLAT_INIT(_r) */
1657 
1658 static inline void init_thread(struct target_pt_regs *regs,
1659                                struct image_info *infop)
1660 {
1661     regs->usp = infop->start_stack;
1662     regs->sr = 0;
1663     regs->pc = infop->entry;
1664 }
1665 
1666 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1667 #define ELF_NREG 20
1668 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1669 
1670 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1671 {
1672     (*regs)[0] = tswapreg(env->dregs[1]);
1673     (*regs)[1] = tswapreg(env->dregs[2]);
1674     (*regs)[2] = tswapreg(env->dregs[3]);
1675     (*regs)[3] = tswapreg(env->dregs[4]);
1676     (*regs)[4] = tswapreg(env->dregs[5]);
1677     (*regs)[5] = tswapreg(env->dregs[6]);
1678     (*regs)[6] = tswapreg(env->dregs[7]);
1679     (*regs)[7] = tswapreg(env->aregs[0]);
1680     (*regs)[8] = tswapreg(env->aregs[1]);
1681     (*regs)[9] = tswapreg(env->aregs[2]);
1682     (*regs)[10] = tswapreg(env->aregs[3]);
1683     (*regs)[11] = tswapreg(env->aregs[4]);
1684     (*regs)[12] = tswapreg(env->aregs[5]);
1685     (*regs)[13] = tswapreg(env->aregs[6]);
1686     (*regs)[14] = tswapreg(env->dregs[0]);
1687     (*regs)[15] = tswapreg(env->aregs[7]);
1688     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1689     (*regs)[17] = tswapreg(env->sr);
1690     (*regs)[18] = tswapreg(env->pc);
1691     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1692 }
1693 
1694 #define USE_ELF_CORE_DUMP
1695 #define ELF_EXEC_PAGESIZE       8192
1696 
1697 #endif
1698 
1699 #ifdef TARGET_ALPHA
1700 
1701 #define ELF_CLASS      ELFCLASS64
1702 #define ELF_ARCH       EM_ALPHA
1703 
1704 static inline void init_thread(struct target_pt_regs *regs,
1705                                struct image_info *infop)
1706 {
1707     regs->pc = infop->entry;
1708     regs->ps = 8;
1709     regs->usp = infop->start_stack;
1710 }
1711 
1712 #define ELF_EXEC_PAGESIZE        8192
1713 
1714 #endif /* TARGET_ALPHA */
1715 
1716 #ifdef TARGET_S390X
1717 
1718 #define ELF_CLASS	ELFCLASS64
1719 #define ELF_DATA	ELFDATA2MSB
1720 #define ELF_ARCH	EM_S390
1721 
1722 #include "elf.h"
1723 
1724 #define ELF_HWCAP get_elf_hwcap()
1725 
1726 #define GET_FEATURE(_feat, _hwcap) \
1727     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1728 
1729 uint32_t get_elf_hwcap(void)
1730 {
1731     /*
1732      * Let's assume we always have esan3 and zarch.
1733      * 31-bit processes can use 64-bit registers (high gprs).
1734      */
1735     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1736 
1737     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1738     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1739     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1740     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1741     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1742         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1743         hwcap |= HWCAP_S390_ETF3EH;
1744     }
1745     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1746     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1747     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1748 
1749     return hwcap;
1750 }
1751 
1752 const char *elf_hwcap_str(uint32_t bit)
1753 {
1754     static const char *hwcap_str[] = {
1755         [HWCAP_S390_NR_ESAN3]     = "esan3",
1756         [HWCAP_S390_NR_ZARCH]     = "zarch",
1757         [HWCAP_S390_NR_STFLE]     = "stfle",
1758         [HWCAP_S390_NR_MSA]       = "msa",
1759         [HWCAP_S390_NR_LDISP]     = "ldisp",
1760         [HWCAP_S390_NR_EIMM]      = "eimm",
1761         [HWCAP_S390_NR_DFP]       = "dfp",
1762         [HWCAP_S390_NR_HPAGE]     = "edat",
1763         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1764         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1765         [HWCAP_S390_NR_TE]        = "te",
1766         [HWCAP_S390_NR_VXRS]      = "vx",
1767         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1768         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1769         [HWCAP_S390_NR_GS]        = "gs",
1770         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1771         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1772         [HWCAP_S390_NR_SORT]      = "sort",
1773         [HWCAP_S390_NR_DFLT]      = "dflt",
1774         [HWCAP_S390_NR_NNPA]      = "nnpa",
1775         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1776         [HWCAP_S390_NR_SIE]       = "sie",
1777     };
1778 
1779     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1780 }
1781 
1782 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1783 {
1784     regs->psw.addr = infop->entry;
1785     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1786                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1787                      PSW_MASK_32;
1788     regs->gprs[15] = infop->start_stack;
1789 }
1790 
1791 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1792 #define ELF_NREG 27
1793 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1794 
1795 enum {
1796     TARGET_REG_PSWM = 0,
1797     TARGET_REG_PSWA = 1,
1798     TARGET_REG_GPRS = 2,
1799     TARGET_REG_ARS = 18,
1800     TARGET_REG_ORIG_R2 = 26,
1801 };
1802 
1803 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1804                                const CPUS390XState *env)
1805 {
1806     int i;
1807     uint32_t *aregs;
1808 
1809     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1810     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1811     for (i = 0; i < 16; i++) {
1812         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1813     }
1814     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1815     for (i = 0; i < 16; i++) {
1816         aregs[i] = tswap32(env->aregs[i]);
1817     }
1818     (*regs)[TARGET_REG_ORIG_R2] = 0;
1819 }
1820 
1821 #define USE_ELF_CORE_DUMP
1822 #define ELF_EXEC_PAGESIZE 4096
1823 
1824 #define VDSO_HEADER "vdso.c.inc"
1825 
1826 #endif /* TARGET_S390X */
1827 
1828 #ifdef TARGET_RISCV
1829 
1830 #define ELF_ARCH  EM_RISCV
1831 
1832 #ifdef TARGET_RISCV32
1833 #define ELF_CLASS ELFCLASS32
1834 #define VDSO_HEADER "vdso-32.c.inc"
1835 #else
1836 #define ELF_CLASS ELFCLASS64
1837 #define VDSO_HEADER "vdso-64.c.inc"
1838 #endif
1839 
1840 #define ELF_HWCAP get_elf_hwcap()
1841 
1842 static uint32_t get_elf_hwcap(void)
1843 {
1844 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1845     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1846     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1847                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1848                     | MISA_BIT('V');
1849 
1850     return cpu->env.misa_ext & mask;
1851 #undef MISA_BIT
1852 }
1853 
1854 static inline void init_thread(struct target_pt_regs *regs,
1855                                struct image_info *infop)
1856 {
1857     regs->sepc = infop->entry;
1858     regs->sp = infop->start_stack;
1859 }
1860 
1861 #define ELF_EXEC_PAGESIZE 4096
1862 
1863 #endif /* TARGET_RISCV */
1864 
1865 #ifdef TARGET_HPPA
1866 
1867 #define ELF_CLASS       ELFCLASS32
1868 #define ELF_ARCH        EM_PARISC
1869 #define ELF_PLATFORM    "PARISC"
1870 #define STACK_GROWS_DOWN 0
1871 #define STACK_ALIGNMENT  64
1872 
1873 #define VDSO_HEADER "vdso.c.inc"
1874 
1875 static inline void init_thread(struct target_pt_regs *regs,
1876                                struct image_info *infop)
1877 {
1878     regs->iaoq[0] = infop->entry | PRIV_USER;
1879     regs->iaoq[1] = regs->iaoq[0] + 4;
1880     regs->gr[23] = 0;
1881     regs->gr[24] = infop->argv;
1882     regs->gr[25] = infop->argc;
1883     /* The top-of-stack contains a linkage buffer.  */
1884     regs->gr[30] = infop->start_stack + 64;
1885     regs->gr[31] = infop->entry;
1886 }
1887 
1888 #define LO_COMMPAGE  0
1889 
1890 static bool init_guest_commpage(void)
1891 {
1892     /* If reserved_va, then we have already mapped 0 page on the host. */
1893     if (!reserved_va) {
1894         void *want, *addr;
1895 
1896         want = g2h_untagged(LO_COMMPAGE);
1897         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1898                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1899         if (addr == MAP_FAILED) {
1900             perror("Allocating guest commpage");
1901             exit(EXIT_FAILURE);
1902         }
1903         if (addr != want) {
1904             return false;
1905         }
1906     }
1907 
1908     /*
1909      * On Linux, page zero is normally marked execute only + gateway.
1910      * Normal read or write is supposed to fail (thus PROT_NONE above),
1911      * but specific offsets have kernel code mapped to raise permissions
1912      * and implement syscalls.  Here, simply mark the page executable.
1913      * Special case the entry points during translation (see do_page_zero).
1914      */
1915     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1916                    PAGE_EXEC | PAGE_VALID);
1917     return true;
1918 }
1919 
1920 #endif /* TARGET_HPPA */
1921 
1922 #ifdef TARGET_XTENSA
1923 
1924 #define ELF_CLASS       ELFCLASS32
1925 #define ELF_ARCH        EM_XTENSA
1926 
1927 static inline void init_thread(struct target_pt_regs *regs,
1928                                struct image_info *infop)
1929 {
1930     regs->windowbase = 0;
1931     regs->windowstart = 1;
1932     regs->areg[1] = infop->start_stack;
1933     regs->pc = infop->entry;
1934     if (info_is_fdpic(infop)) {
1935         regs->areg[4] = infop->loadmap_addr;
1936         regs->areg[5] = infop->interpreter_loadmap_addr;
1937         if (infop->interpreter_loadmap_addr) {
1938             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1939         } else {
1940             regs->areg[6] = infop->pt_dynamic_addr;
1941         }
1942     }
1943 }
1944 
1945 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1946 #define ELF_NREG 128
1947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1948 
1949 enum {
1950     TARGET_REG_PC,
1951     TARGET_REG_PS,
1952     TARGET_REG_LBEG,
1953     TARGET_REG_LEND,
1954     TARGET_REG_LCOUNT,
1955     TARGET_REG_SAR,
1956     TARGET_REG_WINDOWSTART,
1957     TARGET_REG_WINDOWBASE,
1958     TARGET_REG_THREADPTR,
1959     TARGET_REG_AR0 = 64,
1960 };
1961 
1962 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1963                                const CPUXtensaState *env)
1964 {
1965     unsigned i;
1966 
1967     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1968     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1969     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1970     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1971     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1972     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1973     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1974     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1975     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1976     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1977     for (i = 0; i < env->config->nareg; ++i) {
1978         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1979     }
1980 }
1981 
1982 #define USE_ELF_CORE_DUMP
1983 #define ELF_EXEC_PAGESIZE       4096
1984 
1985 #endif /* TARGET_XTENSA */
1986 
1987 #ifdef TARGET_HEXAGON
1988 
1989 #define ELF_CLASS       ELFCLASS32
1990 #define ELF_ARCH        EM_HEXAGON
1991 
1992 static inline void init_thread(struct target_pt_regs *regs,
1993                                struct image_info *infop)
1994 {
1995     regs->sepc = infop->entry;
1996     regs->sp = infop->start_stack;
1997 }
1998 
1999 #endif /* TARGET_HEXAGON */
2000 
2001 #ifndef ELF_BASE_PLATFORM
2002 #define ELF_BASE_PLATFORM (NULL)
2003 #endif
2004 
2005 #ifndef ELF_PLATFORM
2006 #define ELF_PLATFORM (NULL)
2007 #endif
2008 
2009 #ifndef ELF_MACHINE
2010 #define ELF_MACHINE ELF_ARCH
2011 #endif
2012 
2013 #ifndef elf_check_arch
2014 #define elf_check_arch(x) ((x) == ELF_ARCH)
2015 #endif
2016 
2017 #ifndef elf_check_abi
2018 #define elf_check_abi(x) (1)
2019 #endif
2020 
2021 #ifndef ELF_HWCAP
2022 #define ELF_HWCAP 0
2023 #endif
2024 
2025 #ifndef STACK_GROWS_DOWN
2026 #define STACK_GROWS_DOWN 1
2027 #endif
2028 
2029 #ifndef STACK_ALIGNMENT
2030 #define STACK_ALIGNMENT 16
2031 #endif
2032 
2033 #ifdef TARGET_ABI32
2034 #undef ELF_CLASS
2035 #define ELF_CLASS ELFCLASS32
2036 #undef bswaptls
2037 #define bswaptls(ptr) bswap32s(ptr)
2038 #endif
2039 
2040 #ifndef EXSTACK_DEFAULT
2041 #define EXSTACK_DEFAULT false
2042 #endif
2043 
2044 #include "elf.h"
2045 
2046 /* We must delay the following stanzas until after "elf.h". */
2047 #if defined(TARGET_AARCH64)
2048 
2049 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2050                                     const uint32_t *data,
2051                                     struct image_info *info,
2052                                     Error **errp)
2053 {
2054     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2055         if (pr_datasz != sizeof(uint32_t)) {
2056             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2057             return false;
2058         }
2059         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2060         info->note_flags = *data;
2061     }
2062     return true;
2063 }
2064 #define ARCH_USE_GNU_PROPERTY 1
2065 
2066 #else
2067 
2068 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2069                                     const uint32_t *data,
2070                                     struct image_info *info,
2071                                     Error **errp)
2072 {
2073     g_assert_not_reached();
2074 }
2075 #define ARCH_USE_GNU_PROPERTY 0
2076 
2077 #endif
2078 
2079 struct exec
2080 {
2081     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2082     unsigned int a_text;   /* length of text, in bytes */
2083     unsigned int a_data;   /* length of data, in bytes */
2084     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2085     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2086     unsigned int a_entry;  /* start address */
2087     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2088     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2089 };
2090 
2091 
2092 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2093 #define OMAGIC 0407
2094 #define NMAGIC 0410
2095 #define ZMAGIC 0413
2096 #define QMAGIC 0314
2097 
2098 #define DLINFO_ITEMS 16
2099 
2100 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2101 {
2102     memcpy(to, from, n);
2103 }
2104 
2105 #ifdef BSWAP_NEEDED
2106 static void bswap_ehdr(struct elfhdr *ehdr)
2107 {
2108     bswap16s(&ehdr->e_type);            /* Object file type */
2109     bswap16s(&ehdr->e_machine);         /* Architecture */
2110     bswap32s(&ehdr->e_version);         /* Object file version */
2111     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2112     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2113     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2114     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2115     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2116     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2117     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2118     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2119     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2120     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2121 }
2122 
2123 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2124 {
2125     int i;
2126     for (i = 0; i < phnum; ++i, ++phdr) {
2127         bswap32s(&phdr->p_type);        /* Segment type */
2128         bswap32s(&phdr->p_flags);       /* Segment flags */
2129         bswaptls(&phdr->p_offset);      /* Segment file offset */
2130         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2131         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2132         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2133         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2134         bswaptls(&phdr->p_align);       /* Segment alignment */
2135     }
2136 }
2137 
2138 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2139 {
2140     int i;
2141     for (i = 0; i < shnum; ++i, ++shdr) {
2142         bswap32s(&shdr->sh_name);
2143         bswap32s(&shdr->sh_type);
2144         bswaptls(&shdr->sh_flags);
2145         bswaptls(&shdr->sh_addr);
2146         bswaptls(&shdr->sh_offset);
2147         bswaptls(&shdr->sh_size);
2148         bswap32s(&shdr->sh_link);
2149         bswap32s(&shdr->sh_info);
2150         bswaptls(&shdr->sh_addralign);
2151         bswaptls(&shdr->sh_entsize);
2152     }
2153 }
2154 
2155 static void bswap_sym(struct elf_sym *sym)
2156 {
2157     bswap32s(&sym->st_name);
2158     bswaptls(&sym->st_value);
2159     bswaptls(&sym->st_size);
2160     bswap16s(&sym->st_shndx);
2161 }
2162 
2163 #ifdef TARGET_MIPS
2164 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2165 {
2166     bswap16s(&abiflags->version);
2167     bswap32s(&abiflags->ases);
2168     bswap32s(&abiflags->isa_ext);
2169     bswap32s(&abiflags->flags1);
2170     bswap32s(&abiflags->flags2);
2171 }
2172 #endif
2173 #else
2174 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2175 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2176 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2177 static inline void bswap_sym(struct elf_sym *sym) { }
2178 #ifdef TARGET_MIPS
2179 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2180 #endif
2181 #endif
2182 
2183 #ifdef USE_ELF_CORE_DUMP
2184 static int elf_core_dump(int, const CPUArchState *);
2185 #endif /* USE_ELF_CORE_DUMP */
2186 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2187                          abi_ulong load_bias);
2188 
2189 /* Verify the portions of EHDR within E_IDENT for the target.
2190    This can be performed before bswapping the entire header.  */
2191 static bool elf_check_ident(struct elfhdr *ehdr)
2192 {
2193     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2194             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2195             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2196             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2197             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2198             && ehdr->e_ident[EI_DATA] == ELF_DATA
2199             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2200 }
2201 
2202 /* Verify the portions of EHDR outside of E_IDENT for the target.
2203    This has to wait until after bswapping the header.  */
2204 static bool elf_check_ehdr(struct elfhdr *ehdr)
2205 {
2206     return (elf_check_arch(ehdr->e_machine)
2207             && elf_check_abi(ehdr->e_flags)
2208             && ehdr->e_ehsize == sizeof(struct elfhdr)
2209             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2210             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2211 }
2212 
2213 /*
2214  * 'copy_elf_strings()' copies argument/envelope strings from user
2215  * memory to free pages in kernel mem. These are in a format ready
2216  * to be put directly into the top of new user memory.
2217  *
2218  */
2219 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2220                                   abi_ulong p, abi_ulong stack_limit)
2221 {
2222     char *tmp;
2223     int len, i;
2224     abi_ulong top = p;
2225 
2226     if (!p) {
2227         return 0;       /* bullet-proofing */
2228     }
2229 
2230     if (STACK_GROWS_DOWN) {
2231         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2232         for (i = argc - 1; i >= 0; --i) {
2233             tmp = argv[i];
2234             if (!tmp) {
2235                 fprintf(stderr, "VFS: argc is wrong");
2236                 exit(-1);
2237             }
2238             len = strlen(tmp) + 1;
2239             tmp += len;
2240 
2241             if (len > (p - stack_limit)) {
2242                 return 0;
2243             }
2244             while (len) {
2245                 int bytes_to_copy = (len > offset) ? offset : len;
2246                 tmp -= bytes_to_copy;
2247                 p -= bytes_to_copy;
2248                 offset -= bytes_to_copy;
2249                 len -= bytes_to_copy;
2250 
2251                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2252 
2253                 if (offset == 0) {
2254                     memcpy_to_target(p, scratch, top - p);
2255                     top = p;
2256                     offset = TARGET_PAGE_SIZE;
2257                 }
2258             }
2259         }
2260         if (p != top) {
2261             memcpy_to_target(p, scratch + offset, top - p);
2262         }
2263     } else {
2264         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2265         for (i = 0; i < argc; ++i) {
2266             tmp = argv[i];
2267             if (!tmp) {
2268                 fprintf(stderr, "VFS: argc is wrong");
2269                 exit(-1);
2270             }
2271             len = strlen(tmp) + 1;
2272             if (len > (stack_limit - p)) {
2273                 return 0;
2274             }
2275             while (len) {
2276                 int bytes_to_copy = (len > remaining) ? remaining : len;
2277 
2278                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2279 
2280                 tmp += bytes_to_copy;
2281                 remaining -= bytes_to_copy;
2282                 p += bytes_to_copy;
2283                 len -= bytes_to_copy;
2284 
2285                 if (remaining == 0) {
2286                     memcpy_to_target(top, scratch, p - top);
2287                     top = p;
2288                     remaining = TARGET_PAGE_SIZE;
2289                 }
2290             }
2291         }
2292         if (p != top) {
2293             memcpy_to_target(top, scratch, p - top);
2294         }
2295     }
2296 
2297     return p;
2298 }
2299 
2300 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2301  * argument/environment space. Newer kernels (>2.6.33) allow more,
2302  * dependent on stack size, but guarantee at least 32 pages for
2303  * backwards compatibility.
2304  */
2305 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2306 
2307 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2308                                  struct image_info *info)
2309 {
2310     abi_ulong size, error, guard;
2311     int prot;
2312 
2313     size = guest_stack_size;
2314     if (size < STACK_LOWER_LIMIT) {
2315         size = STACK_LOWER_LIMIT;
2316     }
2317 
2318     if (STACK_GROWS_DOWN) {
2319         guard = TARGET_PAGE_SIZE;
2320         if (guard < qemu_real_host_page_size()) {
2321             guard = qemu_real_host_page_size();
2322         }
2323     } else {
2324         /* no guard page for hppa target where stack grows upwards. */
2325         guard = 0;
2326     }
2327 
2328     prot = PROT_READ | PROT_WRITE;
2329     if (info->exec_stack) {
2330         prot |= PROT_EXEC;
2331     }
2332     error = target_mmap(0, size + guard, prot,
2333                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2334     if (error == -1) {
2335         perror("mmap stack");
2336         exit(-1);
2337     }
2338 
2339     /* We reserve one extra page at the top of the stack as guard.  */
2340     if (STACK_GROWS_DOWN) {
2341         target_mprotect(error, guard, PROT_NONE);
2342         info->stack_limit = error + guard;
2343         return info->stack_limit + size - sizeof(void *);
2344     } else {
2345         info->stack_limit = error + size;
2346         return error;
2347     }
2348 }
2349 
2350 /**
2351  * zero_bss:
2352  *
2353  * Map and zero the bss.  We need to explicitly zero any fractional pages
2354  * after the data section (i.e. bss).  Return false on mapping failure.
2355  */
2356 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2357                      int prot, Error **errp)
2358 {
2359     abi_ulong align_bss;
2360 
2361     /* We only expect writable bss; the code segment shouldn't need this. */
2362     if (!(prot & PROT_WRITE)) {
2363         error_setg(errp, "PT_LOAD with non-writable bss");
2364         return false;
2365     }
2366 
2367     align_bss = TARGET_PAGE_ALIGN(start_bss);
2368     end_bss = TARGET_PAGE_ALIGN(end_bss);
2369 
2370     if (start_bss < align_bss) {
2371         int flags = page_get_flags(start_bss);
2372 
2373         if (!(flags & PAGE_RWX)) {
2374             /*
2375              * The whole address space of the executable was reserved
2376              * at the start, therefore all pages will be VALID.
2377              * But assuming there are no PROT_NONE PT_LOAD segments,
2378              * a PROT_NONE page means no data all bss, and we can
2379              * simply extend the new anon mapping back to the start
2380              * of the page of bss.
2381              */
2382             align_bss -= TARGET_PAGE_SIZE;
2383         } else {
2384             /*
2385              * The start of the bss shares a page with something.
2386              * The only thing that we expect is the data section,
2387              * which would already be marked writable.
2388              * Overlapping the RX code segment seems malformed.
2389              */
2390             if (!(flags & PAGE_WRITE)) {
2391                 error_setg(errp, "PT_LOAD with bss overlapping "
2392                            "non-writable page");
2393                 return false;
2394             }
2395 
2396             /* The page is already mapped and writable. */
2397             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2398         }
2399     }
2400 
2401     if (align_bss < end_bss &&
2402         target_mmap(align_bss, end_bss - align_bss, prot,
2403                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2404         error_setg_errno(errp, errno, "Error mapping bss");
2405         return false;
2406     }
2407     return true;
2408 }
2409 
2410 #if defined(TARGET_ARM)
2411 static int elf_is_fdpic(struct elfhdr *exec)
2412 {
2413     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2414 }
2415 #elif defined(TARGET_XTENSA)
2416 static int elf_is_fdpic(struct elfhdr *exec)
2417 {
2418     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2419 }
2420 #else
2421 /* Default implementation, always false.  */
2422 static int elf_is_fdpic(struct elfhdr *exec)
2423 {
2424     return 0;
2425 }
2426 #endif
2427 
2428 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2429 {
2430     uint16_t n;
2431     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2432 
2433     /* elf32_fdpic_loadseg */
2434     n = info->nsegs;
2435     while (n--) {
2436         sp -= 12;
2437         put_user_u32(loadsegs[n].addr, sp+0);
2438         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2439         put_user_u32(loadsegs[n].p_memsz, sp+8);
2440     }
2441 
2442     /* elf32_fdpic_loadmap */
2443     sp -= 4;
2444     put_user_u16(0, sp+0); /* version */
2445     put_user_u16(info->nsegs, sp+2); /* nsegs */
2446 
2447     info->personality = PER_LINUX_FDPIC;
2448     info->loadmap_addr = sp;
2449 
2450     return sp;
2451 }
2452 
2453 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2454                                    struct elfhdr *exec,
2455                                    struct image_info *info,
2456                                    struct image_info *interp_info,
2457                                    struct image_info *vdso_info)
2458 {
2459     abi_ulong sp;
2460     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2461     int size;
2462     int i;
2463     abi_ulong u_rand_bytes;
2464     uint8_t k_rand_bytes[16];
2465     abi_ulong u_platform, u_base_platform;
2466     const char *k_platform, *k_base_platform;
2467     const int n = sizeof(elf_addr_t);
2468 
2469     sp = p;
2470 
2471     /* Needs to be before we load the env/argc/... */
2472     if (elf_is_fdpic(exec)) {
2473         /* Need 4 byte alignment for these structs */
2474         sp &= ~3;
2475         sp = loader_build_fdpic_loadmap(info, sp);
2476         info->other_info = interp_info;
2477         if (interp_info) {
2478             interp_info->other_info = info;
2479             sp = loader_build_fdpic_loadmap(interp_info, sp);
2480             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2481             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2482         } else {
2483             info->interpreter_loadmap_addr = 0;
2484             info->interpreter_pt_dynamic_addr = 0;
2485         }
2486     }
2487 
2488     u_base_platform = 0;
2489     k_base_platform = ELF_BASE_PLATFORM;
2490     if (k_base_platform) {
2491         size_t len = strlen(k_base_platform) + 1;
2492         if (STACK_GROWS_DOWN) {
2493             sp -= (len + n - 1) & ~(n - 1);
2494             u_base_platform = sp;
2495             /* FIXME - check return value of memcpy_to_target() for failure */
2496             memcpy_to_target(sp, k_base_platform, len);
2497         } else {
2498             memcpy_to_target(sp, k_base_platform, len);
2499             u_base_platform = sp;
2500             sp += len + 1;
2501         }
2502     }
2503 
2504     u_platform = 0;
2505     k_platform = ELF_PLATFORM;
2506     if (k_platform) {
2507         size_t len = strlen(k_platform) + 1;
2508         if (STACK_GROWS_DOWN) {
2509             sp -= (len + n - 1) & ~(n - 1);
2510             u_platform = sp;
2511             /* FIXME - check return value of memcpy_to_target() for failure */
2512             memcpy_to_target(sp, k_platform, len);
2513         } else {
2514             memcpy_to_target(sp, k_platform, len);
2515             u_platform = sp;
2516             sp += len + 1;
2517         }
2518     }
2519 
2520     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2521      * the argv and envp pointers.
2522      */
2523     if (STACK_GROWS_DOWN) {
2524         sp = QEMU_ALIGN_DOWN(sp, 16);
2525     } else {
2526         sp = QEMU_ALIGN_UP(sp, 16);
2527     }
2528 
2529     /*
2530      * Generate 16 random bytes for userspace PRNG seeding.
2531      */
2532     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2533     if (STACK_GROWS_DOWN) {
2534         sp -= 16;
2535         u_rand_bytes = sp;
2536         /* FIXME - check return value of memcpy_to_target() for failure */
2537         memcpy_to_target(sp, k_rand_bytes, 16);
2538     } else {
2539         memcpy_to_target(sp, k_rand_bytes, 16);
2540         u_rand_bytes = sp;
2541         sp += 16;
2542     }
2543 
2544     size = (DLINFO_ITEMS + 1) * 2;
2545     if (k_base_platform) {
2546         size += 2;
2547     }
2548     if (k_platform) {
2549         size += 2;
2550     }
2551     if (vdso_info) {
2552         size += 2;
2553     }
2554 #ifdef DLINFO_ARCH_ITEMS
2555     size += DLINFO_ARCH_ITEMS * 2;
2556 #endif
2557 #ifdef ELF_HWCAP2
2558     size += 2;
2559 #endif
2560     info->auxv_len = size * n;
2561 
2562     size += envc + argc + 2;
2563     size += 1;  /* argc itself */
2564     size *= n;
2565 
2566     /* Allocate space and finalize stack alignment for entry now.  */
2567     if (STACK_GROWS_DOWN) {
2568         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2569         sp = u_argc;
2570     } else {
2571         u_argc = sp;
2572         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2573     }
2574 
2575     u_argv = u_argc + n;
2576     u_envp = u_argv + (argc + 1) * n;
2577     u_auxv = u_envp + (envc + 1) * n;
2578     info->saved_auxv = u_auxv;
2579     info->argc = argc;
2580     info->envc = envc;
2581     info->argv = u_argv;
2582     info->envp = u_envp;
2583 
2584     /* This is correct because Linux defines
2585      * elf_addr_t as Elf32_Off / Elf64_Off
2586      */
2587 #define NEW_AUX_ENT(id, val) do {               \
2588         put_user_ual(id, u_auxv);  u_auxv += n; \
2589         put_user_ual(val, u_auxv); u_auxv += n; \
2590     } while(0)
2591 
2592 #ifdef ARCH_DLINFO
2593     /*
2594      * ARCH_DLINFO must come first so platform specific code can enforce
2595      * special alignment requirements on the AUXV if necessary (eg. PPC).
2596      */
2597     ARCH_DLINFO;
2598 #endif
2599     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2600      * on info->auxv_len will trigger.
2601      */
2602     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2603     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2604     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2605     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2606     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2607     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2608     NEW_AUX_ENT(AT_ENTRY, info->entry);
2609     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2610     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2611     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2612     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2613     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2614     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2615     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2616     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2617     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2618 
2619 #ifdef ELF_HWCAP2
2620     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2621 #endif
2622 
2623     if (u_base_platform) {
2624         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2625     }
2626     if (u_platform) {
2627         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2628     }
2629     if (vdso_info) {
2630         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2631     }
2632     NEW_AUX_ENT (AT_NULL, 0);
2633 #undef NEW_AUX_ENT
2634 
2635     /* Check that our initial calculation of the auxv length matches how much
2636      * we actually put into it.
2637      */
2638     assert(info->auxv_len == u_auxv - info->saved_auxv);
2639 
2640     put_user_ual(argc, u_argc);
2641 
2642     p = info->arg_strings;
2643     for (i = 0; i < argc; ++i) {
2644         put_user_ual(p, u_argv);
2645         u_argv += n;
2646         p += target_strlen(p) + 1;
2647     }
2648     put_user_ual(0, u_argv);
2649 
2650     p = info->env_strings;
2651     for (i = 0; i < envc; ++i) {
2652         put_user_ual(p, u_envp);
2653         u_envp += n;
2654         p += target_strlen(p) + 1;
2655     }
2656     put_user_ual(0, u_envp);
2657 
2658     return sp;
2659 }
2660 
2661 #if defined(HI_COMMPAGE)
2662 #define LO_COMMPAGE -1
2663 #elif defined(LO_COMMPAGE)
2664 #define HI_COMMPAGE 0
2665 #else
2666 #define HI_COMMPAGE 0
2667 #define LO_COMMPAGE -1
2668 #ifndef INIT_GUEST_COMMPAGE
2669 #define init_guest_commpage() true
2670 #endif
2671 #endif
2672 
2673 /**
2674  * pgb_try_mmap:
2675  * @addr: host start address
2676  * @addr_last: host last address
2677  * @keep: do not unmap the probe region
2678  *
2679  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2680  * return 0 if it is not available to map, and -1 on mmap error.
2681  * If @keep, the region is left mapped on success, otherwise unmapped.
2682  */
2683 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2684 {
2685     size_t size = addr_last - addr + 1;
2686     void *p = mmap((void *)addr, size, PROT_NONE,
2687                    MAP_ANONYMOUS | MAP_PRIVATE |
2688                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2689     int ret;
2690 
2691     if (p == MAP_FAILED) {
2692         return errno == EEXIST ? 0 : -1;
2693     }
2694     ret = p == (void *)addr;
2695     if (!keep || !ret) {
2696         munmap(p, size);
2697     }
2698     return ret;
2699 }
2700 
2701 /**
2702  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2703  * @addr: host address
2704  * @addr_last: host last address
2705  * @brk: host brk
2706  *
2707  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2708  */
2709 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2710                                  uintptr_t brk, bool keep)
2711 {
2712     uintptr_t brk_last = brk + 16 * MiB - 1;
2713 
2714     /* Do not map anything close to the host brk. */
2715     if (addr <= brk_last && brk <= addr_last) {
2716         return 0;
2717     }
2718     return pgb_try_mmap(addr, addr_last, keep);
2719 }
2720 
2721 /**
2722  * pgb_try_mmap_set:
2723  * @ga: set of guest addrs
2724  * @base: guest_base
2725  * @brk: host brk
2726  *
2727  * Return true if all @ga can be mapped by the host at @base.
2728  * On success, retain the mapping at index 0 for reserved_va.
2729  */
2730 
2731 typedef struct PGBAddrs {
2732     uintptr_t bounds[3][2]; /* start/last pairs */
2733     int nbounds;
2734 } PGBAddrs;
2735 
2736 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2737 {
2738     for (int i = ga->nbounds - 1; i >= 0; --i) {
2739         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2740                                   ga->bounds[i][1] + base,
2741                                   brk, i == 0 && reserved_va) <= 0) {
2742             return false;
2743         }
2744     }
2745     return true;
2746 }
2747 
2748 /**
2749  * pgb_addr_set:
2750  * @ga: output set of guest addrs
2751  * @guest_loaddr: guest image low address
2752  * @guest_loaddr: guest image high address
2753  * @identity: create for identity mapping
2754  *
2755  * Fill in @ga with the image, COMMPAGE and NULL page.
2756  */
2757 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2758                          abi_ulong guest_hiaddr, bool try_identity)
2759 {
2760     int n;
2761 
2762     /*
2763      * With a low commpage, or a guest mapped very low,
2764      * we may not be able to use the identity map.
2765      */
2766     if (try_identity) {
2767         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2768             return false;
2769         }
2770         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2771             return false;
2772         }
2773     }
2774 
2775     memset(ga, 0, sizeof(*ga));
2776     n = 0;
2777 
2778     if (reserved_va) {
2779         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2780         ga->bounds[n][1] = reserved_va;
2781         n++;
2782         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2783     } else {
2784         /* Add any LO_COMMPAGE or NULL page. */
2785         if (LO_COMMPAGE != -1) {
2786             ga->bounds[n][0] = 0;
2787             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2788             n++;
2789         } else if (!try_identity) {
2790             ga->bounds[n][0] = 0;
2791             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2792             n++;
2793         }
2794 
2795         /* Add the guest image for ET_EXEC. */
2796         if (guest_loaddr) {
2797             ga->bounds[n][0] = guest_loaddr;
2798             ga->bounds[n][1] = guest_hiaddr;
2799             n++;
2800         }
2801     }
2802 
2803     /*
2804      * Temporarily disable
2805      *   "comparison is always false due to limited range of data type"
2806      * due to comparison between unsigned and (possible) 0.
2807      */
2808 #pragma GCC diagnostic push
2809 #pragma GCC diagnostic ignored "-Wtype-limits"
2810 
2811     /* Add any HI_COMMPAGE not covered by reserved_va. */
2812     if (reserved_va < HI_COMMPAGE) {
2813         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2814         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2815         n++;
2816     }
2817 
2818 #pragma GCC diagnostic pop
2819 
2820     ga->nbounds = n;
2821     return true;
2822 }
2823 
2824 static void pgb_fail_in_use(const char *image_name)
2825 {
2826     error_report("%s: requires virtual address space that is in use "
2827                  "(omit the -B option or choose a different value)",
2828                  image_name);
2829     exit(EXIT_FAILURE);
2830 }
2831 
2832 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2833                       uintptr_t guest_hiaddr, uintptr_t align)
2834 {
2835     PGBAddrs ga;
2836     uintptr_t brk = (uintptr_t)sbrk(0);
2837 
2838     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2839         fprintf(stderr, "Requested guest base %p does not satisfy "
2840                 "host minimum alignment (0x%" PRIxPTR ")\n",
2841                 (void *)guest_base, align);
2842         exit(EXIT_FAILURE);
2843     }
2844 
2845     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2846         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2847         pgb_fail_in_use(image_name);
2848     }
2849 }
2850 
2851 /**
2852  * pgb_find_fallback:
2853  *
2854  * This is a fallback method for finding holes in the host address space
2855  * if we don't have the benefit of being able to access /proc/self/map.
2856  * It can potentially take a very long time as we can only dumbly iterate
2857  * up the host address space seeing if the allocation would work.
2858  */
2859 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2860                                    uintptr_t brk)
2861 {
2862     /* TODO: come up with a better estimate of how much to skip. */
2863     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2864 
2865     for (uintptr_t base = skip; ; base += skip) {
2866         base = ROUND_UP(base, align);
2867         if (pgb_try_mmap_set(ga, base, brk)) {
2868             return base;
2869         }
2870         if (base >= -skip) {
2871             return -1;
2872         }
2873     }
2874 }
2875 
2876 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2877                                IntervalTreeRoot *root)
2878 {
2879     for (int i = ga->nbounds - 1; i >= 0; --i) {
2880         uintptr_t s = base + ga->bounds[i][0];
2881         uintptr_t l = base + ga->bounds[i][1];
2882         IntervalTreeNode *n;
2883 
2884         if (l < s) {
2885             /* Wraparound. Skip to advance S to mmap_min_addr. */
2886             return mmap_min_addr - s;
2887         }
2888 
2889         n = interval_tree_iter_first(root, s, l);
2890         if (n != NULL) {
2891             /* Conflict.  Skip to advance S to LAST + 1. */
2892             return n->last - s + 1;
2893         }
2894     }
2895     return 0;  /* success */
2896 }
2897 
2898 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2899                                 uintptr_t align, uintptr_t brk)
2900 {
2901     uintptr_t last = mmap_min_addr;
2902     uintptr_t base, skip;
2903 
2904     while (true) {
2905         base = ROUND_UP(last, align);
2906         if (base < last) {
2907             return -1;
2908         }
2909 
2910         skip = pgb_try_itree(ga, base, root);
2911         if (skip == 0) {
2912             break;
2913         }
2914 
2915         last = base + skip;
2916         if (last < base) {
2917             return -1;
2918         }
2919     }
2920 
2921     /*
2922      * We've chosen 'base' based on holes in the interval tree,
2923      * but we don't yet know if it is a valid host address.
2924      * Because it is the first matching hole, if the host addresses
2925      * are invalid we know there are no further matches.
2926      */
2927     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2928 }
2929 
2930 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2931                         uintptr_t guest_hiaddr, uintptr_t align)
2932 {
2933     IntervalTreeRoot *root;
2934     uintptr_t brk, ret;
2935     PGBAddrs ga;
2936 
2937     /* Try the identity map first. */
2938     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2939         brk = (uintptr_t)sbrk(0);
2940         if (pgb_try_mmap_set(&ga, 0, brk)) {
2941             guest_base = 0;
2942             return;
2943         }
2944     }
2945 
2946     /*
2947      * Rebuild the address set for non-identity map.
2948      * This differs in the mapping of the guest NULL page.
2949      */
2950     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2951 
2952     root = read_self_maps();
2953 
2954     /* Read brk after we've read the maps, which will malloc. */
2955     brk = (uintptr_t)sbrk(0);
2956 
2957     if (!root) {
2958         ret = pgb_find_fallback(&ga, align, brk);
2959     } else {
2960         /*
2961          * Reserve the area close to the host brk.
2962          * This will be freed with the rest of the tree.
2963          */
2964         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2965         b->start = brk;
2966         b->last = brk + 16 * MiB - 1;
2967         interval_tree_insert(b, root);
2968 
2969         ret = pgb_find_itree(&ga, root, align, brk);
2970         free_self_maps(root);
2971     }
2972 
2973     if (ret == -1) {
2974         int w = TARGET_LONG_BITS / 4;
2975 
2976         error_report("%s: Unable to find a guest_base to satisfy all "
2977                      "guest address mapping requirements", image_name);
2978 
2979         for (int i = 0; i < ga.nbounds; ++i) {
2980             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2981                          w, (uint64_t)ga.bounds[i][0],
2982                          w, (uint64_t)ga.bounds[i][1]);
2983         }
2984         exit(EXIT_FAILURE);
2985     }
2986     guest_base = ret;
2987 }
2988 
2989 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2990                       abi_ulong guest_hiaddr)
2991 {
2992     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2993     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
2994 
2995     /* Sanity check the guest binary. */
2996     if (reserved_va) {
2997         if (guest_hiaddr > reserved_va) {
2998             error_report("%s: requires more than reserved virtual "
2999                          "address space (0x%" PRIx64 " > 0x%lx)",
3000                          image_name, (uint64_t)guest_hiaddr, reserved_va);
3001             exit(EXIT_FAILURE);
3002         }
3003     } else {
3004         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
3005             error_report("%s: requires more virtual address space "
3006                          "than the host can provide (0x%" PRIx64 ")",
3007                          image_name, (uint64_t)guest_hiaddr + 1);
3008             exit(EXIT_FAILURE);
3009         }
3010     }
3011 
3012     if (have_guest_base) {
3013         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3014     } else {
3015         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3016     }
3017 
3018     /* Reserve and initialize the commpage. */
3019     if (!init_guest_commpage()) {
3020         /* We have already probed for the commpage being free. */
3021         g_assert_not_reached();
3022     }
3023 
3024     assert(QEMU_IS_ALIGNED(guest_base, align));
3025     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3026                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3027 }
3028 
3029 enum {
3030     /* The string "GNU\0" as a magic number. */
3031     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3032     NOTE_DATA_SZ = 1 * KiB,
3033     NOTE_NAME_SZ = 4,
3034     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3035 };
3036 
3037 /*
3038  * Process a single gnu_property entry.
3039  * Return false for error.
3040  */
3041 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3042                                struct image_info *info, bool have_prev_type,
3043                                uint32_t *prev_type, Error **errp)
3044 {
3045     uint32_t pr_type, pr_datasz, step;
3046 
3047     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3048         goto error_data;
3049     }
3050     datasz -= *off;
3051     data += *off / sizeof(uint32_t);
3052 
3053     if (datasz < 2 * sizeof(uint32_t)) {
3054         goto error_data;
3055     }
3056     pr_type = data[0];
3057     pr_datasz = data[1];
3058     data += 2;
3059     datasz -= 2 * sizeof(uint32_t);
3060     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3061     if (step > datasz) {
3062         goto error_data;
3063     }
3064 
3065     /* Properties are supposed to be unique and sorted on pr_type. */
3066     if (have_prev_type && pr_type <= *prev_type) {
3067         if (pr_type == *prev_type) {
3068             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3069         } else {
3070             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3071         }
3072         return false;
3073     }
3074     *prev_type = pr_type;
3075 
3076     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3077         return false;
3078     }
3079 
3080     *off += 2 * sizeof(uint32_t) + step;
3081     return true;
3082 
3083  error_data:
3084     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3085     return false;
3086 }
3087 
3088 /* Process NT_GNU_PROPERTY_TYPE_0. */
3089 static bool parse_elf_properties(const ImageSource *src,
3090                                  struct image_info *info,
3091                                  const struct elf_phdr *phdr,
3092                                  Error **errp)
3093 {
3094     union {
3095         struct elf_note nhdr;
3096         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3097     } note;
3098 
3099     int n, off, datasz;
3100     bool have_prev_type;
3101     uint32_t prev_type;
3102 
3103     /* Unless the arch requires properties, ignore them. */
3104     if (!ARCH_USE_GNU_PROPERTY) {
3105         return true;
3106     }
3107 
3108     /* If the properties are crazy large, that's too bad. */
3109     n = phdr->p_filesz;
3110     if (n > sizeof(note)) {
3111         error_setg(errp, "PT_GNU_PROPERTY too large");
3112         return false;
3113     }
3114     if (n < sizeof(note.nhdr)) {
3115         error_setg(errp, "PT_GNU_PROPERTY too small");
3116         return false;
3117     }
3118 
3119     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3120         return false;
3121     }
3122 
3123     /*
3124      * The contents of a valid PT_GNU_PROPERTY is a sequence of uint32_t.
3125      * Swap most of them now, beyond the header and namesz.
3126      */
3127 #ifdef BSWAP_NEEDED
3128     for (int i = 4; i < n / 4; i++) {
3129         bswap32s(note.data + i);
3130     }
3131 #endif
3132 
3133     /*
3134      * Note that nhdr is 3 words, and that the "name" described by namesz
3135      * immediately follows nhdr and is thus at the 4th word.  Further, all
3136      * of the inputs to the kernel's round_up are multiples of 4.
3137      */
3138     if (tswap32(note.nhdr.n_type) != NT_GNU_PROPERTY_TYPE_0 ||
3139         tswap32(note.nhdr.n_namesz) != NOTE_NAME_SZ ||
3140         note.data[3] != GNU0_MAGIC) {
3141         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3142         return false;
3143     }
3144     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3145 
3146     datasz = tswap32(note.nhdr.n_descsz) + off;
3147     if (datasz > n) {
3148         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3149         return false;
3150     }
3151 
3152     have_prev_type = false;
3153     prev_type = 0;
3154     while (1) {
3155         if (off == datasz) {
3156             return true;  /* end, exit ok */
3157         }
3158         if (!parse_elf_property(note.data, &off, datasz, info,
3159                                 have_prev_type, &prev_type, errp)) {
3160             return false;
3161         }
3162         have_prev_type = true;
3163     }
3164 }
3165 
3166 /**
3167  * load_elf_image: Load an ELF image into the address space.
3168  * @image_name: the filename of the image, to use in error messages.
3169  * @src: the ImageSource from which to read.
3170  * @info: info collected from the loaded image.
3171  * @ehdr: the ELF header, not yet bswapped.
3172  * @pinterp_name: record any PT_INTERP string found.
3173  *
3174  * On return: @info values will be filled in, as necessary or available.
3175  */
3176 
3177 static void load_elf_image(const char *image_name, const ImageSource *src,
3178                            struct image_info *info, struct elfhdr *ehdr,
3179                            char **pinterp_name)
3180 {
3181     g_autofree struct elf_phdr *phdr = NULL;
3182     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3183     int i, prot_exec;
3184     Error *err = NULL;
3185 
3186     /*
3187      * First of all, some simple consistency checks.
3188      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3189      * for later use by load_elf_binary and create_elf_tables.
3190      */
3191     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3192         goto exit_errmsg;
3193     }
3194     if (!elf_check_ident(ehdr)) {
3195         error_setg(&err, "Invalid ELF image for this architecture");
3196         goto exit_errmsg;
3197     }
3198     bswap_ehdr(ehdr);
3199     if (!elf_check_ehdr(ehdr)) {
3200         error_setg(&err, "Invalid ELF image for this architecture");
3201         goto exit_errmsg;
3202     }
3203 
3204     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3205                              ehdr->e_phnum * sizeof(struct elf_phdr),
3206                              src, &err);
3207     if (phdr == NULL) {
3208         goto exit_errmsg;
3209     }
3210     bswap_phdr(phdr, ehdr->e_phnum);
3211 
3212     info->nsegs = 0;
3213     info->pt_dynamic_addr = 0;
3214 
3215     mmap_lock();
3216 
3217     /*
3218      * Find the maximum size of the image and allocate an appropriate
3219      * amount of memory to handle that.  Locate the interpreter, if any.
3220      */
3221     loaddr = -1, hiaddr = 0;
3222     info->alignment = 0;
3223     info->exec_stack = EXSTACK_DEFAULT;
3224     for (i = 0; i < ehdr->e_phnum; ++i) {
3225         struct elf_phdr *eppnt = phdr + i;
3226         if (eppnt->p_type == PT_LOAD) {
3227             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3228             if (a < loaddr) {
3229                 loaddr = a;
3230             }
3231             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3232             if (a > hiaddr) {
3233                 hiaddr = a;
3234             }
3235             ++info->nsegs;
3236             info->alignment |= eppnt->p_align;
3237         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3238             g_autofree char *interp_name = NULL;
3239 
3240             if (*pinterp_name) {
3241                 error_setg(&err, "Multiple PT_INTERP entries");
3242                 goto exit_errmsg;
3243             }
3244 
3245             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3246                                             src, &err);
3247             if (interp_name == NULL) {
3248                 goto exit_errmsg;
3249             }
3250             if (interp_name[eppnt->p_filesz - 1] != 0) {
3251                 error_setg(&err, "Invalid PT_INTERP entry");
3252                 goto exit_errmsg;
3253             }
3254             *pinterp_name = g_steal_pointer(&interp_name);
3255         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3256             if (!parse_elf_properties(src, info, eppnt, &err)) {
3257                 goto exit_errmsg;
3258             }
3259         } else if (eppnt->p_type == PT_GNU_STACK) {
3260             info->exec_stack = eppnt->p_flags & PF_X;
3261         }
3262     }
3263 
3264     load_addr = loaddr;
3265 
3266     if (pinterp_name != NULL) {
3267         if (ehdr->e_type == ET_EXEC) {
3268             /*
3269              * Make sure that the low address does not conflict with
3270              * MMAP_MIN_ADDR or the QEMU application itself.
3271              */
3272             probe_guest_base(image_name, loaddr, hiaddr);
3273         } else {
3274             abi_ulong align;
3275 
3276             /*
3277              * The binary is dynamic, but we still need to
3278              * select guest_base.  In this case we pass a size.
3279              */
3280             probe_guest_base(image_name, 0, hiaddr - loaddr);
3281 
3282             /*
3283              * Avoid collision with the loader by providing a different
3284              * default load address.
3285              */
3286             load_addr += elf_et_dyn_base;
3287 
3288             /*
3289              * TODO: Better support for mmap alignment is desirable.
3290              * Since we do not have complete control over the guest
3291              * address space, we prefer the kernel to choose some address
3292              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3293              * But without MAP_FIXED we cannot guarantee alignment,
3294              * only suggest it.
3295              */
3296             align = pow2ceil(info->alignment);
3297             if (align) {
3298                 load_addr &= -align;
3299             }
3300         }
3301     }
3302 
3303     /*
3304      * Reserve address space for all of this.
3305      *
3306      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3307      * exactly the address range that is required.  Without reserved_va,
3308      * the guest address space is not isolated.  We have attempted to avoid
3309      * conflict with the host program itself via probe_guest_base, but using
3310      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3311      *
3312      * Otherwise this is ET_DYN, and we are searching for a location
3313      * that can hold the memory space required.  If the image is
3314      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3315      * honor that address if it happens to be free.
3316      *
3317      * In both cases, we will overwrite pages in this range with mappings
3318      * from the executable.
3319      */
3320     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3321                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3322                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3323                             -1, 0);
3324     if (load_addr == -1) {
3325         goto exit_mmap;
3326     }
3327     load_bias = load_addr - loaddr;
3328 
3329     if (elf_is_fdpic(ehdr)) {
3330         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3331             g_malloc(sizeof(*loadsegs) * info->nsegs);
3332 
3333         for (i = 0; i < ehdr->e_phnum; ++i) {
3334             switch (phdr[i].p_type) {
3335             case PT_DYNAMIC:
3336                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3337                 break;
3338             case PT_LOAD:
3339                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3340                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3341                 loadsegs->p_memsz = phdr[i].p_memsz;
3342                 ++loadsegs;
3343                 break;
3344             }
3345         }
3346     }
3347 
3348     info->load_bias = load_bias;
3349     info->code_offset = load_bias;
3350     info->data_offset = load_bias;
3351     info->load_addr = load_addr;
3352     info->entry = ehdr->e_entry + load_bias;
3353     info->start_code = -1;
3354     info->end_code = 0;
3355     info->start_data = -1;
3356     info->end_data = 0;
3357     /* Usual start for brk is after all sections of the main executable. */
3358     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3359     info->elf_flags = ehdr->e_flags;
3360 
3361     prot_exec = PROT_EXEC;
3362 #ifdef TARGET_AARCH64
3363     /*
3364      * If the BTI feature is present, this indicates that the executable
3365      * pages of the startup binary should be mapped with PROT_BTI, so that
3366      * branch targets are enforced.
3367      *
3368      * The startup binary is either the interpreter or the static executable.
3369      * The interpreter is responsible for all pages of a dynamic executable.
3370      *
3371      * Elf notes are backward compatible to older cpus.
3372      * Do not enable BTI unless it is supported.
3373      */
3374     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3375         && (pinterp_name == NULL || *pinterp_name == 0)
3376         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3377         prot_exec |= TARGET_PROT_BTI;
3378     }
3379 #endif
3380 
3381     for (i = 0; i < ehdr->e_phnum; i++) {
3382         struct elf_phdr *eppnt = phdr + i;
3383         if (eppnt->p_type == PT_LOAD) {
3384             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3385             int elf_prot = 0;
3386 
3387             if (eppnt->p_flags & PF_R) {
3388                 elf_prot |= PROT_READ;
3389             }
3390             if (eppnt->p_flags & PF_W) {
3391                 elf_prot |= PROT_WRITE;
3392             }
3393             if (eppnt->p_flags & PF_X) {
3394                 elf_prot |= prot_exec;
3395             }
3396 
3397             vaddr = load_bias + eppnt->p_vaddr;
3398             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3399             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3400 
3401             vaddr_ef = vaddr + eppnt->p_filesz;
3402             vaddr_em = vaddr + eppnt->p_memsz;
3403 
3404             /*
3405              * Some segments may be completely empty, with a non-zero p_memsz
3406              * but no backing file segment.
3407              */
3408             if (eppnt->p_filesz != 0) {
3409                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3410                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3411                                     src, eppnt->p_offset - vaddr_po);
3412                 if (error == -1) {
3413                     goto exit_mmap;
3414                 }
3415             }
3416 
3417             /* If the load segment requests extra zeros (e.g. bss), map it. */
3418             if (vaddr_ef < vaddr_em &&
3419                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3420                 goto exit_errmsg;
3421             }
3422 
3423             /* Find the full program boundaries.  */
3424             if (elf_prot & PROT_EXEC) {
3425                 if (vaddr < info->start_code) {
3426                     info->start_code = vaddr;
3427                 }
3428                 if (vaddr_ef > info->end_code) {
3429                     info->end_code = vaddr_ef;
3430                 }
3431             }
3432             if (elf_prot & PROT_WRITE) {
3433                 if (vaddr < info->start_data) {
3434                     info->start_data = vaddr;
3435                 }
3436                 if (vaddr_ef > info->end_data) {
3437                     info->end_data = vaddr_ef;
3438                 }
3439             }
3440 #ifdef TARGET_MIPS
3441         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3442             Mips_elf_abiflags_v0 abiflags;
3443 
3444             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3445                              src, &err)) {
3446                 goto exit_errmsg;
3447             }
3448             bswap_mips_abiflags(&abiflags);
3449             info->fp_abi = abiflags.fp_abi;
3450 #endif
3451         }
3452     }
3453 
3454     if (info->end_data == 0) {
3455         info->start_data = info->end_code;
3456         info->end_data = info->end_code;
3457     }
3458 
3459     if (qemu_log_enabled()) {
3460         load_symbols(ehdr, src, load_bias);
3461     }
3462 
3463     debuginfo_report_elf(image_name, src->fd, load_bias);
3464 
3465     mmap_unlock();
3466 
3467     close(src->fd);
3468     return;
3469 
3470  exit_mmap:
3471     error_setg_errno(&err, errno, "Error mapping file");
3472     goto exit_errmsg;
3473  exit_errmsg:
3474     error_reportf_err(err, "%s: ", image_name);
3475     exit(-1);
3476 }
3477 
3478 static void load_elf_interp(const char *filename, struct image_info *info,
3479                             char bprm_buf[BPRM_BUF_SIZE])
3480 {
3481     struct elfhdr ehdr;
3482     ImageSource src;
3483     int fd, retval;
3484     Error *err = NULL;
3485 
3486     fd = open(path(filename), O_RDONLY);
3487     if (fd < 0) {
3488         error_setg_file_open(&err, errno, filename);
3489         error_report_err(err);
3490         exit(-1);
3491     }
3492 
3493     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3494     if (retval < 0) {
3495         error_setg_errno(&err, errno, "Error reading file header");
3496         error_reportf_err(err, "%s: ", filename);
3497         exit(-1);
3498     }
3499 
3500     src.fd = fd;
3501     src.cache = bprm_buf;
3502     src.cache_size = retval;
3503 
3504     load_elf_image(filename, &src, info, &ehdr, NULL);
3505 }
3506 
3507 #ifdef VDSO_HEADER
3508 #include VDSO_HEADER
3509 #define  vdso_image_info()  &vdso_image_info
3510 #else
3511 #define  vdso_image_info()  NULL
3512 #endif
3513 
3514 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3515 {
3516     ImageSource src;
3517     struct elfhdr ehdr;
3518     abi_ulong load_bias, load_addr;
3519 
3520     src.fd = -1;
3521     src.cache = vdso->image;
3522     src.cache_size = vdso->image_size;
3523 
3524     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3525     load_addr = info->load_addr;
3526     load_bias = info->load_bias;
3527 
3528     /*
3529      * We need to relocate the VDSO image.  The one built into the kernel
3530      * is built for a fixed address.  The one built for QEMU is not, since
3531      * that requires close control of the guest address space.
3532      * We pre-processed the image to locate all of the addresses that need
3533      * to be updated.
3534      */
3535     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3536         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3537         *addr = tswapal(tswapal(*addr) + load_bias);
3538     }
3539 
3540     /* Install signal trampolines, if present. */
3541     if (vdso->sigreturn_ofs) {
3542         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3543     }
3544     if (vdso->rt_sigreturn_ofs) {
3545         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3546     }
3547 
3548     /* Remove write from VDSO segment. */
3549     target_mprotect(info->start_data, info->end_data - info->start_data,
3550                     PROT_READ | PROT_EXEC);
3551 }
3552 
3553 static int symfind(const void *s0, const void *s1)
3554 {
3555     struct elf_sym *sym = (struct elf_sym *)s1;
3556     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3557     int result = 0;
3558 
3559     if (addr < sym->st_value) {
3560         result = -1;
3561     } else if (addr >= sym->st_value + sym->st_size) {
3562         result = 1;
3563     }
3564     return result;
3565 }
3566 
3567 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3568 {
3569 #if ELF_CLASS == ELFCLASS32
3570     struct elf_sym *syms = s->disas_symtab.elf32;
3571 #else
3572     struct elf_sym *syms = s->disas_symtab.elf64;
3573 #endif
3574 
3575     // binary search
3576     struct elf_sym *sym;
3577 
3578     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3579     if (sym != NULL) {
3580         return s->disas_strtab + sym->st_name;
3581     }
3582 
3583     return "";
3584 }
3585 
3586 /* FIXME: This should use elf_ops.h.inc  */
3587 static int symcmp(const void *s0, const void *s1)
3588 {
3589     struct elf_sym *sym0 = (struct elf_sym *)s0;
3590     struct elf_sym *sym1 = (struct elf_sym *)s1;
3591     return (sym0->st_value < sym1->st_value)
3592         ? -1
3593         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3594 }
3595 
3596 /* Best attempt to load symbols from this ELF object. */
3597 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3598                          abi_ulong load_bias)
3599 {
3600     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3601     g_autofree struct elf_shdr *shdr = NULL;
3602     char *strings = NULL;
3603     struct elf_sym *syms = NULL;
3604     struct elf_sym *new_syms;
3605     uint64_t segsz;
3606 
3607     shnum = hdr->e_shnum;
3608     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3609                              src, NULL);
3610     if (shdr == NULL) {
3611         return;
3612     }
3613 
3614     bswap_shdr(shdr, shnum);
3615     for (i = 0; i < shnum; ++i) {
3616         if (shdr[i].sh_type == SHT_SYMTAB) {
3617             sym_idx = i;
3618             str_idx = shdr[i].sh_link;
3619             goto found;
3620         }
3621     }
3622 
3623     /* There will be no symbol table if the file was stripped.  */
3624     return;
3625 
3626  found:
3627     /* Now know where the strtab and symtab are.  Snarf them.  */
3628 
3629     segsz = shdr[str_idx].sh_size;
3630     strings = g_try_malloc(segsz);
3631     if (!strings) {
3632         goto give_up;
3633     }
3634     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3635         goto give_up;
3636     }
3637 
3638     segsz = shdr[sym_idx].sh_size;
3639     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3640         /*
3641          * Implausibly large symbol table: give up rather than ploughing
3642          * on with the number of symbols calculation overflowing.
3643          */
3644         goto give_up;
3645     }
3646     nsyms = segsz / sizeof(struct elf_sym);
3647     syms = g_try_malloc(segsz);
3648     if (!syms) {
3649         goto give_up;
3650     }
3651     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3652         goto give_up;
3653     }
3654 
3655     for (i = 0; i < nsyms; ) {
3656         bswap_sym(syms + i);
3657         /* Throw away entries which we do not need.  */
3658         if (syms[i].st_shndx == SHN_UNDEF
3659             || syms[i].st_shndx >= SHN_LORESERVE
3660             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3661             if (i < --nsyms) {
3662                 syms[i] = syms[nsyms];
3663             }
3664         } else {
3665 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3666             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3667             syms[i].st_value &= ~(target_ulong)1;
3668 #endif
3669             syms[i].st_value += load_bias;
3670             i++;
3671         }
3672     }
3673 
3674     /* No "useful" symbol.  */
3675     if (nsyms == 0) {
3676         goto give_up;
3677     }
3678 
3679     /*
3680      * Attempt to free the storage associated with the local symbols
3681      * that we threw away.  Whether or not this has any effect on the
3682      * memory allocation depends on the malloc implementation and how
3683      * many symbols we managed to discard.
3684      */
3685     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3686     if (new_syms == NULL) {
3687         goto give_up;
3688     }
3689     syms = new_syms;
3690 
3691     qsort(syms, nsyms, sizeof(*syms), symcmp);
3692 
3693     {
3694         struct syminfo *s = g_new(struct syminfo, 1);
3695 
3696         s->disas_strtab = strings;
3697         s->disas_num_syms = nsyms;
3698 #if ELF_CLASS == ELFCLASS32
3699         s->disas_symtab.elf32 = syms;
3700 #else
3701         s->disas_symtab.elf64 = syms;
3702 #endif
3703         s->lookup_symbol = lookup_symbolxx;
3704         s->next = syminfos;
3705         syminfos = s;
3706     }
3707     return;
3708 
3709  give_up:
3710     g_free(strings);
3711     g_free(syms);
3712 }
3713 
3714 uint32_t get_elf_eflags(int fd)
3715 {
3716     struct elfhdr ehdr;
3717     off_t offset;
3718     int ret;
3719 
3720     /* Read ELF header */
3721     offset = lseek(fd, 0, SEEK_SET);
3722     if (offset == (off_t) -1) {
3723         return 0;
3724     }
3725     ret = read(fd, &ehdr, sizeof(ehdr));
3726     if (ret < sizeof(ehdr)) {
3727         return 0;
3728     }
3729     offset = lseek(fd, offset, SEEK_SET);
3730     if (offset == (off_t) -1) {
3731         return 0;
3732     }
3733 
3734     /* Check ELF signature */
3735     if (!elf_check_ident(&ehdr)) {
3736         return 0;
3737     }
3738 
3739     /* check header */
3740     bswap_ehdr(&ehdr);
3741     if (!elf_check_ehdr(&ehdr)) {
3742         return 0;
3743     }
3744 
3745     /* return architecture id */
3746     return ehdr.e_flags;
3747 }
3748 
3749 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3750 {
3751     /*
3752      * We need a copy of the elf header for passing to create_elf_tables.
3753      * We will have overwritten the original when we re-use bprm->buf
3754      * while loading the interpreter.  Allocate the storage for this now
3755      * and let elf_load_image do any swapping that may be required.
3756      */
3757     struct elfhdr ehdr;
3758     struct image_info interp_info, vdso_info;
3759     char *elf_interpreter = NULL;
3760     char *scratch;
3761 
3762     memset(&interp_info, 0, sizeof(interp_info));
3763 #ifdef TARGET_MIPS
3764     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3765 #endif
3766 
3767     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3768 
3769     /* Do this so that we can load the interpreter, if need be.  We will
3770        change some of these later */
3771     bprm->p = setup_arg_pages(bprm, info);
3772 
3773     scratch = g_new0(char, TARGET_PAGE_SIZE);
3774     if (STACK_GROWS_DOWN) {
3775         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3776                                    bprm->p, info->stack_limit);
3777         info->file_string = bprm->p;
3778         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3779                                    bprm->p, info->stack_limit);
3780         info->env_strings = bprm->p;
3781         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3782                                    bprm->p, info->stack_limit);
3783         info->arg_strings = bprm->p;
3784     } else {
3785         info->arg_strings = bprm->p;
3786         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3787                                    bprm->p, info->stack_limit);
3788         info->env_strings = bprm->p;
3789         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3790                                    bprm->p, info->stack_limit);
3791         info->file_string = bprm->p;
3792         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3793                                    bprm->p, info->stack_limit);
3794     }
3795 
3796     g_free(scratch);
3797 
3798     if (!bprm->p) {
3799         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3800         exit(-1);
3801     }
3802 
3803     if (elf_interpreter) {
3804         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3805 
3806         /*
3807          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3808          * with the mappings the interpreter can be loaded above but
3809          * near the main executable, which can leave very little room
3810          * for the heap.
3811          * If the current brk has less than 16MB, use the end of the
3812          * interpreter.
3813          */
3814         if (interp_info.brk > info->brk &&
3815             interp_info.load_bias - info->brk < 16 * MiB)  {
3816             info->brk = interp_info.brk;
3817         }
3818 
3819         /* If the program interpreter is one of these two, then assume
3820            an iBCS2 image.  Otherwise assume a native linux image.  */
3821 
3822         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3823             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3824             info->personality = PER_SVR4;
3825 
3826             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3827                and some applications "depend" upon this behavior.  Since
3828                we do not have the power to recompile these, we emulate
3829                the SVr4 behavior.  Sigh.  */
3830             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3831                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3832                         -1, 0);
3833         }
3834 #ifdef TARGET_MIPS
3835         info->interp_fp_abi = interp_info.fp_abi;
3836 #endif
3837     }
3838 
3839     /*
3840      * Load a vdso if available, which will amongst other things contain the
3841      * signal trampolines.  Otherwise, allocate a separate page for them.
3842      */
3843     const VdsoImageInfo *vdso = vdso_image_info();
3844     if (vdso) {
3845         load_elf_vdso(&vdso_info, vdso);
3846         info->vdso = vdso_info.load_bias;
3847     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3848         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3849                                           PROT_READ | PROT_WRITE,
3850                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3851         if (tramp_page == -1) {
3852             return -errno;
3853         }
3854 
3855         setup_sigtramp(tramp_page);
3856         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3857     }
3858 
3859     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3860                                 elf_interpreter ? &interp_info : NULL,
3861                                 vdso ? &vdso_info : NULL);
3862     info->start_stack = bprm->p;
3863 
3864     /* If we have an interpreter, set that as the program's entry point.
3865        Copy the load_bias as well, to help PPC64 interpret the entry
3866        point as a function descriptor.  Do this after creating elf tables
3867        so that we copy the original program entry point into the AUXV.  */
3868     if (elf_interpreter) {
3869         info->load_bias = interp_info.load_bias;
3870         info->entry = interp_info.entry;
3871         g_free(elf_interpreter);
3872     }
3873 
3874 #ifdef USE_ELF_CORE_DUMP
3875     bprm->core_dump = &elf_core_dump;
3876 #endif
3877 
3878     return 0;
3879 }
3880 
3881 #ifdef USE_ELF_CORE_DUMP
3882 #include "exec/translate-all.h"
3883 
3884 /*
3885  * Definitions to generate Intel SVR4-like core files.
3886  * These mostly have the same names as the SVR4 types with "target_elf_"
3887  * tacked on the front to prevent clashes with linux definitions,
3888  * and the typedef forms have been avoided.  This is mostly like
3889  * the SVR4 structure, but more Linuxy, with things that Linux does
3890  * not support and which gdb doesn't really use excluded.
3891  *
3892  * Fields we don't dump (their contents is zero) in linux-user qemu
3893  * are marked with XXX.
3894  *
3895  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3896  *
3897  * Porting ELF coredump for target is (quite) simple process.  First you
3898  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3899  * the target resides):
3900  *
3901  * #define USE_ELF_CORE_DUMP
3902  *
3903  * Next you define type of register set used for dumping.  ELF specification
3904  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3905  *
3906  * typedef <target_regtype> target_elf_greg_t;
3907  * #define ELF_NREG <number of registers>
3908  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3909  *
3910  * Last step is to implement target specific function that copies registers
3911  * from given cpu into just specified register set.  Prototype is:
3912  *
3913  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3914  *                                const CPUArchState *env);
3915  *
3916  * Parameters:
3917  *     regs - copy register values into here (allocated and zeroed by caller)
3918  *     env - copy registers from here
3919  *
3920  * Example for ARM target is provided in this file.
3921  */
3922 
3923 struct target_elf_siginfo {
3924     abi_int    si_signo; /* signal number */
3925     abi_int    si_code;  /* extra code */
3926     abi_int    si_errno; /* errno */
3927 };
3928 
3929 struct target_elf_prstatus {
3930     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3931     abi_short          pr_cursig;    /* Current signal */
3932     abi_ulong          pr_sigpend;   /* XXX */
3933     abi_ulong          pr_sighold;   /* XXX */
3934     target_pid_t       pr_pid;
3935     target_pid_t       pr_ppid;
3936     target_pid_t       pr_pgrp;
3937     target_pid_t       pr_sid;
3938     struct target_timeval pr_utime;  /* XXX User time */
3939     struct target_timeval pr_stime;  /* XXX System time */
3940     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3941     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3942     target_elf_gregset_t      pr_reg;       /* GP registers */
3943     abi_int            pr_fpvalid;   /* XXX */
3944 };
3945 
3946 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3947 
3948 struct target_elf_prpsinfo {
3949     char         pr_state;       /* numeric process state */
3950     char         pr_sname;       /* char for pr_state */
3951     char         pr_zomb;        /* zombie */
3952     char         pr_nice;        /* nice val */
3953     abi_ulong    pr_flag;        /* flags */
3954     target_uid_t pr_uid;
3955     target_gid_t pr_gid;
3956     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3957     /* Lots missing */
3958     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3959     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3960 };
3961 
3962 #ifdef BSWAP_NEEDED
3963 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3964 {
3965     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3966     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3967     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3968     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3969     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3970     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3971     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3972     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3973     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3974     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3975     /* cpu times are not filled, so we skip them */
3976     /* regs should be in correct format already */
3977     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3978 }
3979 
3980 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3981 {
3982     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3983     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3984     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3985     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3986     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3987     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3988     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3989 }
3990 
3991 static void bswap_note(struct elf_note *en)
3992 {
3993     bswap32s(&en->n_namesz);
3994     bswap32s(&en->n_descsz);
3995     bswap32s(&en->n_type);
3996 }
3997 #else
3998 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3999 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
4000 static inline void bswap_note(struct elf_note *en) { }
4001 #endif /* BSWAP_NEEDED */
4002 
4003 /*
4004  * Calculate file (dump) size of given memory region.
4005  */
4006 static size_t vma_dump_size(target_ulong start, target_ulong end,
4007                             unsigned long flags)
4008 {
4009     /* The area must be readable. */
4010     if (!(flags & PAGE_READ)) {
4011         return 0;
4012     }
4013 
4014     /*
4015      * Usually we don't dump executable pages as they contain
4016      * non-writable code that debugger can read directly from
4017      * target library etc. If there is no elf header, we dump it.
4018      */
4019     if (!(flags & PAGE_WRITE_ORG) &&
4020         (flags & PAGE_EXEC) &&
4021         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4022         return 0;
4023     }
4024 
4025     return end - start;
4026 }
4027 
4028 static size_t size_note(const char *name, size_t datasz)
4029 {
4030     size_t namesz = strlen(name) + 1;
4031 
4032     namesz = ROUND_UP(namesz, 4);
4033     datasz = ROUND_UP(datasz, 4);
4034 
4035     return sizeof(struct elf_note) + namesz + datasz;
4036 }
4037 
4038 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4039 {
4040     void *ptr = *pptr;
4041     struct elf_note *n = ptr;
4042     size_t namesz = strlen(name) + 1;
4043 
4044     n->n_namesz = namesz;
4045     n->n_descsz = datasz;
4046     n->n_type = type;
4047     bswap_note(n);
4048 
4049     ptr += sizeof(*n);
4050     memcpy(ptr, name, namesz);
4051 
4052     namesz = ROUND_UP(namesz, 4);
4053     datasz = ROUND_UP(datasz, 4);
4054 
4055     *pptr = ptr + namesz + datasz;
4056     return ptr + namesz;
4057 }
4058 
4059 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4060                             uint32_t flags)
4061 {
4062     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4063 
4064     elf->e_ident[EI_CLASS] = ELF_CLASS;
4065     elf->e_ident[EI_DATA] = ELF_DATA;
4066     elf->e_ident[EI_VERSION] = EV_CURRENT;
4067     elf->e_ident[EI_OSABI] = ELF_OSABI;
4068 
4069     elf->e_type = ET_CORE;
4070     elf->e_machine = machine;
4071     elf->e_version = EV_CURRENT;
4072     elf->e_phoff = sizeof(struct elfhdr);
4073     elf->e_flags = flags;
4074     elf->e_ehsize = sizeof(struct elfhdr);
4075     elf->e_phentsize = sizeof(struct elf_phdr);
4076     elf->e_phnum = segs;
4077 
4078     bswap_ehdr(elf);
4079 }
4080 
4081 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4082 {
4083     phdr->p_type = PT_NOTE;
4084     phdr->p_offset = offset;
4085     phdr->p_filesz = sz;
4086 
4087     bswap_phdr(phdr, 1);
4088 }
4089 
4090 static void fill_prstatus_note(void *data, CPUState *cpu, int signr)
4091 {
4092     /*
4093      * Because note memory is only aligned to 4, and target_elf_prstatus
4094      * may well have higher alignment requirements, fill locally and
4095      * memcpy to the destination afterward.
4096      */
4097     struct target_elf_prstatus prstatus = {
4098         .pr_info.si_signo = signr,
4099         .pr_cursig = signr,
4100         .pr_pid = get_task_state(cpu)->ts_tid,
4101         .pr_ppid = getppid(),
4102         .pr_pgrp = getpgrp(),
4103         .pr_sid = getsid(0),
4104     };
4105 
4106     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4107     bswap_prstatus(&prstatus);
4108     memcpy(data, &prstatus, sizeof(prstatus));
4109 }
4110 
4111 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4112 {
4113     /*
4114      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4115      * may well have higher alignment requirements, fill locally and
4116      * memcpy to the destination afterward.
4117      */
4118     struct target_elf_prpsinfo psinfo = {
4119         .pr_pid = getpid(),
4120         .pr_ppid = getppid(),
4121         .pr_pgrp = getpgrp(),
4122         .pr_sid = getsid(0),
4123         .pr_uid = getuid(),
4124         .pr_gid = getgid(),
4125     };
4126     char *base_filename;
4127     size_t len;
4128 
4129     len = ts->info->env_strings - ts->info->arg_strings;
4130     len = MIN(len, ELF_PRARGSZ);
4131     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4132     for (size_t i = 0; i < len; i++) {
4133         if (psinfo.pr_psargs[i] == 0) {
4134             psinfo.pr_psargs[i] = ' ';
4135         }
4136     }
4137 
4138     base_filename = g_path_get_basename(ts->bprm->filename);
4139     /*
4140      * Using strncpy here is fine: at max-length,
4141      * this field is not NUL-terminated.
4142      */
4143     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4144     g_free(base_filename);
4145 
4146     bswap_psinfo(&psinfo);
4147     memcpy(data, &psinfo, sizeof(psinfo));
4148 }
4149 
4150 static void fill_auxv_note(void *data, const TaskState *ts)
4151 {
4152     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4153 }
4154 
4155 /*
4156  * Constructs name of coredump file.  We have following convention
4157  * for the name:
4158  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4159  *
4160  * Returns the filename
4161  */
4162 static char *core_dump_filename(const TaskState *ts)
4163 {
4164     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4165     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4166     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4167 
4168     return g_strdup_printf("qemu_%s_%s_%d.core",
4169                            base_filename, nowstr, (int)getpid());
4170 }
4171 
4172 static int dump_write(int fd, const void *ptr, size_t size)
4173 {
4174     const char *bufp = (const char *)ptr;
4175     ssize_t bytes_written, bytes_left;
4176 
4177     bytes_written = 0;
4178     bytes_left = size;
4179 
4180     /*
4181      * In normal conditions, single write(2) should do but
4182      * in case of socket etc. this mechanism is more portable.
4183      */
4184     do {
4185         bytes_written = write(fd, bufp, bytes_left);
4186         if (bytes_written < 0) {
4187             if (errno == EINTR)
4188                 continue;
4189             return (-1);
4190         } else if (bytes_written == 0) { /* eof */
4191             return (-1);
4192         }
4193         bufp += bytes_written;
4194         bytes_left -= bytes_written;
4195     } while (bytes_left > 0);
4196 
4197     return (0);
4198 }
4199 
4200 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4201                                       target_ulong end, unsigned long flags)
4202 {
4203     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4204         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4205 
4206         while (1) {
4207             page_unprotect(start, 0);
4208             if (end - start <= step) {
4209                 break;
4210             }
4211             start += step;
4212         }
4213     }
4214     return 0;
4215 }
4216 
4217 typedef struct {
4218     unsigned count;
4219     size_t size;
4220 } CountAndSizeRegions;
4221 
4222 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4223                                       target_ulong end, unsigned long flags)
4224 {
4225     CountAndSizeRegions *css = opaque;
4226 
4227     css->count++;
4228     css->size += vma_dump_size(start, end, flags);
4229     return 0;
4230 }
4231 
4232 typedef struct {
4233     struct elf_phdr *phdr;
4234     off_t offset;
4235 } FillRegionPhdr;
4236 
4237 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4238                                 target_ulong end, unsigned long flags)
4239 {
4240     FillRegionPhdr *d = opaque;
4241     struct elf_phdr *phdr = d->phdr;
4242 
4243     phdr->p_type = PT_LOAD;
4244     phdr->p_vaddr = start;
4245     phdr->p_paddr = 0;
4246     phdr->p_filesz = vma_dump_size(start, end, flags);
4247     phdr->p_offset = d->offset;
4248     d->offset += phdr->p_filesz;
4249     phdr->p_memsz = end - start;
4250     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4251                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4252                   | (flags & PAGE_EXEC ? PF_X : 0);
4253     phdr->p_align = ELF_EXEC_PAGESIZE;
4254 
4255     bswap_phdr(phdr, 1);
4256     d->phdr = phdr + 1;
4257     return 0;
4258 }
4259 
4260 static int wmr_write_region(void *opaque, target_ulong start,
4261                             target_ulong end, unsigned long flags)
4262 {
4263     int fd = *(int *)opaque;
4264     size_t size = vma_dump_size(start, end, flags);
4265 
4266     if (!size) {
4267         return 0;
4268     }
4269     return dump_write(fd, g2h_untagged(start), size);
4270 }
4271 
4272 /*
4273  * Write out ELF coredump.
4274  *
4275  * See documentation of ELF object file format in:
4276  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4277  *
4278  * Coredump format in linux is following:
4279  *
4280  * 0   +----------------------+         \
4281  *     | ELF header           | ET_CORE  |
4282  *     +----------------------+          |
4283  *     | ELF program headers  |          |--- headers
4284  *     | - NOTE section       |          |
4285  *     | - PT_LOAD sections   |          |
4286  *     +----------------------+         /
4287  *     | NOTEs:               |
4288  *     | - NT_PRSTATUS        |
4289  *     | - NT_PRSINFO         |
4290  *     | - NT_AUXV            |
4291  *     +----------------------+ <-- aligned to target page
4292  *     | Process memory dump  |
4293  *     :                      :
4294  *     .                      .
4295  *     :                      :
4296  *     |                      |
4297  *     +----------------------+
4298  *
4299  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4300  * NT_PRSINFO  -> struct elf_prpsinfo
4301  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4302  *
4303  * Format follows System V format as close as possible.  Current
4304  * version limitations are as follows:
4305  *     - no floating point registers are dumped
4306  *
4307  * Function returns 0 in case of success, negative errno otherwise.
4308  *
4309  * TODO: make this work also during runtime: it should be
4310  * possible to force coredump from running process and then
4311  * continue processing.  For example qemu could set up SIGUSR2
4312  * handler (provided that target process haven't registered
4313  * handler for that) that does the dump when signal is received.
4314  */
4315 static int elf_core_dump(int signr, const CPUArchState *env)
4316 {
4317     const CPUState *cpu = env_cpu_const(env);
4318     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4319     struct rlimit dumpsize;
4320     CountAndSizeRegions css;
4321     off_t offset, note_offset, data_offset;
4322     size_t note_size;
4323     int cpus, ret;
4324     int fd = -1;
4325     CPUState *cpu_iter;
4326 
4327     if (prctl(PR_GET_DUMPABLE) == 0) {
4328         return 0;
4329     }
4330 
4331     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4332         return 0;
4333     }
4334 
4335     cpu_list_lock();
4336     mmap_lock();
4337 
4338     /* By unprotecting, we merge vmas that might be split. */
4339     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4340 
4341     /*
4342      * Walk through target process memory mappings and
4343      * set up structure containing this information.
4344      */
4345     memset(&css, 0, sizeof(css));
4346     walk_memory_regions(&css, wmr_count_and_size_regions);
4347 
4348     cpus = 0;
4349     CPU_FOREACH(cpu_iter) {
4350         cpus++;
4351     }
4352 
4353     offset = sizeof(struct elfhdr);
4354     offset += (css.count + 1) * sizeof(struct elf_phdr);
4355     note_offset = offset;
4356 
4357     offset += size_note("CORE", ts->info->auxv_len);
4358     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4359     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4360     note_size = offset - note_offset;
4361     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4362 
4363     /* Do not dump if the corefile size exceeds the limit. */
4364     if (dumpsize.rlim_cur != RLIM_INFINITY
4365         && dumpsize.rlim_cur < data_offset + css.size) {
4366         errno = 0;
4367         goto out;
4368     }
4369 
4370     {
4371         g_autofree char *corefile = core_dump_filename(ts);
4372         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4373                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4374     }
4375     if (fd < 0) {
4376         goto out;
4377     }
4378 
4379     /*
4380      * There is a fair amount of alignment padding within the notes
4381      * as well as preceeding the process memory.  Allocate a zeroed
4382      * block to hold it all.  Write all of the headers directly into
4383      * this buffer and then write it out as a block.
4384      */
4385     {
4386         g_autofree void *header = g_malloc0(data_offset);
4387         FillRegionPhdr frp;
4388         void *hptr, *dptr;
4389 
4390         /* Create elf file header. */
4391         hptr = header;
4392         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4393         hptr += sizeof(struct elfhdr);
4394 
4395         /* Create elf program headers. */
4396         fill_elf_note_phdr(hptr, note_size, note_offset);
4397         hptr += sizeof(struct elf_phdr);
4398 
4399         frp.phdr = hptr;
4400         frp.offset = data_offset;
4401         walk_memory_regions(&frp, wmr_fill_region_phdr);
4402         hptr = frp.phdr;
4403 
4404         /* Create the notes. */
4405         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4406         fill_auxv_note(dptr, ts);
4407 
4408         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4409                          sizeof(struct target_elf_prpsinfo));
4410         fill_prpsinfo_note(dptr, ts);
4411 
4412         CPU_FOREACH(cpu_iter) {
4413             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4414                              sizeof(struct target_elf_prstatus));
4415             fill_prstatus_note(dptr, cpu_iter, cpu_iter == cpu ? signr : 0);
4416         }
4417 
4418         if (dump_write(fd, header, data_offset) < 0) {
4419             goto out;
4420         }
4421     }
4422 
4423     /*
4424      * Finally write process memory into the corefile as well.
4425      */
4426     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4427         goto out;
4428     }
4429     errno = 0;
4430 
4431  out:
4432     ret = -errno;
4433     mmap_unlock();
4434     cpu_list_unlock();
4435     if (fd >= 0) {
4436         close(fd);
4437     }
4438     return ret;
4439 }
4440 #endif /* USE_ELF_CORE_DUMP */
4441 
4442 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4443 {
4444     init_thread(regs, infop);
4445 }
4446