1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 #include "accel/tcg/debuginfo.h" 23 24 #ifdef _ARCH_PPC64 25 #undef ARCH_DLINFO 26 #undef ELF_PLATFORM 27 #undef ELF_HWCAP 28 #undef ELF_HWCAP2 29 #undef ELF_CLASS 30 #undef ELF_DATA 31 #undef ELF_ARCH 32 #endif 33 34 #define ELF_OSABI ELFOSABI_SYSV 35 36 /* from personality.h */ 37 38 /* 39 * Flags for bug emulation. 40 * 41 * These occupy the top three bytes. 42 */ 43 enum { 44 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 45 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 46 descriptors (signal handling) */ 47 MMAP_PAGE_ZERO = 0x0100000, 48 ADDR_COMPAT_LAYOUT = 0x0200000, 49 READ_IMPLIES_EXEC = 0x0400000, 50 ADDR_LIMIT_32BIT = 0x0800000, 51 SHORT_INODE = 0x1000000, 52 WHOLE_SECONDS = 0x2000000, 53 STICKY_TIMEOUTS = 0x4000000, 54 ADDR_LIMIT_3GB = 0x8000000, 55 }; 56 57 /* 58 * Personality types. 59 * 60 * These go in the low byte. Avoid using the top bit, it will 61 * conflict with error returns. 62 */ 63 enum { 64 PER_LINUX = 0x0000, 65 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 66 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 67 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 68 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 69 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 70 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 71 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 72 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 73 PER_BSD = 0x0006, 74 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 75 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 76 PER_LINUX32 = 0x0008, 77 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 78 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 79 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 80 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 81 PER_RISCOS = 0x000c, 82 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 83 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 84 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 85 PER_HPUX = 0x0010, 86 PER_MASK = 0x00ff, 87 }; 88 89 /* 90 * Return the base personality without flags. 91 */ 92 #define personality(pers) (pers & PER_MASK) 93 94 int info_is_fdpic(struct image_info *info) 95 { 96 return info->personality == PER_LINUX_FDPIC; 97 } 98 99 /* this flag is uneffective under linux too, should be deleted */ 100 #ifndef MAP_DENYWRITE 101 #define MAP_DENYWRITE 0 102 #endif 103 104 /* should probably go in elf.h */ 105 #ifndef ELIBBAD 106 #define ELIBBAD 80 107 #endif 108 109 #if TARGET_BIG_ENDIAN 110 #define ELF_DATA ELFDATA2MSB 111 #else 112 #define ELF_DATA ELFDATA2LSB 113 #endif 114 115 #ifdef TARGET_ABI_MIPSN32 116 typedef abi_ullong target_elf_greg_t; 117 #define tswapreg(ptr) tswap64(ptr) 118 #else 119 typedef abi_ulong target_elf_greg_t; 120 #define tswapreg(ptr) tswapal(ptr) 121 #endif 122 123 #ifdef USE_UID16 124 typedef abi_ushort target_uid_t; 125 typedef abi_ushort target_gid_t; 126 #else 127 typedef abi_uint target_uid_t; 128 typedef abi_uint target_gid_t; 129 #endif 130 typedef abi_int target_pid_t; 131 132 #ifdef TARGET_I386 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 #define ELF_PLATFORM "x86_64" 150 151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 152 { 153 regs->rax = 0; 154 regs->rsp = infop->start_stack; 155 regs->rip = infop->entry; 156 } 157 158 #define ELF_NREG 27 159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 160 161 /* 162 * Note that ELF_NREG should be 29 as there should be place for 163 * TRAPNO and ERR "registers" as well but linux doesn't dump 164 * those. 165 * 166 * See linux kernel: arch/x86/include/asm/elf.h 167 */ 168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 169 { 170 (*regs)[0] = tswapreg(env->regs[15]); 171 (*regs)[1] = tswapreg(env->regs[14]); 172 (*regs)[2] = tswapreg(env->regs[13]); 173 (*regs)[3] = tswapreg(env->regs[12]); 174 (*regs)[4] = tswapreg(env->regs[R_EBP]); 175 (*regs)[5] = tswapreg(env->regs[R_EBX]); 176 (*regs)[6] = tswapreg(env->regs[11]); 177 (*regs)[7] = tswapreg(env->regs[10]); 178 (*regs)[8] = tswapreg(env->regs[9]); 179 (*regs)[9] = tswapreg(env->regs[8]); 180 (*regs)[10] = tswapreg(env->regs[R_EAX]); 181 (*regs)[11] = tswapreg(env->regs[R_ECX]); 182 (*regs)[12] = tswapreg(env->regs[R_EDX]); 183 (*regs)[13] = tswapreg(env->regs[R_ESI]); 184 (*regs)[14] = tswapreg(env->regs[R_EDI]); 185 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 186 (*regs)[16] = tswapreg(env->eip); 187 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 188 (*regs)[18] = tswapreg(env->eflags); 189 (*regs)[19] = tswapreg(env->regs[R_ESP]); 190 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 191 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 192 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 193 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 194 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 195 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 196 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 197 } 198 199 #if ULONG_MAX > UINT32_MAX 200 #define INIT_GUEST_COMMPAGE 201 static bool init_guest_commpage(void) 202 { 203 /* 204 * The vsyscall page is at a high negative address aka kernel space, 205 * which means that we cannot actually allocate it with target_mmap. 206 * We still should be able to use page_set_flags, unless the user 207 * has specified -R reserved_va, which would trigger an assert(). 208 */ 209 if (reserved_va != 0 && 210 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) { 211 error_report("Cannot allocate vsyscall page"); 212 exit(EXIT_FAILURE); 213 } 214 page_set_flags(TARGET_VSYSCALL_PAGE, 215 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE, 216 PAGE_EXEC | PAGE_VALID); 217 return true; 218 } 219 #endif 220 #else 221 222 #define ELF_START_MMAP 0x80000000 223 224 /* 225 * This is used to ensure we don't load something for the wrong architecture. 226 */ 227 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 228 229 /* 230 * These are used to set parameters in the core dumps. 231 */ 232 #define ELF_CLASS ELFCLASS32 233 #define ELF_ARCH EM_386 234 235 #define ELF_PLATFORM get_elf_platform() 236 #define EXSTACK_DEFAULT true 237 238 static const char *get_elf_platform(void) 239 { 240 static char elf_platform[] = "i386"; 241 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 242 if (family > 6) { 243 family = 6; 244 } 245 if (family >= 3) { 246 elf_platform[1] = '0' + family; 247 } 248 return elf_platform; 249 } 250 251 static inline void init_thread(struct target_pt_regs *regs, 252 struct image_info *infop) 253 { 254 regs->esp = infop->start_stack; 255 regs->eip = infop->entry; 256 257 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 258 starts %edx contains a pointer to a function which might be 259 registered using `atexit'. This provides a mean for the 260 dynamic linker to call DT_FINI functions for shared libraries 261 that have been loaded before the code runs. 262 263 A value of 0 tells we have no such handler. */ 264 regs->edx = 0; 265 } 266 267 #define ELF_NREG 17 268 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 269 270 /* 271 * Note that ELF_NREG should be 19 as there should be place for 272 * TRAPNO and ERR "registers" as well but linux doesn't dump 273 * those. 274 * 275 * See linux kernel: arch/x86/include/asm/elf.h 276 */ 277 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 278 { 279 (*regs)[0] = tswapreg(env->regs[R_EBX]); 280 (*regs)[1] = tswapreg(env->regs[R_ECX]); 281 (*regs)[2] = tswapreg(env->regs[R_EDX]); 282 (*regs)[3] = tswapreg(env->regs[R_ESI]); 283 (*regs)[4] = tswapreg(env->regs[R_EDI]); 284 (*regs)[5] = tswapreg(env->regs[R_EBP]); 285 (*regs)[6] = tswapreg(env->regs[R_EAX]); 286 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 287 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 288 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 289 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 290 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 291 (*regs)[12] = tswapreg(env->eip); 292 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 293 (*regs)[14] = tswapreg(env->eflags); 294 (*regs)[15] = tswapreg(env->regs[R_ESP]); 295 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 296 } 297 #endif 298 299 #define USE_ELF_CORE_DUMP 300 #define ELF_EXEC_PAGESIZE 4096 301 302 #endif 303 304 #ifdef TARGET_ARM 305 306 #ifndef TARGET_AARCH64 307 /* 32 bit ARM definitions */ 308 309 #define ELF_START_MMAP 0x80000000 310 311 #define ELF_ARCH EM_ARM 312 #define ELF_CLASS ELFCLASS32 313 #define EXSTACK_DEFAULT true 314 315 static inline void init_thread(struct target_pt_regs *regs, 316 struct image_info *infop) 317 { 318 abi_long stack = infop->start_stack; 319 memset(regs, 0, sizeof(*regs)); 320 321 regs->uregs[16] = ARM_CPU_MODE_USR; 322 if (infop->entry & 1) { 323 regs->uregs[16] |= CPSR_T; 324 } 325 regs->uregs[15] = infop->entry & 0xfffffffe; 326 regs->uregs[13] = infop->start_stack; 327 /* FIXME - what to for failure of get_user()? */ 328 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 329 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 330 /* XXX: it seems that r0 is zeroed after ! */ 331 regs->uregs[0] = 0; 332 /* For uClinux PIC binaries. */ 333 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 334 regs->uregs[10] = infop->start_data; 335 336 /* Support ARM FDPIC. */ 337 if (info_is_fdpic(infop)) { 338 /* As described in the ABI document, r7 points to the loadmap info 339 * prepared by the kernel. If an interpreter is needed, r8 points 340 * to the interpreter loadmap and r9 points to the interpreter 341 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 342 * r9 points to the main program PT_DYNAMIC info. 343 */ 344 regs->uregs[7] = infop->loadmap_addr; 345 if (infop->interpreter_loadmap_addr) { 346 /* Executable is dynamically loaded. */ 347 regs->uregs[8] = infop->interpreter_loadmap_addr; 348 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 349 } else { 350 regs->uregs[8] = 0; 351 regs->uregs[9] = infop->pt_dynamic_addr; 352 } 353 } 354 } 355 356 #define ELF_NREG 18 357 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 358 359 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 360 { 361 (*regs)[0] = tswapreg(env->regs[0]); 362 (*regs)[1] = tswapreg(env->regs[1]); 363 (*regs)[2] = tswapreg(env->regs[2]); 364 (*regs)[3] = tswapreg(env->regs[3]); 365 (*regs)[4] = tswapreg(env->regs[4]); 366 (*regs)[5] = tswapreg(env->regs[5]); 367 (*regs)[6] = tswapreg(env->regs[6]); 368 (*regs)[7] = tswapreg(env->regs[7]); 369 (*regs)[8] = tswapreg(env->regs[8]); 370 (*regs)[9] = tswapreg(env->regs[9]); 371 (*regs)[10] = tswapreg(env->regs[10]); 372 (*regs)[11] = tswapreg(env->regs[11]); 373 (*regs)[12] = tswapreg(env->regs[12]); 374 (*regs)[13] = tswapreg(env->regs[13]); 375 (*regs)[14] = tswapreg(env->regs[14]); 376 (*regs)[15] = tswapreg(env->regs[15]); 377 378 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 379 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 380 } 381 382 #define USE_ELF_CORE_DUMP 383 #define ELF_EXEC_PAGESIZE 4096 384 385 enum 386 { 387 ARM_HWCAP_ARM_SWP = 1 << 0, 388 ARM_HWCAP_ARM_HALF = 1 << 1, 389 ARM_HWCAP_ARM_THUMB = 1 << 2, 390 ARM_HWCAP_ARM_26BIT = 1 << 3, 391 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 392 ARM_HWCAP_ARM_FPA = 1 << 5, 393 ARM_HWCAP_ARM_VFP = 1 << 6, 394 ARM_HWCAP_ARM_EDSP = 1 << 7, 395 ARM_HWCAP_ARM_JAVA = 1 << 8, 396 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 397 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 398 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 399 ARM_HWCAP_ARM_NEON = 1 << 12, 400 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 401 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 402 ARM_HWCAP_ARM_TLS = 1 << 15, 403 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 404 ARM_HWCAP_ARM_IDIVA = 1 << 17, 405 ARM_HWCAP_ARM_IDIVT = 1 << 18, 406 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 407 ARM_HWCAP_ARM_LPAE = 1 << 20, 408 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 409 }; 410 411 enum { 412 ARM_HWCAP2_ARM_AES = 1 << 0, 413 ARM_HWCAP2_ARM_PMULL = 1 << 1, 414 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 415 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 416 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 417 }; 418 419 /* The commpage only exists for 32 bit kernels */ 420 421 #define HI_COMMPAGE (intptr_t)0xffff0f00u 422 423 static bool init_guest_commpage(void) 424 { 425 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 426 void *want = g2h_untagged(commpage); 427 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 428 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 429 430 if (addr == MAP_FAILED) { 431 perror("Allocating guest commpage"); 432 exit(EXIT_FAILURE); 433 } 434 if (addr != want) { 435 return false; 436 } 437 438 /* Set kernel helper versions; rest of page is 0. */ 439 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 440 441 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 442 perror("Protecting guest commpage"); 443 exit(EXIT_FAILURE); 444 } 445 446 page_set_flags(commpage, commpage + qemu_host_page_size, 447 PAGE_READ | PAGE_EXEC | PAGE_VALID); 448 return true; 449 } 450 451 #define ELF_HWCAP get_elf_hwcap() 452 #define ELF_HWCAP2 get_elf_hwcap2() 453 454 static uint32_t get_elf_hwcap(void) 455 { 456 ARMCPU *cpu = ARM_CPU(thread_cpu); 457 uint32_t hwcaps = 0; 458 459 hwcaps |= ARM_HWCAP_ARM_SWP; 460 hwcaps |= ARM_HWCAP_ARM_HALF; 461 hwcaps |= ARM_HWCAP_ARM_THUMB; 462 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 463 464 /* probe for the extra features */ 465 #define GET_FEATURE(feat, hwcap) \ 466 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 467 468 #define GET_FEATURE_ID(feat, hwcap) \ 469 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 470 471 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 472 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 473 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 474 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 475 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 476 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 477 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 478 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 479 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 480 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 481 482 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 483 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 484 hwcaps |= ARM_HWCAP_ARM_VFPv3; 485 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 486 hwcaps |= ARM_HWCAP_ARM_VFPD32; 487 } else { 488 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 489 } 490 } 491 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 492 493 return hwcaps; 494 } 495 496 static uint32_t get_elf_hwcap2(void) 497 { 498 ARMCPU *cpu = ARM_CPU(thread_cpu); 499 uint32_t hwcaps = 0; 500 501 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 502 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 503 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 504 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 505 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 506 return hwcaps; 507 } 508 509 #undef GET_FEATURE 510 #undef GET_FEATURE_ID 511 512 #define ELF_PLATFORM get_elf_platform() 513 514 static const char *get_elf_platform(void) 515 { 516 CPUARMState *env = thread_cpu->env_ptr; 517 518 #if TARGET_BIG_ENDIAN 519 # define END "b" 520 #else 521 # define END "l" 522 #endif 523 524 if (arm_feature(env, ARM_FEATURE_V8)) { 525 return "v8" END; 526 } else if (arm_feature(env, ARM_FEATURE_V7)) { 527 if (arm_feature(env, ARM_FEATURE_M)) { 528 return "v7m" END; 529 } else { 530 return "v7" END; 531 } 532 } else if (arm_feature(env, ARM_FEATURE_V6)) { 533 return "v6" END; 534 } else if (arm_feature(env, ARM_FEATURE_V5)) { 535 return "v5" END; 536 } else { 537 return "v4" END; 538 } 539 540 #undef END 541 } 542 543 #else 544 /* 64 bit ARM definitions */ 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_ARCH EM_AARCH64 548 #define ELF_CLASS ELFCLASS64 549 #if TARGET_BIG_ENDIAN 550 # define ELF_PLATFORM "aarch64_be" 551 #else 552 # define ELF_PLATFORM "aarch64" 553 #endif 554 555 static inline void init_thread(struct target_pt_regs *regs, 556 struct image_info *infop) 557 { 558 abi_long stack = infop->start_stack; 559 memset(regs, 0, sizeof(*regs)); 560 561 regs->pc = infop->entry & ~0x3ULL; 562 regs->sp = stack; 563 } 564 565 #define ELF_NREG 34 566 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 567 568 static void elf_core_copy_regs(target_elf_gregset_t *regs, 569 const CPUARMState *env) 570 { 571 int i; 572 573 for (i = 0; i < 32; i++) { 574 (*regs)[i] = tswapreg(env->xregs[i]); 575 } 576 (*regs)[32] = tswapreg(env->pc); 577 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 578 } 579 580 #define USE_ELF_CORE_DUMP 581 #define ELF_EXEC_PAGESIZE 4096 582 583 enum { 584 ARM_HWCAP_A64_FP = 1 << 0, 585 ARM_HWCAP_A64_ASIMD = 1 << 1, 586 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 587 ARM_HWCAP_A64_AES = 1 << 3, 588 ARM_HWCAP_A64_PMULL = 1 << 4, 589 ARM_HWCAP_A64_SHA1 = 1 << 5, 590 ARM_HWCAP_A64_SHA2 = 1 << 6, 591 ARM_HWCAP_A64_CRC32 = 1 << 7, 592 ARM_HWCAP_A64_ATOMICS = 1 << 8, 593 ARM_HWCAP_A64_FPHP = 1 << 9, 594 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 595 ARM_HWCAP_A64_CPUID = 1 << 11, 596 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 597 ARM_HWCAP_A64_JSCVT = 1 << 13, 598 ARM_HWCAP_A64_FCMA = 1 << 14, 599 ARM_HWCAP_A64_LRCPC = 1 << 15, 600 ARM_HWCAP_A64_DCPOP = 1 << 16, 601 ARM_HWCAP_A64_SHA3 = 1 << 17, 602 ARM_HWCAP_A64_SM3 = 1 << 18, 603 ARM_HWCAP_A64_SM4 = 1 << 19, 604 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 605 ARM_HWCAP_A64_SHA512 = 1 << 21, 606 ARM_HWCAP_A64_SVE = 1 << 22, 607 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 608 ARM_HWCAP_A64_DIT = 1 << 24, 609 ARM_HWCAP_A64_USCAT = 1 << 25, 610 ARM_HWCAP_A64_ILRCPC = 1 << 26, 611 ARM_HWCAP_A64_FLAGM = 1 << 27, 612 ARM_HWCAP_A64_SSBS = 1 << 28, 613 ARM_HWCAP_A64_SB = 1 << 29, 614 ARM_HWCAP_A64_PACA = 1 << 30, 615 ARM_HWCAP_A64_PACG = 1UL << 31, 616 617 ARM_HWCAP2_A64_DCPODP = 1 << 0, 618 ARM_HWCAP2_A64_SVE2 = 1 << 1, 619 ARM_HWCAP2_A64_SVEAES = 1 << 2, 620 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 621 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 622 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 623 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 624 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 625 ARM_HWCAP2_A64_FRINT = 1 << 8, 626 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 627 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 628 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 629 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 630 ARM_HWCAP2_A64_I8MM = 1 << 13, 631 ARM_HWCAP2_A64_BF16 = 1 << 14, 632 ARM_HWCAP2_A64_DGH = 1 << 15, 633 ARM_HWCAP2_A64_RNG = 1 << 16, 634 ARM_HWCAP2_A64_BTI = 1 << 17, 635 ARM_HWCAP2_A64_MTE = 1 << 18, 636 ARM_HWCAP2_A64_ECV = 1 << 19, 637 ARM_HWCAP2_A64_AFP = 1 << 20, 638 ARM_HWCAP2_A64_RPRES = 1 << 21, 639 ARM_HWCAP2_A64_MTE3 = 1 << 22, 640 ARM_HWCAP2_A64_SME = 1 << 23, 641 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 642 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 643 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 644 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 645 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 646 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 647 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 648 }; 649 650 #define ELF_HWCAP get_elf_hwcap() 651 #define ELF_HWCAP2 get_elf_hwcap2() 652 653 #define GET_FEATURE_ID(feat, hwcap) \ 654 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 655 656 static uint32_t get_elf_hwcap(void) 657 { 658 ARMCPU *cpu = ARM_CPU(thread_cpu); 659 uint32_t hwcaps = 0; 660 661 hwcaps |= ARM_HWCAP_A64_FP; 662 hwcaps |= ARM_HWCAP_A64_ASIMD; 663 hwcaps |= ARM_HWCAP_A64_CPUID; 664 665 /* probe for the extra features */ 666 667 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 668 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 669 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 670 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 671 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 672 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 673 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 674 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 675 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 676 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 677 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 678 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 679 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 680 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 681 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 682 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 683 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 684 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 685 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 686 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 687 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 688 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 689 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 690 691 return hwcaps; 692 } 693 694 static uint32_t get_elf_hwcap2(void) 695 { 696 ARMCPU *cpu = ARM_CPU(thread_cpu); 697 uint32_t hwcaps = 0; 698 699 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 700 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 701 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 702 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 703 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 704 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 705 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 706 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 707 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 708 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 709 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 710 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 711 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 712 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 713 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 714 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 715 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 716 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 717 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 718 ARM_HWCAP2_A64_SME_F32F32 | 719 ARM_HWCAP2_A64_SME_B16F32 | 720 ARM_HWCAP2_A64_SME_F16F32 | 721 ARM_HWCAP2_A64_SME_I8I32)); 722 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 723 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 724 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 725 726 return hwcaps; 727 } 728 729 #undef GET_FEATURE_ID 730 731 #endif /* not TARGET_AARCH64 */ 732 #endif /* TARGET_ARM */ 733 734 #ifdef TARGET_SPARC 735 #ifdef TARGET_SPARC64 736 737 #define ELF_START_MMAP 0x80000000 738 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 739 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 740 #ifndef TARGET_ABI32 741 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 742 #else 743 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 744 #endif 745 746 #define ELF_CLASS ELFCLASS64 747 #define ELF_ARCH EM_SPARCV9 748 #else 749 #define ELF_START_MMAP 0x80000000 750 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 751 | HWCAP_SPARC_MULDIV) 752 #define ELF_CLASS ELFCLASS32 753 #define ELF_ARCH EM_SPARC 754 #endif /* TARGET_SPARC64 */ 755 756 static inline void init_thread(struct target_pt_regs *regs, 757 struct image_info *infop) 758 { 759 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 760 regs->pc = infop->entry; 761 regs->npc = regs->pc + 4; 762 regs->y = 0; 763 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 764 - TARGET_STACK_BIAS); 765 } 766 #endif /* TARGET_SPARC */ 767 768 #ifdef TARGET_PPC 769 770 #define ELF_MACHINE PPC_ELF_MACHINE 771 #define ELF_START_MMAP 0x80000000 772 773 #if defined(TARGET_PPC64) 774 775 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 776 777 #define ELF_CLASS ELFCLASS64 778 779 #else 780 781 #define ELF_CLASS ELFCLASS32 782 #define EXSTACK_DEFAULT true 783 784 #endif 785 786 #define ELF_ARCH EM_PPC 787 788 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 789 See arch/powerpc/include/asm/cputable.h. */ 790 enum { 791 QEMU_PPC_FEATURE_32 = 0x80000000, 792 QEMU_PPC_FEATURE_64 = 0x40000000, 793 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 794 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 795 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 796 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 797 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 798 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 799 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 800 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 801 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 802 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 803 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 804 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 805 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 806 QEMU_PPC_FEATURE_CELL = 0x00010000, 807 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 808 QEMU_PPC_FEATURE_SMT = 0x00004000, 809 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 810 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 811 QEMU_PPC_FEATURE_PA6T = 0x00000800, 812 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 813 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 814 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 815 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 816 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 817 818 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 819 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 820 821 /* Feature definitions in AT_HWCAP2. */ 822 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 823 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 824 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 825 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 826 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 827 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 828 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 829 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 830 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 831 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 832 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 833 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 834 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 835 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 836 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 837 }; 838 839 #define ELF_HWCAP get_elf_hwcap() 840 841 static uint32_t get_elf_hwcap(void) 842 { 843 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 844 uint32_t features = 0; 845 846 /* We don't have to be terribly complete here; the high points are 847 Altivec/FP/SPE support. Anything else is just a bonus. */ 848 #define GET_FEATURE(flag, feature) \ 849 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 850 #define GET_FEATURE2(flags, feature) \ 851 do { \ 852 if ((cpu->env.insns_flags2 & flags) == flags) { \ 853 features |= feature; \ 854 } \ 855 } while (0) 856 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 857 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 858 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 859 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 860 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 861 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 862 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 863 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 864 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 865 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 866 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 867 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 868 QEMU_PPC_FEATURE_ARCH_2_06); 869 #undef GET_FEATURE 870 #undef GET_FEATURE2 871 872 return features; 873 } 874 875 #define ELF_HWCAP2 get_elf_hwcap2() 876 877 static uint32_t get_elf_hwcap2(void) 878 { 879 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 880 uint32_t features = 0; 881 882 #define GET_FEATURE(flag, feature) \ 883 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 884 #define GET_FEATURE2(flag, feature) \ 885 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 886 887 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 888 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 889 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 890 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 891 QEMU_PPC_FEATURE2_VEC_CRYPTO); 892 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 893 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 894 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 895 QEMU_PPC_FEATURE2_MMA); 896 897 #undef GET_FEATURE 898 #undef GET_FEATURE2 899 900 return features; 901 } 902 903 /* 904 * The requirements here are: 905 * - keep the final alignment of sp (sp & 0xf) 906 * - make sure the 32-bit value at the first 16 byte aligned position of 907 * AUXV is greater than 16 for glibc compatibility. 908 * AT_IGNOREPPC is used for that. 909 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 910 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 911 */ 912 #define DLINFO_ARCH_ITEMS 5 913 #define ARCH_DLINFO \ 914 do { \ 915 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 916 /* \ 917 * Handle glibc compatibility: these magic entries must \ 918 * be at the lowest addresses in the final auxv. \ 919 */ \ 920 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 922 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 923 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 924 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 925 } while (0) 926 927 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 928 { 929 _regs->gpr[1] = infop->start_stack; 930 #if defined(TARGET_PPC64) 931 if (get_ppc64_abi(infop) < 2) { 932 uint64_t val; 933 get_user_u64(val, infop->entry + 8); 934 _regs->gpr[2] = val + infop->load_bias; 935 get_user_u64(val, infop->entry); 936 infop->entry = val + infop->load_bias; 937 } else { 938 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 939 } 940 #endif 941 _regs->nip = infop->entry; 942 } 943 944 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 945 #define ELF_NREG 48 946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 947 948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 949 { 950 int i; 951 target_ulong ccr = 0; 952 953 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 954 (*regs)[i] = tswapreg(env->gpr[i]); 955 } 956 957 (*regs)[32] = tswapreg(env->nip); 958 (*regs)[33] = tswapreg(env->msr); 959 (*regs)[35] = tswapreg(env->ctr); 960 (*regs)[36] = tswapreg(env->lr); 961 (*regs)[37] = tswapreg(cpu_read_xer(env)); 962 963 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 964 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 965 } 966 (*regs)[38] = tswapreg(ccr); 967 } 968 969 #define USE_ELF_CORE_DUMP 970 #define ELF_EXEC_PAGESIZE 4096 971 972 #endif 973 974 #ifdef TARGET_LOONGARCH64 975 976 #define ELF_START_MMAP 0x80000000 977 978 #define ELF_CLASS ELFCLASS64 979 #define ELF_ARCH EM_LOONGARCH 980 #define EXSTACK_DEFAULT true 981 982 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 983 984 static inline void init_thread(struct target_pt_regs *regs, 985 struct image_info *infop) 986 { 987 /*Set crmd PG,DA = 1,0 */ 988 regs->csr.crmd = 2 << 3; 989 regs->csr.era = infop->entry; 990 regs->regs[3] = infop->start_stack; 991 } 992 993 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 994 #define ELF_NREG 45 995 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 996 997 enum { 998 TARGET_EF_R0 = 0, 999 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1000 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1001 }; 1002 1003 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1004 const CPULoongArchState *env) 1005 { 1006 int i; 1007 1008 (*regs)[TARGET_EF_R0] = 0; 1009 1010 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1011 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1012 } 1013 1014 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1015 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1016 } 1017 1018 #define USE_ELF_CORE_DUMP 1019 #define ELF_EXEC_PAGESIZE 4096 1020 1021 #define ELF_HWCAP get_elf_hwcap() 1022 1023 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1024 enum { 1025 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1026 HWCAP_LOONGARCH_LAM = (1 << 1), 1027 HWCAP_LOONGARCH_UAL = (1 << 2), 1028 HWCAP_LOONGARCH_FPU = (1 << 3), 1029 HWCAP_LOONGARCH_LSX = (1 << 4), 1030 HWCAP_LOONGARCH_LASX = (1 << 5), 1031 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1032 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1033 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1034 HWCAP_LOONGARCH_LVZ = (1 << 9), 1035 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1036 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1037 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1038 }; 1039 1040 static uint32_t get_elf_hwcap(void) 1041 { 1042 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1043 uint32_t hwcaps = 0; 1044 1045 hwcaps |= HWCAP_LOONGARCH_CRC32; 1046 1047 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1048 hwcaps |= HWCAP_LOONGARCH_UAL; 1049 } 1050 1051 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1052 hwcaps |= HWCAP_LOONGARCH_FPU; 1053 } 1054 1055 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1056 hwcaps |= HWCAP_LOONGARCH_LAM; 1057 } 1058 1059 return hwcaps; 1060 } 1061 1062 #define ELF_PLATFORM "loongarch" 1063 1064 #endif /* TARGET_LOONGARCH64 */ 1065 1066 #ifdef TARGET_MIPS 1067 1068 #define ELF_START_MMAP 0x80000000 1069 1070 #ifdef TARGET_MIPS64 1071 #define ELF_CLASS ELFCLASS64 1072 #else 1073 #define ELF_CLASS ELFCLASS32 1074 #endif 1075 #define ELF_ARCH EM_MIPS 1076 #define EXSTACK_DEFAULT true 1077 1078 #ifdef TARGET_ABI_MIPSN32 1079 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1080 #else 1081 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1082 #endif 1083 1084 #define ELF_BASE_PLATFORM get_elf_base_platform() 1085 1086 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1087 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1088 { return _base_platform; } } while (0) 1089 1090 static const char *get_elf_base_platform(void) 1091 { 1092 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1093 1094 /* 64 bit ISAs goes first */ 1095 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1096 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1097 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1098 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1099 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1100 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1101 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1102 1103 /* 32 bit ISAs */ 1104 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1105 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1106 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1107 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1108 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1109 1110 /* Fallback */ 1111 return "mips"; 1112 } 1113 #undef MATCH_PLATFORM_INSN 1114 1115 static inline void init_thread(struct target_pt_regs *regs, 1116 struct image_info *infop) 1117 { 1118 regs->cp0_status = 2 << CP0St_KSU; 1119 regs->cp0_epc = infop->entry; 1120 regs->regs[29] = infop->start_stack; 1121 } 1122 1123 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1124 #define ELF_NREG 45 1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1126 1127 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1128 enum { 1129 #ifdef TARGET_MIPS64 1130 TARGET_EF_R0 = 0, 1131 #else 1132 TARGET_EF_R0 = 6, 1133 #endif 1134 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1135 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1136 TARGET_EF_LO = TARGET_EF_R0 + 32, 1137 TARGET_EF_HI = TARGET_EF_R0 + 33, 1138 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1139 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1140 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1141 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1142 }; 1143 1144 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1145 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1146 { 1147 int i; 1148 1149 for (i = 0; i < TARGET_EF_R0; i++) { 1150 (*regs)[i] = 0; 1151 } 1152 (*regs)[TARGET_EF_R0] = 0; 1153 1154 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1155 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1156 } 1157 1158 (*regs)[TARGET_EF_R26] = 0; 1159 (*regs)[TARGET_EF_R27] = 0; 1160 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1161 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1162 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1163 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1164 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1165 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1166 } 1167 1168 #define USE_ELF_CORE_DUMP 1169 #define ELF_EXEC_PAGESIZE 4096 1170 1171 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1172 enum { 1173 HWCAP_MIPS_R6 = (1 << 0), 1174 HWCAP_MIPS_MSA = (1 << 1), 1175 HWCAP_MIPS_CRC32 = (1 << 2), 1176 HWCAP_MIPS_MIPS16 = (1 << 3), 1177 HWCAP_MIPS_MDMX = (1 << 4), 1178 HWCAP_MIPS_MIPS3D = (1 << 5), 1179 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1180 HWCAP_MIPS_DSP = (1 << 7), 1181 HWCAP_MIPS_DSP2 = (1 << 8), 1182 HWCAP_MIPS_DSP3 = (1 << 9), 1183 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1184 HWCAP_LOONGSON_MMI = (1 << 11), 1185 HWCAP_LOONGSON_EXT = (1 << 12), 1186 HWCAP_LOONGSON_EXT2 = (1 << 13), 1187 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1188 }; 1189 1190 #define ELF_HWCAP get_elf_hwcap() 1191 1192 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1193 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1194 1195 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1196 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1197 1198 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1199 do { \ 1200 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1201 hwcaps |= _hwcap; \ 1202 } \ 1203 } while (0) 1204 1205 static uint32_t get_elf_hwcap(void) 1206 { 1207 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1208 uint32_t hwcaps = 0; 1209 1210 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1211 2, HWCAP_MIPS_R6); 1212 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1213 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1214 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1215 1216 return hwcaps; 1217 } 1218 1219 #undef GET_FEATURE_REG_EQU 1220 #undef GET_FEATURE_REG_SET 1221 #undef GET_FEATURE_INSN 1222 1223 #endif /* TARGET_MIPS */ 1224 1225 #ifdef TARGET_MICROBLAZE 1226 1227 #define ELF_START_MMAP 0x80000000 1228 1229 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1230 1231 #define ELF_CLASS ELFCLASS32 1232 #define ELF_ARCH EM_MICROBLAZE 1233 1234 static inline void init_thread(struct target_pt_regs *regs, 1235 struct image_info *infop) 1236 { 1237 regs->pc = infop->entry; 1238 regs->r1 = infop->start_stack; 1239 1240 } 1241 1242 #define ELF_EXEC_PAGESIZE 4096 1243 1244 #define USE_ELF_CORE_DUMP 1245 #define ELF_NREG 38 1246 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1247 1248 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1249 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1250 { 1251 int i, pos = 0; 1252 1253 for (i = 0; i < 32; i++) { 1254 (*regs)[pos++] = tswapreg(env->regs[i]); 1255 } 1256 1257 (*regs)[pos++] = tswapreg(env->pc); 1258 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1259 (*regs)[pos++] = 0; 1260 (*regs)[pos++] = tswapreg(env->ear); 1261 (*regs)[pos++] = 0; 1262 (*regs)[pos++] = tswapreg(env->esr); 1263 } 1264 1265 #endif /* TARGET_MICROBLAZE */ 1266 1267 #ifdef TARGET_NIOS2 1268 1269 #define ELF_START_MMAP 0x80000000 1270 1271 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1272 1273 #define ELF_CLASS ELFCLASS32 1274 #define ELF_ARCH EM_ALTERA_NIOS2 1275 1276 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1277 { 1278 regs->ea = infop->entry; 1279 regs->sp = infop->start_stack; 1280 } 1281 1282 #define LO_COMMPAGE TARGET_PAGE_SIZE 1283 1284 static bool init_guest_commpage(void) 1285 { 1286 static const uint8_t kuser_page[4 + 2 * 64] = { 1287 /* __kuser_helper_version */ 1288 [0x00] = 0x02, 0x00, 0x00, 0x00, 1289 1290 /* __kuser_cmpxchg */ 1291 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1292 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1293 1294 /* __kuser_sigtramp */ 1295 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1296 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1297 }; 1298 1299 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1300 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1301 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1302 1303 if (addr == MAP_FAILED) { 1304 perror("Allocating guest commpage"); 1305 exit(EXIT_FAILURE); 1306 } 1307 if (addr != want) { 1308 return false; 1309 } 1310 1311 memcpy(addr, kuser_page, sizeof(kuser_page)); 1312 1313 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1314 perror("Protecting guest commpage"); 1315 exit(EXIT_FAILURE); 1316 } 1317 1318 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1319 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1320 return true; 1321 } 1322 1323 #define ELF_EXEC_PAGESIZE 4096 1324 1325 #define USE_ELF_CORE_DUMP 1326 #define ELF_NREG 49 1327 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1328 1329 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1330 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1331 const CPUNios2State *env) 1332 { 1333 int i; 1334 1335 (*regs)[0] = -1; 1336 for (i = 1; i < 8; i++) /* r0-r7 */ 1337 (*regs)[i] = tswapreg(env->regs[i + 7]); 1338 1339 for (i = 8; i < 16; i++) /* r8-r15 */ 1340 (*regs)[i] = tswapreg(env->regs[i - 8]); 1341 1342 for (i = 16; i < 24; i++) /* r16-r23 */ 1343 (*regs)[i] = tswapreg(env->regs[i + 7]); 1344 (*regs)[24] = -1; /* R_ET */ 1345 (*regs)[25] = -1; /* R_BT */ 1346 (*regs)[26] = tswapreg(env->regs[R_GP]); 1347 (*regs)[27] = tswapreg(env->regs[R_SP]); 1348 (*regs)[28] = tswapreg(env->regs[R_FP]); 1349 (*regs)[29] = tswapreg(env->regs[R_EA]); 1350 (*regs)[30] = -1; /* R_SSTATUS */ 1351 (*regs)[31] = tswapreg(env->regs[R_RA]); 1352 1353 (*regs)[32] = tswapreg(env->pc); 1354 1355 (*regs)[33] = -1; /* R_STATUS */ 1356 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1357 1358 for (i = 35; i < 49; i++) /* ... */ 1359 (*regs)[i] = -1; 1360 } 1361 1362 #endif /* TARGET_NIOS2 */ 1363 1364 #ifdef TARGET_OPENRISC 1365 1366 #define ELF_START_MMAP 0x08000000 1367 1368 #define ELF_ARCH EM_OPENRISC 1369 #define ELF_CLASS ELFCLASS32 1370 #define ELF_DATA ELFDATA2MSB 1371 1372 static inline void init_thread(struct target_pt_regs *regs, 1373 struct image_info *infop) 1374 { 1375 regs->pc = infop->entry; 1376 regs->gpr[1] = infop->start_stack; 1377 } 1378 1379 #define USE_ELF_CORE_DUMP 1380 #define ELF_EXEC_PAGESIZE 8192 1381 1382 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1383 #define ELF_NREG 34 /* gprs and pc, sr */ 1384 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1385 1386 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1387 const CPUOpenRISCState *env) 1388 { 1389 int i; 1390 1391 for (i = 0; i < 32; i++) { 1392 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1393 } 1394 (*regs)[32] = tswapreg(env->pc); 1395 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1396 } 1397 #define ELF_HWCAP 0 1398 #define ELF_PLATFORM NULL 1399 1400 #endif /* TARGET_OPENRISC */ 1401 1402 #ifdef TARGET_SH4 1403 1404 #define ELF_START_MMAP 0x80000000 1405 1406 #define ELF_CLASS ELFCLASS32 1407 #define ELF_ARCH EM_SH 1408 1409 static inline void init_thread(struct target_pt_regs *regs, 1410 struct image_info *infop) 1411 { 1412 /* Check other registers XXXXX */ 1413 regs->pc = infop->entry; 1414 regs->regs[15] = infop->start_stack; 1415 } 1416 1417 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1418 #define ELF_NREG 23 1419 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1420 1421 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1422 enum { 1423 TARGET_REG_PC = 16, 1424 TARGET_REG_PR = 17, 1425 TARGET_REG_SR = 18, 1426 TARGET_REG_GBR = 19, 1427 TARGET_REG_MACH = 20, 1428 TARGET_REG_MACL = 21, 1429 TARGET_REG_SYSCALL = 22 1430 }; 1431 1432 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1433 const CPUSH4State *env) 1434 { 1435 int i; 1436 1437 for (i = 0; i < 16; i++) { 1438 (*regs)[i] = tswapreg(env->gregs[i]); 1439 } 1440 1441 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1442 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1443 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1444 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1445 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1446 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1447 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1448 } 1449 1450 #define USE_ELF_CORE_DUMP 1451 #define ELF_EXEC_PAGESIZE 4096 1452 1453 enum { 1454 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1455 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1456 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1457 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1458 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1459 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1460 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1461 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1462 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1463 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1464 }; 1465 1466 #define ELF_HWCAP get_elf_hwcap() 1467 1468 static uint32_t get_elf_hwcap(void) 1469 { 1470 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1471 uint32_t hwcap = 0; 1472 1473 hwcap |= SH_CPU_HAS_FPU; 1474 1475 if (cpu->env.features & SH_FEATURE_SH4A) { 1476 hwcap |= SH_CPU_HAS_LLSC; 1477 } 1478 1479 return hwcap; 1480 } 1481 1482 #endif 1483 1484 #ifdef TARGET_CRIS 1485 1486 #define ELF_START_MMAP 0x80000000 1487 1488 #define ELF_CLASS ELFCLASS32 1489 #define ELF_ARCH EM_CRIS 1490 1491 static inline void init_thread(struct target_pt_regs *regs, 1492 struct image_info *infop) 1493 { 1494 regs->erp = infop->entry; 1495 } 1496 1497 #define ELF_EXEC_PAGESIZE 8192 1498 1499 #endif 1500 1501 #ifdef TARGET_M68K 1502 1503 #define ELF_START_MMAP 0x80000000 1504 1505 #define ELF_CLASS ELFCLASS32 1506 #define ELF_ARCH EM_68K 1507 1508 /* ??? Does this need to do anything? 1509 #define ELF_PLAT_INIT(_r) */ 1510 1511 static inline void init_thread(struct target_pt_regs *regs, 1512 struct image_info *infop) 1513 { 1514 regs->usp = infop->start_stack; 1515 regs->sr = 0; 1516 regs->pc = infop->entry; 1517 } 1518 1519 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1520 #define ELF_NREG 20 1521 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1522 1523 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1524 { 1525 (*regs)[0] = tswapreg(env->dregs[1]); 1526 (*regs)[1] = tswapreg(env->dregs[2]); 1527 (*regs)[2] = tswapreg(env->dregs[3]); 1528 (*regs)[3] = tswapreg(env->dregs[4]); 1529 (*regs)[4] = tswapreg(env->dregs[5]); 1530 (*regs)[5] = tswapreg(env->dregs[6]); 1531 (*regs)[6] = tswapreg(env->dregs[7]); 1532 (*regs)[7] = tswapreg(env->aregs[0]); 1533 (*regs)[8] = tswapreg(env->aregs[1]); 1534 (*regs)[9] = tswapreg(env->aregs[2]); 1535 (*regs)[10] = tswapreg(env->aregs[3]); 1536 (*regs)[11] = tswapreg(env->aregs[4]); 1537 (*regs)[12] = tswapreg(env->aregs[5]); 1538 (*regs)[13] = tswapreg(env->aregs[6]); 1539 (*regs)[14] = tswapreg(env->dregs[0]); 1540 (*regs)[15] = tswapreg(env->aregs[7]); 1541 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1542 (*regs)[17] = tswapreg(env->sr); 1543 (*regs)[18] = tswapreg(env->pc); 1544 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1545 } 1546 1547 #define USE_ELF_CORE_DUMP 1548 #define ELF_EXEC_PAGESIZE 8192 1549 1550 #endif 1551 1552 #ifdef TARGET_ALPHA 1553 1554 #define ELF_START_MMAP (0x30000000000ULL) 1555 1556 #define ELF_CLASS ELFCLASS64 1557 #define ELF_ARCH EM_ALPHA 1558 1559 static inline void init_thread(struct target_pt_regs *regs, 1560 struct image_info *infop) 1561 { 1562 regs->pc = infop->entry; 1563 regs->ps = 8; 1564 regs->usp = infop->start_stack; 1565 } 1566 1567 #define ELF_EXEC_PAGESIZE 8192 1568 1569 #endif /* TARGET_ALPHA */ 1570 1571 #ifdef TARGET_S390X 1572 1573 #define ELF_START_MMAP (0x20000000000ULL) 1574 1575 #define ELF_CLASS ELFCLASS64 1576 #define ELF_DATA ELFDATA2MSB 1577 #define ELF_ARCH EM_S390 1578 1579 #include "elf.h" 1580 1581 #define ELF_HWCAP get_elf_hwcap() 1582 1583 #define GET_FEATURE(_feat, _hwcap) \ 1584 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1585 1586 static uint32_t get_elf_hwcap(void) 1587 { 1588 /* 1589 * Let's assume we always have esan3 and zarch. 1590 * 31-bit processes can use 64-bit registers (high gprs). 1591 */ 1592 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1593 1594 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1595 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1596 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1597 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1598 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1599 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1600 hwcap |= HWCAP_S390_ETF3EH; 1601 } 1602 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1603 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1604 1605 return hwcap; 1606 } 1607 1608 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1609 { 1610 regs->psw.addr = infop->entry; 1611 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1612 regs->gprs[15] = infop->start_stack; 1613 } 1614 1615 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1616 #define ELF_NREG 27 1617 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1618 1619 enum { 1620 TARGET_REG_PSWM = 0, 1621 TARGET_REG_PSWA = 1, 1622 TARGET_REG_GPRS = 2, 1623 TARGET_REG_ARS = 18, 1624 TARGET_REG_ORIG_R2 = 26, 1625 }; 1626 1627 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1628 const CPUS390XState *env) 1629 { 1630 int i; 1631 uint32_t *aregs; 1632 1633 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1634 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1635 for (i = 0; i < 16; i++) { 1636 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1637 } 1638 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1639 for (i = 0; i < 16; i++) { 1640 aregs[i] = tswap32(env->aregs[i]); 1641 } 1642 (*regs)[TARGET_REG_ORIG_R2] = 0; 1643 } 1644 1645 #define USE_ELF_CORE_DUMP 1646 #define ELF_EXEC_PAGESIZE 4096 1647 1648 #endif /* TARGET_S390X */ 1649 1650 #ifdef TARGET_RISCV 1651 1652 #define ELF_START_MMAP 0x80000000 1653 #define ELF_ARCH EM_RISCV 1654 1655 #ifdef TARGET_RISCV32 1656 #define ELF_CLASS ELFCLASS32 1657 #else 1658 #define ELF_CLASS ELFCLASS64 1659 #endif 1660 1661 #define ELF_HWCAP get_elf_hwcap() 1662 1663 static uint32_t get_elf_hwcap(void) 1664 { 1665 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1666 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1667 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1668 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1669 1670 return cpu->env.misa_ext & mask; 1671 #undef MISA_BIT 1672 } 1673 1674 static inline void init_thread(struct target_pt_regs *regs, 1675 struct image_info *infop) 1676 { 1677 regs->sepc = infop->entry; 1678 regs->sp = infop->start_stack; 1679 } 1680 1681 #define ELF_EXEC_PAGESIZE 4096 1682 1683 #endif /* TARGET_RISCV */ 1684 1685 #ifdef TARGET_HPPA 1686 1687 #define ELF_START_MMAP 0x80000000 1688 #define ELF_CLASS ELFCLASS32 1689 #define ELF_ARCH EM_PARISC 1690 #define ELF_PLATFORM "PARISC" 1691 #define STACK_GROWS_DOWN 0 1692 #define STACK_ALIGNMENT 64 1693 1694 static inline void init_thread(struct target_pt_regs *regs, 1695 struct image_info *infop) 1696 { 1697 regs->iaoq[0] = infop->entry; 1698 regs->iaoq[1] = infop->entry + 4; 1699 regs->gr[23] = 0; 1700 regs->gr[24] = infop->argv; 1701 regs->gr[25] = infop->argc; 1702 /* The top-of-stack contains a linkage buffer. */ 1703 regs->gr[30] = infop->start_stack + 64; 1704 regs->gr[31] = infop->entry; 1705 } 1706 1707 #define LO_COMMPAGE 0 1708 1709 static bool init_guest_commpage(void) 1710 { 1711 void *want = g2h_untagged(LO_COMMPAGE); 1712 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1713 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1714 1715 if (addr == MAP_FAILED) { 1716 perror("Allocating guest commpage"); 1717 exit(EXIT_FAILURE); 1718 } 1719 if (addr != want) { 1720 return false; 1721 } 1722 1723 /* 1724 * On Linux, page zero is normally marked execute only + gateway. 1725 * Normal read or write is supposed to fail (thus PROT_NONE above), 1726 * but specific offsets have kernel code mapped to raise permissions 1727 * and implement syscalls. Here, simply mark the page executable. 1728 * Special case the entry points during translation (see do_page_zero). 1729 */ 1730 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1731 PAGE_EXEC | PAGE_VALID); 1732 return true; 1733 } 1734 1735 #endif /* TARGET_HPPA */ 1736 1737 #ifdef TARGET_XTENSA 1738 1739 #define ELF_START_MMAP 0x20000000 1740 1741 #define ELF_CLASS ELFCLASS32 1742 #define ELF_ARCH EM_XTENSA 1743 1744 static inline void init_thread(struct target_pt_regs *regs, 1745 struct image_info *infop) 1746 { 1747 regs->windowbase = 0; 1748 regs->windowstart = 1; 1749 regs->areg[1] = infop->start_stack; 1750 regs->pc = infop->entry; 1751 if (info_is_fdpic(infop)) { 1752 regs->areg[4] = infop->loadmap_addr; 1753 regs->areg[5] = infop->interpreter_loadmap_addr; 1754 if (infop->interpreter_loadmap_addr) { 1755 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1756 } else { 1757 regs->areg[6] = infop->pt_dynamic_addr; 1758 } 1759 } 1760 } 1761 1762 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1763 #define ELF_NREG 128 1764 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1765 1766 enum { 1767 TARGET_REG_PC, 1768 TARGET_REG_PS, 1769 TARGET_REG_LBEG, 1770 TARGET_REG_LEND, 1771 TARGET_REG_LCOUNT, 1772 TARGET_REG_SAR, 1773 TARGET_REG_WINDOWSTART, 1774 TARGET_REG_WINDOWBASE, 1775 TARGET_REG_THREADPTR, 1776 TARGET_REG_AR0 = 64, 1777 }; 1778 1779 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1780 const CPUXtensaState *env) 1781 { 1782 unsigned i; 1783 1784 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1785 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1786 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1787 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1788 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1789 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1790 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1791 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1792 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1793 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1794 for (i = 0; i < env->config->nareg; ++i) { 1795 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1796 } 1797 } 1798 1799 #define USE_ELF_CORE_DUMP 1800 #define ELF_EXEC_PAGESIZE 4096 1801 1802 #endif /* TARGET_XTENSA */ 1803 1804 #ifdef TARGET_HEXAGON 1805 1806 #define ELF_START_MMAP 0x20000000 1807 1808 #define ELF_CLASS ELFCLASS32 1809 #define ELF_ARCH EM_HEXAGON 1810 1811 static inline void init_thread(struct target_pt_regs *regs, 1812 struct image_info *infop) 1813 { 1814 regs->sepc = infop->entry; 1815 regs->sp = infop->start_stack; 1816 } 1817 1818 #endif /* TARGET_HEXAGON */ 1819 1820 #ifndef ELF_BASE_PLATFORM 1821 #define ELF_BASE_PLATFORM (NULL) 1822 #endif 1823 1824 #ifndef ELF_PLATFORM 1825 #define ELF_PLATFORM (NULL) 1826 #endif 1827 1828 #ifndef ELF_MACHINE 1829 #define ELF_MACHINE ELF_ARCH 1830 #endif 1831 1832 #ifndef elf_check_arch 1833 #define elf_check_arch(x) ((x) == ELF_ARCH) 1834 #endif 1835 1836 #ifndef elf_check_abi 1837 #define elf_check_abi(x) (1) 1838 #endif 1839 1840 #ifndef ELF_HWCAP 1841 #define ELF_HWCAP 0 1842 #endif 1843 1844 #ifndef STACK_GROWS_DOWN 1845 #define STACK_GROWS_DOWN 1 1846 #endif 1847 1848 #ifndef STACK_ALIGNMENT 1849 #define STACK_ALIGNMENT 16 1850 #endif 1851 1852 #ifdef TARGET_ABI32 1853 #undef ELF_CLASS 1854 #define ELF_CLASS ELFCLASS32 1855 #undef bswaptls 1856 #define bswaptls(ptr) bswap32s(ptr) 1857 #endif 1858 1859 #ifndef EXSTACK_DEFAULT 1860 #define EXSTACK_DEFAULT false 1861 #endif 1862 1863 #include "elf.h" 1864 1865 /* We must delay the following stanzas until after "elf.h". */ 1866 #if defined(TARGET_AARCH64) 1867 1868 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1869 const uint32_t *data, 1870 struct image_info *info, 1871 Error **errp) 1872 { 1873 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1874 if (pr_datasz != sizeof(uint32_t)) { 1875 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1876 return false; 1877 } 1878 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1879 info->note_flags = *data; 1880 } 1881 return true; 1882 } 1883 #define ARCH_USE_GNU_PROPERTY 1 1884 1885 #else 1886 1887 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1888 const uint32_t *data, 1889 struct image_info *info, 1890 Error **errp) 1891 { 1892 g_assert_not_reached(); 1893 } 1894 #define ARCH_USE_GNU_PROPERTY 0 1895 1896 #endif 1897 1898 struct exec 1899 { 1900 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1901 unsigned int a_text; /* length of text, in bytes */ 1902 unsigned int a_data; /* length of data, in bytes */ 1903 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1904 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1905 unsigned int a_entry; /* start address */ 1906 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1907 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1908 }; 1909 1910 1911 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1912 #define OMAGIC 0407 1913 #define NMAGIC 0410 1914 #define ZMAGIC 0413 1915 #define QMAGIC 0314 1916 1917 /* Necessary parameters */ 1918 #define TARGET_ELF_EXEC_PAGESIZE \ 1919 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1920 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1921 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1922 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1923 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1924 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1925 1926 #define DLINFO_ITEMS 16 1927 1928 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1929 { 1930 memcpy(to, from, n); 1931 } 1932 1933 #ifdef BSWAP_NEEDED 1934 static void bswap_ehdr(struct elfhdr *ehdr) 1935 { 1936 bswap16s(&ehdr->e_type); /* Object file type */ 1937 bswap16s(&ehdr->e_machine); /* Architecture */ 1938 bswap32s(&ehdr->e_version); /* Object file version */ 1939 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1940 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1941 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1942 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1943 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1944 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1945 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1946 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1947 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1948 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1949 } 1950 1951 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1952 { 1953 int i; 1954 for (i = 0; i < phnum; ++i, ++phdr) { 1955 bswap32s(&phdr->p_type); /* Segment type */ 1956 bswap32s(&phdr->p_flags); /* Segment flags */ 1957 bswaptls(&phdr->p_offset); /* Segment file offset */ 1958 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1959 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1960 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1961 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1962 bswaptls(&phdr->p_align); /* Segment alignment */ 1963 } 1964 } 1965 1966 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1967 { 1968 int i; 1969 for (i = 0; i < shnum; ++i, ++shdr) { 1970 bswap32s(&shdr->sh_name); 1971 bswap32s(&shdr->sh_type); 1972 bswaptls(&shdr->sh_flags); 1973 bswaptls(&shdr->sh_addr); 1974 bswaptls(&shdr->sh_offset); 1975 bswaptls(&shdr->sh_size); 1976 bswap32s(&shdr->sh_link); 1977 bswap32s(&shdr->sh_info); 1978 bswaptls(&shdr->sh_addralign); 1979 bswaptls(&shdr->sh_entsize); 1980 } 1981 } 1982 1983 static void bswap_sym(struct elf_sym *sym) 1984 { 1985 bswap32s(&sym->st_name); 1986 bswaptls(&sym->st_value); 1987 bswaptls(&sym->st_size); 1988 bswap16s(&sym->st_shndx); 1989 } 1990 1991 #ifdef TARGET_MIPS 1992 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1993 { 1994 bswap16s(&abiflags->version); 1995 bswap32s(&abiflags->ases); 1996 bswap32s(&abiflags->isa_ext); 1997 bswap32s(&abiflags->flags1); 1998 bswap32s(&abiflags->flags2); 1999 } 2000 #endif 2001 #else 2002 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2003 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2004 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2005 static inline void bswap_sym(struct elf_sym *sym) { } 2006 #ifdef TARGET_MIPS 2007 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2008 #endif 2009 #endif 2010 2011 #ifdef USE_ELF_CORE_DUMP 2012 static int elf_core_dump(int, const CPUArchState *); 2013 #endif /* USE_ELF_CORE_DUMP */ 2014 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2015 2016 /* Verify the portions of EHDR within E_IDENT for the target. 2017 This can be performed before bswapping the entire header. */ 2018 static bool elf_check_ident(struct elfhdr *ehdr) 2019 { 2020 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2021 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2022 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2023 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2024 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2025 && ehdr->e_ident[EI_DATA] == ELF_DATA 2026 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2027 } 2028 2029 /* Verify the portions of EHDR outside of E_IDENT for the target. 2030 This has to wait until after bswapping the header. */ 2031 static bool elf_check_ehdr(struct elfhdr *ehdr) 2032 { 2033 return (elf_check_arch(ehdr->e_machine) 2034 && elf_check_abi(ehdr->e_flags) 2035 && ehdr->e_ehsize == sizeof(struct elfhdr) 2036 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2037 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2038 } 2039 2040 /* 2041 * 'copy_elf_strings()' copies argument/envelope strings from user 2042 * memory to free pages in kernel mem. These are in a format ready 2043 * to be put directly into the top of new user memory. 2044 * 2045 */ 2046 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2047 abi_ulong p, abi_ulong stack_limit) 2048 { 2049 char *tmp; 2050 int len, i; 2051 abi_ulong top = p; 2052 2053 if (!p) { 2054 return 0; /* bullet-proofing */ 2055 } 2056 2057 if (STACK_GROWS_DOWN) { 2058 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2059 for (i = argc - 1; i >= 0; --i) { 2060 tmp = argv[i]; 2061 if (!tmp) { 2062 fprintf(stderr, "VFS: argc is wrong"); 2063 exit(-1); 2064 } 2065 len = strlen(tmp) + 1; 2066 tmp += len; 2067 2068 if (len > (p - stack_limit)) { 2069 return 0; 2070 } 2071 while (len) { 2072 int bytes_to_copy = (len > offset) ? offset : len; 2073 tmp -= bytes_to_copy; 2074 p -= bytes_to_copy; 2075 offset -= bytes_to_copy; 2076 len -= bytes_to_copy; 2077 2078 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2079 2080 if (offset == 0) { 2081 memcpy_to_target(p, scratch, top - p); 2082 top = p; 2083 offset = TARGET_PAGE_SIZE; 2084 } 2085 } 2086 } 2087 if (p != top) { 2088 memcpy_to_target(p, scratch + offset, top - p); 2089 } 2090 } else { 2091 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2092 for (i = 0; i < argc; ++i) { 2093 tmp = argv[i]; 2094 if (!tmp) { 2095 fprintf(stderr, "VFS: argc is wrong"); 2096 exit(-1); 2097 } 2098 len = strlen(tmp) + 1; 2099 if (len > (stack_limit - p)) { 2100 return 0; 2101 } 2102 while (len) { 2103 int bytes_to_copy = (len > remaining) ? remaining : len; 2104 2105 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2106 2107 tmp += bytes_to_copy; 2108 remaining -= bytes_to_copy; 2109 p += bytes_to_copy; 2110 len -= bytes_to_copy; 2111 2112 if (remaining == 0) { 2113 memcpy_to_target(top, scratch, p - top); 2114 top = p; 2115 remaining = TARGET_PAGE_SIZE; 2116 } 2117 } 2118 } 2119 if (p != top) { 2120 memcpy_to_target(top, scratch, p - top); 2121 } 2122 } 2123 2124 return p; 2125 } 2126 2127 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2128 * argument/environment space. Newer kernels (>2.6.33) allow more, 2129 * dependent on stack size, but guarantee at least 32 pages for 2130 * backwards compatibility. 2131 */ 2132 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2133 2134 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2135 struct image_info *info) 2136 { 2137 abi_ulong size, error, guard; 2138 int prot; 2139 2140 size = guest_stack_size; 2141 if (size < STACK_LOWER_LIMIT) { 2142 size = STACK_LOWER_LIMIT; 2143 } 2144 2145 if (STACK_GROWS_DOWN) { 2146 guard = TARGET_PAGE_SIZE; 2147 if (guard < qemu_real_host_page_size()) { 2148 guard = qemu_real_host_page_size(); 2149 } 2150 } else { 2151 /* no guard page for hppa target where stack grows upwards. */ 2152 guard = 0; 2153 } 2154 2155 prot = PROT_READ | PROT_WRITE; 2156 if (info->exec_stack) { 2157 prot |= PROT_EXEC; 2158 } 2159 error = target_mmap(0, size + guard, prot, 2160 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2161 if (error == -1) { 2162 perror("mmap stack"); 2163 exit(-1); 2164 } 2165 2166 /* We reserve one extra page at the top of the stack as guard. */ 2167 if (STACK_GROWS_DOWN) { 2168 target_mprotect(error, guard, PROT_NONE); 2169 info->stack_limit = error + guard; 2170 return info->stack_limit + size - sizeof(void *); 2171 } else { 2172 info->stack_limit = error + size; 2173 return error; 2174 } 2175 } 2176 2177 /* Map and zero the bss. We need to explicitly zero any fractional pages 2178 after the data section (i.e. bss). */ 2179 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2180 { 2181 uintptr_t host_start, host_map_start, host_end; 2182 2183 last_bss = TARGET_PAGE_ALIGN(last_bss); 2184 2185 /* ??? There is confusion between qemu_real_host_page_size and 2186 qemu_host_page_size here and elsewhere in target_mmap, which 2187 may lead to the end of the data section mapping from the file 2188 not being mapped. At least there was an explicit test and 2189 comment for that here, suggesting that "the file size must 2190 be known". The comment probably pre-dates the introduction 2191 of the fstat system call in target_mmap which does in fact 2192 find out the size. What isn't clear is if the workaround 2193 here is still actually needed. For now, continue with it, 2194 but merge it with the "normal" mmap that would allocate the bss. */ 2195 2196 host_start = (uintptr_t) g2h_untagged(elf_bss); 2197 host_end = (uintptr_t) g2h_untagged(last_bss); 2198 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2199 2200 if (host_map_start < host_end) { 2201 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2202 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2203 if (p == MAP_FAILED) { 2204 perror("cannot mmap brk"); 2205 exit(-1); 2206 } 2207 } 2208 2209 /* Ensure that the bss page(s) are valid */ 2210 if ((page_get_flags(last_bss-1) & prot) != prot) { 2211 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2212 } 2213 2214 if (host_start < host_map_start) { 2215 memset((void *)host_start, 0, host_map_start - host_start); 2216 } 2217 } 2218 2219 #if defined(TARGET_ARM) 2220 static int elf_is_fdpic(struct elfhdr *exec) 2221 { 2222 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2223 } 2224 #elif defined(TARGET_XTENSA) 2225 static int elf_is_fdpic(struct elfhdr *exec) 2226 { 2227 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2228 } 2229 #else 2230 /* Default implementation, always false. */ 2231 static int elf_is_fdpic(struct elfhdr *exec) 2232 { 2233 return 0; 2234 } 2235 #endif 2236 2237 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2238 { 2239 uint16_t n; 2240 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2241 2242 /* elf32_fdpic_loadseg */ 2243 n = info->nsegs; 2244 while (n--) { 2245 sp -= 12; 2246 put_user_u32(loadsegs[n].addr, sp+0); 2247 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2248 put_user_u32(loadsegs[n].p_memsz, sp+8); 2249 } 2250 2251 /* elf32_fdpic_loadmap */ 2252 sp -= 4; 2253 put_user_u16(0, sp+0); /* version */ 2254 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2255 2256 info->personality = PER_LINUX_FDPIC; 2257 info->loadmap_addr = sp; 2258 2259 return sp; 2260 } 2261 2262 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2263 struct elfhdr *exec, 2264 struct image_info *info, 2265 struct image_info *interp_info) 2266 { 2267 abi_ulong sp; 2268 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2269 int size; 2270 int i; 2271 abi_ulong u_rand_bytes; 2272 uint8_t k_rand_bytes[16]; 2273 abi_ulong u_platform, u_base_platform; 2274 const char *k_platform, *k_base_platform; 2275 const int n = sizeof(elf_addr_t); 2276 2277 sp = p; 2278 2279 /* Needs to be before we load the env/argc/... */ 2280 if (elf_is_fdpic(exec)) { 2281 /* Need 4 byte alignment for these structs */ 2282 sp &= ~3; 2283 sp = loader_build_fdpic_loadmap(info, sp); 2284 info->other_info = interp_info; 2285 if (interp_info) { 2286 interp_info->other_info = info; 2287 sp = loader_build_fdpic_loadmap(interp_info, sp); 2288 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2289 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2290 } else { 2291 info->interpreter_loadmap_addr = 0; 2292 info->interpreter_pt_dynamic_addr = 0; 2293 } 2294 } 2295 2296 u_base_platform = 0; 2297 k_base_platform = ELF_BASE_PLATFORM; 2298 if (k_base_platform) { 2299 size_t len = strlen(k_base_platform) + 1; 2300 if (STACK_GROWS_DOWN) { 2301 sp -= (len + n - 1) & ~(n - 1); 2302 u_base_platform = sp; 2303 /* FIXME - check return value of memcpy_to_target() for failure */ 2304 memcpy_to_target(sp, k_base_platform, len); 2305 } else { 2306 memcpy_to_target(sp, k_base_platform, len); 2307 u_base_platform = sp; 2308 sp += len + 1; 2309 } 2310 } 2311 2312 u_platform = 0; 2313 k_platform = ELF_PLATFORM; 2314 if (k_platform) { 2315 size_t len = strlen(k_platform) + 1; 2316 if (STACK_GROWS_DOWN) { 2317 sp -= (len + n - 1) & ~(n - 1); 2318 u_platform = sp; 2319 /* FIXME - check return value of memcpy_to_target() for failure */ 2320 memcpy_to_target(sp, k_platform, len); 2321 } else { 2322 memcpy_to_target(sp, k_platform, len); 2323 u_platform = sp; 2324 sp += len + 1; 2325 } 2326 } 2327 2328 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2329 * the argv and envp pointers. 2330 */ 2331 if (STACK_GROWS_DOWN) { 2332 sp = QEMU_ALIGN_DOWN(sp, 16); 2333 } else { 2334 sp = QEMU_ALIGN_UP(sp, 16); 2335 } 2336 2337 /* 2338 * Generate 16 random bytes for userspace PRNG seeding. 2339 */ 2340 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2341 if (STACK_GROWS_DOWN) { 2342 sp -= 16; 2343 u_rand_bytes = sp; 2344 /* FIXME - check return value of memcpy_to_target() for failure */ 2345 memcpy_to_target(sp, k_rand_bytes, 16); 2346 } else { 2347 memcpy_to_target(sp, k_rand_bytes, 16); 2348 u_rand_bytes = sp; 2349 sp += 16; 2350 } 2351 2352 size = (DLINFO_ITEMS + 1) * 2; 2353 if (k_base_platform) 2354 size += 2; 2355 if (k_platform) 2356 size += 2; 2357 #ifdef DLINFO_ARCH_ITEMS 2358 size += DLINFO_ARCH_ITEMS * 2; 2359 #endif 2360 #ifdef ELF_HWCAP2 2361 size += 2; 2362 #endif 2363 info->auxv_len = size * n; 2364 2365 size += envc + argc + 2; 2366 size += 1; /* argc itself */ 2367 size *= n; 2368 2369 /* Allocate space and finalize stack alignment for entry now. */ 2370 if (STACK_GROWS_DOWN) { 2371 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2372 sp = u_argc; 2373 } else { 2374 u_argc = sp; 2375 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2376 } 2377 2378 u_argv = u_argc + n; 2379 u_envp = u_argv + (argc + 1) * n; 2380 u_auxv = u_envp + (envc + 1) * n; 2381 info->saved_auxv = u_auxv; 2382 info->argc = argc; 2383 info->envc = envc; 2384 info->argv = u_argv; 2385 info->envp = u_envp; 2386 2387 /* This is correct because Linux defines 2388 * elf_addr_t as Elf32_Off / Elf64_Off 2389 */ 2390 #define NEW_AUX_ENT(id, val) do { \ 2391 put_user_ual(id, u_auxv); u_auxv += n; \ 2392 put_user_ual(val, u_auxv); u_auxv += n; \ 2393 } while(0) 2394 2395 #ifdef ARCH_DLINFO 2396 /* 2397 * ARCH_DLINFO must come first so platform specific code can enforce 2398 * special alignment requirements on the AUXV if necessary (eg. PPC). 2399 */ 2400 ARCH_DLINFO; 2401 #endif 2402 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2403 * on info->auxv_len will trigger. 2404 */ 2405 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2406 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2407 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2408 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2409 /* Target doesn't support host page size alignment */ 2410 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2411 } else { 2412 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2413 qemu_host_page_size))); 2414 } 2415 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2416 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2417 NEW_AUX_ENT(AT_ENTRY, info->entry); 2418 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2419 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2420 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2421 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2422 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2423 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2424 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2425 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2426 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2427 2428 #ifdef ELF_HWCAP2 2429 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2430 #endif 2431 2432 if (u_base_platform) { 2433 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2434 } 2435 if (u_platform) { 2436 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2437 } 2438 NEW_AUX_ENT (AT_NULL, 0); 2439 #undef NEW_AUX_ENT 2440 2441 /* Check that our initial calculation of the auxv length matches how much 2442 * we actually put into it. 2443 */ 2444 assert(info->auxv_len == u_auxv - info->saved_auxv); 2445 2446 put_user_ual(argc, u_argc); 2447 2448 p = info->arg_strings; 2449 for (i = 0; i < argc; ++i) { 2450 put_user_ual(p, u_argv); 2451 u_argv += n; 2452 p += target_strlen(p) + 1; 2453 } 2454 put_user_ual(0, u_argv); 2455 2456 p = info->env_strings; 2457 for (i = 0; i < envc; ++i) { 2458 put_user_ual(p, u_envp); 2459 u_envp += n; 2460 p += target_strlen(p) + 1; 2461 } 2462 put_user_ual(0, u_envp); 2463 2464 return sp; 2465 } 2466 2467 #if defined(HI_COMMPAGE) 2468 #define LO_COMMPAGE -1 2469 #elif defined(LO_COMMPAGE) 2470 #define HI_COMMPAGE 0 2471 #else 2472 #define HI_COMMPAGE 0 2473 #define LO_COMMPAGE -1 2474 #ifndef INIT_GUEST_COMMPAGE 2475 #define init_guest_commpage() true 2476 #endif 2477 #endif 2478 2479 static void pgb_fail_in_use(const char *image_name) 2480 { 2481 error_report("%s: requires virtual address space that is in use " 2482 "(omit the -B option or choose a different value)", 2483 image_name); 2484 exit(EXIT_FAILURE); 2485 } 2486 2487 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2488 abi_ulong guest_hiaddr, long align) 2489 { 2490 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2491 void *addr, *test; 2492 2493 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2494 fprintf(stderr, "Requested guest base %p does not satisfy " 2495 "host minimum alignment (0x%lx)\n", 2496 (void *)guest_base, align); 2497 exit(EXIT_FAILURE); 2498 } 2499 2500 /* Sanity check the guest binary. */ 2501 if (reserved_va) { 2502 if (guest_hiaddr > reserved_va) { 2503 error_report("%s: requires more than reserved virtual " 2504 "address space (0x%" PRIx64 " > 0x%lx)", 2505 image_name, (uint64_t)guest_hiaddr, reserved_va); 2506 exit(EXIT_FAILURE); 2507 } 2508 } else { 2509 #if HOST_LONG_BITS < TARGET_ABI_BITS 2510 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2511 error_report("%s: requires more virtual address space " 2512 "than the host can provide (0x%" PRIx64 ")", 2513 image_name, (uint64_t)guest_hiaddr - guest_base); 2514 exit(EXIT_FAILURE); 2515 } 2516 #endif 2517 } 2518 2519 /* 2520 * Expand the allocation to the entire reserved_va. 2521 * Exclude the mmap_min_addr hole. 2522 */ 2523 if (reserved_va) { 2524 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2525 : mmap_min_addr - guest_base); 2526 guest_hiaddr = reserved_va; 2527 } 2528 2529 /* Reserve the address space for the binary, or reserved_va. */ 2530 test = g2h_untagged(guest_loaddr); 2531 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2532 if (test != addr) { 2533 pgb_fail_in_use(image_name); 2534 } 2535 qemu_log_mask(CPU_LOG_PAGE, 2536 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2537 __func__, addr, guest_hiaddr - guest_loaddr); 2538 } 2539 2540 /** 2541 * pgd_find_hole_fallback: potential mmap address 2542 * @guest_size: size of available space 2543 * @brk: location of break 2544 * @align: memory alignment 2545 * 2546 * This is a fallback method for finding a hole in the host address 2547 * space if we don't have the benefit of being able to access 2548 * /proc/self/map. It can potentially take a very long time as we can 2549 * only dumbly iterate up the host address space seeing if the 2550 * allocation would work. 2551 */ 2552 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2553 long align, uintptr_t offset) 2554 { 2555 uintptr_t base; 2556 2557 /* Start (aligned) at the bottom and work our way up */ 2558 base = ROUND_UP(mmap_min_addr, align); 2559 2560 while (true) { 2561 uintptr_t align_start, end; 2562 align_start = ROUND_UP(base, align); 2563 end = align_start + guest_size + offset; 2564 2565 /* if brk is anywhere in the range give ourselves some room to grow. */ 2566 if (align_start <= brk && brk < end) { 2567 base = brk + (16 * MiB); 2568 continue; 2569 } else if (align_start + guest_size < align_start) { 2570 /* we have run out of space */ 2571 return -1; 2572 } else { 2573 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2574 MAP_FIXED_NOREPLACE; 2575 void * mmap_start = mmap((void *) align_start, guest_size, 2576 PROT_NONE, flags, -1, 0); 2577 if (mmap_start != MAP_FAILED) { 2578 munmap(mmap_start, guest_size); 2579 if (mmap_start == (void *) align_start) { 2580 qemu_log_mask(CPU_LOG_PAGE, 2581 "%s: base @ %p for %" PRIdPTR" bytes\n", 2582 __func__, mmap_start + offset, guest_size); 2583 return (uintptr_t) mmap_start + offset; 2584 } 2585 } 2586 base += qemu_host_page_size; 2587 } 2588 } 2589 } 2590 2591 /* Return value for guest_base, or -1 if no hole found. */ 2592 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2593 long align, uintptr_t offset) 2594 { 2595 GSList *maps, *iter; 2596 uintptr_t this_start, this_end, next_start, brk; 2597 intptr_t ret = -1; 2598 2599 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2600 2601 maps = read_self_maps(); 2602 2603 /* Read brk after we've read the maps, which will malloc. */ 2604 brk = (uintptr_t)sbrk(0); 2605 2606 if (!maps) { 2607 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2608 } 2609 2610 /* The first hole is before the first map entry. */ 2611 this_start = mmap_min_addr; 2612 2613 for (iter = maps; iter; 2614 this_start = next_start, iter = g_slist_next(iter)) { 2615 uintptr_t align_start, hole_size; 2616 2617 this_end = ((MapInfo *)iter->data)->start; 2618 next_start = ((MapInfo *)iter->data)->end; 2619 align_start = ROUND_UP(this_start + offset, align); 2620 2621 /* Skip holes that are too small. */ 2622 if (align_start >= this_end) { 2623 continue; 2624 } 2625 hole_size = this_end - align_start; 2626 if (hole_size < guest_size) { 2627 continue; 2628 } 2629 2630 /* If this hole contains brk, give ourselves some room to grow. */ 2631 if (this_start <= brk && brk < this_end) { 2632 hole_size -= guest_size; 2633 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2634 align_start += 1 * GiB; 2635 } else if (hole_size >= 16 * MiB) { 2636 align_start += 16 * MiB; 2637 } else { 2638 align_start = (this_end - guest_size) & -align; 2639 if (align_start < this_start) { 2640 continue; 2641 } 2642 } 2643 } 2644 2645 /* Record the lowest successful match. */ 2646 if (ret < 0) { 2647 ret = align_start; 2648 } 2649 /* If this hole contains the identity map, select it. */ 2650 if (align_start <= guest_loaddr && 2651 guest_loaddr + guest_size <= this_end) { 2652 ret = 0; 2653 } 2654 /* If this hole ends above the identity map, stop looking. */ 2655 if (this_end >= guest_loaddr) { 2656 break; 2657 } 2658 } 2659 free_self_maps(maps); 2660 2661 if (ret != -1) { 2662 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2663 " for %" PRIuPTR " bytes\n", 2664 __func__, ret, guest_size); 2665 } 2666 2667 return ret; 2668 } 2669 2670 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2671 abi_ulong orig_hiaddr, long align) 2672 { 2673 uintptr_t loaddr = orig_loaddr; 2674 uintptr_t hiaddr = orig_hiaddr; 2675 uintptr_t offset = 0; 2676 uintptr_t addr; 2677 2678 if (hiaddr != orig_hiaddr) { 2679 error_report("%s: requires virtual address space that the " 2680 "host cannot provide (0x%" PRIx64 ")", 2681 image_name, (uint64_t)orig_hiaddr); 2682 exit(EXIT_FAILURE); 2683 } 2684 2685 loaddr &= -align; 2686 if (HI_COMMPAGE) { 2687 /* 2688 * Extend the allocation to include the commpage. 2689 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2690 * need to ensure there is space bellow the guest_base so we 2691 * can map the commpage in the place needed when the address 2692 * arithmetic wraps around. 2693 */ 2694 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2695 hiaddr = (uintptr_t) 4 << 30; 2696 } else { 2697 offset = -(HI_COMMPAGE & -align); 2698 } 2699 } else if (LO_COMMPAGE != -1) { 2700 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2701 } 2702 2703 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2704 if (addr == -1) { 2705 /* 2706 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2707 * that can satisfy both. But as the normal arm32 link base address 2708 * is ~32k, and we extend down to include the commpage, making the 2709 * overhead only ~96k, this is unlikely. 2710 */ 2711 error_report("%s: Unable to allocate %#zx bytes of " 2712 "virtual address space", image_name, 2713 (size_t)(hiaddr - loaddr)); 2714 exit(EXIT_FAILURE); 2715 } 2716 2717 guest_base = addr; 2718 2719 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2720 __func__, addr, hiaddr - loaddr); 2721 } 2722 2723 static void pgb_dynamic(const char *image_name, long align) 2724 { 2725 /* 2726 * The executable is dynamic and does not require a fixed address. 2727 * All we need is a commpage that satisfies align. 2728 * If we do not need a commpage, leave guest_base == 0. 2729 */ 2730 if (HI_COMMPAGE) { 2731 uintptr_t addr, commpage; 2732 2733 /* 64-bit hosts should have used reserved_va. */ 2734 assert(sizeof(uintptr_t) == 4); 2735 2736 /* 2737 * By putting the commpage at the first hole, that puts guest_base 2738 * just above that, and maximises the positive guest addresses. 2739 */ 2740 commpage = HI_COMMPAGE & -align; 2741 addr = pgb_find_hole(commpage, -commpage, align, 0); 2742 assert(addr != -1); 2743 guest_base = addr; 2744 } 2745 } 2746 2747 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2748 abi_ulong guest_hiaddr, long align) 2749 { 2750 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2751 void *addr, *test; 2752 2753 if (guest_hiaddr > reserved_va) { 2754 error_report("%s: requires more than reserved virtual " 2755 "address space (0x%" PRIx64 " > 0x%lx)", 2756 image_name, (uint64_t)guest_hiaddr, reserved_va); 2757 exit(EXIT_FAILURE); 2758 } 2759 2760 /* Widen the "image" to the entire reserved address space. */ 2761 pgb_static(image_name, 0, reserved_va, align); 2762 2763 /* osdep.h defines this as 0 if it's missing */ 2764 flags |= MAP_FIXED_NOREPLACE; 2765 2766 /* Reserve the memory on the host. */ 2767 assert(guest_base != 0); 2768 test = g2h_untagged(0); 2769 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2770 if (addr == MAP_FAILED || addr != test) { 2771 error_report("Unable to reserve 0x%lx bytes of virtual address " 2772 "space at %p (%s) for use as guest address space (check your " 2773 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2774 "using -R option)", reserved_va, test, strerror(errno)); 2775 exit(EXIT_FAILURE); 2776 } 2777 2778 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2779 __func__, addr, reserved_va); 2780 } 2781 2782 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2783 abi_ulong guest_hiaddr) 2784 { 2785 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2786 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2787 2788 if (have_guest_base) { 2789 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2790 } else if (reserved_va) { 2791 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2792 } else if (guest_loaddr) { 2793 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2794 } else { 2795 pgb_dynamic(image_name, align); 2796 } 2797 2798 /* Reserve and initialize the commpage. */ 2799 if (!init_guest_commpage()) { 2800 /* 2801 * With have_guest_base, the user has selected the address and 2802 * we are trying to work with that. Otherwise, we have selected 2803 * free space and init_guest_commpage must succeeded. 2804 */ 2805 assert(have_guest_base); 2806 pgb_fail_in_use(image_name); 2807 } 2808 2809 assert(QEMU_IS_ALIGNED(guest_base, align)); 2810 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2811 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2812 } 2813 2814 enum { 2815 /* The string "GNU\0" as a magic number. */ 2816 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2817 NOTE_DATA_SZ = 1 * KiB, 2818 NOTE_NAME_SZ = 4, 2819 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2820 }; 2821 2822 /* 2823 * Process a single gnu_property entry. 2824 * Return false for error. 2825 */ 2826 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2827 struct image_info *info, bool have_prev_type, 2828 uint32_t *prev_type, Error **errp) 2829 { 2830 uint32_t pr_type, pr_datasz, step; 2831 2832 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2833 goto error_data; 2834 } 2835 datasz -= *off; 2836 data += *off / sizeof(uint32_t); 2837 2838 if (datasz < 2 * sizeof(uint32_t)) { 2839 goto error_data; 2840 } 2841 pr_type = data[0]; 2842 pr_datasz = data[1]; 2843 data += 2; 2844 datasz -= 2 * sizeof(uint32_t); 2845 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2846 if (step > datasz) { 2847 goto error_data; 2848 } 2849 2850 /* Properties are supposed to be unique and sorted on pr_type. */ 2851 if (have_prev_type && pr_type <= *prev_type) { 2852 if (pr_type == *prev_type) { 2853 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2854 } else { 2855 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2856 } 2857 return false; 2858 } 2859 *prev_type = pr_type; 2860 2861 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2862 return false; 2863 } 2864 2865 *off += 2 * sizeof(uint32_t) + step; 2866 return true; 2867 2868 error_data: 2869 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2870 return false; 2871 } 2872 2873 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2874 static bool parse_elf_properties(int image_fd, 2875 struct image_info *info, 2876 const struct elf_phdr *phdr, 2877 char bprm_buf[BPRM_BUF_SIZE], 2878 Error **errp) 2879 { 2880 union { 2881 struct elf_note nhdr; 2882 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2883 } note; 2884 2885 int n, off, datasz; 2886 bool have_prev_type; 2887 uint32_t prev_type; 2888 2889 /* Unless the arch requires properties, ignore them. */ 2890 if (!ARCH_USE_GNU_PROPERTY) { 2891 return true; 2892 } 2893 2894 /* If the properties are crazy large, that's too bad. */ 2895 n = phdr->p_filesz; 2896 if (n > sizeof(note)) { 2897 error_setg(errp, "PT_GNU_PROPERTY too large"); 2898 return false; 2899 } 2900 if (n < sizeof(note.nhdr)) { 2901 error_setg(errp, "PT_GNU_PROPERTY too small"); 2902 return false; 2903 } 2904 2905 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2906 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2907 } else { 2908 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2909 if (len != n) { 2910 error_setg_errno(errp, errno, "Error reading file header"); 2911 return false; 2912 } 2913 } 2914 2915 /* 2916 * The contents of a valid PT_GNU_PROPERTY is a sequence 2917 * of uint32_t -- swap them all now. 2918 */ 2919 #ifdef BSWAP_NEEDED 2920 for (int i = 0; i < n / 4; i++) { 2921 bswap32s(note.data + i); 2922 } 2923 #endif 2924 2925 /* 2926 * Note that nhdr is 3 words, and that the "name" described by namesz 2927 * immediately follows nhdr and is thus at the 4th word. Further, all 2928 * of the inputs to the kernel's round_up are multiples of 4. 2929 */ 2930 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2931 note.nhdr.n_namesz != NOTE_NAME_SZ || 2932 note.data[3] != GNU0_MAGIC) { 2933 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2934 return false; 2935 } 2936 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2937 2938 datasz = note.nhdr.n_descsz + off; 2939 if (datasz > n) { 2940 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2941 return false; 2942 } 2943 2944 have_prev_type = false; 2945 prev_type = 0; 2946 while (1) { 2947 if (off == datasz) { 2948 return true; /* end, exit ok */ 2949 } 2950 if (!parse_elf_property(note.data, &off, datasz, info, 2951 have_prev_type, &prev_type, errp)) { 2952 return false; 2953 } 2954 have_prev_type = true; 2955 } 2956 } 2957 2958 /* Load an ELF image into the address space. 2959 2960 IMAGE_NAME is the filename of the image, to use in error messages. 2961 IMAGE_FD is the open file descriptor for the image. 2962 2963 BPRM_BUF is a copy of the beginning of the file; this of course 2964 contains the elf file header at offset 0. It is assumed that this 2965 buffer is sufficiently aligned to present no problems to the host 2966 in accessing data at aligned offsets within the buffer. 2967 2968 On return: INFO values will be filled in, as necessary or available. */ 2969 2970 static void load_elf_image(const char *image_name, int image_fd, 2971 struct image_info *info, char **pinterp_name, 2972 char bprm_buf[BPRM_BUF_SIZE]) 2973 { 2974 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2975 struct elf_phdr *phdr; 2976 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2977 int i, retval, prot_exec; 2978 Error *err = NULL; 2979 2980 /* First of all, some simple consistency checks */ 2981 if (!elf_check_ident(ehdr)) { 2982 error_setg(&err, "Invalid ELF image for this architecture"); 2983 goto exit_errmsg; 2984 } 2985 bswap_ehdr(ehdr); 2986 if (!elf_check_ehdr(ehdr)) { 2987 error_setg(&err, "Invalid ELF image for this architecture"); 2988 goto exit_errmsg; 2989 } 2990 2991 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2992 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2993 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2994 } else { 2995 phdr = (struct elf_phdr *) alloca(i); 2996 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2997 if (retval != i) { 2998 goto exit_read; 2999 } 3000 } 3001 bswap_phdr(phdr, ehdr->e_phnum); 3002 3003 info->nsegs = 0; 3004 info->pt_dynamic_addr = 0; 3005 3006 mmap_lock(); 3007 3008 /* 3009 * Find the maximum size of the image and allocate an appropriate 3010 * amount of memory to handle that. Locate the interpreter, if any. 3011 */ 3012 loaddr = -1, hiaddr = 0; 3013 info->alignment = 0; 3014 info->exec_stack = EXSTACK_DEFAULT; 3015 for (i = 0; i < ehdr->e_phnum; ++i) { 3016 struct elf_phdr *eppnt = phdr + i; 3017 if (eppnt->p_type == PT_LOAD) { 3018 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3019 if (a < loaddr) { 3020 loaddr = a; 3021 } 3022 a = eppnt->p_vaddr + eppnt->p_memsz; 3023 if (a > hiaddr) { 3024 hiaddr = a; 3025 } 3026 ++info->nsegs; 3027 info->alignment |= eppnt->p_align; 3028 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3029 g_autofree char *interp_name = NULL; 3030 3031 if (*pinterp_name) { 3032 error_setg(&err, "Multiple PT_INTERP entries"); 3033 goto exit_errmsg; 3034 } 3035 3036 interp_name = g_malloc(eppnt->p_filesz); 3037 3038 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3039 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3040 eppnt->p_filesz); 3041 } else { 3042 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3043 eppnt->p_offset); 3044 if (retval != eppnt->p_filesz) { 3045 goto exit_read; 3046 } 3047 } 3048 if (interp_name[eppnt->p_filesz - 1] != 0) { 3049 error_setg(&err, "Invalid PT_INTERP entry"); 3050 goto exit_errmsg; 3051 } 3052 *pinterp_name = g_steal_pointer(&interp_name); 3053 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3054 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3055 goto exit_errmsg; 3056 } 3057 } else if (eppnt->p_type == PT_GNU_STACK) { 3058 info->exec_stack = eppnt->p_flags & PF_X; 3059 } 3060 } 3061 3062 if (pinterp_name != NULL) { 3063 /* 3064 * This is the main executable. 3065 * 3066 * Reserve extra space for brk. 3067 * We hold on to this space while placing the interpreter 3068 * and the stack, lest they be placed immediately after 3069 * the data segment and block allocation from the brk. 3070 * 3071 * 16MB is chosen as "large enough" without being so large as 3072 * to allow the result to not fit with a 32-bit guest on a 3073 * 32-bit host. However some 64 bit guests (e.g. s390x) 3074 * attempt to place their heap further ahead and currently 3075 * nothing stops them smashing into QEMUs address space. 3076 */ 3077 #if TARGET_LONG_BITS == 64 3078 info->reserve_brk = 32 * MiB; 3079 #else 3080 info->reserve_brk = 16 * MiB; 3081 #endif 3082 hiaddr += info->reserve_brk; 3083 3084 if (ehdr->e_type == ET_EXEC) { 3085 /* 3086 * Make sure that the low address does not conflict with 3087 * MMAP_MIN_ADDR or the QEMU application itself. 3088 */ 3089 probe_guest_base(image_name, loaddr, hiaddr); 3090 } else { 3091 /* 3092 * The binary is dynamic, but we still need to 3093 * select guest_base. In this case we pass a size. 3094 */ 3095 probe_guest_base(image_name, 0, hiaddr - loaddr); 3096 } 3097 } 3098 3099 /* 3100 * Reserve address space for all of this. 3101 * 3102 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3103 * exactly the address range that is required. 3104 * 3105 * Otherwise this is ET_DYN, and we are searching for a location 3106 * that can hold the memory space required. If the image is 3107 * pre-linked, LOADDR will be non-zero, and the kernel should 3108 * honor that address if it happens to be free. 3109 * 3110 * In both cases, we will overwrite pages in this range with mappings 3111 * from the executable. 3112 */ 3113 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 3114 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3115 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3116 -1, 0); 3117 if (load_addr == -1) { 3118 goto exit_mmap; 3119 } 3120 load_bias = load_addr - loaddr; 3121 3122 if (elf_is_fdpic(ehdr)) { 3123 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3124 g_malloc(sizeof(*loadsegs) * info->nsegs); 3125 3126 for (i = 0; i < ehdr->e_phnum; ++i) { 3127 switch (phdr[i].p_type) { 3128 case PT_DYNAMIC: 3129 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3130 break; 3131 case PT_LOAD: 3132 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3133 loadsegs->p_vaddr = phdr[i].p_vaddr; 3134 loadsegs->p_memsz = phdr[i].p_memsz; 3135 ++loadsegs; 3136 break; 3137 } 3138 } 3139 } 3140 3141 info->load_bias = load_bias; 3142 info->code_offset = load_bias; 3143 info->data_offset = load_bias; 3144 info->load_addr = load_addr; 3145 info->entry = ehdr->e_entry + load_bias; 3146 info->start_code = -1; 3147 info->end_code = 0; 3148 info->start_data = -1; 3149 info->end_data = 0; 3150 info->brk = 0; 3151 info->elf_flags = ehdr->e_flags; 3152 3153 prot_exec = PROT_EXEC; 3154 #ifdef TARGET_AARCH64 3155 /* 3156 * If the BTI feature is present, this indicates that the executable 3157 * pages of the startup binary should be mapped with PROT_BTI, so that 3158 * branch targets are enforced. 3159 * 3160 * The startup binary is either the interpreter or the static executable. 3161 * The interpreter is responsible for all pages of a dynamic executable. 3162 * 3163 * Elf notes are backward compatible to older cpus. 3164 * Do not enable BTI unless it is supported. 3165 */ 3166 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3167 && (pinterp_name == NULL || *pinterp_name == 0) 3168 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3169 prot_exec |= TARGET_PROT_BTI; 3170 } 3171 #endif 3172 3173 for (i = 0; i < ehdr->e_phnum; i++) { 3174 struct elf_phdr *eppnt = phdr + i; 3175 if (eppnt->p_type == PT_LOAD) { 3176 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3177 int elf_prot = 0; 3178 3179 if (eppnt->p_flags & PF_R) { 3180 elf_prot |= PROT_READ; 3181 } 3182 if (eppnt->p_flags & PF_W) { 3183 elf_prot |= PROT_WRITE; 3184 } 3185 if (eppnt->p_flags & PF_X) { 3186 elf_prot |= prot_exec; 3187 } 3188 3189 vaddr = load_bias + eppnt->p_vaddr; 3190 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3191 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3192 3193 vaddr_ef = vaddr + eppnt->p_filesz; 3194 vaddr_em = vaddr + eppnt->p_memsz; 3195 3196 /* 3197 * Some segments may be completely empty, with a non-zero p_memsz 3198 * but no backing file segment. 3199 */ 3200 if (eppnt->p_filesz != 0) { 3201 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3202 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3203 MAP_PRIVATE | MAP_FIXED, 3204 image_fd, eppnt->p_offset - vaddr_po); 3205 3206 if (error == -1) { 3207 goto exit_mmap; 3208 } 3209 3210 /* 3211 * If the load segment requests extra zeros (e.g. bss), map it. 3212 */ 3213 if (eppnt->p_filesz < eppnt->p_memsz) { 3214 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3215 } 3216 } else if (eppnt->p_memsz != 0) { 3217 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3218 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3219 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3220 -1, 0); 3221 3222 if (error == -1) { 3223 goto exit_mmap; 3224 } 3225 } 3226 3227 /* Find the full program boundaries. */ 3228 if (elf_prot & PROT_EXEC) { 3229 if (vaddr < info->start_code) { 3230 info->start_code = vaddr; 3231 } 3232 if (vaddr_ef > info->end_code) { 3233 info->end_code = vaddr_ef; 3234 } 3235 } 3236 if (elf_prot & PROT_WRITE) { 3237 if (vaddr < info->start_data) { 3238 info->start_data = vaddr; 3239 } 3240 if (vaddr_ef > info->end_data) { 3241 info->end_data = vaddr_ef; 3242 } 3243 } 3244 if (vaddr_em > info->brk) { 3245 info->brk = vaddr_em; 3246 } 3247 #ifdef TARGET_MIPS 3248 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3249 Mips_elf_abiflags_v0 abiflags; 3250 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3251 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3252 goto exit_errmsg; 3253 } 3254 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3255 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3256 sizeof(Mips_elf_abiflags_v0)); 3257 } else { 3258 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3259 eppnt->p_offset); 3260 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3261 goto exit_read; 3262 } 3263 } 3264 bswap_mips_abiflags(&abiflags); 3265 info->fp_abi = abiflags.fp_abi; 3266 #endif 3267 } 3268 } 3269 3270 if (info->end_data == 0) { 3271 info->start_data = info->end_code; 3272 info->end_data = info->end_code; 3273 } 3274 3275 if (qemu_log_enabled()) { 3276 load_symbols(ehdr, image_fd, load_bias); 3277 } 3278 3279 debuginfo_report_elf(image_name, image_fd, load_bias); 3280 3281 mmap_unlock(); 3282 3283 close(image_fd); 3284 return; 3285 3286 exit_read: 3287 if (retval >= 0) { 3288 error_setg(&err, "Incomplete read of file header"); 3289 } else { 3290 error_setg_errno(&err, errno, "Error reading file header"); 3291 } 3292 goto exit_errmsg; 3293 exit_mmap: 3294 error_setg_errno(&err, errno, "Error mapping file"); 3295 goto exit_errmsg; 3296 exit_errmsg: 3297 error_reportf_err(err, "%s: ", image_name); 3298 exit(-1); 3299 } 3300 3301 static void load_elf_interp(const char *filename, struct image_info *info, 3302 char bprm_buf[BPRM_BUF_SIZE]) 3303 { 3304 int fd, retval; 3305 Error *err = NULL; 3306 3307 fd = open(path(filename), O_RDONLY); 3308 if (fd < 0) { 3309 error_setg_file_open(&err, errno, filename); 3310 error_report_err(err); 3311 exit(-1); 3312 } 3313 3314 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3315 if (retval < 0) { 3316 error_setg_errno(&err, errno, "Error reading file header"); 3317 error_reportf_err(err, "%s: ", filename); 3318 exit(-1); 3319 } 3320 3321 if (retval < BPRM_BUF_SIZE) { 3322 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3323 } 3324 3325 load_elf_image(filename, fd, info, NULL, bprm_buf); 3326 } 3327 3328 static int symfind(const void *s0, const void *s1) 3329 { 3330 target_ulong addr = *(target_ulong *)s0; 3331 struct elf_sym *sym = (struct elf_sym *)s1; 3332 int result = 0; 3333 if (addr < sym->st_value) { 3334 result = -1; 3335 } else if (addr >= sym->st_value + sym->st_size) { 3336 result = 1; 3337 } 3338 return result; 3339 } 3340 3341 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3342 { 3343 #if ELF_CLASS == ELFCLASS32 3344 struct elf_sym *syms = s->disas_symtab.elf32; 3345 #else 3346 struct elf_sym *syms = s->disas_symtab.elf64; 3347 #endif 3348 3349 // binary search 3350 struct elf_sym *sym; 3351 3352 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3353 if (sym != NULL) { 3354 return s->disas_strtab + sym->st_name; 3355 } 3356 3357 return ""; 3358 } 3359 3360 /* FIXME: This should use elf_ops.h */ 3361 static int symcmp(const void *s0, const void *s1) 3362 { 3363 struct elf_sym *sym0 = (struct elf_sym *)s0; 3364 struct elf_sym *sym1 = (struct elf_sym *)s1; 3365 return (sym0->st_value < sym1->st_value) 3366 ? -1 3367 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3368 } 3369 3370 /* Best attempt to load symbols from this ELF object. */ 3371 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3372 { 3373 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3374 uint64_t segsz; 3375 struct elf_shdr *shdr; 3376 char *strings = NULL; 3377 struct syminfo *s = NULL; 3378 struct elf_sym *new_syms, *syms = NULL; 3379 3380 shnum = hdr->e_shnum; 3381 i = shnum * sizeof(struct elf_shdr); 3382 shdr = (struct elf_shdr *)alloca(i); 3383 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3384 return; 3385 } 3386 3387 bswap_shdr(shdr, shnum); 3388 for (i = 0; i < shnum; ++i) { 3389 if (shdr[i].sh_type == SHT_SYMTAB) { 3390 sym_idx = i; 3391 str_idx = shdr[i].sh_link; 3392 goto found; 3393 } 3394 } 3395 3396 /* There will be no symbol table if the file was stripped. */ 3397 return; 3398 3399 found: 3400 /* Now know where the strtab and symtab are. Snarf them. */ 3401 s = g_try_new(struct syminfo, 1); 3402 if (!s) { 3403 goto give_up; 3404 } 3405 3406 segsz = shdr[str_idx].sh_size; 3407 s->disas_strtab = strings = g_try_malloc(segsz); 3408 if (!strings || 3409 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3410 goto give_up; 3411 } 3412 3413 segsz = shdr[sym_idx].sh_size; 3414 syms = g_try_malloc(segsz); 3415 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3416 goto give_up; 3417 } 3418 3419 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3420 /* Implausibly large symbol table: give up rather than ploughing 3421 * on with the number of symbols calculation overflowing 3422 */ 3423 goto give_up; 3424 } 3425 nsyms = segsz / sizeof(struct elf_sym); 3426 for (i = 0; i < nsyms; ) { 3427 bswap_sym(syms + i); 3428 /* Throw away entries which we do not need. */ 3429 if (syms[i].st_shndx == SHN_UNDEF 3430 || syms[i].st_shndx >= SHN_LORESERVE 3431 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3432 if (i < --nsyms) { 3433 syms[i] = syms[nsyms]; 3434 } 3435 } else { 3436 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3437 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3438 syms[i].st_value &= ~(target_ulong)1; 3439 #endif 3440 syms[i].st_value += load_bias; 3441 i++; 3442 } 3443 } 3444 3445 /* No "useful" symbol. */ 3446 if (nsyms == 0) { 3447 goto give_up; 3448 } 3449 3450 /* Attempt to free the storage associated with the local symbols 3451 that we threw away. Whether or not this has any effect on the 3452 memory allocation depends on the malloc implementation and how 3453 many symbols we managed to discard. */ 3454 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3455 if (new_syms == NULL) { 3456 goto give_up; 3457 } 3458 syms = new_syms; 3459 3460 qsort(syms, nsyms, sizeof(*syms), symcmp); 3461 3462 s->disas_num_syms = nsyms; 3463 #if ELF_CLASS == ELFCLASS32 3464 s->disas_symtab.elf32 = syms; 3465 #else 3466 s->disas_symtab.elf64 = syms; 3467 #endif 3468 s->lookup_symbol = lookup_symbolxx; 3469 s->next = syminfos; 3470 syminfos = s; 3471 3472 return; 3473 3474 give_up: 3475 g_free(s); 3476 g_free(strings); 3477 g_free(syms); 3478 } 3479 3480 uint32_t get_elf_eflags(int fd) 3481 { 3482 struct elfhdr ehdr; 3483 off_t offset; 3484 int ret; 3485 3486 /* Read ELF header */ 3487 offset = lseek(fd, 0, SEEK_SET); 3488 if (offset == (off_t) -1) { 3489 return 0; 3490 } 3491 ret = read(fd, &ehdr, sizeof(ehdr)); 3492 if (ret < sizeof(ehdr)) { 3493 return 0; 3494 } 3495 offset = lseek(fd, offset, SEEK_SET); 3496 if (offset == (off_t) -1) { 3497 return 0; 3498 } 3499 3500 /* Check ELF signature */ 3501 if (!elf_check_ident(&ehdr)) { 3502 return 0; 3503 } 3504 3505 /* check header */ 3506 bswap_ehdr(&ehdr); 3507 if (!elf_check_ehdr(&ehdr)) { 3508 return 0; 3509 } 3510 3511 /* return architecture id */ 3512 return ehdr.e_flags; 3513 } 3514 3515 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3516 { 3517 struct image_info interp_info; 3518 struct elfhdr elf_ex; 3519 char *elf_interpreter = NULL; 3520 char *scratch; 3521 3522 memset(&interp_info, 0, sizeof(interp_info)); 3523 #ifdef TARGET_MIPS 3524 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3525 #endif 3526 3527 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3528 3529 load_elf_image(bprm->filename, bprm->fd, info, 3530 &elf_interpreter, bprm->buf); 3531 3532 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3533 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3534 when we load the interpreter. */ 3535 elf_ex = *(struct elfhdr *)bprm->buf; 3536 3537 /* Do this so that we can load the interpreter, if need be. We will 3538 change some of these later */ 3539 bprm->p = setup_arg_pages(bprm, info); 3540 3541 scratch = g_new0(char, TARGET_PAGE_SIZE); 3542 if (STACK_GROWS_DOWN) { 3543 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3544 bprm->p, info->stack_limit); 3545 info->file_string = bprm->p; 3546 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3547 bprm->p, info->stack_limit); 3548 info->env_strings = bprm->p; 3549 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3550 bprm->p, info->stack_limit); 3551 info->arg_strings = bprm->p; 3552 } else { 3553 info->arg_strings = bprm->p; 3554 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3555 bprm->p, info->stack_limit); 3556 info->env_strings = bprm->p; 3557 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3558 bprm->p, info->stack_limit); 3559 info->file_string = bprm->p; 3560 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3561 bprm->p, info->stack_limit); 3562 } 3563 3564 g_free(scratch); 3565 3566 if (!bprm->p) { 3567 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3568 exit(-1); 3569 } 3570 3571 if (elf_interpreter) { 3572 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3573 3574 /* If the program interpreter is one of these two, then assume 3575 an iBCS2 image. Otherwise assume a native linux image. */ 3576 3577 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3578 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3579 info->personality = PER_SVR4; 3580 3581 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3582 and some applications "depend" upon this behavior. Since 3583 we do not have the power to recompile these, we emulate 3584 the SVr4 behavior. Sigh. */ 3585 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3586 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3587 } 3588 #ifdef TARGET_MIPS 3589 info->interp_fp_abi = interp_info.fp_abi; 3590 #endif 3591 } 3592 3593 /* 3594 * TODO: load a vdso, which would also contain the signal trampolines. 3595 * Otherwise, allocate a private page to hold them. 3596 */ 3597 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3598 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3599 PROT_READ | PROT_WRITE, 3600 MAP_PRIVATE | MAP_ANON, -1, 0); 3601 if (tramp_page == -1) { 3602 return -errno; 3603 } 3604 3605 setup_sigtramp(tramp_page); 3606 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3607 } 3608 3609 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3610 info, (elf_interpreter ? &interp_info : NULL)); 3611 info->start_stack = bprm->p; 3612 3613 /* If we have an interpreter, set that as the program's entry point. 3614 Copy the load_bias as well, to help PPC64 interpret the entry 3615 point as a function descriptor. Do this after creating elf tables 3616 so that we copy the original program entry point into the AUXV. */ 3617 if (elf_interpreter) { 3618 info->load_bias = interp_info.load_bias; 3619 info->entry = interp_info.entry; 3620 g_free(elf_interpreter); 3621 } 3622 3623 #ifdef USE_ELF_CORE_DUMP 3624 bprm->core_dump = &elf_core_dump; 3625 #endif 3626 3627 /* 3628 * If we reserved extra space for brk, release it now. 3629 * The implementation of do_brk in syscalls.c expects to be able 3630 * to mmap pages in this space. 3631 */ 3632 if (info->reserve_brk) { 3633 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3634 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3635 target_munmap(start_brk, end_brk - start_brk); 3636 } 3637 3638 return 0; 3639 } 3640 3641 #ifdef USE_ELF_CORE_DUMP 3642 /* 3643 * Definitions to generate Intel SVR4-like core files. 3644 * These mostly have the same names as the SVR4 types with "target_elf_" 3645 * tacked on the front to prevent clashes with linux definitions, 3646 * and the typedef forms have been avoided. This is mostly like 3647 * the SVR4 structure, but more Linuxy, with things that Linux does 3648 * not support and which gdb doesn't really use excluded. 3649 * 3650 * Fields we don't dump (their contents is zero) in linux-user qemu 3651 * are marked with XXX. 3652 * 3653 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3654 * 3655 * Porting ELF coredump for target is (quite) simple process. First you 3656 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3657 * the target resides): 3658 * 3659 * #define USE_ELF_CORE_DUMP 3660 * 3661 * Next you define type of register set used for dumping. ELF specification 3662 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3663 * 3664 * typedef <target_regtype> target_elf_greg_t; 3665 * #define ELF_NREG <number of registers> 3666 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3667 * 3668 * Last step is to implement target specific function that copies registers 3669 * from given cpu into just specified register set. Prototype is: 3670 * 3671 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3672 * const CPUArchState *env); 3673 * 3674 * Parameters: 3675 * regs - copy register values into here (allocated and zeroed by caller) 3676 * env - copy registers from here 3677 * 3678 * Example for ARM target is provided in this file. 3679 */ 3680 3681 /* An ELF note in memory */ 3682 struct memelfnote { 3683 const char *name; 3684 size_t namesz; 3685 size_t namesz_rounded; 3686 int type; 3687 size_t datasz; 3688 size_t datasz_rounded; 3689 void *data; 3690 size_t notesz; 3691 }; 3692 3693 struct target_elf_siginfo { 3694 abi_int si_signo; /* signal number */ 3695 abi_int si_code; /* extra code */ 3696 abi_int si_errno; /* errno */ 3697 }; 3698 3699 struct target_elf_prstatus { 3700 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3701 abi_short pr_cursig; /* Current signal */ 3702 abi_ulong pr_sigpend; /* XXX */ 3703 abi_ulong pr_sighold; /* XXX */ 3704 target_pid_t pr_pid; 3705 target_pid_t pr_ppid; 3706 target_pid_t pr_pgrp; 3707 target_pid_t pr_sid; 3708 struct target_timeval pr_utime; /* XXX User time */ 3709 struct target_timeval pr_stime; /* XXX System time */ 3710 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3711 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3712 target_elf_gregset_t pr_reg; /* GP registers */ 3713 abi_int pr_fpvalid; /* XXX */ 3714 }; 3715 3716 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3717 3718 struct target_elf_prpsinfo { 3719 char pr_state; /* numeric process state */ 3720 char pr_sname; /* char for pr_state */ 3721 char pr_zomb; /* zombie */ 3722 char pr_nice; /* nice val */ 3723 abi_ulong pr_flag; /* flags */ 3724 target_uid_t pr_uid; 3725 target_gid_t pr_gid; 3726 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3727 /* Lots missing */ 3728 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3729 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3730 }; 3731 3732 /* Here is the structure in which status of each thread is captured. */ 3733 struct elf_thread_status { 3734 QTAILQ_ENTRY(elf_thread_status) ets_link; 3735 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3736 #if 0 3737 elf_fpregset_t fpu; /* NT_PRFPREG */ 3738 struct task_struct *thread; 3739 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3740 #endif 3741 struct memelfnote notes[1]; 3742 int num_notes; 3743 }; 3744 3745 struct elf_note_info { 3746 struct memelfnote *notes; 3747 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3748 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3749 3750 QTAILQ_HEAD(, elf_thread_status) thread_list; 3751 #if 0 3752 /* 3753 * Current version of ELF coredump doesn't support 3754 * dumping fp regs etc. 3755 */ 3756 elf_fpregset_t *fpu; 3757 elf_fpxregset_t *xfpu; 3758 int thread_status_size; 3759 #endif 3760 int notes_size; 3761 int numnote; 3762 }; 3763 3764 struct vm_area_struct { 3765 target_ulong vma_start; /* start vaddr of memory region */ 3766 target_ulong vma_end; /* end vaddr of memory region */ 3767 abi_ulong vma_flags; /* protection etc. flags for the region */ 3768 QTAILQ_ENTRY(vm_area_struct) vma_link; 3769 }; 3770 3771 struct mm_struct { 3772 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3773 int mm_count; /* number of mappings */ 3774 }; 3775 3776 static struct mm_struct *vma_init(void); 3777 static void vma_delete(struct mm_struct *); 3778 static int vma_add_mapping(struct mm_struct *, target_ulong, 3779 target_ulong, abi_ulong); 3780 static int vma_get_mapping_count(const struct mm_struct *); 3781 static struct vm_area_struct *vma_first(const struct mm_struct *); 3782 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3783 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3784 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3785 unsigned long flags); 3786 3787 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3788 static void fill_note(struct memelfnote *, const char *, int, 3789 unsigned int, void *); 3790 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3791 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3792 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3793 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3794 static size_t note_size(const struct memelfnote *); 3795 static void free_note_info(struct elf_note_info *); 3796 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3797 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3798 3799 static int dump_write(int, const void *, size_t); 3800 static int write_note(struct memelfnote *, int); 3801 static int write_note_info(struct elf_note_info *, int); 3802 3803 #ifdef BSWAP_NEEDED 3804 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3805 { 3806 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3807 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3808 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3809 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3810 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3811 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3812 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3813 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3814 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3815 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3816 /* cpu times are not filled, so we skip them */ 3817 /* regs should be in correct format already */ 3818 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3819 } 3820 3821 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3822 { 3823 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3824 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3825 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3826 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3827 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3828 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3829 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3830 } 3831 3832 static void bswap_note(struct elf_note *en) 3833 { 3834 bswap32s(&en->n_namesz); 3835 bswap32s(&en->n_descsz); 3836 bswap32s(&en->n_type); 3837 } 3838 #else 3839 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3840 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3841 static inline void bswap_note(struct elf_note *en) { } 3842 #endif /* BSWAP_NEEDED */ 3843 3844 /* 3845 * Minimal support for linux memory regions. These are needed 3846 * when we are finding out what memory exactly belongs to 3847 * emulated process. No locks needed here, as long as 3848 * thread that received the signal is stopped. 3849 */ 3850 3851 static struct mm_struct *vma_init(void) 3852 { 3853 struct mm_struct *mm; 3854 3855 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3856 return (NULL); 3857 3858 mm->mm_count = 0; 3859 QTAILQ_INIT(&mm->mm_mmap); 3860 3861 return (mm); 3862 } 3863 3864 static void vma_delete(struct mm_struct *mm) 3865 { 3866 struct vm_area_struct *vma; 3867 3868 while ((vma = vma_first(mm)) != NULL) { 3869 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3870 g_free(vma); 3871 } 3872 g_free(mm); 3873 } 3874 3875 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3876 target_ulong end, abi_ulong flags) 3877 { 3878 struct vm_area_struct *vma; 3879 3880 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3881 return (-1); 3882 3883 vma->vma_start = start; 3884 vma->vma_end = end; 3885 vma->vma_flags = flags; 3886 3887 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3888 mm->mm_count++; 3889 3890 return (0); 3891 } 3892 3893 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3894 { 3895 return (QTAILQ_FIRST(&mm->mm_mmap)); 3896 } 3897 3898 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3899 { 3900 return (QTAILQ_NEXT(vma, vma_link)); 3901 } 3902 3903 static int vma_get_mapping_count(const struct mm_struct *mm) 3904 { 3905 return (mm->mm_count); 3906 } 3907 3908 /* 3909 * Calculate file (dump) size of given memory region. 3910 */ 3911 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3912 { 3913 /* if we cannot even read the first page, skip it */ 3914 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3915 return (0); 3916 3917 /* 3918 * Usually we don't dump executable pages as they contain 3919 * non-writable code that debugger can read directly from 3920 * target library etc. However, thread stacks are marked 3921 * also executable so we read in first page of given region 3922 * and check whether it contains elf header. If there is 3923 * no elf header, we dump it. 3924 */ 3925 if (vma->vma_flags & PROT_EXEC) { 3926 char page[TARGET_PAGE_SIZE]; 3927 3928 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3929 return 0; 3930 } 3931 if ((page[EI_MAG0] == ELFMAG0) && 3932 (page[EI_MAG1] == ELFMAG1) && 3933 (page[EI_MAG2] == ELFMAG2) && 3934 (page[EI_MAG3] == ELFMAG3)) { 3935 /* 3936 * Mappings are possibly from ELF binary. Don't dump 3937 * them. 3938 */ 3939 return (0); 3940 } 3941 } 3942 3943 return (vma->vma_end - vma->vma_start); 3944 } 3945 3946 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3947 unsigned long flags) 3948 { 3949 struct mm_struct *mm = (struct mm_struct *)priv; 3950 3951 vma_add_mapping(mm, start, end, flags); 3952 return (0); 3953 } 3954 3955 static void fill_note(struct memelfnote *note, const char *name, int type, 3956 unsigned int sz, void *data) 3957 { 3958 unsigned int namesz; 3959 3960 namesz = strlen(name) + 1; 3961 note->name = name; 3962 note->namesz = namesz; 3963 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3964 note->type = type; 3965 note->datasz = sz; 3966 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3967 3968 note->data = data; 3969 3970 /* 3971 * We calculate rounded up note size here as specified by 3972 * ELF document. 3973 */ 3974 note->notesz = sizeof (struct elf_note) + 3975 note->namesz_rounded + note->datasz_rounded; 3976 } 3977 3978 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3979 uint32_t flags) 3980 { 3981 (void) memset(elf, 0, sizeof(*elf)); 3982 3983 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3984 elf->e_ident[EI_CLASS] = ELF_CLASS; 3985 elf->e_ident[EI_DATA] = ELF_DATA; 3986 elf->e_ident[EI_VERSION] = EV_CURRENT; 3987 elf->e_ident[EI_OSABI] = ELF_OSABI; 3988 3989 elf->e_type = ET_CORE; 3990 elf->e_machine = machine; 3991 elf->e_version = EV_CURRENT; 3992 elf->e_phoff = sizeof(struct elfhdr); 3993 elf->e_flags = flags; 3994 elf->e_ehsize = sizeof(struct elfhdr); 3995 elf->e_phentsize = sizeof(struct elf_phdr); 3996 elf->e_phnum = segs; 3997 3998 bswap_ehdr(elf); 3999 } 4000 4001 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4002 { 4003 phdr->p_type = PT_NOTE; 4004 phdr->p_offset = offset; 4005 phdr->p_vaddr = 0; 4006 phdr->p_paddr = 0; 4007 phdr->p_filesz = sz; 4008 phdr->p_memsz = 0; 4009 phdr->p_flags = 0; 4010 phdr->p_align = 0; 4011 4012 bswap_phdr(phdr, 1); 4013 } 4014 4015 static size_t note_size(const struct memelfnote *note) 4016 { 4017 return (note->notesz); 4018 } 4019 4020 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4021 const TaskState *ts, int signr) 4022 { 4023 (void) memset(prstatus, 0, sizeof (*prstatus)); 4024 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4025 prstatus->pr_pid = ts->ts_tid; 4026 prstatus->pr_ppid = getppid(); 4027 prstatus->pr_pgrp = getpgrp(); 4028 prstatus->pr_sid = getsid(0); 4029 4030 bswap_prstatus(prstatus); 4031 } 4032 4033 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4034 { 4035 char *base_filename; 4036 unsigned int i, len; 4037 4038 (void) memset(psinfo, 0, sizeof (*psinfo)); 4039 4040 len = ts->info->env_strings - ts->info->arg_strings; 4041 if (len >= ELF_PRARGSZ) 4042 len = ELF_PRARGSZ - 1; 4043 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4044 return -EFAULT; 4045 } 4046 for (i = 0; i < len; i++) 4047 if (psinfo->pr_psargs[i] == 0) 4048 psinfo->pr_psargs[i] = ' '; 4049 psinfo->pr_psargs[len] = 0; 4050 4051 psinfo->pr_pid = getpid(); 4052 psinfo->pr_ppid = getppid(); 4053 psinfo->pr_pgrp = getpgrp(); 4054 psinfo->pr_sid = getsid(0); 4055 psinfo->pr_uid = getuid(); 4056 psinfo->pr_gid = getgid(); 4057 4058 base_filename = g_path_get_basename(ts->bprm->filename); 4059 /* 4060 * Using strncpy here is fine: at max-length, 4061 * this field is not NUL-terminated. 4062 */ 4063 (void) strncpy(psinfo->pr_fname, base_filename, 4064 sizeof(psinfo->pr_fname)); 4065 4066 g_free(base_filename); 4067 bswap_psinfo(psinfo); 4068 return (0); 4069 } 4070 4071 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4072 { 4073 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4074 elf_addr_t orig_auxv = auxv; 4075 void *ptr; 4076 int len = ts->info->auxv_len; 4077 4078 /* 4079 * Auxiliary vector is stored in target process stack. It contains 4080 * {type, value} pairs that we need to dump into note. This is not 4081 * strictly necessary but we do it here for sake of completeness. 4082 */ 4083 4084 /* read in whole auxv vector and copy it to memelfnote */ 4085 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4086 if (ptr != NULL) { 4087 fill_note(note, "CORE", NT_AUXV, len, ptr); 4088 unlock_user(ptr, auxv, len); 4089 } 4090 } 4091 4092 /* 4093 * Constructs name of coredump file. We have following convention 4094 * for the name: 4095 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4096 * 4097 * Returns the filename 4098 */ 4099 static char *core_dump_filename(const TaskState *ts) 4100 { 4101 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4102 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4103 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4104 4105 return g_strdup_printf("qemu_%s_%s_%d.core", 4106 base_filename, nowstr, (int)getpid()); 4107 } 4108 4109 static int dump_write(int fd, const void *ptr, size_t size) 4110 { 4111 const char *bufp = (const char *)ptr; 4112 ssize_t bytes_written, bytes_left; 4113 struct rlimit dumpsize; 4114 off_t pos; 4115 4116 bytes_written = 0; 4117 getrlimit(RLIMIT_CORE, &dumpsize); 4118 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4119 if (errno == ESPIPE) { /* not a seekable stream */ 4120 bytes_left = size; 4121 } else { 4122 return pos; 4123 } 4124 } else { 4125 if (dumpsize.rlim_cur <= pos) { 4126 return -1; 4127 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4128 bytes_left = size; 4129 } else { 4130 size_t limit_left=dumpsize.rlim_cur - pos; 4131 bytes_left = limit_left >= size ? size : limit_left ; 4132 } 4133 } 4134 4135 /* 4136 * In normal conditions, single write(2) should do but 4137 * in case of socket etc. this mechanism is more portable. 4138 */ 4139 do { 4140 bytes_written = write(fd, bufp, bytes_left); 4141 if (bytes_written < 0) { 4142 if (errno == EINTR) 4143 continue; 4144 return (-1); 4145 } else if (bytes_written == 0) { /* eof */ 4146 return (-1); 4147 } 4148 bufp += bytes_written; 4149 bytes_left -= bytes_written; 4150 } while (bytes_left > 0); 4151 4152 return (0); 4153 } 4154 4155 static int write_note(struct memelfnote *men, int fd) 4156 { 4157 struct elf_note en; 4158 4159 en.n_namesz = men->namesz; 4160 en.n_type = men->type; 4161 en.n_descsz = men->datasz; 4162 4163 bswap_note(&en); 4164 4165 if (dump_write(fd, &en, sizeof(en)) != 0) 4166 return (-1); 4167 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4168 return (-1); 4169 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4170 return (-1); 4171 4172 return (0); 4173 } 4174 4175 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4176 { 4177 CPUState *cpu = env_cpu((CPUArchState *)env); 4178 TaskState *ts = (TaskState *)cpu->opaque; 4179 struct elf_thread_status *ets; 4180 4181 ets = g_malloc0(sizeof (*ets)); 4182 ets->num_notes = 1; /* only prstatus is dumped */ 4183 fill_prstatus(&ets->prstatus, ts, 0); 4184 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4185 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4186 &ets->prstatus); 4187 4188 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4189 4190 info->notes_size += note_size(&ets->notes[0]); 4191 } 4192 4193 static void init_note_info(struct elf_note_info *info) 4194 { 4195 /* Initialize the elf_note_info structure so that it is at 4196 * least safe to call free_note_info() on it. Must be 4197 * called before calling fill_note_info(). 4198 */ 4199 memset(info, 0, sizeof (*info)); 4200 QTAILQ_INIT(&info->thread_list); 4201 } 4202 4203 static int fill_note_info(struct elf_note_info *info, 4204 long signr, const CPUArchState *env) 4205 { 4206 #define NUMNOTES 3 4207 CPUState *cpu = env_cpu((CPUArchState *)env); 4208 TaskState *ts = (TaskState *)cpu->opaque; 4209 int i; 4210 4211 info->notes = g_new0(struct memelfnote, NUMNOTES); 4212 if (info->notes == NULL) 4213 return (-ENOMEM); 4214 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4215 if (info->prstatus == NULL) 4216 return (-ENOMEM); 4217 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4218 if (info->prstatus == NULL) 4219 return (-ENOMEM); 4220 4221 /* 4222 * First fill in status (and registers) of current thread 4223 * including process info & aux vector. 4224 */ 4225 fill_prstatus(info->prstatus, ts, signr); 4226 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4227 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4228 sizeof (*info->prstatus), info->prstatus); 4229 fill_psinfo(info->psinfo, ts); 4230 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4231 sizeof (*info->psinfo), info->psinfo); 4232 fill_auxv_note(&info->notes[2], ts); 4233 info->numnote = 3; 4234 4235 info->notes_size = 0; 4236 for (i = 0; i < info->numnote; i++) 4237 info->notes_size += note_size(&info->notes[i]); 4238 4239 /* read and fill status of all threads */ 4240 cpu_list_lock(); 4241 CPU_FOREACH(cpu) { 4242 if (cpu == thread_cpu) { 4243 continue; 4244 } 4245 fill_thread_info(info, cpu->env_ptr); 4246 } 4247 cpu_list_unlock(); 4248 4249 return (0); 4250 } 4251 4252 static void free_note_info(struct elf_note_info *info) 4253 { 4254 struct elf_thread_status *ets; 4255 4256 while (!QTAILQ_EMPTY(&info->thread_list)) { 4257 ets = QTAILQ_FIRST(&info->thread_list); 4258 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4259 g_free(ets); 4260 } 4261 4262 g_free(info->prstatus); 4263 g_free(info->psinfo); 4264 g_free(info->notes); 4265 } 4266 4267 static int write_note_info(struct elf_note_info *info, int fd) 4268 { 4269 struct elf_thread_status *ets; 4270 int i, error = 0; 4271 4272 /* write prstatus, psinfo and auxv for current thread */ 4273 for (i = 0; i < info->numnote; i++) 4274 if ((error = write_note(&info->notes[i], fd)) != 0) 4275 return (error); 4276 4277 /* write prstatus for each thread */ 4278 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4279 if ((error = write_note(&ets->notes[0], fd)) != 0) 4280 return (error); 4281 } 4282 4283 return (0); 4284 } 4285 4286 /* 4287 * Write out ELF coredump. 4288 * 4289 * See documentation of ELF object file format in: 4290 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4291 * 4292 * Coredump format in linux is following: 4293 * 4294 * 0 +----------------------+ \ 4295 * | ELF header | ET_CORE | 4296 * +----------------------+ | 4297 * | ELF program headers | |--- headers 4298 * | - NOTE section | | 4299 * | - PT_LOAD sections | | 4300 * +----------------------+ / 4301 * | NOTEs: | 4302 * | - NT_PRSTATUS | 4303 * | - NT_PRSINFO | 4304 * | - NT_AUXV | 4305 * +----------------------+ <-- aligned to target page 4306 * | Process memory dump | 4307 * : : 4308 * . . 4309 * : : 4310 * | | 4311 * +----------------------+ 4312 * 4313 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4314 * NT_PRSINFO -> struct elf_prpsinfo 4315 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4316 * 4317 * Format follows System V format as close as possible. Current 4318 * version limitations are as follows: 4319 * - no floating point registers are dumped 4320 * 4321 * Function returns 0 in case of success, negative errno otherwise. 4322 * 4323 * TODO: make this work also during runtime: it should be 4324 * possible to force coredump from running process and then 4325 * continue processing. For example qemu could set up SIGUSR2 4326 * handler (provided that target process haven't registered 4327 * handler for that) that does the dump when signal is received. 4328 */ 4329 static int elf_core_dump(int signr, const CPUArchState *env) 4330 { 4331 const CPUState *cpu = env_cpu((CPUArchState *)env); 4332 const TaskState *ts = (const TaskState *)cpu->opaque; 4333 struct vm_area_struct *vma = NULL; 4334 g_autofree char *corefile = NULL; 4335 struct elf_note_info info; 4336 struct elfhdr elf; 4337 struct elf_phdr phdr; 4338 struct rlimit dumpsize; 4339 struct mm_struct *mm = NULL; 4340 off_t offset = 0, data_offset = 0; 4341 int segs = 0; 4342 int fd = -1; 4343 4344 init_note_info(&info); 4345 4346 errno = 0; 4347 getrlimit(RLIMIT_CORE, &dumpsize); 4348 if (dumpsize.rlim_cur == 0) 4349 return 0; 4350 4351 corefile = core_dump_filename(ts); 4352 4353 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4354 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4355 return (-errno); 4356 4357 /* 4358 * Walk through target process memory mappings and 4359 * set up structure containing this information. After 4360 * this point vma_xxx functions can be used. 4361 */ 4362 if ((mm = vma_init()) == NULL) 4363 goto out; 4364 4365 walk_memory_regions(mm, vma_walker); 4366 segs = vma_get_mapping_count(mm); 4367 4368 /* 4369 * Construct valid coredump ELF header. We also 4370 * add one more segment for notes. 4371 */ 4372 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4373 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4374 goto out; 4375 4376 /* fill in the in-memory version of notes */ 4377 if (fill_note_info(&info, signr, env) < 0) 4378 goto out; 4379 4380 offset += sizeof (elf); /* elf header */ 4381 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4382 4383 /* write out notes program header */ 4384 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4385 4386 offset += info.notes_size; 4387 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4388 goto out; 4389 4390 /* 4391 * ELF specification wants data to start at page boundary so 4392 * we align it here. 4393 */ 4394 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4395 4396 /* 4397 * Write program headers for memory regions mapped in 4398 * the target process. 4399 */ 4400 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4401 (void) memset(&phdr, 0, sizeof (phdr)); 4402 4403 phdr.p_type = PT_LOAD; 4404 phdr.p_offset = offset; 4405 phdr.p_vaddr = vma->vma_start; 4406 phdr.p_paddr = 0; 4407 phdr.p_filesz = vma_dump_size(vma); 4408 offset += phdr.p_filesz; 4409 phdr.p_memsz = vma->vma_end - vma->vma_start; 4410 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4411 if (vma->vma_flags & PROT_WRITE) 4412 phdr.p_flags |= PF_W; 4413 if (vma->vma_flags & PROT_EXEC) 4414 phdr.p_flags |= PF_X; 4415 phdr.p_align = ELF_EXEC_PAGESIZE; 4416 4417 bswap_phdr(&phdr, 1); 4418 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4419 goto out; 4420 } 4421 } 4422 4423 /* 4424 * Next we write notes just after program headers. No 4425 * alignment needed here. 4426 */ 4427 if (write_note_info(&info, fd) < 0) 4428 goto out; 4429 4430 /* align data to page boundary */ 4431 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4432 goto out; 4433 4434 /* 4435 * Finally we can dump process memory into corefile as well. 4436 */ 4437 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4438 abi_ulong addr; 4439 abi_ulong end; 4440 4441 end = vma->vma_start + vma_dump_size(vma); 4442 4443 for (addr = vma->vma_start; addr < end; 4444 addr += TARGET_PAGE_SIZE) { 4445 char page[TARGET_PAGE_SIZE]; 4446 int error; 4447 4448 /* 4449 * Read in page from target process memory and 4450 * write it to coredump file. 4451 */ 4452 error = copy_from_user(page, addr, sizeof (page)); 4453 if (error != 0) { 4454 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4455 addr); 4456 errno = -error; 4457 goto out; 4458 } 4459 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4460 goto out; 4461 } 4462 } 4463 4464 out: 4465 free_note_info(&info); 4466 if (mm != NULL) 4467 vma_delete(mm); 4468 (void) close(fd); 4469 4470 if (errno != 0) 4471 return (-errno); 4472 return (0); 4473 } 4474 #endif /* USE_ELF_CORE_DUMP */ 4475 4476 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4477 { 4478 init_thread(regs, infop); 4479 } 4480