1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 /* Return 1 if the proposed guest space is suitable for the guest. 358 * Return 0 if the proposed guest space isn't suitable, but another 359 * address space should be tried. 360 * Return -1 if there is no way the proposed guest space can be 361 * valid regardless of the base. 362 * The guest code may leave a page mapped and populate it if the 363 * address is suitable. 364 */ 365 static int init_guest_commpage(unsigned long guest_base, 366 unsigned long guest_size) 367 { 368 unsigned long real_start, test_page_addr; 369 370 /* We need to check that we can force a fault on access to the 371 * commpage at 0xffff0fxx 372 */ 373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 374 375 /* If the commpage lies within the already allocated guest space, 376 * then there is no way we can allocate it. 377 * 378 * You may be thinking that that this check is redundant because 379 * we already validated the guest size against MAX_RESERVED_VA; 380 * but if qemu_host_page_mask is unusually large, then 381 * test_page_addr may be lower. 382 */ 383 if (test_page_addr >= guest_base 384 && test_page_addr < (guest_base + guest_size)) { 385 return -1; 386 } 387 388 /* Note it needs to be writeable to let us initialise it */ 389 real_start = (unsigned long) 390 mmap((void *)test_page_addr, qemu_host_page_size, 391 PROT_READ | PROT_WRITE, 392 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 393 394 /* If we can't map it then try another address */ 395 if (real_start == -1ul) { 396 return 0; 397 } 398 399 if (real_start != test_page_addr) { 400 /* OS didn't put the page where we asked - unmap and reject */ 401 munmap((void *)real_start, qemu_host_page_size); 402 return 0; 403 } 404 405 /* Leave the page mapped 406 * Populate it (mmap should have left it all 0'd) 407 */ 408 409 /* Kernel helper versions */ 410 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 411 412 /* Now it's populated make it RO */ 413 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 414 perror("Protecting guest commpage"); 415 exit(-1); 416 } 417 418 return 1; /* All good */ 419 } 420 421 #define ELF_HWCAP get_elf_hwcap() 422 #define ELF_HWCAP2 get_elf_hwcap2() 423 424 static uint32_t get_elf_hwcap(void) 425 { 426 ARMCPU *cpu = ARM_CPU(thread_cpu); 427 uint32_t hwcaps = 0; 428 429 hwcaps |= ARM_HWCAP_ARM_SWP; 430 hwcaps |= ARM_HWCAP_ARM_HALF; 431 hwcaps |= ARM_HWCAP_ARM_THUMB; 432 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 433 434 /* probe for the extra features */ 435 #define GET_FEATURE(feat, hwcap) \ 436 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 437 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 438 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 439 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 440 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 441 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 442 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 443 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 444 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 445 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 446 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 447 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 448 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 449 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 450 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 451 * to our VFP_FP16 feature bit. 452 */ 453 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 454 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 455 456 return hwcaps; 457 } 458 459 static uint32_t get_elf_hwcap2(void) 460 { 461 ARMCPU *cpu = ARM_CPU(thread_cpu); 462 uint32_t hwcaps = 0; 463 464 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 465 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 466 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 467 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 468 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 469 return hwcaps; 470 } 471 472 #undef GET_FEATURE 473 474 #else 475 /* 64 bit ARM definitions */ 476 #define ELF_START_MMAP 0x80000000 477 478 #define ELF_ARCH EM_AARCH64 479 #define ELF_CLASS ELFCLASS64 480 #define ELF_PLATFORM "aarch64" 481 482 static inline void init_thread(struct target_pt_regs *regs, 483 struct image_info *infop) 484 { 485 abi_long stack = infop->start_stack; 486 memset(regs, 0, sizeof(*regs)); 487 488 regs->pc = infop->entry & ~0x3ULL; 489 regs->sp = stack; 490 } 491 492 #define ELF_NREG 34 493 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 494 495 static void elf_core_copy_regs(target_elf_gregset_t *regs, 496 const CPUARMState *env) 497 { 498 int i; 499 500 for (i = 0; i < 32; i++) { 501 (*regs)[i] = tswapreg(env->xregs[i]); 502 } 503 (*regs)[32] = tswapreg(env->pc); 504 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 505 } 506 507 #define USE_ELF_CORE_DUMP 508 #define ELF_EXEC_PAGESIZE 4096 509 510 enum { 511 ARM_HWCAP_A64_FP = 1 << 0, 512 ARM_HWCAP_A64_ASIMD = 1 << 1, 513 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 514 ARM_HWCAP_A64_AES = 1 << 3, 515 ARM_HWCAP_A64_PMULL = 1 << 4, 516 ARM_HWCAP_A64_SHA1 = 1 << 5, 517 ARM_HWCAP_A64_SHA2 = 1 << 6, 518 ARM_HWCAP_A64_CRC32 = 1 << 7, 519 ARM_HWCAP_A64_ATOMICS = 1 << 8, 520 ARM_HWCAP_A64_FPHP = 1 << 9, 521 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 522 ARM_HWCAP_A64_CPUID = 1 << 11, 523 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 524 ARM_HWCAP_A64_JSCVT = 1 << 13, 525 ARM_HWCAP_A64_FCMA = 1 << 14, 526 ARM_HWCAP_A64_LRCPC = 1 << 15, 527 ARM_HWCAP_A64_DCPOP = 1 << 16, 528 ARM_HWCAP_A64_SHA3 = 1 << 17, 529 ARM_HWCAP_A64_SM3 = 1 << 18, 530 ARM_HWCAP_A64_SM4 = 1 << 19, 531 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 532 ARM_HWCAP_A64_SHA512 = 1 << 21, 533 ARM_HWCAP_A64_SVE = 1 << 22, 534 }; 535 536 #define ELF_HWCAP get_elf_hwcap() 537 538 static uint32_t get_elf_hwcap(void) 539 { 540 ARMCPU *cpu = ARM_CPU(thread_cpu); 541 uint32_t hwcaps = 0; 542 543 hwcaps |= ARM_HWCAP_A64_FP; 544 hwcaps |= ARM_HWCAP_A64_ASIMD; 545 546 /* probe for the extra features */ 547 #define GET_FEATURE(feat, hwcap) \ 548 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 549 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 550 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 551 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 552 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 553 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 554 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 555 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 556 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 557 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 558 GET_FEATURE(ARM_FEATURE_V8_FP16, 559 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 560 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 561 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 562 #undef GET_FEATURE 563 564 return hwcaps; 565 } 566 567 #endif /* not TARGET_AARCH64 */ 568 #endif /* TARGET_ARM */ 569 570 #ifdef TARGET_SPARC 571 #ifdef TARGET_SPARC64 572 573 #define ELF_START_MMAP 0x80000000 574 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 575 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 576 #ifndef TARGET_ABI32 577 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 578 #else 579 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 580 #endif 581 582 #define ELF_CLASS ELFCLASS64 583 #define ELF_ARCH EM_SPARCV9 584 585 #define STACK_BIAS 2047 586 587 static inline void init_thread(struct target_pt_regs *regs, 588 struct image_info *infop) 589 { 590 #ifndef TARGET_ABI32 591 regs->tstate = 0; 592 #endif 593 regs->pc = infop->entry; 594 regs->npc = regs->pc + 4; 595 regs->y = 0; 596 #ifdef TARGET_ABI32 597 regs->u_regs[14] = infop->start_stack - 16 * 4; 598 #else 599 if (personality(infop->personality) == PER_LINUX32) 600 regs->u_regs[14] = infop->start_stack - 16 * 4; 601 else 602 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 603 #endif 604 } 605 606 #else 607 #define ELF_START_MMAP 0x80000000 608 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 609 | HWCAP_SPARC_MULDIV) 610 611 #define ELF_CLASS ELFCLASS32 612 #define ELF_ARCH EM_SPARC 613 614 static inline void init_thread(struct target_pt_regs *regs, 615 struct image_info *infop) 616 { 617 regs->psr = 0; 618 regs->pc = infop->entry; 619 regs->npc = regs->pc + 4; 620 regs->y = 0; 621 regs->u_regs[14] = infop->start_stack - 16 * 4; 622 } 623 624 #endif 625 #endif 626 627 #ifdef TARGET_PPC 628 629 #define ELF_MACHINE PPC_ELF_MACHINE 630 #define ELF_START_MMAP 0x80000000 631 632 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 633 634 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 635 636 #define ELF_CLASS ELFCLASS64 637 638 #else 639 640 #define ELF_CLASS ELFCLASS32 641 642 #endif 643 644 #define ELF_ARCH EM_PPC 645 646 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 647 See arch/powerpc/include/asm/cputable.h. */ 648 enum { 649 QEMU_PPC_FEATURE_32 = 0x80000000, 650 QEMU_PPC_FEATURE_64 = 0x40000000, 651 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 652 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 653 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 654 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 655 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 656 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 657 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 658 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 659 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 660 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 661 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 662 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 663 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 664 QEMU_PPC_FEATURE_CELL = 0x00010000, 665 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 666 QEMU_PPC_FEATURE_SMT = 0x00004000, 667 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 668 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 669 QEMU_PPC_FEATURE_PA6T = 0x00000800, 670 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 671 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 672 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 673 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 674 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 675 676 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 677 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 678 679 /* Feature definitions in AT_HWCAP2. */ 680 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 681 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 682 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 683 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 684 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 685 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 686 }; 687 688 #define ELF_HWCAP get_elf_hwcap() 689 690 static uint32_t get_elf_hwcap(void) 691 { 692 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 693 uint32_t features = 0; 694 695 /* We don't have to be terribly complete here; the high points are 696 Altivec/FP/SPE support. Anything else is just a bonus. */ 697 #define GET_FEATURE(flag, feature) \ 698 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 699 #define GET_FEATURE2(flags, feature) \ 700 do { \ 701 if ((cpu->env.insns_flags2 & flags) == flags) { \ 702 features |= feature; \ 703 } \ 704 } while (0) 705 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 706 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 707 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 708 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 709 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 710 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 711 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 712 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 713 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 714 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 715 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 716 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 717 QEMU_PPC_FEATURE_ARCH_2_06); 718 #undef GET_FEATURE 719 #undef GET_FEATURE2 720 721 return features; 722 } 723 724 #define ELF_HWCAP2 get_elf_hwcap2() 725 726 static uint32_t get_elf_hwcap2(void) 727 { 728 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 729 uint32_t features = 0; 730 731 #define GET_FEATURE(flag, feature) \ 732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 733 #define GET_FEATURE2(flag, feature) \ 734 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 735 736 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 737 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 738 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 739 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 740 741 #undef GET_FEATURE 742 #undef GET_FEATURE2 743 744 return features; 745 } 746 747 /* 748 * The requirements here are: 749 * - keep the final alignment of sp (sp & 0xf) 750 * - make sure the 32-bit value at the first 16 byte aligned position of 751 * AUXV is greater than 16 for glibc compatibility. 752 * AT_IGNOREPPC is used for that. 753 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 754 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 755 */ 756 #define DLINFO_ARCH_ITEMS 5 757 #define ARCH_DLINFO \ 758 do { \ 759 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 760 /* \ 761 * Handle glibc compatibility: these magic entries must \ 762 * be at the lowest addresses in the final auxv. \ 763 */ \ 764 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 765 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 766 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 767 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 768 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 769 } while (0) 770 771 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 772 { 773 _regs->gpr[1] = infop->start_stack; 774 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 775 if (get_ppc64_abi(infop) < 2) { 776 uint64_t val; 777 get_user_u64(val, infop->entry + 8); 778 _regs->gpr[2] = val + infop->load_bias; 779 get_user_u64(val, infop->entry); 780 infop->entry = val + infop->load_bias; 781 } else { 782 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 783 } 784 #endif 785 _regs->nip = infop->entry; 786 } 787 788 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 789 #define ELF_NREG 48 790 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 791 792 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 793 { 794 int i; 795 target_ulong ccr = 0; 796 797 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 798 (*regs)[i] = tswapreg(env->gpr[i]); 799 } 800 801 (*regs)[32] = tswapreg(env->nip); 802 (*regs)[33] = tswapreg(env->msr); 803 (*regs)[35] = tswapreg(env->ctr); 804 (*regs)[36] = tswapreg(env->lr); 805 (*regs)[37] = tswapreg(env->xer); 806 807 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 808 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 809 } 810 (*regs)[38] = tswapreg(ccr); 811 } 812 813 #define USE_ELF_CORE_DUMP 814 #define ELF_EXEC_PAGESIZE 4096 815 816 #endif 817 818 #ifdef TARGET_MIPS 819 820 #define ELF_START_MMAP 0x80000000 821 822 #ifdef TARGET_MIPS64 823 #define ELF_CLASS ELFCLASS64 824 #else 825 #define ELF_CLASS ELFCLASS32 826 #endif 827 #define ELF_ARCH EM_MIPS 828 829 static inline void init_thread(struct target_pt_regs *regs, 830 struct image_info *infop) 831 { 832 regs->cp0_status = 2 << CP0St_KSU; 833 regs->cp0_epc = infop->entry; 834 regs->regs[29] = infop->start_stack; 835 } 836 837 /* See linux kernel: arch/mips/include/asm/elf.h. */ 838 #define ELF_NREG 45 839 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 840 841 /* See linux kernel: arch/mips/include/asm/reg.h. */ 842 enum { 843 #ifdef TARGET_MIPS64 844 TARGET_EF_R0 = 0, 845 #else 846 TARGET_EF_R0 = 6, 847 #endif 848 TARGET_EF_R26 = TARGET_EF_R0 + 26, 849 TARGET_EF_R27 = TARGET_EF_R0 + 27, 850 TARGET_EF_LO = TARGET_EF_R0 + 32, 851 TARGET_EF_HI = TARGET_EF_R0 + 33, 852 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 853 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 854 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 855 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 856 }; 857 858 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 859 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 860 { 861 int i; 862 863 for (i = 0; i < TARGET_EF_R0; i++) { 864 (*regs)[i] = 0; 865 } 866 (*regs)[TARGET_EF_R0] = 0; 867 868 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 869 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 870 } 871 872 (*regs)[TARGET_EF_R26] = 0; 873 (*regs)[TARGET_EF_R27] = 0; 874 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 875 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 876 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 877 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 878 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 879 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 880 } 881 882 #define USE_ELF_CORE_DUMP 883 #define ELF_EXEC_PAGESIZE 4096 884 885 #endif /* TARGET_MIPS */ 886 887 #ifdef TARGET_MICROBLAZE 888 889 #define ELF_START_MMAP 0x80000000 890 891 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 892 893 #define ELF_CLASS ELFCLASS32 894 #define ELF_ARCH EM_MICROBLAZE 895 896 static inline void init_thread(struct target_pt_regs *regs, 897 struct image_info *infop) 898 { 899 regs->pc = infop->entry; 900 regs->r1 = infop->start_stack; 901 902 } 903 904 #define ELF_EXEC_PAGESIZE 4096 905 906 #define USE_ELF_CORE_DUMP 907 #define ELF_NREG 38 908 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 909 910 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 911 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 912 { 913 int i, pos = 0; 914 915 for (i = 0; i < 32; i++) { 916 (*regs)[pos++] = tswapreg(env->regs[i]); 917 } 918 919 for (i = 0; i < 6; i++) { 920 (*regs)[pos++] = tswapreg(env->sregs[i]); 921 } 922 } 923 924 #endif /* TARGET_MICROBLAZE */ 925 926 #ifdef TARGET_NIOS2 927 928 #define ELF_START_MMAP 0x80000000 929 930 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 931 932 #define ELF_CLASS ELFCLASS32 933 #define ELF_ARCH EM_ALTERA_NIOS2 934 935 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 936 { 937 regs->ea = infop->entry; 938 regs->sp = infop->start_stack; 939 regs->estatus = 0x3; 940 } 941 942 #define ELF_EXEC_PAGESIZE 4096 943 944 #define USE_ELF_CORE_DUMP 945 #define ELF_NREG 49 946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 947 948 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 949 static void elf_core_copy_regs(target_elf_gregset_t *regs, 950 const CPUNios2State *env) 951 { 952 int i; 953 954 (*regs)[0] = -1; 955 for (i = 1; i < 8; i++) /* r0-r7 */ 956 (*regs)[i] = tswapreg(env->regs[i + 7]); 957 958 for (i = 8; i < 16; i++) /* r8-r15 */ 959 (*regs)[i] = tswapreg(env->regs[i - 8]); 960 961 for (i = 16; i < 24; i++) /* r16-r23 */ 962 (*regs)[i] = tswapreg(env->regs[i + 7]); 963 (*regs)[24] = -1; /* R_ET */ 964 (*regs)[25] = -1; /* R_BT */ 965 (*regs)[26] = tswapreg(env->regs[R_GP]); 966 (*regs)[27] = tswapreg(env->regs[R_SP]); 967 (*regs)[28] = tswapreg(env->regs[R_FP]); 968 (*regs)[29] = tswapreg(env->regs[R_EA]); 969 (*regs)[30] = -1; /* R_SSTATUS */ 970 (*regs)[31] = tswapreg(env->regs[R_RA]); 971 972 (*regs)[32] = tswapreg(env->regs[R_PC]); 973 974 (*regs)[33] = -1; /* R_STATUS */ 975 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 976 977 for (i = 35; i < 49; i++) /* ... */ 978 (*regs)[i] = -1; 979 } 980 981 #endif /* TARGET_NIOS2 */ 982 983 #ifdef TARGET_OPENRISC 984 985 #define ELF_START_MMAP 0x08000000 986 987 #define ELF_ARCH EM_OPENRISC 988 #define ELF_CLASS ELFCLASS32 989 #define ELF_DATA ELFDATA2MSB 990 991 static inline void init_thread(struct target_pt_regs *regs, 992 struct image_info *infop) 993 { 994 regs->pc = infop->entry; 995 regs->gpr[1] = infop->start_stack; 996 } 997 998 #define USE_ELF_CORE_DUMP 999 #define ELF_EXEC_PAGESIZE 8192 1000 1001 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1002 #define ELF_NREG 34 /* gprs and pc, sr */ 1003 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1004 1005 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1006 const CPUOpenRISCState *env) 1007 { 1008 int i; 1009 1010 for (i = 0; i < 32; i++) { 1011 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1012 } 1013 (*regs)[32] = tswapreg(env->pc); 1014 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1015 } 1016 #define ELF_HWCAP 0 1017 #define ELF_PLATFORM NULL 1018 1019 #endif /* TARGET_OPENRISC */ 1020 1021 #ifdef TARGET_SH4 1022 1023 #define ELF_START_MMAP 0x80000000 1024 1025 #define ELF_CLASS ELFCLASS32 1026 #define ELF_ARCH EM_SH 1027 1028 static inline void init_thread(struct target_pt_regs *regs, 1029 struct image_info *infop) 1030 { 1031 /* Check other registers XXXXX */ 1032 regs->pc = infop->entry; 1033 regs->regs[15] = infop->start_stack; 1034 } 1035 1036 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1037 #define ELF_NREG 23 1038 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1039 1040 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1041 enum { 1042 TARGET_REG_PC = 16, 1043 TARGET_REG_PR = 17, 1044 TARGET_REG_SR = 18, 1045 TARGET_REG_GBR = 19, 1046 TARGET_REG_MACH = 20, 1047 TARGET_REG_MACL = 21, 1048 TARGET_REG_SYSCALL = 22 1049 }; 1050 1051 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1052 const CPUSH4State *env) 1053 { 1054 int i; 1055 1056 for (i = 0; i < 16; i++) { 1057 (*regs)[i] = tswapreg(env->gregs[i]); 1058 } 1059 1060 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1061 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1062 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1063 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1064 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1065 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1066 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1067 } 1068 1069 #define USE_ELF_CORE_DUMP 1070 #define ELF_EXEC_PAGESIZE 4096 1071 1072 enum { 1073 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1074 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1075 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1076 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1077 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1078 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1079 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1080 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1081 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1082 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1083 }; 1084 1085 #define ELF_HWCAP get_elf_hwcap() 1086 1087 static uint32_t get_elf_hwcap(void) 1088 { 1089 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1090 uint32_t hwcap = 0; 1091 1092 hwcap |= SH_CPU_HAS_FPU; 1093 1094 if (cpu->env.features & SH_FEATURE_SH4A) { 1095 hwcap |= SH_CPU_HAS_LLSC; 1096 } 1097 1098 return hwcap; 1099 } 1100 1101 #endif 1102 1103 #ifdef TARGET_CRIS 1104 1105 #define ELF_START_MMAP 0x80000000 1106 1107 #define ELF_CLASS ELFCLASS32 1108 #define ELF_ARCH EM_CRIS 1109 1110 static inline void init_thread(struct target_pt_regs *regs, 1111 struct image_info *infop) 1112 { 1113 regs->erp = infop->entry; 1114 } 1115 1116 #define ELF_EXEC_PAGESIZE 8192 1117 1118 #endif 1119 1120 #ifdef TARGET_M68K 1121 1122 #define ELF_START_MMAP 0x80000000 1123 1124 #define ELF_CLASS ELFCLASS32 1125 #define ELF_ARCH EM_68K 1126 1127 /* ??? Does this need to do anything? 1128 #define ELF_PLAT_INIT(_r) */ 1129 1130 static inline void init_thread(struct target_pt_regs *regs, 1131 struct image_info *infop) 1132 { 1133 regs->usp = infop->start_stack; 1134 regs->sr = 0; 1135 regs->pc = infop->entry; 1136 } 1137 1138 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1139 #define ELF_NREG 20 1140 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1141 1142 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1143 { 1144 (*regs)[0] = tswapreg(env->dregs[1]); 1145 (*regs)[1] = tswapreg(env->dregs[2]); 1146 (*regs)[2] = tswapreg(env->dregs[3]); 1147 (*regs)[3] = tswapreg(env->dregs[4]); 1148 (*regs)[4] = tswapreg(env->dregs[5]); 1149 (*regs)[5] = tswapreg(env->dregs[6]); 1150 (*regs)[6] = tswapreg(env->dregs[7]); 1151 (*regs)[7] = tswapreg(env->aregs[0]); 1152 (*regs)[8] = tswapreg(env->aregs[1]); 1153 (*regs)[9] = tswapreg(env->aregs[2]); 1154 (*regs)[10] = tswapreg(env->aregs[3]); 1155 (*regs)[11] = tswapreg(env->aregs[4]); 1156 (*regs)[12] = tswapreg(env->aregs[5]); 1157 (*regs)[13] = tswapreg(env->aregs[6]); 1158 (*regs)[14] = tswapreg(env->dregs[0]); 1159 (*regs)[15] = tswapreg(env->aregs[7]); 1160 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1161 (*regs)[17] = tswapreg(env->sr); 1162 (*regs)[18] = tswapreg(env->pc); 1163 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1164 } 1165 1166 #define USE_ELF_CORE_DUMP 1167 #define ELF_EXEC_PAGESIZE 8192 1168 1169 #endif 1170 1171 #ifdef TARGET_ALPHA 1172 1173 #define ELF_START_MMAP (0x30000000000ULL) 1174 1175 #define ELF_CLASS ELFCLASS64 1176 #define ELF_ARCH EM_ALPHA 1177 1178 static inline void init_thread(struct target_pt_regs *regs, 1179 struct image_info *infop) 1180 { 1181 regs->pc = infop->entry; 1182 regs->ps = 8; 1183 regs->usp = infop->start_stack; 1184 } 1185 1186 #define ELF_EXEC_PAGESIZE 8192 1187 1188 #endif /* TARGET_ALPHA */ 1189 1190 #ifdef TARGET_S390X 1191 1192 #define ELF_START_MMAP (0x20000000000ULL) 1193 1194 #define ELF_CLASS ELFCLASS64 1195 #define ELF_DATA ELFDATA2MSB 1196 #define ELF_ARCH EM_S390 1197 1198 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1199 { 1200 regs->psw.addr = infop->entry; 1201 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1202 regs->gprs[15] = infop->start_stack; 1203 } 1204 1205 #endif /* TARGET_S390X */ 1206 1207 #ifdef TARGET_TILEGX 1208 1209 /* 42 bits real used address, a half for user mode */ 1210 #define ELF_START_MMAP (0x00000020000000000ULL) 1211 1212 #define elf_check_arch(x) ((x) == EM_TILEGX) 1213 1214 #define ELF_CLASS ELFCLASS64 1215 #define ELF_DATA ELFDATA2LSB 1216 #define ELF_ARCH EM_TILEGX 1217 1218 static inline void init_thread(struct target_pt_regs *regs, 1219 struct image_info *infop) 1220 { 1221 regs->pc = infop->entry; 1222 regs->sp = infop->start_stack; 1223 1224 } 1225 1226 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1227 1228 #endif /* TARGET_TILEGX */ 1229 1230 #ifdef TARGET_RISCV 1231 1232 #define ELF_START_MMAP 0x80000000 1233 #define ELF_ARCH EM_RISCV 1234 1235 #ifdef TARGET_RISCV32 1236 #define ELF_CLASS ELFCLASS32 1237 #else 1238 #define ELF_CLASS ELFCLASS64 1239 #endif 1240 1241 static inline void init_thread(struct target_pt_regs *regs, 1242 struct image_info *infop) 1243 { 1244 regs->sepc = infop->entry; 1245 regs->sp = infop->start_stack; 1246 } 1247 1248 #define ELF_EXEC_PAGESIZE 4096 1249 1250 #endif /* TARGET_RISCV */ 1251 1252 #ifdef TARGET_HPPA 1253 1254 #define ELF_START_MMAP 0x80000000 1255 #define ELF_CLASS ELFCLASS32 1256 #define ELF_ARCH EM_PARISC 1257 #define ELF_PLATFORM "PARISC" 1258 #define STACK_GROWS_DOWN 0 1259 #define STACK_ALIGNMENT 64 1260 1261 static inline void init_thread(struct target_pt_regs *regs, 1262 struct image_info *infop) 1263 { 1264 regs->iaoq[0] = infop->entry; 1265 regs->iaoq[1] = infop->entry + 4; 1266 regs->gr[23] = 0; 1267 regs->gr[24] = infop->arg_start; 1268 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1269 /* The top-of-stack contains a linkage buffer. */ 1270 regs->gr[30] = infop->start_stack + 64; 1271 regs->gr[31] = infop->entry; 1272 } 1273 1274 #endif /* TARGET_HPPA */ 1275 1276 #ifdef TARGET_XTENSA 1277 1278 #define ELF_START_MMAP 0x20000000 1279 1280 #define ELF_CLASS ELFCLASS32 1281 #define ELF_ARCH EM_XTENSA 1282 1283 static inline void init_thread(struct target_pt_regs *regs, 1284 struct image_info *infop) 1285 { 1286 regs->windowbase = 0; 1287 regs->windowstart = 1; 1288 regs->areg[1] = infop->start_stack; 1289 regs->pc = infop->entry; 1290 } 1291 1292 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1293 #define ELF_NREG 128 1294 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1295 1296 enum { 1297 TARGET_REG_PC, 1298 TARGET_REG_PS, 1299 TARGET_REG_LBEG, 1300 TARGET_REG_LEND, 1301 TARGET_REG_LCOUNT, 1302 TARGET_REG_SAR, 1303 TARGET_REG_WINDOWSTART, 1304 TARGET_REG_WINDOWBASE, 1305 TARGET_REG_THREADPTR, 1306 TARGET_REG_AR0 = 64, 1307 }; 1308 1309 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1310 const CPUXtensaState *env) 1311 { 1312 unsigned i; 1313 1314 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1315 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1316 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1317 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1318 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1319 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1320 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1321 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1322 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1323 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1324 for (i = 0; i < env->config->nareg; ++i) { 1325 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1326 } 1327 } 1328 1329 #define USE_ELF_CORE_DUMP 1330 #define ELF_EXEC_PAGESIZE 4096 1331 1332 #endif /* TARGET_XTENSA */ 1333 1334 #ifndef ELF_PLATFORM 1335 #define ELF_PLATFORM (NULL) 1336 #endif 1337 1338 #ifndef ELF_MACHINE 1339 #define ELF_MACHINE ELF_ARCH 1340 #endif 1341 1342 #ifndef elf_check_arch 1343 #define elf_check_arch(x) ((x) == ELF_ARCH) 1344 #endif 1345 1346 #ifndef ELF_HWCAP 1347 #define ELF_HWCAP 0 1348 #endif 1349 1350 #ifndef STACK_GROWS_DOWN 1351 #define STACK_GROWS_DOWN 1 1352 #endif 1353 1354 #ifndef STACK_ALIGNMENT 1355 #define STACK_ALIGNMENT 16 1356 #endif 1357 1358 #ifdef TARGET_ABI32 1359 #undef ELF_CLASS 1360 #define ELF_CLASS ELFCLASS32 1361 #undef bswaptls 1362 #define bswaptls(ptr) bswap32s(ptr) 1363 #endif 1364 1365 #include "elf.h" 1366 1367 struct exec 1368 { 1369 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1370 unsigned int a_text; /* length of text, in bytes */ 1371 unsigned int a_data; /* length of data, in bytes */ 1372 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1373 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1374 unsigned int a_entry; /* start address */ 1375 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1376 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1377 }; 1378 1379 1380 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1381 #define OMAGIC 0407 1382 #define NMAGIC 0410 1383 #define ZMAGIC 0413 1384 #define QMAGIC 0314 1385 1386 /* Necessary parameters */ 1387 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1388 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1389 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1390 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1391 1392 #define DLINFO_ITEMS 15 1393 1394 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1395 { 1396 memcpy(to, from, n); 1397 } 1398 1399 #ifdef BSWAP_NEEDED 1400 static void bswap_ehdr(struct elfhdr *ehdr) 1401 { 1402 bswap16s(&ehdr->e_type); /* Object file type */ 1403 bswap16s(&ehdr->e_machine); /* Architecture */ 1404 bswap32s(&ehdr->e_version); /* Object file version */ 1405 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1406 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1407 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1408 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1409 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1410 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1411 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1412 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1413 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1414 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1415 } 1416 1417 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1418 { 1419 int i; 1420 for (i = 0; i < phnum; ++i, ++phdr) { 1421 bswap32s(&phdr->p_type); /* Segment type */ 1422 bswap32s(&phdr->p_flags); /* Segment flags */ 1423 bswaptls(&phdr->p_offset); /* Segment file offset */ 1424 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1425 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1426 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1427 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1428 bswaptls(&phdr->p_align); /* Segment alignment */ 1429 } 1430 } 1431 1432 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1433 { 1434 int i; 1435 for (i = 0; i < shnum; ++i, ++shdr) { 1436 bswap32s(&shdr->sh_name); 1437 bswap32s(&shdr->sh_type); 1438 bswaptls(&shdr->sh_flags); 1439 bswaptls(&shdr->sh_addr); 1440 bswaptls(&shdr->sh_offset); 1441 bswaptls(&shdr->sh_size); 1442 bswap32s(&shdr->sh_link); 1443 bswap32s(&shdr->sh_info); 1444 bswaptls(&shdr->sh_addralign); 1445 bswaptls(&shdr->sh_entsize); 1446 } 1447 } 1448 1449 static void bswap_sym(struct elf_sym *sym) 1450 { 1451 bswap32s(&sym->st_name); 1452 bswaptls(&sym->st_value); 1453 bswaptls(&sym->st_size); 1454 bswap16s(&sym->st_shndx); 1455 } 1456 #else 1457 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1458 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1459 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1460 static inline void bswap_sym(struct elf_sym *sym) { } 1461 #endif 1462 1463 #ifdef USE_ELF_CORE_DUMP 1464 static int elf_core_dump(int, const CPUArchState *); 1465 #endif /* USE_ELF_CORE_DUMP */ 1466 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1467 1468 /* Verify the portions of EHDR within E_IDENT for the target. 1469 This can be performed before bswapping the entire header. */ 1470 static bool elf_check_ident(struct elfhdr *ehdr) 1471 { 1472 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1473 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1474 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1475 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1476 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1477 && ehdr->e_ident[EI_DATA] == ELF_DATA 1478 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1479 } 1480 1481 /* Verify the portions of EHDR outside of E_IDENT for the target. 1482 This has to wait until after bswapping the header. */ 1483 static bool elf_check_ehdr(struct elfhdr *ehdr) 1484 { 1485 return (elf_check_arch(ehdr->e_machine) 1486 && ehdr->e_ehsize == sizeof(struct elfhdr) 1487 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1488 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1489 } 1490 1491 /* 1492 * 'copy_elf_strings()' copies argument/envelope strings from user 1493 * memory to free pages in kernel mem. These are in a format ready 1494 * to be put directly into the top of new user memory. 1495 * 1496 */ 1497 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1498 abi_ulong p, abi_ulong stack_limit) 1499 { 1500 char *tmp; 1501 int len, i; 1502 abi_ulong top = p; 1503 1504 if (!p) { 1505 return 0; /* bullet-proofing */ 1506 } 1507 1508 if (STACK_GROWS_DOWN) { 1509 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1510 for (i = argc - 1; i >= 0; --i) { 1511 tmp = argv[i]; 1512 if (!tmp) { 1513 fprintf(stderr, "VFS: argc is wrong"); 1514 exit(-1); 1515 } 1516 len = strlen(tmp) + 1; 1517 tmp += len; 1518 1519 if (len > (p - stack_limit)) { 1520 return 0; 1521 } 1522 while (len) { 1523 int bytes_to_copy = (len > offset) ? offset : len; 1524 tmp -= bytes_to_copy; 1525 p -= bytes_to_copy; 1526 offset -= bytes_to_copy; 1527 len -= bytes_to_copy; 1528 1529 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1530 1531 if (offset == 0) { 1532 memcpy_to_target(p, scratch, top - p); 1533 top = p; 1534 offset = TARGET_PAGE_SIZE; 1535 } 1536 } 1537 } 1538 if (p != top) { 1539 memcpy_to_target(p, scratch + offset, top - p); 1540 } 1541 } else { 1542 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1543 for (i = 0; i < argc; ++i) { 1544 tmp = argv[i]; 1545 if (!tmp) { 1546 fprintf(stderr, "VFS: argc is wrong"); 1547 exit(-1); 1548 } 1549 len = strlen(tmp) + 1; 1550 if (len > (stack_limit - p)) { 1551 return 0; 1552 } 1553 while (len) { 1554 int bytes_to_copy = (len > remaining) ? remaining : len; 1555 1556 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1557 1558 tmp += bytes_to_copy; 1559 remaining -= bytes_to_copy; 1560 p += bytes_to_copy; 1561 len -= bytes_to_copy; 1562 1563 if (remaining == 0) { 1564 memcpy_to_target(top, scratch, p - top); 1565 top = p; 1566 remaining = TARGET_PAGE_SIZE; 1567 } 1568 } 1569 } 1570 if (p != top) { 1571 memcpy_to_target(top, scratch, p - top); 1572 } 1573 } 1574 1575 return p; 1576 } 1577 1578 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1579 * argument/environment space. Newer kernels (>2.6.33) allow more, 1580 * dependent on stack size, but guarantee at least 32 pages for 1581 * backwards compatibility. 1582 */ 1583 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1584 1585 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1586 struct image_info *info) 1587 { 1588 abi_ulong size, error, guard; 1589 1590 size = guest_stack_size; 1591 if (size < STACK_LOWER_LIMIT) { 1592 size = STACK_LOWER_LIMIT; 1593 } 1594 guard = TARGET_PAGE_SIZE; 1595 if (guard < qemu_real_host_page_size) { 1596 guard = qemu_real_host_page_size; 1597 } 1598 1599 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1600 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1601 if (error == -1) { 1602 perror("mmap stack"); 1603 exit(-1); 1604 } 1605 1606 /* We reserve one extra page at the top of the stack as guard. */ 1607 if (STACK_GROWS_DOWN) { 1608 target_mprotect(error, guard, PROT_NONE); 1609 info->stack_limit = error + guard; 1610 return info->stack_limit + size - sizeof(void *); 1611 } else { 1612 target_mprotect(error + size, guard, PROT_NONE); 1613 info->stack_limit = error + size; 1614 return error; 1615 } 1616 } 1617 1618 /* Map and zero the bss. We need to explicitly zero any fractional pages 1619 after the data section (i.e. bss). */ 1620 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1621 { 1622 uintptr_t host_start, host_map_start, host_end; 1623 1624 last_bss = TARGET_PAGE_ALIGN(last_bss); 1625 1626 /* ??? There is confusion between qemu_real_host_page_size and 1627 qemu_host_page_size here and elsewhere in target_mmap, which 1628 may lead to the end of the data section mapping from the file 1629 not being mapped. At least there was an explicit test and 1630 comment for that here, suggesting that "the file size must 1631 be known". The comment probably pre-dates the introduction 1632 of the fstat system call in target_mmap which does in fact 1633 find out the size. What isn't clear is if the workaround 1634 here is still actually needed. For now, continue with it, 1635 but merge it with the "normal" mmap that would allocate the bss. */ 1636 1637 host_start = (uintptr_t) g2h(elf_bss); 1638 host_end = (uintptr_t) g2h(last_bss); 1639 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1640 1641 if (host_map_start < host_end) { 1642 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1643 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1644 if (p == MAP_FAILED) { 1645 perror("cannot mmap brk"); 1646 exit(-1); 1647 } 1648 } 1649 1650 /* Ensure that the bss page(s) are valid */ 1651 if ((page_get_flags(last_bss-1) & prot) != prot) { 1652 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1653 } 1654 1655 if (host_start < host_map_start) { 1656 memset((void *)host_start, 0, host_map_start - host_start); 1657 } 1658 } 1659 1660 #ifdef CONFIG_USE_FDPIC 1661 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1662 { 1663 uint16_t n; 1664 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1665 1666 /* elf32_fdpic_loadseg */ 1667 n = info->nsegs; 1668 while (n--) { 1669 sp -= 12; 1670 put_user_u32(loadsegs[n].addr, sp+0); 1671 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1672 put_user_u32(loadsegs[n].p_memsz, sp+8); 1673 } 1674 1675 /* elf32_fdpic_loadmap */ 1676 sp -= 4; 1677 put_user_u16(0, sp+0); /* version */ 1678 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1679 1680 info->personality = PER_LINUX_FDPIC; 1681 info->loadmap_addr = sp; 1682 1683 return sp; 1684 } 1685 #endif 1686 1687 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1688 struct elfhdr *exec, 1689 struct image_info *info, 1690 struct image_info *interp_info) 1691 { 1692 abi_ulong sp; 1693 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1694 int size; 1695 int i; 1696 abi_ulong u_rand_bytes; 1697 uint8_t k_rand_bytes[16]; 1698 abi_ulong u_platform; 1699 const char *k_platform; 1700 const int n = sizeof(elf_addr_t); 1701 1702 sp = p; 1703 1704 #ifdef CONFIG_USE_FDPIC 1705 /* Needs to be before we load the env/argc/... */ 1706 if (elf_is_fdpic(exec)) { 1707 /* Need 4 byte alignment for these structs */ 1708 sp &= ~3; 1709 sp = loader_build_fdpic_loadmap(info, sp); 1710 info->other_info = interp_info; 1711 if (interp_info) { 1712 interp_info->other_info = info; 1713 sp = loader_build_fdpic_loadmap(interp_info, sp); 1714 } 1715 } 1716 #endif 1717 1718 u_platform = 0; 1719 k_platform = ELF_PLATFORM; 1720 if (k_platform) { 1721 size_t len = strlen(k_platform) + 1; 1722 if (STACK_GROWS_DOWN) { 1723 sp -= (len + n - 1) & ~(n - 1); 1724 u_platform = sp; 1725 /* FIXME - check return value of memcpy_to_target() for failure */ 1726 memcpy_to_target(sp, k_platform, len); 1727 } else { 1728 memcpy_to_target(sp, k_platform, len); 1729 u_platform = sp; 1730 sp += len + 1; 1731 } 1732 } 1733 1734 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1735 * the argv and envp pointers. 1736 */ 1737 if (STACK_GROWS_DOWN) { 1738 sp = QEMU_ALIGN_DOWN(sp, 16); 1739 } else { 1740 sp = QEMU_ALIGN_UP(sp, 16); 1741 } 1742 1743 /* 1744 * Generate 16 random bytes for userspace PRNG seeding (not 1745 * cryptically secure but it's not the aim of QEMU). 1746 */ 1747 for (i = 0; i < 16; i++) { 1748 k_rand_bytes[i] = rand(); 1749 } 1750 if (STACK_GROWS_DOWN) { 1751 sp -= 16; 1752 u_rand_bytes = sp; 1753 /* FIXME - check return value of memcpy_to_target() for failure */ 1754 memcpy_to_target(sp, k_rand_bytes, 16); 1755 } else { 1756 memcpy_to_target(sp, k_rand_bytes, 16); 1757 u_rand_bytes = sp; 1758 sp += 16; 1759 } 1760 1761 size = (DLINFO_ITEMS + 1) * 2; 1762 if (k_platform) 1763 size += 2; 1764 #ifdef DLINFO_ARCH_ITEMS 1765 size += DLINFO_ARCH_ITEMS * 2; 1766 #endif 1767 #ifdef ELF_HWCAP2 1768 size += 2; 1769 #endif 1770 info->auxv_len = size * n; 1771 1772 size += envc + argc + 2; 1773 size += 1; /* argc itself */ 1774 size *= n; 1775 1776 /* Allocate space and finalize stack alignment for entry now. */ 1777 if (STACK_GROWS_DOWN) { 1778 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1779 sp = u_argc; 1780 } else { 1781 u_argc = sp; 1782 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1783 } 1784 1785 u_argv = u_argc + n; 1786 u_envp = u_argv + (argc + 1) * n; 1787 u_auxv = u_envp + (envc + 1) * n; 1788 info->saved_auxv = u_auxv; 1789 info->arg_start = u_argv; 1790 info->arg_end = u_argv + argc * n; 1791 1792 /* This is correct because Linux defines 1793 * elf_addr_t as Elf32_Off / Elf64_Off 1794 */ 1795 #define NEW_AUX_ENT(id, val) do { \ 1796 put_user_ual(id, u_auxv); u_auxv += n; \ 1797 put_user_ual(val, u_auxv); u_auxv += n; \ 1798 } while(0) 1799 1800 #ifdef ARCH_DLINFO 1801 /* 1802 * ARCH_DLINFO must come first so platform specific code can enforce 1803 * special alignment requirements on the AUXV if necessary (eg. PPC). 1804 */ 1805 ARCH_DLINFO; 1806 #endif 1807 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1808 * on info->auxv_len will trigger. 1809 */ 1810 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1811 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1812 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1813 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1814 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1815 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1816 NEW_AUX_ENT(AT_ENTRY, info->entry); 1817 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1818 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1819 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1820 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1821 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1822 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1823 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1824 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1825 1826 #ifdef ELF_HWCAP2 1827 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1828 #endif 1829 1830 if (u_platform) { 1831 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1832 } 1833 NEW_AUX_ENT (AT_NULL, 0); 1834 #undef NEW_AUX_ENT 1835 1836 /* Check that our initial calculation of the auxv length matches how much 1837 * we actually put into it. 1838 */ 1839 assert(info->auxv_len == u_auxv - info->saved_auxv); 1840 1841 put_user_ual(argc, u_argc); 1842 1843 p = info->arg_strings; 1844 for (i = 0; i < argc; ++i) { 1845 put_user_ual(p, u_argv); 1846 u_argv += n; 1847 p += target_strlen(p) + 1; 1848 } 1849 put_user_ual(0, u_argv); 1850 1851 p = info->env_strings; 1852 for (i = 0; i < envc; ++i) { 1853 put_user_ual(p, u_envp); 1854 u_envp += n; 1855 p += target_strlen(p) + 1; 1856 } 1857 put_user_ual(0, u_envp); 1858 1859 return sp; 1860 } 1861 1862 unsigned long init_guest_space(unsigned long host_start, 1863 unsigned long host_size, 1864 unsigned long guest_start, 1865 bool fixed) 1866 { 1867 unsigned long current_start, aligned_start; 1868 int flags; 1869 1870 assert(host_start || host_size); 1871 1872 /* If just a starting address is given, then just verify that 1873 * address. */ 1874 if (host_start && !host_size) { 1875 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1876 if (init_guest_commpage(host_start, host_size) != 1) { 1877 return (unsigned long)-1; 1878 } 1879 #endif 1880 return host_start; 1881 } 1882 1883 /* Setup the initial flags and start address. */ 1884 current_start = host_start & qemu_host_page_mask; 1885 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1886 if (fixed) { 1887 flags |= MAP_FIXED; 1888 } 1889 1890 /* Otherwise, a non-zero size region of memory needs to be mapped 1891 * and validated. */ 1892 while (1) { 1893 unsigned long real_start, real_size, aligned_size; 1894 aligned_size = real_size = host_size; 1895 1896 /* Do not use mmap_find_vma here because that is limited to the 1897 * guest address space. We are going to make the 1898 * guest address space fit whatever we're given. 1899 */ 1900 real_start = (unsigned long) 1901 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1902 if (real_start == (unsigned long)-1) { 1903 return (unsigned long)-1; 1904 } 1905 1906 /* Check to see if the address is valid. */ 1907 if (host_start && real_start != current_start) { 1908 goto try_again; 1909 } 1910 1911 /* Ensure the address is properly aligned. */ 1912 if (real_start & ~qemu_host_page_mask) { 1913 /* Ideally, we adjust like 1914 * 1915 * pages: [ ][ ][ ][ ][ ] 1916 * old: [ real ] 1917 * [ aligned ] 1918 * new: [ real ] 1919 * [ aligned ] 1920 * 1921 * But if there is something else mapped right after it, 1922 * then obviously it won't have room to grow, and the 1923 * kernel will put the new larger real someplace else with 1924 * unknown alignment (if we made it to here, then 1925 * fixed=false). Which is why we grow real by a full page 1926 * size, instead of by part of one; so that even if we get 1927 * moved, we can still guarantee alignment. But this does 1928 * mean that there is a padding of < 1 page both before 1929 * and after the aligned range; the "after" could could 1930 * cause problems for ARM emulation where it could butt in 1931 * to where we need to put the commpage. 1932 */ 1933 munmap((void *)real_start, host_size); 1934 real_size = aligned_size + qemu_host_page_size; 1935 real_start = (unsigned long) 1936 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1937 if (real_start == (unsigned long)-1) { 1938 return (unsigned long)-1; 1939 } 1940 aligned_start = HOST_PAGE_ALIGN(real_start); 1941 } else { 1942 aligned_start = real_start; 1943 } 1944 1945 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1946 /* On 32-bit ARM, we need to also be able to map the commpage. */ 1947 int valid = init_guest_commpage(aligned_start - guest_start, 1948 aligned_size + guest_start); 1949 if (valid == -1) { 1950 munmap((void *)real_start, real_size); 1951 return (unsigned long)-1; 1952 } else if (valid == 0) { 1953 goto try_again; 1954 } 1955 #endif 1956 1957 /* If nothing has said `return -1` or `goto try_again` yet, 1958 * then the address we have is good. 1959 */ 1960 break; 1961 1962 try_again: 1963 /* That address didn't work. Unmap and try a different one. 1964 * The address the host picked because is typically right at 1965 * the top of the host address space and leaves the guest with 1966 * no usable address space. Resort to a linear search. We 1967 * already compensated for mmap_min_addr, so this should not 1968 * happen often. Probably means we got unlucky and host 1969 * address space randomization put a shared library somewhere 1970 * inconvenient. 1971 * 1972 * This is probably a good strategy if host_start, but is 1973 * probably a bad strategy if not, which means we got here 1974 * because of trouble with ARM commpage setup. 1975 */ 1976 munmap((void *)real_start, real_size); 1977 current_start += qemu_host_page_size; 1978 if (host_start == current_start) { 1979 /* Theoretically possible if host doesn't have any suitably 1980 * aligned areas. Normally the first mmap will fail. 1981 */ 1982 return (unsigned long)-1; 1983 } 1984 } 1985 1986 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1987 1988 return aligned_start; 1989 } 1990 1991 static void probe_guest_base(const char *image_name, 1992 abi_ulong loaddr, abi_ulong hiaddr) 1993 { 1994 /* Probe for a suitable guest base address, if the user has not set 1995 * it explicitly, and set guest_base appropriately. 1996 * In case of error we will print a suitable message and exit. 1997 */ 1998 const char *errmsg; 1999 if (!have_guest_base && !reserved_va) { 2000 unsigned long host_start, real_start, host_size; 2001 2002 /* Round addresses to page boundaries. */ 2003 loaddr &= qemu_host_page_mask; 2004 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2005 2006 if (loaddr < mmap_min_addr) { 2007 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2008 } else { 2009 host_start = loaddr; 2010 if (host_start != loaddr) { 2011 errmsg = "Address overflow loading ELF binary"; 2012 goto exit_errmsg; 2013 } 2014 } 2015 host_size = hiaddr - loaddr; 2016 2017 /* Setup the initial guest memory space with ranges gleaned from 2018 * the ELF image that is being loaded. 2019 */ 2020 real_start = init_guest_space(host_start, host_size, loaddr, false); 2021 if (real_start == (unsigned long)-1) { 2022 errmsg = "Unable to find space for application"; 2023 goto exit_errmsg; 2024 } 2025 guest_base = real_start - loaddr; 2026 2027 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2028 TARGET_ABI_FMT_lx " to 0x%lx\n", 2029 loaddr, real_start); 2030 } 2031 return; 2032 2033 exit_errmsg: 2034 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2035 exit(-1); 2036 } 2037 2038 2039 /* Load an ELF image into the address space. 2040 2041 IMAGE_NAME is the filename of the image, to use in error messages. 2042 IMAGE_FD is the open file descriptor for the image. 2043 2044 BPRM_BUF is a copy of the beginning of the file; this of course 2045 contains the elf file header at offset 0. It is assumed that this 2046 buffer is sufficiently aligned to present no problems to the host 2047 in accessing data at aligned offsets within the buffer. 2048 2049 On return: INFO values will be filled in, as necessary or available. */ 2050 2051 static void load_elf_image(const char *image_name, int image_fd, 2052 struct image_info *info, char **pinterp_name, 2053 char bprm_buf[BPRM_BUF_SIZE]) 2054 { 2055 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2056 struct elf_phdr *phdr; 2057 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2058 int i, retval; 2059 const char *errmsg; 2060 2061 /* First of all, some simple consistency checks */ 2062 errmsg = "Invalid ELF image for this architecture"; 2063 if (!elf_check_ident(ehdr)) { 2064 goto exit_errmsg; 2065 } 2066 bswap_ehdr(ehdr); 2067 if (!elf_check_ehdr(ehdr)) { 2068 goto exit_errmsg; 2069 } 2070 2071 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2072 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2073 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2074 } else { 2075 phdr = (struct elf_phdr *) alloca(i); 2076 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2077 if (retval != i) { 2078 goto exit_read; 2079 } 2080 } 2081 bswap_phdr(phdr, ehdr->e_phnum); 2082 2083 #ifdef CONFIG_USE_FDPIC 2084 info->nsegs = 0; 2085 info->pt_dynamic_addr = 0; 2086 #endif 2087 2088 mmap_lock(); 2089 2090 /* Find the maximum size of the image and allocate an appropriate 2091 amount of memory to handle that. */ 2092 loaddr = -1, hiaddr = 0; 2093 for (i = 0; i < ehdr->e_phnum; ++i) { 2094 if (phdr[i].p_type == PT_LOAD) { 2095 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2096 if (a < loaddr) { 2097 loaddr = a; 2098 } 2099 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2100 if (a > hiaddr) { 2101 hiaddr = a; 2102 } 2103 #ifdef CONFIG_USE_FDPIC 2104 ++info->nsegs; 2105 #endif 2106 } 2107 } 2108 2109 load_addr = loaddr; 2110 if (ehdr->e_type == ET_DYN) { 2111 /* The image indicates that it can be loaded anywhere. Find a 2112 location that can hold the memory space required. If the 2113 image is pre-linked, LOADDR will be non-zero. Since we do 2114 not supply MAP_FIXED here we'll use that address if and 2115 only if it remains available. */ 2116 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2117 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2118 -1, 0); 2119 if (load_addr == -1) { 2120 goto exit_perror; 2121 } 2122 } else if (pinterp_name != NULL) { 2123 /* This is the main executable. Make sure that the low 2124 address does not conflict with MMAP_MIN_ADDR or the 2125 QEMU application itself. */ 2126 probe_guest_base(image_name, loaddr, hiaddr); 2127 } 2128 load_bias = load_addr - loaddr; 2129 2130 #ifdef CONFIG_USE_FDPIC 2131 { 2132 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2133 g_malloc(sizeof(*loadsegs) * info->nsegs); 2134 2135 for (i = 0; i < ehdr->e_phnum; ++i) { 2136 switch (phdr[i].p_type) { 2137 case PT_DYNAMIC: 2138 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2139 break; 2140 case PT_LOAD: 2141 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2142 loadsegs->p_vaddr = phdr[i].p_vaddr; 2143 loadsegs->p_memsz = phdr[i].p_memsz; 2144 ++loadsegs; 2145 break; 2146 } 2147 } 2148 } 2149 #endif 2150 2151 info->load_bias = load_bias; 2152 info->load_addr = load_addr; 2153 info->entry = ehdr->e_entry + load_bias; 2154 info->start_code = -1; 2155 info->end_code = 0; 2156 info->start_data = -1; 2157 info->end_data = 0; 2158 info->brk = 0; 2159 info->elf_flags = ehdr->e_flags; 2160 2161 for (i = 0; i < ehdr->e_phnum; i++) { 2162 struct elf_phdr *eppnt = phdr + i; 2163 if (eppnt->p_type == PT_LOAD) { 2164 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2165 int elf_prot = 0; 2166 2167 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2168 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2169 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2170 2171 vaddr = load_bias + eppnt->p_vaddr; 2172 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2173 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2174 2175 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2176 elf_prot, MAP_PRIVATE | MAP_FIXED, 2177 image_fd, eppnt->p_offset - vaddr_po); 2178 if (error == -1) { 2179 goto exit_perror; 2180 } 2181 2182 vaddr_ef = vaddr + eppnt->p_filesz; 2183 vaddr_em = vaddr + eppnt->p_memsz; 2184 2185 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2186 if (vaddr_ef < vaddr_em) { 2187 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2188 } 2189 2190 /* Find the full program boundaries. */ 2191 if (elf_prot & PROT_EXEC) { 2192 if (vaddr < info->start_code) { 2193 info->start_code = vaddr; 2194 } 2195 if (vaddr_ef > info->end_code) { 2196 info->end_code = vaddr_ef; 2197 } 2198 } 2199 if (elf_prot & PROT_WRITE) { 2200 if (vaddr < info->start_data) { 2201 info->start_data = vaddr; 2202 } 2203 if (vaddr_ef > info->end_data) { 2204 info->end_data = vaddr_ef; 2205 } 2206 if (vaddr_em > info->brk) { 2207 info->brk = vaddr_em; 2208 } 2209 } 2210 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2211 char *interp_name; 2212 2213 if (*pinterp_name) { 2214 errmsg = "Multiple PT_INTERP entries"; 2215 goto exit_errmsg; 2216 } 2217 interp_name = malloc(eppnt->p_filesz); 2218 if (!interp_name) { 2219 goto exit_perror; 2220 } 2221 2222 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2223 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2224 eppnt->p_filesz); 2225 } else { 2226 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2227 eppnt->p_offset); 2228 if (retval != eppnt->p_filesz) { 2229 goto exit_perror; 2230 } 2231 } 2232 if (interp_name[eppnt->p_filesz - 1] != 0) { 2233 errmsg = "Invalid PT_INTERP entry"; 2234 goto exit_errmsg; 2235 } 2236 *pinterp_name = interp_name; 2237 } 2238 } 2239 2240 if (info->end_data == 0) { 2241 info->start_data = info->end_code; 2242 info->end_data = info->end_code; 2243 info->brk = info->end_code; 2244 } 2245 2246 if (qemu_log_enabled()) { 2247 load_symbols(ehdr, image_fd, load_bias); 2248 } 2249 2250 mmap_unlock(); 2251 2252 close(image_fd); 2253 return; 2254 2255 exit_read: 2256 if (retval >= 0) { 2257 errmsg = "Incomplete read of file header"; 2258 goto exit_errmsg; 2259 } 2260 exit_perror: 2261 errmsg = strerror(errno); 2262 exit_errmsg: 2263 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2264 exit(-1); 2265 } 2266 2267 static void load_elf_interp(const char *filename, struct image_info *info, 2268 char bprm_buf[BPRM_BUF_SIZE]) 2269 { 2270 int fd, retval; 2271 2272 fd = open(path(filename), O_RDONLY); 2273 if (fd < 0) { 2274 goto exit_perror; 2275 } 2276 2277 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2278 if (retval < 0) { 2279 goto exit_perror; 2280 } 2281 if (retval < BPRM_BUF_SIZE) { 2282 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2283 } 2284 2285 load_elf_image(filename, fd, info, NULL, bprm_buf); 2286 return; 2287 2288 exit_perror: 2289 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2290 exit(-1); 2291 } 2292 2293 static int symfind(const void *s0, const void *s1) 2294 { 2295 target_ulong addr = *(target_ulong *)s0; 2296 struct elf_sym *sym = (struct elf_sym *)s1; 2297 int result = 0; 2298 if (addr < sym->st_value) { 2299 result = -1; 2300 } else if (addr >= sym->st_value + sym->st_size) { 2301 result = 1; 2302 } 2303 return result; 2304 } 2305 2306 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2307 { 2308 #if ELF_CLASS == ELFCLASS32 2309 struct elf_sym *syms = s->disas_symtab.elf32; 2310 #else 2311 struct elf_sym *syms = s->disas_symtab.elf64; 2312 #endif 2313 2314 // binary search 2315 struct elf_sym *sym; 2316 2317 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2318 if (sym != NULL) { 2319 return s->disas_strtab + sym->st_name; 2320 } 2321 2322 return ""; 2323 } 2324 2325 /* FIXME: This should use elf_ops.h */ 2326 static int symcmp(const void *s0, const void *s1) 2327 { 2328 struct elf_sym *sym0 = (struct elf_sym *)s0; 2329 struct elf_sym *sym1 = (struct elf_sym *)s1; 2330 return (sym0->st_value < sym1->st_value) 2331 ? -1 2332 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2333 } 2334 2335 /* Best attempt to load symbols from this ELF object. */ 2336 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2337 { 2338 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2339 uint64_t segsz; 2340 struct elf_shdr *shdr; 2341 char *strings = NULL; 2342 struct syminfo *s = NULL; 2343 struct elf_sym *new_syms, *syms = NULL; 2344 2345 shnum = hdr->e_shnum; 2346 i = shnum * sizeof(struct elf_shdr); 2347 shdr = (struct elf_shdr *)alloca(i); 2348 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2349 return; 2350 } 2351 2352 bswap_shdr(shdr, shnum); 2353 for (i = 0; i < shnum; ++i) { 2354 if (shdr[i].sh_type == SHT_SYMTAB) { 2355 sym_idx = i; 2356 str_idx = shdr[i].sh_link; 2357 goto found; 2358 } 2359 } 2360 2361 /* There will be no symbol table if the file was stripped. */ 2362 return; 2363 2364 found: 2365 /* Now know where the strtab and symtab are. Snarf them. */ 2366 s = g_try_new(struct syminfo, 1); 2367 if (!s) { 2368 goto give_up; 2369 } 2370 2371 segsz = shdr[str_idx].sh_size; 2372 s->disas_strtab = strings = g_try_malloc(segsz); 2373 if (!strings || 2374 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2375 goto give_up; 2376 } 2377 2378 segsz = shdr[sym_idx].sh_size; 2379 syms = g_try_malloc(segsz); 2380 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2381 goto give_up; 2382 } 2383 2384 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2385 /* Implausibly large symbol table: give up rather than ploughing 2386 * on with the number of symbols calculation overflowing 2387 */ 2388 goto give_up; 2389 } 2390 nsyms = segsz / sizeof(struct elf_sym); 2391 for (i = 0; i < nsyms; ) { 2392 bswap_sym(syms + i); 2393 /* Throw away entries which we do not need. */ 2394 if (syms[i].st_shndx == SHN_UNDEF 2395 || syms[i].st_shndx >= SHN_LORESERVE 2396 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2397 if (i < --nsyms) { 2398 syms[i] = syms[nsyms]; 2399 } 2400 } else { 2401 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2402 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2403 syms[i].st_value &= ~(target_ulong)1; 2404 #endif 2405 syms[i].st_value += load_bias; 2406 i++; 2407 } 2408 } 2409 2410 /* No "useful" symbol. */ 2411 if (nsyms == 0) { 2412 goto give_up; 2413 } 2414 2415 /* Attempt to free the storage associated with the local symbols 2416 that we threw away. Whether or not this has any effect on the 2417 memory allocation depends on the malloc implementation and how 2418 many symbols we managed to discard. */ 2419 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2420 if (new_syms == NULL) { 2421 goto give_up; 2422 } 2423 syms = new_syms; 2424 2425 qsort(syms, nsyms, sizeof(*syms), symcmp); 2426 2427 s->disas_num_syms = nsyms; 2428 #if ELF_CLASS == ELFCLASS32 2429 s->disas_symtab.elf32 = syms; 2430 #else 2431 s->disas_symtab.elf64 = syms; 2432 #endif 2433 s->lookup_symbol = lookup_symbolxx; 2434 s->next = syminfos; 2435 syminfos = s; 2436 2437 return; 2438 2439 give_up: 2440 g_free(s); 2441 g_free(strings); 2442 g_free(syms); 2443 } 2444 2445 uint32_t get_elf_eflags(int fd) 2446 { 2447 struct elfhdr ehdr; 2448 off_t offset; 2449 int ret; 2450 2451 /* Read ELF header */ 2452 offset = lseek(fd, 0, SEEK_SET); 2453 if (offset == (off_t) -1) { 2454 return 0; 2455 } 2456 ret = read(fd, &ehdr, sizeof(ehdr)); 2457 if (ret < sizeof(ehdr)) { 2458 return 0; 2459 } 2460 offset = lseek(fd, offset, SEEK_SET); 2461 if (offset == (off_t) -1) { 2462 return 0; 2463 } 2464 2465 /* Check ELF signature */ 2466 if (!elf_check_ident(&ehdr)) { 2467 return 0; 2468 } 2469 2470 /* check header */ 2471 bswap_ehdr(&ehdr); 2472 if (!elf_check_ehdr(&ehdr)) { 2473 return 0; 2474 } 2475 2476 /* return architecture id */ 2477 return ehdr.e_flags; 2478 } 2479 2480 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2481 { 2482 struct image_info interp_info; 2483 struct elfhdr elf_ex; 2484 char *elf_interpreter = NULL; 2485 char *scratch; 2486 2487 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2488 2489 load_elf_image(bprm->filename, bprm->fd, info, 2490 &elf_interpreter, bprm->buf); 2491 2492 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2493 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2494 when we load the interpreter. */ 2495 elf_ex = *(struct elfhdr *)bprm->buf; 2496 2497 /* Do this so that we can load the interpreter, if need be. We will 2498 change some of these later */ 2499 bprm->p = setup_arg_pages(bprm, info); 2500 2501 scratch = g_new0(char, TARGET_PAGE_SIZE); 2502 if (STACK_GROWS_DOWN) { 2503 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2504 bprm->p, info->stack_limit); 2505 info->file_string = bprm->p; 2506 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2507 bprm->p, info->stack_limit); 2508 info->env_strings = bprm->p; 2509 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2510 bprm->p, info->stack_limit); 2511 info->arg_strings = bprm->p; 2512 } else { 2513 info->arg_strings = bprm->p; 2514 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2515 bprm->p, info->stack_limit); 2516 info->env_strings = bprm->p; 2517 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2518 bprm->p, info->stack_limit); 2519 info->file_string = bprm->p; 2520 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2521 bprm->p, info->stack_limit); 2522 } 2523 2524 g_free(scratch); 2525 2526 if (!bprm->p) { 2527 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2528 exit(-1); 2529 } 2530 2531 if (elf_interpreter) { 2532 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2533 2534 /* If the program interpreter is one of these two, then assume 2535 an iBCS2 image. Otherwise assume a native linux image. */ 2536 2537 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2538 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2539 info->personality = PER_SVR4; 2540 2541 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2542 and some applications "depend" upon this behavior. Since 2543 we do not have the power to recompile these, we emulate 2544 the SVr4 behavior. Sigh. */ 2545 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2546 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2547 } 2548 } 2549 2550 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2551 info, (elf_interpreter ? &interp_info : NULL)); 2552 info->start_stack = bprm->p; 2553 2554 /* If we have an interpreter, set that as the program's entry point. 2555 Copy the load_bias as well, to help PPC64 interpret the entry 2556 point as a function descriptor. Do this after creating elf tables 2557 so that we copy the original program entry point into the AUXV. */ 2558 if (elf_interpreter) { 2559 info->load_bias = interp_info.load_bias; 2560 info->entry = interp_info.entry; 2561 free(elf_interpreter); 2562 } 2563 2564 #ifdef USE_ELF_CORE_DUMP 2565 bprm->core_dump = &elf_core_dump; 2566 #endif 2567 2568 return 0; 2569 } 2570 2571 #ifdef USE_ELF_CORE_DUMP 2572 /* 2573 * Definitions to generate Intel SVR4-like core files. 2574 * These mostly have the same names as the SVR4 types with "target_elf_" 2575 * tacked on the front to prevent clashes with linux definitions, 2576 * and the typedef forms have been avoided. This is mostly like 2577 * the SVR4 structure, but more Linuxy, with things that Linux does 2578 * not support and which gdb doesn't really use excluded. 2579 * 2580 * Fields we don't dump (their contents is zero) in linux-user qemu 2581 * are marked with XXX. 2582 * 2583 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2584 * 2585 * Porting ELF coredump for target is (quite) simple process. First you 2586 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2587 * the target resides): 2588 * 2589 * #define USE_ELF_CORE_DUMP 2590 * 2591 * Next you define type of register set used for dumping. ELF specification 2592 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2593 * 2594 * typedef <target_regtype> target_elf_greg_t; 2595 * #define ELF_NREG <number of registers> 2596 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2597 * 2598 * Last step is to implement target specific function that copies registers 2599 * from given cpu into just specified register set. Prototype is: 2600 * 2601 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2602 * const CPUArchState *env); 2603 * 2604 * Parameters: 2605 * regs - copy register values into here (allocated and zeroed by caller) 2606 * env - copy registers from here 2607 * 2608 * Example for ARM target is provided in this file. 2609 */ 2610 2611 /* An ELF note in memory */ 2612 struct memelfnote { 2613 const char *name; 2614 size_t namesz; 2615 size_t namesz_rounded; 2616 int type; 2617 size_t datasz; 2618 size_t datasz_rounded; 2619 void *data; 2620 size_t notesz; 2621 }; 2622 2623 struct target_elf_siginfo { 2624 abi_int si_signo; /* signal number */ 2625 abi_int si_code; /* extra code */ 2626 abi_int si_errno; /* errno */ 2627 }; 2628 2629 struct target_elf_prstatus { 2630 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2631 abi_short pr_cursig; /* Current signal */ 2632 abi_ulong pr_sigpend; /* XXX */ 2633 abi_ulong pr_sighold; /* XXX */ 2634 target_pid_t pr_pid; 2635 target_pid_t pr_ppid; 2636 target_pid_t pr_pgrp; 2637 target_pid_t pr_sid; 2638 struct target_timeval pr_utime; /* XXX User time */ 2639 struct target_timeval pr_stime; /* XXX System time */ 2640 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2641 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2642 target_elf_gregset_t pr_reg; /* GP registers */ 2643 abi_int pr_fpvalid; /* XXX */ 2644 }; 2645 2646 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2647 2648 struct target_elf_prpsinfo { 2649 char pr_state; /* numeric process state */ 2650 char pr_sname; /* char for pr_state */ 2651 char pr_zomb; /* zombie */ 2652 char pr_nice; /* nice val */ 2653 abi_ulong pr_flag; /* flags */ 2654 target_uid_t pr_uid; 2655 target_gid_t pr_gid; 2656 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2657 /* Lots missing */ 2658 char pr_fname[16]; /* filename of executable */ 2659 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2660 }; 2661 2662 /* Here is the structure in which status of each thread is captured. */ 2663 struct elf_thread_status { 2664 QTAILQ_ENTRY(elf_thread_status) ets_link; 2665 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2666 #if 0 2667 elf_fpregset_t fpu; /* NT_PRFPREG */ 2668 struct task_struct *thread; 2669 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2670 #endif 2671 struct memelfnote notes[1]; 2672 int num_notes; 2673 }; 2674 2675 struct elf_note_info { 2676 struct memelfnote *notes; 2677 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2678 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2679 2680 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2681 #if 0 2682 /* 2683 * Current version of ELF coredump doesn't support 2684 * dumping fp regs etc. 2685 */ 2686 elf_fpregset_t *fpu; 2687 elf_fpxregset_t *xfpu; 2688 int thread_status_size; 2689 #endif 2690 int notes_size; 2691 int numnote; 2692 }; 2693 2694 struct vm_area_struct { 2695 target_ulong vma_start; /* start vaddr of memory region */ 2696 target_ulong vma_end; /* end vaddr of memory region */ 2697 abi_ulong vma_flags; /* protection etc. flags for the region */ 2698 QTAILQ_ENTRY(vm_area_struct) vma_link; 2699 }; 2700 2701 struct mm_struct { 2702 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2703 int mm_count; /* number of mappings */ 2704 }; 2705 2706 static struct mm_struct *vma_init(void); 2707 static void vma_delete(struct mm_struct *); 2708 static int vma_add_mapping(struct mm_struct *, target_ulong, 2709 target_ulong, abi_ulong); 2710 static int vma_get_mapping_count(const struct mm_struct *); 2711 static struct vm_area_struct *vma_first(const struct mm_struct *); 2712 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2713 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2714 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2715 unsigned long flags); 2716 2717 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2718 static void fill_note(struct memelfnote *, const char *, int, 2719 unsigned int, void *); 2720 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2721 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2722 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2723 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2724 static size_t note_size(const struct memelfnote *); 2725 static void free_note_info(struct elf_note_info *); 2726 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2727 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2728 static int core_dump_filename(const TaskState *, char *, size_t); 2729 2730 static int dump_write(int, const void *, size_t); 2731 static int write_note(struct memelfnote *, int); 2732 static int write_note_info(struct elf_note_info *, int); 2733 2734 #ifdef BSWAP_NEEDED 2735 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2736 { 2737 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2738 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2739 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2740 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2741 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2742 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2743 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2744 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2745 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2746 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2747 /* cpu times are not filled, so we skip them */ 2748 /* regs should be in correct format already */ 2749 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2750 } 2751 2752 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2753 { 2754 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2755 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2756 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2757 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2758 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2759 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2760 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2761 } 2762 2763 static void bswap_note(struct elf_note *en) 2764 { 2765 bswap32s(&en->n_namesz); 2766 bswap32s(&en->n_descsz); 2767 bswap32s(&en->n_type); 2768 } 2769 #else 2770 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2771 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2772 static inline void bswap_note(struct elf_note *en) { } 2773 #endif /* BSWAP_NEEDED */ 2774 2775 /* 2776 * Minimal support for linux memory regions. These are needed 2777 * when we are finding out what memory exactly belongs to 2778 * emulated process. No locks needed here, as long as 2779 * thread that received the signal is stopped. 2780 */ 2781 2782 static struct mm_struct *vma_init(void) 2783 { 2784 struct mm_struct *mm; 2785 2786 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2787 return (NULL); 2788 2789 mm->mm_count = 0; 2790 QTAILQ_INIT(&mm->mm_mmap); 2791 2792 return (mm); 2793 } 2794 2795 static void vma_delete(struct mm_struct *mm) 2796 { 2797 struct vm_area_struct *vma; 2798 2799 while ((vma = vma_first(mm)) != NULL) { 2800 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2801 g_free(vma); 2802 } 2803 g_free(mm); 2804 } 2805 2806 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2807 target_ulong end, abi_ulong flags) 2808 { 2809 struct vm_area_struct *vma; 2810 2811 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2812 return (-1); 2813 2814 vma->vma_start = start; 2815 vma->vma_end = end; 2816 vma->vma_flags = flags; 2817 2818 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2819 mm->mm_count++; 2820 2821 return (0); 2822 } 2823 2824 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2825 { 2826 return (QTAILQ_FIRST(&mm->mm_mmap)); 2827 } 2828 2829 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2830 { 2831 return (QTAILQ_NEXT(vma, vma_link)); 2832 } 2833 2834 static int vma_get_mapping_count(const struct mm_struct *mm) 2835 { 2836 return (mm->mm_count); 2837 } 2838 2839 /* 2840 * Calculate file (dump) size of given memory region. 2841 */ 2842 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2843 { 2844 /* if we cannot even read the first page, skip it */ 2845 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2846 return (0); 2847 2848 /* 2849 * Usually we don't dump executable pages as they contain 2850 * non-writable code that debugger can read directly from 2851 * target library etc. However, thread stacks are marked 2852 * also executable so we read in first page of given region 2853 * and check whether it contains elf header. If there is 2854 * no elf header, we dump it. 2855 */ 2856 if (vma->vma_flags & PROT_EXEC) { 2857 char page[TARGET_PAGE_SIZE]; 2858 2859 copy_from_user(page, vma->vma_start, sizeof (page)); 2860 if ((page[EI_MAG0] == ELFMAG0) && 2861 (page[EI_MAG1] == ELFMAG1) && 2862 (page[EI_MAG2] == ELFMAG2) && 2863 (page[EI_MAG3] == ELFMAG3)) { 2864 /* 2865 * Mappings are possibly from ELF binary. Don't dump 2866 * them. 2867 */ 2868 return (0); 2869 } 2870 } 2871 2872 return (vma->vma_end - vma->vma_start); 2873 } 2874 2875 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2876 unsigned long flags) 2877 { 2878 struct mm_struct *mm = (struct mm_struct *)priv; 2879 2880 vma_add_mapping(mm, start, end, flags); 2881 return (0); 2882 } 2883 2884 static void fill_note(struct memelfnote *note, const char *name, int type, 2885 unsigned int sz, void *data) 2886 { 2887 unsigned int namesz; 2888 2889 namesz = strlen(name) + 1; 2890 note->name = name; 2891 note->namesz = namesz; 2892 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2893 note->type = type; 2894 note->datasz = sz; 2895 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2896 2897 note->data = data; 2898 2899 /* 2900 * We calculate rounded up note size here as specified by 2901 * ELF document. 2902 */ 2903 note->notesz = sizeof (struct elf_note) + 2904 note->namesz_rounded + note->datasz_rounded; 2905 } 2906 2907 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2908 uint32_t flags) 2909 { 2910 (void) memset(elf, 0, sizeof(*elf)); 2911 2912 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2913 elf->e_ident[EI_CLASS] = ELF_CLASS; 2914 elf->e_ident[EI_DATA] = ELF_DATA; 2915 elf->e_ident[EI_VERSION] = EV_CURRENT; 2916 elf->e_ident[EI_OSABI] = ELF_OSABI; 2917 2918 elf->e_type = ET_CORE; 2919 elf->e_machine = machine; 2920 elf->e_version = EV_CURRENT; 2921 elf->e_phoff = sizeof(struct elfhdr); 2922 elf->e_flags = flags; 2923 elf->e_ehsize = sizeof(struct elfhdr); 2924 elf->e_phentsize = sizeof(struct elf_phdr); 2925 elf->e_phnum = segs; 2926 2927 bswap_ehdr(elf); 2928 } 2929 2930 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2931 { 2932 phdr->p_type = PT_NOTE; 2933 phdr->p_offset = offset; 2934 phdr->p_vaddr = 0; 2935 phdr->p_paddr = 0; 2936 phdr->p_filesz = sz; 2937 phdr->p_memsz = 0; 2938 phdr->p_flags = 0; 2939 phdr->p_align = 0; 2940 2941 bswap_phdr(phdr, 1); 2942 } 2943 2944 static size_t note_size(const struct memelfnote *note) 2945 { 2946 return (note->notesz); 2947 } 2948 2949 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2950 const TaskState *ts, int signr) 2951 { 2952 (void) memset(prstatus, 0, sizeof (*prstatus)); 2953 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2954 prstatus->pr_pid = ts->ts_tid; 2955 prstatus->pr_ppid = getppid(); 2956 prstatus->pr_pgrp = getpgrp(); 2957 prstatus->pr_sid = getsid(0); 2958 2959 bswap_prstatus(prstatus); 2960 } 2961 2962 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2963 { 2964 char *base_filename; 2965 unsigned int i, len; 2966 2967 (void) memset(psinfo, 0, sizeof (*psinfo)); 2968 2969 len = ts->info->arg_end - ts->info->arg_start; 2970 if (len >= ELF_PRARGSZ) 2971 len = ELF_PRARGSZ - 1; 2972 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2973 return -EFAULT; 2974 for (i = 0; i < len; i++) 2975 if (psinfo->pr_psargs[i] == 0) 2976 psinfo->pr_psargs[i] = ' '; 2977 psinfo->pr_psargs[len] = 0; 2978 2979 psinfo->pr_pid = getpid(); 2980 psinfo->pr_ppid = getppid(); 2981 psinfo->pr_pgrp = getpgrp(); 2982 psinfo->pr_sid = getsid(0); 2983 psinfo->pr_uid = getuid(); 2984 psinfo->pr_gid = getgid(); 2985 2986 base_filename = g_path_get_basename(ts->bprm->filename); 2987 /* 2988 * Using strncpy here is fine: at max-length, 2989 * this field is not NUL-terminated. 2990 */ 2991 (void) strncpy(psinfo->pr_fname, base_filename, 2992 sizeof(psinfo->pr_fname)); 2993 2994 g_free(base_filename); 2995 bswap_psinfo(psinfo); 2996 return (0); 2997 } 2998 2999 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3000 { 3001 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3002 elf_addr_t orig_auxv = auxv; 3003 void *ptr; 3004 int len = ts->info->auxv_len; 3005 3006 /* 3007 * Auxiliary vector is stored in target process stack. It contains 3008 * {type, value} pairs that we need to dump into note. This is not 3009 * strictly necessary but we do it here for sake of completeness. 3010 */ 3011 3012 /* read in whole auxv vector and copy it to memelfnote */ 3013 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3014 if (ptr != NULL) { 3015 fill_note(note, "CORE", NT_AUXV, len, ptr); 3016 unlock_user(ptr, auxv, len); 3017 } 3018 } 3019 3020 /* 3021 * Constructs name of coredump file. We have following convention 3022 * for the name: 3023 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3024 * 3025 * Returns 0 in case of success, -1 otherwise (errno is set). 3026 */ 3027 static int core_dump_filename(const TaskState *ts, char *buf, 3028 size_t bufsize) 3029 { 3030 char timestamp[64]; 3031 char *base_filename = NULL; 3032 struct timeval tv; 3033 struct tm tm; 3034 3035 assert(bufsize >= PATH_MAX); 3036 3037 if (gettimeofday(&tv, NULL) < 0) { 3038 (void) fprintf(stderr, "unable to get current timestamp: %s", 3039 strerror(errno)); 3040 return (-1); 3041 } 3042 3043 base_filename = g_path_get_basename(ts->bprm->filename); 3044 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3045 localtime_r(&tv.tv_sec, &tm)); 3046 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3047 base_filename, timestamp, (int)getpid()); 3048 g_free(base_filename); 3049 3050 return (0); 3051 } 3052 3053 static int dump_write(int fd, const void *ptr, size_t size) 3054 { 3055 const char *bufp = (const char *)ptr; 3056 ssize_t bytes_written, bytes_left; 3057 struct rlimit dumpsize; 3058 off_t pos; 3059 3060 bytes_written = 0; 3061 getrlimit(RLIMIT_CORE, &dumpsize); 3062 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3063 if (errno == ESPIPE) { /* not a seekable stream */ 3064 bytes_left = size; 3065 } else { 3066 return pos; 3067 } 3068 } else { 3069 if (dumpsize.rlim_cur <= pos) { 3070 return -1; 3071 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3072 bytes_left = size; 3073 } else { 3074 size_t limit_left=dumpsize.rlim_cur - pos; 3075 bytes_left = limit_left >= size ? size : limit_left ; 3076 } 3077 } 3078 3079 /* 3080 * In normal conditions, single write(2) should do but 3081 * in case of socket etc. this mechanism is more portable. 3082 */ 3083 do { 3084 bytes_written = write(fd, bufp, bytes_left); 3085 if (bytes_written < 0) { 3086 if (errno == EINTR) 3087 continue; 3088 return (-1); 3089 } else if (bytes_written == 0) { /* eof */ 3090 return (-1); 3091 } 3092 bufp += bytes_written; 3093 bytes_left -= bytes_written; 3094 } while (bytes_left > 0); 3095 3096 return (0); 3097 } 3098 3099 static int write_note(struct memelfnote *men, int fd) 3100 { 3101 struct elf_note en; 3102 3103 en.n_namesz = men->namesz; 3104 en.n_type = men->type; 3105 en.n_descsz = men->datasz; 3106 3107 bswap_note(&en); 3108 3109 if (dump_write(fd, &en, sizeof(en)) != 0) 3110 return (-1); 3111 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3112 return (-1); 3113 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3114 return (-1); 3115 3116 return (0); 3117 } 3118 3119 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3120 { 3121 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3122 TaskState *ts = (TaskState *)cpu->opaque; 3123 struct elf_thread_status *ets; 3124 3125 ets = g_malloc0(sizeof (*ets)); 3126 ets->num_notes = 1; /* only prstatus is dumped */ 3127 fill_prstatus(&ets->prstatus, ts, 0); 3128 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3129 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3130 &ets->prstatus); 3131 3132 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3133 3134 info->notes_size += note_size(&ets->notes[0]); 3135 } 3136 3137 static void init_note_info(struct elf_note_info *info) 3138 { 3139 /* Initialize the elf_note_info structure so that it is at 3140 * least safe to call free_note_info() on it. Must be 3141 * called before calling fill_note_info(). 3142 */ 3143 memset(info, 0, sizeof (*info)); 3144 QTAILQ_INIT(&info->thread_list); 3145 } 3146 3147 static int fill_note_info(struct elf_note_info *info, 3148 long signr, const CPUArchState *env) 3149 { 3150 #define NUMNOTES 3 3151 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3152 TaskState *ts = (TaskState *)cpu->opaque; 3153 int i; 3154 3155 info->notes = g_new0(struct memelfnote, NUMNOTES); 3156 if (info->notes == NULL) 3157 return (-ENOMEM); 3158 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3159 if (info->prstatus == NULL) 3160 return (-ENOMEM); 3161 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3162 if (info->prstatus == NULL) 3163 return (-ENOMEM); 3164 3165 /* 3166 * First fill in status (and registers) of current thread 3167 * including process info & aux vector. 3168 */ 3169 fill_prstatus(info->prstatus, ts, signr); 3170 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3171 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3172 sizeof (*info->prstatus), info->prstatus); 3173 fill_psinfo(info->psinfo, ts); 3174 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3175 sizeof (*info->psinfo), info->psinfo); 3176 fill_auxv_note(&info->notes[2], ts); 3177 info->numnote = 3; 3178 3179 info->notes_size = 0; 3180 for (i = 0; i < info->numnote; i++) 3181 info->notes_size += note_size(&info->notes[i]); 3182 3183 /* read and fill status of all threads */ 3184 cpu_list_lock(); 3185 CPU_FOREACH(cpu) { 3186 if (cpu == thread_cpu) { 3187 continue; 3188 } 3189 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3190 } 3191 cpu_list_unlock(); 3192 3193 return (0); 3194 } 3195 3196 static void free_note_info(struct elf_note_info *info) 3197 { 3198 struct elf_thread_status *ets; 3199 3200 while (!QTAILQ_EMPTY(&info->thread_list)) { 3201 ets = QTAILQ_FIRST(&info->thread_list); 3202 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3203 g_free(ets); 3204 } 3205 3206 g_free(info->prstatus); 3207 g_free(info->psinfo); 3208 g_free(info->notes); 3209 } 3210 3211 static int write_note_info(struct elf_note_info *info, int fd) 3212 { 3213 struct elf_thread_status *ets; 3214 int i, error = 0; 3215 3216 /* write prstatus, psinfo and auxv for current thread */ 3217 for (i = 0; i < info->numnote; i++) 3218 if ((error = write_note(&info->notes[i], fd)) != 0) 3219 return (error); 3220 3221 /* write prstatus for each thread */ 3222 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3223 if ((error = write_note(&ets->notes[0], fd)) != 0) 3224 return (error); 3225 } 3226 3227 return (0); 3228 } 3229 3230 /* 3231 * Write out ELF coredump. 3232 * 3233 * See documentation of ELF object file format in: 3234 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3235 * 3236 * Coredump format in linux is following: 3237 * 3238 * 0 +----------------------+ \ 3239 * | ELF header | ET_CORE | 3240 * +----------------------+ | 3241 * | ELF program headers | |--- headers 3242 * | - NOTE section | | 3243 * | - PT_LOAD sections | | 3244 * +----------------------+ / 3245 * | NOTEs: | 3246 * | - NT_PRSTATUS | 3247 * | - NT_PRSINFO | 3248 * | - NT_AUXV | 3249 * +----------------------+ <-- aligned to target page 3250 * | Process memory dump | 3251 * : : 3252 * . . 3253 * : : 3254 * | | 3255 * +----------------------+ 3256 * 3257 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3258 * NT_PRSINFO -> struct elf_prpsinfo 3259 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3260 * 3261 * Format follows System V format as close as possible. Current 3262 * version limitations are as follows: 3263 * - no floating point registers are dumped 3264 * 3265 * Function returns 0 in case of success, negative errno otherwise. 3266 * 3267 * TODO: make this work also during runtime: it should be 3268 * possible to force coredump from running process and then 3269 * continue processing. For example qemu could set up SIGUSR2 3270 * handler (provided that target process haven't registered 3271 * handler for that) that does the dump when signal is received. 3272 */ 3273 static int elf_core_dump(int signr, const CPUArchState *env) 3274 { 3275 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3276 const TaskState *ts = (const TaskState *)cpu->opaque; 3277 struct vm_area_struct *vma = NULL; 3278 char corefile[PATH_MAX]; 3279 struct elf_note_info info; 3280 struct elfhdr elf; 3281 struct elf_phdr phdr; 3282 struct rlimit dumpsize; 3283 struct mm_struct *mm = NULL; 3284 off_t offset = 0, data_offset = 0; 3285 int segs = 0; 3286 int fd = -1; 3287 3288 init_note_info(&info); 3289 3290 errno = 0; 3291 getrlimit(RLIMIT_CORE, &dumpsize); 3292 if (dumpsize.rlim_cur == 0) 3293 return 0; 3294 3295 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3296 return (-errno); 3297 3298 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3299 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3300 return (-errno); 3301 3302 /* 3303 * Walk through target process memory mappings and 3304 * set up structure containing this information. After 3305 * this point vma_xxx functions can be used. 3306 */ 3307 if ((mm = vma_init()) == NULL) 3308 goto out; 3309 3310 walk_memory_regions(mm, vma_walker); 3311 segs = vma_get_mapping_count(mm); 3312 3313 /* 3314 * Construct valid coredump ELF header. We also 3315 * add one more segment for notes. 3316 */ 3317 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3318 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3319 goto out; 3320 3321 /* fill in the in-memory version of notes */ 3322 if (fill_note_info(&info, signr, env) < 0) 3323 goto out; 3324 3325 offset += sizeof (elf); /* elf header */ 3326 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3327 3328 /* write out notes program header */ 3329 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3330 3331 offset += info.notes_size; 3332 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3333 goto out; 3334 3335 /* 3336 * ELF specification wants data to start at page boundary so 3337 * we align it here. 3338 */ 3339 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3340 3341 /* 3342 * Write program headers for memory regions mapped in 3343 * the target process. 3344 */ 3345 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3346 (void) memset(&phdr, 0, sizeof (phdr)); 3347 3348 phdr.p_type = PT_LOAD; 3349 phdr.p_offset = offset; 3350 phdr.p_vaddr = vma->vma_start; 3351 phdr.p_paddr = 0; 3352 phdr.p_filesz = vma_dump_size(vma); 3353 offset += phdr.p_filesz; 3354 phdr.p_memsz = vma->vma_end - vma->vma_start; 3355 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3356 if (vma->vma_flags & PROT_WRITE) 3357 phdr.p_flags |= PF_W; 3358 if (vma->vma_flags & PROT_EXEC) 3359 phdr.p_flags |= PF_X; 3360 phdr.p_align = ELF_EXEC_PAGESIZE; 3361 3362 bswap_phdr(&phdr, 1); 3363 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3364 goto out; 3365 } 3366 } 3367 3368 /* 3369 * Next we write notes just after program headers. No 3370 * alignment needed here. 3371 */ 3372 if (write_note_info(&info, fd) < 0) 3373 goto out; 3374 3375 /* align data to page boundary */ 3376 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3377 goto out; 3378 3379 /* 3380 * Finally we can dump process memory into corefile as well. 3381 */ 3382 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3383 abi_ulong addr; 3384 abi_ulong end; 3385 3386 end = vma->vma_start + vma_dump_size(vma); 3387 3388 for (addr = vma->vma_start; addr < end; 3389 addr += TARGET_PAGE_SIZE) { 3390 char page[TARGET_PAGE_SIZE]; 3391 int error; 3392 3393 /* 3394 * Read in page from target process memory and 3395 * write it to coredump file. 3396 */ 3397 error = copy_from_user(page, addr, sizeof (page)); 3398 if (error != 0) { 3399 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3400 addr); 3401 errno = -error; 3402 goto out; 3403 } 3404 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3405 goto out; 3406 } 3407 } 3408 3409 out: 3410 free_note_info(&info); 3411 if (mm != NULL) 3412 vma_delete(mm); 3413 (void) close(fd); 3414 3415 if (errno != 0) 3416 return (-errno); 3417 return (0); 3418 } 3419 #endif /* USE_ELF_CORE_DUMP */ 3420 3421 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3422 { 3423 init_thread(regs, infop); 3424 } 3425