1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "qemu/error-report.h" 22 #include "target_signal.h" 23 #include "accel/tcg/debuginfo.h" 24 25 #ifdef _ARCH_PPC64 26 #undef ARCH_DLINFO 27 #undef ELF_PLATFORM 28 #undef ELF_HWCAP 29 #undef ELF_HWCAP2 30 #undef ELF_CLASS 31 #undef ELF_DATA 32 #undef ELF_ARCH 33 #endif 34 35 #define ELF_OSABI ELFOSABI_SYSV 36 37 /* from personality.h */ 38 39 /* 40 * Flags for bug emulation. 41 * 42 * These occupy the top three bytes. 43 */ 44 enum { 45 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 46 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 47 descriptors (signal handling) */ 48 MMAP_PAGE_ZERO = 0x0100000, 49 ADDR_COMPAT_LAYOUT = 0x0200000, 50 READ_IMPLIES_EXEC = 0x0400000, 51 ADDR_LIMIT_32BIT = 0x0800000, 52 SHORT_INODE = 0x1000000, 53 WHOLE_SECONDS = 0x2000000, 54 STICKY_TIMEOUTS = 0x4000000, 55 ADDR_LIMIT_3GB = 0x8000000, 56 }; 57 58 /* 59 * Personality types. 60 * 61 * These go in the low byte. Avoid using the top bit, it will 62 * conflict with error returns. 63 */ 64 enum { 65 PER_LINUX = 0x0000, 66 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 67 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 68 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 69 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 71 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 72 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 73 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 74 PER_BSD = 0x0006, 75 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 76 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 77 PER_LINUX32 = 0x0008, 78 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 79 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 80 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 81 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 82 PER_RISCOS = 0x000c, 83 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 84 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 85 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 86 PER_HPUX = 0x0010, 87 PER_MASK = 0x00ff, 88 }; 89 90 /* 91 * Return the base personality without flags. 92 */ 93 #define personality(pers) (pers & PER_MASK) 94 95 int info_is_fdpic(struct image_info *info) 96 { 97 return info->personality == PER_LINUX_FDPIC; 98 } 99 100 /* this flag is uneffective under linux too, should be deleted */ 101 #ifndef MAP_DENYWRITE 102 #define MAP_DENYWRITE 0 103 #endif 104 105 /* should probably go in elf.h */ 106 #ifndef ELIBBAD 107 #define ELIBBAD 80 108 #endif 109 110 #if TARGET_BIG_ENDIAN 111 #define ELF_DATA ELFDATA2MSB 112 #else 113 #define ELF_DATA ELFDATA2LSB 114 #endif 115 116 #ifdef TARGET_ABI_MIPSN32 117 typedef abi_ullong target_elf_greg_t; 118 #define tswapreg(ptr) tswap64(ptr) 119 #else 120 typedef abi_ulong target_elf_greg_t; 121 #define tswapreg(ptr) tswapal(ptr) 122 #endif 123 124 #ifdef USE_UID16 125 typedef abi_ushort target_uid_t; 126 typedef abi_ushort target_gid_t; 127 #else 128 typedef abi_uint target_uid_t; 129 typedef abi_uint target_gid_t; 130 #endif 131 typedef abi_int target_pid_t; 132 133 #ifdef TARGET_I386 134 135 #define ELF_HWCAP get_elf_hwcap() 136 137 static uint32_t get_elf_hwcap(void) 138 { 139 X86CPU *cpu = X86_CPU(thread_cpu); 140 141 return cpu->env.features[FEAT_1_EDX]; 142 } 143 144 #ifdef TARGET_X86_64 145 #define ELF_START_MMAP 0x2aaaaab000ULL 146 147 #define ELF_CLASS ELFCLASS64 148 #define ELF_ARCH EM_X86_64 149 150 #define ELF_PLATFORM "x86_64" 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = tswapreg(env->regs[15]); 172 (*regs)[1] = tswapreg(env->regs[14]); 173 (*regs)[2] = tswapreg(env->regs[13]); 174 (*regs)[3] = tswapreg(env->regs[12]); 175 (*regs)[4] = tswapreg(env->regs[R_EBP]); 176 (*regs)[5] = tswapreg(env->regs[R_EBX]); 177 (*regs)[6] = tswapreg(env->regs[11]); 178 (*regs)[7] = tswapreg(env->regs[10]); 179 (*regs)[8] = tswapreg(env->regs[9]); 180 (*regs)[9] = tswapreg(env->regs[8]); 181 (*regs)[10] = tswapreg(env->regs[R_EAX]); 182 (*regs)[11] = tswapreg(env->regs[R_ECX]); 183 (*regs)[12] = tswapreg(env->regs[R_EDX]); 184 (*regs)[13] = tswapreg(env->regs[R_ESI]); 185 (*regs)[14] = tswapreg(env->regs[R_EDI]); 186 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 187 (*regs)[16] = tswapreg(env->eip); 188 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 189 (*regs)[18] = tswapreg(env->eflags); 190 (*regs)[19] = tswapreg(env->regs[R_ESP]); 191 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 192 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 193 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 194 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 195 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 196 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 197 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 198 } 199 200 #if ULONG_MAX > UINT32_MAX 201 #define INIT_GUEST_COMMPAGE 202 static bool init_guest_commpage(void) 203 { 204 /* 205 * The vsyscall page is at a high negative address aka kernel space, 206 * which means that we cannot actually allocate it with target_mmap. 207 * We still should be able to use page_set_flags, unless the user 208 * has specified -R reserved_va, which would trigger an assert(). 209 */ 210 if (reserved_va != 0 && 211 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 212 error_report("Cannot allocate vsyscall page"); 213 exit(EXIT_FAILURE); 214 } 215 page_set_flags(TARGET_VSYSCALL_PAGE, 216 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 217 PAGE_EXEC | PAGE_VALID); 218 return true; 219 } 220 #endif 221 #else 222 223 #define ELF_START_MMAP 0x80000000 224 225 /* 226 * This is used to ensure we don't load something for the wrong architecture. 227 */ 228 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 229 230 /* 231 * These are used to set parameters in the core dumps. 232 */ 233 #define ELF_CLASS ELFCLASS32 234 #define ELF_ARCH EM_386 235 236 #define ELF_PLATFORM get_elf_platform() 237 #define EXSTACK_DEFAULT true 238 239 static const char *get_elf_platform(void) 240 { 241 static char elf_platform[] = "i386"; 242 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 243 if (family > 6) { 244 family = 6; 245 } 246 if (family >= 3) { 247 elf_platform[1] = '0' + family; 248 } 249 return elf_platform; 250 } 251 252 static inline void init_thread(struct target_pt_regs *regs, 253 struct image_info *infop) 254 { 255 regs->esp = infop->start_stack; 256 regs->eip = infop->entry; 257 258 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 259 starts %edx contains a pointer to a function which might be 260 registered using `atexit'. This provides a mean for the 261 dynamic linker to call DT_FINI functions for shared libraries 262 that have been loaded before the code runs. 263 264 A value of 0 tells we have no such handler. */ 265 regs->edx = 0; 266 } 267 268 #define ELF_NREG 17 269 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 270 271 /* 272 * Note that ELF_NREG should be 19 as there should be place for 273 * TRAPNO and ERR "registers" as well but linux doesn't dump 274 * those. 275 * 276 * See linux kernel: arch/x86/include/asm/elf.h 277 */ 278 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 279 { 280 (*regs)[0] = tswapreg(env->regs[R_EBX]); 281 (*regs)[1] = tswapreg(env->regs[R_ECX]); 282 (*regs)[2] = tswapreg(env->regs[R_EDX]); 283 (*regs)[3] = tswapreg(env->regs[R_ESI]); 284 (*regs)[4] = tswapreg(env->regs[R_EDI]); 285 (*regs)[5] = tswapreg(env->regs[R_EBP]); 286 (*regs)[6] = tswapreg(env->regs[R_EAX]); 287 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 288 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 289 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 290 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 291 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 292 (*regs)[12] = tswapreg(env->eip); 293 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 294 (*regs)[14] = tswapreg(env->eflags); 295 (*regs)[15] = tswapreg(env->regs[R_ESP]); 296 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 297 } 298 #endif 299 300 #define USE_ELF_CORE_DUMP 301 #define ELF_EXEC_PAGESIZE 4096 302 303 #endif 304 305 #ifdef TARGET_ARM 306 307 #ifndef TARGET_AARCH64 308 /* 32 bit ARM definitions */ 309 310 #define ELF_START_MMAP 0x80000000 311 312 #define ELF_ARCH EM_ARM 313 #define ELF_CLASS ELFCLASS32 314 #define EXSTACK_DEFAULT true 315 316 static inline void init_thread(struct target_pt_regs *regs, 317 struct image_info *infop) 318 { 319 abi_long stack = infop->start_stack; 320 memset(regs, 0, sizeof(*regs)); 321 322 regs->uregs[16] = ARM_CPU_MODE_USR; 323 if (infop->entry & 1) { 324 regs->uregs[16] |= CPSR_T; 325 } 326 regs->uregs[15] = infop->entry & 0xfffffffe; 327 regs->uregs[13] = infop->start_stack; 328 /* FIXME - what to for failure of get_user()? */ 329 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 330 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 331 /* XXX: it seems that r0 is zeroed after ! */ 332 regs->uregs[0] = 0; 333 /* For uClinux PIC binaries. */ 334 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 335 regs->uregs[10] = infop->start_data; 336 337 /* Support ARM FDPIC. */ 338 if (info_is_fdpic(infop)) { 339 /* As described in the ABI document, r7 points to the loadmap info 340 * prepared by the kernel. If an interpreter is needed, r8 points 341 * to the interpreter loadmap and r9 points to the interpreter 342 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 343 * r9 points to the main program PT_DYNAMIC info. 344 */ 345 regs->uregs[7] = infop->loadmap_addr; 346 if (infop->interpreter_loadmap_addr) { 347 /* Executable is dynamically loaded. */ 348 regs->uregs[8] = infop->interpreter_loadmap_addr; 349 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 350 } else { 351 regs->uregs[8] = 0; 352 regs->uregs[9] = infop->pt_dynamic_addr; 353 } 354 } 355 } 356 357 #define ELF_NREG 18 358 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 359 360 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 361 { 362 (*regs)[0] = tswapreg(env->regs[0]); 363 (*regs)[1] = tswapreg(env->regs[1]); 364 (*regs)[2] = tswapreg(env->regs[2]); 365 (*regs)[3] = tswapreg(env->regs[3]); 366 (*regs)[4] = tswapreg(env->regs[4]); 367 (*regs)[5] = tswapreg(env->regs[5]); 368 (*regs)[6] = tswapreg(env->regs[6]); 369 (*regs)[7] = tswapreg(env->regs[7]); 370 (*regs)[8] = tswapreg(env->regs[8]); 371 (*regs)[9] = tswapreg(env->regs[9]); 372 (*regs)[10] = tswapreg(env->regs[10]); 373 (*regs)[11] = tswapreg(env->regs[11]); 374 (*regs)[12] = tswapreg(env->regs[12]); 375 (*regs)[13] = tswapreg(env->regs[13]); 376 (*regs)[14] = tswapreg(env->regs[14]); 377 (*regs)[15] = tswapreg(env->regs[15]); 378 379 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 380 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 381 } 382 383 #define USE_ELF_CORE_DUMP 384 #define ELF_EXEC_PAGESIZE 4096 385 386 enum 387 { 388 ARM_HWCAP_ARM_SWP = 1 << 0, 389 ARM_HWCAP_ARM_HALF = 1 << 1, 390 ARM_HWCAP_ARM_THUMB = 1 << 2, 391 ARM_HWCAP_ARM_26BIT = 1 << 3, 392 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 393 ARM_HWCAP_ARM_FPA = 1 << 5, 394 ARM_HWCAP_ARM_VFP = 1 << 6, 395 ARM_HWCAP_ARM_EDSP = 1 << 7, 396 ARM_HWCAP_ARM_JAVA = 1 << 8, 397 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 398 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 399 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 400 ARM_HWCAP_ARM_NEON = 1 << 12, 401 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 402 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 403 ARM_HWCAP_ARM_TLS = 1 << 15, 404 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 405 ARM_HWCAP_ARM_IDIVA = 1 << 17, 406 ARM_HWCAP_ARM_IDIVT = 1 << 18, 407 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 408 ARM_HWCAP_ARM_LPAE = 1 << 20, 409 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 410 }; 411 412 enum { 413 ARM_HWCAP2_ARM_AES = 1 << 0, 414 ARM_HWCAP2_ARM_PMULL = 1 << 1, 415 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 416 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 417 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 418 }; 419 420 /* The commpage only exists for 32 bit kernels */ 421 422 #define HI_COMMPAGE (intptr_t)0xffff0f00u 423 424 static bool init_guest_commpage(void) 425 { 426 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 427 void *want = g2h_untagged(commpage); 428 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 429 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 430 431 if (addr == MAP_FAILED) { 432 perror("Allocating guest commpage"); 433 exit(EXIT_FAILURE); 434 } 435 if (addr != want) { 436 return false; 437 } 438 439 /* Set kernel helper versions; rest of page is 0. */ 440 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 441 442 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 443 perror("Protecting guest commpage"); 444 exit(EXIT_FAILURE); 445 } 446 447 page_set_flags(commpage, commpage | ~qemu_host_page_mask, 448 PAGE_READ | PAGE_EXEC | PAGE_VALID); 449 return true; 450 } 451 452 #define ELF_HWCAP get_elf_hwcap() 453 #define ELF_HWCAP2 get_elf_hwcap2() 454 455 static uint32_t get_elf_hwcap(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 hwcaps |= ARM_HWCAP_ARM_SWP; 461 hwcaps |= ARM_HWCAP_ARM_HALF; 462 hwcaps |= ARM_HWCAP_ARM_THUMB; 463 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 464 465 /* probe for the extra features */ 466 #define GET_FEATURE(feat, hwcap) \ 467 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 468 469 #define GET_FEATURE_ID(feat, hwcap) \ 470 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 471 472 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 473 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 474 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 475 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 476 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 477 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 479 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 480 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 481 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 482 483 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 484 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 485 hwcaps |= ARM_HWCAP_ARM_VFPv3; 486 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 487 hwcaps |= ARM_HWCAP_ARM_VFPD32; 488 } else { 489 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 490 } 491 } 492 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 493 494 return hwcaps; 495 } 496 497 static uint32_t get_elf_hwcap2(void) 498 { 499 ARMCPU *cpu = ARM_CPU(thread_cpu); 500 uint32_t hwcaps = 0; 501 502 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 503 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 504 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 505 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 506 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 507 return hwcaps; 508 } 509 510 #undef GET_FEATURE 511 #undef GET_FEATURE_ID 512 513 #define ELF_PLATFORM get_elf_platform() 514 515 static const char *get_elf_platform(void) 516 { 517 CPUARMState *env = thread_cpu->env_ptr; 518 519 #if TARGET_BIG_ENDIAN 520 # define END "b" 521 #else 522 # define END "l" 523 #endif 524 525 if (arm_feature(env, ARM_FEATURE_V8)) { 526 return "v8" END; 527 } else if (arm_feature(env, ARM_FEATURE_V7)) { 528 if (arm_feature(env, ARM_FEATURE_M)) { 529 return "v7m" END; 530 } else { 531 return "v7" END; 532 } 533 } else if (arm_feature(env, ARM_FEATURE_V6)) { 534 return "v6" END; 535 } else if (arm_feature(env, ARM_FEATURE_V5)) { 536 return "v5" END; 537 } else { 538 return "v4" END; 539 } 540 541 #undef END 542 } 543 544 #else 545 /* 64 bit ARM definitions */ 546 #define ELF_START_MMAP 0x80000000 547 548 #define ELF_ARCH EM_AARCH64 549 #define ELF_CLASS ELFCLASS64 550 #if TARGET_BIG_ENDIAN 551 # define ELF_PLATFORM "aarch64_be" 552 #else 553 # define ELF_PLATFORM "aarch64" 554 #endif 555 556 static inline void init_thread(struct target_pt_regs *regs, 557 struct image_info *infop) 558 { 559 abi_long stack = infop->start_stack; 560 memset(regs, 0, sizeof(*regs)); 561 562 regs->pc = infop->entry & ~0x3ULL; 563 regs->sp = stack; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, 570 const CPUARMState *env) 571 { 572 int i; 573 574 for (i = 0; i < 32; i++) { 575 (*regs)[i] = tswapreg(env->xregs[i]); 576 } 577 (*regs)[32] = tswapreg(env->pc); 578 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 579 } 580 581 #define USE_ELF_CORE_DUMP 582 #define ELF_EXEC_PAGESIZE 4096 583 584 enum { 585 ARM_HWCAP_A64_FP = 1 << 0, 586 ARM_HWCAP_A64_ASIMD = 1 << 1, 587 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 588 ARM_HWCAP_A64_AES = 1 << 3, 589 ARM_HWCAP_A64_PMULL = 1 << 4, 590 ARM_HWCAP_A64_SHA1 = 1 << 5, 591 ARM_HWCAP_A64_SHA2 = 1 << 6, 592 ARM_HWCAP_A64_CRC32 = 1 << 7, 593 ARM_HWCAP_A64_ATOMICS = 1 << 8, 594 ARM_HWCAP_A64_FPHP = 1 << 9, 595 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 596 ARM_HWCAP_A64_CPUID = 1 << 11, 597 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 598 ARM_HWCAP_A64_JSCVT = 1 << 13, 599 ARM_HWCAP_A64_FCMA = 1 << 14, 600 ARM_HWCAP_A64_LRCPC = 1 << 15, 601 ARM_HWCAP_A64_DCPOP = 1 << 16, 602 ARM_HWCAP_A64_SHA3 = 1 << 17, 603 ARM_HWCAP_A64_SM3 = 1 << 18, 604 ARM_HWCAP_A64_SM4 = 1 << 19, 605 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 606 ARM_HWCAP_A64_SHA512 = 1 << 21, 607 ARM_HWCAP_A64_SVE = 1 << 22, 608 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 609 ARM_HWCAP_A64_DIT = 1 << 24, 610 ARM_HWCAP_A64_USCAT = 1 << 25, 611 ARM_HWCAP_A64_ILRCPC = 1 << 26, 612 ARM_HWCAP_A64_FLAGM = 1 << 27, 613 ARM_HWCAP_A64_SSBS = 1 << 28, 614 ARM_HWCAP_A64_SB = 1 << 29, 615 ARM_HWCAP_A64_PACA = 1 << 30, 616 ARM_HWCAP_A64_PACG = 1UL << 31, 617 618 ARM_HWCAP2_A64_DCPODP = 1 << 0, 619 ARM_HWCAP2_A64_SVE2 = 1 << 1, 620 ARM_HWCAP2_A64_SVEAES = 1 << 2, 621 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 622 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 623 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 624 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 625 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 626 ARM_HWCAP2_A64_FRINT = 1 << 8, 627 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 628 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 629 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 630 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 631 ARM_HWCAP2_A64_I8MM = 1 << 13, 632 ARM_HWCAP2_A64_BF16 = 1 << 14, 633 ARM_HWCAP2_A64_DGH = 1 << 15, 634 ARM_HWCAP2_A64_RNG = 1 << 16, 635 ARM_HWCAP2_A64_BTI = 1 << 17, 636 ARM_HWCAP2_A64_MTE = 1 << 18, 637 ARM_HWCAP2_A64_ECV = 1 << 19, 638 ARM_HWCAP2_A64_AFP = 1 << 20, 639 ARM_HWCAP2_A64_RPRES = 1 << 21, 640 ARM_HWCAP2_A64_MTE3 = 1 << 22, 641 ARM_HWCAP2_A64_SME = 1 << 23, 642 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 643 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 644 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 645 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 646 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 647 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 648 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 649 }; 650 651 #define ELF_HWCAP get_elf_hwcap() 652 #define ELF_HWCAP2 get_elf_hwcap2() 653 654 #define GET_FEATURE_ID(feat, hwcap) \ 655 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 656 657 static uint32_t get_elf_hwcap(void) 658 { 659 ARMCPU *cpu = ARM_CPU(thread_cpu); 660 uint32_t hwcaps = 0; 661 662 hwcaps |= ARM_HWCAP_A64_FP; 663 hwcaps |= ARM_HWCAP_A64_ASIMD; 664 hwcaps |= ARM_HWCAP_A64_CPUID; 665 666 /* probe for the extra features */ 667 668 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 669 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 670 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 671 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 672 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 673 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 674 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 675 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 676 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 677 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 678 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 679 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 680 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 681 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 682 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 683 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 684 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 685 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 686 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 687 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 688 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 689 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 690 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 691 692 return hwcaps; 693 } 694 695 static uint32_t get_elf_hwcap2(void) 696 { 697 ARMCPU *cpu = ARM_CPU(thread_cpu); 698 uint32_t hwcaps = 0; 699 700 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 701 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 702 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 703 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 704 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 705 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 706 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 707 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 708 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 709 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 710 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 711 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 712 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 713 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 714 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 715 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 716 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 717 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 718 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 719 ARM_HWCAP2_A64_SME_F32F32 | 720 ARM_HWCAP2_A64_SME_B16F32 | 721 ARM_HWCAP2_A64_SME_F16F32 | 722 ARM_HWCAP2_A64_SME_I8I32)); 723 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 724 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 725 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 726 727 return hwcaps; 728 } 729 730 #undef GET_FEATURE_ID 731 732 #endif /* not TARGET_AARCH64 */ 733 #endif /* TARGET_ARM */ 734 735 #ifdef TARGET_SPARC 736 #ifdef TARGET_SPARC64 737 738 #define ELF_START_MMAP 0x80000000 739 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 740 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 741 #ifndef TARGET_ABI32 742 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 743 #else 744 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 745 #endif 746 747 #define ELF_CLASS ELFCLASS64 748 #define ELF_ARCH EM_SPARCV9 749 #else 750 #define ELF_START_MMAP 0x80000000 751 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 752 | HWCAP_SPARC_MULDIV) 753 #define ELF_CLASS ELFCLASS32 754 #define ELF_ARCH EM_SPARC 755 #endif /* TARGET_SPARC64 */ 756 757 static inline void init_thread(struct target_pt_regs *regs, 758 struct image_info *infop) 759 { 760 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 761 regs->pc = infop->entry; 762 regs->npc = regs->pc + 4; 763 regs->y = 0; 764 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 765 - TARGET_STACK_BIAS); 766 } 767 #endif /* TARGET_SPARC */ 768 769 #ifdef TARGET_PPC 770 771 #define ELF_MACHINE PPC_ELF_MACHINE 772 #define ELF_START_MMAP 0x80000000 773 774 #if defined(TARGET_PPC64) 775 776 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 777 778 #define ELF_CLASS ELFCLASS64 779 780 #else 781 782 #define ELF_CLASS ELFCLASS32 783 #define EXSTACK_DEFAULT true 784 785 #endif 786 787 #define ELF_ARCH EM_PPC 788 789 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 790 See arch/powerpc/include/asm/cputable.h. */ 791 enum { 792 QEMU_PPC_FEATURE_32 = 0x80000000, 793 QEMU_PPC_FEATURE_64 = 0x40000000, 794 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 795 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 796 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 797 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 798 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 799 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 800 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 801 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 802 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 803 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 804 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 805 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 806 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 807 QEMU_PPC_FEATURE_CELL = 0x00010000, 808 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 809 QEMU_PPC_FEATURE_SMT = 0x00004000, 810 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 811 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 812 QEMU_PPC_FEATURE_PA6T = 0x00000800, 813 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 814 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 815 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 816 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 817 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 818 819 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 820 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 821 822 /* Feature definitions in AT_HWCAP2. */ 823 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 824 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 825 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 826 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 827 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 828 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 829 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 830 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 831 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 832 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 833 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 834 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 835 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 836 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 837 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 838 }; 839 840 #define ELF_HWCAP get_elf_hwcap() 841 842 static uint32_t get_elf_hwcap(void) 843 { 844 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 845 uint32_t features = 0; 846 847 /* We don't have to be terribly complete here; the high points are 848 Altivec/FP/SPE support. Anything else is just a bonus. */ 849 #define GET_FEATURE(flag, feature) \ 850 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 851 #define GET_FEATURE2(flags, feature) \ 852 do { \ 853 if ((cpu->env.insns_flags2 & flags) == flags) { \ 854 features |= feature; \ 855 } \ 856 } while (0) 857 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 858 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 859 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 860 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 861 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 862 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 863 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 864 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 865 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 866 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 867 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 868 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 869 QEMU_PPC_FEATURE_ARCH_2_06); 870 #undef GET_FEATURE 871 #undef GET_FEATURE2 872 873 return features; 874 } 875 876 #define ELF_HWCAP2 get_elf_hwcap2() 877 878 static uint32_t get_elf_hwcap2(void) 879 { 880 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 881 uint32_t features = 0; 882 883 #define GET_FEATURE(flag, feature) \ 884 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 885 #define GET_FEATURE2(flag, feature) \ 886 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 887 888 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 889 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 890 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 891 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 892 QEMU_PPC_FEATURE2_VEC_CRYPTO); 893 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 894 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 895 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 896 QEMU_PPC_FEATURE2_MMA); 897 898 #undef GET_FEATURE 899 #undef GET_FEATURE2 900 901 return features; 902 } 903 904 /* 905 * The requirements here are: 906 * - keep the final alignment of sp (sp & 0xf) 907 * - make sure the 32-bit value at the first 16 byte aligned position of 908 * AUXV is greater than 16 for glibc compatibility. 909 * AT_IGNOREPPC is used for that. 910 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 911 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 912 */ 913 #define DLINFO_ARCH_ITEMS 5 914 #define ARCH_DLINFO \ 915 do { \ 916 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 917 /* \ 918 * Handle glibc compatibility: these magic entries must \ 919 * be at the lowest addresses in the final auxv. \ 920 */ \ 921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 922 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 923 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 924 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 925 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 926 } while (0) 927 928 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 929 { 930 _regs->gpr[1] = infop->start_stack; 931 #if defined(TARGET_PPC64) 932 if (get_ppc64_abi(infop) < 2) { 933 uint64_t val; 934 get_user_u64(val, infop->entry + 8); 935 _regs->gpr[2] = val + infop->load_bias; 936 get_user_u64(val, infop->entry); 937 infop->entry = val + infop->load_bias; 938 } else { 939 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 940 } 941 #endif 942 _regs->nip = infop->entry; 943 } 944 945 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 946 #define ELF_NREG 48 947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 948 949 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 950 { 951 int i; 952 target_ulong ccr = 0; 953 954 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 955 (*regs)[i] = tswapreg(env->gpr[i]); 956 } 957 958 (*regs)[32] = tswapreg(env->nip); 959 (*regs)[33] = tswapreg(env->msr); 960 (*regs)[35] = tswapreg(env->ctr); 961 (*regs)[36] = tswapreg(env->lr); 962 (*regs)[37] = tswapreg(cpu_read_xer(env)); 963 964 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 965 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 966 } 967 (*regs)[38] = tswapreg(ccr); 968 } 969 970 #define USE_ELF_CORE_DUMP 971 #define ELF_EXEC_PAGESIZE 4096 972 973 #endif 974 975 #ifdef TARGET_LOONGARCH64 976 977 #define ELF_START_MMAP 0x80000000 978 979 #define ELF_CLASS ELFCLASS64 980 #define ELF_ARCH EM_LOONGARCH 981 #define EXSTACK_DEFAULT true 982 983 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 984 985 static inline void init_thread(struct target_pt_regs *regs, 986 struct image_info *infop) 987 { 988 /*Set crmd PG,DA = 1,0 */ 989 regs->csr.crmd = 2 << 3; 990 regs->csr.era = infop->entry; 991 regs->regs[3] = infop->start_stack; 992 } 993 994 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 995 #define ELF_NREG 45 996 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 997 998 enum { 999 TARGET_EF_R0 = 0, 1000 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1001 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1002 }; 1003 1004 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1005 const CPULoongArchState *env) 1006 { 1007 int i; 1008 1009 (*regs)[TARGET_EF_R0] = 0; 1010 1011 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1012 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1013 } 1014 1015 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1016 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1017 } 1018 1019 #define USE_ELF_CORE_DUMP 1020 #define ELF_EXEC_PAGESIZE 4096 1021 1022 #define ELF_HWCAP get_elf_hwcap() 1023 1024 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1025 enum { 1026 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1027 HWCAP_LOONGARCH_LAM = (1 << 1), 1028 HWCAP_LOONGARCH_UAL = (1 << 2), 1029 HWCAP_LOONGARCH_FPU = (1 << 3), 1030 HWCAP_LOONGARCH_LSX = (1 << 4), 1031 HWCAP_LOONGARCH_LASX = (1 << 5), 1032 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1033 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1034 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1035 HWCAP_LOONGARCH_LVZ = (1 << 9), 1036 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1037 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1038 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1039 }; 1040 1041 static uint32_t get_elf_hwcap(void) 1042 { 1043 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1044 uint32_t hwcaps = 0; 1045 1046 hwcaps |= HWCAP_LOONGARCH_CRC32; 1047 1048 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1049 hwcaps |= HWCAP_LOONGARCH_UAL; 1050 } 1051 1052 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1053 hwcaps |= HWCAP_LOONGARCH_FPU; 1054 } 1055 1056 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1057 hwcaps |= HWCAP_LOONGARCH_LAM; 1058 } 1059 1060 return hwcaps; 1061 } 1062 1063 #define ELF_PLATFORM "loongarch" 1064 1065 #endif /* TARGET_LOONGARCH64 */ 1066 1067 #ifdef TARGET_MIPS 1068 1069 #define ELF_START_MMAP 0x80000000 1070 1071 #ifdef TARGET_MIPS64 1072 #define ELF_CLASS ELFCLASS64 1073 #else 1074 #define ELF_CLASS ELFCLASS32 1075 #endif 1076 #define ELF_ARCH EM_MIPS 1077 #define EXSTACK_DEFAULT true 1078 1079 #ifdef TARGET_ABI_MIPSN32 1080 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1081 #else 1082 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1083 #endif 1084 1085 #define ELF_BASE_PLATFORM get_elf_base_platform() 1086 1087 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1088 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1089 { return _base_platform; } } while (0) 1090 1091 static const char *get_elf_base_platform(void) 1092 { 1093 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1094 1095 /* 64 bit ISAs goes first */ 1096 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1097 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1098 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1099 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1100 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1101 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1102 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1103 1104 /* 32 bit ISAs */ 1105 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1106 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1107 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1108 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1109 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1110 1111 /* Fallback */ 1112 return "mips"; 1113 } 1114 #undef MATCH_PLATFORM_INSN 1115 1116 static inline void init_thread(struct target_pt_regs *regs, 1117 struct image_info *infop) 1118 { 1119 regs->cp0_status = 2 << CP0St_KSU; 1120 regs->cp0_epc = infop->entry; 1121 regs->regs[29] = infop->start_stack; 1122 } 1123 1124 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1125 #define ELF_NREG 45 1126 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1127 1128 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1129 enum { 1130 #ifdef TARGET_MIPS64 1131 TARGET_EF_R0 = 0, 1132 #else 1133 TARGET_EF_R0 = 6, 1134 #endif 1135 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1136 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1137 TARGET_EF_LO = TARGET_EF_R0 + 32, 1138 TARGET_EF_HI = TARGET_EF_R0 + 33, 1139 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1140 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1141 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1142 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1143 }; 1144 1145 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1146 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1147 { 1148 int i; 1149 1150 for (i = 0; i < TARGET_EF_R0; i++) { 1151 (*regs)[i] = 0; 1152 } 1153 (*regs)[TARGET_EF_R0] = 0; 1154 1155 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1156 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1157 } 1158 1159 (*regs)[TARGET_EF_R26] = 0; 1160 (*regs)[TARGET_EF_R27] = 0; 1161 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1162 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1163 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1164 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1165 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1166 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1167 } 1168 1169 #define USE_ELF_CORE_DUMP 1170 #define ELF_EXEC_PAGESIZE 4096 1171 1172 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1173 enum { 1174 HWCAP_MIPS_R6 = (1 << 0), 1175 HWCAP_MIPS_MSA = (1 << 1), 1176 HWCAP_MIPS_CRC32 = (1 << 2), 1177 HWCAP_MIPS_MIPS16 = (1 << 3), 1178 HWCAP_MIPS_MDMX = (1 << 4), 1179 HWCAP_MIPS_MIPS3D = (1 << 5), 1180 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1181 HWCAP_MIPS_DSP = (1 << 7), 1182 HWCAP_MIPS_DSP2 = (1 << 8), 1183 HWCAP_MIPS_DSP3 = (1 << 9), 1184 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1185 HWCAP_LOONGSON_MMI = (1 << 11), 1186 HWCAP_LOONGSON_EXT = (1 << 12), 1187 HWCAP_LOONGSON_EXT2 = (1 << 13), 1188 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1189 }; 1190 1191 #define ELF_HWCAP get_elf_hwcap() 1192 1193 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1194 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1195 1196 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1197 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1198 1199 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1200 do { \ 1201 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1202 hwcaps |= _hwcap; \ 1203 } \ 1204 } while (0) 1205 1206 static uint32_t get_elf_hwcap(void) 1207 { 1208 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1209 uint32_t hwcaps = 0; 1210 1211 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1212 2, HWCAP_MIPS_R6); 1213 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1214 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1215 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1216 1217 return hwcaps; 1218 } 1219 1220 #undef GET_FEATURE_REG_EQU 1221 #undef GET_FEATURE_REG_SET 1222 #undef GET_FEATURE_INSN 1223 1224 #endif /* TARGET_MIPS */ 1225 1226 #ifdef TARGET_MICROBLAZE 1227 1228 #define ELF_START_MMAP 0x80000000 1229 1230 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1231 1232 #define ELF_CLASS ELFCLASS32 1233 #define ELF_ARCH EM_MICROBLAZE 1234 1235 static inline void init_thread(struct target_pt_regs *regs, 1236 struct image_info *infop) 1237 { 1238 regs->pc = infop->entry; 1239 regs->r1 = infop->start_stack; 1240 1241 } 1242 1243 #define ELF_EXEC_PAGESIZE 4096 1244 1245 #define USE_ELF_CORE_DUMP 1246 #define ELF_NREG 38 1247 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1248 1249 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1250 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1251 { 1252 int i, pos = 0; 1253 1254 for (i = 0; i < 32; i++) { 1255 (*regs)[pos++] = tswapreg(env->regs[i]); 1256 } 1257 1258 (*regs)[pos++] = tswapreg(env->pc); 1259 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1260 (*regs)[pos++] = 0; 1261 (*regs)[pos++] = tswapreg(env->ear); 1262 (*regs)[pos++] = 0; 1263 (*regs)[pos++] = tswapreg(env->esr); 1264 } 1265 1266 #endif /* TARGET_MICROBLAZE */ 1267 1268 #ifdef TARGET_NIOS2 1269 1270 #define ELF_START_MMAP 0x80000000 1271 1272 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1273 1274 #define ELF_CLASS ELFCLASS32 1275 #define ELF_ARCH EM_ALTERA_NIOS2 1276 1277 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1278 { 1279 regs->ea = infop->entry; 1280 regs->sp = infop->start_stack; 1281 } 1282 1283 #define LO_COMMPAGE TARGET_PAGE_SIZE 1284 1285 static bool init_guest_commpage(void) 1286 { 1287 static const uint8_t kuser_page[4 + 2 * 64] = { 1288 /* __kuser_helper_version */ 1289 [0x00] = 0x02, 0x00, 0x00, 0x00, 1290 1291 /* __kuser_cmpxchg */ 1292 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1293 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1294 1295 /* __kuser_sigtramp */ 1296 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1297 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1298 }; 1299 1300 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1301 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1302 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1303 1304 if (addr == MAP_FAILED) { 1305 perror("Allocating guest commpage"); 1306 exit(EXIT_FAILURE); 1307 } 1308 if (addr != want) { 1309 return false; 1310 } 1311 1312 memcpy(addr, kuser_page, sizeof(kuser_page)); 1313 1314 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1315 perror("Protecting guest commpage"); 1316 exit(EXIT_FAILURE); 1317 } 1318 1319 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1320 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1321 return true; 1322 } 1323 1324 #define ELF_EXEC_PAGESIZE 4096 1325 1326 #define USE_ELF_CORE_DUMP 1327 #define ELF_NREG 49 1328 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1329 1330 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1331 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1332 const CPUNios2State *env) 1333 { 1334 int i; 1335 1336 (*regs)[0] = -1; 1337 for (i = 1; i < 8; i++) /* r0-r7 */ 1338 (*regs)[i] = tswapreg(env->regs[i + 7]); 1339 1340 for (i = 8; i < 16; i++) /* r8-r15 */ 1341 (*regs)[i] = tswapreg(env->regs[i - 8]); 1342 1343 for (i = 16; i < 24; i++) /* r16-r23 */ 1344 (*regs)[i] = tswapreg(env->regs[i + 7]); 1345 (*regs)[24] = -1; /* R_ET */ 1346 (*regs)[25] = -1; /* R_BT */ 1347 (*regs)[26] = tswapreg(env->regs[R_GP]); 1348 (*regs)[27] = tswapreg(env->regs[R_SP]); 1349 (*regs)[28] = tswapreg(env->regs[R_FP]); 1350 (*regs)[29] = tswapreg(env->regs[R_EA]); 1351 (*regs)[30] = -1; /* R_SSTATUS */ 1352 (*regs)[31] = tswapreg(env->regs[R_RA]); 1353 1354 (*regs)[32] = tswapreg(env->pc); 1355 1356 (*regs)[33] = -1; /* R_STATUS */ 1357 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1358 1359 for (i = 35; i < 49; i++) /* ... */ 1360 (*regs)[i] = -1; 1361 } 1362 1363 #endif /* TARGET_NIOS2 */ 1364 1365 #ifdef TARGET_OPENRISC 1366 1367 #define ELF_START_MMAP 0x08000000 1368 1369 #define ELF_ARCH EM_OPENRISC 1370 #define ELF_CLASS ELFCLASS32 1371 #define ELF_DATA ELFDATA2MSB 1372 1373 static inline void init_thread(struct target_pt_regs *regs, 1374 struct image_info *infop) 1375 { 1376 regs->pc = infop->entry; 1377 regs->gpr[1] = infop->start_stack; 1378 } 1379 1380 #define USE_ELF_CORE_DUMP 1381 #define ELF_EXEC_PAGESIZE 8192 1382 1383 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1384 #define ELF_NREG 34 /* gprs and pc, sr */ 1385 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1386 1387 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1388 const CPUOpenRISCState *env) 1389 { 1390 int i; 1391 1392 for (i = 0; i < 32; i++) { 1393 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1394 } 1395 (*regs)[32] = tswapreg(env->pc); 1396 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1397 } 1398 #define ELF_HWCAP 0 1399 #define ELF_PLATFORM NULL 1400 1401 #endif /* TARGET_OPENRISC */ 1402 1403 #ifdef TARGET_SH4 1404 1405 #define ELF_START_MMAP 0x80000000 1406 1407 #define ELF_CLASS ELFCLASS32 1408 #define ELF_ARCH EM_SH 1409 1410 static inline void init_thread(struct target_pt_regs *regs, 1411 struct image_info *infop) 1412 { 1413 /* Check other registers XXXXX */ 1414 regs->pc = infop->entry; 1415 regs->regs[15] = infop->start_stack; 1416 } 1417 1418 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1419 #define ELF_NREG 23 1420 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1421 1422 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1423 enum { 1424 TARGET_REG_PC = 16, 1425 TARGET_REG_PR = 17, 1426 TARGET_REG_SR = 18, 1427 TARGET_REG_GBR = 19, 1428 TARGET_REG_MACH = 20, 1429 TARGET_REG_MACL = 21, 1430 TARGET_REG_SYSCALL = 22 1431 }; 1432 1433 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1434 const CPUSH4State *env) 1435 { 1436 int i; 1437 1438 for (i = 0; i < 16; i++) { 1439 (*regs)[i] = tswapreg(env->gregs[i]); 1440 } 1441 1442 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1443 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1444 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1445 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1446 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1447 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1448 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1449 } 1450 1451 #define USE_ELF_CORE_DUMP 1452 #define ELF_EXEC_PAGESIZE 4096 1453 1454 enum { 1455 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1456 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1457 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1458 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1459 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1460 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1461 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1462 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1463 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1464 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1465 }; 1466 1467 #define ELF_HWCAP get_elf_hwcap() 1468 1469 static uint32_t get_elf_hwcap(void) 1470 { 1471 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1472 uint32_t hwcap = 0; 1473 1474 hwcap |= SH_CPU_HAS_FPU; 1475 1476 if (cpu->env.features & SH_FEATURE_SH4A) { 1477 hwcap |= SH_CPU_HAS_LLSC; 1478 } 1479 1480 return hwcap; 1481 } 1482 1483 #endif 1484 1485 #ifdef TARGET_CRIS 1486 1487 #define ELF_START_MMAP 0x80000000 1488 1489 #define ELF_CLASS ELFCLASS32 1490 #define ELF_ARCH EM_CRIS 1491 1492 static inline void init_thread(struct target_pt_regs *regs, 1493 struct image_info *infop) 1494 { 1495 regs->erp = infop->entry; 1496 } 1497 1498 #define ELF_EXEC_PAGESIZE 8192 1499 1500 #endif 1501 1502 #ifdef TARGET_M68K 1503 1504 #define ELF_START_MMAP 0x80000000 1505 1506 #define ELF_CLASS ELFCLASS32 1507 #define ELF_ARCH EM_68K 1508 1509 /* ??? Does this need to do anything? 1510 #define ELF_PLAT_INIT(_r) */ 1511 1512 static inline void init_thread(struct target_pt_regs *regs, 1513 struct image_info *infop) 1514 { 1515 regs->usp = infop->start_stack; 1516 regs->sr = 0; 1517 regs->pc = infop->entry; 1518 } 1519 1520 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1521 #define ELF_NREG 20 1522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1523 1524 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1525 { 1526 (*regs)[0] = tswapreg(env->dregs[1]); 1527 (*regs)[1] = tswapreg(env->dregs[2]); 1528 (*regs)[2] = tswapreg(env->dregs[3]); 1529 (*regs)[3] = tswapreg(env->dregs[4]); 1530 (*regs)[4] = tswapreg(env->dregs[5]); 1531 (*regs)[5] = tswapreg(env->dregs[6]); 1532 (*regs)[6] = tswapreg(env->dregs[7]); 1533 (*regs)[7] = tswapreg(env->aregs[0]); 1534 (*regs)[8] = tswapreg(env->aregs[1]); 1535 (*regs)[9] = tswapreg(env->aregs[2]); 1536 (*regs)[10] = tswapreg(env->aregs[3]); 1537 (*regs)[11] = tswapreg(env->aregs[4]); 1538 (*regs)[12] = tswapreg(env->aregs[5]); 1539 (*regs)[13] = tswapreg(env->aregs[6]); 1540 (*regs)[14] = tswapreg(env->dregs[0]); 1541 (*regs)[15] = tswapreg(env->aregs[7]); 1542 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1543 (*regs)[17] = tswapreg(env->sr); 1544 (*regs)[18] = tswapreg(env->pc); 1545 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1546 } 1547 1548 #define USE_ELF_CORE_DUMP 1549 #define ELF_EXEC_PAGESIZE 8192 1550 1551 #endif 1552 1553 #ifdef TARGET_ALPHA 1554 1555 #define ELF_START_MMAP (0x30000000000ULL) 1556 1557 #define ELF_CLASS ELFCLASS64 1558 #define ELF_ARCH EM_ALPHA 1559 1560 static inline void init_thread(struct target_pt_regs *regs, 1561 struct image_info *infop) 1562 { 1563 regs->pc = infop->entry; 1564 regs->ps = 8; 1565 regs->usp = infop->start_stack; 1566 } 1567 1568 #define ELF_EXEC_PAGESIZE 8192 1569 1570 #endif /* TARGET_ALPHA */ 1571 1572 #ifdef TARGET_S390X 1573 1574 #define ELF_START_MMAP (0x20000000000ULL) 1575 1576 #define ELF_CLASS ELFCLASS64 1577 #define ELF_DATA ELFDATA2MSB 1578 #define ELF_ARCH EM_S390 1579 1580 #include "elf.h" 1581 1582 #define ELF_HWCAP get_elf_hwcap() 1583 1584 #define GET_FEATURE(_feat, _hwcap) \ 1585 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1586 1587 static uint32_t get_elf_hwcap(void) 1588 { 1589 /* 1590 * Let's assume we always have esan3 and zarch. 1591 * 31-bit processes can use 64-bit registers (high gprs). 1592 */ 1593 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1594 1595 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1596 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1597 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1598 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1599 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1600 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1601 hwcap |= HWCAP_S390_ETF3EH; 1602 } 1603 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1604 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1605 1606 return hwcap; 1607 } 1608 1609 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1610 { 1611 regs->psw.addr = infop->entry; 1612 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1613 regs->gprs[15] = infop->start_stack; 1614 } 1615 1616 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1617 #define ELF_NREG 27 1618 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1619 1620 enum { 1621 TARGET_REG_PSWM = 0, 1622 TARGET_REG_PSWA = 1, 1623 TARGET_REG_GPRS = 2, 1624 TARGET_REG_ARS = 18, 1625 TARGET_REG_ORIG_R2 = 26, 1626 }; 1627 1628 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1629 const CPUS390XState *env) 1630 { 1631 int i; 1632 uint32_t *aregs; 1633 1634 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1635 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1636 for (i = 0; i < 16; i++) { 1637 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1638 } 1639 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1640 for (i = 0; i < 16; i++) { 1641 aregs[i] = tswap32(env->aregs[i]); 1642 } 1643 (*regs)[TARGET_REG_ORIG_R2] = 0; 1644 } 1645 1646 #define USE_ELF_CORE_DUMP 1647 #define ELF_EXEC_PAGESIZE 4096 1648 1649 #endif /* TARGET_S390X */ 1650 1651 #ifdef TARGET_RISCV 1652 1653 #define ELF_START_MMAP 0x80000000 1654 #define ELF_ARCH EM_RISCV 1655 1656 #ifdef TARGET_RISCV32 1657 #define ELF_CLASS ELFCLASS32 1658 #else 1659 #define ELF_CLASS ELFCLASS64 1660 #endif 1661 1662 #define ELF_HWCAP get_elf_hwcap() 1663 1664 static uint32_t get_elf_hwcap(void) 1665 { 1666 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1667 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1668 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1669 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1670 1671 return cpu->env.misa_ext & mask; 1672 #undef MISA_BIT 1673 } 1674 1675 static inline void init_thread(struct target_pt_regs *regs, 1676 struct image_info *infop) 1677 { 1678 regs->sepc = infop->entry; 1679 regs->sp = infop->start_stack; 1680 } 1681 1682 #define ELF_EXEC_PAGESIZE 4096 1683 1684 #endif /* TARGET_RISCV */ 1685 1686 #ifdef TARGET_HPPA 1687 1688 #define ELF_START_MMAP 0x80000000 1689 #define ELF_CLASS ELFCLASS32 1690 #define ELF_ARCH EM_PARISC 1691 #define ELF_PLATFORM "PARISC" 1692 #define STACK_GROWS_DOWN 0 1693 #define STACK_ALIGNMENT 64 1694 1695 static inline void init_thread(struct target_pt_regs *regs, 1696 struct image_info *infop) 1697 { 1698 regs->iaoq[0] = infop->entry; 1699 regs->iaoq[1] = infop->entry + 4; 1700 regs->gr[23] = 0; 1701 regs->gr[24] = infop->argv; 1702 regs->gr[25] = infop->argc; 1703 /* The top-of-stack contains a linkage buffer. */ 1704 regs->gr[30] = infop->start_stack + 64; 1705 regs->gr[31] = infop->entry; 1706 } 1707 1708 #define LO_COMMPAGE 0 1709 1710 static bool init_guest_commpage(void) 1711 { 1712 void *want = g2h_untagged(LO_COMMPAGE); 1713 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1714 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1715 1716 if (addr == MAP_FAILED) { 1717 perror("Allocating guest commpage"); 1718 exit(EXIT_FAILURE); 1719 } 1720 if (addr != want) { 1721 return false; 1722 } 1723 1724 /* 1725 * On Linux, page zero is normally marked execute only + gateway. 1726 * Normal read or write is supposed to fail (thus PROT_NONE above), 1727 * but specific offsets have kernel code mapped to raise permissions 1728 * and implement syscalls. Here, simply mark the page executable. 1729 * Special case the entry points during translation (see do_page_zero). 1730 */ 1731 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1732 PAGE_EXEC | PAGE_VALID); 1733 return true; 1734 } 1735 1736 #endif /* TARGET_HPPA */ 1737 1738 #ifdef TARGET_XTENSA 1739 1740 #define ELF_START_MMAP 0x20000000 1741 1742 #define ELF_CLASS ELFCLASS32 1743 #define ELF_ARCH EM_XTENSA 1744 1745 static inline void init_thread(struct target_pt_regs *regs, 1746 struct image_info *infop) 1747 { 1748 regs->windowbase = 0; 1749 regs->windowstart = 1; 1750 regs->areg[1] = infop->start_stack; 1751 regs->pc = infop->entry; 1752 if (info_is_fdpic(infop)) { 1753 regs->areg[4] = infop->loadmap_addr; 1754 regs->areg[5] = infop->interpreter_loadmap_addr; 1755 if (infop->interpreter_loadmap_addr) { 1756 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1757 } else { 1758 regs->areg[6] = infop->pt_dynamic_addr; 1759 } 1760 } 1761 } 1762 1763 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1764 #define ELF_NREG 128 1765 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1766 1767 enum { 1768 TARGET_REG_PC, 1769 TARGET_REG_PS, 1770 TARGET_REG_LBEG, 1771 TARGET_REG_LEND, 1772 TARGET_REG_LCOUNT, 1773 TARGET_REG_SAR, 1774 TARGET_REG_WINDOWSTART, 1775 TARGET_REG_WINDOWBASE, 1776 TARGET_REG_THREADPTR, 1777 TARGET_REG_AR0 = 64, 1778 }; 1779 1780 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1781 const CPUXtensaState *env) 1782 { 1783 unsigned i; 1784 1785 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1786 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1787 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1788 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1789 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1790 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1791 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1792 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1793 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1794 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1795 for (i = 0; i < env->config->nareg; ++i) { 1796 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1797 } 1798 } 1799 1800 #define USE_ELF_CORE_DUMP 1801 #define ELF_EXEC_PAGESIZE 4096 1802 1803 #endif /* TARGET_XTENSA */ 1804 1805 #ifdef TARGET_HEXAGON 1806 1807 #define ELF_START_MMAP 0x20000000 1808 1809 #define ELF_CLASS ELFCLASS32 1810 #define ELF_ARCH EM_HEXAGON 1811 1812 static inline void init_thread(struct target_pt_regs *regs, 1813 struct image_info *infop) 1814 { 1815 regs->sepc = infop->entry; 1816 regs->sp = infop->start_stack; 1817 } 1818 1819 #endif /* TARGET_HEXAGON */ 1820 1821 #ifndef ELF_BASE_PLATFORM 1822 #define ELF_BASE_PLATFORM (NULL) 1823 #endif 1824 1825 #ifndef ELF_PLATFORM 1826 #define ELF_PLATFORM (NULL) 1827 #endif 1828 1829 #ifndef ELF_MACHINE 1830 #define ELF_MACHINE ELF_ARCH 1831 #endif 1832 1833 #ifndef elf_check_arch 1834 #define elf_check_arch(x) ((x) == ELF_ARCH) 1835 #endif 1836 1837 #ifndef elf_check_abi 1838 #define elf_check_abi(x) (1) 1839 #endif 1840 1841 #ifndef ELF_HWCAP 1842 #define ELF_HWCAP 0 1843 #endif 1844 1845 #ifndef STACK_GROWS_DOWN 1846 #define STACK_GROWS_DOWN 1 1847 #endif 1848 1849 #ifndef STACK_ALIGNMENT 1850 #define STACK_ALIGNMENT 16 1851 #endif 1852 1853 #ifdef TARGET_ABI32 1854 #undef ELF_CLASS 1855 #define ELF_CLASS ELFCLASS32 1856 #undef bswaptls 1857 #define bswaptls(ptr) bswap32s(ptr) 1858 #endif 1859 1860 #ifndef EXSTACK_DEFAULT 1861 #define EXSTACK_DEFAULT false 1862 #endif 1863 1864 #include "elf.h" 1865 1866 /* We must delay the following stanzas until after "elf.h". */ 1867 #if defined(TARGET_AARCH64) 1868 1869 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1870 const uint32_t *data, 1871 struct image_info *info, 1872 Error **errp) 1873 { 1874 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1875 if (pr_datasz != sizeof(uint32_t)) { 1876 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1877 return false; 1878 } 1879 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1880 info->note_flags = *data; 1881 } 1882 return true; 1883 } 1884 #define ARCH_USE_GNU_PROPERTY 1 1885 1886 #else 1887 1888 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1889 const uint32_t *data, 1890 struct image_info *info, 1891 Error **errp) 1892 { 1893 g_assert_not_reached(); 1894 } 1895 #define ARCH_USE_GNU_PROPERTY 0 1896 1897 #endif 1898 1899 struct exec 1900 { 1901 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1902 unsigned int a_text; /* length of text, in bytes */ 1903 unsigned int a_data; /* length of data, in bytes */ 1904 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1905 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1906 unsigned int a_entry; /* start address */ 1907 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1908 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1909 }; 1910 1911 1912 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1913 #define OMAGIC 0407 1914 #define NMAGIC 0410 1915 #define ZMAGIC 0413 1916 #define QMAGIC 0314 1917 1918 /* Necessary parameters */ 1919 #define TARGET_ELF_EXEC_PAGESIZE \ 1920 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1921 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1922 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1923 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1924 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1925 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1926 1927 #define DLINFO_ITEMS 16 1928 1929 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1930 { 1931 memcpy(to, from, n); 1932 } 1933 1934 #ifdef BSWAP_NEEDED 1935 static void bswap_ehdr(struct elfhdr *ehdr) 1936 { 1937 bswap16s(&ehdr->e_type); /* Object file type */ 1938 bswap16s(&ehdr->e_machine); /* Architecture */ 1939 bswap32s(&ehdr->e_version); /* Object file version */ 1940 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1941 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1942 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1943 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1944 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1945 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1946 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1947 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1948 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1949 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1950 } 1951 1952 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1953 { 1954 int i; 1955 for (i = 0; i < phnum; ++i, ++phdr) { 1956 bswap32s(&phdr->p_type); /* Segment type */ 1957 bswap32s(&phdr->p_flags); /* Segment flags */ 1958 bswaptls(&phdr->p_offset); /* Segment file offset */ 1959 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1960 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1961 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1962 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1963 bswaptls(&phdr->p_align); /* Segment alignment */ 1964 } 1965 } 1966 1967 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1968 { 1969 int i; 1970 for (i = 0; i < shnum; ++i, ++shdr) { 1971 bswap32s(&shdr->sh_name); 1972 bswap32s(&shdr->sh_type); 1973 bswaptls(&shdr->sh_flags); 1974 bswaptls(&shdr->sh_addr); 1975 bswaptls(&shdr->sh_offset); 1976 bswaptls(&shdr->sh_size); 1977 bswap32s(&shdr->sh_link); 1978 bswap32s(&shdr->sh_info); 1979 bswaptls(&shdr->sh_addralign); 1980 bswaptls(&shdr->sh_entsize); 1981 } 1982 } 1983 1984 static void bswap_sym(struct elf_sym *sym) 1985 { 1986 bswap32s(&sym->st_name); 1987 bswaptls(&sym->st_value); 1988 bswaptls(&sym->st_size); 1989 bswap16s(&sym->st_shndx); 1990 } 1991 1992 #ifdef TARGET_MIPS 1993 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1994 { 1995 bswap16s(&abiflags->version); 1996 bswap32s(&abiflags->ases); 1997 bswap32s(&abiflags->isa_ext); 1998 bswap32s(&abiflags->flags1); 1999 bswap32s(&abiflags->flags2); 2000 } 2001 #endif 2002 #else 2003 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2004 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2005 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2006 static inline void bswap_sym(struct elf_sym *sym) { } 2007 #ifdef TARGET_MIPS 2008 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2009 #endif 2010 #endif 2011 2012 #ifdef USE_ELF_CORE_DUMP 2013 static int elf_core_dump(int, const CPUArchState *); 2014 #endif /* USE_ELF_CORE_DUMP */ 2015 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2016 2017 /* Verify the portions of EHDR within E_IDENT for the target. 2018 This can be performed before bswapping the entire header. */ 2019 static bool elf_check_ident(struct elfhdr *ehdr) 2020 { 2021 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2022 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2023 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2024 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2025 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2026 && ehdr->e_ident[EI_DATA] == ELF_DATA 2027 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2028 } 2029 2030 /* Verify the portions of EHDR outside of E_IDENT for the target. 2031 This has to wait until after bswapping the header. */ 2032 static bool elf_check_ehdr(struct elfhdr *ehdr) 2033 { 2034 return (elf_check_arch(ehdr->e_machine) 2035 && elf_check_abi(ehdr->e_flags) 2036 && ehdr->e_ehsize == sizeof(struct elfhdr) 2037 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2038 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2039 } 2040 2041 /* 2042 * 'copy_elf_strings()' copies argument/envelope strings from user 2043 * memory to free pages in kernel mem. These are in a format ready 2044 * to be put directly into the top of new user memory. 2045 * 2046 */ 2047 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2048 abi_ulong p, abi_ulong stack_limit) 2049 { 2050 char *tmp; 2051 int len, i; 2052 abi_ulong top = p; 2053 2054 if (!p) { 2055 return 0; /* bullet-proofing */ 2056 } 2057 2058 if (STACK_GROWS_DOWN) { 2059 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2060 for (i = argc - 1; i >= 0; --i) { 2061 tmp = argv[i]; 2062 if (!tmp) { 2063 fprintf(stderr, "VFS: argc is wrong"); 2064 exit(-1); 2065 } 2066 len = strlen(tmp) + 1; 2067 tmp += len; 2068 2069 if (len > (p - stack_limit)) { 2070 return 0; 2071 } 2072 while (len) { 2073 int bytes_to_copy = (len > offset) ? offset : len; 2074 tmp -= bytes_to_copy; 2075 p -= bytes_to_copy; 2076 offset -= bytes_to_copy; 2077 len -= bytes_to_copy; 2078 2079 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2080 2081 if (offset == 0) { 2082 memcpy_to_target(p, scratch, top - p); 2083 top = p; 2084 offset = TARGET_PAGE_SIZE; 2085 } 2086 } 2087 } 2088 if (p != top) { 2089 memcpy_to_target(p, scratch + offset, top - p); 2090 } 2091 } else { 2092 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2093 for (i = 0; i < argc; ++i) { 2094 tmp = argv[i]; 2095 if (!tmp) { 2096 fprintf(stderr, "VFS: argc is wrong"); 2097 exit(-1); 2098 } 2099 len = strlen(tmp) + 1; 2100 if (len > (stack_limit - p)) { 2101 return 0; 2102 } 2103 while (len) { 2104 int bytes_to_copy = (len > remaining) ? remaining : len; 2105 2106 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2107 2108 tmp += bytes_to_copy; 2109 remaining -= bytes_to_copy; 2110 p += bytes_to_copy; 2111 len -= bytes_to_copy; 2112 2113 if (remaining == 0) { 2114 memcpy_to_target(top, scratch, p - top); 2115 top = p; 2116 remaining = TARGET_PAGE_SIZE; 2117 } 2118 } 2119 } 2120 if (p != top) { 2121 memcpy_to_target(top, scratch, p - top); 2122 } 2123 } 2124 2125 return p; 2126 } 2127 2128 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2129 * argument/environment space. Newer kernels (>2.6.33) allow more, 2130 * dependent on stack size, but guarantee at least 32 pages for 2131 * backwards compatibility. 2132 */ 2133 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2134 2135 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2136 struct image_info *info) 2137 { 2138 abi_ulong size, error, guard; 2139 int prot; 2140 2141 size = guest_stack_size; 2142 if (size < STACK_LOWER_LIMIT) { 2143 size = STACK_LOWER_LIMIT; 2144 } 2145 2146 if (STACK_GROWS_DOWN) { 2147 guard = TARGET_PAGE_SIZE; 2148 if (guard < qemu_real_host_page_size()) { 2149 guard = qemu_real_host_page_size(); 2150 } 2151 } else { 2152 /* no guard page for hppa target where stack grows upwards. */ 2153 guard = 0; 2154 } 2155 2156 prot = PROT_READ | PROT_WRITE; 2157 if (info->exec_stack) { 2158 prot |= PROT_EXEC; 2159 } 2160 error = target_mmap(0, size + guard, prot, 2161 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2162 if (error == -1) { 2163 perror("mmap stack"); 2164 exit(-1); 2165 } 2166 2167 /* We reserve one extra page at the top of the stack as guard. */ 2168 if (STACK_GROWS_DOWN) { 2169 target_mprotect(error, guard, PROT_NONE); 2170 info->stack_limit = error + guard; 2171 return info->stack_limit + size - sizeof(void *); 2172 } else { 2173 info->stack_limit = error + size; 2174 return error; 2175 } 2176 } 2177 2178 /* Map and zero the bss. We need to explicitly zero any fractional pages 2179 after the data section (i.e. bss). */ 2180 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2181 { 2182 uintptr_t host_start, host_map_start, host_end; 2183 2184 last_bss = TARGET_PAGE_ALIGN(last_bss); 2185 2186 /* ??? There is confusion between qemu_real_host_page_size and 2187 qemu_host_page_size here and elsewhere in target_mmap, which 2188 may lead to the end of the data section mapping from the file 2189 not being mapped. At least there was an explicit test and 2190 comment for that here, suggesting that "the file size must 2191 be known". The comment probably pre-dates the introduction 2192 of the fstat system call in target_mmap which does in fact 2193 find out the size. What isn't clear is if the workaround 2194 here is still actually needed. For now, continue with it, 2195 but merge it with the "normal" mmap that would allocate the bss. */ 2196 2197 host_start = (uintptr_t) g2h_untagged(elf_bss); 2198 host_end = (uintptr_t) g2h_untagged(last_bss); 2199 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2200 2201 if (host_map_start < host_end) { 2202 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2203 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2204 if (p == MAP_FAILED) { 2205 perror("cannot mmap brk"); 2206 exit(-1); 2207 } 2208 } 2209 2210 /* Ensure that the bss page(s) are valid */ 2211 if ((page_get_flags(last_bss-1) & prot) != prot) { 2212 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1, 2213 prot | PAGE_VALID); 2214 } 2215 2216 if (host_start < host_map_start) { 2217 memset((void *)host_start, 0, host_map_start - host_start); 2218 } 2219 } 2220 2221 #if defined(TARGET_ARM) 2222 static int elf_is_fdpic(struct elfhdr *exec) 2223 { 2224 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2225 } 2226 #elif defined(TARGET_XTENSA) 2227 static int elf_is_fdpic(struct elfhdr *exec) 2228 { 2229 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2230 } 2231 #else 2232 /* Default implementation, always false. */ 2233 static int elf_is_fdpic(struct elfhdr *exec) 2234 { 2235 return 0; 2236 } 2237 #endif 2238 2239 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2240 { 2241 uint16_t n; 2242 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2243 2244 /* elf32_fdpic_loadseg */ 2245 n = info->nsegs; 2246 while (n--) { 2247 sp -= 12; 2248 put_user_u32(loadsegs[n].addr, sp+0); 2249 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2250 put_user_u32(loadsegs[n].p_memsz, sp+8); 2251 } 2252 2253 /* elf32_fdpic_loadmap */ 2254 sp -= 4; 2255 put_user_u16(0, sp+0); /* version */ 2256 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2257 2258 info->personality = PER_LINUX_FDPIC; 2259 info->loadmap_addr = sp; 2260 2261 return sp; 2262 } 2263 2264 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2265 struct elfhdr *exec, 2266 struct image_info *info, 2267 struct image_info *interp_info) 2268 { 2269 abi_ulong sp; 2270 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2271 int size; 2272 int i; 2273 abi_ulong u_rand_bytes; 2274 uint8_t k_rand_bytes[16]; 2275 abi_ulong u_platform, u_base_platform; 2276 const char *k_platform, *k_base_platform; 2277 const int n = sizeof(elf_addr_t); 2278 2279 sp = p; 2280 2281 /* Needs to be before we load the env/argc/... */ 2282 if (elf_is_fdpic(exec)) { 2283 /* Need 4 byte alignment for these structs */ 2284 sp &= ~3; 2285 sp = loader_build_fdpic_loadmap(info, sp); 2286 info->other_info = interp_info; 2287 if (interp_info) { 2288 interp_info->other_info = info; 2289 sp = loader_build_fdpic_loadmap(interp_info, sp); 2290 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2291 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2292 } else { 2293 info->interpreter_loadmap_addr = 0; 2294 info->interpreter_pt_dynamic_addr = 0; 2295 } 2296 } 2297 2298 u_base_platform = 0; 2299 k_base_platform = ELF_BASE_PLATFORM; 2300 if (k_base_platform) { 2301 size_t len = strlen(k_base_platform) + 1; 2302 if (STACK_GROWS_DOWN) { 2303 sp -= (len + n - 1) & ~(n - 1); 2304 u_base_platform = sp; 2305 /* FIXME - check return value of memcpy_to_target() for failure */ 2306 memcpy_to_target(sp, k_base_platform, len); 2307 } else { 2308 memcpy_to_target(sp, k_base_platform, len); 2309 u_base_platform = sp; 2310 sp += len + 1; 2311 } 2312 } 2313 2314 u_platform = 0; 2315 k_platform = ELF_PLATFORM; 2316 if (k_platform) { 2317 size_t len = strlen(k_platform) + 1; 2318 if (STACK_GROWS_DOWN) { 2319 sp -= (len + n - 1) & ~(n - 1); 2320 u_platform = sp; 2321 /* FIXME - check return value of memcpy_to_target() for failure */ 2322 memcpy_to_target(sp, k_platform, len); 2323 } else { 2324 memcpy_to_target(sp, k_platform, len); 2325 u_platform = sp; 2326 sp += len + 1; 2327 } 2328 } 2329 2330 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2331 * the argv and envp pointers. 2332 */ 2333 if (STACK_GROWS_DOWN) { 2334 sp = QEMU_ALIGN_DOWN(sp, 16); 2335 } else { 2336 sp = QEMU_ALIGN_UP(sp, 16); 2337 } 2338 2339 /* 2340 * Generate 16 random bytes for userspace PRNG seeding. 2341 */ 2342 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2343 if (STACK_GROWS_DOWN) { 2344 sp -= 16; 2345 u_rand_bytes = sp; 2346 /* FIXME - check return value of memcpy_to_target() for failure */ 2347 memcpy_to_target(sp, k_rand_bytes, 16); 2348 } else { 2349 memcpy_to_target(sp, k_rand_bytes, 16); 2350 u_rand_bytes = sp; 2351 sp += 16; 2352 } 2353 2354 size = (DLINFO_ITEMS + 1) * 2; 2355 if (k_base_platform) 2356 size += 2; 2357 if (k_platform) 2358 size += 2; 2359 #ifdef DLINFO_ARCH_ITEMS 2360 size += DLINFO_ARCH_ITEMS * 2; 2361 #endif 2362 #ifdef ELF_HWCAP2 2363 size += 2; 2364 #endif 2365 info->auxv_len = size * n; 2366 2367 size += envc + argc + 2; 2368 size += 1; /* argc itself */ 2369 size *= n; 2370 2371 /* Allocate space and finalize stack alignment for entry now. */ 2372 if (STACK_GROWS_DOWN) { 2373 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2374 sp = u_argc; 2375 } else { 2376 u_argc = sp; 2377 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2378 } 2379 2380 u_argv = u_argc + n; 2381 u_envp = u_argv + (argc + 1) * n; 2382 u_auxv = u_envp + (envc + 1) * n; 2383 info->saved_auxv = u_auxv; 2384 info->argc = argc; 2385 info->envc = envc; 2386 info->argv = u_argv; 2387 info->envp = u_envp; 2388 2389 /* This is correct because Linux defines 2390 * elf_addr_t as Elf32_Off / Elf64_Off 2391 */ 2392 #define NEW_AUX_ENT(id, val) do { \ 2393 put_user_ual(id, u_auxv); u_auxv += n; \ 2394 put_user_ual(val, u_auxv); u_auxv += n; \ 2395 } while(0) 2396 2397 #ifdef ARCH_DLINFO 2398 /* 2399 * ARCH_DLINFO must come first so platform specific code can enforce 2400 * special alignment requirements on the AUXV if necessary (eg. PPC). 2401 */ 2402 ARCH_DLINFO; 2403 #endif 2404 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2405 * on info->auxv_len will trigger. 2406 */ 2407 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2408 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2409 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2410 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2411 /* Target doesn't support host page size alignment */ 2412 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2413 } else { 2414 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2415 qemu_host_page_size))); 2416 } 2417 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2418 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2419 NEW_AUX_ENT(AT_ENTRY, info->entry); 2420 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2421 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2422 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2423 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2424 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2425 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2426 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2427 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2428 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2429 2430 #ifdef ELF_HWCAP2 2431 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2432 #endif 2433 2434 if (u_base_platform) { 2435 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2436 } 2437 if (u_platform) { 2438 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2439 } 2440 NEW_AUX_ENT (AT_NULL, 0); 2441 #undef NEW_AUX_ENT 2442 2443 /* Check that our initial calculation of the auxv length matches how much 2444 * we actually put into it. 2445 */ 2446 assert(info->auxv_len == u_auxv - info->saved_auxv); 2447 2448 put_user_ual(argc, u_argc); 2449 2450 p = info->arg_strings; 2451 for (i = 0; i < argc; ++i) { 2452 put_user_ual(p, u_argv); 2453 u_argv += n; 2454 p += target_strlen(p) + 1; 2455 } 2456 put_user_ual(0, u_argv); 2457 2458 p = info->env_strings; 2459 for (i = 0; i < envc; ++i) { 2460 put_user_ual(p, u_envp); 2461 u_envp += n; 2462 p += target_strlen(p) + 1; 2463 } 2464 put_user_ual(0, u_envp); 2465 2466 return sp; 2467 } 2468 2469 #if defined(HI_COMMPAGE) 2470 #define LO_COMMPAGE -1 2471 #elif defined(LO_COMMPAGE) 2472 #define HI_COMMPAGE 0 2473 #else 2474 #define HI_COMMPAGE 0 2475 #define LO_COMMPAGE -1 2476 #ifndef INIT_GUEST_COMMPAGE 2477 #define init_guest_commpage() true 2478 #endif 2479 #endif 2480 2481 static void pgb_fail_in_use(const char *image_name) 2482 { 2483 error_report("%s: requires virtual address space that is in use " 2484 "(omit the -B option or choose a different value)", 2485 image_name); 2486 exit(EXIT_FAILURE); 2487 } 2488 2489 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2490 abi_ulong guest_hiaddr, long align) 2491 { 2492 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2493 void *addr, *test; 2494 2495 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2496 fprintf(stderr, "Requested guest base %p does not satisfy " 2497 "host minimum alignment (0x%lx)\n", 2498 (void *)guest_base, align); 2499 exit(EXIT_FAILURE); 2500 } 2501 2502 /* Sanity check the guest binary. */ 2503 if (reserved_va) { 2504 if (guest_hiaddr > reserved_va) { 2505 error_report("%s: requires more than reserved virtual " 2506 "address space (0x%" PRIx64 " > 0x%lx)", 2507 image_name, (uint64_t)guest_hiaddr, reserved_va); 2508 exit(EXIT_FAILURE); 2509 } 2510 } else { 2511 #if HOST_LONG_BITS < TARGET_ABI_BITS 2512 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2513 error_report("%s: requires more virtual address space " 2514 "than the host can provide (0x%" PRIx64 ")", 2515 image_name, (uint64_t)guest_hiaddr + 1 - guest_base); 2516 exit(EXIT_FAILURE); 2517 } 2518 #endif 2519 } 2520 2521 /* 2522 * Expand the allocation to the entire reserved_va. 2523 * Exclude the mmap_min_addr hole. 2524 */ 2525 if (reserved_va) { 2526 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2527 : mmap_min_addr - guest_base); 2528 guest_hiaddr = reserved_va; 2529 } 2530 2531 /* Reserve the address space for the binary, or reserved_va. */ 2532 test = g2h_untagged(guest_loaddr); 2533 addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0); 2534 if (test != addr) { 2535 pgb_fail_in_use(image_name); 2536 } 2537 qemu_log_mask(CPU_LOG_PAGE, 2538 "%s: base @ %p for %" PRIu64 " bytes\n", 2539 __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1); 2540 } 2541 2542 /** 2543 * pgd_find_hole_fallback: potential mmap address 2544 * @guest_size: size of available space 2545 * @brk: location of break 2546 * @align: memory alignment 2547 * 2548 * This is a fallback method for finding a hole in the host address 2549 * space if we don't have the benefit of being able to access 2550 * /proc/self/map. It can potentially take a very long time as we can 2551 * only dumbly iterate up the host address space seeing if the 2552 * allocation would work. 2553 */ 2554 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2555 long align, uintptr_t offset) 2556 { 2557 uintptr_t base; 2558 2559 /* Start (aligned) at the bottom and work our way up */ 2560 base = ROUND_UP(mmap_min_addr, align); 2561 2562 while (true) { 2563 uintptr_t align_start, end; 2564 align_start = ROUND_UP(base, align); 2565 end = align_start + guest_size + offset; 2566 2567 /* if brk is anywhere in the range give ourselves some room to grow. */ 2568 if (align_start <= brk && brk < end) { 2569 base = brk + (16 * MiB); 2570 continue; 2571 } else if (align_start + guest_size < align_start) { 2572 /* we have run out of space */ 2573 return -1; 2574 } else { 2575 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2576 MAP_FIXED_NOREPLACE; 2577 void * mmap_start = mmap((void *) align_start, guest_size, 2578 PROT_NONE, flags, -1, 0); 2579 if (mmap_start != MAP_FAILED) { 2580 munmap(mmap_start, guest_size); 2581 if (mmap_start == (void *) align_start) { 2582 qemu_log_mask(CPU_LOG_PAGE, 2583 "%s: base @ %p for %" PRIdPTR" bytes\n", 2584 __func__, mmap_start + offset, guest_size); 2585 return (uintptr_t) mmap_start + offset; 2586 } 2587 } 2588 base += qemu_host_page_size; 2589 } 2590 } 2591 } 2592 2593 /* Return value for guest_base, or -1 if no hole found. */ 2594 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2595 long align, uintptr_t offset) 2596 { 2597 GSList *maps, *iter; 2598 uintptr_t this_start, this_end, next_start, brk; 2599 intptr_t ret = -1; 2600 2601 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2602 2603 maps = read_self_maps(); 2604 2605 /* Read brk after we've read the maps, which will malloc. */ 2606 brk = (uintptr_t)sbrk(0); 2607 2608 if (!maps) { 2609 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2610 } 2611 2612 /* The first hole is before the first map entry. */ 2613 this_start = mmap_min_addr; 2614 2615 for (iter = maps; iter; 2616 this_start = next_start, iter = g_slist_next(iter)) { 2617 uintptr_t align_start, hole_size; 2618 2619 this_end = ((MapInfo *)iter->data)->start; 2620 next_start = ((MapInfo *)iter->data)->end; 2621 align_start = ROUND_UP(this_start + offset, align); 2622 2623 /* Skip holes that are too small. */ 2624 if (align_start >= this_end) { 2625 continue; 2626 } 2627 hole_size = this_end - align_start; 2628 if (hole_size < guest_size) { 2629 continue; 2630 } 2631 2632 /* If this hole contains brk, give ourselves some room to grow. */ 2633 if (this_start <= brk && brk < this_end) { 2634 hole_size -= guest_size; 2635 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2636 align_start += 1 * GiB; 2637 } else if (hole_size >= 16 * MiB) { 2638 align_start += 16 * MiB; 2639 } else { 2640 align_start = (this_end - guest_size) & -align; 2641 if (align_start < this_start) { 2642 continue; 2643 } 2644 } 2645 } 2646 2647 /* Record the lowest successful match. */ 2648 if (ret < 0) { 2649 ret = align_start; 2650 } 2651 /* If this hole contains the identity map, select it. */ 2652 if (align_start <= guest_loaddr && 2653 guest_loaddr + guest_size <= this_end) { 2654 ret = 0; 2655 } 2656 /* If this hole ends above the identity map, stop looking. */ 2657 if (this_end >= guest_loaddr) { 2658 break; 2659 } 2660 } 2661 free_self_maps(maps); 2662 2663 if (ret != -1) { 2664 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2665 " for %" PRIuPTR " bytes\n", 2666 __func__, ret, guest_size); 2667 } 2668 2669 return ret; 2670 } 2671 2672 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2673 abi_ulong orig_hiaddr, long align) 2674 { 2675 uintptr_t loaddr = orig_loaddr; 2676 uintptr_t hiaddr = orig_hiaddr; 2677 uintptr_t offset = 0; 2678 uintptr_t addr; 2679 2680 if (hiaddr != orig_hiaddr) { 2681 error_report("%s: requires virtual address space that the " 2682 "host cannot provide (0x%" PRIx64 ")", 2683 image_name, (uint64_t)orig_hiaddr + 1); 2684 exit(EXIT_FAILURE); 2685 } 2686 2687 loaddr &= -align; 2688 if (HI_COMMPAGE) { 2689 /* 2690 * Extend the allocation to include the commpage. 2691 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2692 * need to ensure there is space bellow the guest_base so we 2693 * can map the commpage in the place needed when the address 2694 * arithmetic wraps around. 2695 */ 2696 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2697 hiaddr = UINT32_MAX; 2698 } else { 2699 offset = -(HI_COMMPAGE & -align); 2700 } 2701 } else if (LO_COMMPAGE != -1) { 2702 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2703 } 2704 2705 addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset); 2706 if (addr == -1) { 2707 /* 2708 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2709 * that can satisfy both. But as the normal arm32 link base address 2710 * is ~32k, and we extend down to include the commpage, making the 2711 * overhead only ~96k, this is unlikely. 2712 */ 2713 error_report("%s: Unable to allocate %#zx bytes of " 2714 "virtual address space", image_name, 2715 (size_t)(hiaddr - loaddr)); 2716 exit(EXIT_FAILURE); 2717 } 2718 2719 guest_base = addr; 2720 2721 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2722 __func__, addr, hiaddr - loaddr); 2723 } 2724 2725 static void pgb_dynamic(const char *image_name, long align) 2726 { 2727 /* 2728 * The executable is dynamic and does not require a fixed address. 2729 * All we need is a commpage that satisfies align. 2730 * If we do not need a commpage, leave guest_base == 0. 2731 */ 2732 if (HI_COMMPAGE) { 2733 uintptr_t addr, commpage; 2734 2735 /* 64-bit hosts should have used reserved_va. */ 2736 assert(sizeof(uintptr_t) == 4); 2737 2738 /* 2739 * By putting the commpage at the first hole, that puts guest_base 2740 * just above that, and maximises the positive guest addresses. 2741 */ 2742 commpage = HI_COMMPAGE & -align; 2743 addr = pgb_find_hole(commpage, -commpage, align, 0); 2744 assert(addr != -1); 2745 guest_base = addr; 2746 } 2747 } 2748 2749 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2750 abi_ulong guest_hiaddr, long align) 2751 { 2752 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2753 void *addr, *test; 2754 2755 if (guest_hiaddr > reserved_va) { 2756 error_report("%s: requires more than reserved virtual " 2757 "address space (0x%" PRIx64 " > 0x%lx)", 2758 image_name, (uint64_t)guest_hiaddr, reserved_va); 2759 exit(EXIT_FAILURE); 2760 } 2761 2762 /* Widen the "image" to the entire reserved address space. */ 2763 pgb_static(image_name, 0, reserved_va, align); 2764 2765 /* osdep.h defines this as 0 if it's missing */ 2766 flags |= MAP_FIXED_NOREPLACE; 2767 2768 /* Reserve the memory on the host. */ 2769 assert(guest_base != 0); 2770 test = g2h_untagged(0); 2771 addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0); 2772 if (addr == MAP_FAILED || addr != test) { 2773 error_report("Unable to reserve 0x%lx bytes of virtual address " 2774 "space at %p (%s) for use as guest address space (check your " 2775 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2776 "using -R option)", reserved_va + 1, test, strerror(errno)); 2777 exit(EXIT_FAILURE); 2778 } 2779 2780 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2781 __func__, addr, reserved_va + 1); 2782 } 2783 2784 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2785 abi_ulong guest_hiaddr) 2786 { 2787 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2788 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2789 2790 if (have_guest_base) { 2791 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2792 } else if (reserved_va) { 2793 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2794 } else if (guest_loaddr) { 2795 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2796 } else { 2797 pgb_dynamic(image_name, align); 2798 } 2799 2800 /* Reserve and initialize the commpage. */ 2801 if (!init_guest_commpage()) { 2802 /* 2803 * With have_guest_base, the user has selected the address and 2804 * we are trying to work with that. Otherwise, we have selected 2805 * free space and init_guest_commpage must succeeded. 2806 */ 2807 assert(have_guest_base); 2808 pgb_fail_in_use(image_name); 2809 } 2810 2811 assert(QEMU_IS_ALIGNED(guest_base, align)); 2812 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2813 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2814 } 2815 2816 enum { 2817 /* The string "GNU\0" as a magic number. */ 2818 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2819 NOTE_DATA_SZ = 1 * KiB, 2820 NOTE_NAME_SZ = 4, 2821 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2822 }; 2823 2824 /* 2825 * Process a single gnu_property entry. 2826 * Return false for error. 2827 */ 2828 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2829 struct image_info *info, bool have_prev_type, 2830 uint32_t *prev_type, Error **errp) 2831 { 2832 uint32_t pr_type, pr_datasz, step; 2833 2834 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2835 goto error_data; 2836 } 2837 datasz -= *off; 2838 data += *off / sizeof(uint32_t); 2839 2840 if (datasz < 2 * sizeof(uint32_t)) { 2841 goto error_data; 2842 } 2843 pr_type = data[0]; 2844 pr_datasz = data[1]; 2845 data += 2; 2846 datasz -= 2 * sizeof(uint32_t); 2847 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2848 if (step > datasz) { 2849 goto error_data; 2850 } 2851 2852 /* Properties are supposed to be unique and sorted on pr_type. */ 2853 if (have_prev_type && pr_type <= *prev_type) { 2854 if (pr_type == *prev_type) { 2855 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2856 } else { 2857 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2858 } 2859 return false; 2860 } 2861 *prev_type = pr_type; 2862 2863 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2864 return false; 2865 } 2866 2867 *off += 2 * sizeof(uint32_t) + step; 2868 return true; 2869 2870 error_data: 2871 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2872 return false; 2873 } 2874 2875 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2876 static bool parse_elf_properties(int image_fd, 2877 struct image_info *info, 2878 const struct elf_phdr *phdr, 2879 char bprm_buf[BPRM_BUF_SIZE], 2880 Error **errp) 2881 { 2882 union { 2883 struct elf_note nhdr; 2884 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2885 } note; 2886 2887 int n, off, datasz; 2888 bool have_prev_type; 2889 uint32_t prev_type; 2890 2891 /* Unless the arch requires properties, ignore them. */ 2892 if (!ARCH_USE_GNU_PROPERTY) { 2893 return true; 2894 } 2895 2896 /* If the properties are crazy large, that's too bad. */ 2897 n = phdr->p_filesz; 2898 if (n > sizeof(note)) { 2899 error_setg(errp, "PT_GNU_PROPERTY too large"); 2900 return false; 2901 } 2902 if (n < sizeof(note.nhdr)) { 2903 error_setg(errp, "PT_GNU_PROPERTY too small"); 2904 return false; 2905 } 2906 2907 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2908 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2909 } else { 2910 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2911 if (len != n) { 2912 error_setg_errno(errp, errno, "Error reading file header"); 2913 return false; 2914 } 2915 } 2916 2917 /* 2918 * The contents of a valid PT_GNU_PROPERTY is a sequence 2919 * of uint32_t -- swap them all now. 2920 */ 2921 #ifdef BSWAP_NEEDED 2922 for (int i = 0; i < n / 4; i++) { 2923 bswap32s(note.data + i); 2924 } 2925 #endif 2926 2927 /* 2928 * Note that nhdr is 3 words, and that the "name" described by namesz 2929 * immediately follows nhdr and is thus at the 4th word. Further, all 2930 * of the inputs to the kernel's round_up are multiples of 4. 2931 */ 2932 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2933 note.nhdr.n_namesz != NOTE_NAME_SZ || 2934 note.data[3] != GNU0_MAGIC) { 2935 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2936 return false; 2937 } 2938 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2939 2940 datasz = note.nhdr.n_descsz + off; 2941 if (datasz > n) { 2942 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2943 return false; 2944 } 2945 2946 have_prev_type = false; 2947 prev_type = 0; 2948 while (1) { 2949 if (off == datasz) { 2950 return true; /* end, exit ok */ 2951 } 2952 if (!parse_elf_property(note.data, &off, datasz, info, 2953 have_prev_type, &prev_type, errp)) { 2954 return false; 2955 } 2956 have_prev_type = true; 2957 } 2958 } 2959 2960 /* Load an ELF image into the address space. 2961 2962 IMAGE_NAME is the filename of the image, to use in error messages. 2963 IMAGE_FD is the open file descriptor for the image. 2964 2965 BPRM_BUF is a copy of the beginning of the file; this of course 2966 contains the elf file header at offset 0. It is assumed that this 2967 buffer is sufficiently aligned to present no problems to the host 2968 in accessing data at aligned offsets within the buffer. 2969 2970 On return: INFO values will be filled in, as necessary or available. */ 2971 2972 static void load_elf_image(const char *image_name, int image_fd, 2973 struct image_info *info, char **pinterp_name, 2974 char bprm_buf[BPRM_BUF_SIZE]) 2975 { 2976 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2977 struct elf_phdr *phdr; 2978 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2979 int i, retval, prot_exec; 2980 Error *err = NULL; 2981 2982 /* First of all, some simple consistency checks */ 2983 if (!elf_check_ident(ehdr)) { 2984 error_setg(&err, "Invalid ELF image for this architecture"); 2985 goto exit_errmsg; 2986 } 2987 bswap_ehdr(ehdr); 2988 if (!elf_check_ehdr(ehdr)) { 2989 error_setg(&err, "Invalid ELF image for this architecture"); 2990 goto exit_errmsg; 2991 } 2992 2993 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2994 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2995 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2996 } else { 2997 phdr = (struct elf_phdr *) alloca(i); 2998 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2999 if (retval != i) { 3000 goto exit_read; 3001 } 3002 } 3003 bswap_phdr(phdr, ehdr->e_phnum); 3004 3005 info->nsegs = 0; 3006 info->pt_dynamic_addr = 0; 3007 3008 mmap_lock(); 3009 3010 /* 3011 * Find the maximum size of the image and allocate an appropriate 3012 * amount of memory to handle that. Locate the interpreter, if any. 3013 */ 3014 loaddr = -1, hiaddr = 0; 3015 info->alignment = 0; 3016 info->exec_stack = EXSTACK_DEFAULT; 3017 for (i = 0; i < ehdr->e_phnum; ++i) { 3018 struct elf_phdr *eppnt = phdr + i; 3019 if (eppnt->p_type == PT_LOAD) { 3020 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3021 if (a < loaddr) { 3022 loaddr = a; 3023 } 3024 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3025 if (a > hiaddr) { 3026 hiaddr = a; 3027 } 3028 ++info->nsegs; 3029 info->alignment |= eppnt->p_align; 3030 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3031 g_autofree char *interp_name = NULL; 3032 3033 if (*pinterp_name) { 3034 error_setg(&err, "Multiple PT_INTERP entries"); 3035 goto exit_errmsg; 3036 } 3037 3038 interp_name = g_malloc(eppnt->p_filesz); 3039 3040 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3041 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3042 eppnt->p_filesz); 3043 } else { 3044 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3045 eppnt->p_offset); 3046 if (retval != eppnt->p_filesz) { 3047 goto exit_read; 3048 } 3049 } 3050 if (interp_name[eppnt->p_filesz - 1] != 0) { 3051 error_setg(&err, "Invalid PT_INTERP entry"); 3052 goto exit_errmsg; 3053 } 3054 *pinterp_name = g_steal_pointer(&interp_name); 3055 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3056 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3057 goto exit_errmsg; 3058 } 3059 } else if (eppnt->p_type == PT_GNU_STACK) { 3060 info->exec_stack = eppnt->p_flags & PF_X; 3061 } 3062 } 3063 3064 if (pinterp_name != NULL) { 3065 /* 3066 * This is the main executable. 3067 * 3068 * Reserve extra space for brk. 3069 * We hold on to this space while placing the interpreter 3070 * and the stack, lest they be placed immediately after 3071 * the data segment and block allocation from the brk. 3072 * 3073 * 16MB is chosen as "large enough" without being so large as 3074 * to allow the result to not fit with a 32-bit guest on a 3075 * 32-bit host. However some 64 bit guests (e.g. s390x) 3076 * attempt to place their heap further ahead and currently 3077 * nothing stops them smashing into QEMUs address space. 3078 */ 3079 #if TARGET_LONG_BITS == 64 3080 info->reserve_brk = 32 * MiB; 3081 #else 3082 info->reserve_brk = 16 * MiB; 3083 #endif 3084 hiaddr += info->reserve_brk; 3085 3086 if (ehdr->e_type == ET_EXEC) { 3087 /* 3088 * Make sure that the low address does not conflict with 3089 * MMAP_MIN_ADDR or the QEMU application itself. 3090 */ 3091 probe_guest_base(image_name, loaddr, hiaddr); 3092 } else { 3093 /* 3094 * The binary is dynamic, but we still need to 3095 * select guest_base. In this case we pass a size. 3096 */ 3097 probe_guest_base(image_name, 0, hiaddr - loaddr); 3098 } 3099 } 3100 3101 /* 3102 * Reserve address space for all of this. 3103 * 3104 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3105 * exactly the address range that is required. 3106 * 3107 * Otherwise this is ET_DYN, and we are searching for a location 3108 * that can hold the memory space required. If the image is 3109 * pre-linked, LOADDR will be non-zero, and the kernel should 3110 * honor that address if it happens to be free. 3111 * 3112 * In both cases, we will overwrite pages in this range with mappings 3113 * from the executable. 3114 */ 3115 load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3116 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3117 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3118 -1, 0); 3119 if (load_addr == -1) { 3120 goto exit_mmap; 3121 } 3122 load_bias = load_addr - loaddr; 3123 3124 if (elf_is_fdpic(ehdr)) { 3125 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3126 g_malloc(sizeof(*loadsegs) * info->nsegs); 3127 3128 for (i = 0; i < ehdr->e_phnum; ++i) { 3129 switch (phdr[i].p_type) { 3130 case PT_DYNAMIC: 3131 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3132 break; 3133 case PT_LOAD: 3134 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3135 loadsegs->p_vaddr = phdr[i].p_vaddr; 3136 loadsegs->p_memsz = phdr[i].p_memsz; 3137 ++loadsegs; 3138 break; 3139 } 3140 } 3141 } 3142 3143 info->load_bias = load_bias; 3144 info->code_offset = load_bias; 3145 info->data_offset = load_bias; 3146 info->load_addr = load_addr; 3147 info->entry = ehdr->e_entry + load_bias; 3148 info->start_code = -1; 3149 info->end_code = 0; 3150 info->start_data = -1; 3151 info->end_data = 0; 3152 info->brk = 0; 3153 info->elf_flags = ehdr->e_flags; 3154 3155 prot_exec = PROT_EXEC; 3156 #ifdef TARGET_AARCH64 3157 /* 3158 * If the BTI feature is present, this indicates that the executable 3159 * pages of the startup binary should be mapped with PROT_BTI, so that 3160 * branch targets are enforced. 3161 * 3162 * The startup binary is either the interpreter or the static executable. 3163 * The interpreter is responsible for all pages of a dynamic executable. 3164 * 3165 * Elf notes are backward compatible to older cpus. 3166 * Do not enable BTI unless it is supported. 3167 */ 3168 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3169 && (pinterp_name == NULL || *pinterp_name == 0) 3170 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3171 prot_exec |= TARGET_PROT_BTI; 3172 } 3173 #endif 3174 3175 for (i = 0; i < ehdr->e_phnum; i++) { 3176 struct elf_phdr *eppnt = phdr + i; 3177 if (eppnt->p_type == PT_LOAD) { 3178 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3179 int elf_prot = 0; 3180 3181 if (eppnt->p_flags & PF_R) { 3182 elf_prot |= PROT_READ; 3183 } 3184 if (eppnt->p_flags & PF_W) { 3185 elf_prot |= PROT_WRITE; 3186 } 3187 if (eppnt->p_flags & PF_X) { 3188 elf_prot |= prot_exec; 3189 } 3190 3191 vaddr = load_bias + eppnt->p_vaddr; 3192 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3193 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3194 3195 vaddr_ef = vaddr + eppnt->p_filesz; 3196 vaddr_em = vaddr + eppnt->p_memsz; 3197 3198 /* 3199 * Some segments may be completely empty, with a non-zero p_memsz 3200 * but no backing file segment. 3201 */ 3202 if (eppnt->p_filesz != 0) { 3203 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3204 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3205 MAP_PRIVATE | MAP_FIXED, 3206 image_fd, eppnt->p_offset - vaddr_po); 3207 3208 if (error == -1) { 3209 goto exit_mmap; 3210 } 3211 3212 /* 3213 * If the load segment requests extra zeros (e.g. bss), map it. 3214 */ 3215 if (eppnt->p_filesz < eppnt->p_memsz) { 3216 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3217 } 3218 } else if (eppnt->p_memsz != 0) { 3219 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3220 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3221 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3222 -1, 0); 3223 3224 if (error == -1) { 3225 goto exit_mmap; 3226 } 3227 } 3228 3229 /* Find the full program boundaries. */ 3230 if (elf_prot & PROT_EXEC) { 3231 if (vaddr < info->start_code) { 3232 info->start_code = vaddr; 3233 } 3234 if (vaddr_ef > info->end_code) { 3235 info->end_code = vaddr_ef; 3236 } 3237 } 3238 if (elf_prot & PROT_WRITE) { 3239 if (vaddr < info->start_data) { 3240 info->start_data = vaddr; 3241 } 3242 if (vaddr_ef > info->end_data) { 3243 info->end_data = vaddr_ef; 3244 } 3245 } 3246 if (vaddr_em > info->brk) { 3247 info->brk = vaddr_em; 3248 } 3249 #ifdef TARGET_MIPS 3250 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3251 Mips_elf_abiflags_v0 abiflags; 3252 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3253 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3254 goto exit_errmsg; 3255 } 3256 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3257 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3258 sizeof(Mips_elf_abiflags_v0)); 3259 } else { 3260 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3261 eppnt->p_offset); 3262 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3263 goto exit_read; 3264 } 3265 } 3266 bswap_mips_abiflags(&abiflags); 3267 info->fp_abi = abiflags.fp_abi; 3268 #endif 3269 } 3270 } 3271 3272 if (info->end_data == 0) { 3273 info->start_data = info->end_code; 3274 info->end_data = info->end_code; 3275 } 3276 3277 if (qemu_log_enabled()) { 3278 load_symbols(ehdr, image_fd, load_bias); 3279 } 3280 3281 debuginfo_report_elf(image_name, image_fd, load_bias); 3282 3283 mmap_unlock(); 3284 3285 close(image_fd); 3286 return; 3287 3288 exit_read: 3289 if (retval >= 0) { 3290 error_setg(&err, "Incomplete read of file header"); 3291 } else { 3292 error_setg_errno(&err, errno, "Error reading file header"); 3293 } 3294 goto exit_errmsg; 3295 exit_mmap: 3296 error_setg_errno(&err, errno, "Error mapping file"); 3297 goto exit_errmsg; 3298 exit_errmsg: 3299 error_reportf_err(err, "%s: ", image_name); 3300 exit(-1); 3301 } 3302 3303 static void load_elf_interp(const char *filename, struct image_info *info, 3304 char bprm_buf[BPRM_BUF_SIZE]) 3305 { 3306 int fd, retval; 3307 Error *err = NULL; 3308 3309 fd = open(path(filename), O_RDONLY); 3310 if (fd < 0) { 3311 error_setg_file_open(&err, errno, filename); 3312 error_report_err(err); 3313 exit(-1); 3314 } 3315 3316 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3317 if (retval < 0) { 3318 error_setg_errno(&err, errno, "Error reading file header"); 3319 error_reportf_err(err, "%s: ", filename); 3320 exit(-1); 3321 } 3322 3323 if (retval < BPRM_BUF_SIZE) { 3324 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3325 } 3326 3327 load_elf_image(filename, fd, info, NULL, bprm_buf); 3328 } 3329 3330 static int symfind(const void *s0, const void *s1) 3331 { 3332 target_ulong addr = *(target_ulong *)s0; 3333 struct elf_sym *sym = (struct elf_sym *)s1; 3334 int result = 0; 3335 if (addr < sym->st_value) { 3336 result = -1; 3337 } else if (addr >= sym->st_value + sym->st_size) { 3338 result = 1; 3339 } 3340 return result; 3341 } 3342 3343 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3344 { 3345 #if ELF_CLASS == ELFCLASS32 3346 struct elf_sym *syms = s->disas_symtab.elf32; 3347 #else 3348 struct elf_sym *syms = s->disas_symtab.elf64; 3349 #endif 3350 3351 // binary search 3352 struct elf_sym *sym; 3353 3354 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3355 if (sym != NULL) { 3356 return s->disas_strtab + sym->st_name; 3357 } 3358 3359 return ""; 3360 } 3361 3362 /* FIXME: This should use elf_ops.h */ 3363 static int symcmp(const void *s0, const void *s1) 3364 { 3365 struct elf_sym *sym0 = (struct elf_sym *)s0; 3366 struct elf_sym *sym1 = (struct elf_sym *)s1; 3367 return (sym0->st_value < sym1->st_value) 3368 ? -1 3369 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3370 } 3371 3372 /* Best attempt to load symbols from this ELF object. */ 3373 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3374 { 3375 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3376 uint64_t segsz; 3377 struct elf_shdr *shdr; 3378 char *strings = NULL; 3379 struct syminfo *s = NULL; 3380 struct elf_sym *new_syms, *syms = NULL; 3381 3382 shnum = hdr->e_shnum; 3383 i = shnum * sizeof(struct elf_shdr); 3384 shdr = (struct elf_shdr *)alloca(i); 3385 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3386 return; 3387 } 3388 3389 bswap_shdr(shdr, shnum); 3390 for (i = 0; i < shnum; ++i) { 3391 if (shdr[i].sh_type == SHT_SYMTAB) { 3392 sym_idx = i; 3393 str_idx = shdr[i].sh_link; 3394 goto found; 3395 } 3396 } 3397 3398 /* There will be no symbol table if the file was stripped. */ 3399 return; 3400 3401 found: 3402 /* Now know where the strtab and symtab are. Snarf them. */ 3403 s = g_try_new(struct syminfo, 1); 3404 if (!s) { 3405 goto give_up; 3406 } 3407 3408 segsz = shdr[str_idx].sh_size; 3409 s->disas_strtab = strings = g_try_malloc(segsz); 3410 if (!strings || 3411 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3412 goto give_up; 3413 } 3414 3415 segsz = shdr[sym_idx].sh_size; 3416 syms = g_try_malloc(segsz); 3417 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3418 goto give_up; 3419 } 3420 3421 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3422 /* Implausibly large symbol table: give up rather than ploughing 3423 * on with the number of symbols calculation overflowing 3424 */ 3425 goto give_up; 3426 } 3427 nsyms = segsz / sizeof(struct elf_sym); 3428 for (i = 0; i < nsyms; ) { 3429 bswap_sym(syms + i); 3430 /* Throw away entries which we do not need. */ 3431 if (syms[i].st_shndx == SHN_UNDEF 3432 || syms[i].st_shndx >= SHN_LORESERVE 3433 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3434 if (i < --nsyms) { 3435 syms[i] = syms[nsyms]; 3436 } 3437 } else { 3438 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3439 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3440 syms[i].st_value &= ~(target_ulong)1; 3441 #endif 3442 syms[i].st_value += load_bias; 3443 i++; 3444 } 3445 } 3446 3447 /* No "useful" symbol. */ 3448 if (nsyms == 0) { 3449 goto give_up; 3450 } 3451 3452 /* Attempt to free the storage associated with the local symbols 3453 that we threw away. Whether or not this has any effect on the 3454 memory allocation depends on the malloc implementation and how 3455 many symbols we managed to discard. */ 3456 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3457 if (new_syms == NULL) { 3458 goto give_up; 3459 } 3460 syms = new_syms; 3461 3462 qsort(syms, nsyms, sizeof(*syms), symcmp); 3463 3464 s->disas_num_syms = nsyms; 3465 #if ELF_CLASS == ELFCLASS32 3466 s->disas_symtab.elf32 = syms; 3467 #else 3468 s->disas_symtab.elf64 = syms; 3469 #endif 3470 s->lookup_symbol = lookup_symbolxx; 3471 s->next = syminfos; 3472 syminfos = s; 3473 3474 return; 3475 3476 give_up: 3477 g_free(s); 3478 g_free(strings); 3479 g_free(syms); 3480 } 3481 3482 uint32_t get_elf_eflags(int fd) 3483 { 3484 struct elfhdr ehdr; 3485 off_t offset; 3486 int ret; 3487 3488 /* Read ELF header */ 3489 offset = lseek(fd, 0, SEEK_SET); 3490 if (offset == (off_t) -1) { 3491 return 0; 3492 } 3493 ret = read(fd, &ehdr, sizeof(ehdr)); 3494 if (ret < sizeof(ehdr)) { 3495 return 0; 3496 } 3497 offset = lseek(fd, offset, SEEK_SET); 3498 if (offset == (off_t) -1) { 3499 return 0; 3500 } 3501 3502 /* Check ELF signature */ 3503 if (!elf_check_ident(&ehdr)) { 3504 return 0; 3505 } 3506 3507 /* check header */ 3508 bswap_ehdr(&ehdr); 3509 if (!elf_check_ehdr(&ehdr)) { 3510 return 0; 3511 } 3512 3513 /* return architecture id */ 3514 return ehdr.e_flags; 3515 } 3516 3517 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3518 { 3519 struct image_info interp_info; 3520 struct elfhdr elf_ex; 3521 char *elf_interpreter = NULL; 3522 char *scratch; 3523 3524 memset(&interp_info, 0, sizeof(interp_info)); 3525 #ifdef TARGET_MIPS 3526 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3527 #endif 3528 3529 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3530 3531 load_elf_image(bprm->filename, bprm->fd, info, 3532 &elf_interpreter, bprm->buf); 3533 3534 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3535 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3536 when we load the interpreter. */ 3537 elf_ex = *(struct elfhdr *)bprm->buf; 3538 3539 /* Do this so that we can load the interpreter, if need be. We will 3540 change some of these later */ 3541 bprm->p = setup_arg_pages(bprm, info); 3542 3543 scratch = g_new0(char, TARGET_PAGE_SIZE); 3544 if (STACK_GROWS_DOWN) { 3545 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3546 bprm->p, info->stack_limit); 3547 info->file_string = bprm->p; 3548 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3549 bprm->p, info->stack_limit); 3550 info->env_strings = bprm->p; 3551 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3552 bprm->p, info->stack_limit); 3553 info->arg_strings = bprm->p; 3554 } else { 3555 info->arg_strings = bprm->p; 3556 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3557 bprm->p, info->stack_limit); 3558 info->env_strings = bprm->p; 3559 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3560 bprm->p, info->stack_limit); 3561 info->file_string = bprm->p; 3562 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3563 bprm->p, info->stack_limit); 3564 } 3565 3566 g_free(scratch); 3567 3568 if (!bprm->p) { 3569 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3570 exit(-1); 3571 } 3572 3573 if (elf_interpreter) { 3574 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3575 3576 /* If the program interpreter is one of these two, then assume 3577 an iBCS2 image. Otherwise assume a native linux image. */ 3578 3579 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3580 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3581 info->personality = PER_SVR4; 3582 3583 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3584 and some applications "depend" upon this behavior. Since 3585 we do not have the power to recompile these, we emulate 3586 the SVr4 behavior. Sigh. */ 3587 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3588 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3589 } 3590 #ifdef TARGET_MIPS 3591 info->interp_fp_abi = interp_info.fp_abi; 3592 #endif 3593 } 3594 3595 /* 3596 * TODO: load a vdso, which would also contain the signal trampolines. 3597 * Otherwise, allocate a private page to hold them. 3598 */ 3599 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3600 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3601 PROT_READ | PROT_WRITE, 3602 MAP_PRIVATE | MAP_ANON, -1, 0); 3603 if (tramp_page == -1) { 3604 return -errno; 3605 } 3606 3607 setup_sigtramp(tramp_page); 3608 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3609 } 3610 3611 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3612 info, (elf_interpreter ? &interp_info : NULL)); 3613 info->start_stack = bprm->p; 3614 3615 /* If we have an interpreter, set that as the program's entry point. 3616 Copy the load_bias as well, to help PPC64 interpret the entry 3617 point as a function descriptor. Do this after creating elf tables 3618 so that we copy the original program entry point into the AUXV. */ 3619 if (elf_interpreter) { 3620 info->load_bias = interp_info.load_bias; 3621 info->entry = interp_info.entry; 3622 g_free(elf_interpreter); 3623 } 3624 3625 #ifdef USE_ELF_CORE_DUMP 3626 bprm->core_dump = &elf_core_dump; 3627 #endif 3628 3629 /* 3630 * If we reserved extra space for brk, release it now. 3631 * The implementation of do_brk in syscalls.c expects to be able 3632 * to mmap pages in this space. 3633 */ 3634 if (info->reserve_brk) { 3635 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3636 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3637 target_munmap(start_brk, end_brk - start_brk); 3638 } 3639 3640 return 0; 3641 } 3642 3643 #ifdef USE_ELF_CORE_DUMP 3644 /* 3645 * Definitions to generate Intel SVR4-like core files. 3646 * These mostly have the same names as the SVR4 types with "target_elf_" 3647 * tacked on the front to prevent clashes with linux definitions, 3648 * and the typedef forms have been avoided. This is mostly like 3649 * the SVR4 structure, but more Linuxy, with things that Linux does 3650 * not support and which gdb doesn't really use excluded. 3651 * 3652 * Fields we don't dump (their contents is zero) in linux-user qemu 3653 * are marked with XXX. 3654 * 3655 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3656 * 3657 * Porting ELF coredump for target is (quite) simple process. First you 3658 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3659 * the target resides): 3660 * 3661 * #define USE_ELF_CORE_DUMP 3662 * 3663 * Next you define type of register set used for dumping. ELF specification 3664 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3665 * 3666 * typedef <target_regtype> target_elf_greg_t; 3667 * #define ELF_NREG <number of registers> 3668 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3669 * 3670 * Last step is to implement target specific function that copies registers 3671 * from given cpu into just specified register set. Prototype is: 3672 * 3673 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3674 * const CPUArchState *env); 3675 * 3676 * Parameters: 3677 * regs - copy register values into here (allocated and zeroed by caller) 3678 * env - copy registers from here 3679 * 3680 * Example for ARM target is provided in this file. 3681 */ 3682 3683 /* An ELF note in memory */ 3684 struct memelfnote { 3685 const char *name; 3686 size_t namesz; 3687 size_t namesz_rounded; 3688 int type; 3689 size_t datasz; 3690 size_t datasz_rounded; 3691 void *data; 3692 size_t notesz; 3693 }; 3694 3695 struct target_elf_siginfo { 3696 abi_int si_signo; /* signal number */ 3697 abi_int si_code; /* extra code */ 3698 abi_int si_errno; /* errno */ 3699 }; 3700 3701 struct target_elf_prstatus { 3702 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3703 abi_short pr_cursig; /* Current signal */ 3704 abi_ulong pr_sigpend; /* XXX */ 3705 abi_ulong pr_sighold; /* XXX */ 3706 target_pid_t pr_pid; 3707 target_pid_t pr_ppid; 3708 target_pid_t pr_pgrp; 3709 target_pid_t pr_sid; 3710 struct target_timeval pr_utime; /* XXX User time */ 3711 struct target_timeval pr_stime; /* XXX System time */ 3712 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3713 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3714 target_elf_gregset_t pr_reg; /* GP registers */ 3715 abi_int pr_fpvalid; /* XXX */ 3716 }; 3717 3718 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3719 3720 struct target_elf_prpsinfo { 3721 char pr_state; /* numeric process state */ 3722 char pr_sname; /* char for pr_state */ 3723 char pr_zomb; /* zombie */ 3724 char pr_nice; /* nice val */ 3725 abi_ulong pr_flag; /* flags */ 3726 target_uid_t pr_uid; 3727 target_gid_t pr_gid; 3728 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3729 /* Lots missing */ 3730 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3731 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3732 }; 3733 3734 /* Here is the structure in which status of each thread is captured. */ 3735 struct elf_thread_status { 3736 QTAILQ_ENTRY(elf_thread_status) ets_link; 3737 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3738 #if 0 3739 elf_fpregset_t fpu; /* NT_PRFPREG */ 3740 struct task_struct *thread; 3741 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3742 #endif 3743 struct memelfnote notes[1]; 3744 int num_notes; 3745 }; 3746 3747 struct elf_note_info { 3748 struct memelfnote *notes; 3749 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3750 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3751 3752 QTAILQ_HEAD(, elf_thread_status) thread_list; 3753 #if 0 3754 /* 3755 * Current version of ELF coredump doesn't support 3756 * dumping fp regs etc. 3757 */ 3758 elf_fpregset_t *fpu; 3759 elf_fpxregset_t *xfpu; 3760 int thread_status_size; 3761 #endif 3762 int notes_size; 3763 int numnote; 3764 }; 3765 3766 struct vm_area_struct { 3767 target_ulong vma_start; /* start vaddr of memory region */ 3768 target_ulong vma_end; /* end vaddr of memory region */ 3769 abi_ulong vma_flags; /* protection etc. flags for the region */ 3770 QTAILQ_ENTRY(vm_area_struct) vma_link; 3771 }; 3772 3773 struct mm_struct { 3774 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3775 int mm_count; /* number of mappings */ 3776 }; 3777 3778 static struct mm_struct *vma_init(void); 3779 static void vma_delete(struct mm_struct *); 3780 static int vma_add_mapping(struct mm_struct *, target_ulong, 3781 target_ulong, abi_ulong); 3782 static int vma_get_mapping_count(const struct mm_struct *); 3783 static struct vm_area_struct *vma_first(const struct mm_struct *); 3784 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3785 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3786 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3787 unsigned long flags); 3788 3789 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3790 static void fill_note(struct memelfnote *, const char *, int, 3791 unsigned int, void *); 3792 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3793 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3794 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3795 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3796 static size_t note_size(const struct memelfnote *); 3797 static void free_note_info(struct elf_note_info *); 3798 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3799 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3800 3801 static int dump_write(int, const void *, size_t); 3802 static int write_note(struct memelfnote *, int); 3803 static int write_note_info(struct elf_note_info *, int); 3804 3805 #ifdef BSWAP_NEEDED 3806 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3807 { 3808 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3809 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3810 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3811 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3812 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3813 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3814 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3815 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3816 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3817 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3818 /* cpu times are not filled, so we skip them */ 3819 /* regs should be in correct format already */ 3820 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3821 } 3822 3823 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3824 { 3825 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3826 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3827 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3828 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3829 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3830 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3831 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3832 } 3833 3834 static void bswap_note(struct elf_note *en) 3835 { 3836 bswap32s(&en->n_namesz); 3837 bswap32s(&en->n_descsz); 3838 bswap32s(&en->n_type); 3839 } 3840 #else 3841 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3842 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3843 static inline void bswap_note(struct elf_note *en) { } 3844 #endif /* BSWAP_NEEDED */ 3845 3846 /* 3847 * Minimal support for linux memory regions. These are needed 3848 * when we are finding out what memory exactly belongs to 3849 * emulated process. No locks needed here, as long as 3850 * thread that received the signal is stopped. 3851 */ 3852 3853 static struct mm_struct *vma_init(void) 3854 { 3855 struct mm_struct *mm; 3856 3857 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3858 return (NULL); 3859 3860 mm->mm_count = 0; 3861 QTAILQ_INIT(&mm->mm_mmap); 3862 3863 return (mm); 3864 } 3865 3866 static void vma_delete(struct mm_struct *mm) 3867 { 3868 struct vm_area_struct *vma; 3869 3870 while ((vma = vma_first(mm)) != NULL) { 3871 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3872 g_free(vma); 3873 } 3874 g_free(mm); 3875 } 3876 3877 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3878 target_ulong end, abi_ulong flags) 3879 { 3880 struct vm_area_struct *vma; 3881 3882 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3883 return (-1); 3884 3885 vma->vma_start = start; 3886 vma->vma_end = end; 3887 vma->vma_flags = flags; 3888 3889 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3890 mm->mm_count++; 3891 3892 return (0); 3893 } 3894 3895 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3896 { 3897 return (QTAILQ_FIRST(&mm->mm_mmap)); 3898 } 3899 3900 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3901 { 3902 return (QTAILQ_NEXT(vma, vma_link)); 3903 } 3904 3905 static int vma_get_mapping_count(const struct mm_struct *mm) 3906 { 3907 return (mm->mm_count); 3908 } 3909 3910 /* 3911 * Calculate file (dump) size of given memory region. 3912 */ 3913 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3914 { 3915 /* if we cannot even read the first page, skip it */ 3916 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3917 return (0); 3918 3919 /* 3920 * Usually we don't dump executable pages as they contain 3921 * non-writable code that debugger can read directly from 3922 * target library etc. However, thread stacks are marked 3923 * also executable so we read in first page of given region 3924 * and check whether it contains elf header. If there is 3925 * no elf header, we dump it. 3926 */ 3927 if (vma->vma_flags & PROT_EXEC) { 3928 char page[TARGET_PAGE_SIZE]; 3929 3930 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3931 return 0; 3932 } 3933 if ((page[EI_MAG0] == ELFMAG0) && 3934 (page[EI_MAG1] == ELFMAG1) && 3935 (page[EI_MAG2] == ELFMAG2) && 3936 (page[EI_MAG3] == ELFMAG3)) { 3937 /* 3938 * Mappings are possibly from ELF binary. Don't dump 3939 * them. 3940 */ 3941 return (0); 3942 } 3943 } 3944 3945 return (vma->vma_end - vma->vma_start); 3946 } 3947 3948 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3949 unsigned long flags) 3950 { 3951 struct mm_struct *mm = (struct mm_struct *)priv; 3952 3953 vma_add_mapping(mm, start, end, flags); 3954 return (0); 3955 } 3956 3957 static void fill_note(struct memelfnote *note, const char *name, int type, 3958 unsigned int sz, void *data) 3959 { 3960 unsigned int namesz; 3961 3962 namesz = strlen(name) + 1; 3963 note->name = name; 3964 note->namesz = namesz; 3965 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3966 note->type = type; 3967 note->datasz = sz; 3968 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3969 3970 note->data = data; 3971 3972 /* 3973 * We calculate rounded up note size here as specified by 3974 * ELF document. 3975 */ 3976 note->notesz = sizeof (struct elf_note) + 3977 note->namesz_rounded + note->datasz_rounded; 3978 } 3979 3980 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3981 uint32_t flags) 3982 { 3983 (void) memset(elf, 0, sizeof(*elf)); 3984 3985 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3986 elf->e_ident[EI_CLASS] = ELF_CLASS; 3987 elf->e_ident[EI_DATA] = ELF_DATA; 3988 elf->e_ident[EI_VERSION] = EV_CURRENT; 3989 elf->e_ident[EI_OSABI] = ELF_OSABI; 3990 3991 elf->e_type = ET_CORE; 3992 elf->e_machine = machine; 3993 elf->e_version = EV_CURRENT; 3994 elf->e_phoff = sizeof(struct elfhdr); 3995 elf->e_flags = flags; 3996 elf->e_ehsize = sizeof(struct elfhdr); 3997 elf->e_phentsize = sizeof(struct elf_phdr); 3998 elf->e_phnum = segs; 3999 4000 bswap_ehdr(elf); 4001 } 4002 4003 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4004 { 4005 phdr->p_type = PT_NOTE; 4006 phdr->p_offset = offset; 4007 phdr->p_vaddr = 0; 4008 phdr->p_paddr = 0; 4009 phdr->p_filesz = sz; 4010 phdr->p_memsz = 0; 4011 phdr->p_flags = 0; 4012 phdr->p_align = 0; 4013 4014 bswap_phdr(phdr, 1); 4015 } 4016 4017 static size_t note_size(const struct memelfnote *note) 4018 { 4019 return (note->notesz); 4020 } 4021 4022 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4023 const TaskState *ts, int signr) 4024 { 4025 (void) memset(prstatus, 0, sizeof (*prstatus)); 4026 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4027 prstatus->pr_pid = ts->ts_tid; 4028 prstatus->pr_ppid = getppid(); 4029 prstatus->pr_pgrp = getpgrp(); 4030 prstatus->pr_sid = getsid(0); 4031 4032 bswap_prstatus(prstatus); 4033 } 4034 4035 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4036 { 4037 char *base_filename; 4038 unsigned int i, len; 4039 4040 (void) memset(psinfo, 0, sizeof (*psinfo)); 4041 4042 len = ts->info->env_strings - ts->info->arg_strings; 4043 if (len >= ELF_PRARGSZ) 4044 len = ELF_PRARGSZ - 1; 4045 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4046 return -EFAULT; 4047 } 4048 for (i = 0; i < len; i++) 4049 if (psinfo->pr_psargs[i] == 0) 4050 psinfo->pr_psargs[i] = ' '; 4051 psinfo->pr_psargs[len] = 0; 4052 4053 psinfo->pr_pid = getpid(); 4054 psinfo->pr_ppid = getppid(); 4055 psinfo->pr_pgrp = getpgrp(); 4056 psinfo->pr_sid = getsid(0); 4057 psinfo->pr_uid = getuid(); 4058 psinfo->pr_gid = getgid(); 4059 4060 base_filename = g_path_get_basename(ts->bprm->filename); 4061 /* 4062 * Using strncpy here is fine: at max-length, 4063 * this field is not NUL-terminated. 4064 */ 4065 (void) strncpy(psinfo->pr_fname, base_filename, 4066 sizeof(psinfo->pr_fname)); 4067 4068 g_free(base_filename); 4069 bswap_psinfo(psinfo); 4070 return (0); 4071 } 4072 4073 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4074 { 4075 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4076 elf_addr_t orig_auxv = auxv; 4077 void *ptr; 4078 int len = ts->info->auxv_len; 4079 4080 /* 4081 * Auxiliary vector is stored in target process stack. It contains 4082 * {type, value} pairs that we need to dump into note. This is not 4083 * strictly necessary but we do it here for sake of completeness. 4084 */ 4085 4086 /* read in whole auxv vector and copy it to memelfnote */ 4087 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4088 if (ptr != NULL) { 4089 fill_note(note, "CORE", NT_AUXV, len, ptr); 4090 unlock_user(ptr, auxv, len); 4091 } 4092 } 4093 4094 /* 4095 * Constructs name of coredump file. We have following convention 4096 * for the name: 4097 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4098 * 4099 * Returns the filename 4100 */ 4101 static char *core_dump_filename(const TaskState *ts) 4102 { 4103 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4104 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4105 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4106 4107 return g_strdup_printf("qemu_%s_%s_%d.core", 4108 base_filename, nowstr, (int)getpid()); 4109 } 4110 4111 static int dump_write(int fd, const void *ptr, size_t size) 4112 { 4113 const char *bufp = (const char *)ptr; 4114 ssize_t bytes_written, bytes_left; 4115 struct rlimit dumpsize; 4116 off_t pos; 4117 4118 bytes_written = 0; 4119 getrlimit(RLIMIT_CORE, &dumpsize); 4120 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4121 if (errno == ESPIPE) { /* not a seekable stream */ 4122 bytes_left = size; 4123 } else { 4124 return pos; 4125 } 4126 } else { 4127 if (dumpsize.rlim_cur <= pos) { 4128 return -1; 4129 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4130 bytes_left = size; 4131 } else { 4132 size_t limit_left=dumpsize.rlim_cur - pos; 4133 bytes_left = limit_left >= size ? size : limit_left ; 4134 } 4135 } 4136 4137 /* 4138 * In normal conditions, single write(2) should do but 4139 * in case of socket etc. this mechanism is more portable. 4140 */ 4141 do { 4142 bytes_written = write(fd, bufp, bytes_left); 4143 if (bytes_written < 0) { 4144 if (errno == EINTR) 4145 continue; 4146 return (-1); 4147 } else if (bytes_written == 0) { /* eof */ 4148 return (-1); 4149 } 4150 bufp += bytes_written; 4151 bytes_left -= bytes_written; 4152 } while (bytes_left > 0); 4153 4154 return (0); 4155 } 4156 4157 static int write_note(struct memelfnote *men, int fd) 4158 { 4159 struct elf_note en; 4160 4161 en.n_namesz = men->namesz; 4162 en.n_type = men->type; 4163 en.n_descsz = men->datasz; 4164 4165 bswap_note(&en); 4166 4167 if (dump_write(fd, &en, sizeof(en)) != 0) 4168 return (-1); 4169 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4170 return (-1); 4171 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4172 return (-1); 4173 4174 return (0); 4175 } 4176 4177 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4178 { 4179 CPUState *cpu = env_cpu((CPUArchState *)env); 4180 TaskState *ts = (TaskState *)cpu->opaque; 4181 struct elf_thread_status *ets; 4182 4183 ets = g_malloc0(sizeof (*ets)); 4184 ets->num_notes = 1; /* only prstatus is dumped */ 4185 fill_prstatus(&ets->prstatus, ts, 0); 4186 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4187 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4188 &ets->prstatus); 4189 4190 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4191 4192 info->notes_size += note_size(&ets->notes[0]); 4193 } 4194 4195 static void init_note_info(struct elf_note_info *info) 4196 { 4197 /* Initialize the elf_note_info structure so that it is at 4198 * least safe to call free_note_info() on it. Must be 4199 * called before calling fill_note_info(). 4200 */ 4201 memset(info, 0, sizeof (*info)); 4202 QTAILQ_INIT(&info->thread_list); 4203 } 4204 4205 static int fill_note_info(struct elf_note_info *info, 4206 long signr, const CPUArchState *env) 4207 { 4208 #define NUMNOTES 3 4209 CPUState *cpu = env_cpu((CPUArchState *)env); 4210 TaskState *ts = (TaskState *)cpu->opaque; 4211 int i; 4212 4213 info->notes = g_new0(struct memelfnote, NUMNOTES); 4214 if (info->notes == NULL) 4215 return (-ENOMEM); 4216 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4217 if (info->prstatus == NULL) 4218 return (-ENOMEM); 4219 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4220 if (info->prstatus == NULL) 4221 return (-ENOMEM); 4222 4223 /* 4224 * First fill in status (and registers) of current thread 4225 * including process info & aux vector. 4226 */ 4227 fill_prstatus(info->prstatus, ts, signr); 4228 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4229 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4230 sizeof (*info->prstatus), info->prstatus); 4231 fill_psinfo(info->psinfo, ts); 4232 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4233 sizeof (*info->psinfo), info->psinfo); 4234 fill_auxv_note(&info->notes[2], ts); 4235 info->numnote = 3; 4236 4237 info->notes_size = 0; 4238 for (i = 0; i < info->numnote; i++) 4239 info->notes_size += note_size(&info->notes[i]); 4240 4241 /* read and fill status of all threads */ 4242 cpu_list_lock(); 4243 CPU_FOREACH(cpu) { 4244 if (cpu == thread_cpu) { 4245 continue; 4246 } 4247 fill_thread_info(info, cpu->env_ptr); 4248 } 4249 cpu_list_unlock(); 4250 4251 return (0); 4252 } 4253 4254 static void free_note_info(struct elf_note_info *info) 4255 { 4256 struct elf_thread_status *ets; 4257 4258 while (!QTAILQ_EMPTY(&info->thread_list)) { 4259 ets = QTAILQ_FIRST(&info->thread_list); 4260 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4261 g_free(ets); 4262 } 4263 4264 g_free(info->prstatus); 4265 g_free(info->psinfo); 4266 g_free(info->notes); 4267 } 4268 4269 static int write_note_info(struct elf_note_info *info, int fd) 4270 { 4271 struct elf_thread_status *ets; 4272 int i, error = 0; 4273 4274 /* write prstatus, psinfo and auxv for current thread */ 4275 for (i = 0; i < info->numnote; i++) 4276 if ((error = write_note(&info->notes[i], fd)) != 0) 4277 return (error); 4278 4279 /* write prstatus for each thread */ 4280 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4281 if ((error = write_note(&ets->notes[0], fd)) != 0) 4282 return (error); 4283 } 4284 4285 return (0); 4286 } 4287 4288 /* 4289 * Write out ELF coredump. 4290 * 4291 * See documentation of ELF object file format in: 4292 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4293 * 4294 * Coredump format in linux is following: 4295 * 4296 * 0 +----------------------+ \ 4297 * | ELF header | ET_CORE | 4298 * +----------------------+ | 4299 * | ELF program headers | |--- headers 4300 * | - NOTE section | | 4301 * | - PT_LOAD sections | | 4302 * +----------------------+ / 4303 * | NOTEs: | 4304 * | - NT_PRSTATUS | 4305 * | - NT_PRSINFO | 4306 * | - NT_AUXV | 4307 * +----------------------+ <-- aligned to target page 4308 * | Process memory dump | 4309 * : : 4310 * . . 4311 * : : 4312 * | | 4313 * +----------------------+ 4314 * 4315 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4316 * NT_PRSINFO -> struct elf_prpsinfo 4317 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4318 * 4319 * Format follows System V format as close as possible. Current 4320 * version limitations are as follows: 4321 * - no floating point registers are dumped 4322 * 4323 * Function returns 0 in case of success, negative errno otherwise. 4324 * 4325 * TODO: make this work also during runtime: it should be 4326 * possible to force coredump from running process and then 4327 * continue processing. For example qemu could set up SIGUSR2 4328 * handler (provided that target process haven't registered 4329 * handler for that) that does the dump when signal is received. 4330 */ 4331 static int elf_core_dump(int signr, const CPUArchState *env) 4332 { 4333 const CPUState *cpu = env_cpu((CPUArchState *)env); 4334 const TaskState *ts = (const TaskState *)cpu->opaque; 4335 struct vm_area_struct *vma = NULL; 4336 g_autofree char *corefile = NULL; 4337 struct elf_note_info info; 4338 struct elfhdr elf; 4339 struct elf_phdr phdr; 4340 struct rlimit dumpsize; 4341 struct mm_struct *mm = NULL; 4342 off_t offset = 0, data_offset = 0; 4343 int segs = 0; 4344 int fd = -1; 4345 4346 init_note_info(&info); 4347 4348 errno = 0; 4349 getrlimit(RLIMIT_CORE, &dumpsize); 4350 if (dumpsize.rlim_cur == 0) 4351 return 0; 4352 4353 corefile = core_dump_filename(ts); 4354 4355 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4356 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4357 return (-errno); 4358 4359 /* 4360 * Walk through target process memory mappings and 4361 * set up structure containing this information. After 4362 * this point vma_xxx functions can be used. 4363 */ 4364 if ((mm = vma_init()) == NULL) 4365 goto out; 4366 4367 walk_memory_regions(mm, vma_walker); 4368 segs = vma_get_mapping_count(mm); 4369 4370 /* 4371 * Construct valid coredump ELF header. We also 4372 * add one more segment for notes. 4373 */ 4374 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4375 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4376 goto out; 4377 4378 /* fill in the in-memory version of notes */ 4379 if (fill_note_info(&info, signr, env) < 0) 4380 goto out; 4381 4382 offset += sizeof (elf); /* elf header */ 4383 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4384 4385 /* write out notes program header */ 4386 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4387 4388 offset += info.notes_size; 4389 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4390 goto out; 4391 4392 /* 4393 * ELF specification wants data to start at page boundary so 4394 * we align it here. 4395 */ 4396 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4397 4398 /* 4399 * Write program headers for memory regions mapped in 4400 * the target process. 4401 */ 4402 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4403 (void) memset(&phdr, 0, sizeof (phdr)); 4404 4405 phdr.p_type = PT_LOAD; 4406 phdr.p_offset = offset; 4407 phdr.p_vaddr = vma->vma_start; 4408 phdr.p_paddr = 0; 4409 phdr.p_filesz = vma_dump_size(vma); 4410 offset += phdr.p_filesz; 4411 phdr.p_memsz = vma->vma_end - vma->vma_start; 4412 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4413 if (vma->vma_flags & PROT_WRITE) 4414 phdr.p_flags |= PF_W; 4415 if (vma->vma_flags & PROT_EXEC) 4416 phdr.p_flags |= PF_X; 4417 phdr.p_align = ELF_EXEC_PAGESIZE; 4418 4419 bswap_phdr(&phdr, 1); 4420 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4421 goto out; 4422 } 4423 } 4424 4425 /* 4426 * Next we write notes just after program headers. No 4427 * alignment needed here. 4428 */ 4429 if (write_note_info(&info, fd) < 0) 4430 goto out; 4431 4432 /* align data to page boundary */ 4433 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4434 goto out; 4435 4436 /* 4437 * Finally we can dump process memory into corefile as well. 4438 */ 4439 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4440 abi_ulong addr; 4441 abi_ulong end; 4442 4443 end = vma->vma_start + vma_dump_size(vma); 4444 4445 for (addr = vma->vma_start; addr < end; 4446 addr += TARGET_PAGE_SIZE) { 4447 char page[TARGET_PAGE_SIZE]; 4448 int error; 4449 4450 /* 4451 * Read in page from target process memory and 4452 * write it to coredump file. 4453 */ 4454 error = copy_from_user(page, addr, sizeof (page)); 4455 if (error != 0) { 4456 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4457 addr); 4458 errno = -error; 4459 goto out; 4460 } 4461 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4462 goto out; 4463 } 4464 } 4465 4466 out: 4467 free_note_info(&info); 4468 if (mm != NULL) 4469 vma_delete(mm); 4470 (void) close(fd); 4471 4472 if (errno != 0) 4473 return (-errno); 4474 return (0); 4475 } 4476 #endif /* USE_ELF_CORE_DUMP */ 4477 4478 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4479 { 4480 init_thread(regs, infop); 4481 } 4482