1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 /* this flag is uneffective under linux too, should be deleted */ 89 #ifndef MAP_DENYWRITE 90 #define MAP_DENYWRITE 0 91 #endif 92 93 /* should probably go in elf.h */ 94 #ifndef ELIBBAD 95 #define ELIBBAD 80 96 #endif 97 98 #ifdef TARGET_WORDS_BIGENDIAN 99 #define ELF_DATA ELFDATA2MSB 100 #else 101 #define ELF_DATA ELFDATA2LSB 102 #endif 103 104 typedef target_ulong target_elf_greg_t; 105 #ifdef USE_UID16 106 typedef target_ushort target_uid_t; 107 typedef target_ushort target_gid_t; 108 #else 109 typedef target_uint target_uid_t; 110 typedef target_uint target_gid_t; 111 #endif 112 typedef target_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = (thread_env->cpuid_version >> 8) & 0xff; 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 return thread_env->cpuid_features; 134 } 135 136 #ifdef TARGET_X86_64 137 #define ELF_START_MMAP 0x2aaaaab000ULL 138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 139 140 #define ELF_CLASS ELFCLASS64 141 #define ELF_ARCH EM_X86_64 142 143 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 144 { 145 regs->rax = 0; 146 regs->rsp = infop->start_stack; 147 regs->rip = infop->entry; 148 } 149 150 #define ELF_NREG 27 151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 152 153 /* 154 * Note that ELF_NREG should be 29 as there should be place for 155 * TRAPNO and ERR "registers" as well but linux doesn't dump 156 * those. 157 * 158 * See linux kernel: arch/x86/include/asm/elf.h 159 */ 160 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 161 { 162 (*regs)[0] = env->regs[15]; 163 (*regs)[1] = env->regs[14]; 164 (*regs)[2] = env->regs[13]; 165 (*regs)[3] = env->regs[12]; 166 (*regs)[4] = env->regs[R_EBP]; 167 (*regs)[5] = env->regs[R_EBX]; 168 (*regs)[6] = env->regs[11]; 169 (*regs)[7] = env->regs[10]; 170 (*regs)[8] = env->regs[9]; 171 (*regs)[9] = env->regs[8]; 172 (*regs)[10] = env->regs[R_EAX]; 173 (*regs)[11] = env->regs[R_ECX]; 174 (*regs)[12] = env->regs[R_EDX]; 175 (*regs)[13] = env->regs[R_ESI]; 176 (*regs)[14] = env->regs[R_EDI]; 177 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 178 (*regs)[16] = env->eip; 179 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 180 (*regs)[18] = env->eflags; 181 (*regs)[19] = env->regs[R_ESP]; 182 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 183 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 184 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 185 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 186 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 187 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 188 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 189 } 190 191 #else 192 193 #define ELF_START_MMAP 0x80000000 194 195 /* 196 * This is used to ensure we don't load something for the wrong architecture. 197 */ 198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 199 200 /* 201 * These are used to set parameters in the core dumps. 202 */ 203 #define ELF_CLASS ELFCLASS32 204 #define ELF_ARCH EM_386 205 206 static inline void init_thread(struct target_pt_regs *regs, 207 struct image_info *infop) 208 { 209 regs->esp = infop->start_stack; 210 regs->eip = infop->entry; 211 212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 213 starts %edx contains a pointer to a function which might be 214 registered using `atexit'. This provides a mean for the 215 dynamic linker to call DT_FINI functions for shared libraries 216 that have been loaded before the code runs. 217 218 A value of 0 tells we have no such handler. */ 219 regs->edx = 0; 220 } 221 222 #define ELF_NREG 17 223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 224 225 /* 226 * Note that ELF_NREG should be 19 as there should be place for 227 * TRAPNO and ERR "registers" as well but linux doesn't dump 228 * those. 229 * 230 * See linux kernel: arch/x86/include/asm/elf.h 231 */ 232 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 233 { 234 (*regs)[0] = env->regs[R_EBX]; 235 (*regs)[1] = env->regs[R_ECX]; 236 (*regs)[2] = env->regs[R_EDX]; 237 (*regs)[3] = env->regs[R_ESI]; 238 (*regs)[4] = env->regs[R_EDI]; 239 (*regs)[5] = env->regs[R_EBP]; 240 (*regs)[6] = env->regs[R_EAX]; 241 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 242 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 243 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 244 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 245 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 246 (*regs)[12] = env->eip; 247 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 248 (*regs)[14] = env->eflags; 249 (*regs)[15] = env->regs[R_ESP]; 250 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 251 } 252 #endif 253 254 #define USE_ELF_CORE_DUMP 255 #define ELF_EXEC_PAGESIZE 4096 256 257 #endif 258 259 #ifdef TARGET_ARM 260 261 #define ELF_START_MMAP 0x80000000 262 263 #define elf_check_arch(x) ( (x) == EM_ARM ) 264 265 #define ELF_CLASS ELFCLASS32 266 #define ELF_ARCH EM_ARM 267 268 static inline void init_thread(struct target_pt_regs *regs, 269 struct image_info *infop) 270 { 271 abi_long stack = infop->start_stack; 272 memset(regs, 0, sizeof(*regs)); 273 regs->ARM_cpsr = 0x10; 274 if (infop->entry & 1) 275 regs->ARM_cpsr |= CPSR_T; 276 regs->ARM_pc = infop->entry & 0xfffffffe; 277 regs->ARM_sp = infop->start_stack; 278 /* FIXME - what to for failure of get_user()? */ 279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 281 /* XXX: it seems that r0 is zeroed after ! */ 282 regs->ARM_r0 = 0; 283 /* For uClinux PIC binaries. */ 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 285 regs->ARM_r10 = infop->start_data; 286 } 287 288 #define ELF_NREG 18 289 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 290 291 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 292 { 293 (*regs)[0] = tswapl(env->regs[0]); 294 (*regs)[1] = tswapl(env->regs[1]); 295 (*regs)[2] = tswapl(env->regs[2]); 296 (*regs)[3] = tswapl(env->regs[3]); 297 (*regs)[4] = tswapl(env->regs[4]); 298 (*regs)[5] = tswapl(env->regs[5]); 299 (*regs)[6] = tswapl(env->regs[6]); 300 (*regs)[7] = tswapl(env->regs[7]); 301 (*regs)[8] = tswapl(env->regs[8]); 302 (*regs)[9] = tswapl(env->regs[9]); 303 (*regs)[10] = tswapl(env->regs[10]); 304 (*regs)[11] = tswapl(env->regs[11]); 305 (*regs)[12] = tswapl(env->regs[12]); 306 (*regs)[13] = tswapl(env->regs[13]); 307 (*regs)[14] = tswapl(env->regs[14]); 308 (*regs)[15] = tswapl(env->regs[15]); 309 310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); 311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */ 312 } 313 314 #define USE_ELF_CORE_DUMP 315 #define ELF_EXEC_PAGESIZE 4096 316 317 enum 318 { 319 ARM_HWCAP_ARM_SWP = 1 << 0, 320 ARM_HWCAP_ARM_HALF = 1 << 1, 321 ARM_HWCAP_ARM_THUMB = 1 << 2, 322 ARM_HWCAP_ARM_26BIT = 1 << 3, 323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 324 ARM_HWCAP_ARM_FPA = 1 << 5, 325 ARM_HWCAP_ARM_VFP = 1 << 6, 326 ARM_HWCAP_ARM_EDSP = 1 << 7, 327 ARM_HWCAP_ARM_JAVA = 1 << 8, 328 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 329 ARM_HWCAP_ARM_THUMBEE = 1 << 10, 330 ARM_HWCAP_ARM_NEON = 1 << 11, 331 ARM_HWCAP_ARM_VFPv3 = 1 << 12, 332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, 333 }; 334 335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ 336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ 337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ 338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) 339 340 #endif 341 342 #ifdef TARGET_UNICORE32 343 344 #define ELF_START_MMAP 0x80000000 345 346 #define elf_check_arch(x) ((x) == EM_UNICORE32) 347 348 #define ELF_CLASS ELFCLASS32 349 #define ELF_DATA ELFDATA2LSB 350 #define ELF_ARCH EM_UNICORE32 351 352 static inline void init_thread(struct target_pt_regs *regs, 353 struct image_info *infop) 354 { 355 abi_long stack = infop->start_stack; 356 memset(regs, 0, sizeof(*regs)); 357 regs->UC32_REG_asr = 0x10; 358 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 359 regs->UC32_REG_sp = infop->start_stack; 360 /* FIXME - what to for failure of get_user()? */ 361 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 362 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 363 /* XXX: it seems that r0 is zeroed after ! */ 364 regs->UC32_REG_00 = 0; 365 } 366 367 #define ELF_NREG 34 368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 369 370 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 371 { 372 (*regs)[0] = env->regs[0]; 373 (*regs)[1] = env->regs[1]; 374 (*regs)[2] = env->regs[2]; 375 (*regs)[3] = env->regs[3]; 376 (*regs)[4] = env->regs[4]; 377 (*regs)[5] = env->regs[5]; 378 (*regs)[6] = env->regs[6]; 379 (*regs)[7] = env->regs[7]; 380 (*regs)[8] = env->regs[8]; 381 (*regs)[9] = env->regs[9]; 382 (*regs)[10] = env->regs[10]; 383 (*regs)[11] = env->regs[11]; 384 (*regs)[12] = env->regs[12]; 385 (*regs)[13] = env->regs[13]; 386 (*regs)[14] = env->regs[14]; 387 (*regs)[15] = env->regs[15]; 388 (*regs)[16] = env->regs[16]; 389 (*regs)[17] = env->regs[17]; 390 (*regs)[18] = env->regs[18]; 391 (*regs)[19] = env->regs[19]; 392 (*regs)[20] = env->regs[20]; 393 (*regs)[21] = env->regs[21]; 394 (*regs)[22] = env->regs[22]; 395 (*regs)[23] = env->regs[23]; 396 (*regs)[24] = env->regs[24]; 397 (*regs)[25] = env->regs[25]; 398 (*regs)[26] = env->regs[26]; 399 (*regs)[27] = env->regs[27]; 400 (*regs)[28] = env->regs[28]; 401 (*regs)[29] = env->regs[29]; 402 (*regs)[30] = env->regs[30]; 403 (*regs)[31] = env->regs[31]; 404 405 (*regs)[32] = cpu_asr_read((CPUState *)env); 406 (*regs)[33] = env->regs[0]; /* XXX */ 407 } 408 409 #define USE_ELF_CORE_DUMP 410 #define ELF_EXEC_PAGESIZE 4096 411 412 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 413 414 #endif 415 416 #ifdef TARGET_SPARC 417 #ifdef TARGET_SPARC64 418 419 #define ELF_START_MMAP 0x80000000 420 421 #ifndef TARGET_ABI32 422 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 423 #else 424 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 425 #endif 426 427 #define ELF_CLASS ELFCLASS64 428 #define ELF_ARCH EM_SPARCV9 429 430 #define STACK_BIAS 2047 431 432 static inline void init_thread(struct target_pt_regs *regs, 433 struct image_info *infop) 434 { 435 #ifndef TARGET_ABI32 436 regs->tstate = 0; 437 #endif 438 regs->pc = infop->entry; 439 regs->npc = regs->pc + 4; 440 regs->y = 0; 441 #ifdef TARGET_ABI32 442 regs->u_regs[14] = infop->start_stack - 16 * 4; 443 #else 444 if (personality(infop->personality) == PER_LINUX32) 445 regs->u_regs[14] = infop->start_stack - 16 * 4; 446 else 447 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 448 #endif 449 } 450 451 #else 452 #define ELF_START_MMAP 0x80000000 453 454 #define elf_check_arch(x) ( (x) == EM_SPARC ) 455 456 #define ELF_CLASS ELFCLASS32 457 #define ELF_ARCH EM_SPARC 458 459 static inline void init_thread(struct target_pt_regs *regs, 460 struct image_info *infop) 461 { 462 regs->psr = 0; 463 regs->pc = infop->entry; 464 regs->npc = regs->pc + 4; 465 regs->y = 0; 466 regs->u_regs[14] = infop->start_stack - 16 * 4; 467 } 468 469 #endif 470 #endif 471 472 #ifdef TARGET_PPC 473 474 #define ELF_START_MMAP 0x80000000 475 476 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 477 478 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 479 480 #define ELF_CLASS ELFCLASS64 481 482 #else 483 484 #define elf_check_arch(x) ( (x) == EM_PPC ) 485 486 #define ELF_CLASS ELFCLASS32 487 488 #endif 489 490 #define ELF_ARCH EM_PPC 491 492 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 493 See arch/powerpc/include/asm/cputable.h. */ 494 enum { 495 QEMU_PPC_FEATURE_32 = 0x80000000, 496 QEMU_PPC_FEATURE_64 = 0x40000000, 497 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 498 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 499 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 500 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 501 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 502 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 503 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 504 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 505 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 506 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 507 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 508 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 509 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 510 QEMU_PPC_FEATURE_CELL = 0x00010000, 511 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 512 QEMU_PPC_FEATURE_SMT = 0x00004000, 513 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 514 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 515 QEMU_PPC_FEATURE_PA6T = 0x00000800, 516 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 517 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 518 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 519 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 520 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 521 522 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 523 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 524 }; 525 526 #define ELF_HWCAP get_elf_hwcap() 527 528 static uint32_t get_elf_hwcap(void) 529 { 530 CPUState *e = thread_env; 531 uint32_t features = 0; 532 533 /* We don't have to be terribly complete here; the high points are 534 Altivec/FP/SPE support. Anything else is just a bonus. */ 535 #define GET_FEATURE(flag, feature) \ 536 do {if (e->insns_flags & flag) features |= feature; } while(0) 537 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 538 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 539 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 540 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 541 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 542 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 543 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 544 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 545 #undef GET_FEATURE 546 547 return features; 548 } 549 550 /* 551 * The requirements here are: 552 * - keep the final alignment of sp (sp & 0xf) 553 * - make sure the 32-bit value at the first 16 byte aligned position of 554 * AUXV is greater than 16 for glibc compatibility. 555 * AT_IGNOREPPC is used for that. 556 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 557 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 558 */ 559 #define DLINFO_ARCH_ITEMS 5 560 #define ARCH_DLINFO \ 561 do { \ 562 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ 563 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ 564 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 565 /* \ 566 * Now handle glibc compatibility. \ 567 */ \ 568 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 569 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 570 } while (0) 571 572 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 573 { 574 _regs->gpr[1] = infop->start_stack; 575 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 576 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; 577 infop->entry = ldq_raw(infop->entry) + infop->load_addr; 578 #endif 579 _regs->nip = infop->entry; 580 } 581 582 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 583 #define ELF_NREG 48 584 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 585 586 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 587 { 588 int i; 589 target_ulong ccr = 0; 590 591 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 592 (*regs)[i] = tswapl(env->gpr[i]); 593 } 594 595 (*regs)[32] = tswapl(env->nip); 596 (*regs)[33] = tswapl(env->msr); 597 (*regs)[35] = tswapl(env->ctr); 598 (*regs)[36] = tswapl(env->lr); 599 (*regs)[37] = tswapl(env->xer); 600 601 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 602 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 603 } 604 (*regs)[38] = tswapl(ccr); 605 } 606 607 #define USE_ELF_CORE_DUMP 608 #define ELF_EXEC_PAGESIZE 4096 609 610 #endif 611 612 #ifdef TARGET_MIPS 613 614 #define ELF_START_MMAP 0x80000000 615 616 #define elf_check_arch(x) ( (x) == EM_MIPS ) 617 618 #ifdef TARGET_MIPS64 619 #define ELF_CLASS ELFCLASS64 620 #else 621 #define ELF_CLASS ELFCLASS32 622 #endif 623 #define ELF_ARCH EM_MIPS 624 625 static inline void init_thread(struct target_pt_regs *regs, 626 struct image_info *infop) 627 { 628 regs->cp0_status = 2 << CP0St_KSU; 629 regs->cp0_epc = infop->entry; 630 regs->regs[29] = infop->start_stack; 631 } 632 633 /* See linux kernel: arch/mips/include/asm/elf.h. */ 634 #define ELF_NREG 45 635 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 636 637 /* See linux kernel: arch/mips/include/asm/reg.h. */ 638 enum { 639 #ifdef TARGET_MIPS64 640 TARGET_EF_R0 = 0, 641 #else 642 TARGET_EF_R0 = 6, 643 #endif 644 TARGET_EF_R26 = TARGET_EF_R0 + 26, 645 TARGET_EF_R27 = TARGET_EF_R0 + 27, 646 TARGET_EF_LO = TARGET_EF_R0 + 32, 647 TARGET_EF_HI = TARGET_EF_R0 + 33, 648 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 649 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 650 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 651 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 652 }; 653 654 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 655 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 656 { 657 int i; 658 659 for (i = 0; i < TARGET_EF_R0; i++) { 660 (*regs)[i] = 0; 661 } 662 (*regs)[TARGET_EF_R0] = 0; 663 664 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 665 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); 666 } 667 668 (*regs)[TARGET_EF_R26] = 0; 669 (*regs)[TARGET_EF_R27] = 0; 670 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); 671 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); 672 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); 673 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); 674 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); 675 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); 676 } 677 678 #define USE_ELF_CORE_DUMP 679 #define ELF_EXEC_PAGESIZE 4096 680 681 #endif /* TARGET_MIPS */ 682 683 #ifdef TARGET_MICROBLAZE 684 685 #define ELF_START_MMAP 0x80000000 686 687 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 688 689 #define ELF_CLASS ELFCLASS32 690 #define ELF_ARCH EM_MICROBLAZE 691 692 static inline void init_thread(struct target_pt_regs *regs, 693 struct image_info *infop) 694 { 695 regs->pc = infop->entry; 696 regs->r1 = infop->start_stack; 697 698 } 699 700 #define ELF_EXEC_PAGESIZE 4096 701 702 #define USE_ELF_CORE_DUMP 703 #define ELF_NREG 38 704 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 705 706 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 707 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 708 { 709 int i, pos = 0; 710 711 for (i = 0; i < 32; i++) { 712 (*regs)[pos++] = tswapl(env->regs[i]); 713 } 714 715 for (i = 0; i < 6; i++) { 716 (*regs)[pos++] = tswapl(env->sregs[i]); 717 } 718 } 719 720 #endif /* TARGET_MICROBLAZE */ 721 722 #ifdef TARGET_SH4 723 724 #define ELF_START_MMAP 0x80000000 725 726 #define elf_check_arch(x) ( (x) == EM_SH ) 727 728 #define ELF_CLASS ELFCLASS32 729 #define ELF_ARCH EM_SH 730 731 static inline void init_thread(struct target_pt_regs *regs, 732 struct image_info *infop) 733 { 734 /* Check other registers XXXXX */ 735 regs->pc = infop->entry; 736 regs->regs[15] = infop->start_stack; 737 } 738 739 /* See linux kernel: arch/sh/include/asm/elf.h. */ 740 #define ELF_NREG 23 741 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 742 743 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 744 enum { 745 TARGET_REG_PC = 16, 746 TARGET_REG_PR = 17, 747 TARGET_REG_SR = 18, 748 TARGET_REG_GBR = 19, 749 TARGET_REG_MACH = 20, 750 TARGET_REG_MACL = 21, 751 TARGET_REG_SYSCALL = 22 752 }; 753 754 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 755 const CPUState *env) 756 { 757 int i; 758 759 for (i = 0; i < 16; i++) { 760 (*regs[i]) = tswapl(env->gregs[i]); 761 } 762 763 (*regs)[TARGET_REG_PC] = tswapl(env->pc); 764 (*regs)[TARGET_REG_PR] = tswapl(env->pr); 765 (*regs)[TARGET_REG_SR] = tswapl(env->sr); 766 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); 767 (*regs)[TARGET_REG_MACH] = tswapl(env->mach); 768 (*regs)[TARGET_REG_MACL] = tswapl(env->macl); 769 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 770 } 771 772 #define USE_ELF_CORE_DUMP 773 #define ELF_EXEC_PAGESIZE 4096 774 775 #endif 776 777 #ifdef TARGET_CRIS 778 779 #define ELF_START_MMAP 0x80000000 780 781 #define elf_check_arch(x) ( (x) == EM_CRIS ) 782 783 #define ELF_CLASS ELFCLASS32 784 #define ELF_ARCH EM_CRIS 785 786 static inline void init_thread(struct target_pt_regs *regs, 787 struct image_info *infop) 788 { 789 regs->erp = infop->entry; 790 } 791 792 #define ELF_EXEC_PAGESIZE 8192 793 794 #endif 795 796 #ifdef TARGET_M68K 797 798 #define ELF_START_MMAP 0x80000000 799 800 #define elf_check_arch(x) ( (x) == EM_68K ) 801 802 #define ELF_CLASS ELFCLASS32 803 #define ELF_ARCH EM_68K 804 805 /* ??? Does this need to do anything? 806 #define ELF_PLAT_INIT(_r) */ 807 808 static inline void init_thread(struct target_pt_regs *regs, 809 struct image_info *infop) 810 { 811 regs->usp = infop->start_stack; 812 regs->sr = 0; 813 regs->pc = infop->entry; 814 } 815 816 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 817 #define ELF_NREG 20 818 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 819 820 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 821 { 822 (*regs)[0] = tswapl(env->dregs[1]); 823 (*regs)[1] = tswapl(env->dregs[2]); 824 (*regs)[2] = tswapl(env->dregs[3]); 825 (*regs)[3] = tswapl(env->dregs[4]); 826 (*regs)[4] = tswapl(env->dregs[5]); 827 (*regs)[5] = tswapl(env->dregs[6]); 828 (*regs)[6] = tswapl(env->dregs[7]); 829 (*regs)[7] = tswapl(env->aregs[0]); 830 (*regs)[8] = tswapl(env->aregs[1]); 831 (*regs)[9] = tswapl(env->aregs[2]); 832 (*regs)[10] = tswapl(env->aregs[3]); 833 (*regs)[11] = tswapl(env->aregs[4]); 834 (*regs)[12] = tswapl(env->aregs[5]); 835 (*regs)[13] = tswapl(env->aregs[6]); 836 (*regs)[14] = tswapl(env->dregs[0]); 837 (*regs)[15] = tswapl(env->aregs[7]); 838 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ 839 (*regs)[17] = tswapl(env->sr); 840 (*regs)[18] = tswapl(env->pc); 841 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 842 } 843 844 #define USE_ELF_CORE_DUMP 845 #define ELF_EXEC_PAGESIZE 8192 846 847 #endif 848 849 #ifdef TARGET_ALPHA 850 851 #define ELF_START_MMAP (0x30000000000ULL) 852 853 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 854 855 #define ELF_CLASS ELFCLASS64 856 #define ELF_ARCH EM_ALPHA 857 858 static inline void init_thread(struct target_pt_regs *regs, 859 struct image_info *infop) 860 { 861 regs->pc = infop->entry; 862 regs->ps = 8; 863 regs->usp = infop->start_stack; 864 } 865 866 #define ELF_EXEC_PAGESIZE 8192 867 868 #endif /* TARGET_ALPHA */ 869 870 #ifndef ELF_PLATFORM 871 #define ELF_PLATFORM (NULL) 872 #endif 873 874 #ifndef ELF_HWCAP 875 #define ELF_HWCAP 0 876 #endif 877 878 #ifdef TARGET_ABI32 879 #undef ELF_CLASS 880 #define ELF_CLASS ELFCLASS32 881 #undef bswaptls 882 #define bswaptls(ptr) bswap32s(ptr) 883 #endif 884 885 #include "elf.h" 886 887 struct exec 888 { 889 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 890 unsigned int a_text; /* length of text, in bytes */ 891 unsigned int a_data; /* length of data, in bytes */ 892 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 893 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 894 unsigned int a_entry; /* start address */ 895 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 896 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 897 }; 898 899 900 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 901 #define OMAGIC 0407 902 #define NMAGIC 0410 903 #define ZMAGIC 0413 904 #define QMAGIC 0314 905 906 /* Necessary parameters */ 907 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 908 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 909 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 910 911 #define DLINFO_ITEMS 12 912 913 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 914 { 915 memcpy(to, from, n); 916 } 917 918 #ifdef BSWAP_NEEDED 919 static void bswap_ehdr(struct elfhdr *ehdr) 920 { 921 bswap16s(&ehdr->e_type); /* Object file type */ 922 bswap16s(&ehdr->e_machine); /* Architecture */ 923 bswap32s(&ehdr->e_version); /* Object file version */ 924 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 925 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 926 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 927 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 928 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 929 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 930 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 931 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 932 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 933 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 934 } 935 936 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 937 { 938 int i; 939 for (i = 0; i < phnum; ++i, ++phdr) { 940 bswap32s(&phdr->p_type); /* Segment type */ 941 bswap32s(&phdr->p_flags); /* Segment flags */ 942 bswaptls(&phdr->p_offset); /* Segment file offset */ 943 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 944 bswaptls(&phdr->p_paddr); /* Segment physical address */ 945 bswaptls(&phdr->p_filesz); /* Segment size in file */ 946 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 947 bswaptls(&phdr->p_align); /* Segment alignment */ 948 } 949 } 950 951 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 952 { 953 int i; 954 for (i = 0; i < shnum; ++i, ++shdr) { 955 bswap32s(&shdr->sh_name); 956 bswap32s(&shdr->sh_type); 957 bswaptls(&shdr->sh_flags); 958 bswaptls(&shdr->sh_addr); 959 bswaptls(&shdr->sh_offset); 960 bswaptls(&shdr->sh_size); 961 bswap32s(&shdr->sh_link); 962 bswap32s(&shdr->sh_info); 963 bswaptls(&shdr->sh_addralign); 964 bswaptls(&shdr->sh_entsize); 965 } 966 } 967 968 static void bswap_sym(struct elf_sym *sym) 969 { 970 bswap32s(&sym->st_name); 971 bswaptls(&sym->st_value); 972 bswaptls(&sym->st_size); 973 bswap16s(&sym->st_shndx); 974 } 975 #else 976 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 977 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 978 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 979 static inline void bswap_sym(struct elf_sym *sym) { } 980 #endif 981 982 #ifdef USE_ELF_CORE_DUMP 983 static int elf_core_dump(int, const CPUState *); 984 #endif /* USE_ELF_CORE_DUMP */ 985 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 986 987 /* Verify the portions of EHDR within E_IDENT for the target. 988 This can be performed before bswapping the entire header. */ 989 static bool elf_check_ident(struct elfhdr *ehdr) 990 { 991 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 992 && ehdr->e_ident[EI_MAG1] == ELFMAG1 993 && ehdr->e_ident[EI_MAG2] == ELFMAG2 994 && ehdr->e_ident[EI_MAG3] == ELFMAG3 995 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 996 && ehdr->e_ident[EI_DATA] == ELF_DATA 997 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 998 } 999 1000 /* Verify the portions of EHDR outside of E_IDENT for the target. 1001 This has to wait until after bswapping the header. */ 1002 static bool elf_check_ehdr(struct elfhdr *ehdr) 1003 { 1004 return (elf_check_arch(ehdr->e_machine) 1005 && ehdr->e_ehsize == sizeof(struct elfhdr) 1006 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1007 && ehdr->e_shentsize == sizeof(struct elf_shdr) 1008 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1009 } 1010 1011 /* 1012 * 'copy_elf_strings()' copies argument/envelope strings from user 1013 * memory to free pages in kernel mem. These are in a format ready 1014 * to be put directly into the top of new user memory. 1015 * 1016 */ 1017 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 1018 abi_ulong p) 1019 { 1020 char *tmp, *tmp1, *pag = NULL; 1021 int len, offset = 0; 1022 1023 if (!p) { 1024 return 0; /* bullet-proofing */ 1025 } 1026 while (argc-- > 0) { 1027 tmp = argv[argc]; 1028 if (!tmp) { 1029 fprintf(stderr, "VFS: argc is wrong"); 1030 exit(-1); 1031 } 1032 tmp1 = tmp; 1033 while (*tmp++); 1034 len = tmp - tmp1; 1035 if (p < len) { /* this shouldn't happen - 128kB */ 1036 return 0; 1037 } 1038 while (len) { 1039 --p; --tmp; --len; 1040 if (--offset < 0) { 1041 offset = p % TARGET_PAGE_SIZE; 1042 pag = (char *)page[p/TARGET_PAGE_SIZE]; 1043 if (!pag) { 1044 pag = (char *)malloc(TARGET_PAGE_SIZE); 1045 memset(pag, 0, TARGET_PAGE_SIZE); 1046 page[p/TARGET_PAGE_SIZE] = pag; 1047 if (!pag) 1048 return 0; 1049 } 1050 } 1051 if (len == 0 || offset == 0) { 1052 *(pag + offset) = *tmp; 1053 } 1054 else { 1055 int bytes_to_copy = (len > offset) ? offset : len; 1056 tmp -= bytes_to_copy; 1057 p -= bytes_to_copy; 1058 offset -= bytes_to_copy; 1059 len -= bytes_to_copy; 1060 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 1061 } 1062 } 1063 } 1064 return p; 1065 } 1066 1067 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 1068 struct image_info *info) 1069 { 1070 abi_ulong stack_base, size, error, guard; 1071 int i; 1072 1073 /* Create enough stack to hold everything. If we don't use 1074 it for args, we'll use it for something else. */ 1075 size = guest_stack_size; 1076 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1077 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1078 } 1079 guard = TARGET_PAGE_SIZE; 1080 if (guard < qemu_real_host_page_size) { 1081 guard = qemu_real_host_page_size; 1082 } 1083 1084 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1085 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1086 if (error == -1) { 1087 perror("mmap stack"); 1088 exit(-1); 1089 } 1090 1091 /* We reserve one extra page at the top of the stack as guard. */ 1092 target_mprotect(error, guard, PROT_NONE); 1093 1094 info->stack_limit = error + guard; 1095 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1096 p += stack_base; 1097 1098 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1099 if (bprm->page[i]) { 1100 info->rss++; 1101 /* FIXME - check return value of memcpy_to_target() for failure */ 1102 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1103 free(bprm->page[i]); 1104 } 1105 stack_base += TARGET_PAGE_SIZE; 1106 } 1107 return p; 1108 } 1109 1110 /* Map and zero the bss. We need to explicitly zero any fractional pages 1111 after the data section (i.e. bss). */ 1112 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1113 { 1114 uintptr_t host_start, host_map_start, host_end; 1115 1116 last_bss = TARGET_PAGE_ALIGN(last_bss); 1117 1118 /* ??? There is confusion between qemu_real_host_page_size and 1119 qemu_host_page_size here and elsewhere in target_mmap, which 1120 may lead to the end of the data section mapping from the file 1121 not being mapped. At least there was an explicit test and 1122 comment for that here, suggesting that "the file size must 1123 be known". The comment probably pre-dates the introduction 1124 of the fstat system call in target_mmap which does in fact 1125 find out the size. What isn't clear is if the workaround 1126 here is still actually needed. For now, continue with it, 1127 but merge it with the "normal" mmap that would allocate the bss. */ 1128 1129 host_start = (uintptr_t) g2h(elf_bss); 1130 host_end = (uintptr_t) g2h(last_bss); 1131 host_map_start = (host_start + qemu_real_host_page_size - 1); 1132 host_map_start &= -qemu_real_host_page_size; 1133 1134 if (host_map_start < host_end) { 1135 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1136 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1137 if (p == MAP_FAILED) { 1138 perror("cannot mmap brk"); 1139 exit(-1); 1140 } 1141 1142 /* Since we didn't use target_mmap, make sure to record 1143 the validity of the pages with qemu. */ 1144 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); 1145 } 1146 1147 if (host_start < host_map_start) { 1148 memset((void *)host_start, 0, host_map_start - host_start); 1149 } 1150 } 1151 1152 #ifdef CONFIG_USE_FDPIC 1153 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1154 { 1155 uint16_t n; 1156 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1157 1158 /* elf32_fdpic_loadseg */ 1159 n = info->nsegs; 1160 while (n--) { 1161 sp -= 12; 1162 put_user_u32(loadsegs[n].addr, sp+0); 1163 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1164 put_user_u32(loadsegs[n].p_memsz, sp+8); 1165 } 1166 1167 /* elf32_fdpic_loadmap */ 1168 sp -= 4; 1169 put_user_u16(0, sp+0); /* version */ 1170 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1171 1172 info->personality = PER_LINUX_FDPIC; 1173 info->loadmap_addr = sp; 1174 1175 return sp; 1176 } 1177 #endif 1178 1179 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1180 struct elfhdr *exec, 1181 struct image_info *info, 1182 struct image_info *interp_info) 1183 { 1184 abi_ulong sp; 1185 int size; 1186 abi_ulong u_platform; 1187 const char *k_platform; 1188 const int n = sizeof(elf_addr_t); 1189 1190 sp = p; 1191 1192 #ifdef CONFIG_USE_FDPIC 1193 /* Needs to be before we load the env/argc/... */ 1194 if (elf_is_fdpic(exec)) { 1195 /* Need 4 byte alignment for these structs */ 1196 sp &= ~3; 1197 sp = loader_build_fdpic_loadmap(info, sp); 1198 info->other_info = interp_info; 1199 if (interp_info) { 1200 interp_info->other_info = info; 1201 sp = loader_build_fdpic_loadmap(interp_info, sp); 1202 } 1203 } 1204 #endif 1205 1206 u_platform = 0; 1207 k_platform = ELF_PLATFORM; 1208 if (k_platform) { 1209 size_t len = strlen(k_platform) + 1; 1210 sp -= (len + n - 1) & ~(n - 1); 1211 u_platform = sp; 1212 /* FIXME - check return value of memcpy_to_target() for failure */ 1213 memcpy_to_target(sp, k_platform, len); 1214 } 1215 /* 1216 * Force 16 byte _final_ alignment here for generality. 1217 */ 1218 sp = sp &~ (abi_ulong)15; 1219 size = (DLINFO_ITEMS + 1) * 2; 1220 if (k_platform) 1221 size += 2; 1222 #ifdef DLINFO_ARCH_ITEMS 1223 size += DLINFO_ARCH_ITEMS * 2; 1224 #endif 1225 size += envc + argc + 2; 1226 size += 1; /* argc itself */ 1227 size *= n; 1228 if (size & 15) 1229 sp -= 16 - (size & 15); 1230 1231 /* This is correct because Linux defines 1232 * elf_addr_t as Elf32_Off / Elf64_Off 1233 */ 1234 #define NEW_AUX_ENT(id, val) do { \ 1235 sp -= n; put_user_ual(val, sp); \ 1236 sp -= n; put_user_ual(id, sp); \ 1237 } while(0) 1238 1239 NEW_AUX_ENT (AT_NULL, 0); 1240 1241 /* There must be exactly DLINFO_ITEMS entries here. */ 1242 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1243 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1244 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1245 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1246 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1247 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1248 NEW_AUX_ENT(AT_ENTRY, info->entry); 1249 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1250 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1251 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1252 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1253 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1254 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1255 if (k_platform) 1256 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1257 #ifdef ARCH_DLINFO 1258 /* 1259 * ARCH_DLINFO must come last so platform specific code can enforce 1260 * special alignment requirements on the AUXV if necessary (eg. PPC). 1261 */ 1262 ARCH_DLINFO; 1263 #endif 1264 #undef NEW_AUX_ENT 1265 1266 info->saved_auxv = sp; 1267 1268 sp = loader_build_argptr(envc, argc, sp, p, 0); 1269 return sp; 1270 } 1271 1272 /* Load an ELF image into the address space. 1273 1274 IMAGE_NAME is the filename of the image, to use in error messages. 1275 IMAGE_FD is the open file descriptor for the image. 1276 1277 BPRM_BUF is a copy of the beginning of the file; this of course 1278 contains the elf file header at offset 0. It is assumed that this 1279 buffer is sufficiently aligned to present no problems to the host 1280 in accessing data at aligned offsets within the buffer. 1281 1282 On return: INFO values will be filled in, as necessary or available. */ 1283 1284 static void load_elf_image(const char *image_name, int image_fd, 1285 struct image_info *info, char **pinterp_name, 1286 char bprm_buf[BPRM_BUF_SIZE]) 1287 { 1288 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1289 struct elf_phdr *phdr; 1290 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1291 int i, retval; 1292 const char *errmsg; 1293 1294 /* First of all, some simple consistency checks */ 1295 errmsg = "Invalid ELF image for this architecture"; 1296 if (!elf_check_ident(ehdr)) { 1297 goto exit_errmsg; 1298 } 1299 bswap_ehdr(ehdr); 1300 if (!elf_check_ehdr(ehdr)) { 1301 goto exit_errmsg; 1302 } 1303 1304 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1305 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1306 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1307 } else { 1308 phdr = (struct elf_phdr *) alloca(i); 1309 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1310 if (retval != i) { 1311 goto exit_read; 1312 } 1313 } 1314 bswap_phdr(phdr, ehdr->e_phnum); 1315 1316 #ifdef CONFIG_USE_FDPIC 1317 info->nsegs = 0; 1318 info->pt_dynamic_addr = 0; 1319 #endif 1320 1321 /* Find the maximum size of the image and allocate an appropriate 1322 amount of memory to handle that. */ 1323 loaddr = -1, hiaddr = 0; 1324 for (i = 0; i < ehdr->e_phnum; ++i) { 1325 if (phdr[i].p_type == PT_LOAD) { 1326 abi_ulong a = phdr[i].p_vaddr; 1327 if (a < loaddr) { 1328 loaddr = a; 1329 } 1330 a += phdr[i].p_memsz; 1331 if (a > hiaddr) { 1332 hiaddr = a; 1333 } 1334 #ifdef CONFIG_USE_FDPIC 1335 ++info->nsegs; 1336 #endif 1337 } 1338 } 1339 1340 load_addr = loaddr; 1341 if (ehdr->e_type == ET_DYN) { 1342 /* The image indicates that it can be loaded anywhere. Find a 1343 location that can hold the memory space required. If the 1344 image is pre-linked, LOADDR will be non-zero. Since we do 1345 not supply MAP_FIXED here we'll use that address if and 1346 only if it remains available. */ 1347 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1348 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1349 -1, 0); 1350 if (load_addr == -1) { 1351 goto exit_perror; 1352 } 1353 } else if (pinterp_name != NULL) { 1354 /* This is the main executable. Make sure that the low 1355 address does not conflict with MMAP_MIN_ADDR or the 1356 QEMU application itself. */ 1357 #if defined(CONFIG_USE_GUEST_BASE) 1358 /* 1359 * In case where user has not explicitly set the guest_base, we 1360 * probe here that should we set it automatically. 1361 */ 1362 if (!have_guest_base && !reserved_va) { 1363 unsigned long host_start, real_start, host_size; 1364 1365 /* Round addresses to page boundaries. */ 1366 loaddr &= qemu_host_page_mask; 1367 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1368 1369 if (loaddr < mmap_min_addr) { 1370 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1371 } else { 1372 host_start = loaddr; 1373 if (host_start != loaddr) { 1374 errmsg = "Address overflow loading ELF binary"; 1375 goto exit_errmsg; 1376 } 1377 } 1378 host_size = hiaddr - loaddr; 1379 while (1) { 1380 /* Do not use mmap_find_vma here because that is limited to the 1381 guest address space. We are going to make the 1382 guest address space fit whatever we're given. */ 1383 real_start = (unsigned long) 1384 mmap((void *)host_start, host_size, PROT_NONE, 1385 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); 1386 if (real_start == (unsigned long)-1) { 1387 goto exit_perror; 1388 } 1389 if (real_start == host_start) { 1390 break; 1391 } 1392 /* That address didn't work. Unmap and try a different one. 1393 The address the host picked because is typically right at 1394 the top of the host address space and leaves the guest with 1395 no usable address space. Resort to a linear search. We 1396 already compensated for mmap_min_addr, so this should not 1397 happen often. Probably means we got unlucky and host 1398 address space randomization put a shared library somewhere 1399 inconvenient. */ 1400 munmap((void *)real_start, host_size); 1401 host_start += qemu_host_page_size; 1402 if (host_start == loaddr) { 1403 /* Theoretically possible if host doesn't have any suitably 1404 aligned areas. Normally the first mmap will fail. */ 1405 errmsg = "Unable to find space for application"; 1406 goto exit_errmsg; 1407 } 1408 } 1409 qemu_log("Relocating guest address space from 0x" 1410 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start); 1411 guest_base = real_start - loaddr; 1412 } 1413 #endif 1414 } 1415 load_bias = load_addr - loaddr; 1416 1417 #ifdef CONFIG_USE_FDPIC 1418 { 1419 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1420 qemu_malloc(sizeof(*loadsegs) * info->nsegs); 1421 1422 for (i = 0; i < ehdr->e_phnum; ++i) { 1423 switch (phdr[i].p_type) { 1424 case PT_DYNAMIC: 1425 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1426 break; 1427 case PT_LOAD: 1428 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1429 loadsegs->p_vaddr = phdr[i].p_vaddr; 1430 loadsegs->p_memsz = phdr[i].p_memsz; 1431 ++loadsegs; 1432 break; 1433 } 1434 } 1435 } 1436 #endif 1437 1438 info->load_bias = load_bias; 1439 info->load_addr = load_addr; 1440 info->entry = ehdr->e_entry + load_bias; 1441 info->start_code = -1; 1442 info->end_code = 0; 1443 info->start_data = -1; 1444 info->end_data = 0; 1445 info->brk = 0; 1446 1447 for (i = 0; i < ehdr->e_phnum; i++) { 1448 struct elf_phdr *eppnt = phdr + i; 1449 if (eppnt->p_type == PT_LOAD) { 1450 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1451 int elf_prot = 0; 1452 1453 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1454 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1455 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1456 1457 vaddr = load_bias + eppnt->p_vaddr; 1458 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1459 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1460 1461 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1462 elf_prot, MAP_PRIVATE | MAP_FIXED, 1463 image_fd, eppnt->p_offset - vaddr_po); 1464 if (error == -1) { 1465 goto exit_perror; 1466 } 1467 1468 vaddr_ef = vaddr + eppnt->p_filesz; 1469 vaddr_em = vaddr + eppnt->p_memsz; 1470 1471 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1472 if (vaddr_ef < vaddr_em) { 1473 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1474 } 1475 1476 /* Find the full program boundaries. */ 1477 if (elf_prot & PROT_EXEC) { 1478 if (vaddr < info->start_code) { 1479 info->start_code = vaddr; 1480 } 1481 if (vaddr_ef > info->end_code) { 1482 info->end_code = vaddr_ef; 1483 } 1484 } 1485 if (elf_prot & PROT_WRITE) { 1486 if (vaddr < info->start_data) { 1487 info->start_data = vaddr; 1488 } 1489 if (vaddr_ef > info->end_data) { 1490 info->end_data = vaddr_ef; 1491 } 1492 if (vaddr_em > info->brk) { 1493 info->brk = vaddr_em; 1494 } 1495 } 1496 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1497 char *interp_name; 1498 1499 if (*pinterp_name) { 1500 errmsg = "Multiple PT_INTERP entries"; 1501 goto exit_errmsg; 1502 } 1503 interp_name = malloc(eppnt->p_filesz); 1504 if (!interp_name) { 1505 goto exit_perror; 1506 } 1507 1508 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1509 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1510 eppnt->p_filesz); 1511 } else { 1512 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1513 eppnt->p_offset); 1514 if (retval != eppnt->p_filesz) { 1515 goto exit_perror; 1516 } 1517 } 1518 if (interp_name[eppnt->p_filesz - 1] != 0) { 1519 errmsg = "Invalid PT_INTERP entry"; 1520 goto exit_errmsg; 1521 } 1522 *pinterp_name = interp_name; 1523 } 1524 } 1525 1526 if (info->end_data == 0) { 1527 info->start_data = info->end_code; 1528 info->end_data = info->end_code; 1529 info->brk = info->end_code; 1530 } 1531 1532 if (qemu_log_enabled()) { 1533 load_symbols(ehdr, image_fd, load_bias); 1534 } 1535 1536 close(image_fd); 1537 return; 1538 1539 exit_read: 1540 if (retval >= 0) { 1541 errmsg = "Incomplete read of file header"; 1542 goto exit_errmsg; 1543 } 1544 exit_perror: 1545 errmsg = strerror(errno); 1546 exit_errmsg: 1547 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1548 exit(-1); 1549 } 1550 1551 static void load_elf_interp(const char *filename, struct image_info *info, 1552 char bprm_buf[BPRM_BUF_SIZE]) 1553 { 1554 int fd, retval; 1555 1556 fd = open(path(filename), O_RDONLY); 1557 if (fd < 0) { 1558 goto exit_perror; 1559 } 1560 1561 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 1562 if (retval < 0) { 1563 goto exit_perror; 1564 } 1565 if (retval < BPRM_BUF_SIZE) { 1566 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 1567 } 1568 1569 load_elf_image(filename, fd, info, NULL, bprm_buf); 1570 return; 1571 1572 exit_perror: 1573 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 1574 exit(-1); 1575 } 1576 1577 static int symfind(const void *s0, const void *s1) 1578 { 1579 struct elf_sym *key = (struct elf_sym *)s0; 1580 struct elf_sym *sym = (struct elf_sym *)s1; 1581 int result = 0; 1582 if (key->st_value < sym->st_value) { 1583 result = -1; 1584 } else if (key->st_value >= sym->st_value + sym->st_size) { 1585 result = 1; 1586 } 1587 return result; 1588 } 1589 1590 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 1591 { 1592 #if ELF_CLASS == ELFCLASS32 1593 struct elf_sym *syms = s->disas_symtab.elf32; 1594 #else 1595 struct elf_sym *syms = s->disas_symtab.elf64; 1596 #endif 1597 1598 // binary search 1599 struct elf_sym key; 1600 struct elf_sym *sym; 1601 1602 key.st_value = orig_addr; 1603 1604 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); 1605 if (sym != NULL) { 1606 return s->disas_strtab + sym->st_name; 1607 } 1608 1609 return ""; 1610 } 1611 1612 /* FIXME: This should use elf_ops.h */ 1613 static int symcmp(const void *s0, const void *s1) 1614 { 1615 struct elf_sym *sym0 = (struct elf_sym *)s0; 1616 struct elf_sym *sym1 = (struct elf_sym *)s1; 1617 return (sym0->st_value < sym1->st_value) 1618 ? -1 1619 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 1620 } 1621 1622 /* Best attempt to load symbols from this ELF object. */ 1623 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 1624 { 1625 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 1626 struct elf_shdr *shdr; 1627 char *strings; 1628 struct syminfo *s; 1629 struct elf_sym *syms, *new_syms; 1630 1631 shnum = hdr->e_shnum; 1632 i = shnum * sizeof(struct elf_shdr); 1633 shdr = (struct elf_shdr *)alloca(i); 1634 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 1635 return; 1636 } 1637 1638 bswap_shdr(shdr, shnum); 1639 for (i = 0; i < shnum; ++i) { 1640 if (shdr[i].sh_type == SHT_SYMTAB) { 1641 sym_idx = i; 1642 str_idx = shdr[i].sh_link; 1643 goto found; 1644 } 1645 } 1646 1647 /* There will be no symbol table if the file was stripped. */ 1648 return; 1649 1650 found: 1651 /* Now know where the strtab and symtab are. Snarf them. */ 1652 s = malloc(sizeof(*s)); 1653 if (!s) { 1654 return; 1655 } 1656 1657 i = shdr[str_idx].sh_size; 1658 s->disas_strtab = strings = malloc(i); 1659 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 1660 free(s); 1661 free(strings); 1662 return; 1663 } 1664 1665 i = shdr[sym_idx].sh_size; 1666 syms = malloc(i); 1667 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 1668 free(s); 1669 free(strings); 1670 free(syms); 1671 return; 1672 } 1673 1674 nsyms = i / sizeof(struct elf_sym); 1675 for (i = 0; i < nsyms; ) { 1676 bswap_sym(syms + i); 1677 /* Throw away entries which we do not need. */ 1678 if (syms[i].st_shndx == SHN_UNDEF 1679 || syms[i].st_shndx >= SHN_LORESERVE 1680 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 1681 if (i < --nsyms) { 1682 syms[i] = syms[nsyms]; 1683 } 1684 } else { 1685 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 1686 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 1687 syms[i].st_value &= ~(target_ulong)1; 1688 #endif 1689 syms[i].st_value += load_bias; 1690 i++; 1691 } 1692 } 1693 1694 /* Attempt to free the storage associated with the local symbols 1695 that we threw away. Whether or not this has any effect on the 1696 memory allocation depends on the malloc implementation and how 1697 many symbols we managed to discard. */ 1698 new_syms = realloc(syms, nsyms * sizeof(*syms)); 1699 if (new_syms == NULL) { 1700 free(s); 1701 free(syms); 1702 free(strings); 1703 return; 1704 } 1705 syms = new_syms; 1706 1707 qsort(syms, nsyms, sizeof(*syms), symcmp); 1708 1709 s->disas_num_syms = nsyms; 1710 #if ELF_CLASS == ELFCLASS32 1711 s->disas_symtab.elf32 = syms; 1712 #else 1713 s->disas_symtab.elf64 = syms; 1714 #endif 1715 s->lookup_symbol = lookup_symbolxx; 1716 s->next = syminfos; 1717 syminfos = s; 1718 } 1719 1720 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 1721 struct image_info * info) 1722 { 1723 struct image_info interp_info; 1724 struct elfhdr elf_ex; 1725 char *elf_interpreter = NULL; 1726 1727 info->start_mmap = (abi_ulong)ELF_START_MMAP; 1728 info->mmap = 0; 1729 info->rss = 0; 1730 1731 load_elf_image(bprm->filename, bprm->fd, info, 1732 &elf_interpreter, bprm->buf); 1733 1734 /* ??? We need a copy of the elf header for passing to create_elf_tables. 1735 If we do nothing, we'll have overwritten this when we re-use bprm->buf 1736 when we load the interpreter. */ 1737 elf_ex = *(struct elfhdr *)bprm->buf; 1738 1739 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 1740 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 1741 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 1742 if (!bprm->p) { 1743 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 1744 exit(-1); 1745 } 1746 1747 /* Do this so that we can load the interpreter, if need be. We will 1748 change some of these later */ 1749 bprm->p = setup_arg_pages(bprm->p, bprm, info); 1750 1751 if (elf_interpreter) { 1752 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 1753 1754 /* If the program interpreter is one of these two, then assume 1755 an iBCS2 image. Otherwise assume a native linux image. */ 1756 1757 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 1758 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 1759 info->personality = PER_SVR4; 1760 1761 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1762 and some applications "depend" upon this behavior. Since 1763 we do not have the power to recompile these, we emulate 1764 the SVr4 behavior. Sigh. */ 1765 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 1766 MAP_FIXED | MAP_PRIVATE, -1, 0); 1767 } 1768 } 1769 1770 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 1771 info, (elf_interpreter ? &interp_info : NULL)); 1772 info->start_stack = bprm->p; 1773 1774 /* If we have an interpreter, set that as the program's entry point. 1775 Copy the load_addr as well, to help PPC64 interpret the entry 1776 point as a function descriptor. Do this after creating elf tables 1777 so that we copy the original program entry point into the AUXV. */ 1778 if (elf_interpreter) { 1779 info->load_addr = interp_info.load_addr; 1780 info->entry = interp_info.entry; 1781 free(elf_interpreter); 1782 } 1783 1784 #ifdef USE_ELF_CORE_DUMP 1785 bprm->core_dump = &elf_core_dump; 1786 #endif 1787 1788 return 0; 1789 } 1790 1791 #ifdef USE_ELF_CORE_DUMP 1792 /* 1793 * Definitions to generate Intel SVR4-like core files. 1794 * These mostly have the same names as the SVR4 types with "target_elf_" 1795 * tacked on the front to prevent clashes with linux definitions, 1796 * and the typedef forms have been avoided. This is mostly like 1797 * the SVR4 structure, but more Linuxy, with things that Linux does 1798 * not support and which gdb doesn't really use excluded. 1799 * 1800 * Fields we don't dump (their contents is zero) in linux-user qemu 1801 * are marked with XXX. 1802 * 1803 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 1804 * 1805 * Porting ELF coredump for target is (quite) simple process. First you 1806 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 1807 * the target resides): 1808 * 1809 * #define USE_ELF_CORE_DUMP 1810 * 1811 * Next you define type of register set used for dumping. ELF specification 1812 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 1813 * 1814 * typedef <target_regtype> target_elf_greg_t; 1815 * #define ELF_NREG <number of registers> 1816 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1817 * 1818 * Last step is to implement target specific function that copies registers 1819 * from given cpu into just specified register set. Prototype is: 1820 * 1821 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 1822 * const CPUState *env); 1823 * 1824 * Parameters: 1825 * regs - copy register values into here (allocated and zeroed by caller) 1826 * env - copy registers from here 1827 * 1828 * Example for ARM target is provided in this file. 1829 */ 1830 1831 /* An ELF note in memory */ 1832 struct memelfnote { 1833 const char *name; 1834 size_t namesz; 1835 size_t namesz_rounded; 1836 int type; 1837 size_t datasz; 1838 size_t datasz_rounded; 1839 void *data; 1840 size_t notesz; 1841 }; 1842 1843 struct target_elf_siginfo { 1844 target_int si_signo; /* signal number */ 1845 target_int si_code; /* extra code */ 1846 target_int si_errno; /* errno */ 1847 }; 1848 1849 struct target_elf_prstatus { 1850 struct target_elf_siginfo pr_info; /* Info associated with signal */ 1851 target_short pr_cursig; /* Current signal */ 1852 target_ulong pr_sigpend; /* XXX */ 1853 target_ulong pr_sighold; /* XXX */ 1854 target_pid_t pr_pid; 1855 target_pid_t pr_ppid; 1856 target_pid_t pr_pgrp; 1857 target_pid_t pr_sid; 1858 struct target_timeval pr_utime; /* XXX User time */ 1859 struct target_timeval pr_stime; /* XXX System time */ 1860 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 1861 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 1862 target_elf_gregset_t pr_reg; /* GP registers */ 1863 target_int pr_fpvalid; /* XXX */ 1864 }; 1865 1866 #define ELF_PRARGSZ (80) /* Number of chars for args */ 1867 1868 struct target_elf_prpsinfo { 1869 char pr_state; /* numeric process state */ 1870 char pr_sname; /* char for pr_state */ 1871 char pr_zomb; /* zombie */ 1872 char pr_nice; /* nice val */ 1873 target_ulong pr_flag; /* flags */ 1874 target_uid_t pr_uid; 1875 target_gid_t pr_gid; 1876 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 1877 /* Lots missing */ 1878 char pr_fname[16]; /* filename of executable */ 1879 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 1880 }; 1881 1882 /* Here is the structure in which status of each thread is captured. */ 1883 struct elf_thread_status { 1884 QTAILQ_ENTRY(elf_thread_status) ets_link; 1885 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 1886 #if 0 1887 elf_fpregset_t fpu; /* NT_PRFPREG */ 1888 struct task_struct *thread; 1889 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1890 #endif 1891 struct memelfnote notes[1]; 1892 int num_notes; 1893 }; 1894 1895 struct elf_note_info { 1896 struct memelfnote *notes; 1897 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 1898 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1899 1900 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 1901 #if 0 1902 /* 1903 * Current version of ELF coredump doesn't support 1904 * dumping fp regs etc. 1905 */ 1906 elf_fpregset_t *fpu; 1907 elf_fpxregset_t *xfpu; 1908 int thread_status_size; 1909 #endif 1910 int notes_size; 1911 int numnote; 1912 }; 1913 1914 struct vm_area_struct { 1915 abi_ulong vma_start; /* start vaddr of memory region */ 1916 abi_ulong vma_end; /* end vaddr of memory region */ 1917 abi_ulong vma_flags; /* protection etc. flags for the region */ 1918 QTAILQ_ENTRY(vm_area_struct) vma_link; 1919 }; 1920 1921 struct mm_struct { 1922 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 1923 int mm_count; /* number of mappings */ 1924 }; 1925 1926 static struct mm_struct *vma_init(void); 1927 static void vma_delete(struct mm_struct *); 1928 static int vma_add_mapping(struct mm_struct *, abi_ulong, 1929 abi_ulong, abi_ulong); 1930 static int vma_get_mapping_count(const struct mm_struct *); 1931 static struct vm_area_struct *vma_first(const struct mm_struct *); 1932 static struct vm_area_struct *vma_next(struct vm_area_struct *); 1933 static abi_ulong vma_dump_size(const struct vm_area_struct *); 1934 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 1935 unsigned long flags); 1936 1937 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 1938 static void fill_note(struct memelfnote *, const char *, int, 1939 unsigned int, void *); 1940 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 1941 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 1942 static void fill_auxv_note(struct memelfnote *, const TaskState *); 1943 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 1944 static size_t note_size(const struct memelfnote *); 1945 static void free_note_info(struct elf_note_info *); 1946 static int fill_note_info(struct elf_note_info *, long, const CPUState *); 1947 static void fill_thread_info(struct elf_note_info *, const CPUState *); 1948 static int core_dump_filename(const TaskState *, char *, size_t); 1949 1950 static int dump_write(int, const void *, size_t); 1951 static int write_note(struct memelfnote *, int); 1952 static int write_note_info(struct elf_note_info *, int); 1953 1954 #ifdef BSWAP_NEEDED 1955 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 1956 { 1957 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); 1958 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); 1959 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); 1960 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 1961 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); 1962 prstatus->pr_sighold = tswapl(prstatus->pr_sighold); 1963 prstatus->pr_pid = tswap32(prstatus->pr_pid); 1964 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 1965 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 1966 prstatus->pr_sid = tswap32(prstatus->pr_sid); 1967 /* cpu times are not filled, so we skip them */ 1968 /* regs should be in correct format already */ 1969 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 1970 } 1971 1972 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 1973 { 1974 psinfo->pr_flag = tswapl(psinfo->pr_flag); 1975 psinfo->pr_uid = tswap16(psinfo->pr_uid); 1976 psinfo->pr_gid = tswap16(psinfo->pr_gid); 1977 psinfo->pr_pid = tswap32(psinfo->pr_pid); 1978 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 1979 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 1980 psinfo->pr_sid = tswap32(psinfo->pr_sid); 1981 } 1982 1983 static void bswap_note(struct elf_note *en) 1984 { 1985 bswap32s(&en->n_namesz); 1986 bswap32s(&en->n_descsz); 1987 bswap32s(&en->n_type); 1988 } 1989 #else 1990 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 1991 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 1992 static inline void bswap_note(struct elf_note *en) { } 1993 #endif /* BSWAP_NEEDED */ 1994 1995 /* 1996 * Minimal support for linux memory regions. These are needed 1997 * when we are finding out what memory exactly belongs to 1998 * emulated process. No locks needed here, as long as 1999 * thread that received the signal is stopped. 2000 */ 2001 2002 static struct mm_struct *vma_init(void) 2003 { 2004 struct mm_struct *mm; 2005 2006 if ((mm = qemu_malloc(sizeof (*mm))) == NULL) 2007 return (NULL); 2008 2009 mm->mm_count = 0; 2010 QTAILQ_INIT(&mm->mm_mmap); 2011 2012 return (mm); 2013 } 2014 2015 static void vma_delete(struct mm_struct *mm) 2016 { 2017 struct vm_area_struct *vma; 2018 2019 while ((vma = vma_first(mm)) != NULL) { 2020 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2021 qemu_free(vma); 2022 } 2023 qemu_free(mm); 2024 } 2025 2026 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, 2027 abi_ulong end, abi_ulong flags) 2028 { 2029 struct vm_area_struct *vma; 2030 2031 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) 2032 return (-1); 2033 2034 vma->vma_start = start; 2035 vma->vma_end = end; 2036 vma->vma_flags = flags; 2037 2038 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2039 mm->mm_count++; 2040 2041 return (0); 2042 } 2043 2044 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2045 { 2046 return (QTAILQ_FIRST(&mm->mm_mmap)); 2047 } 2048 2049 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2050 { 2051 return (QTAILQ_NEXT(vma, vma_link)); 2052 } 2053 2054 static int vma_get_mapping_count(const struct mm_struct *mm) 2055 { 2056 return (mm->mm_count); 2057 } 2058 2059 /* 2060 * Calculate file (dump) size of given memory region. 2061 */ 2062 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2063 { 2064 /* if we cannot even read the first page, skip it */ 2065 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2066 return (0); 2067 2068 /* 2069 * Usually we don't dump executable pages as they contain 2070 * non-writable code that debugger can read directly from 2071 * target library etc. However, thread stacks are marked 2072 * also executable so we read in first page of given region 2073 * and check whether it contains elf header. If there is 2074 * no elf header, we dump it. 2075 */ 2076 if (vma->vma_flags & PROT_EXEC) { 2077 char page[TARGET_PAGE_SIZE]; 2078 2079 copy_from_user(page, vma->vma_start, sizeof (page)); 2080 if ((page[EI_MAG0] == ELFMAG0) && 2081 (page[EI_MAG1] == ELFMAG1) && 2082 (page[EI_MAG2] == ELFMAG2) && 2083 (page[EI_MAG3] == ELFMAG3)) { 2084 /* 2085 * Mappings are possibly from ELF binary. Don't dump 2086 * them. 2087 */ 2088 return (0); 2089 } 2090 } 2091 2092 return (vma->vma_end - vma->vma_start); 2093 } 2094 2095 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 2096 unsigned long flags) 2097 { 2098 struct mm_struct *mm = (struct mm_struct *)priv; 2099 2100 vma_add_mapping(mm, start, end, flags); 2101 return (0); 2102 } 2103 2104 static void fill_note(struct memelfnote *note, const char *name, int type, 2105 unsigned int sz, void *data) 2106 { 2107 unsigned int namesz; 2108 2109 namesz = strlen(name) + 1; 2110 note->name = name; 2111 note->namesz = namesz; 2112 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2113 note->type = type; 2114 note->datasz = sz; 2115 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2116 2117 note->data = data; 2118 2119 /* 2120 * We calculate rounded up note size here as specified by 2121 * ELF document. 2122 */ 2123 note->notesz = sizeof (struct elf_note) + 2124 note->namesz_rounded + note->datasz_rounded; 2125 } 2126 2127 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2128 uint32_t flags) 2129 { 2130 (void) memset(elf, 0, sizeof(*elf)); 2131 2132 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2133 elf->e_ident[EI_CLASS] = ELF_CLASS; 2134 elf->e_ident[EI_DATA] = ELF_DATA; 2135 elf->e_ident[EI_VERSION] = EV_CURRENT; 2136 elf->e_ident[EI_OSABI] = ELF_OSABI; 2137 2138 elf->e_type = ET_CORE; 2139 elf->e_machine = machine; 2140 elf->e_version = EV_CURRENT; 2141 elf->e_phoff = sizeof(struct elfhdr); 2142 elf->e_flags = flags; 2143 elf->e_ehsize = sizeof(struct elfhdr); 2144 elf->e_phentsize = sizeof(struct elf_phdr); 2145 elf->e_phnum = segs; 2146 2147 bswap_ehdr(elf); 2148 } 2149 2150 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2151 { 2152 phdr->p_type = PT_NOTE; 2153 phdr->p_offset = offset; 2154 phdr->p_vaddr = 0; 2155 phdr->p_paddr = 0; 2156 phdr->p_filesz = sz; 2157 phdr->p_memsz = 0; 2158 phdr->p_flags = 0; 2159 phdr->p_align = 0; 2160 2161 bswap_phdr(phdr, 1); 2162 } 2163 2164 static size_t note_size(const struct memelfnote *note) 2165 { 2166 return (note->notesz); 2167 } 2168 2169 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2170 const TaskState *ts, int signr) 2171 { 2172 (void) memset(prstatus, 0, sizeof (*prstatus)); 2173 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2174 prstatus->pr_pid = ts->ts_tid; 2175 prstatus->pr_ppid = getppid(); 2176 prstatus->pr_pgrp = getpgrp(); 2177 prstatus->pr_sid = getsid(0); 2178 2179 bswap_prstatus(prstatus); 2180 } 2181 2182 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2183 { 2184 char *filename, *base_filename; 2185 unsigned int i, len; 2186 2187 (void) memset(psinfo, 0, sizeof (*psinfo)); 2188 2189 len = ts->info->arg_end - ts->info->arg_start; 2190 if (len >= ELF_PRARGSZ) 2191 len = ELF_PRARGSZ - 1; 2192 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2193 return -EFAULT; 2194 for (i = 0; i < len; i++) 2195 if (psinfo->pr_psargs[i] == 0) 2196 psinfo->pr_psargs[i] = ' '; 2197 psinfo->pr_psargs[len] = 0; 2198 2199 psinfo->pr_pid = getpid(); 2200 psinfo->pr_ppid = getppid(); 2201 psinfo->pr_pgrp = getpgrp(); 2202 psinfo->pr_sid = getsid(0); 2203 psinfo->pr_uid = getuid(); 2204 psinfo->pr_gid = getgid(); 2205 2206 filename = strdup(ts->bprm->filename); 2207 base_filename = strdup(basename(filename)); 2208 (void) strncpy(psinfo->pr_fname, base_filename, 2209 sizeof(psinfo->pr_fname)); 2210 free(base_filename); 2211 free(filename); 2212 2213 bswap_psinfo(psinfo); 2214 return (0); 2215 } 2216 2217 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2218 { 2219 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2220 elf_addr_t orig_auxv = auxv; 2221 abi_ulong val; 2222 void *ptr; 2223 int i, len; 2224 2225 /* 2226 * Auxiliary vector is stored in target process stack. It contains 2227 * {type, value} pairs that we need to dump into note. This is not 2228 * strictly necessary but we do it here for sake of completeness. 2229 */ 2230 2231 /* find out lenght of the vector, AT_NULL is terminator */ 2232 i = len = 0; 2233 do { 2234 get_user_ual(val, auxv); 2235 i += 2; 2236 auxv += 2 * sizeof (elf_addr_t); 2237 } while (val != AT_NULL); 2238 len = i * sizeof (elf_addr_t); 2239 2240 /* read in whole auxv vector and copy it to memelfnote */ 2241 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2242 if (ptr != NULL) { 2243 fill_note(note, "CORE", NT_AUXV, len, ptr); 2244 unlock_user(ptr, auxv, len); 2245 } 2246 } 2247 2248 /* 2249 * Constructs name of coredump file. We have following convention 2250 * for the name: 2251 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2252 * 2253 * Returns 0 in case of success, -1 otherwise (errno is set). 2254 */ 2255 static int core_dump_filename(const TaskState *ts, char *buf, 2256 size_t bufsize) 2257 { 2258 char timestamp[64]; 2259 char *filename = NULL; 2260 char *base_filename = NULL; 2261 struct timeval tv; 2262 struct tm tm; 2263 2264 assert(bufsize >= PATH_MAX); 2265 2266 if (gettimeofday(&tv, NULL) < 0) { 2267 (void) fprintf(stderr, "unable to get current timestamp: %s", 2268 strerror(errno)); 2269 return (-1); 2270 } 2271 2272 filename = strdup(ts->bprm->filename); 2273 base_filename = strdup(basename(filename)); 2274 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2275 localtime_r(&tv.tv_sec, &tm)); 2276 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2277 base_filename, timestamp, (int)getpid()); 2278 free(base_filename); 2279 free(filename); 2280 2281 return (0); 2282 } 2283 2284 static int dump_write(int fd, const void *ptr, size_t size) 2285 { 2286 const char *bufp = (const char *)ptr; 2287 ssize_t bytes_written, bytes_left; 2288 struct rlimit dumpsize; 2289 off_t pos; 2290 2291 bytes_written = 0; 2292 getrlimit(RLIMIT_CORE, &dumpsize); 2293 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2294 if (errno == ESPIPE) { /* not a seekable stream */ 2295 bytes_left = size; 2296 } else { 2297 return pos; 2298 } 2299 } else { 2300 if (dumpsize.rlim_cur <= pos) { 2301 return -1; 2302 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2303 bytes_left = size; 2304 } else { 2305 size_t limit_left=dumpsize.rlim_cur - pos; 2306 bytes_left = limit_left >= size ? size : limit_left ; 2307 } 2308 } 2309 2310 /* 2311 * In normal conditions, single write(2) should do but 2312 * in case of socket etc. this mechanism is more portable. 2313 */ 2314 do { 2315 bytes_written = write(fd, bufp, bytes_left); 2316 if (bytes_written < 0) { 2317 if (errno == EINTR) 2318 continue; 2319 return (-1); 2320 } else if (bytes_written == 0) { /* eof */ 2321 return (-1); 2322 } 2323 bufp += bytes_written; 2324 bytes_left -= bytes_written; 2325 } while (bytes_left > 0); 2326 2327 return (0); 2328 } 2329 2330 static int write_note(struct memelfnote *men, int fd) 2331 { 2332 struct elf_note en; 2333 2334 en.n_namesz = men->namesz; 2335 en.n_type = men->type; 2336 en.n_descsz = men->datasz; 2337 2338 bswap_note(&en); 2339 2340 if (dump_write(fd, &en, sizeof(en)) != 0) 2341 return (-1); 2342 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2343 return (-1); 2344 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2345 return (-1); 2346 2347 return (0); 2348 } 2349 2350 static void fill_thread_info(struct elf_note_info *info, const CPUState *env) 2351 { 2352 TaskState *ts = (TaskState *)env->opaque; 2353 struct elf_thread_status *ets; 2354 2355 ets = qemu_mallocz(sizeof (*ets)); 2356 ets->num_notes = 1; /* only prstatus is dumped */ 2357 fill_prstatus(&ets->prstatus, ts, 0); 2358 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2359 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2360 &ets->prstatus); 2361 2362 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2363 2364 info->notes_size += note_size(&ets->notes[0]); 2365 } 2366 2367 static int fill_note_info(struct elf_note_info *info, 2368 long signr, const CPUState *env) 2369 { 2370 #define NUMNOTES 3 2371 CPUState *cpu = NULL; 2372 TaskState *ts = (TaskState *)env->opaque; 2373 int i; 2374 2375 (void) memset(info, 0, sizeof (*info)); 2376 2377 QTAILQ_INIT(&info->thread_list); 2378 2379 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote)); 2380 if (info->notes == NULL) 2381 return (-ENOMEM); 2382 info->prstatus = qemu_mallocz(sizeof (*info->prstatus)); 2383 if (info->prstatus == NULL) 2384 return (-ENOMEM); 2385 info->psinfo = qemu_mallocz(sizeof (*info->psinfo)); 2386 if (info->prstatus == NULL) 2387 return (-ENOMEM); 2388 2389 /* 2390 * First fill in status (and registers) of current thread 2391 * including process info & aux vector. 2392 */ 2393 fill_prstatus(info->prstatus, ts, signr); 2394 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2395 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2396 sizeof (*info->prstatus), info->prstatus); 2397 fill_psinfo(info->psinfo, ts); 2398 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2399 sizeof (*info->psinfo), info->psinfo); 2400 fill_auxv_note(&info->notes[2], ts); 2401 info->numnote = 3; 2402 2403 info->notes_size = 0; 2404 for (i = 0; i < info->numnote; i++) 2405 info->notes_size += note_size(&info->notes[i]); 2406 2407 /* read and fill status of all threads */ 2408 cpu_list_lock(); 2409 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { 2410 if (cpu == thread_env) 2411 continue; 2412 fill_thread_info(info, cpu); 2413 } 2414 cpu_list_unlock(); 2415 2416 return (0); 2417 } 2418 2419 static void free_note_info(struct elf_note_info *info) 2420 { 2421 struct elf_thread_status *ets; 2422 2423 while (!QTAILQ_EMPTY(&info->thread_list)) { 2424 ets = QTAILQ_FIRST(&info->thread_list); 2425 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2426 qemu_free(ets); 2427 } 2428 2429 qemu_free(info->prstatus); 2430 qemu_free(info->psinfo); 2431 qemu_free(info->notes); 2432 } 2433 2434 static int write_note_info(struct elf_note_info *info, int fd) 2435 { 2436 struct elf_thread_status *ets; 2437 int i, error = 0; 2438 2439 /* write prstatus, psinfo and auxv for current thread */ 2440 for (i = 0; i < info->numnote; i++) 2441 if ((error = write_note(&info->notes[i], fd)) != 0) 2442 return (error); 2443 2444 /* write prstatus for each thread */ 2445 for (ets = info->thread_list.tqh_first; ets != NULL; 2446 ets = ets->ets_link.tqe_next) { 2447 if ((error = write_note(&ets->notes[0], fd)) != 0) 2448 return (error); 2449 } 2450 2451 return (0); 2452 } 2453 2454 /* 2455 * Write out ELF coredump. 2456 * 2457 * See documentation of ELF object file format in: 2458 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2459 * 2460 * Coredump format in linux is following: 2461 * 2462 * 0 +----------------------+ \ 2463 * | ELF header | ET_CORE | 2464 * +----------------------+ | 2465 * | ELF program headers | |--- headers 2466 * | - NOTE section | | 2467 * | - PT_LOAD sections | | 2468 * +----------------------+ / 2469 * | NOTEs: | 2470 * | - NT_PRSTATUS | 2471 * | - NT_PRSINFO | 2472 * | - NT_AUXV | 2473 * +----------------------+ <-- aligned to target page 2474 * | Process memory dump | 2475 * : : 2476 * . . 2477 * : : 2478 * | | 2479 * +----------------------+ 2480 * 2481 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2482 * NT_PRSINFO -> struct elf_prpsinfo 2483 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2484 * 2485 * Format follows System V format as close as possible. Current 2486 * version limitations are as follows: 2487 * - no floating point registers are dumped 2488 * 2489 * Function returns 0 in case of success, negative errno otherwise. 2490 * 2491 * TODO: make this work also during runtime: it should be 2492 * possible to force coredump from running process and then 2493 * continue processing. For example qemu could set up SIGUSR2 2494 * handler (provided that target process haven't registered 2495 * handler for that) that does the dump when signal is received. 2496 */ 2497 static int elf_core_dump(int signr, const CPUState *env) 2498 { 2499 const TaskState *ts = (const TaskState *)env->opaque; 2500 struct vm_area_struct *vma = NULL; 2501 char corefile[PATH_MAX]; 2502 struct elf_note_info info; 2503 struct elfhdr elf; 2504 struct elf_phdr phdr; 2505 struct rlimit dumpsize; 2506 struct mm_struct *mm = NULL; 2507 off_t offset = 0, data_offset = 0; 2508 int segs = 0; 2509 int fd = -1; 2510 2511 errno = 0; 2512 getrlimit(RLIMIT_CORE, &dumpsize); 2513 if (dumpsize.rlim_cur == 0) 2514 return 0; 2515 2516 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2517 return (-errno); 2518 2519 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2520 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2521 return (-errno); 2522 2523 /* 2524 * Walk through target process memory mappings and 2525 * set up structure containing this information. After 2526 * this point vma_xxx functions can be used. 2527 */ 2528 if ((mm = vma_init()) == NULL) 2529 goto out; 2530 2531 walk_memory_regions(mm, vma_walker); 2532 segs = vma_get_mapping_count(mm); 2533 2534 /* 2535 * Construct valid coredump ELF header. We also 2536 * add one more segment for notes. 2537 */ 2538 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 2539 if (dump_write(fd, &elf, sizeof (elf)) != 0) 2540 goto out; 2541 2542 /* fill in in-memory version of notes */ 2543 if (fill_note_info(&info, signr, env) < 0) 2544 goto out; 2545 2546 offset += sizeof (elf); /* elf header */ 2547 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 2548 2549 /* write out notes program header */ 2550 fill_elf_note_phdr(&phdr, info.notes_size, offset); 2551 2552 offset += info.notes_size; 2553 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 2554 goto out; 2555 2556 /* 2557 * ELF specification wants data to start at page boundary so 2558 * we align it here. 2559 */ 2560 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 2561 2562 /* 2563 * Write program headers for memory regions mapped in 2564 * the target process. 2565 */ 2566 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2567 (void) memset(&phdr, 0, sizeof (phdr)); 2568 2569 phdr.p_type = PT_LOAD; 2570 phdr.p_offset = offset; 2571 phdr.p_vaddr = vma->vma_start; 2572 phdr.p_paddr = 0; 2573 phdr.p_filesz = vma_dump_size(vma); 2574 offset += phdr.p_filesz; 2575 phdr.p_memsz = vma->vma_end - vma->vma_start; 2576 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 2577 if (vma->vma_flags & PROT_WRITE) 2578 phdr.p_flags |= PF_W; 2579 if (vma->vma_flags & PROT_EXEC) 2580 phdr.p_flags |= PF_X; 2581 phdr.p_align = ELF_EXEC_PAGESIZE; 2582 2583 bswap_phdr(&phdr, 1); 2584 dump_write(fd, &phdr, sizeof (phdr)); 2585 } 2586 2587 /* 2588 * Next we write notes just after program headers. No 2589 * alignment needed here. 2590 */ 2591 if (write_note_info(&info, fd) < 0) 2592 goto out; 2593 2594 /* align data to page boundary */ 2595 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 2596 goto out; 2597 2598 /* 2599 * Finally we can dump process memory into corefile as well. 2600 */ 2601 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2602 abi_ulong addr; 2603 abi_ulong end; 2604 2605 end = vma->vma_start + vma_dump_size(vma); 2606 2607 for (addr = vma->vma_start; addr < end; 2608 addr += TARGET_PAGE_SIZE) { 2609 char page[TARGET_PAGE_SIZE]; 2610 int error; 2611 2612 /* 2613 * Read in page from target process memory and 2614 * write it to coredump file. 2615 */ 2616 error = copy_from_user(page, addr, sizeof (page)); 2617 if (error != 0) { 2618 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 2619 addr); 2620 errno = -error; 2621 goto out; 2622 } 2623 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 2624 goto out; 2625 } 2626 } 2627 2628 out: 2629 free_note_info(&info); 2630 if (mm != NULL) 2631 vma_delete(mm); 2632 (void) close(fd); 2633 2634 if (errno != 0) 2635 return (-errno); 2636 return (0); 2637 } 2638 #endif /* USE_ELF_CORE_DUMP */ 2639 2640 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 2641 { 2642 init_thread(regs, infop); 2643 } 2644