1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 /* Return 1 if the proposed guest space is suitable for the guest. 358 * Return 0 if the proposed guest space isn't suitable, but another 359 * address space should be tried. 360 * Return -1 if there is no way the proposed guest space can be 361 * valid regardless of the base. 362 * The guest code may leave a page mapped and populate it if the 363 * address is suitable. 364 */ 365 static int init_guest_commpage(unsigned long guest_base, 366 unsigned long guest_size) 367 { 368 unsigned long real_start, test_page_addr; 369 370 /* We need to check that we can force a fault on access to the 371 * commpage at 0xffff0fxx 372 */ 373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 374 375 /* If the commpage lies within the already allocated guest space, 376 * then there is no way we can allocate it. 377 * 378 * You may be thinking that that this check is redundant because 379 * we already validated the guest size against MAX_RESERVED_VA; 380 * but if qemu_host_page_mask is unusually large, then 381 * test_page_addr may be lower. 382 */ 383 if (test_page_addr >= guest_base 384 && test_page_addr < (guest_base + guest_size)) { 385 return -1; 386 } 387 388 /* Note it needs to be writeable to let us initialise it */ 389 real_start = (unsigned long) 390 mmap((void *)test_page_addr, qemu_host_page_size, 391 PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 393 394 /* If we can't map it then try another address */ 395 if (real_start == -1ul) { 396 return 0; 397 } 398 399 if (real_start != test_page_addr) { 400 /* OS didn't put the page where we asked - unmap and reject */ 401 munmap((void *)real_start, qemu_host_page_size); 402 return 0; 403 } 404 405 /* Leave the page mapped 406 * Populate it (mmap should have left it all 0'd) 407 */ 408 409 /* Kernel helper versions */ 410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 411 412 /* Now it's populated make it RO */ 413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 414 perror("Protecting guest commpage"); 415 exit(-1); 416 } 417 418 return 1; /* All good */ 419 } 420 421 #define ELF_HWCAP get_elf_hwcap() 422 #define ELF_HWCAP2 get_elf_hwcap2() 423 424 static uint32_t get_elf_hwcap(void) 425 { 426 ARMCPU *cpu = ARM_CPU(thread_cpu); 427 uint32_t hwcaps = 0; 428 429 hwcaps |= ARM_HWCAP_ARM_SWP; 430 hwcaps |= ARM_HWCAP_ARM_HALF; 431 hwcaps |= ARM_HWCAP_ARM_THUMB; 432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 433 434 /* probe for the extra features */ 435 #define GET_FEATURE(feat, hwcap) \ 436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 451 * to our VFP_FP16 feature bit. 452 */ 453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 474 #else 475 /* 64 bit ARM definitions */ 476 #define ELF_START_MMAP 0x80000000 477 478 #define ELF_ARCH EM_AARCH64 479 #define ELF_CLASS ELFCLASS64 480 #define ELF_PLATFORM "aarch64" 481 482 static inline void init_thread(struct target_pt_regs *regs, 483 struct image_info *infop) 484 { 485 abi_long stack = infop->start_stack; 486 memset(regs, 0, sizeof(*regs)); 487 488 regs->pc = infop->entry & ~0x3ULL; 489 regs->sp = stack; 490 } 491 492 #define ELF_NREG 34 493 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 494 495 static void elf_core_copy_regs(target_elf_gregset_t *regs, 496 const CPUARMState *env) 497 { 498 int i; 499 500 for (i = 0; i < 32; i++) { 501 (*regs)[i] = tswapreg(env->xregs[i]); 502 } 503 (*regs)[32] = tswapreg(env->pc); 504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 505 } 506 507 #define USE_ELF_CORE_DUMP 508 #define ELF_EXEC_PAGESIZE 4096 509 510 enum { 511 ARM_HWCAP_A64_FP = 1 << 0, 512 ARM_HWCAP_A64_ASIMD = 1 << 1, 513 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 514 ARM_HWCAP_A64_AES = 1 << 3, 515 ARM_HWCAP_A64_PMULL = 1 << 4, 516 ARM_HWCAP_A64_SHA1 = 1 << 5, 517 ARM_HWCAP_A64_SHA2 = 1 << 6, 518 ARM_HWCAP_A64_CRC32 = 1 << 7, 519 ARM_HWCAP_A64_ATOMICS = 1 << 8, 520 ARM_HWCAP_A64_FPHP = 1 << 9, 521 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 522 ARM_HWCAP_A64_CPUID = 1 << 11, 523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 524 ARM_HWCAP_A64_JSCVT = 1 << 13, 525 ARM_HWCAP_A64_FCMA = 1 << 14, 526 ARM_HWCAP_A64_LRCPC = 1 << 15, 527 ARM_HWCAP_A64_DCPOP = 1 << 16, 528 ARM_HWCAP_A64_SHA3 = 1 << 17, 529 ARM_HWCAP_A64_SM3 = 1 << 18, 530 ARM_HWCAP_A64_SM4 = 1 << 19, 531 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 532 ARM_HWCAP_A64_SHA512 = 1 << 21, 533 ARM_HWCAP_A64_SVE = 1 << 22, 534 }; 535 536 #define ELF_HWCAP get_elf_hwcap() 537 538 static uint32_t get_elf_hwcap(void) 539 { 540 ARMCPU *cpu = ARM_CPU(thread_cpu); 541 uint32_t hwcaps = 0; 542 543 hwcaps |= ARM_HWCAP_A64_FP; 544 hwcaps |= ARM_HWCAP_A64_ASIMD; 545 546 /* probe for the extra features */ 547 #define GET_FEATURE(feat, hwcap) \ 548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 558 GET_FEATURE(ARM_FEATURE_V8_FP16, 559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 562 #undef GET_FEATURE 563 564 return hwcaps; 565 } 566 567 #endif /* not TARGET_AARCH64 */ 568 #endif /* TARGET_ARM */ 569 570 #ifdef TARGET_SPARC 571 #ifdef TARGET_SPARC64 572 573 #define ELF_START_MMAP 0x80000000 574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 576 #ifndef TARGET_ABI32 577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 578 #else 579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 580 #endif 581 582 #define ELF_CLASS ELFCLASS64 583 #define ELF_ARCH EM_SPARCV9 584 585 #define STACK_BIAS 2047 586 587 static inline void init_thread(struct target_pt_regs *regs, 588 struct image_info *infop) 589 { 590 #ifndef TARGET_ABI32 591 regs->tstate = 0; 592 #endif 593 regs->pc = infop->entry; 594 regs->npc = regs->pc + 4; 595 regs->y = 0; 596 #ifdef TARGET_ABI32 597 regs->u_regs[14] = infop->start_stack - 16 * 4; 598 #else 599 if (personality(infop->personality) == PER_LINUX32) 600 regs->u_regs[14] = infop->start_stack - 16 * 4; 601 else 602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 603 #endif 604 } 605 606 #else 607 #define ELF_START_MMAP 0x80000000 608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 609 | HWCAP_SPARC_MULDIV) 610 611 #define ELF_CLASS ELFCLASS32 612 #define ELF_ARCH EM_SPARC 613 614 static inline void init_thread(struct target_pt_regs *regs, 615 struct image_info *infop) 616 { 617 regs->psr = 0; 618 regs->pc = infop->entry; 619 regs->npc = regs->pc + 4; 620 regs->y = 0; 621 regs->u_regs[14] = infop->start_stack - 16 * 4; 622 } 623 624 #endif 625 #endif 626 627 #ifdef TARGET_PPC 628 629 #define ELF_MACHINE PPC_ELF_MACHINE 630 #define ELF_START_MMAP 0x80000000 631 632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 633 634 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 635 636 #define ELF_CLASS ELFCLASS64 637 638 #else 639 640 #define ELF_CLASS ELFCLASS32 641 642 #endif 643 644 #define ELF_ARCH EM_PPC 645 646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 647 See arch/powerpc/include/asm/cputable.h. */ 648 enum { 649 QEMU_PPC_FEATURE_32 = 0x80000000, 650 QEMU_PPC_FEATURE_64 = 0x40000000, 651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 660 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 661 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 662 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 664 QEMU_PPC_FEATURE_CELL = 0x00010000, 665 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 666 QEMU_PPC_FEATURE_SMT = 0x00004000, 667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 669 QEMU_PPC_FEATURE_PA6T = 0x00000800, 670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 675 676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 678 679 /* Feature definitions in AT_HWCAP2. */ 680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 686 }; 687 688 #define ELF_HWCAP get_elf_hwcap() 689 690 static uint32_t get_elf_hwcap(void) 691 { 692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 693 uint32_t features = 0; 694 695 /* We don't have to be terribly complete here; the high points are 696 Altivec/FP/SPE support. Anything else is just a bonus. */ 697 #define GET_FEATURE(flag, feature) \ 698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 699 #define GET_FEATURE2(flags, feature) \ 700 do { \ 701 if ((cpu->env.insns_flags2 & flags) == flags) { \ 702 features |= feature; \ 703 } \ 704 } while (0) 705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 717 QEMU_PPC_FEATURE_ARCH_2_06); 718 #undef GET_FEATURE 719 #undef GET_FEATURE2 720 721 return features; 722 } 723 724 #define ELF_HWCAP2 get_elf_hwcap2() 725 726 static uint32_t get_elf_hwcap2(void) 727 { 728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 729 uint32_t features = 0; 730 731 #define GET_FEATURE(flag, feature) \ 732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 733 #define GET_FEATURE2(flag, feature) \ 734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 735 736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 740 741 #undef GET_FEATURE 742 #undef GET_FEATURE2 743 744 return features; 745 } 746 747 /* 748 * The requirements here are: 749 * - keep the final alignment of sp (sp & 0xf) 750 * - make sure the 32-bit value at the first 16 byte aligned position of 751 * AUXV is greater than 16 for glibc compatibility. 752 * AT_IGNOREPPC is used for that. 753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 755 */ 756 #define DLINFO_ARCH_ITEMS 5 757 #define ARCH_DLINFO \ 758 do { \ 759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 760 /* \ 761 * Handle glibc compatibility: these magic entries must \ 762 * be at the lowest addresses in the final auxv. \ 763 */ \ 764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 769 } while (0) 770 771 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 772 { 773 _regs->gpr[1] = infop->start_stack; 774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 775 if (get_ppc64_abi(infop) < 2) { 776 uint64_t val; 777 get_user_u64(val, infop->entry + 8); 778 _regs->gpr[2] = val + infop->load_bias; 779 get_user_u64(val, infop->entry); 780 infop->entry = val + infop->load_bias; 781 } else { 782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 783 } 784 #endif 785 _regs->nip = infop->entry; 786 } 787 788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 789 #define ELF_NREG 48 790 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 791 792 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 793 { 794 int i; 795 target_ulong ccr = 0; 796 797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 798 (*regs)[i] = tswapreg(env->gpr[i]); 799 } 800 801 (*regs)[32] = tswapreg(env->nip); 802 (*regs)[33] = tswapreg(env->msr); 803 (*regs)[35] = tswapreg(env->ctr); 804 (*regs)[36] = tswapreg(env->lr); 805 (*regs)[37] = tswapreg(env->xer); 806 807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 808 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 809 } 810 (*regs)[38] = tswapreg(ccr); 811 } 812 813 #define USE_ELF_CORE_DUMP 814 #define ELF_EXEC_PAGESIZE 4096 815 816 #endif 817 818 #ifdef TARGET_MIPS 819 820 #define ELF_START_MMAP 0x80000000 821 822 #ifdef TARGET_MIPS64 823 #define ELF_CLASS ELFCLASS64 824 #else 825 #define ELF_CLASS ELFCLASS32 826 #endif 827 #define ELF_ARCH EM_MIPS 828 829 static inline void init_thread(struct target_pt_regs *regs, 830 struct image_info *infop) 831 { 832 regs->cp0_status = 2 << CP0St_KSU; 833 regs->cp0_epc = infop->entry; 834 regs->regs[29] = infop->start_stack; 835 } 836 837 /* See linux kernel: arch/mips/include/asm/elf.h. */ 838 #define ELF_NREG 45 839 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 840 841 /* See linux kernel: arch/mips/include/asm/reg.h. */ 842 enum { 843 #ifdef TARGET_MIPS64 844 TARGET_EF_R0 = 0, 845 #else 846 TARGET_EF_R0 = 6, 847 #endif 848 TARGET_EF_R26 = TARGET_EF_R0 + 26, 849 TARGET_EF_R27 = TARGET_EF_R0 + 27, 850 TARGET_EF_LO = TARGET_EF_R0 + 32, 851 TARGET_EF_HI = TARGET_EF_R0 + 33, 852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 856 }; 857 858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 859 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 860 { 861 int i; 862 863 for (i = 0; i < TARGET_EF_R0; i++) { 864 (*regs)[i] = 0; 865 } 866 (*regs)[TARGET_EF_R0] = 0; 867 868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 870 } 871 872 (*regs)[TARGET_EF_R26] = 0; 873 (*regs)[TARGET_EF_R27] = 0; 874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 880 } 881 882 #define USE_ELF_CORE_DUMP 883 #define ELF_EXEC_PAGESIZE 4096 884 885 #endif /* TARGET_MIPS */ 886 887 #ifdef TARGET_MICROBLAZE 888 889 #define ELF_START_MMAP 0x80000000 890 891 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 892 893 #define ELF_CLASS ELFCLASS32 894 #define ELF_ARCH EM_MICROBLAZE 895 896 static inline void init_thread(struct target_pt_regs *regs, 897 struct image_info *infop) 898 { 899 regs->pc = infop->entry; 900 regs->r1 = infop->start_stack; 901 902 } 903 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #define USE_ELF_CORE_DUMP 907 #define ELF_NREG 38 908 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 909 910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 912 { 913 int i, pos = 0; 914 915 for (i = 0; i < 32; i++) { 916 (*regs)[pos++] = tswapreg(env->regs[i]); 917 } 918 919 for (i = 0; i < 6; i++) { 920 (*regs)[pos++] = tswapreg(env->sregs[i]); 921 } 922 } 923 924 #endif /* TARGET_MICROBLAZE */ 925 926 #ifdef TARGET_NIOS2 927 928 #define ELF_START_MMAP 0x80000000 929 930 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 931 932 #define ELF_CLASS ELFCLASS32 933 #define ELF_ARCH EM_ALTERA_NIOS2 934 935 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 936 { 937 regs->ea = infop->entry; 938 regs->sp = infop->start_stack; 939 regs->estatus = 0x3; 940 } 941 942 #define ELF_EXEC_PAGESIZE 4096 943 944 #define USE_ELF_CORE_DUMP 945 #define ELF_NREG 49 946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 947 948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 949 static void elf_core_copy_regs(target_elf_gregset_t *regs, 950 const CPUNios2State *env) 951 { 952 int i; 953 954 (*regs)[0] = -1; 955 for (i = 1; i < 8; i++) /* r0-r7 */ 956 (*regs)[i] = tswapreg(env->regs[i + 7]); 957 958 for (i = 8; i < 16; i++) /* r8-r15 */ 959 (*regs)[i] = tswapreg(env->regs[i - 8]); 960 961 for (i = 16; i < 24; i++) /* r16-r23 */ 962 (*regs)[i] = tswapreg(env->regs[i + 7]); 963 (*regs)[24] = -1; /* R_ET */ 964 (*regs)[25] = -1; /* R_BT */ 965 (*regs)[26] = tswapreg(env->regs[R_GP]); 966 (*regs)[27] = tswapreg(env->regs[R_SP]); 967 (*regs)[28] = tswapreg(env->regs[R_FP]); 968 (*regs)[29] = tswapreg(env->regs[R_EA]); 969 (*regs)[30] = -1; /* R_SSTATUS */ 970 (*regs)[31] = tswapreg(env->regs[R_RA]); 971 972 (*regs)[32] = tswapreg(env->regs[R_PC]); 973 974 (*regs)[33] = -1; /* R_STATUS */ 975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 976 977 for (i = 35; i < 49; i++) /* ... */ 978 (*regs)[i] = -1; 979 } 980 981 #endif /* TARGET_NIOS2 */ 982 983 #ifdef TARGET_OPENRISC 984 985 #define ELF_START_MMAP 0x08000000 986 987 #define ELF_ARCH EM_OPENRISC 988 #define ELF_CLASS ELFCLASS32 989 #define ELF_DATA ELFDATA2MSB 990 991 static inline void init_thread(struct target_pt_regs *regs, 992 struct image_info *infop) 993 { 994 regs->pc = infop->entry; 995 regs->gpr[1] = infop->start_stack; 996 } 997 998 #define USE_ELF_CORE_DUMP 999 #define ELF_EXEC_PAGESIZE 8192 1000 1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1002 #define ELF_NREG 34 /* gprs and pc, sr */ 1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1004 1005 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1006 const CPUOpenRISCState *env) 1007 { 1008 int i; 1009 1010 for (i = 0; i < 32; i++) { 1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1012 } 1013 (*regs)[32] = tswapreg(env->pc); 1014 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1015 } 1016 #define ELF_HWCAP 0 1017 #define ELF_PLATFORM NULL 1018 1019 #endif /* TARGET_OPENRISC */ 1020 1021 #ifdef TARGET_SH4 1022 1023 #define ELF_START_MMAP 0x80000000 1024 1025 #define ELF_CLASS ELFCLASS32 1026 #define ELF_ARCH EM_SH 1027 1028 static inline void init_thread(struct target_pt_regs *regs, 1029 struct image_info *infop) 1030 { 1031 /* Check other registers XXXXX */ 1032 regs->pc = infop->entry; 1033 regs->regs[15] = infop->start_stack; 1034 } 1035 1036 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1037 #define ELF_NREG 23 1038 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1039 1040 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1041 enum { 1042 TARGET_REG_PC = 16, 1043 TARGET_REG_PR = 17, 1044 TARGET_REG_SR = 18, 1045 TARGET_REG_GBR = 19, 1046 TARGET_REG_MACH = 20, 1047 TARGET_REG_MACL = 21, 1048 TARGET_REG_SYSCALL = 22 1049 }; 1050 1051 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1052 const CPUSH4State *env) 1053 { 1054 int i; 1055 1056 for (i = 0; i < 16; i++) { 1057 (*regs)[i] = tswapreg(env->gregs[i]); 1058 } 1059 1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1067 } 1068 1069 #define USE_ELF_CORE_DUMP 1070 #define ELF_EXEC_PAGESIZE 4096 1071 1072 enum { 1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1083 }; 1084 1085 #define ELF_HWCAP get_elf_hwcap() 1086 1087 static uint32_t get_elf_hwcap(void) 1088 { 1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1090 uint32_t hwcap = 0; 1091 1092 hwcap |= SH_CPU_HAS_FPU; 1093 1094 if (cpu->env.features & SH_FEATURE_SH4A) { 1095 hwcap |= SH_CPU_HAS_LLSC; 1096 } 1097 1098 return hwcap; 1099 } 1100 1101 #endif 1102 1103 #ifdef TARGET_CRIS 1104 1105 #define ELF_START_MMAP 0x80000000 1106 1107 #define ELF_CLASS ELFCLASS32 1108 #define ELF_ARCH EM_CRIS 1109 1110 static inline void init_thread(struct target_pt_regs *regs, 1111 struct image_info *infop) 1112 { 1113 regs->erp = infop->entry; 1114 } 1115 1116 #define ELF_EXEC_PAGESIZE 8192 1117 1118 #endif 1119 1120 #ifdef TARGET_M68K 1121 1122 #define ELF_START_MMAP 0x80000000 1123 1124 #define ELF_CLASS ELFCLASS32 1125 #define ELF_ARCH EM_68K 1126 1127 /* ??? Does this need to do anything? 1128 #define ELF_PLAT_INIT(_r) */ 1129 1130 static inline void init_thread(struct target_pt_regs *regs, 1131 struct image_info *infop) 1132 { 1133 regs->usp = infop->start_stack; 1134 regs->sr = 0; 1135 regs->pc = infop->entry; 1136 } 1137 1138 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1139 #define ELF_NREG 20 1140 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1141 1142 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1143 { 1144 (*regs)[0] = tswapreg(env->dregs[1]); 1145 (*regs)[1] = tswapreg(env->dregs[2]); 1146 (*regs)[2] = tswapreg(env->dregs[3]); 1147 (*regs)[3] = tswapreg(env->dregs[4]); 1148 (*regs)[4] = tswapreg(env->dregs[5]); 1149 (*regs)[5] = tswapreg(env->dregs[6]); 1150 (*regs)[6] = tswapreg(env->dregs[7]); 1151 (*regs)[7] = tswapreg(env->aregs[0]); 1152 (*regs)[8] = tswapreg(env->aregs[1]); 1153 (*regs)[9] = tswapreg(env->aregs[2]); 1154 (*regs)[10] = tswapreg(env->aregs[3]); 1155 (*regs)[11] = tswapreg(env->aregs[4]); 1156 (*regs)[12] = tswapreg(env->aregs[5]); 1157 (*regs)[13] = tswapreg(env->aregs[6]); 1158 (*regs)[14] = tswapreg(env->dregs[0]); 1159 (*regs)[15] = tswapreg(env->aregs[7]); 1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1161 (*regs)[17] = tswapreg(env->sr); 1162 (*regs)[18] = tswapreg(env->pc); 1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1164 } 1165 1166 #define USE_ELF_CORE_DUMP 1167 #define ELF_EXEC_PAGESIZE 8192 1168 1169 #endif 1170 1171 #ifdef TARGET_ALPHA 1172 1173 #define ELF_START_MMAP (0x30000000000ULL) 1174 1175 #define ELF_CLASS ELFCLASS64 1176 #define ELF_ARCH EM_ALPHA 1177 1178 static inline void init_thread(struct target_pt_regs *regs, 1179 struct image_info *infop) 1180 { 1181 regs->pc = infop->entry; 1182 regs->ps = 8; 1183 regs->usp = infop->start_stack; 1184 } 1185 1186 #define ELF_EXEC_PAGESIZE 8192 1187 1188 #endif /* TARGET_ALPHA */ 1189 1190 #ifdef TARGET_S390X 1191 1192 #define ELF_START_MMAP (0x20000000000ULL) 1193 1194 #define ELF_CLASS ELFCLASS64 1195 #define ELF_DATA ELFDATA2MSB 1196 #define ELF_ARCH EM_S390 1197 1198 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1199 { 1200 regs->psw.addr = infop->entry; 1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1202 regs->gprs[15] = infop->start_stack; 1203 } 1204 1205 #endif /* TARGET_S390X */ 1206 1207 #ifdef TARGET_TILEGX 1208 1209 /* 42 bits real used address, a half for user mode */ 1210 #define ELF_START_MMAP (0x00000020000000000ULL) 1211 1212 #define elf_check_arch(x) ((x) == EM_TILEGX) 1213 1214 #define ELF_CLASS ELFCLASS64 1215 #define ELF_DATA ELFDATA2LSB 1216 #define ELF_ARCH EM_TILEGX 1217 1218 static inline void init_thread(struct target_pt_regs *regs, 1219 struct image_info *infop) 1220 { 1221 regs->pc = infop->entry; 1222 regs->sp = infop->start_stack; 1223 1224 } 1225 1226 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1227 1228 #endif /* TARGET_TILEGX */ 1229 1230 #ifdef TARGET_RISCV 1231 1232 #define ELF_START_MMAP 0x80000000 1233 #define ELF_ARCH EM_RISCV 1234 1235 #ifdef TARGET_RISCV32 1236 #define ELF_CLASS ELFCLASS32 1237 #else 1238 #define ELF_CLASS ELFCLASS64 1239 #endif 1240 1241 static inline void init_thread(struct target_pt_regs *regs, 1242 struct image_info *infop) 1243 { 1244 regs->sepc = infop->entry; 1245 regs->sp = infop->start_stack; 1246 } 1247 1248 #define ELF_EXEC_PAGESIZE 4096 1249 1250 #endif /* TARGET_RISCV */ 1251 1252 #ifdef TARGET_HPPA 1253 1254 #define ELF_START_MMAP 0x80000000 1255 #define ELF_CLASS ELFCLASS32 1256 #define ELF_ARCH EM_PARISC 1257 #define ELF_PLATFORM "PARISC" 1258 #define STACK_GROWS_DOWN 0 1259 #define STACK_ALIGNMENT 64 1260 1261 static inline void init_thread(struct target_pt_regs *regs, 1262 struct image_info *infop) 1263 { 1264 regs->iaoq[0] = infop->entry; 1265 regs->iaoq[1] = infop->entry + 4; 1266 regs->gr[23] = 0; 1267 regs->gr[24] = infop->arg_start; 1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1269 /* The top-of-stack contains a linkage buffer. */ 1270 regs->gr[30] = infop->start_stack + 64; 1271 regs->gr[31] = infop->entry; 1272 } 1273 1274 #endif /* TARGET_HPPA */ 1275 1276 #ifdef TARGET_XTENSA 1277 1278 #define ELF_START_MMAP 0x20000000 1279 1280 #define ELF_CLASS ELFCLASS32 1281 #define ELF_ARCH EM_XTENSA 1282 1283 static inline void init_thread(struct target_pt_regs *regs, 1284 struct image_info *infop) 1285 { 1286 regs->windowbase = 0; 1287 regs->windowstart = 1; 1288 regs->areg[1] = infop->start_stack; 1289 regs->pc = infop->entry; 1290 } 1291 1292 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1293 #define ELF_NREG 128 1294 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1295 1296 enum { 1297 TARGET_REG_PC, 1298 TARGET_REG_PS, 1299 TARGET_REG_LBEG, 1300 TARGET_REG_LEND, 1301 TARGET_REG_LCOUNT, 1302 TARGET_REG_SAR, 1303 TARGET_REG_WINDOWSTART, 1304 TARGET_REG_WINDOWBASE, 1305 TARGET_REG_THREADPTR, 1306 TARGET_REG_AR0 = 64, 1307 }; 1308 1309 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1310 const CPUXtensaState *env) 1311 { 1312 unsigned i; 1313 1314 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1315 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1316 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1317 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1318 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1319 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1320 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1321 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1322 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1323 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1324 for (i = 0; i < env->config->nareg; ++i) { 1325 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1326 } 1327 } 1328 1329 #define USE_ELF_CORE_DUMP 1330 #define ELF_EXEC_PAGESIZE 4096 1331 1332 #endif /* TARGET_XTENSA */ 1333 1334 #ifndef ELF_PLATFORM 1335 #define ELF_PLATFORM (NULL) 1336 #endif 1337 1338 #ifndef ELF_MACHINE 1339 #define ELF_MACHINE ELF_ARCH 1340 #endif 1341 1342 #ifndef elf_check_arch 1343 #define elf_check_arch(x) ((x) == ELF_ARCH) 1344 #endif 1345 1346 #ifndef ELF_HWCAP 1347 #define ELF_HWCAP 0 1348 #endif 1349 1350 #ifndef STACK_GROWS_DOWN 1351 #define STACK_GROWS_DOWN 1 1352 #endif 1353 1354 #ifndef STACK_ALIGNMENT 1355 #define STACK_ALIGNMENT 16 1356 #endif 1357 1358 #ifdef TARGET_ABI32 1359 #undef ELF_CLASS 1360 #define ELF_CLASS ELFCLASS32 1361 #undef bswaptls 1362 #define bswaptls(ptr) bswap32s(ptr) 1363 #endif 1364 1365 #include "elf.h" 1366 1367 struct exec 1368 { 1369 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1370 unsigned int a_text; /* length of text, in bytes */ 1371 unsigned int a_data; /* length of data, in bytes */ 1372 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1373 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1374 unsigned int a_entry; /* start address */ 1375 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1376 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1377 }; 1378 1379 1380 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1381 #define OMAGIC 0407 1382 #define NMAGIC 0410 1383 #define ZMAGIC 0413 1384 #define QMAGIC 0314 1385 1386 /* Necessary parameters */ 1387 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1388 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1389 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1390 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1391 1392 #define DLINFO_ITEMS 15 1393 1394 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1395 { 1396 memcpy(to, from, n); 1397 } 1398 1399 #ifdef BSWAP_NEEDED 1400 static void bswap_ehdr(struct elfhdr *ehdr) 1401 { 1402 bswap16s(&ehdr->e_type); /* Object file type */ 1403 bswap16s(&ehdr->e_machine); /* Architecture */ 1404 bswap32s(&ehdr->e_version); /* Object file version */ 1405 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1406 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1407 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1408 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1409 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1410 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1411 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1412 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1413 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1414 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1415 } 1416 1417 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1418 { 1419 int i; 1420 for (i = 0; i < phnum; ++i, ++phdr) { 1421 bswap32s(&phdr->p_type); /* Segment type */ 1422 bswap32s(&phdr->p_flags); /* Segment flags */ 1423 bswaptls(&phdr->p_offset); /* Segment file offset */ 1424 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1425 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1426 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1427 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1428 bswaptls(&phdr->p_align); /* Segment alignment */ 1429 } 1430 } 1431 1432 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1433 { 1434 int i; 1435 for (i = 0; i < shnum; ++i, ++shdr) { 1436 bswap32s(&shdr->sh_name); 1437 bswap32s(&shdr->sh_type); 1438 bswaptls(&shdr->sh_flags); 1439 bswaptls(&shdr->sh_addr); 1440 bswaptls(&shdr->sh_offset); 1441 bswaptls(&shdr->sh_size); 1442 bswap32s(&shdr->sh_link); 1443 bswap32s(&shdr->sh_info); 1444 bswaptls(&shdr->sh_addralign); 1445 bswaptls(&shdr->sh_entsize); 1446 } 1447 } 1448 1449 static void bswap_sym(struct elf_sym *sym) 1450 { 1451 bswap32s(&sym->st_name); 1452 bswaptls(&sym->st_value); 1453 bswaptls(&sym->st_size); 1454 bswap16s(&sym->st_shndx); 1455 } 1456 #else 1457 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1458 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1459 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1460 static inline void bswap_sym(struct elf_sym *sym) { } 1461 #endif 1462 1463 #ifdef USE_ELF_CORE_DUMP 1464 static int elf_core_dump(int, const CPUArchState *); 1465 #endif /* USE_ELF_CORE_DUMP */ 1466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1467 1468 /* Verify the portions of EHDR within E_IDENT for the target. 1469 This can be performed before bswapping the entire header. */ 1470 static bool elf_check_ident(struct elfhdr *ehdr) 1471 { 1472 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1473 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1474 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1475 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1476 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1477 && ehdr->e_ident[EI_DATA] == ELF_DATA 1478 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1479 } 1480 1481 /* Verify the portions of EHDR outside of E_IDENT for the target. 1482 This has to wait until after bswapping the header. */ 1483 static bool elf_check_ehdr(struct elfhdr *ehdr) 1484 { 1485 return (elf_check_arch(ehdr->e_machine) 1486 && ehdr->e_ehsize == sizeof(struct elfhdr) 1487 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1488 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1489 } 1490 1491 /* 1492 * 'copy_elf_strings()' copies argument/envelope strings from user 1493 * memory to free pages in kernel mem. These are in a format ready 1494 * to be put directly into the top of new user memory. 1495 * 1496 */ 1497 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1498 abi_ulong p, abi_ulong stack_limit) 1499 { 1500 char *tmp; 1501 int len, i; 1502 abi_ulong top = p; 1503 1504 if (!p) { 1505 return 0; /* bullet-proofing */ 1506 } 1507 1508 if (STACK_GROWS_DOWN) { 1509 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1510 for (i = argc - 1; i >= 0; --i) { 1511 tmp = argv[i]; 1512 if (!tmp) { 1513 fprintf(stderr, "VFS: argc is wrong"); 1514 exit(-1); 1515 } 1516 len = strlen(tmp) + 1; 1517 tmp += len; 1518 1519 if (len > (p - stack_limit)) { 1520 return 0; 1521 } 1522 while (len) { 1523 int bytes_to_copy = (len > offset) ? offset : len; 1524 tmp -= bytes_to_copy; 1525 p -= bytes_to_copy; 1526 offset -= bytes_to_copy; 1527 len -= bytes_to_copy; 1528 1529 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1530 1531 if (offset == 0) { 1532 memcpy_to_target(p, scratch, top - p); 1533 top = p; 1534 offset = TARGET_PAGE_SIZE; 1535 } 1536 } 1537 } 1538 if (p != top) { 1539 memcpy_to_target(p, scratch + offset, top - p); 1540 } 1541 } else { 1542 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1543 for (i = 0; i < argc; ++i) { 1544 tmp = argv[i]; 1545 if (!tmp) { 1546 fprintf(stderr, "VFS: argc is wrong"); 1547 exit(-1); 1548 } 1549 len = strlen(tmp) + 1; 1550 if (len > (stack_limit - p)) { 1551 return 0; 1552 } 1553 while (len) { 1554 int bytes_to_copy = (len > remaining) ? remaining : len; 1555 1556 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1557 1558 tmp += bytes_to_copy; 1559 remaining -= bytes_to_copy; 1560 p += bytes_to_copy; 1561 len -= bytes_to_copy; 1562 1563 if (remaining == 0) { 1564 memcpy_to_target(top, scratch, p - top); 1565 top = p; 1566 remaining = TARGET_PAGE_SIZE; 1567 } 1568 } 1569 } 1570 if (p != top) { 1571 memcpy_to_target(top, scratch, p - top); 1572 } 1573 } 1574 1575 return p; 1576 } 1577 1578 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1579 * argument/environment space. Newer kernels (>2.6.33) allow more, 1580 * dependent on stack size, but guarantee at least 32 pages for 1581 * backwards compatibility. 1582 */ 1583 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1584 1585 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1586 struct image_info *info) 1587 { 1588 abi_ulong size, error, guard; 1589 1590 size = guest_stack_size; 1591 if (size < STACK_LOWER_LIMIT) { 1592 size = STACK_LOWER_LIMIT; 1593 } 1594 guard = TARGET_PAGE_SIZE; 1595 if (guard < qemu_real_host_page_size) { 1596 guard = qemu_real_host_page_size; 1597 } 1598 1599 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1600 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1601 if (error == -1) { 1602 perror("mmap stack"); 1603 exit(-1); 1604 } 1605 1606 /* We reserve one extra page at the top of the stack as guard. */ 1607 if (STACK_GROWS_DOWN) { 1608 target_mprotect(error, guard, PROT_NONE); 1609 info->stack_limit = error + guard; 1610 return info->stack_limit + size - sizeof(void *); 1611 } else { 1612 target_mprotect(error + size, guard, PROT_NONE); 1613 info->stack_limit = error + size; 1614 return error; 1615 } 1616 } 1617 1618 /* Map and zero the bss. We need to explicitly zero any fractional pages 1619 after the data section (i.e. bss). */ 1620 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1621 { 1622 uintptr_t host_start, host_map_start, host_end; 1623 1624 last_bss = TARGET_PAGE_ALIGN(last_bss); 1625 1626 /* ??? There is confusion between qemu_real_host_page_size and 1627 qemu_host_page_size here and elsewhere in target_mmap, which 1628 may lead to the end of the data section mapping from the file 1629 not being mapped. At least there was an explicit test and 1630 comment for that here, suggesting that "the file size must 1631 be known". The comment probably pre-dates the introduction 1632 of the fstat system call in target_mmap which does in fact 1633 find out the size. What isn't clear is if the workaround 1634 here is still actually needed. For now, continue with it, 1635 but merge it with the "normal" mmap that would allocate the bss. */ 1636 1637 host_start = (uintptr_t) g2h(elf_bss); 1638 host_end = (uintptr_t) g2h(last_bss); 1639 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1640 1641 if (host_map_start < host_end) { 1642 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1643 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1644 if (p == MAP_FAILED) { 1645 perror("cannot mmap brk"); 1646 exit(-1); 1647 } 1648 } 1649 1650 /* Ensure that the bss page(s) are valid */ 1651 if ((page_get_flags(last_bss-1) & prot) != prot) { 1652 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1653 } 1654 1655 if (host_start < host_map_start) { 1656 memset((void *)host_start, 0, host_map_start - host_start); 1657 } 1658 } 1659 1660 #ifdef CONFIG_USE_FDPIC 1661 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1662 { 1663 uint16_t n; 1664 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1665 1666 /* elf32_fdpic_loadseg */ 1667 n = info->nsegs; 1668 while (n--) { 1669 sp -= 12; 1670 put_user_u32(loadsegs[n].addr, sp+0); 1671 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1672 put_user_u32(loadsegs[n].p_memsz, sp+8); 1673 } 1674 1675 /* elf32_fdpic_loadmap */ 1676 sp -= 4; 1677 put_user_u16(0, sp+0); /* version */ 1678 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1679 1680 info->personality = PER_LINUX_FDPIC; 1681 info->loadmap_addr = sp; 1682 1683 return sp; 1684 } 1685 #endif 1686 1687 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1688 struct elfhdr *exec, 1689 struct image_info *info, 1690 struct image_info *interp_info) 1691 { 1692 abi_ulong sp; 1693 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1694 int size; 1695 int i; 1696 abi_ulong u_rand_bytes; 1697 uint8_t k_rand_bytes[16]; 1698 abi_ulong u_platform; 1699 const char *k_platform; 1700 const int n = sizeof(elf_addr_t); 1701 1702 sp = p; 1703 1704 #ifdef CONFIG_USE_FDPIC 1705 /* Needs to be before we load the env/argc/... */ 1706 if (elf_is_fdpic(exec)) { 1707 /* Need 4 byte alignment for these structs */ 1708 sp &= ~3; 1709 sp = loader_build_fdpic_loadmap(info, sp); 1710 info->other_info = interp_info; 1711 if (interp_info) { 1712 interp_info->other_info = info; 1713 sp = loader_build_fdpic_loadmap(interp_info, sp); 1714 } 1715 } 1716 #endif 1717 1718 u_platform = 0; 1719 k_platform = ELF_PLATFORM; 1720 if (k_platform) { 1721 size_t len = strlen(k_platform) + 1; 1722 if (STACK_GROWS_DOWN) { 1723 sp -= (len + n - 1) & ~(n - 1); 1724 u_platform = sp; 1725 /* FIXME - check return value of memcpy_to_target() for failure */ 1726 memcpy_to_target(sp, k_platform, len); 1727 } else { 1728 memcpy_to_target(sp, k_platform, len); 1729 u_platform = sp; 1730 sp += len + 1; 1731 } 1732 } 1733 1734 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1735 * the argv and envp pointers. 1736 */ 1737 if (STACK_GROWS_DOWN) { 1738 sp = QEMU_ALIGN_DOWN(sp, 16); 1739 } else { 1740 sp = QEMU_ALIGN_UP(sp, 16); 1741 } 1742 1743 /* 1744 * Generate 16 random bytes for userspace PRNG seeding (not 1745 * cryptically secure but it's not the aim of QEMU). 1746 */ 1747 for (i = 0; i < 16; i++) { 1748 k_rand_bytes[i] = rand(); 1749 } 1750 if (STACK_GROWS_DOWN) { 1751 sp -= 16; 1752 u_rand_bytes = sp; 1753 /* FIXME - check return value of memcpy_to_target() for failure */ 1754 memcpy_to_target(sp, k_rand_bytes, 16); 1755 } else { 1756 memcpy_to_target(sp, k_rand_bytes, 16); 1757 u_rand_bytes = sp; 1758 sp += 16; 1759 } 1760 1761 size = (DLINFO_ITEMS + 1) * 2; 1762 if (k_platform) 1763 size += 2; 1764 #ifdef DLINFO_ARCH_ITEMS 1765 size += DLINFO_ARCH_ITEMS * 2; 1766 #endif 1767 #ifdef ELF_HWCAP2 1768 size += 2; 1769 #endif 1770 info->auxv_len = size * n; 1771 1772 size += envc + argc + 2; 1773 size += 1; /* argc itself */ 1774 size *= n; 1775 1776 /* Allocate space and finalize stack alignment for entry now. */ 1777 if (STACK_GROWS_DOWN) { 1778 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1779 sp = u_argc; 1780 } else { 1781 u_argc = sp; 1782 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1783 } 1784 1785 u_argv = u_argc + n; 1786 u_envp = u_argv + (argc + 1) * n; 1787 u_auxv = u_envp + (envc + 1) * n; 1788 info->saved_auxv = u_auxv; 1789 info->arg_start = u_argv; 1790 info->arg_end = u_argv + argc * n; 1791 1792 /* This is correct because Linux defines 1793 * elf_addr_t as Elf32_Off / Elf64_Off 1794 */ 1795 #define NEW_AUX_ENT(id, val) do { \ 1796 put_user_ual(id, u_auxv); u_auxv += n; \ 1797 put_user_ual(val, u_auxv); u_auxv += n; \ 1798 } while(0) 1799 1800 #ifdef ARCH_DLINFO 1801 /* 1802 * ARCH_DLINFO must come first so platform specific code can enforce 1803 * special alignment requirements on the AUXV if necessary (eg. PPC). 1804 */ 1805 ARCH_DLINFO; 1806 #endif 1807 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1808 * on info->auxv_len will trigger. 1809 */ 1810 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1811 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1812 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1813 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1814 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1815 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1816 NEW_AUX_ENT(AT_ENTRY, info->entry); 1817 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1818 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1819 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1820 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1821 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1822 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1823 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1824 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1825 1826 #ifdef ELF_HWCAP2 1827 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1828 #endif 1829 1830 if (u_platform) { 1831 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1832 } 1833 NEW_AUX_ENT (AT_NULL, 0); 1834 #undef NEW_AUX_ENT 1835 1836 /* Check that our initial calculation of the auxv length matches how much 1837 * we actually put into it. 1838 */ 1839 assert(info->auxv_len == u_auxv - info->saved_auxv); 1840 1841 put_user_ual(argc, u_argc); 1842 1843 p = info->arg_strings; 1844 for (i = 0; i < argc; ++i) { 1845 put_user_ual(p, u_argv); 1846 u_argv += n; 1847 p += target_strlen(p) + 1; 1848 } 1849 put_user_ual(0, u_argv); 1850 1851 p = info->env_strings; 1852 for (i = 0; i < envc; ++i) { 1853 put_user_ual(p, u_envp); 1854 u_envp += n; 1855 p += target_strlen(p) + 1; 1856 } 1857 put_user_ual(0, u_envp); 1858 1859 return sp; 1860 } 1861 1862 unsigned long init_guest_space(unsigned long host_start, 1863 unsigned long host_size, 1864 unsigned long guest_start, 1865 bool fixed) 1866 { 1867 unsigned long current_start, aligned_start; 1868 int flags; 1869 1870 assert(host_start || host_size); 1871 1872 /* If just a starting address is given, then just verify that 1873 * address. */ 1874 if (host_start && !host_size) { 1875 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1876 if (init_guest_commpage(host_start, host_size) != 1) { 1877 return (unsigned long)-1; 1878 } 1879 #endif 1880 return host_start; 1881 } 1882 1883 /* Setup the initial flags and start address. */ 1884 current_start = host_start & qemu_host_page_mask; 1885 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1886 if (fixed) { 1887 flags |= MAP_FIXED; 1888 } 1889 1890 /* Otherwise, a non-zero size region of memory needs to be mapped 1891 * and validated. */ 1892 1893 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1894 /* On 32-bit ARM, we need to map not just the usable memory, but 1895 * also the commpage. Try to find a suitable place by allocating 1896 * a big chunk for all of it. If host_start, then the naive 1897 * strategy probably does good enough. 1898 */ 1899 if (!host_start) { 1900 unsigned long guest_full_size, host_full_size, real_start; 1901 1902 guest_full_size = 1903 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 1904 host_full_size = guest_full_size - guest_start; 1905 real_start = (unsigned long) 1906 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 1907 if (real_start == (unsigned long)-1) { 1908 if (host_size < host_full_size - qemu_host_page_size) { 1909 /* We failed to map a continous segment, but we're 1910 * allowed to have a gap between the usable memory and 1911 * the commpage where other things can be mapped. 1912 * This sparseness gives us more flexibility to find 1913 * an address range. 1914 */ 1915 goto naive; 1916 } 1917 return (unsigned long)-1; 1918 } 1919 munmap((void *)real_start, host_full_size); 1920 if (real_start & ~qemu_host_page_mask) { 1921 /* The same thing again, but with an extra qemu_host_page_size 1922 * so that we can shift around alignment. 1923 */ 1924 unsigned long real_size = host_full_size + qemu_host_page_size; 1925 real_start = (unsigned long) 1926 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 1927 if (real_start == (unsigned long)-1) { 1928 if (host_size < host_full_size - qemu_host_page_size) { 1929 goto naive; 1930 } 1931 return (unsigned long)-1; 1932 } 1933 munmap((void *)real_start, real_size); 1934 real_start = HOST_PAGE_ALIGN(real_start); 1935 } 1936 current_start = real_start; 1937 } 1938 naive: 1939 #endif 1940 1941 while (1) { 1942 unsigned long real_start, real_size, aligned_size; 1943 aligned_size = real_size = host_size; 1944 1945 /* Do not use mmap_find_vma here because that is limited to the 1946 * guest address space. We are going to make the 1947 * guest address space fit whatever we're given. 1948 */ 1949 real_start = (unsigned long) 1950 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1951 if (real_start == (unsigned long)-1) { 1952 return (unsigned long)-1; 1953 } 1954 1955 /* Check to see if the address is valid. */ 1956 if (host_start && real_start != current_start) { 1957 goto try_again; 1958 } 1959 1960 /* Ensure the address is properly aligned. */ 1961 if (real_start & ~qemu_host_page_mask) { 1962 /* Ideally, we adjust like 1963 * 1964 * pages: [ ][ ][ ][ ][ ] 1965 * old: [ real ] 1966 * [ aligned ] 1967 * new: [ real ] 1968 * [ aligned ] 1969 * 1970 * But if there is something else mapped right after it, 1971 * then obviously it won't have room to grow, and the 1972 * kernel will put the new larger real someplace else with 1973 * unknown alignment (if we made it to here, then 1974 * fixed=false). Which is why we grow real by a full page 1975 * size, instead of by part of one; so that even if we get 1976 * moved, we can still guarantee alignment. But this does 1977 * mean that there is a padding of < 1 page both before 1978 * and after the aligned range; the "after" could could 1979 * cause problems for ARM emulation where it could butt in 1980 * to where we need to put the commpage. 1981 */ 1982 munmap((void *)real_start, host_size); 1983 real_size = aligned_size + qemu_host_page_size; 1984 real_start = (unsigned long) 1985 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1986 if (real_start == (unsigned long)-1) { 1987 return (unsigned long)-1; 1988 } 1989 aligned_start = HOST_PAGE_ALIGN(real_start); 1990 } else { 1991 aligned_start = real_start; 1992 } 1993 1994 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1995 /* On 32-bit ARM, we need to also be able to map the commpage. */ 1996 int valid = init_guest_commpage(aligned_start - guest_start, 1997 aligned_size + guest_start); 1998 if (valid == -1) { 1999 munmap((void *)real_start, real_size); 2000 return (unsigned long)-1; 2001 } else if (valid == 0) { 2002 goto try_again; 2003 } 2004 #endif 2005 2006 /* If nothing has said `return -1` or `goto try_again` yet, 2007 * then the address we have is good. 2008 */ 2009 break; 2010 2011 try_again: 2012 /* That address didn't work. Unmap and try a different one. 2013 * The address the host picked because is typically right at 2014 * the top of the host address space and leaves the guest with 2015 * no usable address space. Resort to a linear search. We 2016 * already compensated for mmap_min_addr, so this should not 2017 * happen often. Probably means we got unlucky and host 2018 * address space randomization put a shared library somewhere 2019 * inconvenient. 2020 * 2021 * This is probably a good strategy if host_start, but is 2022 * probably a bad strategy if not, which means we got here 2023 * because of trouble with ARM commpage setup. 2024 */ 2025 munmap((void *)real_start, real_size); 2026 current_start += qemu_host_page_size; 2027 if (host_start == current_start) { 2028 /* Theoretically possible if host doesn't have any suitably 2029 * aligned areas. Normally the first mmap will fail. 2030 */ 2031 return (unsigned long)-1; 2032 } 2033 } 2034 2035 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2036 2037 return aligned_start; 2038 } 2039 2040 static void probe_guest_base(const char *image_name, 2041 abi_ulong loaddr, abi_ulong hiaddr) 2042 { 2043 /* Probe for a suitable guest base address, if the user has not set 2044 * it explicitly, and set guest_base appropriately. 2045 * In case of error we will print a suitable message and exit. 2046 */ 2047 const char *errmsg; 2048 if (!have_guest_base && !reserved_va) { 2049 unsigned long host_start, real_start, host_size; 2050 2051 /* Round addresses to page boundaries. */ 2052 loaddr &= qemu_host_page_mask; 2053 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2054 2055 if (loaddr < mmap_min_addr) { 2056 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2057 } else { 2058 host_start = loaddr; 2059 if (host_start != loaddr) { 2060 errmsg = "Address overflow loading ELF binary"; 2061 goto exit_errmsg; 2062 } 2063 } 2064 host_size = hiaddr - loaddr; 2065 2066 /* Setup the initial guest memory space with ranges gleaned from 2067 * the ELF image that is being loaded. 2068 */ 2069 real_start = init_guest_space(host_start, host_size, loaddr, false); 2070 if (real_start == (unsigned long)-1) { 2071 errmsg = "Unable to find space for application"; 2072 goto exit_errmsg; 2073 } 2074 guest_base = real_start - loaddr; 2075 2076 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2077 TARGET_ABI_FMT_lx " to 0x%lx\n", 2078 loaddr, real_start); 2079 } 2080 return; 2081 2082 exit_errmsg: 2083 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2084 exit(-1); 2085 } 2086 2087 2088 /* Load an ELF image into the address space. 2089 2090 IMAGE_NAME is the filename of the image, to use in error messages. 2091 IMAGE_FD is the open file descriptor for the image. 2092 2093 BPRM_BUF is a copy of the beginning of the file; this of course 2094 contains the elf file header at offset 0. It is assumed that this 2095 buffer is sufficiently aligned to present no problems to the host 2096 in accessing data at aligned offsets within the buffer. 2097 2098 On return: INFO values will be filled in, as necessary or available. */ 2099 2100 static void load_elf_image(const char *image_name, int image_fd, 2101 struct image_info *info, char **pinterp_name, 2102 char bprm_buf[BPRM_BUF_SIZE]) 2103 { 2104 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2105 struct elf_phdr *phdr; 2106 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2107 int i, retval; 2108 const char *errmsg; 2109 2110 /* First of all, some simple consistency checks */ 2111 errmsg = "Invalid ELF image for this architecture"; 2112 if (!elf_check_ident(ehdr)) { 2113 goto exit_errmsg; 2114 } 2115 bswap_ehdr(ehdr); 2116 if (!elf_check_ehdr(ehdr)) { 2117 goto exit_errmsg; 2118 } 2119 2120 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2121 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2122 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2123 } else { 2124 phdr = (struct elf_phdr *) alloca(i); 2125 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2126 if (retval != i) { 2127 goto exit_read; 2128 } 2129 } 2130 bswap_phdr(phdr, ehdr->e_phnum); 2131 2132 #ifdef CONFIG_USE_FDPIC 2133 info->nsegs = 0; 2134 info->pt_dynamic_addr = 0; 2135 #endif 2136 2137 mmap_lock(); 2138 2139 /* Find the maximum size of the image and allocate an appropriate 2140 amount of memory to handle that. */ 2141 loaddr = -1, hiaddr = 0; 2142 for (i = 0; i < ehdr->e_phnum; ++i) { 2143 if (phdr[i].p_type == PT_LOAD) { 2144 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2145 if (a < loaddr) { 2146 loaddr = a; 2147 } 2148 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2149 if (a > hiaddr) { 2150 hiaddr = a; 2151 } 2152 #ifdef CONFIG_USE_FDPIC 2153 ++info->nsegs; 2154 #endif 2155 } 2156 } 2157 2158 load_addr = loaddr; 2159 if (ehdr->e_type == ET_DYN) { 2160 /* The image indicates that it can be loaded anywhere. Find a 2161 location that can hold the memory space required. If the 2162 image is pre-linked, LOADDR will be non-zero. Since we do 2163 not supply MAP_FIXED here we'll use that address if and 2164 only if it remains available. */ 2165 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2166 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2167 -1, 0); 2168 if (load_addr == -1) { 2169 goto exit_perror; 2170 } 2171 } else if (pinterp_name != NULL) { 2172 /* This is the main executable. Make sure that the low 2173 address does not conflict with MMAP_MIN_ADDR or the 2174 QEMU application itself. */ 2175 probe_guest_base(image_name, loaddr, hiaddr); 2176 } 2177 load_bias = load_addr - loaddr; 2178 2179 #ifdef CONFIG_USE_FDPIC 2180 { 2181 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2182 g_malloc(sizeof(*loadsegs) * info->nsegs); 2183 2184 for (i = 0; i < ehdr->e_phnum; ++i) { 2185 switch (phdr[i].p_type) { 2186 case PT_DYNAMIC: 2187 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2188 break; 2189 case PT_LOAD: 2190 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2191 loadsegs->p_vaddr = phdr[i].p_vaddr; 2192 loadsegs->p_memsz = phdr[i].p_memsz; 2193 ++loadsegs; 2194 break; 2195 } 2196 } 2197 } 2198 #endif 2199 2200 info->load_bias = load_bias; 2201 info->load_addr = load_addr; 2202 info->entry = ehdr->e_entry + load_bias; 2203 info->start_code = -1; 2204 info->end_code = 0; 2205 info->start_data = -1; 2206 info->end_data = 0; 2207 info->brk = 0; 2208 info->elf_flags = ehdr->e_flags; 2209 2210 for (i = 0; i < ehdr->e_phnum; i++) { 2211 struct elf_phdr *eppnt = phdr + i; 2212 if (eppnt->p_type == PT_LOAD) { 2213 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2214 int elf_prot = 0; 2215 2216 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2217 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2218 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2219 2220 vaddr = load_bias + eppnt->p_vaddr; 2221 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2222 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2223 2224 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2225 elf_prot, MAP_PRIVATE | MAP_FIXED, 2226 image_fd, eppnt->p_offset - vaddr_po); 2227 if (error == -1) { 2228 goto exit_perror; 2229 } 2230 2231 vaddr_ef = vaddr + eppnt->p_filesz; 2232 vaddr_em = vaddr + eppnt->p_memsz; 2233 2234 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2235 if (vaddr_ef < vaddr_em) { 2236 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2237 } 2238 2239 /* Find the full program boundaries. */ 2240 if (elf_prot & PROT_EXEC) { 2241 if (vaddr < info->start_code) { 2242 info->start_code = vaddr; 2243 } 2244 if (vaddr_ef > info->end_code) { 2245 info->end_code = vaddr_ef; 2246 } 2247 } 2248 if (elf_prot & PROT_WRITE) { 2249 if (vaddr < info->start_data) { 2250 info->start_data = vaddr; 2251 } 2252 if (vaddr_ef > info->end_data) { 2253 info->end_data = vaddr_ef; 2254 } 2255 if (vaddr_em > info->brk) { 2256 info->brk = vaddr_em; 2257 } 2258 } 2259 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2260 char *interp_name; 2261 2262 if (*pinterp_name) { 2263 errmsg = "Multiple PT_INTERP entries"; 2264 goto exit_errmsg; 2265 } 2266 interp_name = malloc(eppnt->p_filesz); 2267 if (!interp_name) { 2268 goto exit_perror; 2269 } 2270 2271 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2272 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2273 eppnt->p_filesz); 2274 } else { 2275 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2276 eppnt->p_offset); 2277 if (retval != eppnt->p_filesz) { 2278 goto exit_perror; 2279 } 2280 } 2281 if (interp_name[eppnt->p_filesz - 1] != 0) { 2282 errmsg = "Invalid PT_INTERP entry"; 2283 goto exit_errmsg; 2284 } 2285 *pinterp_name = interp_name; 2286 } 2287 } 2288 2289 if (info->end_data == 0) { 2290 info->start_data = info->end_code; 2291 info->end_data = info->end_code; 2292 info->brk = info->end_code; 2293 } 2294 2295 if (qemu_log_enabled()) { 2296 load_symbols(ehdr, image_fd, load_bias); 2297 } 2298 2299 mmap_unlock(); 2300 2301 close(image_fd); 2302 return; 2303 2304 exit_read: 2305 if (retval >= 0) { 2306 errmsg = "Incomplete read of file header"; 2307 goto exit_errmsg; 2308 } 2309 exit_perror: 2310 errmsg = strerror(errno); 2311 exit_errmsg: 2312 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2313 exit(-1); 2314 } 2315 2316 static void load_elf_interp(const char *filename, struct image_info *info, 2317 char bprm_buf[BPRM_BUF_SIZE]) 2318 { 2319 int fd, retval; 2320 2321 fd = open(path(filename), O_RDONLY); 2322 if (fd < 0) { 2323 goto exit_perror; 2324 } 2325 2326 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2327 if (retval < 0) { 2328 goto exit_perror; 2329 } 2330 if (retval < BPRM_BUF_SIZE) { 2331 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2332 } 2333 2334 load_elf_image(filename, fd, info, NULL, bprm_buf); 2335 return; 2336 2337 exit_perror: 2338 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2339 exit(-1); 2340 } 2341 2342 static int symfind(const void *s0, const void *s1) 2343 { 2344 target_ulong addr = *(target_ulong *)s0; 2345 struct elf_sym *sym = (struct elf_sym *)s1; 2346 int result = 0; 2347 if (addr < sym->st_value) { 2348 result = -1; 2349 } else if (addr >= sym->st_value + sym->st_size) { 2350 result = 1; 2351 } 2352 return result; 2353 } 2354 2355 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2356 { 2357 #if ELF_CLASS == ELFCLASS32 2358 struct elf_sym *syms = s->disas_symtab.elf32; 2359 #else 2360 struct elf_sym *syms = s->disas_symtab.elf64; 2361 #endif 2362 2363 // binary search 2364 struct elf_sym *sym; 2365 2366 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2367 if (sym != NULL) { 2368 return s->disas_strtab + sym->st_name; 2369 } 2370 2371 return ""; 2372 } 2373 2374 /* FIXME: This should use elf_ops.h */ 2375 static int symcmp(const void *s0, const void *s1) 2376 { 2377 struct elf_sym *sym0 = (struct elf_sym *)s0; 2378 struct elf_sym *sym1 = (struct elf_sym *)s1; 2379 return (sym0->st_value < sym1->st_value) 2380 ? -1 2381 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2382 } 2383 2384 /* Best attempt to load symbols from this ELF object. */ 2385 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2386 { 2387 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2388 uint64_t segsz; 2389 struct elf_shdr *shdr; 2390 char *strings = NULL; 2391 struct syminfo *s = NULL; 2392 struct elf_sym *new_syms, *syms = NULL; 2393 2394 shnum = hdr->e_shnum; 2395 i = shnum * sizeof(struct elf_shdr); 2396 shdr = (struct elf_shdr *)alloca(i); 2397 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2398 return; 2399 } 2400 2401 bswap_shdr(shdr, shnum); 2402 for (i = 0; i < shnum; ++i) { 2403 if (shdr[i].sh_type == SHT_SYMTAB) { 2404 sym_idx = i; 2405 str_idx = shdr[i].sh_link; 2406 goto found; 2407 } 2408 } 2409 2410 /* There will be no symbol table if the file was stripped. */ 2411 return; 2412 2413 found: 2414 /* Now know where the strtab and symtab are. Snarf them. */ 2415 s = g_try_new(struct syminfo, 1); 2416 if (!s) { 2417 goto give_up; 2418 } 2419 2420 segsz = shdr[str_idx].sh_size; 2421 s->disas_strtab = strings = g_try_malloc(segsz); 2422 if (!strings || 2423 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2424 goto give_up; 2425 } 2426 2427 segsz = shdr[sym_idx].sh_size; 2428 syms = g_try_malloc(segsz); 2429 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2430 goto give_up; 2431 } 2432 2433 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2434 /* Implausibly large symbol table: give up rather than ploughing 2435 * on with the number of symbols calculation overflowing 2436 */ 2437 goto give_up; 2438 } 2439 nsyms = segsz / sizeof(struct elf_sym); 2440 for (i = 0; i < nsyms; ) { 2441 bswap_sym(syms + i); 2442 /* Throw away entries which we do not need. */ 2443 if (syms[i].st_shndx == SHN_UNDEF 2444 || syms[i].st_shndx >= SHN_LORESERVE 2445 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2446 if (i < --nsyms) { 2447 syms[i] = syms[nsyms]; 2448 } 2449 } else { 2450 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2451 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2452 syms[i].st_value &= ~(target_ulong)1; 2453 #endif 2454 syms[i].st_value += load_bias; 2455 i++; 2456 } 2457 } 2458 2459 /* No "useful" symbol. */ 2460 if (nsyms == 0) { 2461 goto give_up; 2462 } 2463 2464 /* Attempt to free the storage associated with the local symbols 2465 that we threw away. Whether or not this has any effect on the 2466 memory allocation depends on the malloc implementation and how 2467 many symbols we managed to discard. */ 2468 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2469 if (new_syms == NULL) { 2470 goto give_up; 2471 } 2472 syms = new_syms; 2473 2474 qsort(syms, nsyms, sizeof(*syms), symcmp); 2475 2476 s->disas_num_syms = nsyms; 2477 #if ELF_CLASS == ELFCLASS32 2478 s->disas_symtab.elf32 = syms; 2479 #else 2480 s->disas_symtab.elf64 = syms; 2481 #endif 2482 s->lookup_symbol = lookup_symbolxx; 2483 s->next = syminfos; 2484 syminfos = s; 2485 2486 return; 2487 2488 give_up: 2489 g_free(s); 2490 g_free(strings); 2491 g_free(syms); 2492 } 2493 2494 uint32_t get_elf_eflags(int fd) 2495 { 2496 struct elfhdr ehdr; 2497 off_t offset; 2498 int ret; 2499 2500 /* Read ELF header */ 2501 offset = lseek(fd, 0, SEEK_SET); 2502 if (offset == (off_t) -1) { 2503 return 0; 2504 } 2505 ret = read(fd, &ehdr, sizeof(ehdr)); 2506 if (ret < sizeof(ehdr)) { 2507 return 0; 2508 } 2509 offset = lseek(fd, offset, SEEK_SET); 2510 if (offset == (off_t) -1) { 2511 return 0; 2512 } 2513 2514 /* Check ELF signature */ 2515 if (!elf_check_ident(&ehdr)) { 2516 return 0; 2517 } 2518 2519 /* check header */ 2520 bswap_ehdr(&ehdr); 2521 if (!elf_check_ehdr(&ehdr)) { 2522 return 0; 2523 } 2524 2525 /* return architecture id */ 2526 return ehdr.e_flags; 2527 } 2528 2529 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2530 { 2531 struct image_info interp_info; 2532 struct elfhdr elf_ex; 2533 char *elf_interpreter = NULL; 2534 char *scratch; 2535 2536 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2537 2538 load_elf_image(bprm->filename, bprm->fd, info, 2539 &elf_interpreter, bprm->buf); 2540 2541 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2542 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2543 when we load the interpreter. */ 2544 elf_ex = *(struct elfhdr *)bprm->buf; 2545 2546 /* Do this so that we can load the interpreter, if need be. We will 2547 change some of these later */ 2548 bprm->p = setup_arg_pages(bprm, info); 2549 2550 scratch = g_new0(char, TARGET_PAGE_SIZE); 2551 if (STACK_GROWS_DOWN) { 2552 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2553 bprm->p, info->stack_limit); 2554 info->file_string = bprm->p; 2555 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2556 bprm->p, info->stack_limit); 2557 info->env_strings = bprm->p; 2558 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2559 bprm->p, info->stack_limit); 2560 info->arg_strings = bprm->p; 2561 } else { 2562 info->arg_strings = bprm->p; 2563 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2564 bprm->p, info->stack_limit); 2565 info->env_strings = bprm->p; 2566 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2567 bprm->p, info->stack_limit); 2568 info->file_string = bprm->p; 2569 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2570 bprm->p, info->stack_limit); 2571 } 2572 2573 g_free(scratch); 2574 2575 if (!bprm->p) { 2576 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2577 exit(-1); 2578 } 2579 2580 if (elf_interpreter) { 2581 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2582 2583 /* If the program interpreter is one of these two, then assume 2584 an iBCS2 image. Otherwise assume a native linux image. */ 2585 2586 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2587 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2588 info->personality = PER_SVR4; 2589 2590 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2591 and some applications "depend" upon this behavior. Since 2592 we do not have the power to recompile these, we emulate 2593 the SVr4 behavior. Sigh. */ 2594 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2595 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2596 } 2597 } 2598 2599 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2600 info, (elf_interpreter ? &interp_info : NULL)); 2601 info->start_stack = bprm->p; 2602 2603 /* If we have an interpreter, set that as the program's entry point. 2604 Copy the load_bias as well, to help PPC64 interpret the entry 2605 point as a function descriptor. Do this after creating elf tables 2606 so that we copy the original program entry point into the AUXV. */ 2607 if (elf_interpreter) { 2608 info->load_bias = interp_info.load_bias; 2609 info->entry = interp_info.entry; 2610 free(elf_interpreter); 2611 } 2612 2613 #ifdef USE_ELF_CORE_DUMP 2614 bprm->core_dump = &elf_core_dump; 2615 #endif 2616 2617 return 0; 2618 } 2619 2620 #ifdef USE_ELF_CORE_DUMP 2621 /* 2622 * Definitions to generate Intel SVR4-like core files. 2623 * These mostly have the same names as the SVR4 types with "target_elf_" 2624 * tacked on the front to prevent clashes with linux definitions, 2625 * and the typedef forms have been avoided. This is mostly like 2626 * the SVR4 structure, but more Linuxy, with things that Linux does 2627 * not support and which gdb doesn't really use excluded. 2628 * 2629 * Fields we don't dump (their contents is zero) in linux-user qemu 2630 * are marked with XXX. 2631 * 2632 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2633 * 2634 * Porting ELF coredump for target is (quite) simple process. First you 2635 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2636 * the target resides): 2637 * 2638 * #define USE_ELF_CORE_DUMP 2639 * 2640 * Next you define type of register set used for dumping. ELF specification 2641 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2642 * 2643 * typedef <target_regtype> target_elf_greg_t; 2644 * #define ELF_NREG <number of registers> 2645 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2646 * 2647 * Last step is to implement target specific function that copies registers 2648 * from given cpu into just specified register set. Prototype is: 2649 * 2650 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2651 * const CPUArchState *env); 2652 * 2653 * Parameters: 2654 * regs - copy register values into here (allocated and zeroed by caller) 2655 * env - copy registers from here 2656 * 2657 * Example for ARM target is provided in this file. 2658 */ 2659 2660 /* An ELF note in memory */ 2661 struct memelfnote { 2662 const char *name; 2663 size_t namesz; 2664 size_t namesz_rounded; 2665 int type; 2666 size_t datasz; 2667 size_t datasz_rounded; 2668 void *data; 2669 size_t notesz; 2670 }; 2671 2672 struct target_elf_siginfo { 2673 abi_int si_signo; /* signal number */ 2674 abi_int si_code; /* extra code */ 2675 abi_int si_errno; /* errno */ 2676 }; 2677 2678 struct target_elf_prstatus { 2679 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2680 abi_short pr_cursig; /* Current signal */ 2681 abi_ulong pr_sigpend; /* XXX */ 2682 abi_ulong pr_sighold; /* XXX */ 2683 target_pid_t pr_pid; 2684 target_pid_t pr_ppid; 2685 target_pid_t pr_pgrp; 2686 target_pid_t pr_sid; 2687 struct target_timeval pr_utime; /* XXX User time */ 2688 struct target_timeval pr_stime; /* XXX System time */ 2689 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2690 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2691 target_elf_gregset_t pr_reg; /* GP registers */ 2692 abi_int pr_fpvalid; /* XXX */ 2693 }; 2694 2695 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2696 2697 struct target_elf_prpsinfo { 2698 char pr_state; /* numeric process state */ 2699 char pr_sname; /* char for pr_state */ 2700 char pr_zomb; /* zombie */ 2701 char pr_nice; /* nice val */ 2702 abi_ulong pr_flag; /* flags */ 2703 target_uid_t pr_uid; 2704 target_gid_t pr_gid; 2705 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2706 /* Lots missing */ 2707 char pr_fname[16]; /* filename of executable */ 2708 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2709 }; 2710 2711 /* Here is the structure in which status of each thread is captured. */ 2712 struct elf_thread_status { 2713 QTAILQ_ENTRY(elf_thread_status) ets_link; 2714 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2715 #if 0 2716 elf_fpregset_t fpu; /* NT_PRFPREG */ 2717 struct task_struct *thread; 2718 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2719 #endif 2720 struct memelfnote notes[1]; 2721 int num_notes; 2722 }; 2723 2724 struct elf_note_info { 2725 struct memelfnote *notes; 2726 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2727 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2728 2729 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2730 #if 0 2731 /* 2732 * Current version of ELF coredump doesn't support 2733 * dumping fp regs etc. 2734 */ 2735 elf_fpregset_t *fpu; 2736 elf_fpxregset_t *xfpu; 2737 int thread_status_size; 2738 #endif 2739 int notes_size; 2740 int numnote; 2741 }; 2742 2743 struct vm_area_struct { 2744 target_ulong vma_start; /* start vaddr of memory region */ 2745 target_ulong vma_end; /* end vaddr of memory region */ 2746 abi_ulong vma_flags; /* protection etc. flags for the region */ 2747 QTAILQ_ENTRY(vm_area_struct) vma_link; 2748 }; 2749 2750 struct mm_struct { 2751 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2752 int mm_count; /* number of mappings */ 2753 }; 2754 2755 static struct mm_struct *vma_init(void); 2756 static void vma_delete(struct mm_struct *); 2757 static int vma_add_mapping(struct mm_struct *, target_ulong, 2758 target_ulong, abi_ulong); 2759 static int vma_get_mapping_count(const struct mm_struct *); 2760 static struct vm_area_struct *vma_first(const struct mm_struct *); 2761 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2762 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2763 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2764 unsigned long flags); 2765 2766 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2767 static void fill_note(struct memelfnote *, const char *, int, 2768 unsigned int, void *); 2769 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2770 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2771 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2772 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2773 static size_t note_size(const struct memelfnote *); 2774 static void free_note_info(struct elf_note_info *); 2775 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2776 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2777 static int core_dump_filename(const TaskState *, char *, size_t); 2778 2779 static int dump_write(int, const void *, size_t); 2780 static int write_note(struct memelfnote *, int); 2781 static int write_note_info(struct elf_note_info *, int); 2782 2783 #ifdef BSWAP_NEEDED 2784 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2785 { 2786 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2787 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2788 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2789 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2790 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2791 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2792 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2793 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2794 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2795 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2796 /* cpu times are not filled, so we skip them */ 2797 /* regs should be in correct format already */ 2798 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2799 } 2800 2801 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2802 { 2803 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2804 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2805 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2806 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2807 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2808 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2809 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2810 } 2811 2812 static void bswap_note(struct elf_note *en) 2813 { 2814 bswap32s(&en->n_namesz); 2815 bswap32s(&en->n_descsz); 2816 bswap32s(&en->n_type); 2817 } 2818 #else 2819 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2820 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2821 static inline void bswap_note(struct elf_note *en) { } 2822 #endif /* BSWAP_NEEDED */ 2823 2824 /* 2825 * Minimal support for linux memory regions. These are needed 2826 * when we are finding out what memory exactly belongs to 2827 * emulated process. No locks needed here, as long as 2828 * thread that received the signal is stopped. 2829 */ 2830 2831 static struct mm_struct *vma_init(void) 2832 { 2833 struct mm_struct *mm; 2834 2835 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2836 return (NULL); 2837 2838 mm->mm_count = 0; 2839 QTAILQ_INIT(&mm->mm_mmap); 2840 2841 return (mm); 2842 } 2843 2844 static void vma_delete(struct mm_struct *mm) 2845 { 2846 struct vm_area_struct *vma; 2847 2848 while ((vma = vma_first(mm)) != NULL) { 2849 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2850 g_free(vma); 2851 } 2852 g_free(mm); 2853 } 2854 2855 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2856 target_ulong end, abi_ulong flags) 2857 { 2858 struct vm_area_struct *vma; 2859 2860 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2861 return (-1); 2862 2863 vma->vma_start = start; 2864 vma->vma_end = end; 2865 vma->vma_flags = flags; 2866 2867 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2868 mm->mm_count++; 2869 2870 return (0); 2871 } 2872 2873 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2874 { 2875 return (QTAILQ_FIRST(&mm->mm_mmap)); 2876 } 2877 2878 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2879 { 2880 return (QTAILQ_NEXT(vma, vma_link)); 2881 } 2882 2883 static int vma_get_mapping_count(const struct mm_struct *mm) 2884 { 2885 return (mm->mm_count); 2886 } 2887 2888 /* 2889 * Calculate file (dump) size of given memory region. 2890 */ 2891 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2892 { 2893 /* if we cannot even read the first page, skip it */ 2894 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2895 return (0); 2896 2897 /* 2898 * Usually we don't dump executable pages as they contain 2899 * non-writable code that debugger can read directly from 2900 * target library etc. However, thread stacks are marked 2901 * also executable so we read in first page of given region 2902 * and check whether it contains elf header. If there is 2903 * no elf header, we dump it. 2904 */ 2905 if (vma->vma_flags & PROT_EXEC) { 2906 char page[TARGET_PAGE_SIZE]; 2907 2908 copy_from_user(page, vma->vma_start, sizeof (page)); 2909 if ((page[EI_MAG0] == ELFMAG0) && 2910 (page[EI_MAG1] == ELFMAG1) && 2911 (page[EI_MAG2] == ELFMAG2) && 2912 (page[EI_MAG3] == ELFMAG3)) { 2913 /* 2914 * Mappings are possibly from ELF binary. Don't dump 2915 * them. 2916 */ 2917 return (0); 2918 } 2919 } 2920 2921 return (vma->vma_end - vma->vma_start); 2922 } 2923 2924 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2925 unsigned long flags) 2926 { 2927 struct mm_struct *mm = (struct mm_struct *)priv; 2928 2929 vma_add_mapping(mm, start, end, flags); 2930 return (0); 2931 } 2932 2933 static void fill_note(struct memelfnote *note, const char *name, int type, 2934 unsigned int sz, void *data) 2935 { 2936 unsigned int namesz; 2937 2938 namesz = strlen(name) + 1; 2939 note->name = name; 2940 note->namesz = namesz; 2941 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2942 note->type = type; 2943 note->datasz = sz; 2944 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2945 2946 note->data = data; 2947 2948 /* 2949 * We calculate rounded up note size here as specified by 2950 * ELF document. 2951 */ 2952 note->notesz = sizeof (struct elf_note) + 2953 note->namesz_rounded + note->datasz_rounded; 2954 } 2955 2956 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2957 uint32_t flags) 2958 { 2959 (void) memset(elf, 0, sizeof(*elf)); 2960 2961 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2962 elf->e_ident[EI_CLASS] = ELF_CLASS; 2963 elf->e_ident[EI_DATA] = ELF_DATA; 2964 elf->e_ident[EI_VERSION] = EV_CURRENT; 2965 elf->e_ident[EI_OSABI] = ELF_OSABI; 2966 2967 elf->e_type = ET_CORE; 2968 elf->e_machine = machine; 2969 elf->e_version = EV_CURRENT; 2970 elf->e_phoff = sizeof(struct elfhdr); 2971 elf->e_flags = flags; 2972 elf->e_ehsize = sizeof(struct elfhdr); 2973 elf->e_phentsize = sizeof(struct elf_phdr); 2974 elf->e_phnum = segs; 2975 2976 bswap_ehdr(elf); 2977 } 2978 2979 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2980 { 2981 phdr->p_type = PT_NOTE; 2982 phdr->p_offset = offset; 2983 phdr->p_vaddr = 0; 2984 phdr->p_paddr = 0; 2985 phdr->p_filesz = sz; 2986 phdr->p_memsz = 0; 2987 phdr->p_flags = 0; 2988 phdr->p_align = 0; 2989 2990 bswap_phdr(phdr, 1); 2991 } 2992 2993 static size_t note_size(const struct memelfnote *note) 2994 { 2995 return (note->notesz); 2996 } 2997 2998 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2999 const TaskState *ts, int signr) 3000 { 3001 (void) memset(prstatus, 0, sizeof (*prstatus)); 3002 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3003 prstatus->pr_pid = ts->ts_tid; 3004 prstatus->pr_ppid = getppid(); 3005 prstatus->pr_pgrp = getpgrp(); 3006 prstatus->pr_sid = getsid(0); 3007 3008 bswap_prstatus(prstatus); 3009 } 3010 3011 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3012 { 3013 char *base_filename; 3014 unsigned int i, len; 3015 3016 (void) memset(psinfo, 0, sizeof (*psinfo)); 3017 3018 len = ts->info->arg_end - ts->info->arg_start; 3019 if (len >= ELF_PRARGSZ) 3020 len = ELF_PRARGSZ - 1; 3021 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3022 return -EFAULT; 3023 for (i = 0; i < len; i++) 3024 if (psinfo->pr_psargs[i] == 0) 3025 psinfo->pr_psargs[i] = ' '; 3026 psinfo->pr_psargs[len] = 0; 3027 3028 psinfo->pr_pid = getpid(); 3029 psinfo->pr_ppid = getppid(); 3030 psinfo->pr_pgrp = getpgrp(); 3031 psinfo->pr_sid = getsid(0); 3032 psinfo->pr_uid = getuid(); 3033 psinfo->pr_gid = getgid(); 3034 3035 base_filename = g_path_get_basename(ts->bprm->filename); 3036 /* 3037 * Using strncpy here is fine: at max-length, 3038 * this field is not NUL-terminated. 3039 */ 3040 (void) strncpy(psinfo->pr_fname, base_filename, 3041 sizeof(psinfo->pr_fname)); 3042 3043 g_free(base_filename); 3044 bswap_psinfo(psinfo); 3045 return (0); 3046 } 3047 3048 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3049 { 3050 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3051 elf_addr_t orig_auxv = auxv; 3052 void *ptr; 3053 int len = ts->info->auxv_len; 3054 3055 /* 3056 * Auxiliary vector is stored in target process stack. It contains 3057 * {type, value} pairs that we need to dump into note. This is not 3058 * strictly necessary but we do it here for sake of completeness. 3059 */ 3060 3061 /* read in whole auxv vector and copy it to memelfnote */ 3062 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3063 if (ptr != NULL) { 3064 fill_note(note, "CORE", NT_AUXV, len, ptr); 3065 unlock_user(ptr, auxv, len); 3066 } 3067 } 3068 3069 /* 3070 * Constructs name of coredump file. We have following convention 3071 * for the name: 3072 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3073 * 3074 * Returns 0 in case of success, -1 otherwise (errno is set). 3075 */ 3076 static int core_dump_filename(const TaskState *ts, char *buf, 3077 size_t bufsize) 3078 { 3079 char timestamp[64]; 3080 char *base_filename = NULL; 3081 struct timeval tv; 3082 struct tm tm; 3083 3084 assert(bufsize >= PATH_MAX); 3085 3086 if (gettimeofday(&tv, NULL) < 0) { 3087 (void) fprintf(stderr, "unable to get current timestamp: %s", 3088 strerror(errno)); 3089 return (-1); 3090 } 3091 3092 base_filename = g_path_get_basename(ts->bprm->filename); 3093 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3094 localtime_r(&tv.tv_sec, &tm)); 3095 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3096 base_filename, timestamp, (int)getpid()); 3097 g_free(base_filename); 3098 3099 return (0); 3100 } 3101 3102 static int dump_write(int fd, const void *ptr, size_t size) 3103 { 3104 const char *bufp = (const char *)ptr; 3105 ssize_t bytes_written, bytes_left; 3106 struct rlimit dumpsize; 3107 off_t pos; 3108 3109 bytes_written = 0; 3110 getrlimit(RLIMIT_CORE, &dumpsize); 3111 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3112 if (errno == ESPIPE) { /* not a seekable stream */ 3113 bytes_left = size; 3114 } else { 3115 return pos; 3116 } 3117 } else { 3118 if (dumpsize.rlim_cur <= pos) { 3119 return -1; 3120 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3121 bytes_left = size; 3122 } else { 3123 size_t limit_left=dumpsize.rlim_cur - pos; 3124 bytes_left = limit_left >= size ? size : limit_left ; 3125 } 3126 } 3127 3128 /* 3129 * In normal conditions, single write(2) should do but 3130 * in case of socket etc. this mechanism is more portable. 3131 */ 3132 do { 3133 bytes_written = write(fd, bufp, bytes_left); 3134 if (bytes_written < 0) { 3135 if (errno == EINTR) 3136 continue; 3137 return (-1); 3138 } else if (bytes_written == 0) { /* eof */ 3139 return (-1); 3140 } 3141 bufp += bytes_written; 3142 bytes_left -= bytes_written; 3143 } while (bytes_left > 0); 3144 3145 return (0); 3146 } 3147 3148 static int write_note(struct memelfnote *men, int fd) 3149 { 3150 struct elf_note en; 3151 3152 en.n_namesz = men->namesz; 3153 en.n_type = men->type; 3154 en.n_descsz = men->datasz; 3155 3156 bswap_note(&en); 3157 3158 if (dump_write(fd, &en, sizeof(en)) != 0) 3159 return (-1); 3160 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3161 return (-1); 3162 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3163 return (-1); 3164 3165 return (0); 3166 } 3167 3168 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3169 { 3170 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3171 TaskState *ts = (TaskState *)cpu->opaque; 3172 struct elf_thread_status *ets; 3173 3174 ets = g_malloc0(sizeof (*ets)); 3175 ets->num_notes = 1; /* only prstatus is dumped */ 3176 fill_prstatus(&ets->prstatus, ts, 0); 3177 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3178 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3179 &ets->prstatus); 3180 3181 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3182 3183 info->notes_size += note_size(&ets->notes[0]); 3184 } 3185 3186 static void init_note_info(struct elf_note_info *info) 3187 { 3188 /* Initialize the elf_note_info structure so that it is at 3189 * least safe to call free_note_info() on it. Must be 3190 * called before calling fill_note_info(). 3191 */ 3192 memset(info, 0, sizeof (*info)); 3193 QTAILQ_INIT(&info->thread_list); 3194 } 3195 3196 static int fill_note_info(struct elf_note_info *info, 3197 long signr, const CPUArchState *env) 3198 { 3199 #define NUMNOTES 3 3200 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3201 TaskState *ts = (TaskState *)cpu->opaque; 3202 int i; 3203 3204 info->notes = g_new0(struct memelfnote, NUMNOTES); 3205 if (info->notes == NULL) 3206 return (-ENOMEM); 3207 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3208 if (info->prstatus == NULL) 3209 return (-ENOMEM); 3210 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3211 if (info->prstatus == NULL) 3212 return (-ENOMEM); 3213 3214 /* 3215 * First fill in status (and registers) of current thread 3216 * including process info & aux vector. 3217 */ 3218 fill_prstatus(info->prstatus, ts, signr); 3219 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3220 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3221 sizeof (*info->prstatus), info->prstatus); 3222 fill_psinfo(info->psinfo, ts); 3223 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3224 sizeof (*info->psinfo), info->psinfo); 3225 fill_auxv_note(&info->notes[2], ts); 3226 info->numnote = 3; 3227 3228 info->notes_size = 0; 3229 for (i = 0; i < info->numnote; i++) 3230 info->notes_size += note_size(&info->notes[i]); 3231 3232 /* read and fill status of all threads */ 3233 cpu_list_lock(); 3234 CPU_FOREACH(cpu) { 3235 if (cpu == thread_cpu) { 3236 continue; 3237 } 3238 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3239 } 3240 cpu_list_unlock(); 3241 3242 return (0); 3243 } 3244 3245 static void free_note_info(struct elf_note_info *info) 3246 { 3247 struct elf_thread_status *ets; 3248 3249 while (!QTAILQ_EMPTY(&info->thread_list)) { 3250 ets = QTAILQ_FIRST(&info->thread_list); 3251 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3252 g_free(ets); 3253 } 3254 3255 g_free(info->prstatus); 3256 g_free(info->psinfo); 3257 g_free(info->notes); 3258 } 3259 3260 static int write_note_info(struct elf_note_info *info, int fd) 3261 { 3262 struct elf_thread_status *ets; 3263 int i, error = 0; 3264 3265 /* write prstatus, psinfo and auxv for current thread */ 3266 for (i = 0; i < info->numnote; i++) 3267 if ((error = write_note(&info->notes[i], fd)) != 0) 3268 return (error); 3269 3270 /* write prstatus for each thread */ 3271 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3272 if ((error = write_note(&ets->notes[0], fd)) != 0) 3273 return (error); 3274 } 3275 3276 return (0); 3277 } 3278 3279 /* 3280 * Write out ELF coredump. 3281 * 3282 * See documentation of ELF object file format in: 3283 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3284 * 3285 * Coredump format in linux is following: 3286 * 3287 * 0 +----------------------+ \ 3288 * | ELF header | ET_CORE | 3289 * +----------------------+ | 3290 * | ELF program headers | |--- headers 3291 * | - NOTE section | | 3292 * | - PT_LOAD sections | | 3293 * +----------------------+ / 3294 * | NOTEs: | 3295 * | - NT_PRSTATUS | 3296 * | - NT_PRSINFO | 3297 * | - NT_AUXV | 3298 * +----------------------+ <-- aligned to target page 3299 * | Process memory dump | 3300 * : : 3301 * . . 3302 * : : 3303 * | | 3304 * +----------------------+ 3305 * 3306 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3307 * NT_PRSINFO -> struct elf_prpsinfo 3308 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3309 * 3310 * Format follows System V format as close as possible. Current 3311 * version limitations are as follows: 3312 * - no floating point registers are dumped 3313 * 3314 * Function returns 0 in case of success, negative errno otherwise. 3315 * 3316 * TODO: make this work also during runtime: it should be 3317 * possible to force coredump from running process and then 3318 * continue processing. For example qemu could set up SIGUSR2 3319 * handler (provided that target process haven't registered 3320 * handler for that) that does the dump when signal is received. 3321 */ 3322 static int elf_core_dump(int signr, const CPUArchState *env) 3323 { 3324 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3325 const TaskState *ts = (const TaskState *)cpu->opaque; 3326 struct vm_area_struct *vma = NULL; 3327 char corefile[PATH_MAX]; 3328 struct elf_note_info info; 3329 struct elfhdr elf; 3330 struct elf_phdr phdr; 3331 struct rlimit dumpsize; 3332 struct mm_struct *mm = NULL; 3333 off_t offset = 0, data_offset = 0; 3334 int segs = 0; 3335 int fd = -1; 3336 3337 init_note_info(&info); 3338 3339 errno = 0; 3340 getrlimit(RLIMIT_CORE, &dumpsize); 3341 if (dumpsize.rlim_cur == 0) 3342 return 0; 3343 3344 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3345 return (-errno); 3346 3347 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3348 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3349 return (-errno); 3350 3351 /* 3352 * Walk through target process memory mappings and 3353 * set up structure containing this information. After 3354 * this point vma_xxx functions can be used. 3355 */ 3356 if ((mm = vma_init()) == NULL) 3357 goto out; 3358 3359 walk_memory_regions(mm, vma_walker); 3360 segs = vma_get_mapping_count(mm); 3361 3362 /* 3363 * Construct valid coredump ELF header. We also 3364 * add one more segment for notes. 3365 */ 3366 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3367 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3368 goto out; 3369 3370 /* fill in the in-memory version of notes */ 3371 if (fill_note_info(&info, signr, env) < 0) 3372 goto out; 3373 3374 offset += sizeof (elf); /* elf header */ 3375 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3376 3377 /* write out notes program header */ 3378 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3379 3380 offset += info.notes_size; 3381 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3382 goto out; 3383 3384 /* 3385 * ELF specification wants data to start at page boundary so 3386 * we align it here. 3387 */ 3388 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3389 3390 /* 3391 * Write program headers for memory regions mapped in 3392 * the target process. 3393 */ 3394 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3395 (void) memset(&phdr, 0, sizeof (phdr)); 3396 3397 phdr.p_type = PT_LOAD; 3398 phdr.p_offset = offset; 3399 phdr.p_vaddr = vma->vma_start; 3400 phdr.p_paddr = 0; 3401 phdr.p_filesz = vma_dump_size(vma); 3402 offset += phdr.p_filesz; 3403 phdr.p_memsz = vma->vma_end - vma->vma_start; 3404 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3405 if (vma->vma_flags & PROT_WRITE) 3406 phdr.p_flags |= PF_W; 3407 if (vma->vma_flags & PROT_EXEC) 3408 phdr.p_flags |= PF_X; 3409 phdr.p_align = ELF_EXEC_PAGESIZE; 3410 3411 bswap_phdr(&phdr, 1); 3412 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3413 goto out; 3414 } 3415 } 3416 3417 /* 3418 * Next we write notes just after program headers. No 3419 * alignment needed here. 3420 */ 3421 if (write_note_info(&info, fd) < 0) 3422 goto out; 3423 3424 /* align data to page boundary */ 3425 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3426 goto out; 3427 3428 /* 3429 * Finally we can dump process memory into corefile as well. 3430 */ 3431 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3432 abi_ulong addr; 3433 abi_ulong end; 3434 3435 end = vma->vma_start + vma_dump_size(vma); 3436 3437 for (addr = vma->vma_start; addr < end; 3438 addr += TARGET_PAGE_SIZE) { 3439 char page[TARGET_PAGE_SIZE]; 3440 int error; 3441 3442 /* 3443 * Read in page from target process memory and 3444 * write it to coredump file. 3445 */ 3446 error = copy_from_user(page, addr, sizeof (page)); 3447 if (error != 0) { 3448 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3449 addr); 3450 errno = -error; 3451 goto out; 3452 } 3453 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3454 goto out; 3455 } 3456 } 3457 3458 out: 3459 free_note_info(&info); 3460 if (mm != NULL) 3461 vma_delete(mm); 3462 (void) close(fd); 3463 3464 if (errno != 0) 3465 return (-errno); 3466 return (0); 3467 } 3468 #endif /* USE_ELF_CORE_DUMP */ 3469 3470 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3471 { 3472 init_thread(regs, infop); 3473 } 3474