xref: /openbmc/qemu/linux-user/elfload.c (revision dffacd46)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92 
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97 
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA        ELFDATA2MSB
100 #else
101 #define ELF_DATA        ELFDATA2LSB
102 #endif
103 
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong      target_elf_greg_t;
106 #define tswapreg(ptr)   tswap64(ptr)
107 #else
108 typedef abi_ulong       target_elf_greg_t;
109 #define tswapreg(ptr)   tswapal(ptr)
110 #endif
111 
112 #ifdef USE_UID16
113 typedef abi_ushort      target_uid_t;
114 typedef abi_ushort      target_gid_t;
115 #else
116 typedef abi_uint        target_uid_t;
117 typedef abi_uint        target_gid_t;
118 #endif
119 typedef abi_int         target_pid_t;
120 
121 #ifdef TARGET_I386
122 
123 #define ELF_PLATFORM get_elf_platform()
124 
125 static const char *get_elf_platform(void)
126 {
127     static char elf_platform[] = "i386";
128     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129     if (family > 6)
130         family = 6;
131     if (family >= 3)
132         elf_platform[1] = '0' + family;
133     return elf_platform;
134 }
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
148 
149 #define ELF_CLASS      ELFCLASS64
150 #define ELF_ARCH       EM_X86_64
151 
152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
153 {
154     regs->rax = 0;
155     regs->rsp = infop->start_stack;
156     regs->rip = infop->entry;
157 }
158 
159 #define ELF_NREG    27
160 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
161 
162 /*
163  * Note that ELF_NREG should be 29 as there should be place for
164  * TRAPNO and ERR "registers" as well but linux doesn't dump
165  * those.
166  *
167  * See linux kernel: arch/x86/include/asm/elf.h
168  */
169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
170 {
171     (*regs)[0] = env->regs[15];
172     (*regs)[1] = env->regs[14];
173     (*regs)[2] = env->regs[13];
174     (*regs)[3] = env->regs[12];
175     (*regs)[4] = env->regs[R_EBP];
176     (*regs)[5] = env->regs[R_EBX];
177     (*regs)[6] = env->regs[11];
178     (*regs)[7] = env->regs[10];
179     (*regs)[8] = env->regs[9];
180     (*regs)[9] = env->regs[8];
181     (*regs)[10] = env->regs[R_EAX];
182     (*regs)[11] = env->regs[R_ECX];
183     (*regs)[12] = env->regs[R_EDX];
184     (*regs)[13] = env->regs[R_ESI];
185     (*regs)[14] = env->regs[R_EDI];
186     (*regs)[15] = env->regs[R_EAX]; /* XXX */
187     (*regs)[16] = env->eip;
188     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
189     (*regs)[18] = env->eflags;
190     (*regs)[19] = env->regs[R_ESP];
191     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
192     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
193     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
194     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
195     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
196     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
198 }
199 
200 #else
201 
202 #define ELF_START_MMAP 0x80000000
203 
204 /*
205  * This is used to ensure we don't load something for the wrong architecture.
206  */
207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
208 
209 /*
210  * These are used to set parameters in the core dumps.
211  */
212 #define ELF_CLASS       ELFCLASS32
213 #define ELF_ARCH        EM_386
214 
215 static inline void init_thread(struct target_pt_regs *regs,
216                                struct image_info *infop)
217 {
218     regs->esp = infop->start_stack;
219     regs->eip = infop->entry;
220 
221     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
222        starts %edx contains a pointer to a function which might be
223        registered using `atexit'.  This provides a mean for the
224        dynamic linker to call DT_FINI functions for shared libraries
225        that have been loaded before the code runs.
226 
227        A value of 0 tells we have no such handler.  */
228     regs->edx = 0;
229 }
230 
231 #define ELF_NREG    17
232 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
233 
234 /*
235  * Note that ELF_NREG should be 19 as there should be place for
236  * TRAPNO and ERR "registers" as well but linux doesn't dump
237  * those.
238  *
239  * See linux kernel: arch/x86/include/asm/elf.h
240  */
241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
242 {
243     (*regs)[0] = env->regs[R_EBX];
244     (*regs)[1] = env->regs[R_ECX];
245     (*regs)[2] = env->regs[R_EDX];
246     (*regs)[3] = env->regs[R_ESI];
247     (*regs)[4] = env->regs[R_EDI];
248     (*regs)[5] = env->regs[R_EBP];
249     (*regs)[6] = env->regs[R_EAX];
250     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
251     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
252     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
253     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
254     (*regs)[11] = env->regs[R_EAX]; /* XXX */
255     (*regs)[12] = env->eip;
256     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
257     (*regs)[14] = env->eflags;
258     (*regs)[15] = env->regs[R_ESP];
259     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
260 }
261 #endif
262 
263 #define USE_ELF_CORE_DUMP
264 #define ELF_EXEC_PAGESIZE       4096
265 
266 #endif
267 
268 #ifdef TARGET_ARM
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define elf_check_arch(x) ((x) == ELF_MACHINE)
273 
274 #define ELF_ARCH        ELF_MACHINE
275 
276 #ifdef TARGET_AARCH64
277 #define ELF_CLASS       ELFCLASS64
278 #else
279 #define ELF_CLASS       ELFCLASS32
280 #endif
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288 #ifdef TARGET_AARCH64
289     regs->pc = infop->entry & ~0x3ULL;
290     regs->sp = stack;
291 #else
292     regs->ARM_cpsr = 0x10;
293     if (infop->entry & 1)
294         regs->ARM_cpsr |= CPSR_T;
295     regs->ARM_pc = infop->entry & 0xfffffffe;
296     regs->ARM_sp = infop->start_stack;
297     /* FIXME - what to for failure of get_user()? */
298     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
299     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
300     /* XXX: it seems that r0 is zeroed after ! */
301     regs->ARM_r0 = 0;
302     /* For uClinux PIC binaries.  */
303     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
304     regs->ARM_r10 = infop->start_data;
305 #endif
306 }
307 
308 #define ELF_NREG    18
309 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
310 
311 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
312 {
313     (*regs)[0] = tswapreg(env->regs[0]);
314     (*regs)[1] = tswapreg(env->regs[1]);
315     (*regs)[2] = tswapreg(env->regs[2]);
316     (*regs)[3] = tswapreg(env->regs[3]);
317     (*regs)[4] = tswapreg(env->regs[4]);
318     (*regs)[5] = tswapreg(env->regs[5]);
319     (*regs)[6] = tswapreg(env->regs[6]);
320     (*regs)[7] = tswapreg(env->regs[7]);
321     (*regs)[8] = tswapreg(env->regs[8]);
322     (*regs)[9] = tswapreg(env->regs[9]);
323     (*regs)[10] = tswapreg(env->regs[10]);
324     (*regs)[11] = tswapreg(env->regs[11]);
325     (*regs)[12] = tswapreg(env->regs[12]);
326     (*regs)[13] = tswapreg(env->regs[13]);
327     (*regs)[14] = tswapreg(env->regs[14]);
328     (*regs)[15] = tswapreg(env->regs[15]);
329 
330     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
331     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
332 }
333 
334 #define USE_ELF_CORE_DUMP
335 #define ELF_EXEC_PAGESIZE       4096
336 
337 enum
338 {
339     ARM_HWCAP_ARM_SWP       = 1 << 0,
340     ARM_HWCAP_ARM_HALF      = 1 << 1,
341     ARM_HWCAP_ARM_THUMB     = 1 << 2,
342     ARM_HWCAP_ARM_26BIT     = 1 << 3,
343     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
344     ARM_HWCAP_ARM_FPA       = 1 << 5,
345     ARM_HWCAP_ARM_VFP       = 1 << 6,
346     ARM_HWCAP_ARM_EDSP      = 1 << 7,
347     ARM_HWCAP_ARM_JAVA      = 1 << 8,
348     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
349     ARM_HWCAP_ARM_THUMBEE   = 1 << 10,
350     ARM_HWCAP_ARM_NEON      = 1 << 11,
351     ARM_HWCAP_ARM_VFPv3     = 1 << 12,
352     ARM_HWCAP_ARM_VFPv3D16  = 1 << 13,
353 };
354 
355 #ifndef TARGET_AARCH64
356 /* The commpage only exists for 32 bit kernels */
357 
358 #define TARGET_HAS_VALIDATE_GUEST_SPACE
359 /* Return 1 if the proposed guest space is suitable for the guest.
360  * Return 0 if the proposed guest space isn't suitable, but another
361  * address space should be tried.
362  * Return -1 if there is no way the proposed guest space can be
363  * valid regardless of the base.
364  * The guest code may leave a page mapped and populate it if the
365  * address is suitable.
366  */
367 static int validate_guest_space(unsigned long guest_base,
368                                 unsigned long guest_size)
369 {
370     unsigned long real_start, test_page_addr;
371 
372     /* We need to check that we can force a fault on access to the
373      * commpage at 0xffff0fxx
374      */
375     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 
377     /* If the commpage lies within the already allocated guest space,
378      * then there is no way we can allocate it.
379      */
380     if (test_page_addr >= guest_base
381         && test_page_addr <= (guest_base + guest_size)) {
382         return -1;
383     }
384 
385     /* Note it needs to be writeable to let us initialise it */
386     real_start = (unsigned long)
387                  mmap((void *)test_page_addr, qemu_host_page_size,
388                      PROT_READ | PROT_WRITE,
389                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 
391     /* If we can't map it then try another address */
392     if (real_start == -1ul) {
393         return 0;
394     }
395 
396     if (real_start != test_page_addr) {
397         /* OS didn't put the page where we asked - unmap and reject */
398         munmap((void *)real_start, qemu_host_page_size);
399         return 0;
400     }
401 
402     /* Leave the page mapped
403      * Populate it (mmap should have left it all 0'd)
404      */
405 
406     /* Kernel helper versions */
407     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 
409     /* Now it's populated make it RO */
410     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
411         perror("Protecting guest commpage");
412         exit(-1);
413     }
414 
415     return 1; /* All good */
416 }
417 #endif
418 
419 #define ELF_HWCAP get_elf_hwcap()
420 
421 static uint32_t get_elf_hwcap(void)
422 {
423     ARMCPU *cpu = ARM_CPU(thread_cpu);
424     uint32_t hwcaps = 0;
425 
426     hwcaps |= ARM_HWCAP_ARM_SWP;
427     hwcaps |= ARM_HWCAP_ARM_HALF;
428     hwcaps |= ARM_HWCAP_ARM_THUMB;
429     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430     hwcaps |= ARM_HWCAP_ARM_FPA;
431 
432     /* probe for the extra features */
433 #define GET_FEATURE(feat, hwcap) \
434     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
435     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440     GET_FEATURE(ARM_FEATURE_VFP_FP16, ARM_HWCAP_ARM_VFPv3D16);
441 #undef GET_FEATURE
442 
443     return hwcaps;
444 }
445 
446 #endif
447 
448 #ifdef TARGET_UNICORE32
449 
450 #define ELF_START_MMAP          0x80000000
451 
452 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
453 
454 #define ELF_CLASS               ELFCLASS32
455 #define ELF_DATA                ELFDATA2LSB
456 #define ELF_ARCH                EM_UNICORE32
457 
458 static inline void init_thread(struct target_pt_regs *regs,
459         struct image_info *infop)
460 {
461     abi_long stack = infop->start_stack;
462     memset(regs, 0, sizeof(*regs));
463     regs->UC32_REG_asr = 0x10;
464     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
465     regs->UC32_REG_sp = infop->start_stack;
466     /* FIXME - what to for failure of get_user()? */
467     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
468     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
469     /* XXX: it seems that r0 is zeroed after ! */
470     regs->UC32_REG_00 = 0;
471 }
472 
473 #define ELF_NREG    34
474 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
475 
476 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
477 {
478     (*regs)[0] = env->regs[0];
479     (*regs)[1] = env->regs[1];
480     (*regs)[2] = env->regs[2];
481     (*regs)[3] = env->regs[3];
482     (*regs)[4] = env->regs[4];
483     (*regs)[5] = env->regs[5];
484     (*regs)[6] = env->regs[6];
485     (*regs)[7] = env->regs[7];
486     (*regs)[8] = env->regs[8];
487     (*regs)[9] = env->regs[9];
488     (*regs)[10] = env->regs[10];
489     (*regs)[11] = env->regs[11];
490     (*regs)[12] = env->regs[12];
491     (*regs)[13] = env->regs[13];
492     (*regs)[14] = env->regs[14];
493     (*regs)[15] = env->regs[15];
494     (*regs)[16] = env->regs[16];
495     (*regs)[17] = env->regs[17];
496     (*regs)[18] = env->regs[18];
497     (*regs)[19] = env->regs[19];
498     (*regs)[20] = env->regs[20];
499     (*regs)[21] = env->regs[21];
500     (*regs)[22] = env->regs[22];
501     (*regs)[23] = env->regs[23];
502     (*regs)[24] = env->regs[24];
503     (*regs)[25] = env->regs[25];
504     (*regs)[26] = env->regs[26];
505     (*regs)[27] = env->regs[27];
506     (*regs)[28] = env->regs[28];
507     (*regs)[29] = env->regs[29];
508     (*regs)[30] = env->regs[30];
509     (*regs)[31] = env->regs[31];
510 
511     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
512     (*regs)[33] = env->regs[0]; /* XXX */
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE               4096
517 
518 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
519 
520 #endif
521 
522 #ifdef TARGET_SPARC
523 #ifdef TARGET_SPARC64
524 
525 #define ELF_START_MMAP 0x80000000
526 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
527                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
528 #ifndef TARGET_ABI32
529 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
530 #else
531 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
532 #endif
533 
534 #define ELF_CLASS   ELFCLASS64
535 #define ELF_ARCH    EM_SPARCV9
536 
537 #define STACK_BIAS              2047
538 
539 static inline void init_thread(struct target_pt_regs *regs,
540                                struct image_info *infop)
541 {
542 #ifndef TARGET_ABI32
543     regs->tstate = 0;
544 #endif
545     regs->pc = infop->entry;
546     regs->npc = regs->pc + 4;
547     regs->y = 0;
548 #ifdef TARGET_ABI32
549     regs->u_regs[14] = infop->start_stack - 16 * 4;
550 #else
551     if (personality(infop->personality) == PER_LINUX32)
552         regs->u_regs[14] = infop->start_stack - 16 * 4;
553     else
554         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
555 #endif
556 }
557 
558 #else
559 #define ELF_START_MMAP 0x80000000
560 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
561                     | HWCAP_SPARC_MULDIV)
562 #define elf_check_arch(x) ( (x) == EM_SPARC )
563 
564 #define ELF_CLASS   ELFCLASS32
565 #define ELF_ARCH    EM_SPARC
566 
567 static inline void init_thread(struct target_pt_regs *regs,
568                                struct image_info *infop)
569 {
570     regs->psr = 0;
571     regs->pc = infop->entry;
572     regs->npc = regs->pc + 4;
573     regs->y = 0;
574     regs->u_regs[14] = infop->start_stack - 16 * 4;
575 }
576 
577 #endif
578 #endif
579 
580 #ifdef TARGET_PPC
581 
582 #define ELF_START_MMAP 0x80000000
583 
584 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
585 
586 #define elf_check_arch(x) ( (x) == EM_PPC64 )
587 
588 #define ELF_CLASS       ELFCLASS64
589 
590 #else
591 
592 #define elf_check_arch(x) ( (x) == EM_PPC )
593 
594 #define ELF_CLASS       ELFCLASS32
595 
596 #endif
597 
598 #define ELF_ARCH        EM_PPC
599 
600 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
601    See arch/powerpc/include/asm/cputable.h.  */
602 enum {
603     QEMU_PPC_FEATURE_32 = 0x80000000,
604     QEMU_PPC_FEATURE_64 = 0x40000000,
605     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
606     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
607     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
608     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
609     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
610     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
611     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
612     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
613     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
614     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
615     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
616     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
617     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
618     QEMU_PPC_FEATURE_CELL = 0x00010000,
619     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
620     QEMU_PPC_FEATURE_SMT = 0x00004000,
621     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
622     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
623     QEMU_PPC_FEATURE_PA6T = 0x00000800,
624     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
625     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
626     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
627     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
628     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
629 
630     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
631     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
632 };
633 
634 #define ELF_HWCAP get_elf_hwcap()
635 
636 static uint32_t get_elf_hwcap(void)
637 {
638     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
639     uint32_t features = 0;
640 
641     /* We don't have to be terribly complete here; the high points are
642        Altivec/FP/SPE support.  Anything else is just a bonus.  */
643 #define GET_FEATURE(flag, feature)                                      \
644     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
645     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
646     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
647     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
648     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
649     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
650     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
651     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
652     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
653 #undef GET_FEATURE
654 
655     return features;
656 }
657 
658 /*
659  * The requirements here are:
660  * - keep the final alignment of sp (sp & 0xf)
661  * - make sure the 32-bit value at the first 16 byte aligned position of
662  *   AUXV is greater than 16 for glibc compatibility.
663  *   AT_IGNOREPPC is used for that.
664  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
665  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
666  */
667 #define DLINFO_ARCH_ITEMS       5
668 #define ARCH_DLINFO                                     \
669     do {                                                \
670         NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20);              \
671         NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20);              \
672         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
673         /*                                              \
674          * Now handle glibc compatibility.              \
675          */                                             \
676         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
677         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
678     } while (0)
679 
680 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
681 {
682     _regs->gpr[1] = infop->start_stack;
683 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
684     _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_bias;
685     infop->entry = ldq_raw(infop->entry) + infop->load_bias;
686 #endif
687     _regs->nip = infop->entry;
688 }
689 
690 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
691 #define ELF_NREG 48
692 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
693 
694 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
695 {
696     int i;
697     target_ulong ccr = 0;
698 
699     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
700         (*regs)[i] = tswapreg(env->gpr[i]);
701     }
702 
703     (*regs)[32] = tswapreg(env->nip);
704     (*regs)[33] = tswapreg(env->msr);
705     (*regs)[35] = tswapreg(env->ctr);
706     (*regs)[36] = tswapreg(env->lr);
707     (*regs)[37] = tswapreg(env->xer);
708 
709     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
710         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
711     }
712     (*regs)[38] = tswapreg(ccr);
713 }
714 
715 #define USE_ELF_CORE_DUMP
716 #define ELF_EXEC_PAGESIZE       4096
717 
718 #endif
719 
720 #ifdef TARGET_MIPS
721 
722 #define ELF_START_MMAP 0x80000000
723 
724 #define elf_check_arch(x) ( (x) == EM_MIPS )
725 
726 #ifdef TARGET_MIPS64
727 #define ELF_CLASS   ELFCLASS64
728 #else
729 #define ELF_CLASS   ELFCLASS32
730 #endif
731 #define ELF_ARCH    EM_MIPS
732 
733 static inline void init_thread(struct target_pt_regs *regs,
734                                struct image_info *infop)
735 {
736     regs->cp0_status = 2 << CP0St_KSU;
737     regs->cp0_epc = infop->entry;
738     regs->regs[29] = infop->start_stack;
739 }
740 
741 /* See linux kernel: arch/mips/include/asm/elf.h.  */
742 #define ELF_NREG 45
743 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
744 
745 /* See linux kernel: arch/mips/include/asm/reg.h.  */
746 enum {
747 #ifdef TARGET_MIPS64
748     TARGET_EF_R0 = 0,
749 #else
750     TARGET_EF_R0 = 6,
751 #endif
752     TARGET_EF_R26 = TARGET_EF_R0 + 26,
753     TARGET_EF_R27 = TARGET_EF_R0 + 27,
754     TARGET_EF_LO = TARGET_EF_R0 + 32,
755     TARGET_EF_HI = TARGET_EF_R0 + 33,
756     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
757     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
758     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
759     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
760 };
761 
762 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
763 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
764 {
765     int i;
766 
767     for (i = 0; i < TARGET_EF_R0; i++) {
768         (*regs)[i] = 0;
769     }
770     (*regs)[TARGET_EF_R0] = 0;
771 
772     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
773         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
774     }
775 
776     (*regs)[TARGET_EF_R26] = 0;
777     (*regs)[TARGET_EF_R27] = 0;
778     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
779     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
780     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
781     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
782     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
783     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
784 }
785 
786 #define USE_ELF_CORE_DUMP
787 #define ELF_EXEC_PAGESIZE        4096
788 
789 #endif /* TARGET_MIPS */
790 
791 #ifdef TARGET_MICROBLAZE
792 
793 #define ELF_START_MMAP 0x80000000
794 
795 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
796 
797 #define ELF_CLASS   ELFCLASS32
798 #define ELF_ARCH    EM_MICROBLAZE
799 
800 static inline void init_thread(struct target_pt_regs *regs,
801                                struct image_info *infop)
802 {
803     regs->pc = infop->entry;
804     regs->r1 = infop->start_stack;
805 
806 }
807 
808 #define ELF_EXEC_PAGESIZE        4096
809 
810 #define USE_ELF_CORE_DUMP
811 #define ELF_NREG 38
812 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
813 
814 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
815 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
816 {
817     int i, pos = 0;
818 
819     for (i = 0; i < 32; i++) {
820         (*regs)[pos++] = tswapreg(env->regs[i]);
821     }
822 
823     for (i = 0; i < 6; i++) {
824         (*regs)[pos++] = tswapreg(env->sregs[i]);
825     }
826 }
827 
828 #endif /* TARGET_MICROBLAZE */
829 
830 #ifdef TARGET_OPENRISC
831 
832 #define ELF_START_MMAP 0x08000000
833 
834 #define elf_check_arch(x) ((x) == EM_OPENRISC)
835 
836 #define ELF_ARCH EM_OPENRISC
837 #define ELF_CLASS ELFCLASS32
838 #define ELF_DATA  ELFDATA2MSB
839 
840 static inline void init_thread(struct target_pt_regs *regs,
841                                struct image_info *infop)
842 {
843     regs->pc = infop->entry;
844     regs->gpr[1] = infop->start_stack;
845 }
846 
847 #define USE_ELF_CORE_DUMP
848 #define ELF_EXEC_PAGESIZE 8192
849 
850 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
851 #define ELF_NREG 34 /* gprs and pc, sr */
852 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
853 
854 static void elf_core_copy_regs(target_elf_gregset_t *regs,
855                                const CPUOpenRISCState *env)
856 {
857     int i;
858 
859     for (i = 0; i < 32; i++) {
860         (*regs)[i] = tswapreg(env->gpr[i]);
861     }
862 
863     (*regs)[32] = tswapreg(env->pc);
864     (*regs)[33] = tswapreg(env->sr);
865 }
866 #define ELF_HWCAP 0
867 #define ELF_PLATFORM NULL
868 
869 #endif /* TARGET_OPENRISC */
870 
871 #ifdef TARGET_SH4
872 
873 #define ELF_START_MMAP 0x80000000
874 
875 #define elf_check_arch(x) ( (x) == EM_SH )
876 
877 #define ELF_CLASS ELFCLASS32
878 #define ELF_ARCH  EM_SH
879 
880 static inline void init_thread(struct target_pt_regs *regs,
881                                struct image_info *infop)
882 {
883     /* Check other registers XXXXX */
884     regs->pc = infop->entry;
885     regs->regs[15] = infop->start_stack;
886 }
887 
888 /* See linux kernel: arch/sh/include/asm/elf.h.  */
889 #define ELF_NREG 23
890 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
891 
892 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
893 enum {
894     TARGET_REG_PC = 16,
895     TARGET_REG_PR = 17,
896     TARGET_REG_SR = 18,
897     TARGET_REG_GBR = 19,
898     TARGET_REG_MACH = 20,
899     TARGET_REG_MACL = 21,
900     TARGET_REG_SYSCALL = 22
901 };
902 
903 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
904                                       const CPUSH4State *env)
905 {
906     int i;
907 
908     for (i = 0; i < 16; i++) {
909         (*regs[i]) = tswapreg(env->gregs[i]);
910     }
911 
912     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
913     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
914     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
915     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
916     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
917     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
918     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
919 }
920 
921 #define USE_ELF_CORE_DUMP
922 #define ELF_EXEC_PAGESIZE        4096
923 
924 #endif
925 
926 #ifdef TARGET_CRIS
927 
928 #define ELF_START_MMAP 0x80000000
929 
930 #define elf_check_arch(x) ( (x) == EM_CRIS )
931 
932 #define ELF_CLASS ELFCLASS32
933 #define ELF_ARCH  EM_CRIS
934 
935 static inline void init_thread(struct target_pt_regs *regs,
936                                struct image_info *infop)
937 {
938     regs->erp = infop->entry;
939 }
940 
941 #define ELF_EXEC_PAGESIZE        8192
942 
943 #endif
944 
945 #ifdef TARGET_M68K
946 
947 #define ELF_START_MMAP 0x80000000
948 
949 #define elf_check_arch(x) ( (x) == EM_68K )
950 
951 #define ELF_CLASS       ELFCLASS32
952 #define ELF_ARCH        EM_68K
953 
954 /* ??? Does this need to do anything?
955    #define ELF_PLAT_INIT(_r) */
956 
957 static inline void init_thread(struct target_pt_regs *regs,
958                                struct image_info *infop)
959 {
960     regs->usp = infop->start_stack;
961     regs->sr = 0;
962     regs->pc = infop->entry;
963 }
964 
965 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
966 #define ELF_NREG 20
967 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
968 
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
970 {
971     (*regs)[0] = tswapreg(env->dregs[1]);
972     (*regs)[1] = tswapreg(env->dregs[2]);
973     (*regs)[2] = tswapreg(env->dregs[3]);
974     (*regs)[3] = tswapreg(env->dregs[4]);
975     (*regs)[4] = tswapreg(env->dregs[5]);
976     (*regs)[5] = tswapreg(env->dregs[6]);
977     (*regs)[6] = tswapreg(env->dregs[7]);
978     (*regs)[7] = tswapreg(env->aregs[0]);
979     (*regs)[8] = tswapreg(env->aregs[1]);
980     (*regs)[9] = tswapreg(env->aregs[2]);
981     (*regs)[10] = tswapreg(env->aregs[3]);
982     (*regs)[11] = tswapreg(env->aregs[4]);
983     (*regs)[12] = tswapreg(env->aregs[5]);
984     (*regs)[13] = tswapreg(env->aregs[6]);
985     (*regs)[14] = tswapreg(env->dregs[0]);
986     (*regs)[15] = tswapreg(env->aregs[7]);
987     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
988     (*regs)[17] = tswapreg(env->sr);
989     (*regs)[18] = tswapreg(env->pc);
990     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
991 }
992 
993 #define USE_ELF_CORE_DUMP
994 #define ELF_EXEC_PAGESIZE       8192
995 
996 #endif
997 
998 #ifdef TARGET_ALPHA
999 
1000 #define ELF_START_MMAP (0x30000000000ULL)
1001 
1002 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1003 
1004 #define ELF_CLASS      ELFCLASS64
1005 #define ELF_ARCH       EM_ALPHA
1006 
1007 static inline void init_thread(struct target_pt_regs *regs,
1008                                struct image_info *infop)
1009 {
1010     regs->pc = infop->entry;
1011     regs->ps = 8;
1012     regs->usp = infop->start_stack;
1013 }
1014 
1015 #define ELF_EXEC_PAGESIZE        8192
1016 
1017 #endif /* TARGET_ALPHA */
1018 
1019 #ifdef TARGET_S390X
1020 
1021 #define ELF_START_MMAP (0x20000000000ULL)
1022 
1023 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1024 
1025 #define ELF_CLASS	ELFCLASS64
1026 #define ELF_DATA	ELFDATA2MSB
1027 #define ELF_ARCH	EM_S390
1028 
1029 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1030 {
1031     regs->psw.addr = infop->entry;
1032     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1033     regs->gprs[15] = infop->start_stack;
1034 }
1035 
1036 #endif /* TARGET_S390X */
1037 
1038 #ifndef ELF_PLATFORM
1039 #define ELF_PLATFORM (NULL)
1040 #endif
1041 
1042 #ifndef ELF_HWCAP
1043 #define ELF_HWCAP 0
1044 #endif
1045 
1046 #ifdef TARGET_ABI32
1047 #undef ELF_CLASS
1048 #define ELF_CLASS ELFCLASS32
1049 #undef bswaptls
1050 #define bswaptls(ptr) bswap32s(ptr)
1051 #endif
1052 
1053 #include "elf.h"
1054 
1055 struct exec
1056 {
1057     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1058     unsigned int a_text;   /* length of text, in bytes */
1059     unsigned int a_data;   /* length of data, in bytes */
1060     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1061     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1062     unsigned int a_entry;  /* start address */
1063     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1064     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1065 };
1066 
1067 
1068 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1069 #define OMAGIC 0407
1070 #define NMAGIC 0410
1071 #define ZMAGIC 0413
1072 #define QMAGIC 0314
1073 
1074 /* Necessary parameters */
1075 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1076 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
1077 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1078 
1079 #define DLINFO_ITEMS 14
1080 
1081 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1082 {
1083     memcpy(to, from, n);
1084 }
1085 
1086 #ifdef BSWAP_NEEDED
1087 static void bswap_ehdr(struct elfhdr *ehdr)
1088 {
1089     bswap16s(&ehdr->e_type);            /* Object file type */
1090     bswap16s(&ehdr->e_machine);         /* Architecture */
1091     bswap32s(&ehdr->e_version);         /* Object file version */
1092     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1093     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1094     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1095     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1096     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1097     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1098     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1099     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1100     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1101     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1102 }
1103 
1104 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1105 {
1106     int i;
1107     for (i = 0; i < phnum; ++i, ++phdr) {
1108         bswap32s(&phdr->p_type);        /* Segment type */
1109         bswap32s(&phdr->p_flags);       /* Segment flags */
1110         bswaptls(&phdr->p_offset);      /* Segment file offset */
1111         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1112         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1113         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1114         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1115         bswaptls(&phdr->p_align);       /* Segment alignment */
1116     }
1117 }
1118 
1119 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1120 {
1121     int i;
1122     for (i = 0; i < shnum; ++i, ++shdr) {
1123         bswap32s(&shdr->sh_name);
1124         bswap32s(&shdr->sh_type);
1125         bswaptls(&shdr->sh_flags);
1126         bswaptls(&shdr->sh_addr);
1127         bswaptls(&shdr->sh_offset);
1128         bswaptls(&shdr->sh_size);
1129         bswap32s(&shdr->sh_link);
1130         bswap32s(&shdr->sh_info);
1131         bswaptls(&shdr->sh_addralign);
1132         bswaptls(&shdr->sh_entsize);
1133     }
1134 }
1135 
1136 static void bswap_sym(struct elf_sym *sym)
1137 {
1138     bswap32s(&sym->st_name);
1139     bswaptls(&sym->st_value);
1140     bswaptls(&sym->st_size);
1141     bswap16s(&sym->st_shndx);
1142 }
1143 #else
1144 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1145 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1146 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1147 static inline void bswap_sym(struct elf_sym *sym) { }
1148 #endif
1149 
1150 #ifdef USE_ELF_CORE_DUMP
1151 static int elf_core_dump(int, const CPUArchState *);
1152 #endif /* USE_ELF_CORE_DUMP */
1153 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1154 
1155 /* Verify the portions of EHDR within E_IDENT for the target.
1156    This can be performed before bswapping the entire header.  */
1157 static bool elf_check_ident(struct elfhdr *ehdr)
1158 {
1159     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1160             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1161             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1162             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1163             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1164             && ehdr->e_ident[EI_DATA] == ELF_DATA
1165             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1166 }
1167 
1168 /* Verify the portions of EHDR outside of E_IDENT for the target.
1169    This has to wait until after bswapping the header.  */
1170 static bool elf_check_ehdr(struct elfhdr *ehdr)
1171 {
1172     return (elf_check_arch(ehdr->e_machine)
1173             && ehdr->e_ehsize == sizeof(struct elfhdr)
1174             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1175             && ehdr->e_shentsize == sizeof(struct elf_shdr)
1176             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1177 }
1178 
1179 /*
1180  * 'copy_elf_strings()' copies argument/envelope strings from user
1181  * memory to free pages in kernel mem. These are in a format ready
1182  * to be put directly into the top of new user memory.
1183  *
1184  */
1185 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1186                                   abi_ulong p)
1187 {
1188     char *tmp, *tmp1, *pag = NULL;
1189     int len, offset = 0;
1190 
1191     if (!p) {
1192         return 0;       /* bullet-proofing */
1193     }
1194     while (argc-- > 0) {
1195         tmp = argv[argc];
1196         if (!tmp) {
1197             fprintf(stderr, "VFS: argc is wrong");
1198             exit(-1);
1199         }
1200         tmp1 = tmp;
1201         while (*tmp++);
1202         len = tmp - tmp1;
1203         if (p < len) {  /* this shouldn't happen - 128kB */
1204             return 0;
1205         }
1206         while (len) {
1207             --p; --tmp; --len;
1208             if (--offset < 0) {
1209                 offset = p % TARGET_PAGE_SIZE;
1210                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1211                 if (!pag) {
1212                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1213                     page[p/TARGET_PAGE_SIZE] = pag;
1214                     if (!pag)
1215                         return 0;
1216                 }
1217             }
1218             if (len == 0 || offset == 0) {
1219                 *(pag + offset) = *tmp;
1220             }
1221             else {
1222                 int bytes_to_copy = (len > offset) ? offset : len;
1223                 tmp -= bytes_to_copy;
1224                 p -= bytes_to_copy;
1225                 offset -= bytes_to_copy;
1226                 len -= bytes_to_copy;
1227                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1228             }
1229         }
1230     }
1231     return p;
1232 }
1233 
1234 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1235                                  struct image_info *info)
1236 {
1237     abi_ulong stack_base, size, error, guard;
1238     int i;
1239 
1240     /* Create enough stack to hold everything.  If we don't use
1241        it for args, we'll use it for something else.  */
1242     size = guest_stack_size;
1243     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1244         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1245     }
1246     guard = TARGET_PAGE_SIZE;
1247     if (guard < qemu_real_host_page_size) {
1248         guard = qemu_real_host_page_size;
1249     }
1250 
1251     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1252                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1253     if (error == -1) {
1254         perror("mmap stack");
1255         exit(-1);
1256     }
1257 
1258     /* We reserve one extra page at the top of the stack as guard.  */
1259     target_mprotect(error, guard, PROT_NONE);
1260 
1261     info->stack_limit = error + guard;
1262     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1263     p += stack_base;
1264 
1265     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1266         if (bprm->page[i]) {
1267             info->rss++;
1268             /* FIXME - check return value of memcpy_to_target() for failure */
1269             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1270             g_free(bprm->page[i]);
1271         }
1272         stack_base += TARGET_PAGE_SIZE;
1273     }
1274     return p;
1275 }
1276 
1277 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1278    after the data section (i.e. bss).  */
1279 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1280 {
1281     uintptr_t host_start, host_map_start, host_end;
1282 
1283     last_bss = TARGET_PAGE_ALIGN(last_bss);
1284 
1285     /* ??? There is confusion between qemu_real_host_page_size and
1286        qemu_host_page_size here and elsewhere in target_mmap, which
1287        may lead to the end of the data section mapping from the file
1288        not being mapped.  At least there was an explicit test and
1289        comment for that here, suggesting that "the file size must
1290        be known".  The comment probably pre-dates the introduction
1291        of the fstat system call in target_mmap which does in fact
1292        find out the size.  What isn't clear is if the workaround
1293        here is still actually needed.  For now, continue with it,
1294        but merge it with the "normal" mmap that would allocate the bss.  */
1295 
1296     host_start = (uintptr_t) g2h(elf_bss);
1297     host_end = (uintptr_t) g2h(last_bss);
1298     host_map_start = (host_start + qemu_real_host_page_size - 1);
1299     host_map_start &= -qemu_real_host_page_size;
1300 
1301     if (host_map_start < host_end) {
1302         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1303                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1304         if (p == MAP_FAILED) {
1305             perror("cannot mmap brk");
1306             exit(-1);
1307         }
1308 
1309         /* Since we didn't use target_mmap, make sure to record
1310            the validity of the pages with qemu.  */
1311         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1312     }
1313 
1314     if (host_start < host_map_start) {
1315         memset((void *)host_start, 0, host_map_start - host_start);
1316     }
1317 }
1318 
1319 #ifdef CONFIG_USE_FDPIC
1320 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1321 {
1322     uint16_t n;
1323     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1324 
1325     /* elf32_fdpic_loadseg */
1326     n = info->nsegs;
1327     while (n--) {
1328         sp -= 12;
1329         put_user_u32(loadsegs[n].addr, sp+0);
1330         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1331         put_user_u32(loadsegs[n].p_memsz, sp+8);
1332     }
1333 
1334     /* elf32_fdpic_loadmap */
1335     sp -= 4;
1336     put_user_u16(0, sp+0); /* version */
1337     put_user_u16(info->nsegs, sp+2); /* nsegs */
1338 
1339     info->personality = PER_LINUX_FDPIC;
1340     info->loadmap_addr = sp;
1341 
1342     return sp;
1343 }
1344 #endif
1345 
1346 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1347                                    struct elfhdr *exec,
1348                                    struct image_info *info,
1349                                    struct image_info *interp_info)
1350 {
1351     abi_ulong sp;
1352     abi_ulong sp_auxv;
1353     int size;
1354     int i;
1355     abi_ulong u_rand_bytes;
1356     uint8_t k_rand_bytes[16];
1357     abi_ulong u_platform;
1358     const char *k_platform;
1359     const int n = sizeof(elf_addr_t);
1360 
1361     sp = p;
1362 
1363 #ifdef CONFIG_USE_FDPIC
1364     /* Needs to be before we load the env/argc/... */
1365     if (elf_is_fdpic(exec)) {
1366         /* Need 4 byte alignment for these structs */
1367         sp &= ~3;
1368         sp = loader_build_fdpic_loadmap(info, sp);
1369         info->other_info = interp_info;
1370         if (interp_info) {
1371             interp_info->other_info = info;
1372             sp = loader_build_fdpic_loadmap(interp_info, sp);
1373         }
1374     }
1375 #endif
1376 
1377     u_platform = 0;
1378     k_platform = ELF_PLATFORM;
1379     if (k_platform) {
1380         size_t len = strlen(k_platform) + 1;
1381         sp -= (len + n - 1) & ~(n - 1);
1382         u_platform = sp;
1383         /* FIXME - check return value of memcpy_to_target() for failure */
1384         memcpy_to_target(sp, k_platform, len);
1385     }
1386 
1387     /*
1388      * Generate 16 random bytes for userspace PRNG seeding (not
1389      * cryptically secure but it's not the aim of QEMU).
1390      */
1391     srand((unsigned int) time(NULL));
1392     for (i = 0; i < 16; i++) {
1393         k_rand_bytes[i] = rand();
1394     }
1395     sp -= 16;
1396     u_rand_bytes = sp;
1397     /* FIXME - check return value of memcpy_to_target() for failure */
1398     memcpy_to_target(sp, k_rand_bytes, 16);
1399 
1400     /*
1401      * Force 16 byte _final_ alignment here for generality.
1402      */
1403     sp = sp &~ (abi_ulong)15;
1404     size = (DLINFO_ITEMS + 1) * 2;
1405     if (k_platform)
1406         size += 2;
1407 #ifdef DLINFO_ARCH_ITEMS
1408     size += DLINFO_ARCH_ITEMS * 2;
1409 #endif
1410     size += envc + argc + 2;
1411     size += 1;  /* argc itself */
1412     size *= n;
1413     if (size & 15)
1414         sp -= 16 - (size & 15);
1415 
1416     /* This is correct because Linux defines
1417      * elf_addr_t as Elf32_Off / Elf64_Off
1418      */
1419 #define NEW_AUX_ENT(id, val) do {               \
1420         sp -= n; put_user_ual(val, sp);         \
1421         sp -= n; put_user_ual(id, sp);          \
1422     } while(0)
1423 
1424     sp_auxv = sp;
1425     NEW_AUX_ENT (AT_NULL, 0);
1426 
1427     /* There must be exactly DLINFO_ITEMS entries here.  */
1428     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1429     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1430     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1431     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1432     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1433     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1434     NEW_AUX_ENT(AT_ENTRY, info->entry);
1435     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1436     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1437     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1438     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1439     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1440     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1441     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1442 
1443     if (k_platform)
1444         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1445 #ifdef ARCH_DLINFO
1446     /*
1447      * ARCH_DLINFO must come last so platform specific code can enforce
1448      * special alignment requirements on the AUXV if necessary (eg. PPC).
1449      */
1450     ARCH_DLINFO;
1451 #endif
1452 #undef NEW_AUX_ENT
1453 
1454     info->saved_auxv = sp;
1455     info->auxv_len = sp_auxv - sp;
1456 
1457     sp = loader_build_argptr(envc, argc, sp, p, 0);
1458     return sp;
1459 }
1460 
1461 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1462 /* If the guest doesn't have a validation function just agree */
1463 static int validate_guest_space(unsigned long guest_base,
1464                                 unsigned long guest_size)
1465 {
1466     return 1;
1467 }
1468 #endif
1469 
1470 unsigned long init_guest_space(unsigned long host_start,
1471                                unsigned long host_size,
1472                                unsigned long guest_start,
1473                                bool fixed)
1474 {
1475     unsigned long current_start, real_start;
1476     int flags;
1477 
1478     assert(host_start || host_size);
1479 
1480     /* If just a starting address is given, then just verify that
1481      * address.  */
1482     if (host_start && !host_size) {
1483         if (validate_guest_space(host_start, host_size) == 1) {
1484             return host_start;
1485         } else {
1486             return (unsigned long)-1;
1487         }
1488     }
1489 
1490     /* Setup the initial flags and start address.  */
1491     current_start = host_start & qemu_host_page_mask;
1492     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1493     if (fixed) {
1494         flags |= MAP_FIXED;
1495     }
1496 
1497     /* Otherwise, a non-zero size region of memory needs to be mapped
1498      * and validated.  */
1499     while (1) {
1500         unsigned long real_size = host_size;
1501 
1502         /* Do not use mmap_find_vma here because that is limited to the
1503          * guest address space.  We are going to make the
1504          * guest address space fit whatever we're given.
1505          */
1506         real_start = (unsigned long)
1507             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1508         if (real_start == (unsigned long)-1) {
1509             return (unsigned long)-1;
1510         }
1511 
1512         /* Ensure the address is properly aligned.  */
1513         if (real_start & ~qemu_host_page_mask) {
1514             munmap((void *)real_start, host_size);
1515             real_size = host_size + qemu_host_page_size;
1516             real_start = (unsigned long)
1517                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1518             if (real_start == (unsigned long)-1) {
1519                 return (unsigned long)-1;
1520             }
1521             real_start = HOST_PAGE_ALIGN(real_start);
1522         }
1523 
1524         /* Check to see if the address is valid.  */
1525         if (!host_start || real_start == current_start) {
1526             int valid = validate_guest_space(real_start - guest_start,
1527                                              real_size);
1528             if (valid == 1) {
1529                 break;
1530             } else if (valid == -1) {
1531                 return (unsigned long)-1;
1532             }
1533             /* valid == 0, so try again. */
1534         }
1535 
1536         /* That address didn't work.  Unmap and try a different one.
1537          * The address the host picked because is typically right at
1538          * the top of the host address space and leaves the guest with
1539          * no usable address space.  Resort to a linear search.  We
1540          * already compensated for mmap_min_addr, so this should not
1541          * happen often.  Probably means we got unlucky and host
1542          * address space randomization put a shared library somewhere
1543          * inconvenient.
1544          */
1545         munmap((void *)real_start, host_size);
1546         current_start += qemu_host_page_size;
1547         if (host_start == current_start) {
1548             /* Theoretically possible if host doesn't have any suitably
1549              * aligned areas.  Normally the first mmap will fail.
1550              */
1551             return (unsigned long)-1;
1552         }
1553     }
1554 
1555     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1556 
1557     return real_start;
1558 }
1559 
1560 static void probe_guest_base(const char *image_name,
1561                              abi_ulong loaddr, abi_ulong hiaddr)
1562 {
1563     /* Probe for a suitable guest base address, if the user has not set
1564      * it explicitly, and set guest_base appropriately.
1565      * In case of error we will print a suitable message and exit.
1566      */
1567 #if defined(CONFIG_USE_GUEST_BASE)
1568     const char *errmsg;
1569     if (!have_guest_base && !reserved_va) {
1570         unsigned long host_start, real_start, host_size;
1571 
1572         /* Round addresses to page boundaries.  */
1573         loaddr &= qemu_host_page_mask;
1574         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1575 
1576         if (loaddr < mmap_min_addr) {
1577             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1578         } else {
1579             host_start = loaddr;
1580             if (host_start != loaddr) {
1581                 errmsg = "Address overflow loading ELF binary";
1582                 goto exit_errmsg;
1583             }
1584         }
1585         host_size = hiaddr - loaddr;
1586 
1587         /* Setup the initial guest memory space with ranges gleaned from
1588          * the ELF image that is being loaded.
1589          */
1590         real_start = init_guest_space(host_start, host_size, loaddr, false);
1591         if (real_start == (unsigned long)-1) {
1592             errmsg = "Unable to find space for application";
1593             goto exit_errmsg;
1594         }
1595         guest_base = real_start - loaddr;
1596 
1597         qemu_log("Relocating guest address space from 0x"
1598                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1599                  loaddr, real_start);
1600     }
1601     return;
1602 
1603 exit_errmsg:
1604     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1605     exit(-1);
1606 #endif
1607 }
1608 
1609 
1610 /* Load an ELF image into the address space.
1611 
1612    IMAGE_NAME is the filename of the image, to use in error messages.
1613    IMAGE_FD is the open file descriptor for the image.
1614 
1615    BPRM_BUF is a copy of the beginning of the file; this of course
1616    contains the elf file header at offset 0.  It is assumed that this
1617    buffer is sufficiently aligned to present no problems to the host
1618    in accessing data at aligned offsets within the buffer.
1619 
1620    On return: INFO values will be filled in, as necessary or available.  */
1621 
1622 static void load_elf_image(const char *image_name, int image_fd,
1623                            struct image_info *info, char **pinterp_name,
1624                            char bprm_buf[BPRM_BUF_SIZE])
1625 {
1626     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1627     struct elf_phdr *phdr;
1628     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1629     int i, retval;
1630     const char *errmsg;
1631 
1632     /* First of all, some simple consistency checks */
1633     errmsg = "Invalid ELF image for this architecture";
1634     if (!elf_check_ident(ehdr)) {
1635         goto exit_errmsg;
1636     }
1637     bswap_ehdr(ehdr);
1638     if (!elf_check_ehdr(ehdr)) {
1639         goto exit_errmsg;
1640     }
1641 
1642     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1643     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1644         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1645     } else {
1646         phdr = (struct elf_phdr *) alloca(i);
1647         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1648         if (retval != i) {
1649             goto exit_read;
1650         }
1651     }
1652     bswap_phdr(phdr, ehdr->e_phnum);
1653 
1654 #ifdef CONFIG_USE_FDPIC
1655     info->nsegs = 0;
1656     info->pt_dynamic_addr = 0;
1657 #endif
1658 
1659     /* Find the maximum size of the image and allocate an appropriate
1660        amount of memory to handle that.  */
1661     loaddr = -1, hiaddr = 0;
1662     for (i = 0; i < ehdr->e_phnum; ++i) {
1663         if (phdr[i].p_type == PT_LOAD) {
1664             abi_ulong a = phdr[i].p_vaddr;
1665             if (a < loaddr) {
1666                 loaddr = a;
1667             }
1668             a += phdr[i].p_memsz;
1669             if (a > hiaddr) {
1670                 hiaddr = a;
1671             }
1672 #ifdef CONFIG_USE_FDPIC
1673             ++info->nsegs;
1674 #endif
1675         }
1676     }
1677 
1678     load_addr = loaddr;
1679     if (ehdr->e_type == ET_DYN) {
1680         /* The image indicates that it can be loaded anywhere.  Find a
1681            location that can hold the memory space required.  If the
1682            image is pre-linked, LOADDR will be non-zero.  Since we do
1683            not supply MAP_FIXED here we'll use that address if and
1684            only if it remains available.  */
1685         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1686                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1687                                 -1, 0);
1688         if (load_addr == -1) {
1689             goto exit_perror;
1690         }
1691     } else if (pinterp_name != NULL) {
1692         /* This is the main executable.  Make sure that the low
1693            address does not conflict with MMAP_MIN_ADDR or the
1694            QEMU application itself.  */
1695         probe_guest_base(image_name, loaddr, hiaddr);
1696     }
1697     load_bias = load_addr - loaddr;
1698 
1699 #ifdef CONFIG_USE_FDPIC
1700     {
1701         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1702             g_malloc(sizeof(*loadsegs) * info->nsegs);
1703 
1704         for (i = 0; i < ehdr->e_phnum; ++i) {
1705             switch (phdr[i].p_type) {
1706             case PT_DYNAMIC:
1707                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1708                 break;
1709             case PT_LOAD:
1710                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1711                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1712                 loadsegs->p_memsz = phdr[i].p_memsz;
1713                 ++loadsegs;
1714                 break;
1715             }
1716         }
1717     }
1718 #endif
1719 
1720     info->load_bias = load_bias;
1721     info->load_addr = load_addr;
1722     info->entry = ehdr->e_entry + load_bias;
1723     info->start_code = -1;
1724     info->end_code = 0;
1725     info->start_data = -1;
1726     info->end_data = 0;
1727     info->brk = 0;
1728     info->elf_flags = ehdr->e_flags;
1729 
1730     for (i = 0; i < ehdr->e_phnum; i++) {
1731         struct elf_phdr *eppnt = phdr + i;
1732         if (eppnt->p_type == PT_LOAD) {
1733             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1734             int elf_prot = 0;
1735 
1736             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1737             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1738             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1739 
1740             vaddr = load_bias + eppnt->p_vaddr;
1741             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1742             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1743 
1744             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1745                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1746                                 image_fd, eppnt->p_offset - vaddr_po);
1747             if (error == -1) {
1748                 goto exit_perror;
1749             }
1750 
1751             vaddr_ef = vaddr + eppnt->p_filesz;
1752             vaddr_em = vaddr + eppnt->p_memsz;
1753 
1754             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1755             if (vaddr_ef < vaddr_em) {
1756                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1757             }
1758 
1759             /* Find the full program boundaries.  */
1760             if (elf_prot & PROT_EXEC) {
1761                 if (vaddr < info->start_code) {
1762                     info->start_code = vaddr;
1763                 }
1764                 if (vaddr_ef > info->end_code) {
1765                     info->end_code = vaddr_ef;
1766                 }
1767             }
1768             if (elf_prot & PROT_WRITE) {
1769                 if (vaddr < info->start_data) {
1770                     info->start_data = vaddr;
1771                 }
1772                 if (vaddr_ef > info->end_data) {
1773                     info->end_data = vaddr_ef;
1774                 }
1775                 if (vaddr_em > info->brk) {
1776                     info->brk = vaddr_em;
1777                 }
1778             }
1779         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1780             char *interp_name;
1781 
1782             if (*pinterp_name) {
1783                 errmsg = "Multiple PT_INTERP entries";
1784                 goto exit_errmsg;
1785             }
1786             interp_name = malloc(eppnt->p_filesz);
1787             if (!interp_name) {
1788                 goto exit_perror;
1789             }
1790 
1791             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1792                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1793                        eppnt->p_filesz);
1794             } else {
1795                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1796                                eppnt->p_offset);
1797                 if (retval != eppnt->p_filesz) {
1798                     goto exit_perror;
1799                 }
1800             }
1801             if (interp_name[eppnt->p_filesz - 1] != 0) {
1802                 errmsg = "Invalid PT_INTERP entry";
1803                 goto exit_errmsg;
1804             }
1805             *pinterp_name = interp_name;
1806         }
1807     }
1808 
1809     if (info->end_data == 0) {
1810         info->start_data = info->end_code;
1811         info->end_data = info->end_code;
1812         info->brk = info->end_code;
1813     }
1814 
1815     if (qemu_log_enabled()) {
1816         load_symbols(ehdr, image_fd, load_bias);
1817     }
1818 
1819     close(image_fd);
1820     return;
1821 
1822  exit_read:
1823     if (retval >= 0) {
1824         errmsg = "Incomplete read of file header";
1825         goto exit_errmsg;
1826     }
1827  exit_perror:
1828     errmsg = strerror(errno);
1829  exit_errmsg:
1830     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1831     exit(-1);
1832 }
1833 
1834 static void load_elf_interp(const char *filename, struct image_info *info,
1835                             char bprm_buf[BPRM_BUF_SIZE])
1836 {
1837     int fd, retval;
1838 
1839     fd = open(path(filename), O_RDONLY);
1840     if (fd < 0) {
1841         goto exit_perror;
1842     }
1843 
1844     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1845     if (retval < 0) {
1846         goto exit_perror;
1847     }
1848     if (retval < BPRM_BUF_SIZE) {
1849         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1850     }
1851 
1852     load_elf_image(filename, fd, info, NULL, bprm_buf);
1853     return;
1854 
1855  exit_perror:
1856     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1857     exit(-1);
1858 }
1859 
1860 static int symfind(const void *s0, const void *s1)
1861 {
1862     target_ulong addr = *(target_ulong *)s0;
1863     struct elf_sym *sym = (struct elf_sym *)s1;
1864     int result = 0;
1865     if (addr < sym->st_value) {
1866         result = -1;
1867     } else if (addr >= sym->st_value + sym->st_size) {
1868         result = 1;
1869     }
1870     return result;
1871 }
1872 
1873 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1874 {
1875 #if ELF_CLASS == ELFCLASS32
1876     struct elf_sym *syms = s->disas_symtab.elf32;
1877 #else
1878     struct elf_sym *syms = s->disas_symtab.elf64;
1879 #endif
1880 
1881     // binary search
1882     struct elf_sym *sym;
1883 
1884     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
1885     if (sym != NULL) {
1886         return s->disas_strtab + sym->st_name;
1887     }
1888 
1889     return "";
1890 }
1891 
1892 /* FIXME: This should use elf_ops.h  */
1893 static int symcmp(const void *s0, const void *s1)
1894 {
1895     struct elf_sym *sym0 = (struct elf_sym *)s0;
1896     struct elf_sym *sym1 = (struct elf_sym *)s1;
1897     return (sym0->st_value < sym1->st_value)
1898         ? -1
1899         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1900 }
1901 
1902 /* Best attempt to load symbols from this ELF object. */
1903 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1904 {
1905     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1906     struct elf_shdr *shdr;
1907     char *strings = NULL;
1908     struct syminfo *s = NULL;
1909     struct elf_sym *new_syms, *syms = NULL;
1910 
1911     shnum = hdr->e_shnum;
1912     i = shnum * sizeof(struct elf_shdr);
1913     shdr = (struct elf_shdr *)alloca(i);
1914     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1915         return;
1916     }
1917 
1918     bswap_shdr(shdr, shnum);
1919     for (i = 0; i < shnum; ++i) {
1920         if (shdr[i].sh_type == SHT_SYMTAB) {
1921             sym_idx = i;
1922             str_idx = shdr[i].sh_link;
1923             goto found;
1924         }
1925     }
1926 
1927     /* There will be no symbol table if the file was stripped.  */
1928     return;
1929 
1930  found:
1931     /* Now know where the strtab and symtab are.  Snarf them.  */
1932     s = malloc(sizeof(*s));
1933     if (!s) {
1934         goto give_up;
1935     }
1936 
1937     i = shdr[str_idx].sh_size;
1938     s->disas_strtab = strings = malloc(i);
1939     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1940         goto give_up;
1941     }
1942 
1943     i = shdr[sym_idx].sh_size;
1944     syms = malloc(i);
1945     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1946         goto give_up;
1947     }
1948 
1949     nsyms = i / sizeof(struct elf_sym);
1950     for (i = 0; i < nsyms; ) {
1951         bswap_sym(syms + i);
1952         /* Throw away entries which we do not need.  */
1953         if (syms[i].st_shndx == SHN_UNDEF
1954             || syms[i].st_shndx >= SHN_LORESERVE
1955             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1956             if (i < --nsyms) {
1957                 syms[i] = syms[nsyms];
1958             }
1959         } else {
1960 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1961             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
1962             syms[i].st_value &= ~(target_ulong)1;
1963 #endif
1964             syms[i].st_value += load_bias;
1965             i++;
1966         }
1967     }
1968 
1969     /* No "useful" symbol.  */
1970     if (nsyms == 0) {
1971         goto give_up;
1972     }
1973 
1974     /* Attempt to free the storage associated with the local symbols
1975        that we threw away.  Whether or not this has any effect on the
1976        memory allocation depends on the malloc implementation and how
1977        many symbols we managed to discard.  */
1978     new_syms = realloc(syms, nsyms * sizeof(*syms));
1979     if (new_syms == NULL) {
1980         goto give_up;
1981     }
1982     syms = new_syms;
1983 
1984     qsort(syms, nsyms, sizeof(*syms), symcmp);
1985 
1986     s->disas_num_syms = nsyms;
1987 #if ELF_CLASS == ELFCLASS32
1988     s->disas_symtab.elf32 = syms;
1989 #else
1990     s->disas_symtab.elf64 = syms;
1991 #endif
1992     s->lookup_symbol = lookup_symbolxx;
1993     s->next = syminfos;
1994     syminfos = s;
1995 
1996     return;
1997 
1998 give_up:
1999     free(s);
2000     free(strings);
2001     free(syms);
2002 }
2003 
2004 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2005 {
2006     struct image_info interp_info;
2007     struct elfhdr elf_ex;
2008     char *elf_interpreter = NULL;
2009 
2010     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2011     info->mmap = 0;
2012     info->rss = 0;
2013 
2014     load_elf_image(bprm->filename, bprm->fd, info,
2015                    &elf_interpreter, bprm->buf);
2016 
2017     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2018        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2019        when we load the interpreter.  */
2020     elf_ex = *(struct elfhdr *)bprm->buf;
2021 
2022     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2023     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2024     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2025     if (!bprm->p) {
2026         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2027         exit(-1);
2028     }
2029 
2030     /* Do this so that we can load the interpreter, if need be.  We will
2031        change some of these later */
2032     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2033 
2034     if (elf_interpreter) {
2035         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2036 
2037         /* If the program interpreter is one of these two, then assume
2038            an iBCS2 image.  Otherwise assume a native linux image.  */
2039 
2040         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2041             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2042             info->personality = PER_SVR4;
2043 
2044             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2045                and some applications "depend" upon this behavior.  Since
2046                we do not have the power to recompile these, we emulate
2047                the SVr4 behavior.  Sigh.  */
2048             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2049                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2050         }
2051     }
2052 
2053     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2054                                 info, (elf_interpreter ? &interp_info : NULL));
2055     info->start_stack = bprm->p;
2056 
2057     /* If we have an interpreter, set that as the program's entry point.
2058        Copy the load_bias as well, to help PPC64 interpret the entry
2059        point as a function descriptor.  Do this after creating elf tables
2060        so that we copy the original program entry point into the AUXV.  */
2061     if (elf_interpreter) {
2062         info->load_bias = interp_info.load_bias;
2063         info->entry = interp_info.entry;
2064         free(elf_interpreter);
2065     }
2066 
2067 #ifdef USE_ELF_CORE_DUMP
2068     bprm->core_dump = &elf_core_dump;
2069 #endif
2070 
2071     return 0;
2072 }
2073 
2074 #ifdef USE_ELF_CORE_DUMP
2075 /*
2076  * Definitions to generate Intel SVR4-like core files.
2077  * These mostly have the same names as the SVR4 types with "target_elf_"
2078  * tacked on the front to prevent clashes with linux definitions,
2079  * and the typedef forms have been avoided.  This is mostly like
2080  * the SVR4 structure, but more Linuxy, with things that Linux does
2081  * not support and which gdb doesn't really use excluded.
2082  *
2083  * Fields we don't dump (their contents is zero) in linux-user qemu
2084  * are marked with XXX.
2085  *
2086  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2087  *
2088  * Porting ELF coredump for target is (quite) simple process.  First you
2089  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2090  * the target resides):
2091  *
2092  * #define USE_ELF_CORE_DUMP
2093  *
2094  * Next you define type of register set used for dumping.  ELF specification
2095  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2096  *
2097  * typedef <target_regtype> target_elf_greg_t;
2098  * #define ELF_NREG <number of registers>
2099  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2100  *
2101  * Last step is to implement target specific function that copies registers
2102  * from given cpu into just specified register set.  Prototype is:
2103  *
2104  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2105  *                                const CPUArchState *env);
2106  *
2107  * Parameters:
2108  *     regs - copy register values into here (allocated and zeroed by caller)
2109  *     env - copy registers from here
2110  *
2111  * Example for ARM target is provided in this file.
2112  */
2113 
2114 /* An ELF note in memory */
2115 struct memelfnote {
2116     const char *name;
2117     size_t     namesz;
2118     size_t     namesz_rounded;
2119     int        type;
2120     size_t     datasz;
2121     size_t     datasz_rounded;
2122     void       *data;
2123     size_t     notesz;
2124 };
2125 
2126 struct target_elf_siginfo {
2127     abi_int    si_signo; /* signal number */
2128     abi_int    si_code;  /* extra code */
2129     abi_int    si_errno; /* errno */
2130 };
2131 
2132 struct target_elf_prstatus {
2133     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2134     abi_short          pr_cursig;    /* Current signal */
2135     abi_ulong          pr_sigpend;   /* XXX */
2136     abi_ulong          pr_sighold;   /* XXX */
2137     target_pid_t       pr_pid;
2138     target_pid_t       pr_ppid;
2139     target_pid_t       pr_pgrp;
2140     target_pid_t       pr_sid;
2141     struct target_timeval pr_utime;  /* XXX User time */
2142     struct target_timeval pr_stime;  /* XXX System time */
2143     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2144     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2145     target_elf_gregset_t      pr_reg;       /* GP registers */
2146     abi_int            pr_fpvalid;   /* XXX */
2147 };
2148 
2149 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2150 
2151 struct target_elf_prpsinfo {
2152     char         pr_state;       /* numeric process state */
2153     char         pr_sname;       /* char for pr_state */
2154     char         pr_zomb;        /* zombie */
2155     char         pr_nice;        /* nice val */
2156     abi_ulong    pr_flag;        /* flags */
2157     target_uid_t pr_uid;
2158     target_gid_t pr_gid;
2159     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2160     /* Lots missing */
2161     char    pr_fname[16];           /* filename of executable */
2162     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2163 };
2164 
2165 /* Here is the structure in which status of each thread is captured. */
2166 struct elf_thread_status {
2167     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2168     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2169 #if 0
2170     elf_fpregset_t fpu;             /* NT_PRFPREG */
2171     struct task_struct *thread;
2172     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2173 #endif
2174     struct memelfnote notes[1];
2175     int num_notes;
2176 };
2177 
2178 struct elf_note_info {
2179     struct memelfnote   *notes;
2180     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2181     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2182 
2183     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2184 #if 0
2185     /*
2186      * Current version of ELF coredump doesn't support
2187      * dumping fp regs etc.
2188      */
2189     elf_fpregset_t *fpu;
2190     elf_fpxregset_t *xfpu;
2191     int thread_status_size;
2192 #endif
2193     int notes_size;
2194     int numnote;
2195 };
2196 
2197 struct vm_area_struct {
2198     abi_ulong   vma_start;  /* start vaddr of memory region */
2199     abi_ulong   vma_end;    /* end vaddr of memory region */
2200     abi_ulong   vma_flags;  /* protection etc. flags for the region */
2201     QTAILQ_ENTRY(vm_area_struct) vma_link;
2202 };
2203 
2204 struct mm_struct {
2205     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2206     int mm_count;           /* number of mappings */
2207 };
2208 
2209 static struct mm_struct *vma_init(void);
2210 static void vma_delete(struct mm_struct *);
2211 static int vma_add_mapping(struct mm_struct *, abi_ulong,
2212                            abi_ulong, abi_ulong);
2213 static int vma_get_mapping_count(const struct mm_struct *);
2214 static struct vm_area_struct *vma_first(const struct mm_struct *);
2215 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2216 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2217 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2218                       unsigned long flags);
2219 
2220 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2221 static void fill_note(struct memelfnote *, const char *, int,
2222                       unsigned int, void *);
2223 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2224 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2225 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2226 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2227 static size_t note_size(const struct memelfnote *);
2228 static void free_note_info(struct elf_note_info *);
2229 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2230 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2231 static int core_dump_filename(const TaskState *, char *, size_t);
2232 
2233 static int dump_write(int, const void *, size_t);
2234 static int write_note(struct memelfnote *, int);
2235 static int write_note_info(struct elf_note_info *, int);
2236 
2237 #ifdef BSWAP_NEEDED
2238 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2239 {
2240     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2241     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2242     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2243     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2244     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2245     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2246     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2247     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2248     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2249     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2250     /* cpu times are not filled, so we skip them */
2251     /* regs should be in correct format already */
2252     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2253 }
2254 
2255 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2256 {
2257     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2258     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2259     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2260     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2261     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2262     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2263     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2264 }
2265 
2266 static void bswap_note(struct elf_note *en)
2267 {
2268     bswap32s(&en->n_namesz);
2269     bswap32s(&en->n_descsz);
2270     bswap32s(&en->n_type);
2271 }
2272 #else
2273 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2274 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2275 static inline void bswap_note(struct elf_note *en) { }
2276 #endif /* BSWAP_NEEDED */
2277 
2278 /*
2279  * Minimal support for linux memory regions.  These are needed
2280  * when we are finding out what memory exactly belongs to
2281  * emulated process.  No locks needed here, as long as
2282  * thread that received the signal is stopped.
2283  */
2284 
2285 static struct mm_struct *vma_init(void)
2286 {
2287     struct mm_struct *mm;
2288 
2289     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2290         return (NULL);
2291 
2292     mm->mm_count = 0;
2293     QTAILQ_INIT(&mm->mm_mmap);
2294 
2295     return (mm);
2296 }
2297 
2298 static void vma_delete(struct mm_struct *mm)
2299 {
2300     struct vm_area_struct *vma;
2301 
2302     while ((vma = vma_first(mm)) != NULL) {
2303         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2304         g_free(vma);
2305     }
2306     g_free(mm);
2307 }
2308 
2309 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2310                            abi_ulong end, abi_ulong flags)
2311 {
2312     struct vm_area_struct *vma;
2313 
2314     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2315         return (-1);
2316 
2317     vma->vma_start = start;
2318     vma->vma_end = end;
2319     vma->vma_flags = flags;
2320 
2321     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2322     mm->mm_count++;
2323 
2324     return (0);
2325 }
2326 
2327 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2328 {
2329     return (QTAILQ_FIRST(&mm->mm_mmap));
2330 }
2331 
2332 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2333 {
2334     return (QTAILQ_NEXT(vma, vma_link));
2335 }
2336 
2337 static int vma_get_mapping_count(const struct mm_struct *mm)
2338 {
2339     return (mm->mm_count);
2340 }
2341 
2342 /*
2343  * Calculate file (dump) size of given memory region.
2344  */
2345 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2346 {
2347     /* if we cannot even read the first page, skip it */
2348     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2349         return (0);
2350 
2351     /*
2352      * Usually we don't dump executable pages as they contain
2353      * non-writable code that debugger can read directly from
2354      * target library etc.  However, thread stacks are marked
2355      * also executable so we read in first page of given region
2356      * and check whether it contains elf header.  If there is
2357      * no elf header, we dump it.
2358      */
2359     if (vma->vma_flags & PROT_EXEC) {
2360         char page[TARGET_PAGE_SIZE];
2361 
2362         copy_from_user(page, vma->vma_start, sizeof (page));
2363         if ((page[EI_MAG0] == ELFMAG0) &&
2364             (page[EI_MAG1] == ELFMAG1) &&
2365             (page[EI_MAG2] == ELFMAG2) &&
2366             (page[EI_MAG3] == ELFMAG3)) {
2367             /*
2368              * Mappings are possibly from ELF binary.  Don't dump
2369              * them.
2370              */
2371             return (0);
2372         }
2373     }
2374 
2375     return (vma->vma_end - vma->vma_start);
2376 }
2377 
2378 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2379                       unsigned long flags)
2380 {
2381     struct mm_struct *mm = (struct mm_struct *)priv;
2382 
2383     vma_add_mapping(mm, start, end, flags);
2384     return (0);
2385 }
2386 
2387 static void fill_note(struct memelfnote *note, const char *name, int type,
2388                       unsigned int sz, void *data)
2389 {
2390     unsigned int namesz;
2391 
2392     namesz = strlen(name) + 1;
2393     note->name = name;
2394     note->namesz = namesz;
2395     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2396     note->type = type;
2397     note->datasz = sz;
2398     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2399 
2400     note->data = data;
2401 
2402     /*
2403      * We calculate rounded up note size here as specified by
2404      * ELF document.
2405      */
2406     note->notesz = sizeof (struct elf_note) +
2407         note->namesz_rounded + note->datasz_rounded;
2408 }
2409 
2410 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2411                             uint32_t flags)
2412 {
2413     (void) memset(elf, 0, sizeof(*elf));
2414 
2415     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2416     elf->e_ident[EI_CLASS] = ELF_CLASS;
2417     elf->e_ident[EI_DATA] = ELF_DATA;
2418     elf->e_ident[EI_VERSION] = EV_CURRENT;
2419     elf->e_ident[EI_OSABI] = ELF_OSABI;
2420 
2421     elf->e_type = ET_CORE;
2422     elf->e_machine = machine;
2423     elf->e_version = EV_CURRENT;
2424     elf->e_phoff = sizeof(struct elfhdr);
2425     elf->e_flags = flags;
2426     elf->e_ehsize = sizeof(struct elfhdr);
2427     elf->e_phentsize = sizeof(struct elf_phdr);
2428     elf->e_phnum = segs;
2429 
2430     bswap_ehdr(elf);
2431 }
2432 
2433 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2434 {
2435     phdr->p_type = PT_NOTE;
2436     phdr->p_offset = offset;
2437     phdr->p_vaddr = 0;
2438     phdr->p_paddr = 0;
2439     phdr->p_filesz = sz;
2440     phdr->p_memsz = 0;
2441     phdr->p_flags = 0;
2442     phdr->p_align = 0;
2443 
2444     bswap_phdr(phdr, 1);
2445 }
2446 
2447 static size_t note_size(const struct memelfnote *note)
2448 {
2449     return (note->notesz);
2450 }
2451 
2452 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2453                           const TaskState *ts, int signr)
2454 {
2455     (void) memset(prstatus, 0, sizeof (*prstatus));
2456     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2457     prstatus->pr_pid = ts->ts_tid;
2458     prstatus->pr_ppid = getppid();
2459     prstatus->pr_pgrp = getpgrp();
2460     prstatus->pr_sid = getsid(0);
2461 
2462     bswap_prstatus(prstatus);
2463 }
2464 
2465 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2466 {
2467     char *base_filename;
2468     unsigned int i, len;
2469 
2470     (void) memset(psinfo, 0, sizeof (*psinfo));
2471 
2472     len = ts->info->arg_end - ts->info->arg_start;
2473     if (len >= ELF_PRARGSZ)
2474         len = ELF_PRARGSZ - 1;
2475     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2476         return -EFAULT;
2477     for (i = 0; i < len; i++)
2478         if (psinfo->pr_psargs[i] == 0)
2479             psinfo->pr_psargs[i] = ' ';
2480     psinfo->pr_psargs[len] = 0;
2481 
2482     psinfo->pr_pid = getpid();
2483     psinfo->pr_ppid = getppid();
2484     psinfo->pr_pgrp = getpgrp();
2485     psinfo->pr_sid = getsid(0);
2486     psinfo->pr_uid = getuid();
2487     psinfo->pr_gid = getgid();
2488 
2489     base_filename = g_path_get_basename(ts->bprm->filename);
2490     /*
2491      * Using strncpy here is fine: at max-length,
2492      * this field is not NUL-terminated.
2493      */
2494     (void) strncpy(psinfo->pr_fname, base_filename,
2495                    sizeof(psinfo->pr_fname));
2496 
2497     g_free(base_filename);
2498     bswap_psinfo(psinfo);
2499     return (0);
2500 }
2501 
2502 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2503 {
2504     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2505     elf_addr_t orig_auxv = auxv;
2506     void *ptr;
2507     int len = ts->info->auxv_len;
2508 
2509     /*
2510      * Auxiliary vector is stored in target process stack.  It contains
2511      * {type, value} pairs that we need to dump into note.  This is not
2512      * strictly necessary but we do it here for sake of completeness.
2513      */
2514 
2515     /* read in whole auxv vector and copy it to memelfnote */
2516     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2517     if (ptr != NULL) {
2518         fill_note(note, "CORE", NT_AUXV, len, ptr);
2519         unlock_user(ptr, auxv, len);
2520     }
2521 }
2522 
2523 /*
2524  * Constructs name of coredump file.  We have following convention
2525  * for the name:
2526  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2527  *
2528  * Returns 0 in case of success, -1 otherwise (errno is set).
2529  */
2530 static int core_dump_filename(const TaskState *ts, char *buf,
2531                               size_t bufsize)
2532 {
2533     char timestamp[64];
2534     char *filename = NULL;
2535     char *base_filename = NULL;
2536     struct timeval tv;
2537     struct tm tm;
2538 
2539     assert(bufsize >= PATH_MAX);
2540 
2541     if (gettimeofday(&tv, NULL) < 0) {
2542         (void) fprintf(stderr, "unable to get current timestamp: %s",
2543                        strerror(errno));
2544         return (-1);
2545     }
2546 
2547     filename = strdup(ts->bprm->filename);
2548     base_filename = strdup(basename(filename));
2549     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2550                     localtime_r(&tv.tv_sec, &tm));
2551     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2552                     base_filename, timestamp, (int)getpid());
2553     free(base_filename);
2554     free(filename);
2555 
2556     return (0);
2557 }
2558 
2559 static int dump_write(int fd, const void *ptr, size_t size)
2560 {
2561     const char *bufp = (const char *)ptr;
2562     ssize_t bytes_written, bytes_left;
2563     struct rlimit dumpsize;
2564     off_t pos;
2565 
2566     bytes_written = 0;
2567     getrlimit(RLIMIT_CORE, &dumpsize);
2568     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2569         if (errno == ESPIPE) { /* not a seekable stream */
2570             bytes_left = size;
2571         } else {
2572             return pos;
2573         }
2574     } else {
2575         if (dumpsize.rlim_cur <= pos) {
2576             return -1;
2577         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2578             bytes_left = size;
2579         } else {
2580             size_t limit_left=dumpsize.rlim_cur - pos;
2581             bytes_left = limit_left >= size ? size : limit_left ;
2582         }
2583     }
2584 
2585     /*
2586      * In normal conditions, single write(2) should do but
2587      * in case of socket etc. this mechanism is more portable.
2588      */
2589     do {
2590         bytes_written = write(fd, bufp, bytes_left);
2591         if (bytes_written < 0) {
2592             if (errno == EINTR)
2593                 continue;
2594             return (-1);
2595         } else if (bytes_written == 0) { /* eof */
2596             return (-1);
2597         }
2598         bufp += bytes_written;
2599         bytes_left -= bytes_written;
2600     } while (bytes_left > 0);
2601 
2602     return (0);
2603 }
2604 
2605 static int write_note(struct memelfnote *men, int fd)
2606 {
2607     struct elf_note en;
2608 
2609     en.n_namesz = men->namesz;
2610     en.n_type = men->type;
2611     en.n_descsz = men->datasz;
2612 
2613     bswap_note(&en);
2614 
2615     if (dump_write(fd, &en, sizeof(en)) != 0)
2616         return (-1);
2617     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2618         return (-1);
2619     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2620         return (-1);
2621 
2622     return (0);
2623 }
2624 
2625 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2626 {
2627     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2628     TaskState *ts = (TaskState *)cpu->opaque;
2629     struct elf_thread_status *ets;
2630 
2631     ets = g_malloc0(sizeof (*ets));
2632     ets->num_notes = 1; /* only prstatus is dumped */
2633     fill_prstatus(&ets->prstatus, ts, 0);
2634     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2635     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2636               &ets->prstatus);
2637 
2638     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2639 
2640     info->notes_size += note_size(&ets->notes[0]);
2641 }
2642 
2643 static void init_note_info(struct elf_note_info *info)
2644 {
2645     /* Initialize the elf_note_info structure so that it is at
2646      * least safe to call free_note_info() on it. Must be
2647      * called before calling fill_note_info().
2648      */
2649     memset(info, 0, sizeof (*info));
2650     QTAILQ_INIT(&info->thread_list);
2651 }
2652 
2653 static int fill_note_info(struct elf_note_info *info,
2654                           long signr, const CPUArchState *env)
2655 {
2656 #define NUMNOTES 3
2657     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2658     TaskState *ts = (TaskState *)cpu->opaque;
2659     int i;
2660 
2661     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2662     if (info->notes == NULL)
2663         return (-ENOMEM);
2664     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2665     if (info->prstatus == NULL)
2666         return (-ENOMEM);
2667     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2668     if (info->prstatus == NULL)
2669         return (-ENOMEM);
2670 
2671     /*
2672      * First fill in status (and registers) of current thread
2673      * including process info & aux vector.
2674      */
2675     fill_prstatus(info->prstatus, ts, signr);
2676     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2677     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2678               sizeof (*info->prstatus), info->prstatus);
2679     fill_psinfo(info->psinfo, ts);
2680     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2681               sizeof (*info->psinfo), info->psinfo);
2682     fill_auxv_note(&info->notes[2], ts);
2683     info->numnote = 3;
2684 
2685     info->notes_size = 0;
2686     for (i = 0; i < info->numnote; i++)
2687         info->notes_size += note_size(&info->notes[i]);
2688 
2689     /* read and fill status of all threads */
2690     cpu_list_lock();
2691     CPU_FOREACH(cpu) {
2692         if (cpu == thread_cpu) {
2693             continue;
2694         }
2695         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2696     }
2697     cpu_list_unlock();
2698 
2699     return (0);
2700 }
2701 
2702 static void free_note_info(struct elf_note_info *info)
2703 {
2704     struct elf_thread_status *ets;
2705 
2706     while (!QTAILQ_EMPTY(&info->thread_list)) {
2707         ets = QTAILQ_FIRST(&info->thread_list);
2708         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2709         g_free(ets);
2710     }
2711 
2712     g_free(info->prstatus);
2713     g_free(info->psinfo);
2714     g_free(info->notes);
2715 }
2716 
2717 static int write_note_info(struct elf_note_info *info, int fd)
2718 {
2719     struct elf_thread_status *ets;
2720     int i, error = 0;
2721 
2722     /* write prstatus, psinfo and auxv for current thread */
2723     for (i = 0; i < info->numnote; i++)
2724         if ((error = write_note(&info->notes[i], fd)) != 0)
2725             return (error);
2726 
2727     /* write prstatus for each thread */
2728     for (ets = info->thread_list.tqh_first; ets != NULL;
2729          ets = ets->ets_link.tqe_next) {
2730         if ((error = write_note(&ets->notes[0], fd)) != 0)
2731             return (error);
2732     }
2733 
2734     return (0);
2735 }
2736 
2737 /*
2738  * Write out ELF coredump.
2739  *
2740  * See documentation of ELF object file format in:
2741  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2742  *
2743  * Coredump format in linux is following:
2744  *
2745  * 0   +----------------------+         \
2746  *     | ELF header           | ET_CORE  |
2747  *     +----------------------+          |
2748  *     | ELF program headers  |          |--- headers
2749  *     | - NOTE section       |          |
2750  *     | - PT_LOAD sections   |          |
2751  *     +----------------------+         /
2752  *     | NOTEs:               |
2753  *     | - NT_PRSTATUS        |
2754  *     | - NT_PRSINFO         |
2755  *     | - NT_AUXV            |
2756  *     +----------------------+ <-- aligned to target page
2757  *     | Process memory dump  |
2758  *     :                      :
2759  *     .                      .
2760  *     :                      :
2761  *     |                      |
2762  *     +----------------------+
2763  *
2764  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2765  * NT_PRSINFO  -> struct elf_prpsinfo
2766  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2767  *
2768  * Format follows System V format as close as possible.  Current
2769  * version limitations are as follows:
2770  *     - no floating point registers are dumped
2771  *
2772  * Function returns 0 in case of success, negative errno otherwise.
2773  *
2774  * TODO: make this work also during runtime: it should be
2775  * possible to force coredump from running process and then
2776  * continue processing.  For example qemu could set up SIGUSR2
2777  * handler (provided that target process haven't registered
2778  * handler for that) that does the dump when signal is received.
2779  */
2780 static int elf_core_dump(int signr, const CPUArchState *env)
2781 {
2782     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2783     const TaskState *ts = (const TaskState *)cpu->opaque;
2784     struct vm_area_struct *vma = NULL;
2785     char corefile[PATH_MAX];
2786     struct elf_note_info info;
2787     struct elfhdr elf;
2788     struct elf_phdr phdr;
2789     struct rlimit dumpsize;
2790     struct mm_struct *mm = NULL;
2791     off_t offset = 0, data_offset = 0;
2792     int segs = 0;
2793     int fd = -1;
2794 
2795     init_note_info(&info);
2796 
2797     errno = 0;
2798     getrlimit(RLIMIT_CORE, &dumpsize);
2799     if (dumpsize.rlim_cur == 0)
2800         return 0;
2801 
2802     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2803         return (-errno);
2804 
2805     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2806                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2807         return (-errno);
2808 
2809     /*
2810      * Walk through target process memory mappings and
2811      * set up structure containing this information.  After
2812      * this point vma_xxx functions can be used.
2813      */
2814     if ((mm = vma_init()) == NULL)
2815         goto out;
2816 
2817     walk_memory_regions(mm, vma_walker);
2818     segs = vma_get_mapping_count(mm);
2819 
2820     /*
2821      * Construct valid coredump ELF header.  We also
2822      * add one more segment for notes.
2823      */
2824     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2825     if (dump_write(fd, &elf, sizeof (elf)) != 0)
2826         goto out;
2827 
2828     /* fill in in-memory version of notes */
2829     if (fill_note_info(&info, signr, env) < 0)
2830         goto out;
2831 
2832     offset += sizeof (elf);                             /* elf header */
2833     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
2834 
2835     /* write out notes program header */
2836     fill_elf_note_phdr(&phdr, info.notes_size, offset);
2837 
2838     offset += info.notes_size;
2839     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2840         goto out;
2841 
2842     /*
2843      * ELF specification wants data to start at page boundary so
2844      * we align it here.
2845      */
2846     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2847 
2848     /*
2849      * Write program headers for memory regions mapped in
2850      * the target process.
2851      */
2852     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2853         (void) memset(&phdr, 0, sizeof (phdr));
2854 
2855         phdr.p_type = PT_LOAD;
2856         phdr.p_offset = offset;
2857         phdr.p_vaddr = vma->vma_start;
2858         phdr.p_paddr = 0;
2859         phdr.p_filesz = vma_dump_size(vma);
2860         offset += phdr.p_filesz;
2861         phdr.p_memsz = vma->vma_end - vma->vma_start;
2862         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2863         if (vma->vma_flags & PROT_WRITE)
2864             phdr.p_flags |= PF_W;
2865         if (vma->vma_flags & PROT_EXEC)
2866             phdr.p_flags |= PF_X;
2867         phdr.p_align = ELF_EXEC_PAGESIZE;
2868 
2869         bswap_phdr(&phdr, 1);
2870         dump_write(fd, &phdr, sizeof (phdr));
2871     }
2872 
2873     /*
2874      * Next we write notes just after program headers.  No
2875      * alignment needed here.
2876      */
2877     if (write_note_info(&info, fd) < 0)
2878         goto out;
2879 
2880     /* align data to page boundary */
2881     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2882         goto out;
2883 
2884     /*
2885      * Finally we can dump process memory into corefile as well.
2886      */
2887     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2888         abi_ulong addr;
2889         abi_ulong end;
2890 
2891         end = vma->vma_start + vma_dump_size(vma);
2892 
2893         for (addr = vma->vma_start; addr < end;
2894              addr += TARGET_PAGE_SIZE) {
2895             char page[TARGET_PAGE_SIZE];
2896             int error;
2897 
2898             /*
2899              *  Read in page from target process memory and
2900              *  write it to coredump file.
2901              */
2902             error = copy_from_user(page, addr, sizeof (page));
2903             if (error != 0) {
2904                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2905                                addr);
2906                 errno = -error;
2907                 goto out;
2908             }
2909             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2910                 goto out;
2911         }
2912     }
2913 
2914  out:
2915     free_note_info(&info);
2916     if (mm != NULL)
2917         vma_delete(mm);
2918     (void) close(fd);
2919 
2920     if (errno != 0)
2921         return (-errno);
2922     return (0);
2923 }
2924 #endif /* USE_ELF_CORE_DUMP */
2925 
2926 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2927 {
2928     init_thread(regs, infop);
2929 }
2930