xref: /openbmc/qemu/linux-user/elfload.c (revision c11b0583)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
4 
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
15 
16 #include "qemu.h"
17 #include "disas/disas.h"
18 
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_HWCAP2
24 #undef ELF_CLASS
25 #undef ELF_DATA
26 #undef ELF_ARCH
27 #endif
28 
29 #define ELF_OSABI   ELFOSABI_SYSV
30 
31 /* from personality.h */
32 
33 /*
34  * Flags for bug emulation.
35  *
36  * These occupy the top three bytes.
37  */
38 enum {
39     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
40     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
41                                            descriptors (signal handling) */
42     MMAP_PAGE_ZERO =    0x0100000,
43     ADDR_COMPAT_LAYOUT = 0x0200000,
44     READ_IMPLIES_EXEC = 0x0400000,
45     ADDR_LIMIT_32BIT =  0x0800000,
46     SHORT_INODE =       0x1000000,
47     WHOLE_SECONDS =     0x2000000,
48     STICKY_TIMEOUTS =   0x4000000,
49     ADDR_LIMIT_3GB =    0x8000000,
50 };
51 
52 /*
53  * Personality types.
54  *
55  * These go in the low byte.  Avoid using the top bit, it will
56  * conflict with error returns.
57  */
58 enum {
59     PER_LINUX =         0x0000,
60     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
61     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
62     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
63     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
65     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
66     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
67     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
68     PER_BSD =           0x0006,
69     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
70     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_LINUX32 =       0x0008,
72     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
73     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
74     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
75     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
76     PER_RISCOS =        0x000c,
77     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
78     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
79     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
80     PER_HPUX =          0x0010,
81     PER_MASK =          0x00ff,
82 };
83 
84 /*
85  * Return the base personality without flags.
86  */
87 #define personality(pers)       (pers & PER_MASK)
88 
89 /* this flag is uneffective under linux too, should be deleted */
90 #ifndef MAP_DENYWRITE
91 #define MAP_DENYWRITE 0
92 #endif
93 
94 /* should probably go in elf.h */
95 #ifndef ELIBBAD
96 #define ELIBBAD 80
97 #endif
98 
99 #ifdef TARGET_WORDS_BIGENDIAN
100 #define ELF_DATA        ELFDATA2MSB
101 #else
102 #define ELF_DATA        ELFDATA2LSB
103 #endif
104 
105 #ifdef TARGET_ABI_MIPSN32
106 typedef abi_ullong      target_elf_greg_t;
107 #define tswapreg(ptr)   tswap64(ptr)
108 #else
109 typedef abi_ulong       target_elf_greg_t;
110 #define tswapreg(ptr)   tswapal(ptr)
111 #endif
112 
113 #ifdef USE_UID16
114 typedef abi_ushort      target_uid_t;
115 typedef abi_ushort      target_gid_t;
116 #else
117 typedef abi_uint        target_uid_t;
118 typedef abi_uint        target_gid_t;
119 #endif
120 typedef abi_int         target_pid_t;
121 
122 #ifdef TARGET_I386
123 
124 #define ELF_PLATFORM get_elf_platform()
125 
126 static const char *get_elf_platform(void)
127 {
128     static char elf_platform[] = "i386";
129     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
130     if (family > 6)
131         family = 6;
132     if (family >= 3)
133         elf_platform[1] = '0' + family;
134     return elf_platform;
135 }
136 
137 #define ELF_HWCAP get_elf_hwcap()
138 
139 static uint32_t get_elf_hwcap(void)
140 {
141     X86CPU *cpu = X86_CPU(thread_cpu);
142 
143     return cpu->env.features[FEAT_1_EDX];
144 }
145 
146 #ifdef TARGET_X86_64
147 #define ELF_START_MMAP 0x2aaaaab000ULL
148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
149 
150 #define ELF_CLASS      ELFCLASS64
151 #define ELF_ARCH       EM_X86_64
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = env->regs[15];
173     (*regs)[1] = env->regs[14];
174     (*regs)[2] = env->regs[13];
175     (*regs)[3] = env->regs[12];
176     (*regs)[4] = env->regs[R_EBP];
177     (*regs)[5] = env->regs[R_EBX];
178     (*regs)[6] = env->regs[11];
179     (*regs)[7] = env->regs[10];
180     (*regs)[8] = env->regs[9];
181     (*regs)[9] = env->regs[8];
182     (*regs)[10] = env->regs[R_EAX];
183     (*regs)[11] = env->regs[R_ECX];
184     (*regs)[12] = env->regs[R_EDX];
185     (*regs)[13] = env->regs[R_ESI];
186     (*regs)[14] = env->regs[R_EDI];
187     (*regs)[15] = env->regs[R_EAX]; /* XXX */
188     (*regs)[16] = env->eip;
189     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
190     (*regs)[18] = env->eflags;
191     (*regs)[19] = env->regs[R_ESP];
192     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
193     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
195     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
196     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
197     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
198     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
199 }
200 
201 #else
202 
203 #define ELF_START_MMAP 0x80000000
204 
205 /*
206  * This is used to ensure we don't load something for the wrong architecture.
207  */
208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
209 
210 /*
211  * These are used to set parameters in the core dumps.
212  */
213 #define ELF_CLASS       ELFCLASS32
214 #define ELF_ARCH        EM_386
215 
216 static inline void init_thread(struct target_pt_regs *regs,
217                                struct image_info *infop)
218 {
219     regs->esp = infop->start_stack;
220     regs->eip = infop->entry;
221 
222     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
223        starts %edx contains a pointer to a function which might be
224        registered using `atexit'.  This provides a mean for the
225        dynamic linker to call DT_FINI functions for shared libraries
226        that have been loaded before the code runs.
227 
228        A value of 0 tells we have no such handler.  */
229     regs->edx = 0;
230 }
231 
232 #define ELF_NREG    17
233 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
234 
235 /*
236  * Note that ELF_NREG should be 19 as there should be place for
237  * TRAPNO and ERR "registers" as well but linux doesn't dump
238  * those.
239  *
240  * See linux kernel: arch/x86/include/asm/elf.h
241  */
242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
243 {
244     (*regs)[0] = env->regs[R_EBX];
245     (*regs)[1] = env->regs[R_ECX];
246     (*regs)[2] = env->regs[R_EDX];
247     (*regs)[3] = env->regs[R_ESI];
248     (*regs)[4] = env->regs[R_EDI];
249     (*regs)[5] = env->regs[R_EBP];
250     (*regs)[6] = env->regs[R_EAX];
251     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
252     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
253     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
254     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
255     (*regs)[11] = env->regs[R_EAX]; /* XXX */
256     (*regs)[12] = env->eip;
257     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
258     (*regs)[14] = env->eflags;
259     (*regs)[15] = env->regs[R_ESP];
260     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
261 }
262 #endif
263 
264 #define USE_ELF_CORE_DUMP
265 #define ELF_EXEC_PAGESIZE       4096
266 
267 #endif
268 
269 #ifdef TARGET_ARM
270 
271 #ifndef TARGET_AARCH64
272 /* 32 bit ARM definitions */
273 
274 #define ELF_START_MMAP 0x80000000
275 
276 #define elf_check_arch(x) ((x) == ELF_MACHINE)
277 
278 #define ELF_ARCH        ELF_MACHINE
279 #define ELF_CLASS       ELFCLASS32
280 
281 static inline void init_thread(struct target_pt_regs *regs,
282                                struct image_info *infop)
283 {
284     abi_long stack = infop->start_stack;
285     memset(regs, 0, sizeof(*regs));
286 
287     regs->ARM_cpsr = 0x10;
288     if (infop->entry & 1)
289         regs->ARM_cpsr |= CPSR_T;
290     regs->ARM_pc = infop->entry & 0xfffffffe;
291     regs->ARM_sp = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->ARM_r2, stack + 8); /* envp */
294     get_user_ual(regs->ARM_r1, stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->ARM_r0 = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->ARM_r10 = infop->start_data;
300 }
301 
302 #define ELF_NREG    18
303 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
304 
305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
306 {
307     (*regs)[0] = tswapreg(env->regs[0]);
308     (*regs)[1] = tswapreg(env->regs[1]);
309     (*regs)[2] = tswapreg(env->regs[2]);
310     (*regs)[3] = tswapreg(env->regs[3]);
311     (*regs)[4] = tswapreg(env->regs[4]);
312     (*regs)[5] = tswapreg(env->regs[5]);
313     (*regs)[6] = tswapreg(env->regs[6]);
314     (*regs)[7] = tswapreg(env->regs[7]);
315     (*regs)[8] = tswapreg(env->regs[8]);
316     (*regs)[9] = tswapreg(env->regs[9]);
317     (*regs)[10] = tswapreg(env->regs[10]);
318     (*regs)[11] = tswapreg(env->regs[11]);
319     (*regs)[12] = tswapreg(env->regs[12]);
320     (*regs)[13] = tswapreg(env->regs[13]);
321     (*regs)[14] = tswapreg(env->regs[14]);
322     (*regs)[15] = tswapreg(env->regs[15]);
323 
324     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
325     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
326 }
327 
328 #define USE_ELF_CORE_DUMP
329 #define ELF_EXEC_PAGESIZE       4096
330 
331 enum
332 {
333     ARM_HWCAP_ARM_SWP       = 1 << 0,
334     ARM_HWCAP_ARM_HALF      = 1 << 1,
335     ARM_HWCAP_ARM_THUMB     = 1 << 2,
336     ARM_HWCAP_ARM_26BIT     = 1 << 3,
337     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
338     ARM_HWCAP_ARM_FPA       = 1 << 5,
339     ARM_HWCAP_ARM_VFP       = 1 << 6,
340     ARM_HWCAP_ARM_EDSP      = 1 << 7,
341     ARM_HWCAP_ARM_JAVA      = 1 << 8,
342     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
343     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
344     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
345     ARM_HWCAP_ARM_NEON      = 1 << 12,
346     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
347     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
348     ARM_HWCAP_ARM_TLS       = 1 << 15,
349     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
350     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
351     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
352     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
353     ARM_HWCAP_ARM_LPAE      = 1 << 20,
354     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
355 };
356 
357 enum {
358     ARM_HWCAP2_ARM_AES      = 1 << 0,
359     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
360     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
361     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
362     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
363 };
364 
365 /* The commpage only exists for 32 bit kernels */
366 
367 #define TARGET_HAS_VALIDATE_GUEST_SPACE
368 /* Return 1 if the proposed guest space is suitable for the guest.
369  * Return 0 if the proposed guest space isn't suitable, but another
370  * address space should be tried.
371  * Return -1 if there is no way the proposed guest space can be
372  * valid regardless of the base.
373  * The guest code may leave a page mapped and populate it if the
374  * address is suitable.
375  */
376 static int validate_guest_space(unsigned long guest_base,
377                                 unsigned long guest_size)
378 {
379     unsigned long real_start, test_page_addr;
380 
381     /* We need to check that we can force a fault on access to the
382      * commpage at 0xffff0fxx
383      */
384     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
385 
386     /* If the commpage lies within the already allocated guest space,
387      * then there is no way we can allocate it.
388      */
389     if (test_page_addr >= guest_base
390         && test_page_addr <= (guest_base + guest_size)) {
391         return -1;
392     }
393 
394     /* Note it needs to be writeable to let us initialise it */
395     real_start = (unsigned long)
396                  mmap((void *)test_page_addr, qemu_host_page_size,
397                      PROT_READ | PROT_WRITE,
398                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
399 
400     /* If we can't map it then try another address */
401     if (real_start == -1ul) {
402         return 0;
403     }
404 
405     if (real_start != test_page_addr) {
406         /* OS didn't put the page where we asked - unmap and reject */
407         munmap((void *)real_start, qemu_host_page_size);
408         return 0;
409     }
410 
411     /* Leave the page mapped
412      * Populate it (mmap should have left it all 0'd)
413      */
414 
415     /* Kernel helper versions */
416     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
417 
418     /* Now it's populated make it RO */
419     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
420         perror("Protecting guest commpage");
421         exit(-1);
422     }
423 
424     return 1; /* All good */
425 }
426 
427 #define ELF_HWCAP get_elf_hwcap()
428 #define ELF_HWCAP2 get_elf_hwcap2()
429 
430 static uint32_t get_elf_hwcap(void)
431 {
432     ARMCPU *cpu = ARM_CPU(thread_cpu);
433     uint32_t hwcaps = 0;
434 
435     hwcaps |= ARM_HWCAP_ARM_SWP;
436     hwcaps |= ARM_HWCAP_ARM_HALF;
437     hwcaps |= ARM_HWCAP_ARM_THUMB;
438     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
439 
440     /* probe for the extra features */
441 #define GET_FEATURE(feat, hwcap) \
442     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
443     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
444     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
445     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
446     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
447     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
448     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
450     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
451     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
452     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
453     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
454     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
455      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
456      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
457      * to our VFP_FP16 feature bit.
458      */
459     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
460     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
461 
462     return hwcaps;
463 }
464 
465 static uint32_t get_elf_hwcap2(void)
466 {
467     ARMCPU *cpu = ARM_CPU(thread_cpu);
468     uint32_t hwcaps = 0;
469 
470     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
471     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
472     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
473     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
474     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
475     return hwcaps;
476 }
477 
478 #undef GET_FEATURE
479 
480 #else
481 /* 64 bit ARM definitions */
482 #define ELF_START_MMAP 0x80000000
483 
484 #define elf_check_arch(x) ((x) == ELF_MACHINE)
485 
486 #define ELF_ARCH        ELF_MACHINE
487 #define ELF_CLASS       ELFCLASS64
488 #define ELF_PLATFORM    "aarch64"
489 
490 static inline void init_thread(struct target_pt_regs *regs,
491                                struct image_info *infop)
492 {
493     abi_long stack = infop->start_stack;
494     memset(regs, 0, sizeof(*regs));
495 
496     regs->pc = infop->entry & ~0x3ULL;
497     regs->sp = stack;
498 }
499 
500 #define ELF_NREG    34
501 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
502 
503 static void elf_core_copy_regs(target_elf_gregset_t *regs,
504                                const CPUARMState *env)
505 {
506     int i;
507 
508     for (i = 0; i < 32; i++) {
509         (*regs)[i] = tswapreg(env->xregs[i]);
510     }
511     (*regs)[32] = tswapreg(env->pc);
512     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
513 }
514 
515 #define USE_ELF_CORE_DUMP
516 #define ELF_EXEC_PAGESIZE       4096
517 
518 enum {
519     ARM_HWCAP_A64_FP            = 1 << 0,
520     ARM_HWCAP_A64_ASIMD         = 1 << 1,
521     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
522     ARM_HWCAP_A64_AES           = 1 << 3,
523     ARM_HWCAP_A64_PMULL         = 1 << 4,
524     ARM_HWCAP_A64_SHA1          = 1 << 5,
525     ARM_HWCAP_A64_SHA2          = 1 << 6,
526     ARM_HWCAP_A64_CRC32         = 1 << 7,
527 };
528 
529 #define ELF_HWCAP get_elf_hwcap()
530 
531 static uint32_t get_elf_hwcap(void)
532 {
533     ARMCPU *cpu = ARM_CPU(thread_cpu);
534     uint32_t hwcaps = 0;
535 
536     hwcaps |= ARM_HWCAP_A64_FP;
537     hwcaps |= ARM_HWCAP_A64_ASIMD;
538 
539     /* probe for the extra features */
540 #define GET_FEATURE(feat, hwcap) \
541     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
542     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
543     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
544     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
545     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
546     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
547 #undef GET_FEATURE
548 
549     return hwcaps;
550 }
551 
552 #endif /* not TARGET_AARCH64 */
553 #endif /* TARGET_ARM */
554 
555 #ifdef TARGET_UNICORE32
556 
557 #define ELF_START_MMAP          0x80000000
558 
559 #define elf_check_arch(x)       ((x) == EM_UNICORE32)
560 
561 #define ELF_CLASS               ELFCLASS32
562 #define ELF_DATA                ELFDATA2LSB
563 #define ELF_ARCH                EM_UNICORE32
564 
565 static inline void init_thread(struct target_pt_regs *regs,
566         struct image_info *infop)
567 {
568     abi_long stack = infop->start_stack;
569     memset(regs, 0, sizeof(*regs));
570     regs->UC32_REG_asr = 0x10;
571     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
572     regs->UC32_REG_sp = infop->start_stack;
573     /* FIXME - what to for failure of get_user()? */
574     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
575     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
576     /* XXX: it seems that r0 is zeroed after ! */
577     regs->UC32_REG_00 = 0;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
584 {
585     (*regs)[0] = env->regs[0];
586     (*regs)[1] = env->regs[1];
587     (*regs)[2] = env->regs[2];
588     (*regs)[3] = env->regs[3];
589     (*regs)[4] = env->regs[4];
590     (*regs)[5] = env->regs[5];
591     (*regs)[6] = env->regs[6];
592     (*regs)[7] = env->regs[7];
593     (*regs)[8] = env->regs[8];
594     (*regs)[9] = env->regs[9];
595     (*regs)[10] = env->regs[10];
596     (*regs)[11] = env->regs[11];
597     (*regs)[12] = env->regs[12];
598     (*regs)[13] = env->regs[13];
599     (*regs)[14] = env->regs[14];
600     (*regs)[15] = env->regs[15];
601     (*regs)[16] = env->regs[16];
602     (*regs)[17] = env->regs[17];
603     (*regs)[18] = env->regs[18];
604     (*regs)[19] = env->regs[19];
605     (*regs)[20] = env->regs[20];
606     (*regs)[21] = env->regs[21];
607     (*regs)[22] = env->regs[22];
608     (*regs)[23] = env->regs[23];
609     (*regs)[24] = env->regs[24];
610     (*regs)[25] = env->regs[25];
611     (*regs)[26] = env->regs[26];
612     (*regs)[27] = env->regs[27];
613     (*regs)[28] = env->regs[28];
614     (*regs)[29] = env->regs[29];
615     (*regs)[30] = env->regs[30];
616     (*regs)[31] = env->regs[31];
617 
618     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
619     (*regs)[33] = env->regs[0]; /* XXX */
620 }
621 
622 #define USE_ELF_CORE_DUMP
623 #define ELF_EXEC_PAGESIZE               4096
624 
625 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
626 
627 #endif
628 
629 #ifdef TARGET_SPARC
630 #ifdef TARGET_SPARC64
631 
632 #define ELF_START_MMAP 0x80000000
633 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
634                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
635 #ifndef TARGET_ABI32
636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
637 #else
638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
639 #endif
640 
641 #define ELF_CLASS   ELFCLASS64
642 #define ELF_ARCH    EM_SPARCV9
643 
644 #define STACK_BIAS              2047
645 
646 static inline void init_thread(struct target_pt_regs *regs,
647                                struct image_info *infop)
648 {
649 #ifndef TARGET_ABI32
650     regs->tstate = 0;
651 #endif
652     regs->pc = infop->entry;
653     regs->npc = regs->pc + 4;
654     regs->y = 0;
655 #ifdef TARGET_ABI32
656     regs->u_regs[14] = infop->start_stack - 16 * 4;
657 #else
658     if (personality(infop->personality) == PER_LINUX32)
659         regs->u_regs[14] = infop->start_stack - 16 * 4;
660     else
661         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
662 #endif
663 }
664 
665 #else
666 #define ELF_START_MMAP 0x80000000
667 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
668                     | HWCAP_SPARC_MULDIV)
669 #define elf_check_arch(x) ( (x) == EM_SPARC )
670 
671 #define ELF_CLASS   ELFCLASS32
672 #define ELF_ARCH    EM_SPARC
673 
674 static inline void init_thread(struct target_pt_regs *regs,
675                                struct image_info *infop)
676 {
677     regs->psr = 0;
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681     regs->u_regs[14] = infop->start_stack - 16 * 4;
682 }
683 
684 #endif
685 #endif
686 
687 #ifdef TARGET_PPC
688 
689 #define ELF_START_MMAP 0x80000000
690 
691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
692 
693 #define elf_check_arch(x) ( (x) == EM_PPC64 )
694 
695 #define ELF_CLASS       ELFCLASS64
696 
697 #else
698 
699 #define elf_check_arch(x) ( (x) == EM_PPC )
700 
701 #define ELF_CLASS       ELFCLASS32
702 
703 #endif
704 
705 #define ELF_ARCH        EM_PPC
706 
707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
708    See arch/powerpc/include/asm/cputable.h.  */
709 enum {
710     QEMU_PPC_FEATURE_32 = 0x80000000,
711     QEMU_PPC_FEATURE_64 = 0x40000000,
712     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
713     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
714     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
715     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
716     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
717     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
718     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
719     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
720     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
721     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
722     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
723     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
724     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
725     QEMU_PPC_FEATURE_CELL = 0x00010000,
726     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
727     QEMU_PPC_FEATURE_SMT = 0x00004000,
728     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
729     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
730     QEMU_PPC_FEATURE_PA6T = 0x00000800,
731     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
732     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
733     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
734     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
735     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
736 
737     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
738     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
739 
740     /* Feature definitions in AT_HWCAP2.  */
741     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
742     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
743     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
744     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
745     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
746     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
747 };
748 
749 #define ELF_HWCAP get_elf_hwcap()
750 
751 static uint32_t get_elf_hwcap(void)
752 {
753     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
754     uint32_t features = 0;
755 
756     /* We don't have to be terribly complete here; the high points are
757        Altivec/FP/SPE support.  Anything else is just a bonus.  */
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
763     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
764     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
765     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
766     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
767     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
768     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
769     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
770     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
771     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
772     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
773                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
774                   QEMU_PPC_FEATURE_ARCH_2_06);
775 #undef GET_FEATURE
776 #undef GET_FEATURE2
777 
778     return features;
779 }
780 
781 #define ELF_HWCAP2 get_elf_hwcap2()
782 
783 static uint32_t get_elf_hwcap2(void)
784 {
785     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
786     uint32_t features = 0;
787 
788 #define GET_FEATURE(flag, feature)                                      \
789     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
790 #define GET_FEATURE2(flag, feature)                                      \
791     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
792 
793     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
794     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
795     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
796                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
797 
798 #undef GET_FEATURE
799 #undef GET_FEATURE2
800 
801     return features;
802 }
803 
804 /*
805  * The requirements here are:
806  * - keep the final alignment of sp (sp & 0xf)
807  * - make sure the 32-bit value at the first 16 byte aligned position of
808  *   AUXV is greater than 16 for glibc compatibility.
809  *   AT_IGNOREPPC is used for that.
810  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
811  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
812  */
813 #define DLINFO_ARCH_ITEMS       5
814 #define ARCH_DLINFO                                     \
815     do {                                                \
816         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
817         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
818         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
819         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
820         /*                                              \
821          * Now handle glibc compatibility.              \
822          */                                             \
823         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
824         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
825     } while (0)
826 
827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
828 {
829     _regs->gpr[1] = infop->start_stack;
830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
831     if (get_ppc64_abi(infop) < 2) {
832         uint64_t val;
833         get_user_u64(val, infop->entry + 8);
834         _regs->gpr[2] = val + infop->load_bias;
835         get_user_u64(val, infop->entry);
836         infop->entry = val + infop->load_bias;
837     } else {
838         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
839     }
840 #endif
841     _regs->nip = infop->entry;
842 }
843 
844 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
845 #define ELF_NREG 48
846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
847 
848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
849 {
850     int i;
851     target_ulong ccr = 0;
852 
853     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
854         (*regs)[i] = tswapreg(env->gpr[i]);
855     }
856 
857     (*regs)[32] = tswapreg(env->nip);
858     (*regs)[33] = tswapreg(env->msr);
859     (*regs)[35] = tswapreg(env->ctr);
860     (*regs)[36] = tswapreg(env->lr);
861     (*regs)[37] = tswapreg(env->xer);
862 
863     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
864         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
865     }
866     (*regs)[38] = tswapreg(ccr);
867 }
868 
869 #define USE_ELF_CORE_DUMP
870 #define ELF_EXEC_PAGESIZE       4096
871 
872 #endif
873 
874 #ifdef TARGET_MIPS
875 
876 #define ELF_START_MMAP 0x80000000
877 
878 #define elf_check_arch(x) ( (x) == EM_MIPS )
879 
880 #ifdef TARGET_MIPS64
881 #define ELF_CLASS   ELFCLASS64
882 #else
883 #define ELF_CLASS   ELFCLASS32
884 #endif
885 #define ELF_ARCH    EM_MIPS
886 
887 static inline void init_thread(struct target_pt_regs *regs,
888                                struct image_info *infop)
889 {
890     regs->cp0_status = 2 << CP0St_KSU;
891     regs->cp0_epc = infop->entry;
892     regs->regs[29] = infop->start_stack;
893 }
894 
895 /* See linux kernel: arch/mips/include/asm/elf.h.  */
896 #define ELF_NREG 45
897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
898 
899 /* See linux kernel: arch/mips/include/asm/reg.h.  */
900 enum {
901 #ifdef TARGET_MIPS64
902     TARGET_EF_R0 = 0,
903 #else
904     TARGET_EF_R0 = 6,
905 #endif
906     TARGET_EF_R26 = TARGET_EF_R0 + 26,
907     TARGET_EF_R27 = TARGET_EF_R0 + 27,
908     TARGET_EF_LO = TARGET_EF_R0 + 32,
909     TARGET_EF_HI = TARGET_EF_R0 + 33,
910     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
911     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
912     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
913     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
914 };
915 
916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
918 {
919     int i;
920 
921     for (i = 0; i < TARGET_EF_R0; i++) {
922         (*regs)[i] = 0;
923     }
924     (*regs)[TARGET_EF_R0] = 0;
925 
926     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
927         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
928     }
929 
930     (*regs)[TARGET_EF_R26] = 0;
931     (*regs)[TARGET_EF_R27] = 0;
932     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
933     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
934     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
935     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
936     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
937     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
938 }
939 
940 #define USE_ELF_CORE_DUMP
941 #define ELF_EXEC_PAGESIZE        4096
942 
943 #endif /* TARGET_MIPS */
944 
945 #ifdef TARGET_MICROBLAZE
946 
947 #define ELF_START_MMAP 0x80000000
948 
949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
950 
951 #define ELF_CLASS   ELFCLASS32
952 #define ELF_ARCH    EM_MICROBLAZE
953 
954 static inline void init_thread(struct target_pt_regs *regs,
955                                struct image_info *infop)
956 {
957     regs->pc = infop->entry;
958     regs->r1 = infop->start_stack;
959 
960 }
961 
962 #define ELF_EXEC_PAGESIZE        4096
963 
964 #define USE_ELF_CORE_DUMP
965 #define ELF_NREG 38
966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
967 
968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
970 {
971     int i, pos = 0;
972 
973     for (i = 0; i < 32; i++) {
974         (*regs)[pos++] = tswapreg(env->regs[i]);
975     }
976 
977     for (i = 0; i < 6; i++) {
978         (*regs)[pos++] = tswapreg(env->sregs[i]);
979     }
980 }
981 
982 #endif /* TARGET_MICROBLAZE */
983 
984 #ifdef TARGET_OPENRISC
985 
986 #define ELF_START_MMAP 0x08000000
987 
988 #define elf_check_arch(x) ((x) == EM_OPENRISC)
989 
990 #define ELF_ARCH EM_OPENRISC
991 #define ELF_CLASS ELFCLASS32
992 #define ELF_DATA  ELFDATA2MSB
993 
994 static inline void init_thread(struct target_pt_regs *regs,
995                                struct image_info *infop)
996 {
997     regs->pc = infop->entry;
998     regs->gpr[1] = infop->start_stack;
999 }
1000 
1001 #define USE_ELF_CORE_DUMP
1002 #define ELF_EXEC_PAGESIZE 8192
1003 
1004 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1005 #define ELF_NREG 34 /* gprs and pc, sr */
1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1007 
1008 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1009                                const CPUOpenRISCState *env)
1010 {
1011     int i;
1012 
1013     for (i = 0; i < 32; i++) {
1014         (*regs)[i] = tswapreg(env->gpr[i]);
1015     }
1016 
1017     (*regs)[32] = tswapreg(env->pc);
1018     (*regs)[33] = tswapreg(env->sr);
1019 }
1020 #define ELF_HWCAP 0
1021 #define ELF_PLATFORM NULL
1022 
1023 #endif /* TARGET_OPENRISC */
1024 
1025 #ifdef TARGET_SH4
1026 
1027 #define ELF_START_MMAP 0x80000000
1028 
1029 #define elf_check_arch(x) ( (x) == EM_SH )
1030 
1031 #define ELF_CLASS ELFCLASS32
1032 #define ELF_ARCH  EM_SH
1033 
1034 static inline void init_thread(struct target_pt_regs *regs,
1035                                struct image_info *infop)
1036 {
1037     /* Check other registers XXXXX */
1038     regs->pc = infop->entry;
1039     regs->regs[15] = infop->start_stack;
1040 }
1041 
1042 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1043 #define ELF_NREG 23
1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1045 
1046 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1047 enum {
1048     TARGET_REG_PC = 16,
1049     TARGET_REG_PR = 17,
1050     TARGET_REG_SR = 18,
1051     TARGET_REG_GBR = 19,
1052     TARGET_REG_MACH = 20,
1053     TARGET_REG_MACL = 21,
1054     TARGET_REG_SYSCALL = 22
1055 };
1056 
1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1058                                       const CPUSH4State *env)
1059 {
1060     int i;
1061 
1062     for (i = 0; i < 16; i++) {
1063         (*regs[i]) = tswapreg(env->gregs[i]);
1064     }
1065 
1066     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1067     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1068     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1069     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1070     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1071     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1072     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1073 }
1074 
1075 #define USE_ELF_CORE_DUMP
1076 #define ELF_EXEC_PAGESIZE        4096
1077 
1078 enum {
1079     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1080     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1081     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1082     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1083     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1084     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1085     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1086     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1087     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1088     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1089 };
1090 
1091 #define ELF_HWCAP get_elf_hwcap()
1092 
1093 static uint32_t get_elf_hwcap(void)
1094 {
1095     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1096     uint32_t hwcap = 0;
1097 
1098     hwcap |= SH_CPU_HAS_FPU;
1099 
1100     if (cpu->env.features & SH_FEATURE_SH4A) {
1101         hwcap |= SH_CPU_HAS_LLSC;
1102     }
1103 
1104     return hwcap;
1105 }
1106 
1107 #endif
1108 
1109 #ifdef TARGET_CRIS
1110 
1111 #define ELF_START_MMAP 0x80000000
1112 
1113 #define elf_check_arch(x) ( (x) == EM_CRIS )
1114 
1115 #define ELF_CLASS ELFCLASS32
1116 #define ELF_ARCH  EM_CRIS
1117 
1118 static inline void init_thread(struct target_pt_regs *regs,
1119                                struct image_info *infop)
1120 {
1121     regs->erp = infop->entry;
1122 }
1123 
1124 #define ELF_EXEC_PAGESIZE        8192
1125 
1126 #endif
1127 
1128 #ifdef TARGET_M68K
1129 
1130 #define ELF_START_MMAP 0x80000000
1131 
1132 #define elf_check_arch(x) ( (x) == EM_68K )
1133 
1134 #define ELF_CLASS       ELFCLASS32
1135 #define ELF_ARCH        EM_68K
1136 
1137 /* ??? Does this need to do anything?
1138    #define ELF_PLAT_INIT(_r) */
1139 
1140 static inline void init_thread(struct target_pt_regs *regs,
1141                                struct image_info *infop)
1142 {
1143     regs->usp = infop->start_stack;
1144     regs->sr = 0;
1145     regs->pc = infop->entry;
1146 }
1147 
1148 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1149 #define ELF_NREG 20
1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1151 
1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1153 {
1154     (*regs)[0] = tswapreg(env->dregs[1]);
1155     (*regs)[1] = tswapreg(env->dregs[2]);
1156     (*regs)[2] = tswapreg(env->dregs[3]);
1157     (*regs)[3] = tswapreg(env->dregs[4]);
1158     (*regs)[4] = tswapreg(env->dregs[5]);
1159     (*regs)[5] = tswapreg(env->dregs[6]);
1160     (*regs)[6] = tswapreg(env->dregs[7]);
1161     (*regs)[7] = tswapreg(env->aregs[0]);
1162     (*regs)[8] = tswapreg(env->aregs[1]);
1163     (*regs)[9] = tswapreg(env->aregs[2]);
1164     (*regs)[10] = tswapreg(env->aregs[3]);
1165     (*regs)[11] = tswapreg(env->aregs[4]);
1166     (*regs)[12] = tswapreg(env->aregs[5]);
1167     (*regs)[13] = tswapreg(env->aregs[6]);
1168     (*regs)[14] = tswapreg(env->dregs[0]);
1169     (*regs)[15] = tswapreg(env->aregs[7]);
1170     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1171     (*regs)[17] = tswapreg(env->sr);
1172     (*regs)[18] = tswapreg(env->pc);
1173     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1174 }
1175 
1176 #define USE_ELF_CORE_DUMP
1177 #define ELF_EXEC_PAGESIZE       8192
1178 
1179 #endif
1180 
1181 #ifdef TARGET_ALPHA
1182 
1183 #define ELF_START_MMAP (0x30000000000ULL)
1184 
1185 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1186 
1187 #define ELF_CLASS      ELFCLASS64
1188 #define ELF_ARCH       EM_ALPHA
1189 
1190 static inline void init_thread(struct target_pt_regs *regs,
1191                                struct image_info *infop)
1192 {
1193     regs->pc = infop->entry;
1194     regs->ps = 8;
1195     regs->usp = infop->start_stack;
1196 }
1197 
1198 #define ELF_EXEC_PAGESIZE        8192
1199 
1200 #endif /* TARGET_ALPHA */
1201 
1202 #ifdef TARGET_S390X
1203 
1204 #define ELF_START_MMAP (0x20000000000ULL)
1205 
1206 #define elf_check_arch(x) ( (x) == ELF_ARCH )
1207 
1208 #define ELF_CLASS	ELFCLASS64
1209 #define ELF_DATA	ELFDATA2MSB
1210 #define ELF_ARCH	EM_S390
1211 
1212 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1213 {
1214     regs->psw.addr = infop->entry;
1215     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1216     regs->gprs[15] = infop->start_stack;
1217 }
1218 
1219 #endif /* TARGET_S390X */
1220 
1221 #ifndef ELF_PLATFORM
1222 #define ELF_PLATFORM (NULL)
1223 #endif
1224 
1225 #ifndef ELF_HWCAP
1226 #define ELF_HWCAP 0
1227 #endif
1228 
1229 #ifdef TARGET_ABI32
1230 #undef ELF_CLASS
1231 #define ELF_CLASS ELFCLASS32
1232 #undef bswaptls
1233 #define bswaptls(ptr) bswap32s(ptr)
1234 #endif
1235 
1236 #include "elf.h"
1237 
1238 struct exec
1239 {
1240     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1241     unsigned int a_text;   /* length of text, in bytes */
1242     unsigned int a_data;   /* length of data, in bytes */
1243     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1244     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1245     unsigned int a_entry;  /* start address */
1246     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1247     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1248 };
1249 
1250 
1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1252 #define OMAGIC 0407
1253 #define NMAGIC 0410
1254 #define ZMAGIC 0413
1255 #define QMAGIC 0314
1256 
1257 /* Necessary parameters */
1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1260                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1261 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1262 
1263 #define DLINFO_ITEMS 14
1264 
1265 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1266 {
1267     memcpy(to, from, n);
1268 }
1269 
1270 #ifdef BSWAP_NEEDED
1271 static void bswap_ehdr(struct elfhdr *ehdr)
1272 {
1273     bswap16s(&ehdr->e_type);            /* Object file type */
1274     bswap16s(&ehdr->e_machine);         /* Architecture */
1275     bswap32s(&ehdr->e_version);         /* Object file version */
1276     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1277     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1278     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1279     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1280     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1281     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1282     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1283     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1284     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1285     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1286 }
1287 
1288 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1289 {
1290     int i;
1291     for (i = 0; i < phnum; ++i, ++phdr) {
1292         bswap32s(&phdr->p_type);        /* Segment type */
1293         bswap32s(&phdr->p_flags);       /* Segment flags */
1294         bswaptls(&phdr->p_offset);      /* Segment file offset */
1295         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1296         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1297         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1298         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1299         bswaptls(&phdr->p_align);       /* Segment alignment */
1300     }
1301 }
1302 
1303 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1304 {
1305     int i;
1306     for (i = 0; i < shnum; ++i, ++shdr) {
1307         bswap32s(&shdr->sh_name);
1308         bswap32s(&shdr->sh_type);
1309         bswaptls(&shdr->sh_flags);
1310         bswaptls(&shdr->sh_addr);
1311         bswaptls(&shdr->sh_offset);
1312         bswaptls(&shdr->sh_size);
1313         bswap32s(&shdr->sh_link);
1314         bswap32s(&shdr->sh_info);
1315         bswaptls(&shdr->sh_addralign);
1316         bswaptls(&shdr->sh_entsize);
1317     }
1318 }
1319 
1320 static void bswap_sym(struct elf_sym *sym)
1321 {
1322     bswap32s(&sym->st_name);
1323     bswaptls(&sym->st_value);
1324     bswaptls(&sym->st_size);
1325     bswap16s(&sym->st_shndx);
1326 }
1327 #else
1328 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1329 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1330 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1331 static inline void bswap_sym(struct elf_sym *sym) { }
1332 #endif
1333 
1334 #ifdef USE_ELF_CORE_DUMP
1335 static int elf_core_dump(int, const CPUArchState *);
1336 #endif /* USE_ELF_CORE_DUMP */
1337 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1338 
1339 /* Verify the portions of EHDR within E_IDENT for the target.
1340    This can be performed before bswapping the entire header.  */
1341 static bool elf_check_ident(struct elfhdr *ehdr)
1342 {
1343     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1344             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1345             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1346             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1347             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1348             && ehdr->e_ident[EI_DATA] == ELF_DATA
1349             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1350 }
1351 
1352 /* Verify the portions of EHDR outside of E_IDENT for the target.
1353    This has to wait until after bswapping the header.  */
1354 static bool elf_check_ehdr(struct elfhdr *ehdr)
1355 {
1356     return (elf_check_arch(ehdr->e_machine)
1357             && ehdr->e_ehsize == sizeof(struct elfhdr)
1358             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1359             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1360 }
1361 
1362 /*
1363  * 'copy_elf_strings()' copies argument/envelope strings from user
1364  * memory to free pages in kernel mem. These are in a format ready
1365  * to be put directly into the top of new user memory.
1366  *
1367  */
1368 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1369                                   abi_ulong p)
1370 {
1371     char *tmp, *tmp1, *pag = NULL;
1372     int len, offset = 0;
1373 
1374     if (!p) {
1375         return 0;       /* bullet-proofing */
1376     }
1377     while (argc-- > 0) {
1378         tmp = argv[argc];
1379         if (!tmp) {
1380             fprintf(stderr, "VFS: argc is wrong");
1381             exit(-1);
1382         }
1383         tmp1 = tmp;
1384         while (*tmp++);
1385         len = tmp - tmp1;
1386         if (p < len) {  /* this shouldn't happen - 128kB */
1387             return 0;
1388         }
1389         while (len) {
1390             --p; --tmp; --len;
1391             if (--offset < 0) {
1392                 offset = p % TARGET_PAGE_SIZE;
1393                 pag = (char *)page[p/TARGET_PAGE_SIZE];
1394                 if (!pag) {
1395                     pag = g_try_malloc0(TARGET_PAGE_SIZE);
1396                     page[p/TARGET_PAGE_SIZE] = pag;
1397                     if (!pag)
1398                         return 0;
1399                 }
1400             }
1401             if (len == 0 || offset == 0) {
1402                 *(pag + offset) = *tmp;
1403             }
1404             else {
1405                 int bytes_to_copy = (len > offset) ? offset : len;
1406                 tmp -= bytes_to_copy;
1407                 p -= bytes_to_copy;
1408                 offset -= bytes_to_copy;
1409                 len -= bytes_to_copy;
1410                 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1411             }
1412         }
1413     }
1414     return p;
1415 }
1416 
1417 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1418                                  struct image_info *info)
1419 {
1420     abi_ulong stack_base, size, error, guard;
1421     int i;
1422 
1423     /* Create enough stack to hold everything.  If we don't use
1424        it for args, we'll use it for something else.  */
1425     size = guest_stack_size;
1426     if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1427         size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1428     }
1429     guard = TARGET_PAGE_SIZE;
1430     if (guard < qemu_real_host_page_size) {
1431         guard = qemu_real_host_page_size;
1432     }
1433 
1434     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1435                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1436     if (error == -1) {
1437         perror("mmap stack");
1438         exit(-1);
1439     }
1440 
1441     /* We reserve one extra page at the top of the stack as guard.  */
1442     target_mprotect(error, guard, PROT_NONE);
1443 
1444     info->stack_limit = error + guard;
1445     stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1446     p += stack_base;
1447 
1448     for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1449         if (bprm->page[i]) {
1450             info->rss++;
1451             /* FIXME - check return value of memcpy_to_target() for failure */
1452             memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1453             g_free(bprm->page[i]);
1454         }
1455         stack_base += TARGET_PAGE_SIZE;
1456     }
1457     return p;
1458 }
1459 
1460 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1461    after the data section (i.e. bss).  */
1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1463 {
1464     uintptr_t host_start, host_map_start, host_end;
1465 
1466     last_bss = TARGET_PAGE_ALIGN(last_bss);
1467 
1468     /* ??? There is confusion between qemu_real_host_page_size and
1469        qemu_host_page_size here and elsewhere in target_mmap, which
1470        may lead to the end of the data section mapping from the file
1471        not being mapped.  At least there was an explicit test and
1472        comment for that here, suggesting that "the file size must
1473        be known".  The comment probably pre-dates the introduction
1474        of the fstat system call in target_mmap which does in fact
1475        find out the size.  What isn't clear is if the workaround
1476        here is still actually needed.  For now, continue with it,
1477        but merge it with the "normal" mmap that would allocate the bss.  */
1478 
1479     host_start = (uintptr_t) g2h(elf_bss);
1480     host_end = (uintptr_t) g2h(last_bss);
1481     host_map_start = (host_start + qemu_real_host_page_size - 1);
1482     host_map_start &= -qemu_real_host_page_size;
1483 
1484     if (host_map_start < host_end) {
1485         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1486                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1487         if (p == MAP_FAILED) {
1488             perror("cannot mmap brk");
1489             exit(-1);
1490         }
1491     }
1492 
1493     /* Ensure that the bss page(s) are valid */
1494     if ((page_get_flags(last_bss-1) & prot) != prot) {
1495         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1496     }
1497 
1498     if (host_start < host_map_start) {
1499         memset((void *)host_start, 0, host_map_start - host_start);
1500     }
1501 }
1502 
1503 #ifdef CONFIG_USE_FDPIC
1504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1505 {
1506     uint16_t n;
1507     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1508 
1509     /* elf32_fdpic_loadseg */
1510     n = info->nsegs;
1511     while (n--) {
1512         sp -= 12;
1513         put_user_u32(loadsegs[n].addr, sp+0);
1514         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1515         put_user_u32(loadsegs[n].p_memsz, sp+8);
1516     }
1517 
1518     /* elf32_fdpic_loadmap */
1519     sp -= 4;
1520     put_user_u16(0, sp+0); /* version */
1521     put_user_u16(info->nsegs, sp+2); /* nsegs */
1522 
1523     info->personality = PER_LINUX_FDPIC;
1524     info->loadmap_addr = sp;
1525 
1526     return sp;
1527 }
1528 #endif
1529 
1530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1531                                    struct elfhdr *exec,
1532                                    struct image_info *info,
1533                                    struct image_info *interp_info)
1534 {
1535     abi_ulong sp;
1536     abi_ulong sp_auxv;
1537     int size;
1538     int i;
1539     abi_ulong u_rand_bytes;
1540     uint8_t k_rand_bytes[16];
1541     abi_ulong u_platform;
1542     const char *k_platform;
1543     const int n = sizeof(elf_addr_t);
1544 
1545     sp = p;
1546 
1547 #ifdef CONFIG_USE_FDPIC
1548     /* Needs to be before we load the env/argc/... */
1549     if (elf_is_fdpic(exec)) {
1550         /* Need 4 byte alignment for these structs */
1551         sp &= ~3;
1552         sp = loader_build_fdpic_loadmap(info, sp);
1553         info->other_info = interp_info;
1554         if (interp_info) {
1555             interp_info->other_info = info;
1556             sp = loader_build_fdpic_loadmap(interp_info, sp);
1557         }
1558     }
1559 #endif
1560 
1561     u_platform = 0;
1562     k_platform = ELF_PLATFORM;
1563     if (k_platform) {
1564         size_t len = strlen(k_platform) + 1;
1565         sp -= (len + n - 1) & ~(n - 1);
1566         u_platform = sp;
1567         /* FIXME - check return value of memcpy_to_target() for failure */
1568         memcpy_to_target(sp, k_platform, len);
1569     }
1570 
1571     /*
1572      * Generate 16 random bytes for userspace PRNG seeding (not
1573      * cryptically secure but it's not the aim of QEMU).
1574      */
1575     for (i = 0; i < 16; i++) {
1576         k_rand_bytes[i] = rand();
1577     }
1578     sp -= 16;
1579     u_rand_bytes = sp;
1580     /* FIXME - check return value of memcpy_to_target() for failure */
1581     memcpy_to_target(sp, k_rand_bytes, 16);
1582 
1583     /*
1584      * Force 16 byte _final_ alignment here for generality.
1585      */
1586     sp = sp &~ (abi_ulong)15;
1587     size = (DLINFO_ITEMS + 1) * 2;
1588     if (k_platform)
1589         size += 2;
1590 #ifdef DLINFO_ARCH_ITEMS
1591     size += DLINFO_ARCH_ITEMS * 2;
1592 #endif
1593 #ifdef ELF_HWCAP2
1594     size += 2;
1595 #endif
1596     size += envc + argc + 2;
1597     size += 1;  /* argc itself */
1598     size *= n;
1599     if (size & 15)
1600         sp -= 16 - (size & 15);
1601 
1602     /* This is correct because Linux defines
1603      * elf_addr_t as Elf32_Off / Elf64_Off
1604      */
1605 #define NEW_AUX_ENT(id, val) do {               \
1606         sp -= n; put_user_ual(val, sp);         \
1607         sp -= n; put_user_ual(id, sp);          \
1608     } while(0)
1609 
1610     sp_auxv = sp;
1611     NEW_AUX_ENT (AT_NULL, 0);
1612 
1613     /* There must be exactly DLINFO_ITEMS entries here.  */
1614     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1615     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1616     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1617     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1618     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1619     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1620     NEW_AUX_ENT(AT_ENTRY, info->entry);
1621     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1622     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1623     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1624     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1625     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1626     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1627     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1628 
1629 #ifdef ELF_HWCAP2
1630     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1631 #endif
1632 
1633     if (k_platform)
1634         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1635 #ifdef ARCH_DLINFO
1636     /*
1637      * ARCH_DLINFO must come last so platform specific code can enforce
1638      * special alignment requirements on the AUXV if necessary (eg. PPC).
1639      */
1640     ARCH_DLINFO;
1641 #endif
1642 #undef NEW_AUX_ENT
1643 
1644     info->saved_auxv = sp;
1645     info->auxv_len = sp_auxv - sp;
1646 
1647     sp = loader_build_argptr(envc, argc, sp, p, 0);
1648     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1649     assert(sp_auxv - sp == size);
1650     return sp;
1651 }
1652 
1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1654 /* If the guest doesn't have a validation function just agree */
1655 static int validate_guest_space(unsigned long guest_base,
1656                                 unsigned long guest_size)
1657 {
1658     return 1;
1659 }
1660 #endif
1661 
1662 unsigned long init_guest_space(unsigned long host_start,
1663                                unsigned long host_size,
1664                                unsigned long guest_start,
1665                                bool fixed)
1666 {
1667     unsigned long current_start, real_start;
1668     int flags;
1669 
1670     assert(host_start || host_size);
1671 
1672     /* If just a starting address is given, then just verify that
1673      * address.  */
1674     if (host_start && !host_size) {
1675         if (validate_guest_space(host_start, host_size) == 1) {
1676             return host_start;
1677         } else {
1678             return (unsigned long)-1;
1679         }
1680     }
1681 
1682     /* Setup the initial flags and start address.  */
1683     current_start = host_start & qemu_host_page_mask;
1684     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1685     if (fixed) {
1686         flags |= MAP_FIXED;
1687     }
1688 
1689     /* Otherwise, a non-zero size region of memory needs to be mapped
1690      * and validated.  */
1691     while (1) {
1692         unsigned long real_size = host_size;
1693 
1694         /* Do not use mmap_find_vma here because that is limited to the
1695          * guest address space.  We are going to make the
1696          * guest address space fit whatever we're given.
1697          */
1698         real_start = (unsigned long)
1699             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1700         if (real_start == (unsigned long)-1) {
1701             return (unsigned long)-1;
1702         }
1703 
1704         /* Ensure the address is properly aligned.  */
1705         if (real_start & ~qemu_host_page_mask) {
1706             munmap((void *)real_start, host_size);
1707             real_size = host_size + qemu_host_page_size;
1708             real_start = (unsigned long)
1709                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1710             if (real_start == (unsigned long)-1) {
1711                 return (unsigned long)-1;
1712             }
1713             real_start = HOST_PAGE_ALIGN(real_start);
1714         }
1715 
1716         /* Check to see if the address is valid.  */
1717         if (!host_start || real_start == current_start) {
1718             int valid = validate_guest_space(real_start - guest_start,
1719                                              real_size);
1720             if (valid == 1) {
1721                 break;
1722             } else if (valid == -1) {
1723                 return (unsigned long)-1;
1724             }
1725             /* valid == 0, so try again. */
1726         }
1727 
1728         /* That address didn't work.  Unmap and try a different one.
1729          * The address the host picked because is typically right at
1730          * the top of the host address space and leaves the guest with
1731          * no usable address space.  Resort to a linear search.  We
1732          * already compensated for mmap_min_addr, so this should not
1733          * happen often.  Probably means we got unlucky and host
1734          * address space randomization put a shared library somewhere
1735          * inconvenient.
1736          */
1737         munmap((void *)real_start, host_size);
1738         current_start += qemu_host_page_size;
1739         if (host_start == current_start) {
1740             /* Theoretically possible if host doesn't have any suitably
1741              * aligned areas.  Normally the first mmap will fail.
1742              */
1743             return (unsigned long)-1;
1744         }
1745     }
1746 
1747     qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size);
1748 
1749     return real_start;
1750 }
1751 
1752 static void probe_guest_base(const char *image_name,
1753                              abi_ulong loaddr, abi_ulong hiaddr)
1754 {
1755     /* Probe for a suitable guest base address, if the user has not set
1756      * it explicitly, and set guest_base appropriately.
1757      * In case of error we will print a suitable message and exit.
1758      */
1759     const char *errmsg;
1760     if (!have_guest_base && !reserved_va) {
1761         unsigned long host_start, real_start, host_size;
1762 
1763         /* Round addresses to page boundaries.  */
1764         loaddr &= qemu_host_page_mask;
1765         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1766 
1767         if (loaddr < mmap_min_addr) {
1768             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1769         } else {
1770             host_start = loaddr;
1771             if (host_start != loaddr) {
1772                 errmsg = "Address overflow loading ELF binary";
1773                 goto exit_errmsg;
1774             }
1775         }
1776         host_size = hiaddr - loaddr;
1777 
1778         /* Setup the initial guest memory space with ranges gleaned from
1779          * the ELF image that is being loaded.
1780          */
1781         real_start = init_guest_space(host_start, host_size, loaddr, false);
1782         if (real_start == (unsigned long)-1) {
1783             errmsg = "Unable to find space for application";
1784             goto exit_errmsg;
1785         }
1786         guest_base = real_start - loaddr;
1787 
1788         qemu_log("Relocating guest address space from 0x"
1789                  TARGET_ABI_FMT_lx " to 0x%lx\n",
1790                  loaddr, real_start);
1791     }
1792     return;
1793 
1794 exit_errmsg:
1795     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1796     exit(-1);
1797 }
1798 
1799 
1800 /* Load an ELF image into the address space.
1801 
1802    IMAGE_NAME is the filename of the image, to use in error messages.
1803    IMAGE_FD is the open file descriptor for the image.
1804 
1805    BPRM_BUF is a copy of the beginning of the file; this of course
1806    contains the elf file header at offset 0.  It is assumed that this
1807    buffer is sufficiently aligned to present no problems to the host
1808    in accessing data at aligned offsets within the buffer.
1809 
1810    On return: INFO values will be filled in, as necessary or available.  */
1811 
1812 static void load_elf_image(const char *image_name, int image_fd,
1813                            struct image_info *info, char **pinterp_name,
1814                            char bprm_buf[BPRM_BUF_SIZE])
1815 {
1816     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1817     struct elf_phdr *phdr;
1818     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1819     int i, retval;
1820     const char *errmsg;
1821 
1822     /* First of all, some simple consistency checks */
1823     errmsg = "Invalid ELF image for this architecture";
1824     if (!elf_check_ident(ehdr)) {
1825         goto exit_errmsg;
1826     }
1827     bswap_ehdr(ehdr);
1828     if (!elf_check_ehdr(ehdr)) {
1829         goto exit_errmsg;
1830     }
1831 
1832     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1833     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1834         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1835     } else {
1836         phdr = (struct elf_phdr *) alloca(i);
1837         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1838         if (retval != i) {
1839             goto exit_read;
1840         }
1841     }
1842     bswap_phdr(phdr, ehdr->e_phnum);
1843 
1844 #ifdef CONFIG_USE_FDPIC
1845     info->nsegs = 0;
1846     info->pt_dynamic_addr = 0;
1847 #endif
1848 
1849     /* Find the maximum size of the image and allocate an appropriate
1850        amount of memory to handle that.  */
1851     loaddr = -1, hiaddr = 0;
1852     for (i = 0; i < ehdr->e_phnum; ++i) {
1853         if (phdr[i].p_type == PT_LOAD) {
1854             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1855             if (a < loaddr) {
1856                 loaddr = a;
1857             }
1858             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1859             if (a > hiaddr) {
1860                 hiaddr = a;
1861             }
1862 #ifdef CONFIG_USE_FDPIC
1863             ++info->nsegs;
1864 #endif
1865         }
1866     }
1867 
1868     load_addr = loaddr;
1869     if (ehdr->e_type == ET_DYN) {
1870         /* The image indicates that it can be loaded anywhere.  Find a
1871            location that can hold the memory space required.  If the
1872            image is pre-linked, LOADDR will be non-zero.  Since we do
1873            not supply MAP_FIXED here we'll use that address if and
1874            only if it remains available.  */
1875         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1876                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1877                                 -1, 0);
1878         if (load_addr == -1) {
1879             goto exit_perror;
1880         }
1881     } else if (pinterp_name != NULL) {
1882         /* This is the main executable.  Make sure that the low
1883            address does not conflict with MMAP_MIN_ADDR or the
1884            QEMU application itself.  */
1885         probe_guest_base(image_name, loaddr, hiaddr);
1886     }
1887     load_bias = load_addr - loaddr;
1888 
1889 #ifdef CONFIG_USE_FDPIC
1890     {
1891         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1892             g_malloc(sizeof(*loadsegs) * info->nsegs);
1893 
1894         for (i = 0; i < ehdr->e_phnum; ++i) {
1895             switch (phdr[i].p_type) {
1896             case PT_DYNAMIC:
1897                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1898                 break;
1899             case PT_LOAD:
1900                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1901                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1902                 loadsegs->p_memsz = phdr[i].p_memsz;
1903                 ++loadsegs;
1904                 break;
1905             }
1906         }
1907     }
1908 #endif
1909 
1910     info->load_bias = load_bias;
1911     info->load_addr = load_addr;
1912     info->entry = ehdr->e_entry + load_bias;
1913     info->start_code = -1;
1914     info->end_code = 0;
1915     info->start_data = -1;
1916     info->end_data = 0;
1917     info->brk = 0;
1918     info->elf_flags = ehdr->e_flags;
1919 
1920     for (i = 0; i < ehdr->e_phnum; i++) {
1921         struct elf_phdr *eppnt = phdr + i;
1922         if (eppnt->p_type == PT_LOAD) {
1923             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1924             int elf_prot = 0;
1925 
1926             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1927             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1928             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1929 
1930             vaddr = load_bias + eppnt->p_vaddr;
1931             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1932             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1933 
1934             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1935                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1936                                 image_fd, eppnt->p_offset - vaddr_po);
1937             if (error == -1) {
1938                 goto exit_perror;
1939             }
1940 
1941             vaddr_ef = vaddr + eppnt->p_filesz;
1942             vaddr_em = vaddr + eppnt->p_memsz;
1943 
1944             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1945             if (vaddr_ef < vaddr_em) {
1946                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1947             }
1948 
1949             /* Find the full program boundaries.  */
1950             if (elf_prot & PROT_EXEC) {
1951                 if (vaddr < info->start_code) {
1952                     info->start_code = vaddr;
1953                 }
1954                 if (vaddr_ef > info->end_code) {
1955                     info->end_code = vaddr_ef;
1956                 }
1957             }
1958             if (elf_prot & PROT_WRITE) {
1959                 if (vaddr < info->start_data) {
1960                     info->start_data = vaddr;
1961                 }
1962                 if (vaddr_ef > info->end_data) {
1963                     info->end_data = vaddr_ef;
1964                 }
1965                 if (vaddr_em > info->brk) {
1966                     info->brk = vaddr_em;
1967                 }
1968             }
1969         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1970             char *interp_name;
1971 
1972             if (*pinterp_name) {
1973                 errmsg = "Multiple PT_INTERP entries";
1974                 goto exit_errmsg;
1975             }
1976             interp_name = malloc(eppnt->p_filesz);
1977             if (!interp_name) {
1978                 goto exit_perror;
1979             }
1980 
1981             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1982                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1983                        eppnt->p_filesz);
1984             } else {
1985                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1986                                eppnt->p_offset);
1987                 if (retval != eppnt->p_filesz) {
1988                     goto exit_perror;
1989                 }
1990             }
1991             if (interp_name[eppnt->p_filesz - 1] != 0) {
1992                 errmsg = "Invalid PT_INTERP entry";
1993                 goto exit_errmsg;
1994             }
1995             *pinterp_name = interp_name;
1996         }
1997     }
1998 
1999     if (info->end_data == 0) {
2000         info->start_data = info->end_code;
2001         info->end_data = info->end_code;
2002         info->brk = info->end_code;
2003     }
2004 
2005     if (qemu_log_enabled()) {
2006         load_symbols(ehdr, image_fd, load_bias);
2007     }
2008 
2009     close(image_fd);
2010     return;
2011 
2012  exit_read:
2013     if (retval >= 0) {
2014         errmsg = "Incomplete read of file header";
2015         goto exit_errmsg;
2016     }
2017  exit_perror:
2018     errmsg = strerror(errno);
2019  exit_errmsg:
2020     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2021     exit(-1);
2022 }
2023 
2024 static void load_elf_interp(const char *filename, struct image_info *info,
2025                             char bprm_buf[BPRM_BUF_SIZE])
2026 {
2027     int fd, retval;
2028 
2029     fd = open(path(filename), O_RDONLY);
2030     if (fd < 0) {
2031         goto exit_perror;
2032     }
2033 
2034     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2035     if (retval < 0) {
2036         goto exit_perror;
2037     }
2038     if (retval < BPRM_BUF_SIZE) {
2039         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2040     }
2041 
2042     load_elf_image(filename, fd, info, NULL, bprm_buf);
2043     return;
2044 
2045  exit_perror:
2046     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2047     exit(-1);
2048 }
2049 
2050 static int symfind(const void *s0, const void *s1)
2051 {
2052     target_ulong addr = *(target_ulong *)s0;
2053     struct elf_sym *sym = (struct elf_sym *)s1;
2054     int result = 0;
2055     if (addr < sym->st_value) {
2056         result = -1;
2057     } else if (addr >= sym->st_value + sym->st_size) {
2058         result = 1;
2059     }
2060     return result;
2061 }
2062 
2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2064 {
2065 #if ELF_CLASS == ELFCLASS32
2066     struct elf_sym *syms = s->disas_symtab.elf32;
2067 #else
2068     struct elf_sym *syms = s->disas_symtab.elf64;
2069 #endif
2070 
2071     // binary search
2072     struct elf_sym *sym;
2073 
2074     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2075     if (sym != NULL) {
2076         return s->disas_strtab + sym->st_name;
2077     }
2078 
2079     return "";
2080 }
2081 
2082 /* FIXME: This should use elf_ops.h  */
2083 static int symcmp(const void *s0, const void *s1)
2084 {
2085     struct elf_sym *sym0 = (struct elf_sym *)s0;
2086     struct elf_sym *sym1 = (struct elf_sym *)s1;
2087     return (sym0->st_value < sym1->st_value)
2088         ? -1
2089         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2090 }
2091 
2092 /* Best attempt to load symbols from this ELF object. */
2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2094 {
2095     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2096     struct elf_shdr *shdr;
2097     char *strings = NULL;
2098     struct syminfo *s = NULL;
2099     struct elf_sym *new_syms, *syms = NULL;
2100 
2101     shnum = hdr->e_shnum;
2102     i = shnum * sizeof(struct elf_shdr);
2103     shdr = (struct elf_shdr *)alloca(i);
2104     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2105         return;
2106     }
2107 
2108     bswap_shdr(shdr, shnum);
2109     for (i = 0; i < shnum; ++i) {
2110         if (shdr[i].sh_type == SHT_SYMTAB) {
2111             sym_idx = i;
2112             str_idx = shdr[i].sh_link;
2113             goto found;
2114         }
2115     }
2116 
2117     /* There will be no symbol table if the file was stripped.  */
2118     return;
2119 
2120  found:
2121     /* Now know where the strtab and symtab are.  Snarf them.  */
2122     s = malloc(sizeof(*s));
2123     if (!s) {
2124         goto give_up;
2125     }
2126 
2127     i = shdr[str_idx].sh_size;
2128     s->disas_strtab = strings = malloc(i);
2129     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2130         goto give_up;
2131     }
2132 
2133     i = shdr[sym_idx].sh_size;
2134     syms = malloc(i);
2135     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2136         goto give_up;
2137     }
2138 
2139     nsyms = i / sizeof(struct elf_sym);
2140     for (i = 0; i < nsyms; ) {
2141         bswap_sym(syms + i);
2142         /* Throw away entries which we do not need.  */
2143         if (syms[i].st_shndx == SHN_UNDEF
2144             || syms[i].st_shndx >= SHN_LORESERVE
2145             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2146             if (i < --nsyms) {
2147                 syms[i] = syms[nsyms];
2148             }
2149         } else {
2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2151             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2152             syms[i].st_value &= ~(target_ulong)1;
2153 #endif
2154             syms[i].st_value += load_bias;
2155             i++;
2156         }
2157     }
2158 
2159     /* No "useful" symbol.  */
2160     if (nsyms == 0) {
2161         goto give_up;
2162     }
2163 
2164     /* Attempt to free the storage associated with the local symbols
2165        that we threw away.  Whether or not this has any effect on the
2166        memory allocation depends on the malloc implementation and how
2167        many symbols we managed to discard.  */
2168     new_syms = realloc(syms, nsyms * sizeof(*syms));
2169     if (new_syms == NULL) {
2170         goto give_up;
2171     }
2172     syms = new_syms;
2173 
2174     qsort(syms, nsyms, sizeof(*syms), symcmp);
2175 
2176     s->disas_num_syms = nsyms;
2177 #if ELF_CLASS == ELFCLASS32
2178     s->disas_symtab.elf32 = syms;
2179 #else
2180     s->disas_symtab.elf64 = syms;
2181 #endif
2182     s->lookup_symbol = lookup_symbolxx;
2183     s->next = syminfos;
2184     syminfos = s;
2185 
2186     return;
2187 
2188 give_up:
2189     free(s);
2190     free(strings);
2191     free(syms);
2192 }
2193 
2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2195 {
2196     struct image_info interp_info;
2197     struct elfhdr elf_ex;
2198     char *elf_interpreter = NULL;
2199 
2200     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2201     info->mmap = 0;
2202     info->rss = 0;
2203 
2204     load_elf_image(bprm->filename, bprm->fd, info,
2205                    &elf_interpreter, bprm->buf);
2206 
2207     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2208        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2209        when we load the interpreter.  */
2210     elf_ex = *(struct elfhdr *)bprm->buf;
2211 
2212     bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
2213     bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
2214     bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
2215     if (!bprm->p) {
2216         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2217         exit(-1);
2218     }
2219 
2220     /* Do this so that we can load the interpreter, if need be.  We will
2221        change some of these later */
2222     bprm->p = setup_arg_pages(bprm->p, bprm, info);
2223 
2224     if (elf_interpreter) {
2225         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2226 
2227         /* If the program interpreter is one of these two, then assume
2228            an iBCS2 image.  Otherwise assume a native linux image.  */
2229 
2230         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2231             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2232             info->personality = PER_SVR4;
2233 
2234             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2235                and some applications "depend" upon this behavior.  Since
2236                we do not have the power to recompile these, we emulate
2237                the SVr4 behavior.  Sigh.  */
2238             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2239                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2240         }
2241     }
2242 
2243     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2244                                 info, (elf_interpreter ? &interp_info : NULL));
2245     info->start_stack = bprm->p;
2246 
2247     /* If we have an interpreter, set that as the program's entry point.
2248        Copy the load_bias as well, to help PPC64 interpret the entry
2249        point as a function descriptor.  Do this after creating elf tables
2250        so that we copy the original program entry point into the AUXV.  */
2251     if (elf_interpreter) {
2252         info->load_bias = interp_info.load_bias;
2253         info->entry = interp_info.entry;
2254         free(elf_interpreter);
2255     }
2256 
2257 #ifdef USE_ELF_CORE_DUMP
2258     bprm->core_dump = &elf_core_dump;
2259 #endif
2260 
2261     return 0;
2262 }
2263 
2264 #ifdef USE_ELF_CORE_DUMP
2265 /*
2266  * Definitions to generate Intel SVR4-like core files.
2267  * These mostly have the same names as the SVR4 types with "target_elf_"
2268  * tacked on the front to prevent clashes with linux definitions,
2269  * and the typedef forms have been avoided.  This is mostly like
2270  * the SVR4 structure, but more Linuxy, with things that Linux does
2271  * not support and which gdb doesn't really use excluded.
2272  *
2273  * Fields we don't dump (their contents is zero) in linux-user qemu
2274  * are marked with XXX.
2275  *
2276  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2277  *
2278  * Porting ELF coredump for target is (quite) simple process.  First you
2279  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2280  * the target resides):
2281  *
2282  * #define USE_ELF_CORE_DUMP
2283  *
2284  * Next you define type of register set used for dumping.  ELF specification
2285  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2286  *
2287  * typedef <target_regtype> target_elf_greg_t;
2288  * #define ELF_NREG <number of registers>
2289  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2290  *
2291  * Last step is to implement target specific function that copies registers
2292  * from given cpu into just specified register set.  Prototype is:
2293  *
2294  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2295  *                                const CPUArchState *env);
2296  *
2297  * Parameters:
2298  *     regs - copy register values into here (allocated and zeroed by caller)
2299  *     env - copy registers from here
2300  *
2301  * Example for ARM target is provided in this file.
2302  */
2303 
2304 /* An ELF note in memory */
2305 struct memelfnote {
2306     const char *name;
2307     size_t     namesz;
2308     size_t     namesz_rounded;
2309     int        type;
2310     size_t     datasz;
2311     size_t     datasz_rounded;
2312     void       *data;
2313     size_t     notesz;
2314 };
2315 
2316 struct target_elf_siginfo {
2317     abi_int    si_signo; /* signal number */
2318     abi_int    si_code;  /* extra code */
2319     abi_int    si_errno; /* errno */
2320 };
2321 
2322 struct target_elf_prstatus {
2323     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2324     abi_short          pr_cursig;    /* Current signal */
2325     abi_ulong          pr_sigpend;   /* XXX */
2326     abi_ulong          pr_sighold;   /* XXX */
2327     target_pid_t       pr_pid;
2328     target_pid_t       pr_ppid;
2329     target_pid_t       pr_pgrp;
2330     target_pid_t       pr_sid;
2331     struct target_timeval pr_utime;  /* XXX User time */
2332     struct target_timeval pr_stime;  /* XXX System time */
2333     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2334     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2335     target_elf_gregset_t      pr_reg;       /* GP registers */
2336     abi_int            pr_fpvalid;   /* XXX */
2337 };
2338 
2339 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2340 
2341 struct target_elf_prpsinfo {
2342     char         pr_state;       /* numeric process state */
2343     char         pr_sname;       /* char for pr_state */
2344     char         pr_zomb;        /* zombie */
2345     char         pr_nice;        /* nice val */
2346     abi_ulong    pr_flag;        /* flags */
2347     target_uid_t pr_uid;
2348     target_gid_t pr_gid;
2349     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2350     /* Lots missing */
2351     char    pr_fname[16];           /* filename of executable */
2352     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2353 };
2354 
2355 /* Here is the structure in which status of each thread is captured. */
2356 struct elf_thread_status {
2357     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2358     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2359 #if 0
2360     elf_fpregset_t fpu;             /* NT_PRFPREG */
2361     struct task_struct *thread;
2362     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2363 #endif
2364     struct memelfnote notes[1];
2365     int num_notes;
2366 };
2367 
2368 struct elf_note_info {
2369     struct memelfnote   *notes;
2370     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2371     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2372 
2373     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2374 #if 0
2375     /*
2376      * Current version of ELF coredump doesn't support
2377      * dumping fp regs etc.
2378      */
2379     elf_fpregset_t *fpu;
2380     elf_fpxregset_t *xfpu;
2381     int thread_status_size;
2382 #endif
2383     int notes_size;
2384     int numnote;
2385 };
2386 
2387 struct vm_area_struct {
2388     target_ulong   vma_start;  /* start vaddr of memory region */
2389     target_ulong   vma_end;    /* end vaddr of memory region */
2390     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2391     QTAILQ_ENTRY(vm_area_struct) vma_link;
2392 };
2393 
2394 struct mm_struct {
2395     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2396     int mm_count;           /* number of mappings */
2397 };
2398 
2399 static struct mm_struct *vma_init(void);
2400 static void vma_delete(struct mm_struct *);
2401 static int vma_add_mapping(struct mm_struct *, target_ulong,
2402                            target_ulong, abi_ulong);
2403 static int vma_get_mapping_count(const struct mm_struct *);
2404 static struct vm_area_struct *vma_first(const struct mm_struct *);
2405 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2406 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2407 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2408                       unsigned long flags);
2409 
2410 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2411 static void fill_note(struct memelfnote *, const char *, int,
2412                       unsigned int, void *);
2413 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2414 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2415 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2416 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2417 static size_t note_size(const struct memelfnote *);
2418 static void free_note_info(struct elf_note_info *);
2419 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2420 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2421 static int core_dump_filename(const TaskState *, char *, size_t);
2422 
2423 static int dump_write(int, const void *, size_t);
2424 static int write_note(struct memelfnote *, int);
2425 static int write_note_info(struct elf_note_info *, int);
2426 
2427 #ifdef BSWAP_NEEDED
2428 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2429 {
2430     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2431     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2432     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2433     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2434     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2435     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2436     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2437     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2438     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2439     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2440     /* cpu times are not filled, so we skip them */
2441     /* regs should be in correct format already */
2442     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2443 }
2444 
2445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2446 {
2447     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2448     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2449     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2450     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2451     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2452     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2453     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2454 }
2455 
2456 static void bswap_note(struct elf_note *en)
2457 {
2458     bswap32s(&en->n_namesz);
2459     bswap32s(&en->n_descsz);
2460     bswap32s(&en->n_type);
2461 }
2462 #else
2463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2465 static inline void bswap_note(struct elf_note *en) { }
2466 #endif /* BSWAP_NEEDED */
2467 
2468 /*
2469  * Minimal support for linux memory regions.  These are needed
2470  * when we are finding out what memory exactly belongs to
2471  * emulated process.  No locks needed here, as long as
2472  * thread that received the signal is stopped.
2473  */
2474 
2475 static struct mm_struct *vma_init(void)
2476 {
2477     struct mm_struct *mm;
2478 
2479     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2480         return (NULL);
2481 
2482     mm->mm_count = 0;
2483     QTAILQ_INIT(&mm->mm_mmap);
2484 
2485     return (mm);
2486 }
2487 
2488 static void vma_delete(struct mm_struct *mm)
2489 {
2490     struct vm_area_struct *vma;
2491 
2492     while ((vma = vma_first(mm)) != NULL) {
2493         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2494         g_free(vma);
2495     }
2496     g_free(mm);
2497 }
2498 
2499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2500                            target_ulong end, abi_ulong flags)
2501 {
2502     struct vm_area_struct *vma;
2503 
2504     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2505         return (-1);
2506 
2507     vma->vma_start = start;
2508     vma->vma_end = end;
2509     vma->vma_flags = flags;
2510 
2511     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2512     mm->mm_count++;
2513 
2514     return (0);
2515 }
2516 
2517 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2518 {
2519     return (QTAILQ_FIRST(&mm->mm_mmap));
2520 }
2521 
2522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2523 {
2524     return (QTAILQ_NEXT(vma, vma_link));
2525 }
2526 
2527 static int vma_get_mapping_count(const struct mm_struct *mm)
2528 {
2529     return (mm->mm_count);
2530 }
2531 
2532 /*
2533  * Calculate file (dump) size of given memory region.
2534  */
2535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2536 {
2537     /* if we cannot even read the first page, skip it */
2538     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2539         return (0);
2540 
2541     /*
2542      * Usually we don't dump executable pages as they contain
2543      * non-writable code that debugger can read directly from
2544      * target library etc.  However, thread stacks are marked
2545      * also executable so we read in first page of given region
2546      * and check whether it contains elf header.  If there is
2547      * no elf header, we dump it.
2548      */
2549     if (vma->vma_flags & PROT_EXEC) {
2550         char page[TARGET_PAGE_SIZE];
2551 
2552         copy_from_user(page, vma->vma_start, sizeof (page));
2553         if ((page[EI_MAG0] == ELFMAG0) &&
2554             (page[EI_MAG1] == ELFMAG1) &&
2555             (page[EI_MAG2] == ELFMAG2) &&
2556             (page[EI_MAG3] == ELFMAG3)) {
2557             /*
2558              * Mappings are possibly from ELF binary.  Don't dump
2559              * them.
2560              */
2561             return (0);
2562         }
2563     }
2564 
2565     return (vma->vma_end - vma->vma_start);
2566 }
2567 
2568 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2569                       unsigned long flags)
2570 {
2571     struct mm_struct *mm = (struct mm_struct *)priv;
2572 
2573     vma_add_mapping(mm, start, end, flags);
2574     return (0);
2575 }
2576 
2577 static void fill_note(struct memelfnote *note, const char *name, int type,
2578                       unsigned int sz, void *data)
2579 {
2580     unsigned int namesz;
2581 
2582     namesz = strlen(name) + 1;
2583     note->name = name;
2584     note->namesz = namesz;
2585     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2586     note->type = type;
2587     note->datasz = sz;
2588     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2589 
2590     note->data = data;
2591 
2592     /*
2593      * We calculate rounded up note size here as specified by
2594      * ELF document.
2595      */
2596     note->notesz = sizeof (struct elf_note) +
2597         note->namesz_rounded + note->datasz_rounded;
2598 }
2599 
2600 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2601                             uint32_t flags)
2602 {
2603     (void) memset(elf, 0, sizeof(*elf));
2604 
2605     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2606     elf->e_ident[EI_CLASS] = ELF_CLASS;
2607     elf->e_ident[EI_DATA] = ELF_DATA;
2608     elf->e_ident[EI_VERSION] = EV_CURRENT;
2609     elf->e_ident[EI_OSABI] = ELF_OSABI;
2610 
2611     elf->e_type = ET_CORE;
2612     elf->e_machine = machine;
2613     elf->e_version = EV_CURRENT;
2614     elf->e_phoff = sizeof(struct elfhdr);
2615     elf->e_flags = flags;
2616     elf->e_ehsize = sizeof(struct elfhdr);
2617     elf->e_phentsize = sizeof(struct elf_phdr);
2618     elf->e_phnum = segs;
2619 
2620     bswap_ehdr(elf);
2621 }
2622 
2623 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2624 {
2625     phdr->p_type = PT_NOTE;
2626     phdr->p_offset = offset;
2627     phdr->p_vaddr = 0;
2628     phdr->p_paddr = 0;
2629     phdr->p_filesz = sz;
2630     phdr->p_memsz = 0;
2631     phdr->p_flags = 0;
2632     phdr->p_align = 0;
2633 
2634     bswap_phdr(phdr, 1);
2635 }
2636 
2637 static size_t note_size(const struct memelfnote *note)
2638 {
2639     return (note->notesz);
2640 }
2641 
2642 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2643                           const TaskState *ts, int signr)
2644 {
2645     (void) memset(prstatus, 0, sizeof (*prstatus));
2646     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2647     prstatus->pr_pid = ts->ts_tid;
2648     prstatus->pr_ppid = getppid();
2649     prstatus->pr_pgrp = getpgrp();
2650     prstatus->pr_sid = getsid(0);
2651 
2652     bswap_prstatus(prstatus);
2653 }
2654 
2655 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2656 {
2657     char *base_filename;
2658     unsigned int i, len;
2659 
2660     (void) memset(psinfo, 0, sizeof (*psinfo));
2661 
2662     len = ts->info->arg_end - ts->info->arg_start;
2663     if (len >= ELF_PRARGSZ)
2664         len = ELF_PRARGSZ - 1;
2665     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2666         return -EFAULT;
2667     for (i = 0; i < len; i++)
2668         if (psinfo->pr_psargs[i] == 0)
2669             psinfo->pr_psargs[i] = ' ';
2670     psinfo->pr_psargs[len] = 0;
2671 
2672     psinfo->pr_pid = getpid();
2673     psinfo->pr_ppid = getppid();
2674     psinfo->pr_pgrp = getpgrp();
2675     psinfo->pr_sid = getsid(0);
2676     psinfo->pr_uid = getuid();
2677     psinfo->pr_gid = getgid();
2678 
2679     base_filename = g_path_get_basename(ts->bprm->filename);
2680     /*
2681      * Using strncpy here is fine: at max-length,
2682      * this field is not NUL-terminated.
2683      */
2684     (void) strncpy(psinfo->pr_fname, base_filename,
2685                    sizeof(psinfo->pr_fname));
2686 
2687     g_free(base_filename);
2688     bswap_psinfo(psinfo);
2689     return (0);
2690 }
2691 
2692 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2693 {
2694     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2695     elf_addr_t orig_auxv = auxv;
2696     void *ptr;
2697     int len = ts->info->auxv_len;
2698 
2699     /*
2700      * Auxiliary vector is stored in target process stack.  It contains
2701      * {type, value} pairs that we need to dump into note.  This is not
2702      * strictly necessary but we do it here for sake of completeness.
2703      */
2704 
2705     /* read in whole auxv vector and copy it to memelfnote */
2706     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2707     if (ptr != NULL) {
2708         fill_note(note, "CORE", NT_AUXV, len, ptr);
2709         unlock_user(ptr, auxv, len);
2710     }
2711 }
2712 
2713 /*
2714  * Constructs name of coredump file.  We have following convention
2715  * for the name:
2716  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2717  *
2718  * Returns 0 in case of success, -1 otherwise (errno is set).
2719  */
2720 static int core_dump_filename(const TaskState *ts, char *buf,
2721                               size_t bufsize)
2722 {
2723     char timestamp[64];
2724     char *filename = NULL;
2725     char *base_filename = NULL;
2726     struct timeval tv;
2727     struct tm tm;
2728 
2729     assert(bufsize >= PATH_MAX);
2730 
2731     if (gettimeofday(&tv, NULL) < 0) {
2732         (void) fprintf(stderr, "unable to get current timestamp: %s",
2733                        strerror(errno));
2734         return (-1);
2735     }
2736 
2737     filename = strdup(ts->bprm->filename);
2738     base_filename = strdup(basename(filename));
2739     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2740                     localtime_r(&tv.tv_sec, &tm));
2741     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2742                     base_filename, timestamp, (int)getpid());
2743     free(base_filename);
2744     free(filename);
2745 
2746     return (0);
2747 }
2748 
2749 static int dump_write(int fd, const void *ptr, size_t size)
2750 {
2751     const char *bufp = (const char *)ptr;
2752     ssize_t bytes_written, bytes_left;
2753     struct rlimit dumpsize;
2754     off_t pos;
2755 
2756     bytes_written = 0;
2757     getrlimit(RLIMIT_CORE, &dumpsize);
2758     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2759         if (errno == ESPIPE) { /* not a seekable stream */
2760             bytes_left = size;
2761         } else {
2762             return pos;
2763         }
2764     } else {
2765         if (dumpsize.rlim_cur <= pos) {
2766             return -1;
2767         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2768             bytes_left = size;
2769         } else {
2770             size_t limit_left=dumpsize.rlim_cur - pos;
2771             bytes_left = limit_left >= size ? size : limit_left ;
2772         }
2773     }
2774 
2775     /*
2776      * In normal conditions, single write(2) should do but
2777      * in case of socket etc. this mechanism is more portable.
2778      */
2779     do {
2780         bytes_written = write(fd, bufp, bytes_left);
2781         if (bytes_written < 0) {
2782             if (errno == EINTR)
2783                 continue;
2784             return (-1);
2785         } else if (bytes_written == 0) { /* eof */
2786             return (-1);
2787         }
2788         bufp += bytes_written;
2789         bytes_left -= bytes_written;
2790     } while (bytes_left > 0);
2791 
2792     return (0);
2793 }
2794 
2795 static int write_note(struct memelfnote *men, int fd)
2796 {
2797     struct elf_note en;
2798 
2799     en.n_namesz = men->namesz;
2800     en.n_type = men->type;
2801     en.n_descsz = men->datasz;
2802 
2803     bswap_note(&en);
2804 
2805     if (dump_write(fd, &en, sizeof(en)) != 0)
2806         return (-1);
2807     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2808         return (-1);
2809     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2810         return (-1);
2811 
2812     return (0);
2813 }
2814 
2815 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2816 {
2817     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2818     TaskState *ts = (TaskState *)cpu->opaque;
2819     struct elf_thread_status *ets;
2820 
2821     ets = g_malloc0(sizeof (*ets));
2822     ets->num_notes = 1; /* only prstatus is dumped */
2823     fill_prstatus(&ets->prstatus, ts, 0);
2824     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2825     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2826               &ets->prstatus);
2827 
2828     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2829 
2830     info->notes_size += note_size(&ets->notes[0]);
2831 }
2832 
2833 static void init_note_info(struct elf_note_info *info)
2834 {
2835     /* Initialize the elf_note_info structure so that it is at
2836      * least safe to call free_note_info() on it. Must be
2837      * called before calling fill_note_info().
2838      */
2839     memset(info, 0, sizeof (*info));
2840     QTAILQ_INIT(&info->thread_list);
2841 }
2842 
2843 static int fill_note_info(struct elf_note_info *info,
2844                           long signr, const CPUArchState *env)
2845 {
2846 #define NUMNOTES 3
2847     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2848     TaskState *ts = (TaskState *)cpu->opaque;
2849     int i;
2850 
2851     info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote));
2852     if (info->notes == NULL)
2853         return (-ENOMEM);
2854     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2855     if (info->prstatus == NULL)
2856         return (-ENOMEM);
2857     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2858     if (info->prstatus == NULL)
2859         return (-ENOMEM);
2860 
2861     /*
2862      * First fill in status (and registers) of current thread
2863      * including process info & aux vector.
2864      */
2865     fill_prstatus(info->prstatus, ts, signr);
2866     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2867     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2868               sizeof (*info->prstatus), info->prstatus);
2869     fill_psinfo(info->psinfo, ts);
2870     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2871               sizeof (*info->psinfo), info->psinfo);
2872     fill_auxv_note(&info->notes[2], ts);
2873     info->numnote = 3;
2874 
2875     info->notes_size = 0;
2876     for (i = 0; i < info->numnote; i++)
2877         info->notes_size += note_size(&info->notes[i]);
2878 
2879     /* read and fill status of all threads */
2880     cpu_list_lock();
2881     CPU_FOREACH(cpu) {
2882         if (cpu == thread_cpu) {
2883             continue;
2884         }
2885         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2886     }
2887     cpu_list_unlock();
2888 
2889     return (0);
2890 }
2891 
2892 static void free_note_info(struct elf_note_info *info)
2893 {
2894     struct elf_thread_status *ets;
2895 
2896     while (!QTAILQ_EMPTY(&info->thread_list)) {
2897         ets = QTAILQ_FIRST(&info->thread_list);
2898         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2899         g_free(ets);
2900     }
2901 
2902     g_free(info->prstatus);
2903     g_free(info->psinfo);
2904     g_free(info->notes);
2905 }
2906 
2907 static int write_note_info(struct elf_note_info *info, int fd)
2908 {
2909     struct elf_thread_status *ets;
2910     int i, error = 0;
2911 
2912     /* write prstatus, psinfo and auxv for current thread */
2913     for (i = 0; i < info->numnote; i++)
2914         if ((error = write_note(&info->notes[i], fd)) != 0)
2915             return (error);
2916 
2917     /* write prstatus for each thread */
2918     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2919         if ((error = write_note(&ets->notes[0], fd)) != 0)
2920             return (error);
2921     }
2922 
2923     return (0);
2924 }
2925 
2926 /*
2927  * Write out ELF coredump.
2928  *
2929  * See documentation of ELF object file format in:
2930  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2931  *
2932  * Coredump format in linux is following:
2933  *
2934  * 0   +----------------------+         \
2935  *     | ELF header           | ET_CORE  |
2936  *     +----------------------+          |
2937  *     | ELF program headers  |          |--- headers
2938  *     | - NOTE section       |          |
2939  *     | - PT_LOAD sections   |          |
2940  *     +----------------------+         /
2941  *     | NOTEs:               |
2942  *     | - NT_PRSTATUS        |
2943  *     | - NT_PRSINFO         |
2944  *     | - NT_AUXV            |
2945  *     +----------------------+ <-- aligned to target page
2946  *     | Process memory dump  |
2947  *     :                      :
2948  *     .                      .
2949  *     :                      :
2950  *     |                      |
2951  *     +----------------------+
2952  *
2953  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2954  * NT_PRSINFO  -> struct elf_prpsinfo
2955  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2956  *
2957  * Format follows System V format as close as possible.  Current
2958  * version limitations are as follows:
2959  *     - no floating point registers are dumped
2960  *
2961  * Function returns 0 in case of success, negative errno otherwise.
2962  *
2963  * TODO: make this work also during runtime: it should be
2964  * possible to force coredump from running process and then
2965  * continue processing.  For example qemu could set up SIGUSR2
2966  * handler (provided that target process haven't registered
2967  * handler for that) that does the dump when signal is received.
2968  */
2969 static int elf_core_dump(int signr, const CPUArchState *env)
2970 {
2971     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2972     const TaskState *ts = (const TaskState *)cpu->opaque;
2973     struct vm_area_struct *vma = NULL;
2974     char corefile[PATH_MAX];
2975     struct elf_note_info info;
2976     struct elfhdr elf;
2977     struct elf_phdr phdr;
2978     struct rlimit dumpsize;
2979     struct mm_struct *mm = NULL;
2980     off_t offset = 0, data_offset = 0;
2981     int segs = 0;
2982     int fd = -1;
2983 
2984     init_note_info(&info);
2985 
2986     errno = 0;
2987     getrlimit(RLIMIT_CORE, &dumpsize);
2988     if (dumpsize.rlim_cur == 0)
2989         return 0;
2990 
2991     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2992         return (-errno);
2993 
2994     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2995                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2996         return (-errno);
2997 
2998     /*
2999      * Walk through target process memory mappings and
3000      * set up structure containing this information.  After
3001      * this point vma_xxx functions can be used.
3002      */
3003     if ((mm = vma_init()) == NULL)
3004         goto out;
3005 
3006     walk_memory_regions(mm, vma_walker);
3007     segs = vma_get_mapping_count(mm);
3008 
3009     /*
3010      * Construct valid coredump ELF header.  We also
3011      * add one more segment for notes.
3012      */
3013     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3014     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3015         goto out;
3016 
3017     /* fill in the in-memory version of notes */
3018     if (fill_note_info(&info, signr, env) < 0)
3019         goto out;
3020 
3021     offset += sizeof (elf);                             /* elf header */
3022     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3023 
3024     /* write out notes program header */
3025     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3026 
3027     offset += info.notes_size;
3028     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3029         goto out;
3030 
3031     /*
3032      * ELF specification wants data to start at page boundary so
3033      * we align it here.
3034      */
3035     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3036 
3037     /*
3038      * Write program headers for memory regions mapped in
3039      * the target process.
3040      */
3041     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3042         (void) memset(&phdr, 0, sizeof (phdr));
3043 
3044         phdr.p_type = PT_LOAD;
3045         phdr.p_offset = offset;
3046         phdr.p_vaddr = vma->vma_start;
3047         phdr.p_paddr = 0;
3048         phdr.p_filesz = vma_dump_size(vma);
3049         offset += phdr.p_filesz;
3050         phdr.p_memsz = vma->vma_end - vma->vma_start;
3051         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3052         if (vma->vma_flags & PROT_WRITE)
3053             phdr.p_flags |= PF_W;
3054         if (vma->vma_flags & PROT_EXEC)
3055             phdr.p_flags |= PF_X;
3056         phdr.p_align = ELF_EXEC_PAGESIZE;
3057 
3058         bswap_phdr(&phdr, 1);
3059         dump_write(fd, &phdr, sizeof (phdr));
3060     }
3061 
3062     /*
3063      * Next we write notes just after program headers.  No
3064      * alignment needed here.
3065      */
3066     if (write_note_info(&info, fd) < 0)
3067         goto out;
3068 
3069     /* align data to page boundary */
3070     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3071         goto out;
3072 
3073     /*
3074      * Finally we can dump process memory into corefile as well.
3075      */
3076     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3077         abi_ulong addr;
3078         abi_ulong end;
3079 
3080         end = vma->vma_start + vma_dump_size(vma);
3081 
3082         for (addr = vma->vma_start; addr < end;
3083              addr += TARGET_PAGE_SIZE) {
3084             char page[TARGET_PAGE_SIZE];
3085             int error;
3086 
3087             /*
3088              *  Read in page from target process memory and
3089              *  write it to coredump file.
3090              */
3091             error = copy_from_user(page, addr, sizeof (page));
3092             if (error != 0) {
3093                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3094                                addr);
3095                 errno = -error;
3096                 goto out;
3097             }
3098             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3099                 goto out;
3100         }
3101     }
3102 
3103  out:
3104     free_note_info(&info);
3105     if (mm != NULL)
3106         vma_delete(mm);
3107     (void) close(fd);
3108 
3109     if (errno != 0)
3110         return (-errno);
3111     return (0);
3112 }
3113 #endif /* USE_ELF_CORE_DUMP */
3114 
3115 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3116 {
3117     init_thread(regs, infop);
3118 }
3119