xref: /openbmc/qemu/linux-user/elfload.c (revision e4ec5ad4)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 
14 #ifdef _ARCH_PPC64
15 #undef ARCH_DLINFO
16 #undef ELF_PLATFORM
17 #undef ELF_HWCAP
18 #undef ELF_HWCAP2
19 #undef ELF_CLASS
20 #undef ELF_DATA
21 #undef ELF_ARCH
22 #endif
23 
24 #define ELF_OSABI   ELFOSABI_SYSV
25 
26 /* from personality.h */
27 
28 /*
29  * Flags for bug emulation.
30  *
31  * These occupy the top three bytes.
32  */
33 enum {
34     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
35     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
36                                            descriptors (signal handling) */
37     MMAP_PAGE_ZERO =    0x0100000,
38     ADDR_COMPAT_LAYOUT = 0x0200000,
39     READ_IMPLIES_EXEC = 0x0400000,
40     ADDR_LIMIT_32BIT =  0x0800000,
41     SHORT_INODE =       0x1000000,
42     WHOLE_SECONDS =     0x2000000,
43     STICKY_TIMEOUTS =   0x4000000,
44     ADDR_LIMIT_3GB =    0x8000000,
45 };
46 
47 /*
48  * Personality types.
49  *
50  * These go in the low byte.  Avoid using the top bit, it will
51  * conflict with error returns.
52  */
53 enum {
54     PER_LINUX =         0x0000,
55     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
56     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
57     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
58     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
60     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
61     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
62     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
63     PER_BSD =           0x0006,
64     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
65     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_LINUX32 =       0x0008,
67     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
68     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
69     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
70     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
71     PER_RISCOS =        0x000c,
72     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
73     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
74     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
75     PER_HPUX =          0x0010,
76     PER_MASK =          0x00ff,
77 };
78 
79 /*
80  * Return the base personality without flags.
81  */
82 #define personality(pers)       (pers & PER_MASK)
83 
84 int info_is_fdpic(struct image_info *info)
85 {
86     return info->personality == PER_LINUX_FDPIC;
87 }
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 
149 #define ELF_CLASS      ELFCLASS64
150 #define ELF_ARCH       EM_X86_64
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = env->regs[15];
172     (*regs)[1] = env->regs[14];
173     (*regs)[2] = env->regs[13];
174     (*regs)[3] = env->regs[12];
175     (*regs)[4] = env->regs[R_EBP];
176     (*regs)[5] = env->regs[R_EBX];
177     (*regs)[6] = env->regs[11];
178     (*regs)[7] = env->regs[10];
179     (*regs)[8] = env->regs[9];
180     (*regs)[9] = env->regs[8];
181     (*regs)[10] = env->regs[R_EAX];
182     (*regs)[11] = env->regs[R_ECX];
183     (*regs)[12] = env->regs[R_EDX];
184     (*regs)[13] = env->regs[R_ESI];
185     (*regs)[14] = env->regs[R_EDI];
186     (*regs)[15] = env->regs[R_EAX]; /* XXX */
187     (*regs)[16] = env->eip;
188     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189     (*regs)[18] = env->eflags;
190     (*regs)[19] = env->regs[R_ESP];
191     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199 
200 #else
201 
202 #define ELF_START_MMAP 0x80000000
203 
204 /*
205  * This is used to ensure we don't load something for the wrong architecture.
206  */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 
209 /*
210  * These are used to set parameters in the core dumps.
211  */
212 #define ELF_CLASS       ELFCLASS32
213 #define ELF_ARCH        EM_386
214 
215 static inline void init_thread(struct target_pt_regs *regs,
216                                struct image_info *infop)
217 {
218     regs->esp = infop->start_stack;
219     regs->eip = infop->entry;
220 
221     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222        starts %edx contains a pointer to a function which might be
223        registered using `atexit'.  This provides a mean for the
224        dynamic linker to call DT_FINI functions for shared libraries
225        that have been loaded before the code runs.
226 
227        A value of 0 tells we have no such handler.  */
228     regs->edx = 0;
229 }
230 
231 #define ELF_NREG    17
232 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233 
234 /*
235  * Note that ELF_NREG should be 19 as there should be place for
236  * TRAPNO and ERR "registers" as well but linux doesn't dump
237  * those.
238  *
239  * See linux kernel: arch/x86/include/asm/elf.h
240  */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243     (*regs)[0] = env->regs[R_EBX];
244     (*regs)[1] = env->regs[R_ECX];
245     (*regs)[2] = env->regs[R_EDX];
246     (*regs)[3] = env->regs[R_ESI];
247     (*regs)[4] = env->regs[R_EDI];
248     (*regs)[5] = env->regs[R_EBP];
249     (*regs)[6] = env->regs[R_EAX];
250     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254     (*regs)[11] = env->regs[R_EAX]; /* XXX */
255     (*regs)[12] = env->eip;
256     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257     (*regs)[14] = env->eflags;
258     (*regs)[15] = env->regs[R_ESP];
259     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262 
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE       4096
265 
266 #endif
267 
268 #ifdef TARGET_ARM
269 
270 #ifndef TARGET_AARCH64
271 /* 32 bit ARM definitions */
272 
273 #define ELF_START_MMAP 0x80000000
274 
275 #define ELF_ARCH        EM_ARM
276 #define ELF_CLASS       ELFCLASS32
277 
278 static inline void init_thread(struct target_pt_regs *regs,
279                                struct image_info *infop)
280 {
281     abi_long stack = infop->start_stack;
282     memset(regs, 0, sizeof(*regs));
283 
284     regs->uregs[16] = ARM_CPU_MODE_USR;
285     if (infop->entry & 1) {
286         regs->uregs[16] |= CPSR_T;
287     }
288     regs->uregs[15] = infop->entry & 0xfffffffe;
289     regs->uregs[13] = infop->start_stack;
290     /* FIXME - what to for failure of get_user()? */
291     get_user_ual(regs->uregs[2], stack + 8); /* envp */
292     get_user_ual(regs->uregs[1], stack + 4); /* envp */
293     /* XXX: it seems that r0 is zeroed after ! */
294     regs->uregs[0] = 0;
295     /* For uClinux PIC binaries.  */
296     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
297     regs->uregs[10] = infop->start_data;
298 
299     /* Support ARM FDPIC.  */
300     if (info_is_fdpic(infop)) {
301         /* As described in the ABI document, r7 points to the loadmap info
302          * prepared by the kernel. If an interpreter is needed, r8 points
303          * to the interpreter loadmap and r9 points to the interpreter
304          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
305          * r9 points to the main program PT_DYNAMIC info.
306          */
307         regs->uregs[7] = infop->loadmap_addr;
308         if (infop->interpreter_loadmap_addr) {
309             /* Executable is dynamically loaded.  */
310             regs->uregs[8] = infop->interpreter_loadmap_addr;
311             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
312         } else {
313             regs->uregs[8] = 0;
314             regs->uregs[9] = infop->pt_dynamic_addr;
315         }
316     }
317 }
318 
319 #define ELF_NREG    18
320 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
321 
322 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
323 {
324     (*regs)[0] = tswapreg(env->regs[0]);
325     (*regs)[1] = tswapreg(env->regs[1]);
326     (*regs)[2] = tswapreg(env->regs[2]);
327     (*regs)[3] = tswapreg(env->regs[3]);
328     (*regs)[4] = tswapreg(env->regs[4]);
329     (*regs)[5] = tswapreg(env->regs[5]);
330     (*regs)[6] = tswapreg(env->regs[6]);
331     (*regs)[7] = tswapreg(env->regs[7]);
332     (*regs)[8] = tswapreg(env->regs[8]);
333     (*regs)[9] = tswapreg(env->regs[9]);
334     (*regs)[10] = tswapreg(env->regs[10]);
335     (*regs)[11] = tswapreg(env->regs[11]);
336     (*regs)[12] = tswapreg(env->regs[12]);
337     (*regs)[13] = tswapreg(env->regs[13]);
338     (*regs)[14] = tswapreg(env->regs[14]);
339     (*regs)[15] = tswapreg(env->regs[15]);
340 
341     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
342     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
343 }
344 
345 #define USE_ELF_CORE_DUMP
346 #define ELF_EXEC_PAGESIZE       4096
347 
348 enum
349 {
350     ARM_HWCAP_ARM_SWP       = 1 << 0,
351     ARM_HWCAP_ARM_HALF      = 1 << 1,
352     ARM_HWCAP_ARM_THUMB     = 1 << 2,
353     ARM_HWCAP_ARM_26BIT     = 1 << 3,
354     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
355     ARM_HWCAP_ARM_FPA       = 1 << 5,
356     ARM_HWCAP_ARM_VFP       = 1 << 6,
357     ARM_HWCAP_ARM_EDSP      = 1 << 7,
358     ARM_HWCAP_ARM_JAVA      = 1 << 8,
359     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
360     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
361     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
362     ARM_HWCAP_ARM_NEON      = 1 << 12,
363     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
364     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
365     ARM_HWCAP_ARM_TLS       = 1 << 15,
366     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
367     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
368     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
369     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
370     ARM_HWCAP_ARM_LPAE      = 1 << 20,
371     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
372 };
373 
374 enum {
375     ARM_HWCAP2_ARM_AES      = 1 << 0,
376     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
377     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
378     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
379     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
380 };
381 
382 /* The commpage only exists for 32 bit kernels */
383 
384 /* Return 1 if the proposed guest space is suitable for the guest.
385  * Return 0 if the proposed guest space isn't suitable, but another
386  * address space should be tried.
387  * Return -1 if there is no way the proposed guest space can be
388  * valid regardless of the base.
389  * The guest code may leave a page mapped and populate it if the
390  * address is suitable.
391  */
392 static int init_guest_commpage(unsigned long guest_base,
393                                unsigned long guest_size)
394 {
395     unsigned long real_start, test_page_addr;
396 
397     /* We need to check that we can force a fault on access to the
398      * commpage at 0xffff0fxx
399      */
400     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
401 
402     /* If the commpage lies within the already allocated guest space,
403      * then there is no way we can allocate it.
404      *
405      * You may be thinking that that this check is redundant because
406      * we already validated the guest size against MAX_RESERVED_VA;
407      * but if qemu_host_page_mask is unusually large, then
408      * test_page_addr may be lower.
409      */
410     if (test_page_addr >= guest_base
411         && test_page_addr < (guest_base + guest_size)) {
412         return -1;
413     }
414 
415     /* Note it needs to be writeable to let us initialise it */
416     real_start = (unsigned long)
417                  mmap((void *)test_page_addr, qemu_host_page_size,
418                      PROT_READ | PROT_WRITE,
419                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
420 
421     /* If we can't map it then try another address */
422     if (real_start == -1ul) {
423         return 0;
424     }
425 
426     if (real_start != test_page_addr) {
427         /* OS didn't put the page where we asked - unmap and reject */
428         munmap((void *)real_start, qemu_host_page_size);
429         return 0;
430     }
431 
432     /* Leave the page mapped
433      * Populate it (mmap should have left it all 0'd)
434      */
435 
436     /* Kernel helper versions */
437     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
438 
439     /* Now it's populated make it RO */
440     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
441         perror("Protecting guest commpage");
442         exit(-1);
443     }
444 
445     return 1; /* All good */
446 }
447 
448 #define ELF_HWCAP get_elf_hwcap()
449 #define ELF_HWCAP2 get_elf_hwcap2()
450 
451 static uint32_t get_elf_hwcap(void)
452 {
453     ARMCPU *cpu = ARM_CPU(thread_cpu);
454     uint32_t hwcaps = 0;
455 
456     hwcaps |= ARM_HWCAP_ARM_SWP;
457     hwcaps |= ARM_HWCAP_ARM_HALF;
458     hwcaps |= ARM_HWCAP_ARM_THUMB;
459     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
460 
461     /* probe for the extra features */
462 #define GET_FEATURE(feat, hwcap) \
463     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
464 
465 #define GET_FEATURE_ID(feat, hwcap) \
466     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
467 
468     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
469     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
470     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
471     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
472     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
473     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
474     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
475     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
476     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
477     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
478     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
479     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
480      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
481      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
482      * to our VFP_FP16 feature bit.
483      */
484     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
485     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
486 
487     return hwcaps;
488 }
489 
490 static uint32_t get_elf_hwcap2(void)
491 {
492     ARMCPU *cpu = ARM_CPU(thread_cpu);
493     uint32_t hwcaps = 0;
494 
495     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
496     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
497     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
498     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
499     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
500     return hwcaps;
501 }
502 
503 #undef GET_FEATURE
504 #undef GET_FEATURE_ID
505 
506 #define ELF_PLATFORM get_elf_platform()
507 
508 static const char *get_elf_platform(void)
509 {
510     CPUARMState *env = thread_cpu->env_ptr;
511 
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define END  "b"
514 #else
515 # define END  "l"
516 #endif
517 
518     if (arm_feature(env, ARM_FEATURE_V8)) {
519         return "v8" END;
520     } else if (arm_feature(env, ARM_FEATURE_V7)) {
521         if (arm_feature(env, ARM_FEATURE_M)) {
522             return "v7m" END;
523         } else {
524             return "v7" END;
525         }
526     } else if (arm_feature(env, ARM_FEATURE_V6)) {
527         return "v6" END;
528     } else if (arm_feature(env, ARM_FEATURE_V5)) {
529         return "v5" END;
530     } else {
531         return "v4" END;
532     }
533 
534 #undef END
535 }
536 
537 #else
538 /* 64 bit ARM definitions */
539 #define ELF_START_MMAP 0x80000000
540 
541 #define ELF_ARCH        EM_AARCH64
542 #define ELF_CLASS       ELFCLASS64
543 #ifdef TARGET_WORDS_BIGENDIAN
544 # define ELF_PLATFORM    "aarch64_be"
545 #else
546 # define ELF_PLATFORM    "aarch64"
547 #endif
548 
549 static inline void init_thread(struct target_pt_regs *regs,
550                                struct image_info *infop)
551 {
552     abi_long stack = infop->start_stack;
553     memset(regs, 0, sizeof(*regs));
554 
555     regs->pc = infop->entry & ~0x3ULL;
556     regs->sp = stack;
557 }
558 
559 #define ELF_NREG    34
560 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
561 
562 static void elf_core_copy_regs(target_elf_gregset_t *regs,
563                                const CPUARMState *env)
564 {
565     int i;
566 
567     for (i = 0; i < 32; i++) {
568         (*regs)[i] = tswapreg(env->xregs[i]);
569     }
570     (*regs)[32] = tswapreg(env->pc);
571     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
572 }
573 
574 #define USE_ELF_CORE_DUMP
575 #define ELF_EXEC_PAGESIZE       4096
576 
577 enum {
578     ARM_HWCAP_A64_FP            = 1 << 0,
579     ARM_HWCAP_A64_ASIMD         = 1 << 1,
580     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
581     ARM_HWCAP_A64_AES           = 1 << 3,
582     ARM_HWCAP_A64_PMULL         = 1 << 4,
583     ARM_HWCAP_A64_SHA1          = 1 << 5,
584     ARM_HWCAP_A64_SHA2          = 1 << 6,
585     ARM_HWCAP_A64_CRC32         = 1 << 7,
586     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
587     ARM_HWCAP_A64_FPHP          = 1 << 9,
588     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
589     ARM_HWCAP_A64_CPUID         = 1 << 11,
590     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
591     ARM_HWCAP_A64_JSCVT         = 1 << 13,
592     ARM_HWCAP_A64_FCMA          = 1 << 14,
593     ARM_HWCAP_A64_LRCPC         = 1 << 15,
594     ARM_HWCAP_A64_DCPOP         = 1 << 16,
595     ARM_HWCAP_A64_SHA3          = 1 << 17,
596     ARM_HWCAP_A64_SM3           = 1 << 18,
597     ARM_HWCAP_A64_SM4           = 1 << 19,
598     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
599     ARM_HWCAP_A64_SHA512        = 1 << 21,
600     ARM_HWCAP_A64_SVE           = 1 << 22,
601     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
602     ARM_HWCAP_A64_DIT           = 1 << 24,
603     ARM_HWCAP_A64_USCAT         = 1 << 25,
604     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
605     ARM_HWCAP_A64_FLAGM         = 1 << 27,
606     ARM_HWCAP_A64_SSBS          = 1 << 28,
607     ARM_HWCAP_A64_SB            = 1 << 29,
608     ARM_HWCAP_A64_PACA          = 1 << 30,
609     ARM_HWCAP_A64_PACG          = 1UL << 31,
610 
611     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
612     ARM_HWCAP2_A64_SVE2         = 1 << 1,
613     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
614     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
615     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
616     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
617     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
618     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
619     ARM_HWCAP2_A64_FRINT        = 1 << 8,
620 };
621 
622 #define ELF_HWCAP   get_elf_hwcap()
623 #define ELF_HWCAP2  get_elf_hwcap2()
624 
625 #define GET_FEATURE_ID(feat, hwcap) \
626     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
627 
628 static uint32_t get_elf_hwcap(void)
629 {
630     ARMCPU *cpu = ARM_CPU(thread_cpu);
631     uint32_t hwcaps = 0;
632 
633     hwcaps |= ARM_HWCAP_A64_FP;
634     hwcaps |= ARM_HWCAP_A64_ASIMD;
635     hwcaps |= ARM_HWCAP_A64_CPUID;
636 
637     /* probe for the extra features */
638 
639     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
640     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
641     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
642     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
643     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
644     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
645     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
646     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
647     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
648     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
649     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
650     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
651     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
652     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
653     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
654     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
655     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
656     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
657     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
658     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
659 
660     return hwcaps;
661 }
662 
663 static uint32_t get_elf_hwcap2(void)
664 {
665     ARMCPU *cpu = ARM_CPU(thread_cpu);
666     uint32_t hwcaps = 0;
667 
668     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
669     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
670 
671     return hwcaps;
672 }
673 
674 #undef GET_FEATURE_ID
675 
676 #endif /* not TARGET_AARCH64 */
677 #endif /* TARGET_ARM */
678 
679 #ifdef TARGET_SPARC
680 #ifdef TARGET_SPARC64
681 
682 #define ELF_START_MMAP 0x80000000
683 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
684                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
685 #ifndef TARGET_ABI32
686 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
687 #else
688 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
689 #endif
690 
691 #define ELF_CLASS   ELFCLASS64
692 #define ELF_ARCH    EM_SPARCV9
693 
694 #define STACK_BIAS              2047
695 
696 static inline void init_thread(struct target_pt_regs *regs,
697                                struct image_info *infop)
698 {
699 #ifndef TARGET_ABI32
700     regs->tstate = 0;
701 #endif
702     regs->pc = infop->entry;
703     regs->npc = regs->pc + 4;
704     regs->y = 0;
705 #ifdef TARGET_ABI32
706     regs->u_regs[14] = infop->start_stack - 16 * 4;
707 #else
708     if (personality(infop->personality) == PER_LINUX32)
709         regs->u_regs[14] = infop->start_stack - 16 * 4;
710     else
711         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
712 #endif
713 }
714 
715 #else
716 #define ELF_START_MMAP 0x80000000
717 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
718                     | HWCAP_SPARC_MULDIV)
719 
720 #define ELF_CLASS   ELFCLASS32
721 #define ELF_ARCH    EM_SPARC
722 
723 static inline void init_thread(struct target_pt_regs *regs,
724                                struct image_info *infop)
725 {
726     regs->psr = 0;
727     regs->pc = infop->entry;
728     regs->npc = regs->pc + 4;
729     regs->y = 0;
730     regs->u_regs[14] = infop->start_stack - 16 * 4;
731 }
732 
733 #endif
734 #endif
735 
736 #ifdef TARGET_PPC
737 
738 #define ELF_MACHINE    PPC_ELF_MACHINE
739 #define ELF_START_MMAP 0x80000000
740 
741 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
742 
743 #define elf_check_arch(x) ( (x) == EM_PPC64 )
744 
745 #define ELF_CLASS       ELFCLASS64
746 
747 #else
748 
749 #define ELF_CLASS       ELFCLASS32
750 
751 #endif
752 
753 #define ELF_ARCH        EM_PPC
754 
755 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
756    See arch/powerpc/include/asm/cputable.h.  */
757 enum {
758     QEMU_PPC_FEATURE_32 = 0x80000000,
759     QEMU_PPC_FEATURE_64 = 0x40000000,
760     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
761     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
762     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
763     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
764     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
765     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
766     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
767     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
768     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
769     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
770     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
771     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
772     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
773     QEMU_PPC_FEATURE_CELL = 0x00010000,
774     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
775     QEMU_PPC_FEATURE_SMT = 0x00004000,
776     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
777     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
778     QEMU_PPC_FEATURE_PA6T = 0x00000800,
779     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
780     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
781     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
782     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
783     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
784 
785     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
786     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
787 
788     /* Feature definitions in AT_HWCAP2.  */
789     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
790     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
791     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
792     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
793     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
794     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
795     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
796     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
797     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
798     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
799     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
800     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
801     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
802 };
803 
804 #define ELF_HWCAP get_elf_hwcap()
805 
806 static uint32_t get_elf_hwcap(void)
807 {
808     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
809     uint32_t features = 0;
810 
811     /* We don't have to be terribly complete here; the high points are
812        Altivec/FP/SPE support.  Anything else is just a bonus.  */
813 #define GET_FEATURE(flag, feature)                                      \
814     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
815 #define GET_FEATURE2(flags, feature) \
816     do { \
817         if ((cpu->env.insns_flags2 & flags) == flags) { \
818             features |= feature; \
819         } \
820     } while (0)
821     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
822     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
823     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
824     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
825     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
826     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
827     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
828     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
829     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
830     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
831     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
832                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
833                   QEMU_PPC_FEATURE_ARCH_2_06);
834 #undef GET_FEATURE
835 #undef GET_FEATURE2
836 
837     return features;
838 }
839 
840 #define ELF_HWCAP2 get_elf_hwcap2()
841 
842 static uint32_t get_elf_hwcap2(void)
843 {
844     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
845     uint32_t features = 0;
846 
847 #define GET_FEATURE(flag, feature)                                      \
848     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
849 #define GET_FEATURE2(flag, feature)                                      \
850     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
851 
852     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
853     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
854     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
855                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
856                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
857     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
858                  QEMU_PPC_FEATURE2_DARN);
859 
860 #undef GET_FEATURE
861 #undef GET_FEATURE2
862 
863     return features;
864 }
865 
866 /*
867  * The requirements here are:
868  * - keep the final alignment of sp (sp & 0xf)
869  * - make sure the 32-bit value at the first 16 byte aligned position of
870  *   AUXV is greater than 16 for glibc compatibility.
871  *   AT_IGNOREPPC is used for that.
872  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
873  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
874  */
875 #define DLINFO_ARCH_ITEMS       5
876 #define ARCH_DLINFO                                     \
877     do {                                                \
878         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
879         /*                                              \
880          * Handle glibc compatibility: these magic entries must \
881          * be at the lowest addresses in the final auxv.        \
882          */                                             \
883         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
884         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
885         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
886         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
887         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
888     } while (0)
889 
890 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
891 {
892     _regs->gpr[1] = infop->start_stack;
893 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
894     if (get_ppc64_abi(infop) < 2) {
895         uint64_t val;
896         get_user_u64(val, infop->entry + 8);
897         _regs->gpr[2] = val + infop->load_bias;
898         get_user_u64(val, infop->entry);
899         infop->entry = val + infop->load_bias;
900     } else {
901         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
902     }
903 #endif
904     _regs->nip = infop->entry;
905 }
906 
907 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
908 #define ELF_NREG 48
909 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
910 
911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
912 {
913     int i;
914     target_ulong ccr = 0;
915 
916     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
917         (*regs)[i] = tswapreg(env->gpr[i]);
918     }
919 
920     (*regs)[32] = tswapreg(env->nip);
921     (*regs)[33] = tswapreg(env->msr);
922     (*regs)[35] = tswapreg(env->ctr);
923     (*regs)[36] = tswapreg(env->lr);
924     (*regs)[37] = tswapreg(env->xer);
925 
926     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
927         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
928     }
929     (*regs)[38] = tswapreg(ccr);
930 }
931 
932 #define USE_ELF_CORE_DUMP
933 #define ELF_EXEC_PAGESIZE       4096
934 
935 #endif
936 
937 #ifdef TARGET_MIPS
938 
939 #define ELF_START_MMAP 0x80000000
940 
941 #ifdef TARGET_MIPS64
942 #define ELF_CLASS   ELFCLASS64
943 #else
944 #define ELF_CLASS   ELFCLASS32
945 #endif
946 #define ELF_ARCH    EM_MIPS
947 
948 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
949 
950 static inline void init_thread(struct target_pt_regs *regs,
951                                struct image_info *infop)
952 {
953     regs->cp0_status = 2 << CP0St_KSU;
954     regs->cp0_epc = infop->entry;
955     regs->regs[29] = infop->start_stack;
956 }
957 
958 /* See linux kernel: arch/mips/include/asm/elf.h.  */
959 #define ELF_NREG 45
960 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
961 
962 /* See linux kernel: arch/mips/include/asm/reg.h.  */
963 enum {
964 #ifdef TARGET_MIPS64
965     TARGET_EF_R0 = 0,
966 #else
967     TARGET_EF_R0 = 6,
968 #endif
969     TARGET_EF_R26 = TARGET_EF_R0 + 26,
970     TARGET_EF_R27 = TARGET_EF_R0 + 27,
971     TARGET_EF_LO = TARGET_EF_R0 + 32,
972     TARGET_EF_HI = TARGET_EF_R0 + 33,
973     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
974     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
975     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
976     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
977 };
978 
979 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
980 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
981 {
982     int i;
983 
984     for (i = 0; i < TARGET_EF_R0; i++) {
985         (*regs)[i] = 0;
986     }
987     (*regs)[TARGET_EF_R0] = 0;
988 
989     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
990         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
991     }
992 
993     (*regs)[TARGET_EF_R26] = 0;
994     (*regs)[TARGET_EF_R27] = 0;
995     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
996     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
997     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
998     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
999     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1000     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1001 }
1002 
1003 #define USE_ELF_CORE_DUMP
1004 #define ELF_EXEC_PAGESIZE        4096
1005 
1006 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1007 enum {
1008     HWCAP_MIPS_R6           = (1 << 0),
1009     HWCAP_MIPS_MSA          = (1 << 1),
1010 };
1011 
1012 #define ELF_HWCAP get_elf_hwcap()
1013 
1014 static uint32_t get_elf_hwcap(void)
1015 {
1016     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1017     uint32_t hwcaps = 0;
1018 
1019 #define GET_FEATURE(flag, hwcap) \
1020     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
1021 
1022     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
1023     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1024 
1025 #undef GET_FEATURE
1026 
1027     return hwcaps;
1028 }
1029 
1030 #endif /* TARGET_MIPS */
1031 
1032 #ifdef TARGET_MICROBLAZE
1033 
1034 #define ELF_START_MMAP 0x80000000
1035 
1036 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1037 
1038 #define ELF_CLASS   ELFCLASS32
1039 #define ELF_ARCH    EM_MICROBLAZE
1040 
1041 static inline void init_thread(struct target_pt_regs *regs,
1042                                struct image_info *infop)
1043 {
1044     regs->pc = infop->entry;
1045     regs->r1 = infop->start_stack;
1046 
1047 }
1048 
1049 #define ELF_EXEC_PAGESIZE        4096
1050 
1051 #define USE_ELF_CORE_DUMP
1052 #define ELF_NREG 38
1053 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1054 
1055 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1056 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1057 {
1058     int i, pos = 0;
1059 
1060     for (i = 0; i < 32; i++) {
1061         (*regs)[pos++] = tswapreg(env->regs[i]);
1062     }
1063 
1064     for (i = 0; i < 6; i++) {
1065         (*regs)[pos++] = tswapreg(env->sregs[i]);
1066     }
1067 }
1068 
1069 #endif /* TARGET_MICROBLAZE */
1070 
1071 #ifdef TARGET_NIOS2
1072 
1073 #define ELF_START_MMAP 0x80000000
1074 
1075 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1076 
1077 #define ELF_CLASS   ELFCLASS32
1078 #define ELF_ARCH    EM_ALTERA_NIOS2
1079 
1080 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1081 {
1082     regs->ea = infop->entry;
1083     regs->sp = infop->start_stack;
1084     regs->estatus = 0x3;
1085 }
1086 
1087 #define ELF_EXEC_PAGESIZE        4096
1088 
1089 #define USE_ELF_CORE_DUMP
1090 #define ELF_NREG 49
1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092 
1093 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1094 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1095                                const CPUNios2State *env)
1096 {
1097     int i;
1098 
1099     (*regs)[0] = -1;
1100     for (i = 1; i < 8; i++)    /* r0-r7 */
1101         (*regs)[i] = tswapreg(env->regs[i + 7]);
1102 
1103     for (i = 8; i < 16; i++)   /* r8-r15 */
1104         (*regs)[i] = tswapreg(env->regs[i - 8]);
1105 
1106     for (i = 16; i < 24; i++)  /* r16-r23 */
1107         (*regs)[i] = tswapreg(env->regs[i + 7]);
1108     (*regs)[24] = -1;    /* R_ET */
1109     (*regs)[25] = -1;    /* R_BT */
1110     (*regs)[26] = tswapreg(env->regs[R_GP]);
1111     (*regs)[27] = tswapreg(env->regs[R_SP]);
1112     (*regs)[28] = tswapreg(env->regs[R_FP]);
1113     (*regs)[29] = tswapreg(env->regs[R_EA]);
1114     (*regs)[30] = -1;    /* R_SSTATUS */
1115     (*regs)[31] = tswapreg(env->regs[R_RA]);
1116 
1117     (*regs)[32] = tswapreg(env->regs[R_PC]);
1118 
1119     (*regs)[33] = -1; /* R_STATUS */
1120     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1121 
1122     for (i = 35; i < 49; i++)    /* ... */
1123         (*regs)[i] = -1;
1124 }
1125 
1126 #endif /* TARGET_NIOS2 */
1127 
1128 #ifdef TARGET_OPENRISC
1129 
1130 #define ELF_START_MMAP 0x08000000
1131 
1132 #define ELF_ARCH EM_OPENRISC
1133 #define ELF_CLASS ELFCLASS32
1134 #define ELF_DATA  ELFDATA2MSB
1135 
1136 static inline void init_thread(struct target_pt_regs *regs,
1137                                struct image_info *infop)
1138 {
1139     regs->pc = infop->entry;
1140     regs->gpr[1] = infop->start_stack;
1141 }
1142 
1143 #define USE_ELF_CORE_DUMP
1144 #define ELF_EXEC_PAGESIZE 8192
1145 
1146 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1147 #define ELF_NREG 34 /* gprs and pc, sr */
1148 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1149 
1150 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1151                                const CPUOpenRISCState *env)
1152 {
1153     int i;
1154 
1155     for (i = 0; i < 32; i++) {
1156         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1157     }
1158     (*regs)[32] = tswapreg(env->pc);
1159     (*regs)[33] = tswapreg(cpu_get_sr(env));
1160 }
1161 #define ELF_HWCAP 0
1162 #define ELF_PLATFORM NULL
1163 
1164 #endif /* TARGET_OPENRISC */
1165 
1166 #ifdef TARGET_SH4
1167 
1168 #define ELF_START_MMAP 0x80000000
1169 
1170 #define ELF_CLASS ELFCLASS32
1171 #define ELF_ARCH  EM_SH
1172 
1173 static inline void init_thread(struct target_pt_regs *regs,
1174                                struct image_info *infop)
1175 {
1176     /* Check other registers XXXXX */
1177     regs->pc = infop->entry;
1178     regs->regs[15] = infop->start_stack;
1179 }
1180 
1181 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1182 #define ELF_NREG 23
1183 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1184 
1185 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1186 enum {
1187     TARGET_REG_PC = 16,
1188     TARGET_REG_PR = 17,
1189     TARGET_REG_SR = 18,
1190     TARGET_REG_GBR = 19,
1191     TARGET_REG_MACH = 20,
1192     TARGET_REG_MACL = 21,
1193     TARGET_REG_SYSCALL = 22
1194 };
1195 
1196 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1197                                       const CPUSH4State *env)
1198 {
1199     int i;
1200 
1201     for (i = 0; i < 16; i++) {
1202         (*regs)[i] = tswapreg(env->gregs[i]);
1203     }
1204 
1205     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1206     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1207     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1208     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1209     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1210     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1211     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1212 }
1213 
1214 #define USE_ELF_CORE_DUMP
1215 #define ELF_EXEC_PAGESIZE        4096
1216 
1217 enum {
1218     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1219     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1220     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1221     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1222     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1223     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1224     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1225     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1226     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1227     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1228 };
1229 
1230 #define ELF_HWCAP get_elf_hwcap()
1231 
1232 static uint32_t get_elf_hwcap(void)
1233 {
1234     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1235     uint32_t hwcap = 0;
1236 
1237     hwcap |= SH_CPU_HAS_FPU;
1238 
1239     if (cpu->env.features & SH_FEATURE_SH4A) {
1240         hwcap |= SH_CPU_HAS_LLSC;
1241     }
1242 
1243     return hwcap;
1244 }
1245 
1246 #endif
1247 
1248 #ifdef TARGET_CRIS
1249 
1250 #define ELF_START_MMAP 0x80000000
1251 
1252 #define ELF_CLASS ELFCLASS32
1253 #define ELF_ARCH  EM_CRIS
1254 
1255 static inline void init_thread(struct target_pt_regs *regs,
1256                                struct image_info *infop)
1257 {
1258     regs->erp = infop->entry;
1259 }
1260 
1261 #define ELF_EXEC_PAGESIZE        8192
1262 
1263 #endif
1264 
1265 #ifdef TARGET_M68K
1266 
1267 #define ELF_START_MMAP 0x80000000
1268 
1269 #define ELF_CLASS       ELFCLASS32
1270 #define ELF_ARCH        EM_68K
1271 
1272 /* ??? Does this need to do anything?
1273    #define ELF_PLAT_INIT(_r) */
1274 
1275 static inline void init_thread(struct target_pt_regs *regs,
1276                                struct image_info *infop)
1277 {
1278     regs->usp = infop->start_stack;
1279     regs->sr = 0;
1280     regs->pc = infop->entry;
1281 }
1282 
1283 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1284 #define ELF_NREG 20
1285 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1286 
1287 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1288 {
1289     (*regs)[0] = tswapreg(env->dregs[1]);
1290     (*regs)[1] = tswapreg(env->dregs[2]);
1291     (*regs)[2] = tswapreg(env->dregs[3]);
1292     (*regs)[3] = tswapreg(env->dregs[4]);
1293     (*regs)[4] = tswapreg(env->dregs[5]);
1294     (*regs)[5] = tswapreg(env->dregs[6]);
1295     (*regs)[6] = tswapreg(env->dregs[7]);
1296     (*regs)[7] = tswapreg(env->aregs[0]);
1297     (*regs)[8] = tswapreg(env->aregs[1]);
1298     (*regs)[9] = tswapreg(env->aregs[2]);
1299     (*regs)[10] = tswapreg(env->aregs[3]);
1300     (*regs)[11] = tswapreg(env->aregs[4]);
1301     (*regs)[12] = tswapreg(env->aregs[5]);
1302     (*regs)[13] = tswapreg(env->aregs[6]);
1303     (*regs)[14] = tswapreg(env->dregs[0]);
1304     (*regs)[15] = tswapreg(env->aregs[7]);
1305     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1306     (*regs)[17] = tswapreg(env->sr);
1307     (*regs)[18] = tswapreg(env->pc);
1308     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1309 }
1310 
1311 #define USE_ELF_CORE_DUMP
1312 #define ELF_EXEC_PAGESIZE       8192
1313 
1314 #endif
1315 
1316 #ifdef TARGET_ALPHA
1317 
1318 #define ELF_START_MMAP (0x30000000000ULL)
1319 
1320 #define ELF_CLASS      ELFCLASS64
1321 #define ELF_ARCH       EM_ALPHA
1322 
1323 static inline void init_thread(struct target_pt_regs *regs,
1324                                struct image_info *infop)
1325 {
1326     regs->pc = infop->entry;
1327     regs->ps = 8;
1328     regs->usp = infop->start_stack;
1329 }
1330 
1331 #define ELF_EXEC_PAGESIZE        8192
1332 
1333 #endif /* TARGET_ALPHA */
1334 
1335 #ifdef TARGET_S390X
1336 
1337 #define ELF_START_MMAP (0x20000000000ULL)
1338 
1339 #define ELF_CLASS	ELFCLASS64
1340 #define ELF_DATA	ELFDATA2MSB
1341 #define ELF_ARCH	EM_S390
1342 
1343 #include "elf.h"
1344 
1345 #define ELF_HWCAP get_elf_hwcap()
1346 
1347 #define GET_FEATURE(_feat, _hwcap) \
1348     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1349 
1350 static uint32_t get_elf_hwcap(void)
1351 {
1352     /*
1353      * Let's assume we always have esan3 and zarch.
1354      * 31-bit processes can use 64-bit registers (high gprs).
1355      */
1356     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1357 
1358     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1359     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1360     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1361     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1362     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1363         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1364         hwcap |= HWCAP_S390_ETF3EH;
1365     }
1366     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1367 
1368     return hwcap;
1369 }
1370 
1371 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1372 {
1373     regs->psw.addr = infop->entry;
1374     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1375     regs->gprs[15] = infop->start_stack;
1376 }
1377 
1378 #endif /* TARGET_S390X */
1379 
1380 #ifdef TARGET_TILEGX
1381 
1382 /* 42 bits real used address, a half for user mode */
1383 #define ELF_START_MMAP (0x00000020000000000ULL)
1384 
1385 #define elf_check_arch(x) ((x) == EM_TILEGX)
1386 
1387 #define ELF_CLASS   ELFCLASS64
1388 #define ELF_DATA    ELFDATA2LSB
1389 #define ELF_ARCH    EM_TILEGX
1390 
1391 static inline void init_thread(struct target_pt_regs *regs,
1392                                struct image_info *infop)
1393 {
1394     regs->pc = infop->entry;
1395     regs->sp = infop->start_stack;
1396 
1397 }
1398 
1399 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1400 
1401 #endif /* TARGET_TILEGX */
1402 
1403 #ifdef TARGET_RISCV
1404 
1405 #define ELF_START_MMAP 0x80000000
1406 #define ELF_ARCH  EM_RISCV
1407 
1408 #ifdef TARGET_RISCV32
1409 #define ELF_CLASS ELFCLASS32
1410 #else
1411 #define ELF_CLASS ELFCLASS64
1412 #endif
1413 
1414 static inline void init_thread(struct target_pt_regs *regs,
1415                                struct image_info *infop)
1416 {
1417     regs->sepc = infop->entry;
1418     regs->sp = infop->start_stack;
1419 }
1420 
1421 #define ELF_EXEC_PAGESIZE 4096
1422 
1423 #endif /* TARGET_RISCV */
1424 
1425 #ifdef TARGET_HPPA
1426 
1427 #define ELF_START_MMAP  0x80000000
1428 #define ELF_CLASS       ELFCLASS32
1429 #define ELF_ARCH        EM_PARISC
1430 #define ELF_PLATFORM    "PARISC"
1431 #define STACK_GROWS_DOWN 0
1432 #define STACK_ALIGNMENT  64
1433 
1434 static inline void init_thread(struct target_pt_regs *regs,
1435                                struct image_info *infop)
1436 {
1437     regs->iaoq[0] = infop->entry;
1438     regs->iaoq[1] = infop->entry + 4;
1439     regs->gr[23] = 0;
1440     regs->gr[24] = infop->arg_start;
1441     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1442     /* The top-of-stack contains a linkage buffer.  */
1443     regs->gr[30] = infop->start_stack + 64;
1444     regs->gr[31] = infop->entry;
1445 }
1446 
1447 #endif /* TARGET_HPPA */
1448 
1449 #ifdef TARGET_XTENSA
1450 
1451 #define ELF_START_MMAP 0x20000000
1452 
1453 #define ELF_CLASS       ELFCLASS32
1454 #define ELF_ARCH        EM_XTENSA
1455 
1456 static inline void init_thread(struct target_pt_regs *regs,
1457                                struct image_info *infop)
1458 {
1459     regs->windowbase = 0;
1460     regs->windowstart = 1;
1461     regs->areg[1] = infop->start_stack;
1462     regs->pc = infop->entry;
1463 }
1464 
1465 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1466 #define ELF_NREG 128
1467 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1468 
1469 enum {
1470     TARGET_REG_PC,
1471     TARGET_REG_PS,
1472     TARGET_REG_LBEG,
1473     TARGET_REG_LEND,
1474     TARGET_REG_LCOUNT,
1475     TARGET_REG_SAR,
1476     TARGET_REG_WINDOWSTART,
1477     TARGET_REG_WINDOWBASE,
1478     TARGET_REG_THREADPTR,
1479     TARGET_REG_AR0 = 64,
1480 };
1481 
1482 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1483                                const CPUXtensaState *env)
1484 {
1485     unsigned i;
1486 
1487     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1488     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1489     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1490     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1491     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1492     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1493     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1494     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1495     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1496     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1497     for (i = 0; i < env->config->nareg; ++i) {
1498         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1499     }
1500 }
1501 
1502 #define USE_ELF_CORE_DUMP
1503 #define ELF_EXEC_PAGESIZE       4096
1504 
1505 #endif /* TARGET_XTENSA */
1506 
1507 #ifndef ELF_PLATFORM
1508 #define ELF_PLATFORM (NULL)
1509 #endif
1510 
1511 #ifndef ELF_MACHINE
1512 #define ELF_MACHINE ELF_ARCH
1513 #endif
1514 
1515 #ifndef elf_check_arch
1516 #define elf_check_arch(x) ((x) == ELF_ARCH)
1517 #endif
1518 
1519 #ifndef ELF_HWCAP
1520 #define ELF_HWCAP 0
1521 #endif
1522 
1523 #ifndef STACK_GROWS_DOWN
1524 #define STACK_GROWS_DOWN 1
1525 #endif
1526 
1527 #ifndef STACK_ALIGNMENT
1528 #define STACK_ALIGNMENT 16
1529 #endif
1530 
1531 #ifdef TARGET_ABI32
1532 #undef ELF_CLASS
1533 #define ELF_CLASS ELFCLASS32
1534 #undef bswaptls
1535 #define bswaptls(ptr) bswap32s(ptr)
1536 #endif
1537 
1538 #include "elf.h"
1539 
1540 struct exec
1541 {
1542     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1543     unsigned int a_text;   /* length of text, in bytes */
1544     unsigned int a_data;   /* length of data, in bytes */
1545     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1546     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1547     unsigned int a_entry;  /* start address */
1548     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1549     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1550 };
1551 
1552 
1553 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1554 #define OMAGIC 0407
1555 #define NMAGIC 0410
1556 #define ZMAGIC 0413
1557 #define QMAGIC 0314
1558 
1559 /* Necessary parameters */
1560 #define TARGET_ELF_EXEC_PAGESIZE \
1561         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1562          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1563 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1564 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1565                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1566 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1567 
1568 #define DLINFO_ITEMS 15
1569 
1570 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1571 {
1572     memcpy(to, from, n);
1573 }
1574 
1575 #ifdef BSWAP_NEEDED
1576 static void bswap_ehdr(struct elfhdr *ehdr)
1577 {
1578     bswap16s(&ehdr->e_type);            /* Object file type */
1579     bswap16s(&ehdr->e_machine);         /* Architecture */
1580     bswap32s(&ehdr->e_version);         /* Object file version */
1581     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1582     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1583     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1584     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1585     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1586     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1587     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1588     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1589     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1590     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1591 }
1592 
1593 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1594 {
1595     int i;
1596     for (i = 0; i < phnum; ++i, ++phdr) {
1597         bswap32s(&phdr->p_type);        /* Segment type */
1598         bswap32s(&phdr->p_flags);       /* Segment flags */
1599         bswaptls(&phdr->p_offset);      /* Segment file offset */
1600         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1601         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1602         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1603         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1604         bswaptls(&phdr->p_align);       /* Segment alignment */
1605     }
1606 }
1607 
1608 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1609 {
1610     int i;
1611     for (i = 0; i < shnum; ++i, ++shdr) {
1612         bswap32s(&shdr->sh_name);
1613         bswap32s(&shdr->sh_type);
1614         bswaptls(&shdr->sh_flags);
1615         bswaptls(&shdr->sh_addr);
1616         bswaptls(&shdr->sh_offset);
1617         bswaptls(&shdr->sh_size);
1618         bswap32s(&shdr->sh_link);
1619         bswap32s(&shdr->sh_info);
1620         bswaptls(&shdr->sh_addralign);
1621         bswaptls(&shdr->sh_entsize);
1622     }
1623 }
1624 
1625 static void bswap_sym(struct elf_sym *sym)
1626 {
1627     bswap32s(&sym->st_name);
1628     bswaptls(&sym->st_value);
1629     bswaptls(&sym->st_size);
1630     bswap16s(&sym->st_shndx);
1631 }
1632 
1633 #ifdef TARGET_MIPS
1634 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1635 {
1636     bswap16s(&abiflags->version);
1637     bswap32s(&abiflags->ases);
1638     bswap32s(&abiflags->isa_ext);
1639     bswap32s(&abiflags->flags1);
1640     bswap32s(&abiflags->flags2);
1641 }
1642 #endif
1643 #else
1644 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1645 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1646 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1647 static inline void bswap_sym(struct elf_sym *sym) { }
1648 #ifdef TARGET_MIPS
1649 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1650 #endif
1651 #endif
1652 
1653 #ifdef USE_ELF_CORE_DUMP
1654 static int elf_core_dump(int, const CPUArchState *);
1655 #endif /* USE_ELF_CORE_DUMP */
1656 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1657 
1658 /* Verify the portions of EHDR within E_IDENT for the target.
1659    This can be performed before bswapping the entire header.  */
1660 static bool elf_check_ident(struct elfhdr *ehdr)
1661 {
1662     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1663             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1664             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1665             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1666             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1667             && ehdr->e_ident[EI_DATA] == ELF_DATA
1668             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1669 }
1670 
1671 /* Verify the portions of EHDR outside of E_IDENT for the target.
1672    This has to wait until after bswapping the header.  */
1673 static bool elf_check_ehdr(struct elfhdr *ehdr)
1674 {
1675     return (elf_check_arch(ehdr->e_machine)
1676             && ehdr->e_ehsize == sizeof(struct elfhdr)
1677             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1678             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1679 }
1680 
1681 /*
1682  * 'copy_elf_strings()' copies argument/envelope strings from user
1683  * memory to free pages in kernel mem. These are in a format ready
1684  * to be put directly into the top of new user memory.
1685  *
1686  */
1687 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1688                                   abi_ulong p, abi_ulong stack_limit)
1689 {
1690     char *tmp;
1691     int len, i;
1692     abi_ulong top = p;
1693 
1694     if (!p) {
1695         return 0;       /* bullet-proofing */
1696     }
1697 
1698     if (STACK_GROWS_DOWN) {
1699         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1700         for (i = argc - 1; i >= 0; --i) {
1701             tmp = argv[i];
1702             if (!tmp) {
1703                 fprintf(stderr, "VFS: argc is wrong");
1704                 exit(-1);
1705             }
1706             len = strlen(tmp) + 1;
1707             tmp += len;
1708 
1709             if (len > (p - stack_limit)) {
1710                 return 0;
1711             }
1712             while (len) {
1713                 int bytes_to_copy = (len > offset) ? offset : len;
1714                 tmp -= bytes_to_copy;
1715                 p -= bytes_to_copy;
1716                 offset -= bytes_to_copy;
1717                 len -= bytes_to_copy;
1718 
1719                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1720 
1721                 if (offset == 0) {
1722                     memcpy_to_target(p, scratch, top - p);
1723                     top = p;
1724                     offset = TARGET_PAGE_SIZE;
1725                 }
1726             }
1727         }
1728         if (p != top) {
1729             memcpy_to_target(p, scratch + offset, top - p);
1730         }
1731     } else {
1732         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1733         for (i = 0; i < argc; ++i) {
1734             tmp = argv[i];
1735             if (!tmp) {
1736                 fprintf(stderr, "VFS: argc is wrong");
1737                 exit(-1);
1738             }
1739             len = strlen(tmp) + 1;
1740             if (len > (stack_limit - p)) {
1741                 return 0;
1742             }
1743             while (len) {
1744                 int bytes_to_copy = (len > remaining) ? remaining : len;
1745 
1746                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1747 
1748                 tmp += bytes_to_copy;
1749                 remaining -= bytes_to_copy;
1750                 p += bytes_to_copy;
1751                 len -= bytes_to_copy;
1752 
1753                 if (remaining == 0) {
1754                     memcpy_to_target(top, scratch, p - top);
1755                     top = p;
1756                     remaining = TARGET_PAGE_SIZE;
1757                 }
1758             }
1759         }
1760         if (p != top) {
1761             memcpy_to_target(top, scratch, p - top);
1762         }
1763     }
1764 
1765     return p;
1766 }
1767 
1768 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1769  * argument/environment space. Newer kernels (>2.6.33) allow more,
1770  * dependent on stack size, but guarantee at least 32 pages for
1771  * backwards compatibility.
1772  */
1773 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1774 
1775 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1776                                  struct image_info *info)
1777 {
1778     abi_ulong size, error, guard;
1779 
1780     size = guest_stack_size;
1781     if (size < STACK_LOWER_LIMIT) {
1782         size = STACK_LOWER_LIMIT;
1783     }
1784     guard = TARGET_PAGE_SIZE;
1785     if (guard < qemu_real_host_page_size) {
1786         guard = qemu_real_host_page_size;
1787     }
1788 
1789     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1790                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1791     if (error == -1) {
1792         perror("mmap stack");
1793         exit(-1);
1794     }
1795 
1796     /* We reserve one extra page at the top of the stack as guard.  */
1797     if (STACK_GROWS_DOWN) {
1798         target_mprotect(error, guard, PROT_NONE);
1799         info->stack_limit = error + guard;
1800         return info->stack_limit + size - sizeof(void *);
1801     } else {
1802         target_mprotect(error + size, guard, PROT_NONE);
1803         info->stack_limit = error + size;
1804         return error;
1805     }
1806 }
1807 
1808 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1809    after the data section (i.e. bss).  */
1810 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1811 {
1812     uintptr_t host_start, host_map_start, host_end;
1813 
1814     last_bss = TARGET_PAGE_ALIGN(last_bss);
1815 
1816     /* ??? There is confusion between qemu_real_host_page_size and
1817        qemu_host_page_size here and elsewhere in target_mmap, which
1818        may lead to the end of the data section mapping from the file
1819        not being mapped.  At least there was an explicit test and
1820        comment for that here, suggesting that "the file size must
1821        be known".  The comment probably pre-dates the introduction
1822        of the fstat system call in target_mmap which does in fact
1823        find out the size.  What isn't clear is if the workaround
1824        here is still actually needed.  For now, continue with it,
1825        but merge it with the "normal" mmap that would allocate the bss.  */
1826 
1827     host_start = (uintptr_t) g2h(elf_bss);
1828     host_end = (uintptr_t) g2h(last_bss);
1829     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1830 
1831     if (host_map_start < host_end) {
1832         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1833                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1834         if (p == MAP_FAILED) {
1835             perror("cannot mmap brk");
1836             exit(-1);
1837         }
1838     }
1839 
1840     /* Ensure that the bss page(s) are valid */
1841     if ((page_get_flags(last_bss-1) & prot) != prot) {
1842         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1843     }
1844 
1845     if (host_start < host_map_start) {
1846         memset((void *)host_start, 0, host_map_start - host_start);
1847     }
1848 }
1849 
1850 #ifdef TARGET_ARM
1851 static int elf_is_fdpic(struct elfhdr *exec)
1852 {
1853     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1854 }
1855 #else
1856 /* Default implementation, always false.  */
1857 static int elf_is_fdpic(struct elfhdr *exec)
1858 {
1859     return 0;
1860 }
1861 #endif
1862 
1863 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1864 {
1865     uint16_t n;
1866     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1867 
1868     /* elf32_fdpic_loadseg */
1869     n = info->nsegs;
1870     while (n--) {
1871         sp -= 12;
1872         put_user_u32(loadsegs[n].addr, sp+0);
1873         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1874         put_user_u32(loadsegs[n].p_memsz, sp+8);
1875     }
1876 
1877     /* elf32_fdpic_loadmap */
1878     sp -= 4;
1879     put_user_u16(0, sp+0); /* version */
1880     put_user_u16(info->nsegs, sp+2); /* nsegs */
1881 
1882     info->personality = PER_LINUX_FDPIC;
1883     info->loadmap_addr = sp;
1884 
1885     return sp;
1886 }
1887 
1888 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1889                                    struct elfhdr *exec,
1890                                    struct image_info *info,
1891                                    struct image_info *interp_info)
1892 {
1893     abi_ulong sp;
1894     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1895     int size;
1896     int i;
1897     abi_ulong u_rand_bytes;
1898     uint8_t k_rand_bytes[16];
1899     abi_ulong u_platform;
1900     const char *k_platform;
1901     const int n = sizeof(elf_addr_t);
1902 
1903     sp = p;
1904 
1905     /* Needs to be before we load the env/argc/... */
1906     if (elf_is_fdpic(exec)) {
1907         /* Need 4 byte alignment for these structs */
1908         sp &= ~3;
1909         sp = loader_build_fdpic_loadmap(info, sp);
1910         info->other_info = interp_info;
1911         if (interp_info) {
1912             interp_info->other_info = info;
1913             sp = loader_build_fdpic_loadmap(interp_info, sp);
1914             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1915             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1916         } else {
1917             info->interpreter_loadmap_addr = 0;
1918             info->interpreter_pt_dynamic_addr = 0;
1919         }
1920     }
1921 
1922     u_platform = 0;
1923     k_platform = ELF_PLATFORM;
1924     if (k_platform) {
1925         size_t len = strlen(k_platform) + 1;
1926         if (STACK_GROWS_DOWN) {
1927             sp -= (len + n - 1) & ~(n - 1);
1928             u_platform = sp;
1929             /* FIXME - check return value of memcpy_to_target() for failure */
1930             memcpy_to_target(sp, k_platform, len);
1931         } else {
1932             memcpy_to_target(sp, k_platform, len);
1933             u_platform = sp;
1934             sp += len + 1;
1935         }
1936     }
1937 
1938     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1939      * the argv and envp pointers.
1940      */
1941     if (STACK_GROWS_DOWN) {
1942         sp = QEMU_ALIGN_DOWN(sp, 16);
1943     } else {
1944         sp = QEMU_ALIGN_UP(sp, 16);
1945     }
1946 
1947     /*
1948      * Generate 16 random bytes for userspace PRNG seeding.
1949      */
1950     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1951     if (STACK_GROWS_DOWN) {
1952         sp -= 16;
1953         u_rand_bytes = sp;
1954         /* FIXME - check return value of memcpy_to_target() for failure */
1955         memcpy_to_target(sp, k_rand_bytes, 16);
1956     } else {
1957         memcpy_to_target(sp, k_rand_bytes, 16);
1958         u_rand_bytes = sp;
1959         sp += 16;
1960     }
1961 
1962     size = (DLINFO_ITEMS + 1) * 2;
1963     if (k_platform)
1964         size += 2;
1965 #ifdef DLINFO_ARCH_ITEMS
1966     size += DLINFO_ARCH_ITEMS * 2;
1967 #endif
1968 #ifdef ELF_HWCAP2
1969     size += 2;
1970 #endif
1971     info->auxv_len = size * n;
1972 
1973     size += envc + argc + 2;
1974     size += 1;  /* argc itself */
1975     size *= n;
1976 
1977     /* Allocate space and finalize stack alignment for entry now.  */
1978     if (STACK_GROWS_DOWN) {
1979         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1980         sp = u_argc;
1981     } else {
1982         u_argc = sp;
1983         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1984     }
1985 
1986     u_argv = u_argc + n;
1987     u_envp = u_argv + (argc + 1) * n;
1988     u_auxv = u_envp + (envc + 1) * n;
1989     info->saved_auxv = u_auxv;
1990     info->arg_start = u_argv;
1991     info->arg_end = u_argv + argc * n;
1992 
1993     /* This is correct because Linux defines
1994      * elf_addr_t as Elf32_Off / Elf64_Off
1995      */
1996 #define NEW_AUX_ENT(id, val) do {               \
1997         put_user_ual(id, u_auxv);  u_auxv += n; \
1998         put_user_ual(val, u_auxv); u_auxv += n; \
1999     } while(0)
2000 
2001 #ifdef ARCH_DLINFO
2002     /*
2003      * ARCH_DLINFO must come first so platform specific code can enforce
2004      * special alignment requirements on the AUXV if necessary (eg. PPC).
2005      */
2006     ARCH_DLINFO;
2007 #endif
2008     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2009      * on info->auxv_len will trigger.
2010      */
2011     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2012     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2013     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2014     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2015         /* Target doesn't support host page size alignment */
2016         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2017     } else {
2018         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2019                                                qemu_host_page_size)));
2020     }
2021     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2022     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2023     NEW_AUX_ENT(AT_ENTRY, info->entry);
2024     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2025     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2026     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2027     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2028     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2029     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2030     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2031     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2032 
2033 #ifdef ELF_HWCAP2
2034     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2035 #endif
2036 
2037     if (u_platform) {
2038         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2039     }
2040     NEW_AUX_ENT (AT_NULL, 0);
2041 #undef NEW_AUX_ENT
2042 
2043     /* Check that our initial calculation of the auxv length matches how much
2044      * we actually put into it.
2045      */
2046     assert(info->auxv_len == u_auxv - info->saved_auxv);
2047 
2048     put_user_ual(argc, u_argc);
2049 
2050     p = info->arg_strings;
2051     for (i = 0; i < argc; ++i) {
2052         put_user_ual(p, u_argv);
2053         u_argv += n;
2054         p += target_strlen(p) + 1;
2055     }
2056     put_user_ual(0, u_argv);
2057 
2058     p = info->env_strings;
2059     for (i = 0; i < envc; ++i) {
2060         put_user_ual(p, u_envp);
2061         u_envp += n;
2062         p += target_strlen(p) + 1;
2063     }
2064     put_user_ual(0, u_envp);
2065 
2066     return sp;
2067 }
2068 
2069 unsigned long init_guest_space(unsigned long host_start,
2070                                unsigned long host_size,
2071                                unsigned long guest_start,
2072                                bool fixed)
2073 {
2074     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2075     unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2076     unsigned long current_start, aligned_start;
2077     int flags;
2078 
2079     assert(host_start || host_size);
2080 
2081     /* If just a starting address is given, then just verify that
2082      * address.  */
2083     if (host_start && !host_size) {
2084 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2085         if (init_guest_commpage(host_start, host_size) != 1) {
2086             return (unsigned long)-1;
2087         }
2088 #endif
2089         return host_start;
2090     }
2091 
2092     /* Setup the initial flags and start address.  */
2093     current_start = host_start & -align;
2094     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2095     if (fixed) {
2096         flags |= MAP_FIXED;
2097     }
2098 
2099     /* Otherwise, a non-zero size region of memory needs to be mapped
2100      * and validated.  */
2101 
2102 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2103     /* On 32-bit ARM, we need to map not just the usable memory, but
2104      * also the commpage.  Try to find a suitable place by allocating
2105      * a big chunk for all of it.  If host_start, then the naive
2106      * strategy probably does good enough.
2107      */
2108     if (!host_start) {
2109         unsigned long guest_full_size, host_full_size, real_start;
2110 
2111         guest_full_size =
2112             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2113         host_full_size = guest_full_size - guest_start;
2114         real_start = (unsigned long)
2115             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2116         if (real_start == (unsigned long)-1) {
2117             if (host_size < host_full_size - qemu_host_page_size) {
2118                 /* We failed to map a continous segment, but we're
2119                  * allowed to have a gap between the usable memory and
2120                  * the commpage where other things can be mapped.
2121                  * This sparseness gives us more flexibility to find
2122                  * an address range.
2123                  */
2124                 goto naive;
2125             }
2126             return (unsigned long)-1;
2127         }
2128         munmap((void *)real_start, host_full_size);
2129         if (real_start & (align - 1)) {
2130             /* The same thing again, but with extra
2131              * so that we can shift around alignment.
2132              */
2133             unsigned long real_size = host_full_size + qemu_host_page_size;
2134             real_start = (unsigned long)
2135                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2136             if (real_start == (unsigned long)-1) {
2137                 if (host_size < host_full_size - qemu_host_page_size) {
2138                     goto naive;
2139                 }
2140                 return (unsigned long)-1;
2141             }
2142             munmap((void *)real_start, real_size);
2143             real_start = ROUND_UP(real_start, align);
2144         }
2145         current_start = real_start;
2146     }
2147  naive:
2148 #endif
2149 
2150     while (1) {
2151         unsigned long real_start, real_size, aligned_size;
2152         aligned_size = real_size = host_size;
2153 
2154         /* Do not use mmap_find_vma here because that is limited to the
2155          * guest address space.  We are going to make the
2156          * guest address space fit whatever we're given.
2157          */
2158         real_start = (unsigned long)
2159             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2160         if (real_start == (unsigned long)-1) {
2161             return (unsigned long)-1;
2162         }
2163 
2164         /* Check to see if the address is valid.  */
2165         if (host_start && real_start != current_start) {
2166             goto try_again;
2167         }
2168 
2169         /* Ensure the address is properly aligned.  */
2170         if (real_start & (align - 1)) {
2171             /* Ideally, we adjust like
2172              *
2173              *    pages: [  ][  ][  ][  ][  ]
2174              *      old:   [   real   ]
2175              *             [ aligned  ]
2176              *      new:   [     real     ]
2177              *               [ aligned  ]
2178              *
2179              * But if there is something else mapped right after it,
2180              * then obviously it won't have room to grow, and the
2181              * kernel will put the new larger real someplace else with
2182              * unknown alignment (if we made it to here, then
2183              * fixed=false).  Which is why we grow real by a full page
2184              * size, instead of by part of one; so that even if we get
2185              * moved, we can still guarantee alignment.  But this does
2186              * mean that there is a padding of < 1 page both before
2187              * and after the aligned range; the "after" could could
2188              * cause problems for ARM emulation where it could butt in
2189              * to where we need to put the commpage.
2190              */
2191             munmap((void *)real_start, host_size);
2192             real_size = aligned_size + qemu_host_page_size;
2193             real_start = (unsigned long)
2194                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2195             if (real_start == (unsigned long)-1) {
2196                 return (unsigned long)-1;
2197             }
2198             aligned_start = ROUND_UP(real_start, align);
2199         } else {
2200             aligned_start = real_start;
2201         }
2202 
2203 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2204         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2205         int valid = init_guest_commpage(aligned_start - guest_start,
2206                                         aligned_size + guest_start);
2207         if (valid == -1) {
2208             munmap((void *)real_start, real_size);
2209             return (unsigned long)-1;
2210         } else if (valid == 0) {
2211             goto try_again;
2212         }
2213 #endif
2214 
2215         /* If nothing has said `return -1` or `goto try_again` yet,
2216          * then the address we have is good.
2217          */
2218         break;
2219 
2220     try_again:
2221         /* That address didn't work.  Unmap and try a different one.
2222          * The address the host picked because is typically right at
2223          * the top of the host address space and leaves the guest with
2224          * no usable address space.  Resort to a linear search.  We
2225          * already compensated for mmap_min_addr, so this should not
2226          * happen often.  Probably means we got unlucky and host
2227          * address space randomization put a shared library somewhere
2228          * inconvenient.
2229          *
2230          * This is probably a good strategy if host_start, but is
2231          * probably a bad strategy if not, which means we got here
2232          * because of trouble with ARM commpage setup.
2233          */
2234         munmap((void *)real_start, real_size);
2235         current_start += align;
2236         if (host_start == current_start) {
2237             /* Theoretically possible if host doesn't have any suitably
2238              * aligned areas.  Normally the first mmap will fail.
2239              */
2240             return (unsigned long)-1;
2241         }
2242     }
2243 
2244     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2245 
2246     return aligned_start;
2247 }
2248 
2249 static void probe_guest_base(const char *image_name,
2250                              abi_ulong loaddr, abi_ulong hiaddr)
2251 {
2252     /* Probe for a suitable guest base address, if the user has not set
2253      * it explicitly, and set guest_base appropriately.
2254      * In case of error we will print a suitable message and exit.
2255      */
2256     const char *errmsg;
2257     if (!have_guest_base && !reserved_va) {
2258         unsigned long host_start, real_start, host_size;
2259 
2260         /* Round addresses to page boundaries.  */
2261         loaddr &= qemu_host_page_mask;
2262         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2263 
2264         if (loaddr < mmap_min_addr) {
2265             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2266         } else {
2267             host_start = loaddr;
2268             if (host_start != loaddr) {
2269                 errmsg = "Address overflow loading ELF binary";
2270                 goto exit_errmsg;
2271             }
2272         }
2273         host_size = hiaddr - loaddr;
2274 
2275         /* Setup the initial guest memory space with ranges gleaned from
2276          * the ELF image that is being loaded.
2277          */
2278         real_start = init_guest_space(host_start, host_size, loaddr, false);
2279         if (real_start == (unsigned long)-1) {
2280             errmsg = "Unable to find space for application";
2281             goto exit_errmsg;
2282         }
2283         guest_base = real_start - loaddr;
2284 
2285         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2286                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2287                       loaddr, real_start);
2288     }
2289     return;
2290 
2291 exit_errmsg:
2292     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2293     exit(-1);
2294 }
2295 
2296 
2297 /* Load an ELF image into the address space.
2298 
2299    IMAGE_NAME is the filename of the image, to use in error messages.
2300    IMAGE_FD is the open file descriptor for the image.
2301 
2302    BPRM_BUF is a copy of the beginning of the file; this of course
2303    contains the elf file header at offset 0.  It is assumed that this
2304    buffer is sufficiently aligned to present no problems to the host
2305    in accessing data at aligned offsets within the buffer.
2306 
2307    On return: INFO values will be filled in, as necessary or available.  */
2308 
2309 static void load_elf_image(const char *image_name, int image_fd,
2310                            struct image_info *info, char **pinterp_name,
2311                            char bprm_buf[BPRM_BUF_SIZE])
2312 {
2313     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2314     struct elf_phdr *phdr;
2315     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2316     int i, retval;
2317     const char *errmsg;
2318 
2319     /* First of all, some simple consistency checks */
2320     errmsg = "Invalid ELF image for this architecture";
2321     if (!elf_check_ident(ehdr)) {
2322         goto exit_errmsg;
2323     }
2324     bswap_ehdr(ehdr);
2325     if (!elf_check_ehdr(ehdr)) {
2326         goto exit_errmsg;
2327     }
2328 
2329     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2330     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2331         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2332     } else {
2333         phdr = (struct elf_phdr *) alloca(i);
2334         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2335         if (retval != i) {
2336             goto exit_read;
2337         }
2338     }
2339     bswap_phdr(phdr, ehdr->e_phnum);
2340 
2341     info->nsegs = 0;
2342     info->pt_dynamic_addr = 0;
2343 
2344     mmap_lock();
2345 
2346     /* Find the maximum size of the image and allocate an appropriate
2347        amount of memory to handle that.  */
2348     loaddr = -1, hiaddr = 0;
2349     info->alignment = 0;
2350     for (i = 0; i < ehdr->e_phnum; ++i) {
2351         if (phdr[i].p_type == PT_LOAD) {
2352             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2353             if (a < loaddr) {
2354                 loaddr = a;
2355             }
2356             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2357             if (a > hiaddr) {
2358                 hiaddr = a;
2359             }
2360             ++info->nsegs;
2361             info->alignment |= phdr[i].p_align;
2362         }
2363     }
2364 
2365     load_addr = loaddr;
2366     if (ehdr->e_type == ET_DYN) {
2367         /* The image indicates that it can be loaded anywhere.  Find a
2368            location that can hold the memory space required.  If the
2369            image is pre-linked, LOADDR will be non-zero.  Since we do
2370            not supply MAP_FIXED here we'll use that address if and
2371            only if it remains available.  */
2372         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2373                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2374                                 -1, 0);
2375         if (load_addr == -1) {
2376             goto exit_perror;
2377         }
2378     } else if (pinterp_name != NULL) {
2379         /* This is the main executable.  Make sure that the low
2380            address does not conflict with MMAP_MIN_ADDR or the
2381            QEMU application itself.  */
2382         probe_guest_base(image_name, loaddr, hiaddr);
2383     }
2384     load_bias = load_addr - loaddr;
2385 
2386     if (elf_is_fdpic(ehdr)) {
2387         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2388             g_malloc(sizeof(*loadsegs) * info->nsegs);
2389 
2390         for (i = 0; i < ehdr->e_phnum; ++i) {
2391             switch (phdr[i].p_type) {
2392             case PT_DYNAMIC:
2393                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2394                 break;
2395             case PT_LOAD:
2396                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2397                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2398                 loadsegs->p_memsz = phdr[i].p_memsz;
2399                 ++loadsegs;
2400                 break;
2401             }
2402         }
2403     }
2404 
2405     info->load_bias = load_bias;
2406     info->code_offset = load_bias;
2407     info->data_offset = load_bias;
2408     info->load_addr = load_addr;
2409     info->entry = ehdr->e_entry + load_bias;
2410     info->start_code = -1;
2411     info->end_code = 0;
2412     info->start_data = -1;
2413     info->end_data = 0;
2414     info->brk = 0;
2415     info->elf_flags = ehdr->e_flags;
2416 
2417     for (i = 0; i < ehdr->e_phnum; i++) {
2418         struct elf_phdr *eppnt = phdr + i;
2419         if (eppnt->p_type == PT_LOAD) {
2420             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2421             int elf_prot = 0;
2422 
2423             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2424             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2425             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2426 
2427             vaddr = load_bias + eppnt->p_vaddr;
2428             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2429             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2430             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2431 
2432             /*
2433              * Some segments may be completely empty without any backing file
2434              * segment, in that case just let zero_bss allocate an empty buffer
2435              * for it.
2436              */
2437             if (eppnt->p_filesz != 0) {
2438                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2439                                     MAP_PRIVATE | MAP_FIXED,
2440                                     image_fd, eppnt->p_offset - vaddr_po);
2441 
2442                 if (error == -1) {
2443                     goto exit_perror;
2444                 }
2445             }
2446 
2447             vaddr_ef = vaddr + eppnt->p_filesz;
2448             vaddr_em = vaddr + eppnt->p_memsz;
2449 
2450             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2451             if (vaddr_ef < vaddr_em) {
2452                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2453             }
2454 
2455             /* Find the full program boundaries.  */
2456             if (elf_prot & PROT_EXEC) {
2457                 if (vaddr < info->start_code) {
2458                     info->start_code = vaddr;
2459                 }
2460                 if (vaddr_ef > info->end_code) {
2461                     info->end_code = vaddr_ef;
2462                 }
2463             }
2464             if (elf_prot & PROT_WRITE) {
2465                 if (vaddr < info->start_data) {
2466                     info->start_data = vaddr;
2467                 }
2468                 if (vaddr_ef > info->end_data) {
2469                     info->end_data = vaddr_ef;
2470                 }
2471                 if (vaddr_em > info->brk) {
2472                     info->brk = vaddr_em;
2473                 }
2474             }
2475         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2476             char *interp_name;
2477 
2478             if (*pinterp_name) {
2479                 errmsg = "Multiple PT_INTERP entries";
2480                 goto exit_errmsg;
2481             }
2482             interp_name = malloc(eppnt->p_filesz);
2483             if (!interp_name) {
2484                 goto exit_perror;
2485             }
2486 
2487             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2488                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2489                        eppnt->p_filesz);
2490             } else {
2491                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2492                                eppnt->p_offset);
2493                 if (retval != eppnt->p_filesz) {
2494                     goto exit_perror;
2495                 }
2496             }
2497             if (interp_name[eppnt->p_filesz - 1] != 0) {
2498                 errmsg = "Invalid PT_INTERP entry";
2499                 goto exit_errmsg;
2500             }
2501             *pinterp_name = interp_name;
2502 #ifdef TARGET_MIPS
2503         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2504             Mips_elf_abiflags_v0 abiflags;
2505             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2506                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2507                 goto exit_errmsg;
2508             }
2509             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2510                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2511                        sizeof(Mips_elf_abiflags_v0));
2512             } else {
2513                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2514                                eppnt->p_offset);
2515                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2516                     goto exit_perror;
2517                 }
2518             }
2519             bswap_mips_abiflags(&abiflags);
2520             info->fp_abi = abiflags.fp_abi;
2521 #endif
2522         }
2523     }
2524 
2525     if (info->end_data == 0) {
2526         info->start_data = info->end_code;
2527         info->end_data = info->end_code;
2528         info->brk = info->end_code;
2529     }
2530 
2531     if (qemu_log_enabled()) {
2532         load_symbols(ehdr, image_fd, load_bias);
2533     }
2534 
2535     mmap_unlock();
2536 
2537     close(image_fd);
2538     return;
2539 
2540  exit_read:
2541     if (retval >= 0) {
2542         errmsg = "Incomplete read of file header";
2543         goto exit_errmsg;
2544     }
2545  exit_perror:
2546     errmsg = strerror(errno);
2547  exit_errmsg:
2548     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2549     exit(-1);
2550 }
2551 
2552 static void load_elf_interp(const char *filename, struct image_info *info,
2553                             char bprm_buf[BPRM_BUF_SIZE])
2554 {
2555     int fd, retval;
2556 
2557     fd = open(path(filename), O_RDONLY);
2558     if (fd < 0) {
2559         goto exit_perror;
2560     }
2561 
2562     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2563     if (retval < 0) {
2564         goto exit_perror;
2565     }
2566     if (retval < BPRM_BUF_SIZE) {
2567         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2568     }
2569 
2570     load_elf_image(filename, fd, info, NULL, bprm_buf);
2571     return;
2572 
2573  exit_perror:
2574     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2575     exit(-1);
2576 }
2577 
2578 static int symfind(const void *s0, const void *s1)
2579 {
2580     target_ulong addr = *(target_ulong *)s0;
2581     struct elf_sym *sym = (struct elf_sym *)s1;
2582     int result = 0;
2583     if (addr < sym->st_value) {
2584         result = -1;
2585     } else if (addr >= sym->st_value + sym->st_size) {
2586         result = 1;
2587     }
2588     return result;
2589 }
2590 
2591 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2592 {
2593 #if ELF_CLASS == ELFCLASS32
2594     struct elf_sym *syms = s->disas_symtab.elf32;
2595 #else
2596     struct elf_sym *syms = s->disas_symtab.elf64;
2597 #endif
2598 
2599     // binary search
2600     struct elf_sym *sym;
2601 
2602     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2603     if (sym != NULL) {
2604         return s->disas_strtab + sym->st_name;
2605     }
2606 
2607     return "";
2608 }
2609 
2610 /* FIXME: This should use elf_ops.h  */
2611 static int symcmp(const void *s0, const void *s1)
2612 {
2613     struct elf_sym *sym0 = (struct elf_sym *)s0;
2614     struct elf_sym *sym1 = (struct elf_sym *)s1;
2615     return (sym0->st_value < sym1->st_value)
2616         ? -1
2617         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2618 }
2619 
2620 /* Best attempt to load symbols from this ELF object. */
2621 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2622 {
2623     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2624     uint64_t segsz;
2625     struct elf_shdr *shdr;
2626     char *strings = NULL;
2627     struct syminfo *s = NULL;
2628     struct elf_sym *new_syms, *syms = NULL;
2629 
2630     shnum = hdr->e_shnum;
2631     i = shnum * sizeof(struct elf_shdr);
2632     shdr = (struct elf_shdr *)alloca(i);
2633     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2634         return;
2635     }
2636 
2637     bswap_shdr(shdr, shnum);
2638     for (i = 0; i < shnum; ++i) {
2639         if (shdr[i].sh_type == SHT_SYMTAB) {
2640             sym_idx = i;
2641             str_idx = shdr[i].sh_link;
2642             goto found;
2643         }
2644     }
2645 
2646     /* There will be no symbol table if the file was stripped.  */
2647     return;
2648 
2649  found:
2650     /* Now know where the strtab and symtab are.  Snarf them.  */
2651     s = g_try_new(struct syminfo, 1);
2652     if (!s) {
2653         goto give_up;
2654     }
2655 
2656     segsz = shdr[str_idx].sh_size;
2657     s->disas_strtab = strings = g_try_malloc(segsz);
2658     if (!strings ||
2659         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2660         goto give_up;
2661     }
2662 
2663     segsz = shdr[sym_idx].sh_size;
2664     syms = g_try_malloc(segsz);
2665     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2666         goto give_up;
2667     }
2668 
2669     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2670         /* Implausibly large symbol table: give up rather than ploughing
2671          * on with the number of symbols calculation overflowing
2672          */
2673         goto give_up;
2674     }
2675     nsyms = segsz / sizeof(struct elf_sym);
2676     for (i = 0; i < nsyms; ) {
2677         bswap_sym(syms + i);
2678         /* Throw away entries which we do not need.  */
2679         if (syms[i].st_shndx == SHN_UNDEF
2680             || syms[i].st_shndx >= SHN_LORESERVE
2681             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2682             if (i < --nsyms) {
2683                 syms[i] = syms[nsyms];
2684             }
2685         } else {
2686 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2687             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2688             syms[i].st_value &= ~(target_ulong)1;
2689 #endif
2690             syms[i].st_value += load_bias;
2691             i++;
2692         }
2693     }
2694 
2695     /* No "useful" symbol.  */
2696     if (nsyms == 0) {
2697         goto give_up;
2698     }
2699 
2700     /* Attempt to free the storage associated with the local symbols
2701        that we threw away.  Whether or not this has any effect on the
2702        memory allocation depends on the malloc implementation and how
2703        many symbols we managed to discard.  */
2704     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2705     if (new_syms == NULL) {
2706         goto give_up;
2707     }
2708     syms = new_syms;
2709 
2710     qsort(syms, nsyms, sizeof(*syms), symcmp);
2711 
2712     s->disas_num_syms = nsyms;
2713 #if ELF_CLASS == ELFCLASS32
2714     s->disas_symtab.elf32 = syms;
2715 #else
2716     s->disas_symtab.elf64 = syms;
2717 #endif
2718     s->lookup_symbol = lookup_symbolxx;
2719     s->next = syminfos;
2720     syminfos = s;
2721 
2722     return;
2723 
2724 give_up:
2725     g_free(s);
2726     g_free(strings);
2727     g_free(syms);
2728 }
2729 
2730 uint32_t get_elf_eflags(int fd)
2731 {
2732     struct elfhdr ehdr;
2733     off_t offset;
2734     int ret;
2735 
2736     /* Read ELF header */
2737     offset = lseek(fd, 0, SEEK_SET);
2738     if (offset == (off_t) -1) {
2739         return 0;
2740     }
2741     ret = read(fd, &ehdr, sizeof(ehdr));
2742     if (ret < sizeof(ehdr)) {
2743         return 0;
2744     }
2745     offset = lseek(fd, offset, SEEK_SET);
2746     if (offset == (off_t) -1) {
2747         return 0;
2748     }
2749 
2750     /* Check ELF signature */
2751     if (!elf_check_ident(&ehdr)) {
2752         return 0;
2753     }
2754 
2755     /* check header */
2756     bswap_ehdr(&ehdr);
2757     if (!elf_check_ehdr(&ehdr)) {
2758         return 0;
2759     }
2760 
2761     /* return architecture id */
2762     return ehdr.e_flags;
2763 }
2764 
2765 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2766 {
2767     struct image_info interp_info;
2768     struct elfhdr elf_ex;
2769     char *elf_interpreter = NULL;
2770     char *scratch;
2771 
2772     memset(&interp_info, 0, sizeof(interp_info));
2773 #ifdef TARGET_MIPS
2774     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2775 #endif
2776 
2777     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2778 
2779     load_elf_image(bprm->filename, bprm->fd, info,
2780                    &elf_interpreter, bprm->buf);
2781 
2782     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2783        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2784        when we load the interpreter.  */
2785     elf_ex = *(struct elfhdr *)bprm->buf;
2786 
2787     /* Do this so that we can load the interpreter, if need be.  We will
2788        change some of these later */
2789     bprm->p = setup_arg_pages(bprm, info);
2790 
2791     scratch = g_new0(char, TARGET_PAGE_SIZE);
2792     if (STACK_GROWS_DOWN) {
2793         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2794                                    bprm->p, info->stack_limit);
2795         info->file_string = bprm->p;
2796         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2797                                    bprm->p, info->stack_limit);
2798         info->env_strings = bprm->p;
2799         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2800                                    bprm->p, info->stack_limit);
2801         info->arg_strings = bprm->p;
2802     } else {
2803         info->arg_strings = bprm->p;
2804         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2805                                    bprm->p, info->stack_limit);
2806         info->env_strings = bprm->p;
2807         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2808                                    bprm->p, info->stack_limit);
2809         info->file_string = bprm->p;
2810         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2811                                    bprm->p, info->stack_limit);
2812     }
2813 
2814     g_free(scratch);
2815 
2816     if (!bprm->p) {
2817         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2818         exit(-1);
2819     }
2820 
2821     if (elf_interpreter) {
2822         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2823 
2824         /* If the program interpreter is one of these two, then assume
2825            an iBCS2 image.  Otherwise assume a native linux image.  */
2826 
2827         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2828             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2829             info->personality = PER_SVR4;
2830 
2831             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2832                and some applications "depend" upon this behavior.  Since
2833                we do not have the power to recompile these, we emulate
2834                the SVr4 behavior.  Sigh.  */
2835             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2836                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2837         }
2838 #ifdef TARGET_MIPS
2839         info->interp_fp_abi = interp_info.fp_abi;
2840 #endif
2841     }
2842 
2843     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2844                                 info, (elf_interpreter ? &interp_info : NULL));
2845     info->start_stack = bprm->p;
2846 
2847     /* If we have an interpreter, set that as the program's entry point.
2848        Copy the load_bias as well, to help PPC64 interpret the entry
2849        point as a function descriptor.  Do this after creating elf tables
2850        so that we copy the original program entry point into the AUXV.  */
2851     if (elf_interpreter) {
2852         info->load_bias = interp_info.load_bias;
2853         info->entry = interp_info.entry;
2854         free(elf_interpreter);
2855     }
2856 
2857 #ifdef USE_ELF_CORE_DUMP
2858     bprm->core_dump = &elf_core_dump;
2859 #endif
2860 
2861     return 0;
2862 }
2863 
2864 #ifdef USE_ELF_CORE_DUMP
2865 /*
2866  * Definitions to generate Intel SVR4-like core files.
2867  * These mostly have the same names as the SVR4 types with "target_elf_"
2868  * tacked on the front to prevent clashes with linux definitions,
2869  * and the typedef forms have been avoided.  This is mostly like
2870  * the SVR4 structure, but more Linuxy, with things that Linux does
2871  * not support and which gdb doesn't really use excluded.
2872  *
2873  * Fields we don't dump (their contents is zero) in linux-user qemu
2874  * are marked with XXX.
2875  *
2876  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2877  *
2878  * Porting ELF coredump for target is (quite) simple process.  First you
2879  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2880  * the target resides):
2881  *
2882  * #define USE_ELF_CORE_DUMP
2883  *
2884  * Next you define type of register set used for dumping.  ELF specification
2885  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2886  *
2887  * typedef <target_regtype> target_elf_greg_t;
2888  * #define ELF_NREG <number of registers>
2889  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2890  *
2891  * Last step is to implement target specific function that copies registers
2892  * from given cpu into just specified register set.  Prototype is:
2893  *
2894  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2895  *                                const CPUArchState *env);
2896  *
2897  * Parameters:
2898  *     regs - copy register values into here (allocated and zeroed by caller)
2899  *     env - copy registers from here
2900  *
2901  * Example for ARM target is provided in this file.
2902  */
2903 
2904 /* An ELF note in memory */
2905 struct memelfnote {
2906     const char *name;
2907     size_t     namesz;
2908     size_t     namesz_rounded;
2909     int        type;
2910     size_t     datasz;
2911     size_t     datasz_rounded;
2912     void       *data;
2913     size_t     notesz;
2914 };
2915 
2916 struct target_elf_siginfo {
2917     abi_int    si_signo; /* signal number */
2918     abi_int    si_code;  /* extra code */
2919     abi_int    si_errno; /* errno */
2920 };
2921 
2922 struct target_elf_prstatus {
2923     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2924     abi_short          pr_cursig;    /* Current signal */
2925     abi_ulong          pr_sigpend;   /* XXX */
2926     abi_ulong          pr_sighold;   /* XXX */
2927     target_pid_t       pr_pid;
2928     target_pid_t       pr_ppid;
2929     target_pid_t       pr_pgrp;
2930     target_pid_t       pr_sid;
2931     struct target_timeval pr_utime;  /* XXX User time */
2932     struct target_timeval pr_stime;  /* XXX System time */
2933     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2934     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2935     target_elf_gregset_t      pr_reg;       /* GP registers */
2936     abi_int            pr_fpvalid;   /* XXX */
2937 };
2938 
2939 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2940 
2941 struct target_elf_prpsinfo {
2942     char         pr_state;       /* numeric process state */
2943     char         pr_sname;       /* char for pr_state */
2944     char         pr_zomb;        /* zombie */
2945     char         pr_nice;        /* nice val */
2946     abi_ulong    pr_flag;        /* flags */
2947     target_uid_t pr_uid;
2948     target_gid_t pr_gid;
2949     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2950     /* Lots missing */
2951     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2952     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2953 };
2954 
2955 /* Here is the structure in which status of each thread is captured. */
2956 struct elf_thread_status {
2957     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2958     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2959 #if 0
2960     elf_fpregset_t fpu;             /* NT_PRFPREG */
2961     struct task_struct *thread;
2962     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2963 #endif
2964     struct memelfnote notes[1];
2965     int num_notes;
2966 };
2967 
2968 struct elf_note_info {
2969     struct memelfnote   *notes;
2970     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2971     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2972 
2973     QTAILQ_HEAD(, elf_thread_status) thread_list;
2974 #if 0
2975     /*
2976      * Current version of ELF coredump doesn't support
2977      * dumping fp regs etc.
2978      */
2979     elf_fpregset_t *fpu;
2980     elf_fpxregset_t *xfpu;
2981     int thread_status_size;
2982 #endif
2983     int notes_size;
2984     int numnote;
2985 };
2986 
2987 struct vm_area_struct {
2988     target_ulong   vma_start;  /* start vaddr of memory region */
2989     target_ulong   vma_end;    /* end vaddr of memory region */
2990     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2991     QTAILQ_ENTRY(vm_area_struct) vma_link;
2992 };
2993 
2994 struct mm_struct {
2995     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2996     int mm_count;           /* number of mappings */
2997 };
2998 
2999 static struct mm_struct *vma_init(void);
3000 static void vma_delete(struct mm_struct *);
3001 static int vma_add_mapping(struct mm_struct *, target_ulong,
3002                            target_ulong, abi_ulong);
3003 static int vma_get_mapping_count(const struct mm_struct *);
3004 static struct vm_area_struct *vma_first(const struct mm_struct *);
3005 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3006 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3007 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3008                       unsigned long flags);
3009 
3010 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3011 static void fill_note(struct memelfnote *, const char *, int,
3012                       unsigned int, void *);
3013 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3014 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3015 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3016 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3017 static size_t note_size(const struct memelfnote *);
3018 static void free_note_info(struct elf_note_info *);
3019 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3020 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3021 static int core_dump_filename(const TaskState *, char *, size_t);
3022 
3023 static int dump_write(int, const void *, size_t);
3024 static int write_note(struct memelfnote *, int);
3025 static int write_note_info(struct elf_note_info *, int);
3026 
3027 #ifdef BSWAP_NEEDED
3028 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3029 {
3030     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3031     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3032     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3033     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3034     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3035     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3036     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3037     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3038     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3039     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3040     /* cpu times are not filled, so we skip them */
3041     /* regs should be in correct format already */
3042     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3043 }
3044 
3045 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3046 {
3047     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3048     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3049     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3050     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3051     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3052     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3053     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3054 }
3055 
3056 static void bswap_note(struct elf_note *en)
3057 {
3058     bswap32s(&en->n_namesz);
3059     bswap32s(&en->n_descsz);
3060     bswap32s(&en->n_type);
3061 }
3062 #else
3063 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3064 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3065 static inline void bswap_note(struct elf_note *en) { }
3066 #endif /* BSWAP_NEEDED */
3067 
3068 /*
3069  * Minimal support for linux memory regions.  These are needed
3070  * when we are finding out what memory exactly belongs to
3071  * emulated process.  No locks needed here, as long as
3072  * thread that received the signal is stopped.
3073  */
3074 
3075 static struct mm_struct *vma_init(void)
3076 {
3077     struct mm_struct *mm;
3078 
3079     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3080         return (NULL);
3081 
3082     mm->mm_count = 0;
3083     QTAILQ_INIT(&mm->mm_mmap);
3084 
3085     return (mm);
3086 }
3087 
3088 static void vma_delete(struct mm_struct *mm)
3089 {
3090     struct vm_area_struct *vma;
3091 
3092     while ((vma = vma_first(mm)) != NULL) {
3093         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3094         g_free(vma);
3095     }
3096     g_free(mm);
3097 }
3098 
3099 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3100                            target_ulong end, abi_ulong flags)
3101 {
3102     struct vm_area_struct *vma;
3103 
3104     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3105         return (-1);
3106 
3107     vma->vma_start = start;
3108     vma->vma_end = end;
3109     vma->vma_flags = flags;
3110 
3111     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3112     mm->mm_count++;
3113 
3114     return (0);
3115 }
3116 
3117 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3118 {
3119     return (QTAILQ_FIRST(&mm->mm_mmap));
3120 }
3121 
3122 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3123 {
3124     return (QTAILQ_NEXT(vma, vma_link));
3125 }
3126 
3127 static int vma_get_mapping_count(const struct mm_struct *mm)
3128 {
3129     return (mm->mm_count);
3130 }
3131 
3132 /*
3133  * Calculate file (dump) size of given memory region.
3134  */
3135 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3136 {
3137     /* if we cannot even read the first page, skip it */
3138     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3139         return (0);
3140 
3141     /*
3142      * Usually we don't dump executable pages as they contain
3143      * non-writable code that debugger can read directly from
3144      * target library etc.  However, thread stacks are marked
3145      * also executable so we read in first page of given region
3146      * and check whether it contains elf header.  If there is
3147      * no elf header, we dump it.
3148      */
3149     if (vma->vma_flags & PROT_EXEC) {
3150         char page[TARGET_PAGE_SIZE];
3151 
3152         copy_from_user(page, vma->vma_start, sizeof (page));
3153         if ((page[EI_MAG0] == ELFMAG0) &&
3154             (page[EI_MAG1] == ELFMAG1) &&
3155             (page[EI_MAG2] == ELFMAG2) &&
3156             (page[EI_MAG3] == ELFMAG3)) {
3157             /*
3158              * Mappings are possibly from ELF binary.  Don't dump
3159              * them.
3160              */
3161             return (0);
3162         }
3163     }
3164 
3165     return (vma->vma_end - vma->vma_start);
3166 }
3167 
3168 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3169                       unsigned long flags)
3170 {
3171     struct mm_struct *mm = (struct mm_struct *)priv;
3172 
3173     vma_add_mapping(mm, start, end, flags);
3174     return (0);
3175 }
3176 
3177 static void fill_note(struct memelfnote *note, const char *name, int type,
3178                       unsigned int sz, void *data)
3179 {
3180     unsigned int namesz;
3181 
3182     namesz = strlen(name) + 1;
3183     note->name = name;
3184     note->namesz = namesz;
3185     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3186     note->type = type;
3187     note->datasz = sz;
3188     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3189 
3190     note->data = data;
3191 
3192     /*
3193      * We calculate rounded up note size here as specified by
3194      * ELF document.
3195      */
3196     note->notesz = sizeof (struct elf_note) +
3197         note->namesz_rounded + note->datasz_rounded;
3198 }
3199 
3200 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3201                             uint32_t flags)
3202 {
3203     (void) memset(elf, 0, sizeof(*elf));
3204 
3205     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3206     elf->e_ident[EI_CLASS] = ELF_CLASS;
3207     elf->e_ident[EI_DATA] = ELF_DATA;
3208     elf->e_ident[EI_VERSION] = EV_CURRENT;
3209     elf->e_ident[EI_OSABI] = ELF_OSABI;
3210 
3211     elf->e_type = ET_CORE;
3212     elf->e_machine = machine;
3213     elf->e_version = EV_CURRENT;
3214     elf->e_phoff = sizeof(struct elfhdr);
3215     elf->e_flags = flags;
3216     elf->e_ehsize = sizeof(struct elfhdr);
3217     elf->e_phentsize = sizeof(struct elf_phdr);
3218     elf->e_phnum = segs;
3219 
3220     bswap_ehdr(elf);
3221 }
3222 
3223 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3224 {
3225     phdr->p_type = PT_NOTE;
3226     phdr->p_offset = offset;
3227     phdr->p_vaddr = 0;
3228     phdr->p_paddr = 0;
3229     phdr->p_filesz = sz;
3230     phdr->p_memsz = 0;
3231     phdr->p_flags = 0;
3232     phdr->p_align = 0;
3233 
3234     bswap_phdr(phdr, 1);
3235 }
3236 
3237 static size_t note_size(const struct memelfnote *note)
3238 {
3239     return (note->notesz);
3240 }
3241 
3242 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3243                           const TaskState *ts, int signr)
3244 {
3245     (void) memset(prstatus, 0, sizeof (*prstatus));
3246     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3247     prstatus->pr_pid = ts->ts_tid;
3248     prstatus->pr_ppid = getppid();
3249     prstatus->pr_pgrp = getpgrp();
3250     prstatus->pr_sid = getsid(0);
3251 
3252     bswap_prstatus(prstatus);
3253 }
3254 
3255 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3256 {
3257     char *base_filename;
3258     unsigned int i, len;
3259 
3260     (void) memset(psinfo, 0, sizeof (*psinfo));
3261 
3262     len = ts->info->arg_end - ts->info->arg_start;
3263     if (len >= ELF_PRARGSZ)
3264         len = ELF_PRARGSZ - 1;
3265     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3266         return -EFAULT;
3267     for (i = 0; i < len; i++)
3268         if (psinfo->pr_psargs[i] == 0)
3269             psinfo->pr_psargs[i] = ' ';
3270     psinfo->pr_psargs[len] = 0;
3271 
3272     psinfo->pr_pid = getpid();
3273     psinfo->pr_ppid = getppid();
3274     psinfo->pr_pgrp = getpgrp();
3275     psinfo->pr_sid = getsid(0);
3276     psinfo->pr_uid = getuid();
3277     psinfo->pr_gid = getgid();
3278 
3279     base_filename = g_path_get_basename(ts->bprm->filename);
3280     /*
3281      * Using strncpy here is fine: at max-length,
3282      * this field is not NUL-terminated.
3283      */
3284     (void) strncpy(psinfo->pr_fname, base_filename,
3285                    sizeof(psinfo->pr_fname));
3286 
3287     g_free(base_filename);
3288     bswap_psinfo(psinfo);
3289     return (0);
3290 }
3291 
3292 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3293 {
3294     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3295     elf_addr_t orig_auxv = auxv;
3296     void *ptr;
3297     int len = ts->info->auxv_len;
3298 
3299     /*
3300      * Auxiliary vector is stored in target process stack.  It contains
3301      * {type, value} pairs that we need to dump into note.  This is not
3302      * strictly necessary but we do it here for sake of completeness.
3303      */
3304 
3305     /* read in whole auxv vector and copy it to memelfnote */
3306     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3307     if (ptr != NULL) {
3308         fill_note(note, "CORE", NT_AUXV, len, ptr);
3309         unlock_user(ptr, auxv, len);
3310     }
3311 }
3312 
3313 /*
3314  * Constructs name of coredump file.  We have following convention
3315  * for the name:
3316  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3317  *
3318  * Returns 0 in case of success, -1 otherwise (errno is set).
3319  */
3320 static int core_dump_filename(const TaskState *ts, char *buf,
3321                               size_t bufsize)
3322 {
3323     char timestamp[64];
3324     char *base_filename = NULL;
3325     struct timeval tv;
3326     struct tm tm;
3327 
3328     assert(bufsize >= PATH_MAX);
3329 
3330     if (gettimeofday(&tv, NULL) < 0) {
3331         (void) fprintf(stderr, "unable to get current timestamp: %s",
3332                        strerror(errno));
3333         return (-1);
3334     }
3335 
3336     base_filename = g_path_get_basename(ts->bprm->filename);
3337     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3338                     localtime_r(&tv.tv_sec, &tm));
3339     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3340                     base_filename, timestamp, (int)getpid());
3341     g_free(base_filename);
3342 
3343     return (0);
3344 }
3345 
3346 static int dump_write(int fd, const void *ptr, size_t size)
3347 {
3348     const char *bufp = (const char *)ptr;
3349     ssize_t bytes_written, bytes_left;
3350     struct rlimit dumpsize;
3351     off_t pos;
3352 
3353     bytes_written = 0;
3354     getrlimit(RLIMIT_CORE, &dumpsize);
3355     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3356         if (errno == ESPIPE) { /* not a seekable stream */
3357             bytes_left = size;
3358         } else {
3359             return pos;
3360         }
3361     } else {
3362         if (dumpsize.rlim_cur <= pos) {
3363             return -1;
3364         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3365             bytes_left = size;
3366         } else {
3367             size_t limit_left=dumpsize.rlim_cur - pos;
3368             bytes_left = limit_left >= size ? size : limit_left ;
3369         }
3370     }
3371 
3372     /*
3373      * In normal conditions, single write(2) should do but
3374      * in case of socket etc. this mechanism is more portable.
3375      */
3376     do {
3377         bytes_written = write(fd, bufp, bytes_left);
3378         if (bytes_written < 0) {
3379             if (errno == EINTR)
3380                 continue;
3381             return (-1);
3382         } else if (bytes_written == 0) { /* eof */
3383             return (-1);
3384         }
3385         bufp += bytes_written;
3386         bytes_left -= bytes_written;
3387     } while (bytes_left > 0);
3388 
3389     return (0);
3390 }
3391 
3392 static int write_note(struct memelfnote *men, int fd)
3393 {
3394     struct elf_note en;
3395 
3396     en.n_namesz = men->namesz;
3397     en.n_type = men->type;
3398     en.n_descsz = men->datasz;
3399 
3400     bswap_note(&en);
3401 
3402     if (dump_write(fd, &en, sizeof(en)) != 0)
3403         return (-1);
3404     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3405         return (-1);
3406     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3407         return (-1);
3408 
3409     return (0);
3410 }
3411 
3412 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3413 {
3414     CPUState *cpu = env_cpu((CPUArchState *)env);
3415     TaskState *ts = (TaskState *)cpu->opaque;
3416     struct elf_thread_status *ets;
3417 
3418     ets = g_malloc0(sizeof (*ets));
3419     ets->num_notes = 1; /* only prstatus is dumped */
3420     fill_prstatus(&ets->prstatus, ts, 0);
3421     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3422     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3423               &ets->prstatus);
3424 
3425     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3426 
3427     info->notes_size += note_size(&ets->notes[0]);
3428 }
3429 
3430 static void init_note_info(struct elf_note_info *info)
3431 {
3432     /* Initialize the elf_note_info structure so that it is at
3433      * least safe to call free_note_info() on it. Must be
3434      * called before calling fill_note_info().
3435      */
3436     memset(info, 0, sizeof (*info));
3437     QTAILQ_INIT(&info->thread_list);
3438 }
3439 
3440 static int fill_note_info(struct elf_note_info *info,
3441                           long signr, const CPUArchState *env)
3442 {
3443 #define NUMNOTES 3
3444     CPUState *cpu = env_cpu((CPUArchState *)env);
3445     TaskState *ts = (TaskState *)cpu->opaque;
3446     int i;
3447 
3448     info->notes = g_new0(struct memelfnote, NUMNOTES);
3449     if (info->notes == NULL)
3450         return (-ENOMEM);
3451     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3452     if (info->prstatus == NULL)
3453         return (-ENOMEM);
3454     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3455     if (info->prstatus == NULL)
3456         return (-ENOMEM);
3457 
3458     /*
3459      * First fill in status (and registers) of current thread
3460      * including process info & aux vector.
3461      */
3462     fill_prstatus(info->prstatus, ts, signr);
3463     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3464     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3465               sizeof (*info->prstatus), info->prstatus);
3466     fill_psinfo(info->psinfo, ts);
3467     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3468               sizeof (*info->psinfo), info->psinfo);
3469     fill_auxv_note(&info->notes[2], ts);
3470     info->numnote = 3;
3471 
3472     info->notes_size = 0;
3473     for (i = 0; i < info->numnote; i++)
3474         info->notes_size += note_size(&info->notes[i]);
3475 
3476     /* read and fill status of all threads */
3477     cpu_list_lock();
3478     CPU_FOREACH(cpu) {
3479         if (cpu == thread_cpu) {
3480             continue;
3481         }
3482         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3483     }
3484     cpu_list_unlock();
3485 
3486     return (0);
3487 }
3488 
3489 static void free_note_info(struct elf_note_info *info)
3490 {
3491     struct elf_thread_status *ets;
3492 
3493     while (!QTAILQ_EMPTY(&info->thread_list)) {
3494         ets = QTAILQ_FIRST(&info->thread_list);
3495         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3496         g_free(ets);
3497     }
3498 
3499     g_free(info->prstatus);
3500     g_free(info->psinfo);
3501     g_free(info->notes);
3502 }
3503 
3504 static int write_note_info(struct elf_note_info *info, int fd)
3505 {
3506     struct elf_thread_status *ets;
3507     int i, error = 0;
3508 
3509     /* write prstatus, psinfo and auxv for current thread */
3510     for (i = 0; i < info->numnote; i++)
3511         if ((error = write_note(&info->notes[i], fd)) != 0)
3512             return (error);
3513 
3514     /* write prstatus for each thread */
3515     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3516         if ((error = write_note(&ets->notes[0], fd)) != 0)
3517             return (error);
3518     }
3519 
3520     return (0);
3521 }
3522 
3523 /*
3524  * Write out ELF coredump.
3525  *
3526  * See documentation of ELF object file format in:
3527  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3528  *
3529  * Coredump format in linux is following:
3530  *
3531  * 0   +----------------------+         \
3532  *     | ELF header           | ET_CORE  |
3533  *     +----------------------+          |
3534  *     | ELF program headers  |          |--- headers
3535  *     | - NOTE section       |          |
3536  *     | - PT_LOAD sections   |          |
3537  *     +----------------------+         /
3538  *     | NOTEs:               |
3539  *     | - NT_PRSTATUS        |
3540  *     | - NT_PRSINFO         |
3541  *     | - NT_AUXV            |
3542  *     +----------------------+ <-- aligned to target page
3543  *     | Process memory dump  |
3544  *     :                      :
3545  *     .                      .
3546  *     :                      :
3547  *     |                      |
3548  *     +----------------------+
3549  *
3550  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3551  * NT_PRSINFO  -> struct elf_prpsinfo
3552  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3553  *
3554  * Format follows System V format as close as possible.  Current
3555  * version limitations are as follows:
3556  *     - no floating point registers are dumped
3557  *
3558  * Function returns 0 in case of success, negative errno otherwise.
3559  *
3560  * TODO: make this work also during runtime: it should be
3561  * possible to force coredump from running process and then
3562  * continue processing.  For example qemu could set up SIGUSR2
3563  * handler (provided that target process haven't registered
3564  * handler for that) that does the dump when signal is received.
3565  */
3566 static int elf_core_dump(int signr, const CPUArchState *env)
3567 {
3568     const CPUState *cpu = env_cpu((CPUArchState *)env);
3569     const TaskState *ts = (const TaskState *)cpu->opaque;
3570     struct vm_area_struct *vma = NULL;
3571     char corefile[PATH_MAX];
3572     struct elf_note_info info;
3573     struct elfhdr elf;
3574     struct elf_phdr phdr;
3575     struct rlimit dumpsize;
3576     struct mm_struct *mm = NULL;
3577     off_t offset = 0, data_offset = 0;
3578     int segs = 0;
3579     int fd = -1;
3580 
3581     init_note_info(&info);
3582 
3583     errno = 0;
3584     getrlimit(RLIMIT_CORE, &dumpsize);
3585     if (dumpsize.rlim_cur == 0)
3586         return 0;
3587 
3588     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3589         return (-errno);
3590 
3591     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3592                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3593         return (-errno);
3594 
3595     /*
3596      * Walk through target process memory mappings and
3597      * set up structure containing this information.  After
3598      * this point vma_xxx functions can be used.
3599      */
3600     if ((mm = vma_init()) == NULL)
3601         goto out;
3602 
3603     walk_memory_regions(mm, vma_walker);
3604     segs = vma_get_mapping_count(mm);
3605 
3606     /*
3607      * Construct valid coredump ELF header.  We also
3608      * add one more segment for notes.
3609      */
3610     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3611     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3612         goto out;
3613 
3614     /* fill in the in-memory version of notes */
3615     if (fill_note_info(&info, signr, env) < 0)
3616         goto out;
3617 
3618     offset += sizeof (elf);                             /* elf header */
3619     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3620 
3621     /* write out notes program header */
3622     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3623 
3624     offset += info.notes_size;
3625     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3626         goto out;
3627 
3628     /*
3629      * ELF specification wants data to start at page boundary so
3630      * we align it here.
3631      */
3632     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3633 
3634     /*
3635      * Write program headers for memory regions mapped in
3636      * the target process.
3637      */
3638     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3639         (void) memset(&phdr, 0, sizeof (phdr));
3640 
3641         phdr.p_type = PT_LOAD;
3642         phdr.p_offset = offset;
3643         phdr.p_vaddr = vma->vma_start;
3644         phdr.p_paddr = 0;
3645         phdr.p_filesz = vma_dump_size(vma);
3646         offset += phdr.p_filesz;
3647         phdr.p_memsz = vma->vma_end - vma->vma_start;
3648         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3649         if (vma->vma_flags & PROT_WRITE)
3650             phdr.p_flags |= PF_W;
3651         if (vma->vma_flags & PROT_EXEC)
3652             phdr.p_flags |= PF_X;
3653         phdr.p_align = ELF_EXEC_PAGESIZE;
3654 
3655         bswap_phdr(&phdr, 1);
3656         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3657             goto out;
3658         }
3659     }
3660 
3661     /*
3662      * Next we write notes just after program headers.  No
3663      * alignment needed here.
3664      */
3665     if (write_note_info(&info, fd) < 0)
3666         goto out;
3667 
3668     /* align data to page boundary */
3669     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3670         goto out;
3671 
3672     /*
3673      * Finally we can dump process memory into corefile as well.
3674      */
3675     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3676         abi_ulong addr;
3677         abi_ulong end;
3678 
3679         end = vma->vma_start + vma_dump_size(vma);
3680 
3681         for (addr = vma->vma_start; addr < end;
3682              addr += TARGET_PAGE_SIZE) {
3683             char page[TARGET_PAGE_SIZE];
3684             int error;
3685 
3686             /*
3687              *  Read in page from target process memory and
3688              *  write it to coredump file.
3689              */
3690             error = copy_from_user(page, addr, sizeof (page));
3691             if (error != 0) {
3692                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3693                                addr);
3694                 errno = -error;
3695                 goto out;
3696             }
3697             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3698                 goto out;
3699         }
3700     }
3701 
3702  out:
3703     free_note_info(&info);
3704     if (mm != NULL)
3705         vma_delete(mm);
3706     (void) close(fd);
3707 
3708     if (errno != 0)
3709         return (-errno);
3710     return (0);
3711 }
3712 #endif /* USE_ELF_CORE_DUMP */
3713 
3714 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3715 {
3716     init_thread(regs, infop);
3717 }
3718