xref: /openbmc/qemu/linux-user/elfload.c (revision e38e943a)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 
740     /* Feature definitions in AT_HWCAP2.  */
741     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748 
749 #define ELF_HWCAP get_elf_hwcap()
750 
751 static uint32_t get_elf_hwcap(void)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754     uint32_t features = 0;
755 
756     /* We don't have to be terribly complete here; the high points are
757        Altivec/FP/SPE support.  Anything else is just a bonus.  */
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774                   QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777 
778     return features;
779 }
780 
781 #define ELF_HWCAP2 get_elf_hwcap2()
782 
783 static uint32_t get_elf_hwcap2(void)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786     uint32_t features = 0;
787 
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature)                                      \
791     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792 
793     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797 
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800 
801     return features;
802 }
803 
804 /*
805  * The requirements here are:
806  * - keep the final alignment of sp (sp & 0xf)
807  * - make sure the 32-bit value at the first 16 byte aligned position of
808  *   AUXV is greater than 16 for glibc compatibility.
809  *   AT_IGNOREPPC is used for that.
810  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812  */
813 #define DLINFO_ARCH_ITEMS       5
814 #define ARCH_DLINFO                                     \
815     do {                                                \
816         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
817         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
820         /*                                              \
821          * Now handle glibc compatibility.              \
822          */                                             \
823         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
824         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
825     } while (0)
826 
827 static inline uint32_t get_ppc64_abi(struct image_info *infop);
828 
829 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
830 {
831     _regs->gpr[1] = infop->start_stack;
832 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
833     if (get_ppc64_abi(infop) < 2) {
834         _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
835         infop->entry = ldq_raw(infop->entry) + infop->load_bias;
836     } else {
837         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
838     }
839 #endif
840     _regs->nip = infop->entry;
841 }
842 
843 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
844 #define ELF_NREG 48
845 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
846 
847 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
848 {
849     int i;
850     target_ulong ccr = 0;
851 
852     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
853         (*regs)[i] = tswapreg(env->gpr[i]);
854     }
855 
856     (*regs)[32] = tswapreg(env->nip);
857     (*regs)[33] = tswapreg(env->msr);
858     (*regs)[35] = tswapreg(env->ctr);
859     (*regs)[36] = tswapreg(env->lr);
860     (*regs)[37] = tswapreg(env->xer);
861 
862     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
863         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
864     }
865     (*regs)[38] = tswapreg(ccr);
866 }
867 
868 #define USE_ELF_CORE_DUMP
869 #define ELF_EXEC_PAGESIZE       4096
870 
871 #endif
872 
873 #ifdef TARGET_MIPS
874 
875 #define ELF_START_MMAP 0x80000000
876 
877 #define elf_check_arch(x) ( (x) == EM_MIPS )
878 
879 #ifdef TARGET_MIPS64
880 #define ELF_CLASS   ELFCLASS64
881 #else
882 #define ELF_CLASS   ELFCLASS32
883 #endif
884 #define ELF_ARCH    EM_MIPS
885 
886 static inline void init_thread(struct target_pt_regs *regs,
887                                struct image_info *infop)
888 {
889     regs->cp0_status = 2 << CP0St_KSU;
890     regs->cp0_epc = infop->entry;
891     regs->regs[29] = infop->start_stack;
892 }
893 
894 /* See linux kernel: arch/mips/include/asm/elf.h.  */
895 #define ELF_NREG 45
896 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
897 
898 /* See linux kernel: arch/mips/include/asm/reg.h.  */
899 enum {
900 #ifdef TARGET_MIPS64
901     TARGET_EF_R0 = 0,
902 #else
903     TARGET_EF_R0 = 6,
904 #endif
905     TARGET_EF_R26 = TARGET_EF_R0 + 26,
906     TARGET_EF_R27 = TARGET_EF_R0 + 27,
907     TARGET_EF_LO = TARGET_EF_R0 + 32,
908     TARGET_EF_HI = TARGET_EF_R0 + 33,
909     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
910     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
911     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
912     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
913 };
914 
915 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
916 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
917 {
918     int i;
919 
920     for (i = 0; i < TARGET_EF_R0; i++) {
921         (*regs)[i] = 0;
922     }
923     (*regs)[TARGET_EF_R0] = 0;
924 
925     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
926         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
927     }
928 
929     (*regs)[TARGET_EF_R26] = 0;
930     (*regs)[TARGET_EF_R27] = 0;
931     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
932     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
933     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
934     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
935     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
936     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
937 }
938 
939 #define USE_ELF_CORE_DUMP
940 #define ELF_EXEC_PAGESIZE        4096
941 
942 #endif /* TARGET_MIPS */
943 
944 #ifdef TARGET_MICROBLAZE
945 
946 #define ELF_START_MMAP 0x80000000
947 
948 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
949 
950 #define ELF_CLASS   ELFCLASS32
951 #define ELF_ARCH    EM_MICROBLAZE
952 
953 static inline void init_thread(struct target_pt_regs *regs,
954                                struct image_info *infop)
955 {
956     regs->pc = infop->entry;
957     regs->r1 = infop->start_stack;
958 
959 }
960 
961 #define ELF_EXEC_PAGESIZE        4096
962 
963 #define USE_ELF_CORE_DUMP
964 #define ELF_NREG 38
965 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
966 
967 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
968 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
969 {
970     int i, pos = 0;
971 
972     for (i = 0; i < 32; i++) {
973         (*regs)[pos++] = tswapreg(env->regs[i]);
974     }
975 
976     for (i = 0; i < 6; i++) {
977         (*regs)[pos++] = tswapreg(env->sregs[i]);
978     }
979 }
980 
981 #endif /* TARGET_MICROBLAZE */
982 
983 #ifdef TARGET_OPENRISC
984 
985 #define ELF_START_MMAP 0x08000000
986 
987 #define elf_check_arch(x) ((x) == EM_OPENRISC)
988 
989 #define ELF_ARCH EM_OPENRISC
990 #define ELF_CLASS ELFCLASS32
991 #define ELF_DATA  ELFDATA2MSB
992 
993 static inline void init_thread(struct target_pt_regs *regs,
994                                struct image_info *infop)
995 {
996     regs->pc = infop->entry;
997     regs->gpr[1] = infop->start_stack;
998 }
999 
1000 #define USE_ELF_CORE_DUMP
1001 #define ELF_EXEC_PAGESIZE 8192
1002 
1003 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1004 #define ELF_NREG 34 /* gprs and pc, sr */
1005 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1006 
1007 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1008                                const CPUOpenRISCState *env)
1009 {
1010     int i;
1011 
1012     for (i = 0; i < 32; i++) {
1013         (*regs)[i] = tswapreg(env->gpr[i]);
1014     }
1015 
1016     (*regs)[32] = tswapreg(env->pc);
1017     (*regs)[33] = tswapreg(env->sr);
1018 }
1019 #define ELF_HWCAP 0
1020 #define ELF_PLATFORM NULL
1021 
1022 #endif /* TARGET_OPENRISC */
1023 
1024 #ifdef TARGET_SH4
1025 
1026 #define ELF_START_MMAP 0x80000000
1027 
1028 #define elf_check_arch(x) ( (x) == EM_SH )
1029 
1030 #define ELF_CLASS ELFCLASS32
1031 #define ELF_ARCH  EM_SH
1032 
1033 static inline void init_thread(struct target_pt_regs *regs,
1034                                struct image_info *infop)
1035 {
1036     /* Check other registers XXXXX */
1037     regs->pc = infop->entry;
1038     regs->regs[15] = infop->start_stack;
1039 }
1040 
1041 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1042 #define ELF_NREG 23
1043 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1044 
1045 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1046 enum {
1047     TARGET_REG_PC = 16,
1048     TARGET_REG_PR = 17,
1049     TARGET_REG_SR = 18,
1050     TARGET_REG_GBR = 19,
1051     TARGET_REG_MACH = 20,
1052     TARGET_REG_MACL = 21,
1053     TARGET_REG_SYSCALL = 22
1054 };
1055 
1056 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1057                                       const CPUSH4State *env)
1058 {
1059     int i;
1060 
1061     for (i = 0; i < 16; i++) {
1062         (*regs[i]) = tswapreg(env->gregs[i]);
1063     }
1064 
1065     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1066     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1067     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1068     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1069     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1070     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1071     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1072 }
1073 
1074 #define USE_ELF_CORE_DUMP
1075 #define ELF_EXEC_PAGESIZE        4096
1076 
1077 #endif
1078 
1079 #ifdef TARGET_CRIS
1080 
1081 #define ELF_START_MMAP 0x80000000
1082 
1083 #define elf_check_arch(x) ( (x) == EM_CRIS )
1084 
1085 #define ELF_CLASS ELFCLASS32
1086 #define ELF_ARCH  EM_CRIS
1087 
1088 static inline void init_thread(struct target_pt_regs *regs,
1089                                struct image_info *infop)
1090 {
1091     regs->erp = infop->entry;
1092 }
1093 
1094 #define ELF_EXEC_PAGESIZE        8192
1095 
1096 #endif
1097 
1098 #ifdef TARGET_M68K
1099 
1100 #define ELF_START_MMAP 0x80000000
1101 
1102 #define elf_check_arch(x) ( (x) == EM_68K )
1103 
1104 #define ELF_CLASS       ELFCLASS32
1105 #define ELF_ARCH        EM_68K
1106 
1107 /* ??? Does this need to do anything?
1108    #define ELF_PLAT_INIT(_r) */
1109 
1110 static inline void init_thread(struct target_pt_regs *regs,
1111                                struct image_info *infop)
1112 {
1113     regs->usp = infop->start_stack;
1114     regs->sr = 0;
1115     regs->pc = infop->entry;
1116 }
1117 
1118 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1119 #define ELF_NREG 20
1120 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1121 
1122 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1123 {
1124     (*regs)[0] = tswapreg(env->dregs[1]);
1125     (*regs)[1] = tswapreg(env->dregs[2]);
1126     (*regs)[2] = tswapreg(env->dregs[3]);
1127     (*regs)[3] = tswapreg(env->dregs[4]);
1128     (*regs)[4] = tswapreg(env->dregs[5]);
1129     (*regs)[5] = tswapreg(env->dregs[6]);
1130     (*regs)[6] = tswapreg(env->dregs[7]);
1131     (*regs)[7] = tswapreg(env->aregs[0]);
1132     (*regs)[8] = tswapreg(env->aregs[1]);
1133     (*regs)[9] = tswapreg(env->aregs[2]);
1134     (*regs)[10] = tswapreg(env->aregs[3]);
1135     (*regs)[11] = tswapreg(env->aregs[4]);
1136     (*regs)[12] = tswapreg(env->aregs[5]);
1137     (*regs)[13] = tswapreg(env->aregs[6]);
1138     (*regs)[14] = tswapreg(env->dregs[0]);
1139     (*regs)[15] = tswapreg(env->aregs[7]);
1140     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1141     (*regs)[17] = tswapreg(env->sr);
1142     (*regs)[18] = tswapreg(env->pc);
1143     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1144 }
1145 
1146 #define USE_ELF_CORE_DUMP
1147 #define ELF_EXEC_PAGESIZE       8192
1148 
1149 #endif
1150 
1151 #ifdef TARGET_ALPHA
1152 
1153 #define ELF_START_MMAP (0x30000000000ULL)
1154 
1155 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1156 
1157 #define ELF_CLASS      ELFCLASS64
1158 #define ELF_ARCH       EM_ALPHA
1159 
1160 static inline void init_thread(struct target_pt_regs *regs,
1161                                struct image_info *infop)
1162 {
1163     regs->pc = infop->entry;
1164     regs->ps = 8;
1165     regs->usp = infop->start_stack;
1166 }
1167 
1168 #define ELF_EXEC_PAGESIZE        8192
1169 
1170 #endif /* TARGET_ALPHA */
1171 
1172 #ifdef TARGET_S390X
1173 
1174 #define ELF_START_MMAP (0x20000000000ULL)
1175 
1176 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1177 
1178 #define ELF_CLASS	ELFCLASS64
1179 #define ELF_DATA	ELFDATA2MSB
1180 #define ELF_ARCH	EM_S390
1181 
1182 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1183 {
1184     regs->psw.addr = infop->entry;
1185     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1186     regs->gprs[15] = infop->start_stack;
1187 }
1188 
1189 #endif /* TARGET_S390X */
1190 
1191 #ifndef ELF_PLATFORM
1192 #define ELF_PLATFORM (NULL)
1193 #endif
1194 
1195 #ifndef ELF_HWCAP
1196 #define ELF_HWCAP 0
1197 #endif
1198 
1199 #ifdef TARGET_ABI32
1200 #undef ELF_CLASS
1201 #define ELF_CLASS ELFCLASS32
1202 #undef bswaptls
1203 #define bswaptls(ptr) bswap32s(ptr)
1204 #endif
1205 
1206 #include "elf.h"
1207 
1208 #ifdef TARGET_PPC
1209 static inline uint32_t get_ppc64_abi(struct image_info *infop)
1210 {
1211   return infop->elf_flags & EF_PPC64_ABI;
1212 }
1213 #endif
1214 
1215 struct exec
1216 {
1217     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1218     unsigned int a_text;   /* length of text, in bytes */
1219     unsigned int a_data;   /* length of data, in bytes */
1220     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1221     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1222     unsigned int a_entry;  /* start address */
1223     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1224     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1225 };
1226 
1227 
1228 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1229 #define OMAGIC 0407
1230 #define NMAGIC 0410
1231 #define ZMAGIC 0413
1232 #define QMAGIC 0314
1233 
1234 /* Necessary parameters */
1235 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1236 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1237 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1238 
1239 #define DLINFO_ITEMS 14
1240 
1241 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1242 {
1243     memcpy(to, from, n);
1244 }
1245 
1246 #ifdef BSWAP_NEEDED
1247 static void bswap_ehdr(struct elfhdr *ehdr)
1248 {
1249     bswap16s(&ehdr->e_type);            /* Object file type */
1250     bswap16s(&ehdr->e_machine);         /* Architecture */
1251     bswap32s(&ehdr->e_version);         /* Object file version */
1252     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1253     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1254     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1255     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1256     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1257     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1258     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1259     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1260     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1261     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1262 }
1263 
1264 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1265 {
1266     int i;
1267     for (i = 0; i < phnum; ++i, ++phdr) {
1268         bswap32s(&phdr->p_type);        /* Segment type */
1269         bswap32s(&phdr->p_flags);       /* Segment flags */
1270         bswaptls(&phdr->p_offset);      /* Segment file offset */
1271         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1272         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1273         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1274         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1275         bswaptls(&phdr->p_align);       /* Segment alignment */
1276     }
1277 }
1278 
1279 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1280 {
1281     int i;
1282     for (i = 0; i < shnum; ++i, ++shdr) {
1283         bswap32s(&shdr->sh_name);
1284         bswap32s(&shdr->sh_type);
1285         bswaptls(&shdr->sh_flags);
1286         bswaptls(&shdr->sh_addr);
1287         bswaptls(&shdr->sh_offset);
1288         bswaptls(&shdr->sh_size);
1289         bswap32s(&shdr->sh_link);
1290         bswap32s(&shdr->sh_info);
1291         bswaptls(&shdr->sh_addralign);
1292         bswaptls(&shdr->sh_entsize);
1293     }
1294 }
1295 
1296 static void bswap_sym(struct elf_sym *sym)
1297 {
1298     bswap32s(&sym->st_name);
1299     bswaptls(&sym->st_value);
1300     bswaptls(&sym->st_size);
1301     bswap16s(&sym->st_shndx);
1302 }
1303 #else
1304 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1305 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1306 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1307 static inline void bswap_sym(struct elf_sym *sym) { }
1308 #endif
1309 
1310 #ifdef USE_ELF_CORE_DUMP
1311 static int elf_core_dump(int, const CPUArchState *);
1312 #endif /* USE_ELF_CORE_DUMP */
1313 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1314 
1315 /* Verify the portions of EHDR within E_IDENT for the target.
1316    This can be performed before bswapping the entire header.  */
1317 static bool elf_check_ident(struct elfhdr *ehdr)
1318 {
1319     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1320             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1321             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1322             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1323             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1324             && ehdr->e_ident[EI_DATA] == ELF_DATA
1325             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1326 }
1327 
1328 /* Verify the portions of EHDR outside of E_IDENT for the target.
1329    This has to wait until after bswapping the header.  */
1330 static bool elf_check_ehdr(struct elfhdr *ehdr)
1331 {
1332     return (elf_check_arch(ehdr->e_machine)
1333             && ehdr->e_ehsize == sizeof(struct elfhdr)
1334             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1335             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1336 }
1337 
1338 /*
1339  * 'copy_elf_strings()' copies argument/envelope strings from user
1340  * memory to free pages in kernel mem. These are in a format ready
1341  * to be put directly into the top of new user memory.
1342  *
1343  */
1344 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1345                                   abi_ulong p)
1346 {
1347     char *tmp, *tmp1, *pag = NULL;
1348     int len, offset = 0;
1349 
1350     if (!p) {
1351         return 0;       /* bullet-proofing */
1352     }
1353     while (argc-- > 0) {
1354         tmp = argv[argc];
1355         if (!tmp) {
1356             fprintf(stderr, "VFS: argc is wrong");
1357             exit(-1);
1358         }
1359         tmp1 = tmp;
1360         while (*tmp++);
1361         len = tmp - tmp1;
1362         if (p < len) {  /* this shouldn't happen - 128kB */
1363             return 0;
1364         }
1365         while (len) {
1366             --p; --tmp; --len;
1367             if (--offset < 0) {
1368                 offset = p % TARGET_PAGE_SIZE;
1369                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1370                 if (!pag) {
1371                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1372                     page[p/TARGET_PAGE_SIZE] = pag;
1373                     if (!pag)
1374                         return 0;
1375                 }
1376             }
1377             if (len == 0 || offset == 0) {
1378                 *(pag + offset) = *tmp;
1379             }
1380             else {
1381                 int bytes_to_copy = (len > offset) ? offset : len;
1382                 tmp -= bytes_to_copy;
1383                 p -= bytes_to_copy;
1384                 offset -= bytes_to_copy;
1385                 len -= bytes_to_copy;
1386                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1387             }
1388         }
1389     }
1390     return p;
1391 }
1392 
1393 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1394                                  struct image_info *info)
1395 {
1396     abi_ulong stack_base, size, error, guard;
1397     int i;
1398 
1399     /* Create enough stack to hold everything.  If we don't use
1400        it for args, we'll use it for something else.  */
1401     size = guest_stack_size;
1402     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1403         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1404     }
1405     guard = TARGET_PAGE_SIZE;
1406     if (guard < qemu_real_host_page_size) {
1407         guard = qemu_real_host_page_size;
1408     }
1409 
1410     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1411                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1412     if (error == -1) {
1413         perror("mmap stack");
1414         exit(-1);
1415     }
1416 
1417     /* We reserve one extra page at the top of the stack as guard.  */
1418     target_mprotect(error, guard, PROT_NONE);
1419 
1420     info->stack_limit = error + guard;
1421     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1422     p += stack_base;
1423 
1424     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1425         if (bprm->page[i]) {
1426             info->rss++;
1427             /* FIXME - check return value of memcpy_to_target() for failure */
1428             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1429             g_free(bprm->page[i]);
1430         }
1431         stack_base += TARGET_PAGE_SIZE;
1432     }
1433     return p;
1434 }
1435 
1436 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1437    after the data section (i.e. bss).  */
1438 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1439 {
1440     uintptr_t host_start, host_map_start, host_end;
1441 
1442     last_bss = TARGET_PAGE_ALIGN(last_bss);
1443 
1444     /* ??? There is confusion between qemu_real_host_page_size and
1445        qemu_host_page_size here and elsewhere in target_mmap, which
1446        may lead to the end of the data section mapping from the file
1447        not being mapped.  At least there was an explicit test and
1448        comment for that here, suggesting that "the file size must
1449        be known".  The comment probably pre-dates the introduction
1450        of the fstat system call in target_mmap which does in fact
1451        find out the size.  What isn't clear is if the workaround
1452        here is still actually needed.  For now, continue with it,
1453        but merge it with the "normal" mmap that would allocate the bss.  */
1454 
1455     host_start = (uintptr_t) g2h(elf_bss);
1456     host_end = (uintptr_t) g2h(last_bss);
1457     host_map_start = (host_start + qemu_real_host_page_size - 1);
1458     host_map_start &= -qemu_real_host_page_size;
1459 
1460     if (host_map_start < host_end) {
1461         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1462                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1463         if (p == MAP_FAILED) {
1464             perror("cannot mmap brk");
1465             exit(-1);
1466         }
1467     }
1468 
1469     /* Ensure that the bss page(s) are valid */
1470     if ((page_get_flags(last_bss-1) & prot) != prot) {
1471         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1472     }
1473 
1474     if (host_start < host_map_start) {
1475         memset((void *)host_start, 0, host_map_start - host_start);
1476     }
1477 }
1478 
1479 #ifdef CONFIG_USE_FDPIC
1480 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1481 {
1482     uint16_t n;
1483     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1484 
1485     /* elf32_fdpic_loadseg */
1486     n = info->nsegs;
1487     while (n--) {
1488         sp -= 12;
1489         put_user_u32(loadsegs[n].addr, sp+0);
1490         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1491         put_user_u32(loadsegs[n].p_memsz, sp+8);
1492     }
1493 
1494     /* elf32_fdpic_loadmap */
1495     sp -= 4;
1496     put_user_u16(0, sp+0); /* version */
1497     put_user_u16(info->nsegs, sp+2); /* nsegs */
1498 
1499     info->personality = PER_LINUX_FDPIC;
1500     info->loadmap_addr = sp;
1501 
1502     return sp;
1503 }
1504 #endif
1505 
1506 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1507                                    struct elfhdr *exec,
1508                                    struct image_info *info,
1509                                    struct image_info *interp_info)
1510 {
1511     abi_ulong sp;
1512     abi_ulong sp_auxv;
1513     int size;
1514     int i;
1515     abi_ulong u_rand_bytes;
1516     uint8_t k_rand_bytes[16];
1517     abi_ulong u_platform;
1518     const char *k_platform;
1519     const int n = sizeof(elf_addr_t);
1520 
1521     sp = p;
1522 
1523 #ifdef CONFIG_USE_FDPIC
1524     /* Needs to be before we load the env/argc/... */
1525     if (elf_is_fdpic(exec)) {
1526         /* Need 4 byte alignment for these structs */
1527         sp &= ~3;
1528         sp = loader_build_fdpic_loadmap(info, sp);
1529         info->other_info = interp_info;
1530         if (interp_info) {
1531             interp_info->other_info = info;
1532             sp = loader_build_fdpic_loadmap(interp_info, sp);
1533         }
1534     }
1535 #endif
1536 
1537     u_platform = 0;
1538     k_platform = ELF_PLATFORM;
1539     if (k_platform) {
1540         size_t len = strlen(k_platform) + 1;
1541         sp -= (len + n - 1) & ~(n - 1);
1542         u_platform = sp;
1543         /* FIXME - check return value of memcpy_to_target() for failure */
1544         memcpy_to_target(sp, k_platform, len);
1545     }
1546 
1547     /*
1548      * Generate 16 random bytes for userspace PRNG seeding (not
1549      * cryptically secure but it's not the aim of QEMU).
1550      */
1551     srand((unsigned int) time(NULL));
1552     for (i = 0; i < 16; i++) {
1553         k_rand_bytes[i] = rand();
1554     }
1555     sp -= 16;
1556     u_rand_bytes = sp;
1557     /* FIXME - check return value of memcpy_to_target() for failure */
1558     memcpy_to_target(sp, k_rand_bytes, 16);
1559 
1560     /*
1561      * Force 16 byte _final_ alignment here for generality.
1562      */
1563     sp = sp &~ (abi_ulong)15;
1564     size = (DLINFO_ITEMS + 1) * 2;
1565     if (k_platform)
1566         size += 2;
1567 #ifdef DLINFO_ARCH_ITEMS
1568     size += DLINFO_ARCH_ITEMS * 2;
1569 #endif
1570 #ifdef ELF_HWCAP2
1571     size += 2;
1572 #endif
1573     size += envc + argc + 2;
1574     size += 1;  /* argc itself */
1575     size *= n;
1576     if (size & 15)
1577         sp -= 16 - (size & 15);
1578 
1579     /* This is correct because Linux defines
1580      * elf_addr_t as Elf32_Off / Elf64_Off
1581      */
1582 #define NEW_AUX_ENT(id, val) do {               \
1583         sp -= n; put_user_ual(val, sp);         \
1584         sp -= n; put_user_ual(id, sp);          \
1585     } while(0)
1586 
1587     sp_auxv = sp;
1588     NEW_AUX_ENT (AT_NULL, 0);
1589 
1590     /* There must be exactly DLINFO_ITEMS entries here.  */
1591     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1592     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1593     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1594     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1595     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1596     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1597     NEW_AUX_ENT(AT_ENTRY, info->entry);
1598     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1599     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1600     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1601     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1602     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1603     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1604     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1605 
1606 #ifdef ELF_HWCAP2
1607     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1608 #endif
1609 
1610     if (k_platform)
1611         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1612 #ifdef ARCH_DLINFO
1613     /*
1614      * ARCH_DLINFO must come last so platform specific code can enforce
1615      * special alignment requirements on the AUXV if necessary (eg. PPC).
1616      */
1617     ARCH_DLINFO;
1618 #endif
1619 #undef NEW_AUX_ENT
1620 
1621     info->saved_auxv = sp;
1622     info->auxv_len = sp_auxv - sp;
1623 
1624     sp = loader_build_argptr(envc, argc, sp, p, 0);
1625     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1626     assert(sp_auxv - sp == size);
1627     return sp;
1628 }
1629 
1630 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1631 /* If the guest doesn't have a validation function just agree */
1632 static int validate_guest_space(unsigned long guest_base,
1633                                 unsigned long guest_size)
1634 {
1635     return 1;
1636 }
1637 #endif
1638 
1639 unsigned long init_guest_space(unsigned long host_start,
1640                                unsigned long host_size,
1641                                unsigned long guest_start,
1642                                bool fixed)
1643 {
1644     unsigned long current_start, real_start;
1645     int flags;
1646 
1647     assert(host_start || host_size);
1648 
1649     /* If just a starting address is given, then just verify that
1650      * address.  */
1651     if (host_start && !host_size) {
1652         if (validate_guest_space(host_start, host_size) == 1) {
1653             return host_start;
1654         } else {
1655             return (unsigned long)-1;
1656         }
1657     }
1658 
1659     /* Setup the initial flags and start address.  */
1660     current_start = host_start & qemu_host_page_mask;
1661     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1662     if (fixed) {
1663         flags |= MAP_FIXED;
1664     }
1665 
1666     /* Otherwise, a non-zero size region of memory needs to be mapped
1667      * and validated.  */
1668     while (1) {
1669         unsigned long real_size = host_size;
1670 
1671         /* Do not use mmap_find_vma here because that is limited to the
1672          * guest address space.  We are going to make the
1673          * guest address space fit whatever we're given.
1674          */
1675         real_start = (unsigned long)
1676             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1677         if (real_start == (unsigned long)-1) {
1678             return (unsigned long)-1;
1679         }
1680 
1681         /* Ensure the address is properly aligned.  */
1682         if (real_start & ~qemu_host_page_mask) {
1683             munmap((void *)real_start, host_size);
1684             real_size = host_size + qemu_host_page_size;
1685             real_start = (unsigned long)
1686                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1687             if (real_start == (unsigned long)-1) {
1688                 return (unsigned long)-1;
1689             }
1690             real_start = HOST_PAGE_ALIGN(real_start);
1691         }
1692 
1693         /* Check to see if the address is valid.  */
1694         if (!host_start || real_start == current_start) {
1695             int valid = validate_guest_space(real_start - guest_start,
1696                                              real_size);
1697             if (valid == 1) {
1698                 break;
1699             } else if (valid == -1) {
1700                 return (unsigned long)-1;
1701             }
1702             /* valid == 0, so try again. */
1703         }
1704 
1705         /* That address didn't work.  Unmap and try a different one.
1706          * The address the host picked because is typically right at
1707          * the top of the host address space and leaves the guest with
1708          * no usable address space.  Resort to a linear search.  We
1709          * already compensated for mmap_min_addr, so this should not
1710          * happen often.  Probably means we got unlucky and host
1711          * address space randomization put a shared library somewhere
1712          * inconvenient.
1713          */
1714         munmap((void *)real_start, host_size);
1715         current_start += qemu_host_page_size;
1716         if (host_start == current_start) {
1717             /* Theoretically possible if host doesn't have any suitably
1718              * aligned areas.  Normally the first mmap will fail.
1719              */
1720             return (unsigned long)-1;
1721         }
1722     }
1723 
1724     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1725 
1726     return real_start;
1727 }
1728 
1729 static void probe_guest_base(const char *image_name,
1730                              abi_ulong loaddr, abi_ulong hiaddr)
1731 {
1732     /* Probe for a suitable guest base address, if the user has not set
1733      * it explicitly, and set guest_base appropriately.
1734      * In case of error we will print a suitable message and exit.
1735      */
1736 #if defined(CONFIG_USE_GUEST_BASE)
1737     const char *errmsg;
1738     if (!have_guest_base && !reserved_va) {
1739         unsigned long host_start, real_start, host_size;
1740 
1741         /* Round addresses to page boundaries.  */
1742         loaddr &= qemu_host_page_mask;
1743         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1744 
1745         if (loaddr < mmap_min_addr) {
1746             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1747         } else {
1748             host_start = loaddr;
1749             if (host_start != loaddr) {
1750                 errmsg = "Address overflow loading ELF binary";
1751                 goto exit_errmsg;
1752             }
1753         }
1754         host_size = hiaddr - loaddr;
1755 
1756         /* Setup the initial guest memory space with ranges gleaned from
1757          * the ELF image that is being loaded.
1758          */
1759         real_start = init_guest_space(host_start, host_size, loaddr, false);
1760         if (real_start == (unsigned long)-1) {
1761             errmsg = "Unable to find space for application";
1762             goto exit_errmsg;
1763         }
1764         guest_base = real_start - loaddr;
1765 
1766         qemu_log("Relocating guest address space from 0x"
1767                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1768                  loaddr, real_start);
1769     }
1770     return;
1771 
1772 exit_errmsg:
1773     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1774     exit(-1);
1775 #endif
1776 }
1777 
1778 
1779 /* Load an ELF image into the address space.
1780 
1781    IMAGE_NAME is the filename of the image, to use in error messages.
1782    IMAGE_FD is the open file descriptor for the image.
1783 
1784    BPRM_BUF is a copy of the beginning of the file; this of course
1785    contains the elf file header at offset 0.  It is assumed that this
1786    buffer is sufficiently aligned to present no problems to the host
1787    in accessing data at aligned offsets within the buffer.
1788 
1789    On return: INFO values will be filled in, as necessary or available.  */
1790 
1791 static void load_elf_image(const char *image_name, int image_fd,
1792                            struct image_info *info, char **pinterp_name,
1793                            char bprm_buf[BPRM_BUF_SIZE])
1794 {
1795     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1796     struct elf_phdr *phdr;
1797     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1798     int i, retval;
1799     const char *errmsg;
1800 
1801     /* First of all, some simple consistency checks */
1802     errmsg = "Invalid ELF image for this architecture";
1803     if (!elf_check_ident(ehdr)) {
1804         goto exit_errmsg;
1805     }
1806     bswap_ehdr(ehdr);
1807     if (!elf_check_ehdr(ehdr)) {
1808         goto exit_errmsg;
1809     }
1810 
1811     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1812     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1813         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1814     } else {
1815         phdr = (struct elf_phdr *) alloca(i);
1816         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1817         if (retval != i) {
1818             goto exit_read;
1819         }
1820     }
1821     bswap_phdr(phdr, ehdr->e_phnum);
1822 
1823 #ifdef CONFIG_USE_FDPIC
1824     info->nsegs = 0;
1825     info->pt_dynamic_addr = 0;
1826 #endif
1827 
1828     /* Find the maximum size of the image and allocate an appropriate
1829        amount of memory to handle that.  */
1830     loaddr = -1, hiaddr = 0;
1831     for (i = 0; i < ehdr->e_phnum; ++i) {
1832         if (phdr[i].p_type == PT_LOAD) {
1833             abi_ulong a = phdr[i].p_vaddr;
1834             if (a < loaddr) {
1835                 loaddr = a;
1836             }
1837             a += phdr[i].p_memsz;
1838             if (a > hiaddr) {
1839                 hiaddr = a;
1840             }
1841 #ifdef CONFIG_USE_FDPIC
1842             ++info->nsegs;
1843 #endif
1844         }
1845     }
1846 
1847     load_addr = loaddr;
1848     if (ehdr->e_type == ET_DYN) {
1849         /* The image indicates that it can be loaded anywhere.  Find a
1850            location that can hold the memory space required.  If the
1851            image is pre-linked, LOADDR will be non-zero.  Since we do
1852            not supply MAP_FIXED here we'll use that address if and
1853            only if it remains available.  */
1854         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1855                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1856                                 -1, 0);
1857         if (load_addr == -1) {
1858             goto exit_perror;
1859         }
1860     } else if (pinterp_name != NULL) {
1861         /* This is the main executable.  Make sure that the low
1862            address does not conflict with MMAP_MIN_ADDR or the
1863            QEMU application itself.  */
1864         probe_guest_base(image_name, loaddr, hiaddr);
1865     }
1866     load_bias = load_addr - loaddr;
1867 
1868 #ifdef CONFIG_USE_FDPIC
1869     {
1870         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1871             g_malloc(sizeof(*loadsegs) * info->nsegs);
1872 
1873         for (i = 0; i < ehdr->e_phnum; ++i) {
1874             switch (phdr[i].p_type) {
1875             case PT_DYNAMIC:
1876                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1877                 break;
1878             case PT_LOAD:
1879                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1880                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1881                 loadsegs->p_memsz = phdr[i].p_memsz;
1882                 ++loadsegs;
1883                 break;
1884             }
1885         }
1886     }
1887 #endif
1888 
1889     info->load_bias = load_bias;
1890     info->load_addr = load_addr;
1891     info->entry = ehdr->e_entry + load_bias;
1892     info->start_code = -1;
1893     info->end_code = 0;
1894     info->start_data = -1;
1895     info->end_data = 0;
1896     info->brk = 0;
1897     info->elf_flags = ehdr->e_flags;
1898 
1899     for (i = 0; i < ehdr->e_phnum; i++) {
1900         struct elf_phdr *eppnt = phdr + i;
1901         if (eppnt->p_type == PT_LOAD) {
1902             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1903             int elf_prot = 0;
1904 
1905             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1906             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1907             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1908 
1909             vaddr = load_bias + eppnt->p_vaddr;
1910             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1911             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1912 
1913             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1914                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1915                                 image_fd, eppnt->p_offset - vaddr_po);
1916             if (error == -1) {
1917                 goto exit_perror;
1918             }
1919 
1920             vaddr_ef = vaddr + eppnt->p_filesz;
1921             vaddr_em = vaddr + eppnt->p_memsz;
1922 
1923             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1924             if (vaddr_ef < vaddr_em) {
1925                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1926             }
1927 
1928             /* Find the full program boundaries.  */
1929             if (elf_prot & PROT_EXEC) {
1930                 if (vaddr < info->start_code) {
1931                     info->start_code = vaddr;
1932                 }
1933                 if (vaddr_ef > info->end_code) {
1934                     info->end_code = vaddr_ef;
1935                 }
1936             }
1937             if (elf_prot & PROT_WRITE) {
1938                 if (vaddr < info->start_data) {
1939                     info->start_data = vaddr;
1940                 }
1941                 if (vaddr_ef > info->end_data) {
1942                     info->end_data = vaddr_ef;
1943                 }
1944                 if (vaddr_em > info->brk) {
1945                     info->brk = vaddr_em;
1946                 }
1947             }
1948         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1949             char *interp_name;
1950 
1951             if (*pinterp_name) {
1952                 errmsg = "Multiple PT_INTERP entries";
1953                 goto exit_errmsg;
1954             }
1955             interp_name = malloc(eppnt->p_filesz);
1956             if (!interp_name) {
1957                 goto exit_perror;
1958             }
1959 
1960             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1961                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1962                        eppnt->p_filesz);
1963             } else {
1964                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1965                                eppnt->p_offset);
1966                 if (retval != eppnt->p_filesz) {
1967                     goto exit_perror;
1968                 }
1969             }
1970             if (interp_name[eppnt->p_filesz - 1] != 0) {
1971                 errmsg = "Invalid PT_INTERP entry";
1972                 goto exit_errmsg;
1973             }
1974             *pinterp_name = interp_name;
1975         }
1976     }
1977 
1978     if (info->end_data == 0) {
1979         info->start_data = info->end_code;
1980         info->end_data = info->end_code;
1981         info->brk = info->end_code;
1982     }
1983 
1984     if (qemu_log_enabled()) {
1985         load_symbols(ehdr, image_fd, load_bias);
1986     }
1987 
1988     close(image_fd);
1989     return;
1990 
1991  exit_read:
1992     if (retval >= 0) {
1993         errmsg = "Incomplete read of file header";
1994         goto exit_errmsg;
1995     }
1996  exit_perror:
1997     errmsg = strerror(errno);
1998  exit_errmsg:
1999     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2000     exit(-1);
2001 }
2002 
2003 static void load_elf_interp(const char *filename, struct image_info *info,
2004                             char bprm_buf[BPRM_BUF_SIZE])
2005 {
2006     int fd, retval;
2007 
2008     fd = open(path(filename), O_RDONLY);
2009     if (fd < 0) {
2010         goto exit_perror;
2011     }
2012 
2013     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2014     if (retval < 0) {
2015         goto exit_perror;
2016     }
2017     if (retval < BPRM_BUF_SIZE) {
2018         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2019     }
2020 
2021     load_elf_image(filename, fd, info, NULL, bprm_buf);
2022     return;
2023 
2024  exit_perror:
2025     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2026     exit(-1);
2027 }
2028 
2029 static int symfind(const void *s0, const void *s1)
2030 {
2031     target_ulong addr = *(target_ulong *)s0;
2032     struct elf_sym *sym = (struct elf_sym *)s1;
2033     int result = 0;
2034     if (addr < sym->st_value) {
2035         result = -1;
2036     } else if (addr >= sym->st_value + sym->st_size) {
2037         result = 1;
2038     }
2039     return result;
2040 }
2041 
2042 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2043 {
2044 #if ELF_CLASS == ELFCLASS32
2045     struct elf_sym *syms = s->disas_symtab.elf32;
2046 #else
2047     struct elf_sym *syms = s->disas_symtab.elf64;
2048 #endif
2049 
2050     // binary search
2051     struct elf_sym *sym;
2052 
2053     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2054     if (sym != NULL) {
2055         return s->disas_strtab + sym->st_name;
2056     }
2057 
2058     return "";
2059 }
2060 
2061 /* FIXME: This should use elf_ops.h  */
2062 static int symcmp(const void *s0, const void *s1)
2063 {
2064     struct elf_sym *sym0 = (struct elf_sym *)s0;
2065     struct elf_sym *sym1 = (struct elf_sym *)s1;
2066     return (sym0->st_value < sym1->st_value)
2067         ? -1
2068         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2069 }
2070 
2071 /* Best attempt to load symbols from this ELF object. */
2072 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2073 {
2074     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2075     struct elf_shdr *shdr;
2076     char *strings = NULL;
2077     struct syminfo *s = NULL;
2078     struct elf_sym *new_syms, *syms = NULL;
2079 
2080     shnum = hdr->e_shnum;
2081     i = shnum * sizeof(struct elf_shdr);
2082     shdr = (struct elf_shdr *)alloca(i);
2083     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2084         return;
2085     }
2086 
2087     bswap_shdr(shdr, shnum);
2088     for (i = 0; i < shnum; ++i) {
2089         if (shdr[i].sh_type == SHT_SYMTAB) {
2090             sym_idx = i;
2091             str_idx = shdr[i].sh_link;
2092             goto found;
2093         }
2094     }
2095 
2096     /* There will be no symbol table if the file was stripped.  */
2097     return;
2098 
2099  found:
2100     /* Now know where the strtab and symtab are.  Snarf them.  */
2101     s = malloc(sizeof(*s));
2102     if (!s) {
2103         goto give_up;
2104     }
2105 
2106     i = shdr[str_idx].sh_size;
2107     s->disas_strtab = strings = malloc(i);
2108     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2109         goto give_up;
2110     }
2111 
2112     i = shdr[sym_idx].sh_size;
2113     syms = malloc(i);
2114     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2115         goto give_up;
2116     }
2117 
2118     nsyms = i / sizeof(struct elf_sym);
2119     for (i = 0; i < nsyms; ) {
2120         bswap_sym(syms + i);
2121         /* Throw away entries which we do not need.  */
2122         if (syms[i].st_shndx == SHN_UNDEF
2123             || syms[i].st_shndx >= SHN_LORESERVE
2124             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2125             if (i < --nsyms) {
2126                 syms[i] = syms[nsyms];
2127             }
2128         } else {
2129 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2130             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2131             syms[i].st_value &= ~(target_ulong)1;
2132 #endif
2133             syms[i].st_value += load_bias;
2134             i++;
2135         }
2136     }
2137 
2138     /* No "useful" symbol.  */
2139     if (nsyms == 0) {
2140         goto give_up;
2141     }
2142 
2143     /* Attempt to free the storage associated with the local symbols
2144        that we threw away.  Whether or not this has any effect on the
2145        memory allocation depends on the malloc implementation and how
2146        many symbols we managed to discard.  */
2147     new_syms = realloc(syms, nsyms * sizeof(*syms));
2148     if (new_syms == NULL) {
2149         goto give_up;
2150     }
2151     syms = new_syms;
2152 
2153     qsort(syms, nsyms, sizeof(*syms), symcmp);
2154 
2155     s->disas_num_syms = nsyms;
2156 #if ELF_CLASS == ELFCLASS32
2157     s->disas_symtab.elf32 = syms;
2158 #else
2159     s->disas_symtab.elf64 = syms;
2160 #endif
2161     s->lookup_symbol = lookup_symbolxx;
2162     s->next = syminfos;
2163     syminfos = s;
2164 
2165     return;
2166 
2167 give_up:
2168     free(s);
2169     free(strings);
2170     free(syms);
2171 }
2172 
2173 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2174 {
2175     struct image_info interp_info;
2176     struct elfhdr elf_ex;
2177     char *elf_interpreter = NULL;
2178 
2179     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2180     info->mmap = 0;
2181     info->rss = 0;
2182 
2183     load_elf_image(bprm->filename, bprm->fd, info,
2184                    &elf_interpreter, bprm->buf);
2185 
2186     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2187        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2188        when we load the interpreter.  */
2189     elf_ex = *(struct elfhdr *)bprm->buf;
2190 
2191     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2192     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2193     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2194     if (!bprm->p) {
2195         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2196         exit(-1);
2197     }
2198 
2199     /* Do this so that we can load the interpreter, if need be.  We will
2200        change some of these later */
2201     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2202 
2203     if (elf_interpreter) {
2204         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2205 
2206         /* If the program interpreter is one of these two, then assume
2207            an iBCS2 image.  Otherwise assume a native linux image.  */
2208 
2209         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2210             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2211             info->personality = PER_SVR4;
2212 
2213             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2214                and some applications "depend" upon this behavior.  Since
2215                we do not have the power to recompile these, we emulate
2216                the SVr4 behavior.  Sigh.  */
2217             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2218                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2219         }
2220     }
2221 
2222     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2223                                 info, (elf_interpreter ? &interp_info : NULL));
2224     info->start_stack = bprm->p;
2225 
2226     /* If we have an interpreter, set that as the program's entry point.
2227        Copy the load_bias as well, to help PPC64 interpret the entry
2228        point as a function descriptor.  Do this after creating elf tables
2229        so that we copy the original program entry point into the AUXV.  */
2230     if (elf_interpreter) {
2231         info->load_bias = interp_info.load_bias;
2232         info->entry = interp_info.entry;
2233         free(elf_interpreter);
2234     }
2235 
2236 #ifdef USE_ELF_CORE_DUMP
2237     bprm->core_dump = &elf_core_dump;
2238 #endif
2239 
2240     return 0;
2241 }
2242 
2243 #ifdef USE_ELF_CORE_DUMP
2244 /*
2245  * Definitions to generate Intel SVR4-like core files.
2246  * These mostly have the same names as the SVR4 types with "target_elf_"
2247  * tacked on the front to prevent clashes with linux definitions,
2248  * and the typedef forms have been avoided.  This is mostly like
2249  * the SVR4 structure, but more Linuxy, with things that Linux does
2250  * not support and which gdb doesn't really use excluded.
2251  *
2252  * Fields we don't dump (their contents is zero) in linux-user qemu
2253  * are marked with XXX.
2254  *
2255  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2256  *
2257  * Porting ELF coredump for target is (quite) simple process.  First you
2258  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2259  * the target resides):
2260  *
2261  * #define USE_ELF_CORE_DUMP
2262  *
2263  * Next you define type of register set used for dumping.  ELF specification
2264  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2265  *
2266  * typedef <target_regtype> target_elf_greg_t;
2267  * #define ELF_NREG <number of registers>
2268  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2269  *
2270  * Last step is to implement target specific function that copies registers
2271  * from given cpu into just specified register set.  Prototype is:
2272  *
2273  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2274  *                                const CPUArchState *env);
2275  *
2276  * Parameters:
2277  *     regs - copy register values into here (allocated and zeroed by caller)
2278  *     env - copy registers from here
2279  *
2280  * Example for ARM target is provided in this file.
2281  */
2282 
2283 /* An ELF note in memory */
2284 struct memelfnote {
2285     const char *name;
2286     size_t     namesz;
2287     size_t     namesz_rounded;
2288     int        type;
2289     size_t     datasz;
2290     size_t     datasz_rounded;
2291     void       *data;
2292     size_t     notesz;
2293 };
2294 
2295 struct target_elf_siginfo {
2296     abi_int    si_signo; /* signal number */
2297     abi_int    si_code;  /* extra code */
2298     abi_int    si_errno; /* errno */
2299 };
2300 
2301 struct target_elf_prstatus {
2302     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2303     abi_short          pr_cursig;    /* Current signal */
2304     abi_ulong          pr_sigpend;   /* XXX */
2305     abi_ulong          pr_sighold;   /* XXX */
2306     target_pid_t       pr_pid;
2307     target_pid_t       pr_ppid;
2308     target_pid_t       pr_pgrp;
2309     target_pid_t       pr_sid;
2310     struct target_timeval pr_utime;  /* XXX User time */
2311     struct target_timeval pr_stime;  /* XXX System time */
2312     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2313     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2314     target_elf_gregset_t      pr_reg;       /* GP registers */
2315     abi_int            pr_fpvalid;   /* XXX */
2316 };
2317 
2318 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2319 
2320 struct target_elf_prpsinfo {
2321     char         pr_state;       /* numeric process state */
2322     char         pr_sname;       /* char for pr_state */
2323     char         pr_zomb;        /* zombie */
2324     char         pr_nice;        /* nice val */
2325     abi_ulong    pr_flag;        /* flags */
2326     target_uid_t pr_uid;
2327     target_gid_t pr_gid;
2328     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2329     /* Lots missing */
2330     char    pr_fname[16];           /* filename of executable */
2331     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2332 };
2333 
2334 /* Here is the structure in which status of each thread is captured. */
2335 struct elf_thread_status {
2336     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2337     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2338 #if 0
2339     elf_fpregset_t fpu;             /* NT_PRFPREG */
2340     struct task_struct *thread;
2341     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2342 #endif
2343     struct memelfnote notes[1];
2344     int num_notes;
2345 };
2346 
2347 struct elf_note_info {
2348     struct memelfnote   *notes;
2349     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2350     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2351 
2352     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2353 #if 0
2354     /*
2355      * Current version of ELF coredump doesn't support
2356      * dumping fp regs etc.
2357      */
2358     elf_fpregset_t *fpu;
2359     elf_fpxregset_t *xfpu;
2360     int thread_status_size;
2361 #endif
2362     int notes_size;
2363     int numnote;
2364 };
2365 
2366 struct vm_area_struct {
2367     abi_ulong   vma_start;  /* start vaddr of memory region */
2368     abi_ulong   vma_end;    /* end vaddr of memory region */
2369     abi_ulong   vma_flags;  /* protection etc. flags for the region */
2370     QTAILQ_ENTRY(vm_area_struct) vma_link;
2371 };
2372 
2373 struct mm_struct {
2374     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2375     int mm_count;           /* number of mappings */
2376 };
2377 
2378 static struct mm_struct *vma_init(void);
2379 static void vma_delete(struct mm_struct *);
2380 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2381                            abi_ulong, abi_ulong);
2382 static int vma_get_mapping_count(const struct mm_struct *);
2383 static struct vm_area_struct *vma_first(const struct mm_struct *);
2384 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2385 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2386 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2387                       unsigned long flags);
2388 
2389 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2390 static void fill_note(struct memelfnote *, const char *, int,
2391                       unsigned int, void *);
2392 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2393 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2394 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2395 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2396 static size_t note_size(const struct memelfnote *);
2397 static void free_note_info(struct elf_note_info *);
2398 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2399 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2400 static int core_dump_filename(const TaskState *, char *, size_t);
2401 
2402 static int dump_write(int, const void *, size_t);
2403 static int write_note(struct memelfnote *, int);
2404 static int write_note_info(struct elf_note_info *, int);
2405 
2406 #ifdef BSWAP_NEEDED
2407 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2408 {
2409     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2410     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2411     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2412     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2413     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2414     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2415     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2416     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2417     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2418     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2419     /* cpu times are not filled, so we skip them */
2420     /* regs should be in correct format already */
2421     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2422 }
2423 
2424 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2425 {
2426     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2427     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2428     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2429     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2430     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2431     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2432     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2433 }
2434 
2435 static void bswap_note(struct elf_note *en)
2436 {
2437     bswap32s(&en->n_namesz);
2438     bswap32s(&en->n_descsz);
2439     bswap32s(&en->n_type);
2440 }
2441 #else
2442 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2443 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2444 static inline void bswap_note(struct elf_note *en) { }
2445 #endif /* BSWAP_NEEDED */
2446 
2447 /*
2448  * Minimal support for linux memory regions.  These are needed
2449  * when we are finding out what memory exactly belongs to
2450  * emulated process.  No locks needed here, as long as
2451  * thread that received the signal is stopped.
2452  */
2453 
2454 static struct mm_struct *vma_init(void)
2455 {
2456     struct mm_struct *mm;
2457 
2458     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2459         return (NULL);
2460 
2461     mm->mm_count = 0;
2462     QTAILQ_INIT(&mm->mm_mmap);
2463 
2464     return (mm);
2465 }
2466 
2467 static void vma_delete(struct mm_struct *mm)
2468 {
2469     struct vm_area_struct *vma;
2470 
2471     while ((vma = vma_first(mm)) != NULL) {
2472         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2473         g_free(vma);
2474     }
2475     g_free(mm);
2476 }
2477 
2478 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2479                            abi_ulong end, abi_ulong flags)
2480 {
2481     struct vm_area_struct *vma;
2482 
2483     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2484         return (-1);
2485 
2486     vma->vma_start = start;
2487     vma->vma_end = end;
2488     vma->vma_flags = flags;
2489 
2490     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2491     mm->mm_count++;
2492 
2493     return (0);
2494 }
2495 
2496 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2497 {
2498     return (QTAILQ_FIRST(&mm->mm_mmap));
2499 }
2500 
2501 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2502 {
2503     return (QTAILQ_NEXT(vma, vma_link));
2504 }
2505 
2506 static int vma_get_mapping_count(const struct mm_struct *mm)
2507 {
2508     return (mm->mm_count);
2509 }
2510 
2511 /*
2512  * Calculate file (dump) size of given memory region.
2513  */
2514 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2515 {
2516     /* if we cannot even read the first page, skip it */
2517     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2518         return (0);
2519 
2520     /*
2521      * Usually we don't dump executable pages as they contain
2522      * non-writable code that debugger can read directly from
2523      * target library etc.  However, thread stacks are marked
2524      * also executable so we read in first page of given region
2525      * and check whether it contains elf header.  If there is
2526      * no elf header, we dump it.
2527      */
2528     if (vma->vma_flags & PROT_EXEC) {
2529         char page[TARGET_PAGE_SIZE];
2530 
2531         copy_from_user(page, vma->vma_start, sizeof (page));
2532         if ((page[EI_MAG0] == ELFMAG0) &&
2533             (page[EI_MAG1] == ELFMAG1) &&
2534             (page[EI_MAG2] == ELFMAG2) &&
2535             (page[EI_MAG3] == ELFMAG3)) {
2536             /*
2537              * Mappings are possibly from ELF binary.  Don't dump
2538              * them.
2539              */
2540             return (0);
2541         }
2542     }
2543 
2544     return (vma->vma_end - vma->vma_start);
2545 }
2546 
2547 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2548                       unsigned long flags)
2549 {
2550     struct mm_struct *mm = (struct mm_struct *)priv;
2551 
2552     vma_add_mapping(mm, start, end, flags);
2553     return (0);
2554 }
2555 
2556 static void fill_note(struct memelfnote *note, const char *name, int type,
2557                       unsigned int sz, void *data)
2558 {
2559     unsigned int namesz;
2560 
2561     namesz = strlen(name) + 1;
2562     note->name = name;
2563     note->namesz = namesz;
2564     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2565     note->type = type;
2566     note->datasz = sz;
2567     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2568 
2569     note->data = data;
2570 
2571     /*
2572      * We calculate rounded up note size here as specified by
2573      * ELF document.
2574      */
2575     note->notesz = sizeof (struct elf_note) +
2576         note->namesz_rounded + note->datasz_rounded;
2577 }
2578 
2579 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2580                             uint32_t flags)
2581 {
2582     (void) memset(elf, 0, sizeof(*elf));
2583 
2584     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2585     elf->e_ident[EI_CLASS] = ELF_CLASS;
2586     elf->e_ident[EI_DATA] = ELF_DATA;
2587     elf->e_ident[EI_VERSION] = EV_CURRENT;
2588     elf->e_ident[EI_OSABI] = ELF_OSABI;
2589 
2590     elf->e_type = ET_CORE;
2591     elf->e_machine = machine;
2592     elf->e_version = EV_CURRENT;
2593     elf->e_phoff = sizeof(struct elfhdr);
2594     elf->e_flags = flags;
2595     elf->e_ehsize = sizeof(struct elfhdr);
2596     elf->e_phentsize = sizeof(struct elf_phdr);
2597     elf->e_phnum = segs;
2598 
2599     bswap_ehdr(elf);
2600 }
2601 
2602 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2603 {
2604     phdr->p_type = PT_NOTE;
2605     phdr->p_offset = offset;
2606     phdr->p_vaddr = 0;
2607     phdr->p_paddr = 0;
2608     phdr->p_filesz = sz;
2609     phdr->p_memsz = 0;
2610     phdr->p_flags = 0;
2611     phdr->p_align = 0;
2612 
2613     bswap_phdr(phdr, 1);
2614 }
2615 
2616 static size_t note_size(const struct memelfnote *note)
2617 {
2618     return (note->notesz);
2619 }
2620 
2621 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2622                           const TaskState *ts, int signr)
2623 {
2624     (void) memset(prstatus, 0, sizeof (*prstatus));
2625     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2626     prstatus->pr_pid = ts->ts_tid;
2627     prstatus->pr_ppid = getppid();
2628     prstatus->pr_pgrp = getpgrp();
2629     prstatus->pr_sid = getsid(0);
2630 
2631     bswap_prstatus(prstatus);
2632 }
2633 
2634 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2635 {
2636     char *base_filename;
2637     unsigned int i, len;
2638 
2639     (void) memset(psinfo, 0, sizeof (*psinfo));
2640 
2641     len = ts->info->arg_end - ts->info->arg_start;
2642     if (len >= ELF_PRARGSZ)
2643         len = ELF_PRARGSZ - 1;
2644     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2645         return -EFAULT;
2646     for (i = 0; i < len; i++)
2647         if (psinfo->pr_psargs[i] == 0)
2648             psinfo->pr_psargs[i] = ' ';
2649     psinfo->pr_psargs[len] = 0;
2650 
2651     psinfo->pr_pid = getpid();
2652     psinfo->pr_ppid = getppid();
2653     psinfo->pr_pgrp = getpgrp();
2654     psinfo->pr_sid = getsid(0);
2655     psinfo->pr_uid = getuid();
2656     psinfo->pr_gid = getgid();
2657 
2658     base_filename = g_path_get_basename(ts->bprm->filename);
2659     /*
2660      * Using strncpy here is fine: at max-length,
2661      * this field is not NUL-terminated.
2662      */
2663     (void) strncpy(psinfo->pr_fname, base_filename,
2664                    sizeof(psinfo->pr_fname));
2665 
2666     g_free(base_filename);
2667     bswap_psinfo(psinfo);
2668     return (0);
2669 }
2670 
2671 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2672 {
2673     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2674     elf_addr_t orig_auxv = auxv;
2675     void *ptr;
2676     int len = ts->info->auxv_len;
2677 
2678     /*
2679      * Auxiliary vector is stored in target process stack.  It contains
2680      * {type, value} pairs that we need to dump into note.  This is not
2681      * strictly necessary but we do it here for sake of completeness.
2682      */
2683 
2684     /* read in whole auxv vector and copy it to memelfnote */
2685     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2686     if (ptr != NULL) {
2687         fill_note(note, "CORE", NT_AUXV, len, ptr);
2688         unlock_user(ptr, auxv, len);
2689     }
2690 }
2691 
2692 /*
2693  * Constructs name of coredump file.  We have following convention
2694  * for the name:
2695  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2696  *
2697  * Returns 0 in case of success, -1 otherwise (errno is set).
2698  */
2699 static int core_dump_filename(const TaskState *ts, char *buf,
2700                               size_t bufsize)
2701 {
2702     char timestamp[64];
2703     char *filename = NULL;
2704     char *base_filename = NULL;
2705     struct timeval tv;
2706     struct tm tm;
2707 
2708     assert(bufsize >= PATH_MAX);
2709 
2710     if (gettimeofday(&tv, NULL) < 0) {
2711         (void) fprintf(stderr, "unable to get current timestamp: %s",
2712                        strerror(errno));
2713         return (-1);
2714     }
2715 
2716     filename = strdup(ts->bprm->filename);
2717     base_filename = strdup(basename(filename));
2718     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2719                     localtime_r(&tv.tv_sec, &tm));
2720     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2721                     base_filename, timestamp, (int)getpid());
2722     free(base_filename);
2723     free(filename);
2724 
2725     return (0);
2726 }
2727 
2728 static int dump_write(int fd, const void *ptr, size_t size)
2729 {
2730     const char *bufp = (const char *)ptr;
2731     ssize_t bytes_written, bytes_left;
2732     struct rlimit dumpsize;
2733     off_t pos;
2734 
2735     bytes_written = 0;
2736     getrlimit(RLIMIT_CORE, &dumpsize);
2737     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2738         if (errno == ESPIPE) { /* not a seekable stream */
2739             bytes_left = size;
2740         } else {
2741             return pos;
2742         }
2743     } else {
2744         if (dumpsize.rlim_cur <= pos) {
2745             return -1;
2746         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2747             bytes_left = size;
2748         } else {
2749             size_t limit_left=dumpsize.rlim_cur - pos;
2750             bytes_left = limit_left >= size ? size : limit_left ;
2751         }
2752     }
2753 
2754     /*
2755      * In normal conditions, single write(2) should do but
2756      * in case of socket etc. this mechanism is more portable.
2757      */
2758     do {
2759         bytes_written = write(fd, bufp, bytes_left);
2760         if (bytes_written < 0) {
2761             if (errno == EINTR)
2762                 continue;
2763             return (-1);
2764         } else if (bytes_written == 0) { /* eof */
2765             return (-1);
2766         }
2767         bufp += bytes_written;
2768         bytes_left -= bytes_written;
2769     } while (bytes_left > 0);
2770 
2771     return (0);
2772 }
2773 
2774 static int write_note(struct memelfnote *men, int fd)
2775 {
2776     struct elf_note en;
2777 
2778     en.n_namesz = men->namesz;
2779     en.n_type = men->type;
2780     en.n_descsz = men->datasz;
2781 
2782     bswap_note(&en);
2783 
2784     if (dump_write(fd, &en, sizeof(en)) != 0)
2785         return (-1);
2786     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2787         return (-1);
2788     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2789         return (-1);
2790 
2791     return (0);
2792 }
2793 
2794 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2795 {
2796     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2797     TaskState *ts = (TaskState *)cpu->opaque;
2798     struct elf_thread_status *ets;
2799 
2800     ets = g_malloc0(sizeof (*ets));
2801     ets->num_notes = 1; /* only prstatus is dumped */
2802     fill_prstatus(&ets->prstatus, ts, 0);
2803     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2804     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2805               &ets->prstatus);
2806 
2807     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2808 
2809     info->notes_size += note_size(&ets->notes[0]);
2810 }
2811 
2812 static void init_note_info(struct elf_note_info *info)
2813 {
2814     /* Initialize the elf_note_info structure so that it is at
2815      * least safe to call free_note_info() on it. Must be
2816      * called before calling fill_note_info().
2817      */
2818     memset(info, 0, sizeof (*info));
2819     QTAILQ_INIT(&info->thread_list);
2820 }
2821 
2822 static int fill_note_info(struct elf_note_info *info,
2823                           long signr, const CPUArchState *env)
2824 {
2825 #define NUMNOTES 3
2826     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2827     TaskState *ts = (TaskState *)cpu->opaque;
2828     int i;
2829 
2830     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2831     if (info->notes == NULL)
2832         return (-ENOMEM);
2833     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2834     if (info->prstatus == NULL)
2835         return (-ENOMEM);
2836     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2837     if (info->prstatus == NULL)
2838         return (-ENOMEM);
2839 
2840     /*
2841      * First fill in status (and registers) of current thread
2842      * including process info & aux vector.
2843      */
2844     fill_prstatus(info->prstatus, ts, signr);
2845     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2846     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2847               sizeof (*info->prstatus), info->prstatus);
2848     fill_psinfo(info->psinfo, ts);
2849     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2850               sizeof (*info->psinfo), info->psinfo);
2851     fill_auxv_note(&info->notes[2], ts);
2852     info->numnote = 3;
2853 
2854     info->notes_size = 0;
2855     for (i = 0; i < info->numnote; i++)
2856         info->notes_size += note_size(&info->notes[i]);
2857 
2858     /* read and fill status of all threads */
2859     cpu_list_lock();
2860     CPU_FOREACH(cpu) {
2861         if (cpu == thread_cpu) {
2862             continue;
2863         }
2864         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2865     }
2866     cpu_list_unlock();
2867 
2868     return (0);
2869 }
2870 
2871 static void free_note_info(struct elf_note_info *info)
2872 {
2873     struct elf_thread_status *ets;
2874 
2875     while (!QTAILQ_EMPTY(&info->thread_list)) {
2876         ets = QTAILQ_FIRST(&info->thread_list);
2877         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2878         g_free(ets);
2879     }
2880 
2881     g_free(info->prstatus);
2882     g_free(info->psinfo);
2883     g_free(info->notes);
2884 }
2885 
2886 static int write_note_info(struct elf_note_info *info, int fd)
2887 {
2888     struct elf_thread_status *ets;
2889     int i, error = 0;
2890 
2891     /* write prstatus, psinfo and auxv for current thread */
2892     for (i = 0; i < info->numnote; i++)
2893         if ((error = write_note(&info->notes[i], fd)) != 0)
2894             return (error);
2895 
2896     /* write prstatus for each thread */
2897     for (ets = info->thread_list.tqh_first; ets != NULL;
2898          ets = ets->ets_link.tqe_next) {
2899         if ((error = write_note(&ets->notes[0], fd)) != 0)
2900             return (error);
2901     }
2902 
2903     return (0);
2904 }
2905 
2906 /*
2907  * Write out ELF coredump.
2908  *
2909  * See documentation of ELF object file format in:
2910  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2911  *
2912  * Coredump format in linux is following:
2913  *
2914  * 0   +----------------------+         \
2915  *     | ELF header           | ET_CORE  |
2916  *     +----------------------+          |
2917  *     | ELF program headers  |          |--- headers
2918  *     | - NOTE section       |          |
2919  *     | - PT_LOAD sections   |          |
2920  *     +----------------------+         /
2921  *     | NOTEs:               |
2922  *     | - NT_PRSTATUS        |
2923  *     | - NT_PRSINFO         |
2924  *     | - NT_AUXV            |
2925  *     +----------------------+ <-- aligned to target page
2926  *     | Process memory dump  |
2927  *     :                      :
2928  *     .                      .
2929  *     :                      :
2930  *     |                      |
2931  *     +----------------------+
2932  *
2933  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2934  * NT_PRSINFO  -> struct elf_prpsinfo
2935  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2936  *
2937  * Format follows System V format as close as possible.  Current
2938  * version limitations are as follows:
2939  *     - no floating point registers are dumped
2940  *
2941  * Function returns 0 in case of success, negative errno otherwise.
2942  *
2943  * TODO: make this work also during runtime: it should be
2944  * possible to force coredump from running process and then
2945  * continue processing.  For example qemu could set up SIGUSR2
2946  * handler (provided that target process haven't registered
2947  * handler for that) that does the dump when signal is received.
2948  */
2949 static int elf_core_dump(int signr, const CPUArchState *env)
2950 {
2951     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2952     const TaskState *ts = (const TaskState *)cpu->opaque;
2953     struct vm_area_struct *vma = NULL;
2954     char corefile[PATH_MAX];
2955     struct elf_note_info info;
2956     struct elfhdr elf;
2957     struct elf_phdr phdr;
2958     struct rlimit dumpsize;
2959     struct mm_struct *mm = NULL;
2960     off_t offset = 0, data_offset = 0;
2961     int segs = 0;
2962     int fd = -1;
2963 
2964     init_note_info(&info);
2965 
2966     errno = 0;
2967     getrlimit(RLIMIT_CORE, &dumpsize);
2968     if (dumpsize.rlim_cur == 0)
2969         return 0;
2970 
2971     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2972         return (-errno);
2973 
2974     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2975                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2976         return (-errno);
2977 
2978     /*
2979      * Walk through target process memory mappings and
2980      * set up structure containing this information.  After
2981      * this point vma_xxx functions can be used.
2982      */
2983     if ((mm = vma_init()) == NULL)
2984         goto out;
2985 
2986     walk_memory_regions(mm, vma_walker);
2987     segs = vma_get_mapping_count(mm);
2988 
2989     /*
2990      * Construct valid coredump ELF header.  We also
2991      * add one more segment for notes.
2992      */
2993     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2994     if (dump_write(fd, &elf, sizeof (elf)) != 0)
2995         goto out;
2996 
2997     /* fill in in-memory version of notes */
2998     if (fill_note_info(&info, signr, env) < 0)
2999         goto out;
3000 
3001     offset += sizeof (elf);                             /* elf header */
3002     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3003 
3004     /* write out notes program header */
3005     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3006 
3007     offset += info.notes_size;
3008     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3009         goto out;
3010 
3011     /*
3012      * ELF specification wants data to start at page boundary so
3013      * we align it here.
3014      */
3015     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3016 
3017     /*
3018      * Write program headers for memory regions mapped in
3019      * the target process.
3020      */
3021     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3022         (void) memset(&phdr, 0, sizeof (phdr));
3023 
3024         phdr.p_type = PT_LOAD;
3025         phdr.p_offset = offset;
3026         phdr.p_vaddr = vma->vma_start;
3027         phdr.p_paddr = 0;
3028         phdr.p_filesz = vma_dump_size(vma);
3029         offset += phdr.p_filesz;
3030         phdr.p_memsz = vma->vma_end - vma->vma_start;
3031         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3032         if (vma->vma_flags & PROT_WRITE)
3033             phdr.p_flags |= PF_W;
3034         if (vma->vma_flags & PROT_EXEC)
3035             phdr.p_flags |= PF_X;
3036         phdr.p_align = ELF_EXEC_PAGESIZE;
3037 
3038         bswap_phdr(&phdr, 1);
3039         dump_write(fd, &phdr, sizeof (phdr));
3040     }
3041 
3042     /*
3043      * Next we write notes just after program headers.  No
3044      * alignment needed here.
3045      */
3046     if (write_note_info(&info, fd) < 0)
3047         goto out;
3048 
3049     /* align data to page boundary */
3050     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3051         goto out;
3052 
3053     /*
3054      * Finally we can dump process memory into corefile as well.
3055      */
3056     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3057         abi_ulong addr;
3058         abi_ulong end;
3059 
3060         end = vma->vma_start + vma_dump_size(vma);
3061 
3062         for (addr = vma->vma_start; addr < end;
3063              addr += TARGET_PAGE_SIZE) {
3064             char page[TARGET_PAGE_SIZE];
3065             int error;
3066 
3067             /*
3068              *  Read in page from target process memory and
3069              *  write it to coredump file.
3070              */
3071             error = copy_from_user(page, addr, sizeof (page));
3072             if (error != 0) {
3073                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3074                                addr);
3075                 errno = -error;
3076                 goto out;
3077             }
3078             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3079                 goto out;
3080         }
3081     }
3082 
3083  out:
3084     free_note_info(&info);
3085     if (mm != NULL)
3086         vma_delete(mm);
3087     (void) close(fd);
3088 
3089     if (errno != 0)
3090         return (-errno);
3091     return (0);
3092 }
3093 #endif /* USE_ELF_CORE_DUMP */
3094 
3095 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3096 {
3097     init_thread(regs, infop);
3098 }
3099