xref: /openbmc/qemu/linux-user/elfload.c (revision beb1a917)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 #define ELF_PLATFORM   "x86_64"
152 
153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
154 {
155     regs->rax = 0;
156     regs->rsp = infop->start_stack;
157     regs->rip = infop->entry;
158 }
159 
160 #define ELF_NREG    27
161 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
162 
163 /*
164  * Note that ELF_NREG should be 29 as there should be place for
165  * TRAPNO and ERR "registers" as well but linux doesn't dump
166  * those.
167  *
168  * See linux kernel: arch/x86/include/asm/elf.h
169  */
170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
171 {
172     (*regs)[0] = tswapreg(env->regs[15]);
173     (*regs)[1] = tswapreg(env->regs[14]);
174     (*regs)[2] = tswapreg(env->regs[13]);
175     (*regs)[3] = tswapreg(env->regs[12]);
176     (*regs)[4] = tswapreg(env->regs[R_EBP]);
177     (*regs)[5] = tswapreg(env->regs[R_EBX]);
178     (*regs)[6] = tswapreg(env->regs[11]);
179     (*regs)[7] = tswapreg(env->regs[10]);
180     (*regs)[8] = tswapreg(env->regs[9]);
181     (*regs)[9] = tswapreg(env->regs[8]);
182     (*regs)[10] = tswapreg(env->regs[R_EAX]);
183     (*regs)[11] = tswapreg(env->regs[R_ECX]);
184     (*regs)[12] = tswapreg(env->regs[R_EDX]);
185     (*regs)[13] = tswapreg(env->regs[R_ESI]);
186     (*regs)[14] = tswapreg(env->regs[R_EDI]);
187     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
188     (*regs)[16] = tswapreg(env->eip);
189     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
190     (*regs)[18] = tswapreg(env->eflags);
191     (*regs)[19] = tswapreg(env->regs[R_ESP]);
192     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
193     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
194     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
195     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
196     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
197     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
198     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
199 }
200 
201 #if ULONG_MAX > UINT32_MAX
202 #define INIT_GUEST_COMMPAGE
203 static bool init_guest_commpage(void)
204 {
205     /*
206      * The vsyscall page is at a high negative address aka kernel space,
207      * which means that we cannot actually allocate it with target_mmap.
208      * We still should be able to use page_set_flags, unless the user
209      * has specified -R reserved_va, which would trigger an assert().
210      */
211     if (reserved_va != 0 &&
212         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
213         error_report("Cannot allocate vsyscall page");
214         exit(EXIT_FAILURE);
215     }
216     page_set_flags(TARGET_VSYSCALL_PAGE,
217                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
218                    PAGE_EXEC | PAGE_VALID);
219     return true;
220 }
221 #endif
222 #else
223 
224 #define ELF_START_MMAP 0x80000000
225 
226 /*
227  * This is used to ensure we don't load something for the wrong architecture.
228  */
229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
230 
231 /*
232  * These are used to set parameters in the core dumps.
233  */
234 #define ELF_CLASS       ELFCLASS32
235 #define ELF_ARCH        EM_386
236 
237 #define ELF_PLATFORM get_elf_platform()
238 #define EXSTACK_DEFAULT true
239 
240 static const char *get_elf_platform(void)
241 {
242     static char elf_platform[] = "i386";
243     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
244     if (family > 6) {
245         family = 6;
246     }
247     if (family >= 3) {
248         elf_platform[1] = '0' + family;
249     }
250     return elf_platform;
251 }
252 
253 static inline void init_thread(struct target_pt_regs *regs,
254                                struct image_info *infop)
255 {
256     regs->esp = infop->start_stack;
257     regs->eip = infop->entry;
258 
259     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
260        starts %edx contains a pointer to a function which might be
261        registered using `atexit'.  This provides a mean for the
262        dynamic linker to call DT_FINI functions for shared libraries
263        that have been loaded before the code runs.
264 
265        A value of 0 tells we have no such handler.  */
266     regs->edx = 0;
267 }
268 
269 #define ELF_NREG    17
270 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
271 
272 /*
273  * Note that ELF_NREG should be 19 as there should be place for
274  * TRAPNO and ERR "registers" as well but linux doesn't dump
275  * those.
276  *
277  * See linux kernel: arch/x86/include/asm/elf.h
278  */
279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
280 {
281     (*regs)[0] = tswapreg(env->regs[R_EBX]);
282     (*regs)[1] = tswapreg(env->regs[R_ECX]);
283     (*regs)[2] = tswapreg(env->regs[R_EDX]);
284     (*regs)[3] = tswapreg(env->regs[R_ESI]);
285     (*regs)[4] = tswapreg(env->regs[R_EDI]);
286     (*regs)[5] = tswapreg(env->regs[R_EBP]);
287     (*regs)[6] = tswapreg(env->regs[R_EAX]);
288     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
289     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
290     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
291     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
292     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
293     (*regs)[12] = tswapreg(env->eip);
294     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
295     (*regs)[14] = tswapreg(env->eflags);
296     (*regs)[15] = tswapreg(env->regs[R_ESP]);
297     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
298 }
299 #endif
300 
301 #define USE_ELF_CORE_DUMP
302 #define ELF_EXEC_PAGESIZE       4096
303 
304 #endif
305 
306 #ifdef TARGET_ARM
307 
308 #ifndef TARGET_AARCH64
309 /* 32 bit ARM definitions */
310 
311 #define ELF_START_MMAP 0x80000000
312 
313 #define ELF_ARCH        EM_ARM
314 #define ELF_CLASS       ELFCLASS32
315 #define EXSTACK_DEFAULT true
316 
317 static inline void init_thread(struct target_pt_regs *regs,
318                                struct image_info *infop)
319 {
320     abi_long stack = infop->start_stack;
321     memset(regs, 0, sizeof(*regs));
322 
323     regs->uregs[16] = ARM_CPU_MODE_USR;
324     if (infop->entry & 1) {
325         regs->uregs[16] |= CPSR_T;
326     }
327     regs->uregs[15] = infop->entry & 0xfffffffe;
328     regs->uregs[13] = infop->start_stack;
329     /* FIXME - what to for failure of get_user()? */
330     get_user_ual(regs->uregs[2], stack + 8); /* envp */
331     get_user_ual(regs->uregs[1], stack + 4); /* envp */
332     /* XXX: it seems that r0 is zeroed after ! */
333     regs->uregs[0] = 0;
334     /* For uClinux PIC binaries.  */
335     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
336     regs->uregs[10] = infop->start_data;
337 
338     /* Support ARM FDPIC.  */
339     if (info_is_fdpic(infop)) {
340         /* As described in the ABI document, r7 points to the loadmap info
341          * prepared by the kernel. If an interpreter is needed, r8 points
342          * to the interpreter loadmap and r9 points to the interpreter
343          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
344          * r9 points to the main program PT_DYNAMIC info.
345          */
346         regs->uregs[7] = infop->loadmap_addr;
347         if (infop->interpreter_loadmap_addr) {
348             /* Executable is dynamically loaded.  */
349             regs->uregs[8] = infop->interpreter_loadmap_addr;
350             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
351         } else {
352             regs->uregs[8] = 0;
353             regs->uregs[9] = infop->pt_dynamic_addr;
354         }
355     }
356 }
357 
358 #define ELF_NREG    18
359 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
360 
361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
362 {
363     (*regs)[0] = tswapreg(env->regs[0]);
364     (*regs)[1] = tswapreg(env->regs[1]);
365     (*regs)[2] = tswapreg(env->regs[2]);
366     (*regs)[3] = tswapreg(env->regs[3]);
367     (*regs)[4] = tswapreg(env->regs[4]);
368     (*regs)[5] = tswapreg(env->regs[5]);
369     (*regs)[6] = tswapreg(env->regs[6]);
370     (*regs)[7] = tswapreg(env->regs[7]);
371     (*regs)[8] = tswapreg(env->regs[8]);
372     (*regs)[9] = tswapreg(env->regs[9]);
373     (*regs)[10] = tswapreg(env->regs[10]);
374     (*regs)[11] = tswapreg(env->regs[11]);
375     (*regs)[12] = tswapreg(env->regs[12]);
376     (*regs)[13] = tswapreg(env->regs[13]);
377     (*regs)[14] = tswapreg(env->regs[14]);
378     (*regs)[15] = tswapreg(env->regs[15]);
379 
380     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
381     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
382 }
383 
384 #define USE_ELF_CORE_DUMP
385 #define ELF_EXEC_PAGESIZE       4096
386 
387 enum
388 {
389     ARM_HWCAP_ARM_SWP       = 1 << 0,
390     ARM_HWCAP_ARM_HALF      = 1 << 1,
391     ARM_HWCAP_ARM_THUMB     = 1 << 2,
392     ARM_HWCAP_ARM_26BIT     = 1 << 3,
393     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
394     ARM_HWCAP_ARM_FPA       = 1 << 5,
395     ARM_HWCAP_ARM_VFP       = 1 << 6,
396     ARM_HWCAP_ARM_EDSP      = 1 << 7,
397     ARM_HWCAP_ARM_JAVA      = 1 << 8,
398     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
399     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
400     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
401     ARM_HWCAP_ARM_NEON      = 1 << 12,
402     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
403     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
404     ARM_HWCAP_ARM_TLS       = 1 << 15,
405     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
406     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
407     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
408     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
409     ARM_HWCAP_ARM_LPAE      = 1 << 20,
410     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
411 };
412 
413 enum {
414     ARM_HWCAP2_ARM_AES      = 1 << 0,
415     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
416     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
417     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
418     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
419 };
420 
421 /* The commpage only exists for 32 bit kernels */
422 
423 #define HI_COMMPAGE (intptr_t)0xffff0f00u
424 
425 static bool init_guest_commpage(void)
426 {
427     ARMCPU *cpu = ARM_CPU(thread_cpu);
428     abi_ptr commpage;
429     void *want;
430     void *addr;
431 
432     /*
433      * M-profile allocates maximum of 2GB address space, so can never
434      * allocate the commpage.  Skip it.
435      */
436     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
437         return true;
438     }
439 
440     commpage = HI_COMMPAGE & -qemu_host_page_size;
441     want = g2h_untagged(commpage);
442     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
443                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
444 
445     if (addr == MAP_FAILED) {
446         perror("Allocating guest commpage");
447         exit(EXIT_FAILURE);
448     }
449     if (addr != want) {
450         return false;
451     }
452 
453     /* Set kernel helper versions; rest of page is 0.  */
454     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
455 
456     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
457         perror("Protecting guest commpage");
458         exit(EXIT_FAILURE);
459     }
460 
461     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
462                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
463     return true;
464 }
465 
466 #define ELF_HWCAP get_elf_hwcap()
467 #define ELF_HWCAP2 get_elf_hwcap2()
468 
469 static uint32_t get_elf_hwcap(void)
470 {
471     ARMCPU *cpu = ARM_CPU(thread_cpu);
472     uint32_t hwcaps = 0;
473 
474     hwcaps |= ARM_HWCAP_ARM_SWP;
475     hwcaps |= ARM_HWCAP_ARM_HALF;
476     hwcaps |= ARM_HWCAP_ARM_THUMB;
477     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
478 
479     /* probe for the extra features */
480 #define GET_FEATURE(feat, hwcap) \
481     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
482 
483 #define GET_FEATURE_ID(feat, hwcap) \
484     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
485 
486     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
487     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
488     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
489     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
490     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
491     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
492     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
493     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
494     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
495     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
496 
497     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
498         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
499         hwcaps |= ARM_HWCAP_ARM_VFPv3;
500         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
501             hwcaps |= ARM_HWCAP_ARM_VFPD32;
502         } else {
503             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
504         }
505     }
506     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
507 
508     return hwcaps;
509 }
510 
511 static uint32_t get_elf_hwcap2(void)
512 {
513     ARMCPU *cpu = ARM_CPU(thread_cpu);
514     uint32_t hwcaps = 0;
515 
516     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
517     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
518     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
519     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
520     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
521     return hwcaps;
522 }
523 
524 #undef GET_FEATURE
525 #undef GET_FEATURE_ID
526 
527 #define ELF_PLATFORM get_elf_platform()
528 
529 static const char *get_elf_platform(void)
530 {
531     CPUARMState *env = thread_cpu->env_ptr;
532 
533 #if TARGET_BIG_ENDIAN
534 # define END  "b"
535 #else
536 # define END  "l"
537 #endif
538 
539     if (arm_feature(env, ARM_FEATURE_V8)) {
540         return "v8" END;
541     } else if (arm_feature(env, ARM_FEATURE_V7)) {
542         if (arm_feature(env, ARM_FEATURE_M)) {
543             return "v7m" END;
544         } else {
545             return "v7" END;
546         }
547     } else if (arm_feature(env, ARM_FEATURE_V6)) {
548         return "v6" END;
549     } else if (arm_feature(env, ARM_FEATURE_V5)) {
550         return "v5" END;
551     } else {
552         return "v4" END;
553     }
554 
555 #undef END
556 }
557 
558 #else
559 /* 64 bit ARM definitions */
560 #define ELF_START_MMAP 0x80000000
561 
562 #define ELF_ARCH        EM_AARCH64
563 #define ELF_CLASS       ELFCLASS64
564 #if TARGET_BIG_ENDIAN
565 # define ELF_PLATFORM    "aarch64_be"
566 #else
567 # define ELF_PLATFORM    "aarch64"
568 #endif
569 
570 static inline void init_thread(struct target_pt_regs *regs,
571                                struct image_info *infop)
572 {
573     abi_long stack = infop->start_stack;
574     memset(regs, 0, sizeof(*regs));
575 
576     regs->pc = infop->entry & ~0x3ULL;
577     regs->sp = stack;
578 }
579 
580 #define ELF_NREG    34
581 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
582 
583 static void elf_core_copy_regs(target_elf_gregset_t *regs,
584                                const CPUARMState *env)
585 {
586     int i;
587 
588     for (i = 0; i < 32; i++) {
589         (*regs)[i] = tswapreg(env->xregs[i]);
590     }
591     (*regs)[32] = tswapreg(env->pc);
592     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
593 }
594 
595 #define USE_ELF_CORE_DUMP
596 #define ELF_EXEC_PAGESIZE       4096
597 
598 enum {
599     ARM_HWCAP_A64_FP            = 1 << 0,
600     ARM_HWCAP_A64_ASIMD         = 1 << 1,
601     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
602     ARM_HWCAP_A64_AES           = 1 << 3,
603     ARM_HWCAP_A64_PMULL         = 1 << 4,
604     ARM_HWCAP_A64_SHA1          = 1 << 5,
605     ARM_HWCAP_A64_SHA2          = 1 << 6,
606     ARM_HWCAP_A64_CRC32         = 1 << 7,
607     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
608     ARM_HWCAP_A64_FPHP          = 1 << 9,
609     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
610     ARM_HWCAP_A64_CPUID         = 1 << 11,
611     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
612     ARM_HWCAP_A64_JSCVT         = 1 << 13,
613     ARM_HWCAP_A64_FCMA          = 1 << 14,
614     ARM_HWCAP_A64_LRCPC         = 1 << 15,
615     ARM_HWCAP_A64_DCPOP         = 1 << 16,
616     ARM_HWCAP_A64_SHA3          = 1 << 17,
617     ARM_HWCAP_A64_SM3           = 1 << 18,
618     ARM_HWCAP_A64_SM4           = 1 << 19,
619     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
620     ARM_HWCAP_A64_SHA512        = 1 << 21,
621     ARM_HWCAP_A64_SVE           = 1 << 22,
622     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
623     ARM_HWCAP_A64_DIT           = 1 << 24,
624     ARM_HWCAP_A64_USCAT         = 1 << 25,
625     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
626     ARM_HWCAP_A64_FLAGM         = 1 << 27,
627     ARM_HWCAP_A64_SSBS          = 1 << 28,
628     ARM_HWCAP_A64_SB            = 1 << 29,
629     ARM_HWCAP_A64_PACA          = 1 << 30,
630     ARM_HWCAP_A64_PACG          = 1UL << 31,
631 
632     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
633     ARM_HWCAP2_A64_SVE2         = 1 << 1,
634     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
635     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
636     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
637     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
638     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
639     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
640     ARM_HWCAP2_A64_FRINT        = 1 << 8,
641     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
642     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
643     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
644     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
645     ARM_HWCAP2_A64_I8MM         = 1 << 13,
646     ARM_HWCAP2_A64_BF16         = 1 << 14,
647     ARM_HWCAP2_A64_DGH          = 1 << 15,
648     ARM_HWCAP2_A64_RNG          = 1 << 16,
649     ARM_HWCAP2_A64_BTI          = 1 << 17,
650     ARM_HWCAP2_A64_MTE          = 1 << 18,
651     ARM_HWCAP2_A64_ECV          = 1 << 19,
652     ARM_HWCAP2_A64_AFP          = 1 << 20,
653     ARM_HWCAP2_A64_RPRES        = 1 << 21,
654     ARM_HWCAP2_A64_MTE3         = 1 << 22,
655     ARM_HWCAP2_A64_SME          = 1 << 23,
656     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
657     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
658     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
659     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
660     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
661     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
662     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
663 };
664 
665 #define ELF_HWCAP   get_elf_hwcap()
666 #define ELF_HWCAP2  get_elf_hwcap2()
667 
668 #define GET_FEATURE_ID(feat, hwcap) \
669     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
670 
671 static uint32_t get_elf_hwcap(void)
672 {
673     ARMCPU *cpu = ARM_CPU(thread_cpu);
674     uint32_t hwcaps = 0;
675 
676     hwcaps |= ARM_HWCAP_A64_FP;
677     hwcaps |= ARM_HWCAP_A64_ASIMD;
678     hwcaps |= ARM_HWCAP_A64_CPUID;
679 
680     /* probe for the extra features */
681 
682     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
683     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
684     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
685     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
686     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
687     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
688     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
689     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
690     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
691     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
692     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
693     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
694     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
695     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
696     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
697     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
698     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
699     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
700     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
701     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
702     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
703     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
704     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
705 
706     return hwcaps;
707 }
708 
709 static uint32_t get_elf_hwcap2(void)
710 {
711     ARMCPU *cpu = ARM_CPU(thread_cpu);
712     uint32_t hwcaps = 0;
713 
714     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
715     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
716     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
717     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
718     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
719     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
720     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
721     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
722     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
723     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
724     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
725     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
726     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
727     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
728     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
729     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
730     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
731     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
732     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
733                               ARM_HWCAP2_A64_SME_F32F32 |
734                               ARM_HWCAP2_A64_SME_B16F32 |
735                               ARM_HWCAP2_A64_SME_F16F32 |
736                               ARM_HWCAP2_A64_SME_I8I32));
737     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
738     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
739     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
740 
741     return hwcaps;
742 }
743 
744 #undef GET_FEATURE_ID
745 
746 #endif /* not TARGET_AARCH64 */
747 #endif /* TARGET_ARM */
748 
749 #ifdef TARGET_SPARC
750 #ifdef TARGET_SPARC64
751 
752 #define ELF_START_MMAP 0x80000000
753 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
754                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
755 #ifndef TARGET_ABI32
756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
757 #else
758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
759 #endif
760 
761 #define ELF_CLASS   ELFCLASS64
762 #define ELF_ARCH    EM_SPARCV9
763 #else
764 #define ELF_START_MMAP 0x80000000
765 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
766                     | HWCAP_SPARC_MULDIV)
767 #define ELF_CLASS   ELFCLASS32
768 #define ELF_ARCH    EM_SPARC
769 #endif /* TARGET_SPARC64 */
770 
771 static inline void init_thread(struct target_pt_regs *regs,
772                                struct image_info *infop)
773 {
774     /* Note that target_cpu_copy_regs does not read psr/tstate. */
775     regs->pc = infop->entry;
776     regs->npc = regs->pc + 4;
777     regs->y = 0;
778     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
779                         - TARGET_STACK_BIAS);
780 }
781 #endif /* TARGET_SPARC */
782 
783 #ifdef TARGET_PPC
784 
785 #define ELF_MACHINE    PPC_ELF_MACHINE
786 #define ELF_START_MMAP 0x80000000
787 
788 #if defined(TARGET_PPC64)
789 
790 #define elf_check_arch(x) ( (x) == EM_PPC64 )
791 
792 #define ELF_CLASS       ELFCLASS64
793 
794 #else
795 
796 #define ELF_CLASS       ELFCLASS32
797 #define EXSTACK_DEFAULT true
798 
799 #endif
800 
801 #define ELF_ARCH        EM_PPC
802 
803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
804    See arch/powerpc/include/asm/cputable.h.  */
805 enum {
806     QEMU_PPC_FEATURE_32 = 0x80000000,
807     QEMU_PPC_FEATURE_64 = 0x40000000,
808     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
809     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
810     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
811     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
812     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
813     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
814     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
815     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
816     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
817     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
818     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
819     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
820     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
821     QEMU_PPC_FEATURE_CELL = 0x00010000,
822     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
823     QEMU_PPC_FEATURE_SMT = 0x00004000,
824     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
825     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
826     QEMU_PPC_FEATURE_PA6T = 0x00000800,
827     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
828     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
829     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
830     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
831     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
832 
833     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
834     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
835 
836     /* Feature definitions in AT_HWCAP2.  */
837     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
838     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
839     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
840     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
841     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
842     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
843     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
844     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
845     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
846     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
847     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
848     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
849     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
850     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
851     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
852 };
853 
854 #define ELF_HWCAP get_elf_hwcap()
855 
856 static uint32_t get_elf_hwcap(void)
857 {
858     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
859     uint32_t features = 0;
860 
861     /* We don't have to be terribly complete here; the high points are
862        Altivec/FP/SPE support.  Anything else is just a bonus.  */
863 #define GET_FEATURE(flag, feature)                                      \
864     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
865 #define GET_FEATURE2(flags, feature) \
866     do { \
867         if ((cpu->env.insns_flags2 & flags) == flags) { \
868             features |= feature; \
869         } \
870     } while (0)
871     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
872     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
873     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
874     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
875     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
876     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
877     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
878     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
879     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
880     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
881     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
882                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
883                   QEMU_PPC_FEATURE_ARCH_2_06);
884 #undef GET_FEATURE
885 #undef GET_FEATURE2
886 
887     return features;
888 }
889 
890 #define ELF_HWCAP2 get_elf_hwcap2()
891 
892 static uint32_t get_elf_hwcap2(void)
893 {
894     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
895     uint32_t features = 0;
896 
897 #define GET_FEATURE(flag, feature)                                      \
898     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
899 #define GET_FEATURE2(flag, feature)                                      \
900     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
901 
902     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
903     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
904     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
905                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
906                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
907     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
908                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
909     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
910                  QEMU_PPC_FEATURE2_MMA);
911 
912 #undef GET_FEATURE
913 #undef GET_FEATURE2
914 
915     return features;
916 }
917 
918 /*
919  * The requirements here are:
920  * - keep the final alignment of sp (sp & 0xf)
921  * - make sure the 32-bit value at the first 16 byte aligned position of
922  *   AUXV is greater than 16 for glibc compatibility.
923  *   AT_IGNOREPPC is used for that.
924  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
925  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
926  */
927 #define DLINFO_ARCH_ITEMS       5
928 #define ARCH_DLINFO                                     \
929     do {                                                \
930         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
931         /*                                              \
932          * Handle glibc compatibility: these magic entries must \
933          * be at the lowest addresses in the final auxv.        \
934          */                                             \
935         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
936         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
937         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
938         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
939         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
940     } while (0)
941 
942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
943 {
944     _regs->gpr[1] = infop->start_stack;
945 #if defined(TARGET_PPC64)
946     if (get_ppc64_abi(infop) < 2) {
947         uint64_t val;
948         get_user_u64(val, infop->entry + 8);
949         _regs->gpr[2] = val + infop->load_bias;
950         get_user_u64(val, infop->entry);
951         infop->entry = val + infop->load_bias;
952     } else {
953         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
954     }
955 #endif
956     _regs->nip = infop->entry;
957 }
958 
959 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
960 #define ELF_NREG 48
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962 
963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
964 {
965     int i;
966     target_ulong ccr = 0;
967 
968     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
969         (*regs)[i] = tswapreg(env->gpr[i]);
970     }
971 
972     (*regs)[32] = tswapreg(env->nip);
973     (*regs)[33] = tswapreg(env->msr);
974     (*regs)[35] = tswapreg(env->ctr);
975     (*regs)[36] = tswapreg(env->lr);
976     (*regs)[37] = tswapreg(cpu_read_xer(env));
977 
978     ccr = ppc_get_cr(env);
979     (*regs)[38] = tswapreg(ccr);
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE       4096
984 
985 #endif
986 
987 #ifdef TARGET_LOONGARCH64
988 
989 #define ELF_START_MMAP 0x80000000
990 
991 #define ELF_CLASS   ELFCLASS64
992 #define ELF_ARCH    EM_LOONGARCH
993 #define EXSTACK_DEFAULT true
994 
995 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
996 
997 static inline void init_thread(struct target_pt_regs *regs,
998                                struct image_info *infop)
999 {
1000     /*Set crmd PG,DA = 1,0 */
1001     regs->csr.crmd = 2 << 3;
1002     regs->csr.era = infop->entry;
1003     regs->regs[3] = infop->start_stack;
1004 }
1005 
1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1007 #define ELF_NREG 45
1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1009 
1010 enum {
1011     TARGET_EF_R0 = 0,
1012     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1013     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1014 };
1015 
1016 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1017                                const CPULoongArchState *env)
1018 {
1019     int i;
1020 
1021     (*regs)[TARGET_EF_R0] = 0;
1022 
1023     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1024         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1025     }
1026 
1027     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1028     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1029 }
1030 
1031 #define USE_ELF_CORE_DUMP
1032 #define ELF_EXEC_PAGESIZE        4096
1033 
1034 #define ELF_HWCAP get_elf_hwcap()
1035 
1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1037 enum {
1038     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1039     HWCAP_LOONGARCH_LAM      = (1 << 1),
1040     HWCAP_LOONGARCH_UAL      = (1 << 2),
1041     HWCAP_LOONGARCH_FPU      = (1 << 3),
1042     HWCAP_LOONGARCH_LSX      = (1 << 4),
1043     HWCAP_LOONGARCH_LASX     = (1 << 5),
1044     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1045     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1046     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1047     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1048     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1049     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1050     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1051 };
1052 
1053 static uint32_t get_elf_hwcap(void)
1054 {
1055     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1056     uint32_t hwcaps = 0;
1057 
1058     hwcaps |= HWCAP_LOONGARCH_CRC32;
1059 
1060     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1061         hwcaps |= HWCAP_LOONGARCH_UAL;
1062     }
1063 
1064     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1065         hwcaps |= HWCAP_LOONGARCH_FPU;
1066     }
1067 
1068     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1069         hwcaps |= HWCAP_LOONGARCH_LAM;
1070     }
1071 
1072     return hwcaps;
1073 }
1074 
1075 #define ELF_PLATFORM "loongarch"
1076 
1077 #endif /* TARGET_LOONGARCH64 */
1078 
1079 #ifdef TARGET_MIPS
1080 
1081 #define ELF_START_MMAP 0x80000000
1082 
1083 #ifdef TARGET_MIPS64
1084 #define ELF_CLASS   ELFCLASS64
1085 #else
1086 #define ELF_CLASS   ELFCLASS32
1087 #endif
1088 #define ELF_ARCH    EM_MIPS
1089 #define EXSTACK_DEFAULT true
1090 
1091 #ifdef TARGET_ABI_MIPSN32
1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1093 #else
1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1095 #endif
1096 
1097 #define ELF_BASE_PLATFORM get_elf_base_platform()
1098 
1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1100     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1101     { return _base_platform; } } while (0)
1102 
1103 static const char *get_elf_base_platform(void)
1104 {
1105     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1106 
1107     /* 64 bit ISAs goes first */
1108     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1109     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1110     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1111     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1112     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1113     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1114     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1115 
1116     /* 32 bit ISAs */
1117     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1118     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1119     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1120     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1121     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1122 
1123     /* Fallback */
1124     return "mips";
1125 }
1126 #undef MATCH_PLATFORM_INSN
1127 
1128 static inline void init_thread(struct target_pt_regs *regs,
1129                                struct image_info *infop)
1130 {
1131     regs->cp0_status = 2 << CP0St_KSU;
1132     regs->cp0_epc = infop->entry;
1133     regs->regs[29] = infop->start_stack;
1134 }
1135 
1136 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1137 #define ELF_NREG 45
1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1139 
1140 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1141 enum {
1142 #ifdef TARGET_MIPS64
1143     TARGET_EF_R0 = 0,
1144 #else
1145     TARGET_EF_R0 = 6,
1146 #endif
1147     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1148     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1149     TARGET_EF_LO = TARGET_EF_R0 + 32,
1150     TARGET_EF_HI = TARGET_EF_R0 + 33,
1151     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1152     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1153     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1154     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1155 };
1156 
1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1159 {
1160     int i;
1161 
1162     for (i = 0; i < TARGET_EF_R0; i++) {
1163         (*regs)[i] = 0;
1164     }
1165     (*regs)[TARGET_EF_R0] = 0;
1166 
1167     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1168         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1169     }
1170 
1171     (*regs)[TARGET_EF_R26] = 0;
1172     (*regs)[TARGET_EF_R27] = 0;
1173     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1174     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1175     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1176     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1177     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1178     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1179 }
1180 
1181 #define USE_ELF_CORE_DUMP
1182 #define ELF_EXEC_PAGESIZE        4096
1183 
1184 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1185 enum {
1186     HWCAP_MIPS_R6           = (1 << 0),
1187     HWCAP_MIPS_MSA          = (1 << 1),
1188     HWCAP_MIPS_CRC32        = (1 << 2),
1189     HWCAP_MIPS_MIPS16       = (1 << 3),
1190     HWCAP_MIPS_MDMX         = (1 << 4),
1191     HWCAP_MIPS_MIPS3D       = (1 << 5),
1192     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1193     HWCAP_MIPS_DSP          = (1 << 7),
1194     HWCAP_MIPS_DSP2         = (1 << 8),
1195     HWCAP_MIPS_DSP3         = (1 << 9),
1196     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1197     HWCAP_LOONGSON_MMI      = (1 << 11),
1198     HWCAP_LOONGSON_EXT      = (1 << 12),
1199     HWCAP_LOONGSON_EXT2     = (1 << 13),
1200     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1201 };
1202 
1203 #define ELF_HWCAP get_elf_hwcap()
1204 
1205 #define GET_FEATURE_INSN(_flag, _hwcap) \
1206     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1207 
1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1209     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1210 
1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1212     do { \
1213         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1214             hwcaps |= _hwcap; \
1215         } \
1216     } while (0)
1217 
1218 static uint32_t get_elf_hwcap(void)
1219 {
1220     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1221     uint32_t hwcaps = 0;
1222 
1223     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1224                         2, HWCAP_MIPS_R6);
1225     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1226     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1227     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1228 
1229     return hwcaps;
1230 }
1231 
1232 #undef GET_FEATURE_REG_EQU
1233 #undef GET_FEATURE_REG_SET
1234 #undef GET_FEATURE_INSN
1235 
1236 #endif /* TARGET_MIPS */
1237 
1238 #ifdef TARGET_MICROBLAZE
1239 
1240 #define ELF_START_MMAP 0x80000000
1241 
1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1243 
1244 #define ELF_CLASS   ELFCLASS32
1245 #define ELF_ARCH    EM_MICROBLAZE
1246 
1247 static inline void init_thread(struct target_pt_regs *regs,
1248                                struct image_info *infop)
1249 {
1250     regs->pc = infop->entry;
1251     regs->r1 = infop->start_stack;
1252 
1253 }
1254 
1255 #define ELF_EXEC_PAGESIZE        4096
1256 
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_NREG 38
1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1260 
1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1263 {
1264     int i, pos = 0;
1265 
1266     for (i = 0; i < 32; i++) {
1267         (*regs)[pos++] = tswapreg(env->regs[i]);
1268     }
1269 
1270     (*regs)[pos++] = tswapreg(env->pc);
1271     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1272     (*regs)[pos++] = 0;
1273     (*regs)[pos++] = tswapreg(env->ear);
1274     (*regs)[pos++] = 0;
1275     (*regs)[pos++] = tswapreg(env->esr);
1276 }
1277 
1278 #endif /* TARGET_MICROBLAZE */
1279 
1280 #ifdef TARGET_NIOS2
1281 
1282 #define ELF_START_MMAP 0x80000000
1283 
1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1285 
1286 #define ELF_CLASS   ELFCLASS32
1287 #define ELF_ARCH    EM_ALTERA_NIOS2
1288 
1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1290 {
1291     regs->ea = infop->entry;
1292     regs->sp = infop->start_stack;
1293 }
1294 
1295 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1296 
1297 static bool init_guest_commpage(void)
1298 {
1299     static const uint8_t kuser_page[4 + 2 * 64] = {
1300         /* __kuser_helper_version */
1301         [0x00] = 0x02, 0x00, 0x00, 0x00,
1302 
1303         /* __kuser_cmpxchg */
1304         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1305                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1306 
1307         /* __kuser_sigtramp */
1308         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1309                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1310     };
1311 
1312     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1313     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1314                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1315 
1316     if (addr == MAP_FAILED) {
1317         perror("Allocating guest commpage");
1318         exit(EXIT_FAILURE);
1319     }
1320     if (addr != want) {
1321         return false;
1322     }
1323 
1324     memcpy(addr, kuser_page, sizeof(kuser_page));
1325 
1326     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1327         perror("Protecting guest commpage");
1328         exit(EXIT_FAILURE);
1329     }
1330 
1331     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1332                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1333     return true;
1334 }
1335 
1336 #define ELF_EXEC_PAGESIZE        4096
1337 
1338 #define USE_ELF_CORE_DUMP
1339 #define ELF_NREG 49
1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1341 
1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1343 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1344                                const CPUNios2State *env)
1345 {
1346     int i;
1347 
1348     (*regs)[0] = -1;
1349     for (i = 1; i < 8; i++)    /* r0-r7 */
1350         (*regs)[i] = tswapreg(env->regs[i + 7]);
1351 
1352     for (i = 8; i < 16; i++)   /* r8-r15 */
1353         (*regs)[i] = tswapreg(env->regs[i - 8]);
1354 
1355     for (i = 16; i < 24; i++)  /* r16-r23 */
1356         (*regs)[i] = tswapreg(env->regs[i + 7]);
1357     (*regs)[24] = -1;    /* R_ET */
1358     (*regs)[25] = -1;    /* R_BT */
1359     (*regs)[26] = tswapreg(env->regs[R_GP]);
1360     (*regs)[27] = tswapreg(env->regs[R_SP]);
1361     (*regs)[28] = tswapreg(env->regs[R_FP]);
1362     (*regs)[29] = tswapreg(env->regs[R_EA]);
1363     (*regs)[30] = -1;    /* R_SSTATUS */
1364     (*regs)[31] = tswapreg(env->regs[R_RA]);
1365 
1366     (*regs)[32] = tswapreg(env->pc);
1367 
1368     (*regs)[33] = -1; /* R_STATUS */
1369     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1370 
1371     for (i = 35; i < 49; i++)    /* ... */
1372         (*regs)[i] = -1;
1373 }
1374 
1375 #endif /* TARGET_NIOS2 */
1376 
1377 #ifdef TARGET_OPENRISC
1378 
1379 #define ELF_START_MMAP 0x08000000
1380 
1381 #define ELF_ARCH EM_OPENRISC
1382 #define ELF_CLASS ELFCLASS32
1383 #define ELF_DATA  ELFDATA2MSB
1384 
1385 static inline void init_thread(struct target_pt_regs *regs,
1386                                struct image_info *infop)
1387 {
1388     regs->pc = infop->entry;
1389     regs->gpr[1] = infop->start_stack;
1390 }
1391 
1392 #define USE_ELF_CORE_DUMP
1393 #define ELF_EXEC_PAGESIZE 8192
1394 
1395 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1396 #define ELF_NREG 34 /* gprs and pc, sr */
1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1398 
1399 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1400                                const CPUOpenRISCState *env)
1401 {
1402     int i;
1403 
1404     for (i = 0; i < 32; i++) {
1405         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1406     }
1407     (*regs)[32] = tswapreg(env->pc);
1408     (*regs)[33] = tswapreg(cpu_get_sr(env));
1409 }
1410 #define ELF_HWCAP 0
1411 #define ELF_PLATFORM NULL
1412 
1413 #endif /* TARGET_OPENRISC */
1414 
1415 #ifdef TARGET_SH4
1416 
1417 #define ELF_START_MMAP 0x80000000
1418 
1419 #define ELF_CLASS ELFCLASS32
1420 #define ELF_ARCH  EM_SH
1421 
1422 static inline void init_thread(struct target_pt_regs *regs,
1423                                struct image_info *infop)
1424 {
1425     /* Check other registers XXXXX */
1426     regs->pc = infop->entry;
1427     regs->regs[15] = infop->start_stack;
1428 }
1429 
1430 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1431 #define ELF_NREG 23
1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1433 
1434 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1435 enum {
1436     TARGET_REG_PC = 16,
1437     TARGET_REG_PR = 17,
1438     TARGET_REG_SR = 18,
1439     TARGET_REG_GBR = 19,
1440     TARGET_REG_MACH = 20,
1441     TARGET_REG_MACL = 21,
1442     TARGET_REG_SYSCALL = 22
1443 };
1444 
1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1446                                       const CPUSH4State *env)
1447 {
1448     int i;
1449 
1450     for (i = 0; i < 16; i++) {
1451         (*regs)[i] = tswapreg(env->gregs[i]);
1452     }
1453 
1454     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1455     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1456     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1457     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1458     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1459     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1460     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1461 }
1462 
1463 #define USE_ELF_CORE_DUMP
1464 #define ELF_EXEC_PAGESIZE        4096
1465 
1466 enum {
1467     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1468     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1469     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1470     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1471     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1472     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1473     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1474     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1475     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1476     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1477 };
1478 
1479 #define ELF_HWCAP get_elf_hwcap()
1480 
1481 static uint32_t get_elf_hwcap(void)
1482 {
1483     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1484     uint32_t hwcap = 0;
1485 
1486     hwcap |= SH_CPU_HAS_FPU;
1487 
1488     if (cpu->env.features & SH_FEATURE_SH4A) {
1489         hwcap |= SH_CPU_HAS_LLSC;
1490     }
1491 
1492     return hwcap;
1493 }
1494 
1495 #endif
1496 
1497 #ifdef TARGET_CRIS
1498 
1499 #define ELF_START_MMAP 0x80000000
1500 
1501 #define ELF_CLASS ELFCLASS32
1502 #define ELF_ARCH  EM_CRIS
1503 
1504 static inline void init_thread(struct target_pt_regs *regs,
1505                                struct image_info *infop)
1506 {
1507     regs->erp = infop->entry;
1508 }
1509 
1510 #define ELF_EXEC_PAGESIZE        8192
1511 
1512 #endif
1513 
1514 #ifdef TARGET_M68K
1515 
1516 #define ELF_START_MMAP 0x80000000
1517 
1518 #define ELF_CLASS       ELFCLASS32
1519 #define ELF_ARCH        EM_68K
1520 
1521 /* ??? Does this need to do anything?
1522    #define ELF_PLAT_INIT(_r) */
1523 
1524 static inline void init_thread(struct target_pt_regs *regs,
1525                                struct image_info *infop)
1526 {
1527     regs->usp = infop->start_stack;
1528     regs->sr = 0;
1529     regs->pc = infop->entry;
1530 }
1531 
1532 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1533 #define ELF_NREG 20
1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1535 
1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1537 {
1538     (*regs)[0] = tswapreg(env->dregs[1]);
1539     (*regs)[1] = tswapreg(env->dregs[2]);
1540     (*regs)[2] = tswapreg(env->dregs[3]);
1541     (*regs)[3] = tswapreg(env->dregs[4]);
1542     (*regs)[4] = tswapreg(env->dregs[5]);
1543     (*regs)[5] = tswapreg(env->dregs[6]);
1544     (*regs)[6] = tswapreg(env->dregs[7]);
1545     (*regs)[7] = tswapreg(env->aregs[0]);
1546     (*regs)[8] = tswapreg(env->aregs[1]);
1547     (*regs)[9] = tswapreg(env->aregs[2]);
1548     (*regs)[10] = tswapreg(env->aregs[3]);
1549     (*regs)[11] = tswapreg(env->aregs[4]);
1550     (*regs)[12] = tswapreg(env->aregs[5]);
1551     (*regs)[13] = tswapreg(env->aregs[6]);
1552     (*regs)[14] = tswapreg(env->dregs[0]);
1553     (*regs)[15] = tswapreg(env->aregs[7]);
1554     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1555     (*regs)[17] = tswapreg(env->sr);
1556     (*regs)[18] = tswapreg(env->pc);
1557     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1558 }
1559 
1560 #define USE_ELF_CORE_DUMP
1561 #define ELF_EXEC_PAGESIZE       8192
1562 
1563 #endif
1564 
1565 #ifdef TARGET_ALPHA
1566 
1567 #define ELF_START_MMAP (0x30000000000ULL)
1568 
1569 #define ELF_CLASS      ELFCLASS64
1570 #define ELF_ARCH       EM_ALPHA
1571 
1572 static inline void init_thread(struct target_pt_regs *regs,
1573                                struct image_info *infop)
1574 {
1575     regs->pc = infop->entry;
1576     regs->ps = 8;
1577     regs->usp = infop->start_stack;
1578 }
1579 
1580 #define ELF_EXEC_PAGESIZE        8192
1581 
1582 #endif /* TARGET_ALPHA */
1583 
1584 #ifdef TARGET_S390X
1585 
1586 #define ELF_START_MMAP (0x20000000000ULL)
1587 
1588 #define ELF_CLASS	ELFCLASS64
1589 #define ELF_DATA	ELFDATA2MSB
1590 #define ELF_ARCH	EM_S390
1591 
1592 #include "elf.h"
1593 
1594 #define ELF_HWCAP get_elf_hwcap()
1595 
1596 #define GET_FEATURE(_feat, _hwcap) \
1597     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1598 
1599 uint32_t get_elf_hwcap(void)
1600 {
1601     /*
1602      * Let's assume we always have esan3 and zarch.
1603      * 31-bit processes can use 64-bit registers (high gprs).
1604      */
1605     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1606 
1607     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1608     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1609     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1610     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1611     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1612         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1613         hwcap |= HWCAP_S390_ETF3EH;
1614     }
1615     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1616     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1617 
1618     return hwcap;
1619 }
1620 
1621 const char *elf_hwcap_str(uint32_t bit)
1622 {
1623     static const char *hwcap_str[] = {
1624         [HWCAP_S390_NR_ESAN3]     = "esan3",
1625         [HWCAP_S390_NR_ZARCH]     = "zarch",
1626         [HWCAP_S390_NR_STFLE]     = "stfle",
1627         [HWCAP_S390_NR_MSA]       = "msa",
1628         [HWCAP_S390_NR_LDISP]     = "ldisp",
1629         [HWCAP_S390_NR_EIMM]      = "eimm",
1630         [HWCAP_S390_NR_DFP]       = "dfp",
1631         [HWCAP_S390_NR_HPAGE]     = "edat",
1632         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1633         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1634         [HWCAP_S390_NR_TE]        = "te",
1635         [HWCAP_S390_NR_VXRS]      = "vx",
1636         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1637         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1638         [HWCAP_S390_NR_GS]        = "gs",
1639         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1640         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1641         [HWCAP_S390_NR_SORT]      = "sort",
1642         [HWCAP_S390_NR_DFLT]      = "dflt",
1643         [HWCAP_S390_NR_NNPA]      = "nnpa",
1644         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1645         [HWCAP_S390_NR_SIE]       = "sie",
1646     };
1647 
1648     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1649 }
1650 
1651 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1652 {
1653     regs->psw.addr = infop->entry;
1654     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1655                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1656                      PSW_MASK_32;
1657     regs->gprs[15] = infop->start_stack;
1658 }
1659 
1660 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1661 #define ELF_NREG 27
1662 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1663 
1664 enum {
1665     TARGET_REG_PSWM = 0,
1666     TARGET_REG_PSWA = 1,
1667     TARGET_REG_GPRS = 2,
1668     TARGET_REG_ARS = 18,
1669     TARGET_REG_ORIG_R2 = 26,
1670 };
1671 
1672 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1673                                const CPUS390XState *env)
1674 {
1675     int i;
1676     uint32_t *aregs;
1677 
1678     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1679     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1680     for (i = 0; i < 16; i++) {
1681         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1682     }
1683     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1684     for (i = 0; i < 16; i++) {
1685         aregs[i] = tswap32(env->aregs[i]);
1686     }
1687     (*regs)[TARGET_REG_ORIG_R2] = 0;
1688 }
1689 
1690 #define USE_ELF_CORE_DUMP
1691 #define ELF_EXEC_PAGESIZE 4096
1692 
1693 #endif /* TARGET_S390X */
1694 
1695 #ifdef TARGET_RISCV
1696 
1697 #define ELF_START_MMAP 0x80000000
1698 #define ELF_ARCH  EM_RISCV
1699 
1700 #ifdef TARGET_RISCV32
1701 #define ELF_CLASS ELFCLASS32
1702 #else
1703 #define ELF_CLASS ELFCLASS64
1704 #endif
1705 
1706 #define ELF_HWCAP get_elf_hwcap()
1707 
1708 static uint32_t get_elf_hwcap(void)
1709 {
1710 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1711     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1712     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1713                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1714                     | MISA_BIT('V');
1715 
1716     return cpu->env.misa_ext & mask;
1717 #undef MISA_BIT
1718 }
1719 
1720 static inline void init_thread(struct target_pt_regs *regs,
1721                                struct image_info *infop)
1722 {
1723     regs->sepc = infop->entry;
1724     regs->sp = infop->start_stack;
1725 }
1726 
1727 #define ELF_EXEC_PAGESIZE 4096
1728 
1729 #endif /* TARGET_RISCV */
1730 
1731 #ifdef TARGET_HPPA
1732 
1733 #define ELF_START_MMAP  0x80000000
1734 #define ELF_CLASS       ELFCLASS32
1735 #define ELF_ARCH        EM_PARISC
1736 #define ELF_PLATFORM    "PARISC"
1737 #define STACK_GROWS_DOWN 0
1738 #define STACK_ALIGNMENT  64
1739 
1740 static inline void init_thread(struct target_pt_regs *regs,
1741                                struct image_info *infop)
1742 {
1743     regs->iaoq[0] = infop->entry;
1744     regs->iaoq[1] = infop->entry + 4;
1745     regs->gr[23] = 0;
1746     regs->gr[24] = infop->argv;
1747     regs->gr[25] = infop->argc;
1748     /* The top-of-stack contains a linkage buffer.  */
1749     regs->gr[30] = infop->start_stack + 64;
1750     regs->gr[31] = infop->entry;
1751 }
1752 
1753 #define LO_COMMPAGE  0
1754 
1755 static bool init_guest_commpage(void)
1756 {
1757     void *want = g2h_untagged(LO_COMMPAGE);
1758     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1759                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1760 
1761     if (addr == MAP_FAILED) {
1762         perror("Allocating guest commpage");
1763         exit(EXIT_FAILURE);
1764     }
1765     if (addr != want) {
1766         return false;
1767     }
1768 
1769     /*
1770      * On Linux, page zero is normally marked execute only + gateway.
1771      * Normal read or write is supposed to fail (thus PROT_NONE above),
1772      * but specific offsets have kernel code mapped to raise permissions
1773      * and implement syscalls.  Here, simply mark the page executable.
1774      * Special case the entry points during translation (see do_page_zero).
1775      */
1776     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1777                    PAGE_EXEC | PAGE_VALID);
1778     return true;
1779 }
1780 
1781 #endif /* TARGET_HPPA */
1782 
1783 #ifdef TARGET_XTENSA
1784 
1785 #define ELF_START_MMAP 0x20000000
1786 
1787 #define ELF_CLASS       ELFCLASS32
1788 #define ELF_ARCH        EM_XTENSA
1789 
1790 static inline void init_thread(struct target_pt_regs *regs,
1791                                struct image_info *infop)
1792 {
1793     regs->windowbase = 0;
1794     regs->windowstart = 1;
1795     regs->areg[1] = infop->start_stack;
1796     regs->pc = infop->entry;
1797     if (info_is_fdpic(infop)) {
1798         regs->areg[4] = infop->loadmap_addr;
1799         regs->areg[5] = infop->interpreter_loadmap_addr;
1800         if (infop->interpreter_loadmap_addr) {
1801             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1802         } else {
1803             regs->areg[6] = infop->pt_dynamic_addr;
1804         }
1805     }
1806 }
1807 
1808 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1809 #define ELF_NREG 128
1810 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1811 
1812 enum {
1813     TARGET_REG_PC,
1814     TARGET_REG_PS,
1815     TARGET_REG_LBEG,
1816     TARGET_REG_LEND,
1817     TARGET_REG_LCOUNT,
1818     TARGET_REG_SAR,
1819     TARGET_REG_WINDOWSTART,
1820     TARGET_REG_WINDOWBASE,
1821     TARGET_REG_THREADPTR,
1822     TARGET_REG_AR0 = 64,
1823 };
1824 
1825 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1826                                const CPUXtensaState *env)
1827 {
1828     unsigned i;
1829 
1830     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1831     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1832     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1833     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1834     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1835     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1836     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1837     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1838     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1839     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1840     for (i = 0; i < env->config->nareg; ++i) {
1841         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1842     }
1843 }
1844 
1845 #define USE_ELF_CORE_DUMP
1846 #define ELF_EXEC_PAGESIZE       4096
1847 
1848 #endif /* TARGET_XTENSA */
1849 
1850 #ifdef TARGET_HEXAGON
1851 
1852 #define ELF_START_MMAP 0x20000000
1853 
1854 #define ELF_CLASS       ELFCLASS32
1855 #define ELF_ARCH        EM_HEXAGON
1856 
1857 static inline void init_thread(struct target_pt_regs *regs,
1858                                struct image_info *infop)
1859 {
1860     regs->sepc = infop->entry;
1861     regs->sp = infop->start_stack;
1862 }
1863 
1864 #endif /* TARGET_HEXAGON */
1865 
1866 #ifndef ELF_BASE_PLATFORM
1867 #define ELF_BASE_PLATFORM (NULL)
1868 #endif
1869 
1870 #ifndef ELF_PLATFORM
1871 #define ELF_PLATFORM (NULL)
1872 #endif
1873 
1874 #ifndef ELF_MACHINE
1875 #define ELF_MACHINE ELF_ARCH
1876 #endif
1877 
1878 #ifndef elf_check_arch
1879 #define elf_check_arch(x) ((x) == ELF_ARCH)
1880 #endif
1881 
1882 #ifndef elf_check_abi
1883 #define elf_check_abi(x) (1)
1884 #endif
1885 
1886 #ifndef ELF_HWCAP
1887 #define ELF_HWCAP 0
1888 #endif
1889 
1890 #ifndef STACK_GROWS_DOWN
1891 #define STACK_GROWS_DOWN 1
1892 #endif
1893 
1894 #ifndef STACK_ALIGNMENT
1895 #define STACK_ALIGNMENT 16
1896 #endif
1897 
1898 #ifdef TARGET_ABI32
1899 #undef ELF_CLASS
1900 #define ELF_CLASS ELFCLASS32
1901 #undef bswaptls
1902 #define bswaptls(ptr) bswap32s(ptr)
1903 #endif
1904 
1905 #ifndef EXSTACK_DEFAULT
1906 #define EXSTACK_DEFAULT false
1907 #endif
1908 
1909 #include "elf.h"
1910 
1911 /* We must delay the following stanzas until after "elf.h". */
1912 #if defined(TARGET_AARCH64)
1913 
1914 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1915                                     const uint32_t *data,
1916                                     struct image_info *info,
1917                                     Error **errp)
1918 {
1919     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1920         if (pr_datasz != sizeof(uint32_t)) {
1921             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1922             return false;
1923         }
1924         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1925         info->note_flags = *data;
1926     }
1927     return true;
1928 }
1929 #define ARCH_USE_GNU_PROPERTY 1
1930 
1931 #else
1932 
1933 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1934                                     const uint32_t *data,
1935                                     struct image_info *info,
1936                                     Error **errp)
1937 {
1938     g_assert_not_reached();
1939 }
1940 #define ARCH_USE_GNU_PROPERTY 0
1941 
1942 #endif
1943 
1944 struct exec
1945 {
1946     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1947     unsigned int a_text;   /* length of text, in bytes */
1948     unsigned int a_data;   /* length of data, in bytes */
1949     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1950     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1951     unsigned int a_entry;  /* start address */
1952     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1953     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1954 };
1955 
1956 
1957 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1958 #define OMAGIC 0407
1959 #define NMAGIC 0410
1960 #define ZMAGIC 0413
1961 #define QMAGIC 0314
1962 
1963 /* Necessary parameters */
1964 #define TARGET_ELF_EXEC_PAGESIZE \
1965         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1966          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1967 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1968 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1969                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1970 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1971 
1972 #define DLINFO_ITEMS 16
1973 
1974 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1975 {
1976     memcpy(to, from, n);
1977 }
1978 
1979 #ifdef BSWAP_NEEDED
1980 static void bswap_ehdr(struct elfhdr *ehdr)
1981 {
1982     bswap16s(&ehdr->e_type);            /* Object file type */
1983     bswap16s(&ehdr->e_machine);         /* Architecture */
1984     bswap32s(&ehdr->e_version);         /* Object file version */
1985     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1986     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1987     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1988     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1989     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1990     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1991     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1992     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1993     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1994     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1995 }
1996 
1997 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1998 {
1999     int i;
2000     for (i = 0; i < phnum; ++i, ++phdr) {
2001         bswap32s(&phdr->p_type);        /* Segment type */
2002         bswap32s(&phdr->p_flags);       /* Segment flags */
2003         bswaptls(&phdr->p_offset);      /* Segment file offset */
2004         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2005         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2006         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2007         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2008         bswaptls(&phdr->p_align);       /* Segment alignment */
2009     }
2010 }
2011 
2012 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2013 {
2014     int i;
2015     for (i = 0; i < shnum; ++i, ++shdr) {
2016         bswap32s(&shdr->sh_name);
2017         bswap32s(&shdr->sh_type);
2018         bswaptls(&shdr->sh_flags);
2019         bswaptls(&shdr->sh_addr);
2020         bswaptls(&shdr->sh_offset);
2021         bswaptls(&shdr->sh_size);
2022         bswap32s(&shdr->sh_link);
2023         bswap32s(&shdr->sh_info);
2024         bswaptls(&shdr->sh_addralign);
2025         bswaptls(&shdr->sh_entsize);
2026     }
2027 }
2028 
2029 static void bswap_sym(struct elf_sym *sym)
2030 {
2031     bswap32s(&sym->st_name);
2032     bswaptls(&sym->st_value);
2033     bswaptls(&sym->st_size);
2034     bswap16s(&sym->st_shndx);
2035 }
2036 
2037 #ifdef TARGET_MIPS
2038 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2039 {
2040     bswap16s(&abiflags->version);
2041     bswap32s(&abiflags->ases);
2042     bswap32s(&abiflags->isa_ext);
2043     bswap32s(&abiflags->flags1);
2044     bswap32s(&abiflags->flags2);
2045 }
2046 #endif
2047 #else
2048 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2049 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2050 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2051 static inline void bswap_sym(struct elf_sym *sym) { }
2052 #ifdef TARGET_MIPS
2053 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2054 #endif
2055 #endif
2056 
2057 #ifdef USE_ELF_CORE_DUMP
2058 static int elf_core_dump(int, const CPUArchState *);
2059 #endif /* USE_ELF_CORE_DUMP */
2060 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2061 
2062 /* Verify the portions of EHDR within E_IDENT for the target.
2063    This can be performed before bswapping the entire header.  */
2064 static bool elf_check_ident(struct elfhdr *ehdr)
2065 {
2066     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2067             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2068             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2069             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2070             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2071             && ehdr->e_ident[EI_DATA] == ELF_DATA
2072             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2073 }
2074 
2075 /* Verify the portions of EHDR outside of E_IDENT for the target.
2076    This has to wait until after bswapping the header.  */
2077 static bool elf_check_ehdr(struct elfhdr *ehdr)
2078 {
2079     return (elf_check_arch(ehdr->e_machine)
2080             && elf_check_abi(ehdr->e_flags)
2081             && ehdr->e_ehsize == sizeof(struct elfhdr)
2082             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2083             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2084 }
2085 
2086 /*
2087  * 'copy_elf_strings()' copies argument/envelope strings from user
2088  * memory to free pages in kernel mem. These are in a format ready
2089  * to be put directly into the top of new user memory.
2090  *
2091  */
2092 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2093                                   abi_ulong p, abi_ulong stack_limit)
2094 {
2095     char *tmp;
2096     int len, i;
2097     abi_ulong top = p;
2098 
2099     if (!p) {
2100         return 0;       /* bullet-proofing */
2101     }
2102 
2103     if (STACK_GROWS_DOWN) {
2104         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2105         for (i = argc - 1; i >= 0; --i) {
2106             tmp = argv[i];
2107             if (!tmp) {
2108                 fprintf(stderr, "VFS: argc is wrong");
2109                 exit(-1);
2110             }
2111             len = strlen(tmp) + 1;
2112             tmp += len;
2113 
2114             if (len > (p - stack_limit)) {
2115                 return 0;
2116             }
2117             while (len) {
2118                 int bytes_to_copy = (len > offset) ? offset : len;
2119                 tmp -= bytes_to_copy;
2120                 p -= bytes_to_copy;
2121                 offset -= bytes_to_copy;
2122                 len -= bytes_to_copy;
2123 
2124                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2125 
2126                 if (offset == 0) {
2127                     memcpy_to_target(p, scratch, top - p);
2128                     top = p;
2129                     offset = TARGET_PAGE_SIZE;
2130                 }
2131             }
2132         }
2133         if (p != top) {
2134             memcpy_to_target(p, scratch + offset, top - p);
2135         }
2136     } else {
2137         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2138         for (i = 0; i < argc; ++i) {
2139             tmp = argv[i];
2140             if (!tmp) {
2141                 fprintf(stderr, "VFS: argc is wrong");
2142                 exit(-1);
2143             }
2144             len = strlen(tmp) + 1;
2145             if (len > (stack_limit - p)) {
2146                 return 0;
2147             }
2148             while (len) {
2149                 int bytes_to_copy = (len > remaining) ? remaining : len;
2150 
2151                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2152 
2153                 tmp += bytes_to_copy;
2154                 remaining -= bytes_to_copy;
2155                 p += bytes_to_copy;
2156                 len -= bytes_to_copy;
2157 
2158                 if (remaining == 0) {
2159                     memcpy_to_target(top, scratch, p - top);
2160                     top = p;
2161                     remaining = TARGET_PAGE_SIZE;
2162                 }
2163             }
2164         }
2165         if (p != top) {
2166             memcpy_to_target(top, scratch, p - top);
2167         }
2168     }
2169 
2170     return p;
2171 }
2172 
2173 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2174  * argument/environment space. Newer kernels (>2.6.33) allow more,
2175  * dependent on stack size, but guarantee at least 32 pages for
2176  * backwards compatibility.
2177  */
2178 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2179 
2180 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2181                                  struct image_info *info)
2182 {
2183     abi_ulong size, error, guard;
2184     int prot;
2185 
2186     size = guest_stack_size;
2187     if (size < STACK_LOWER_LIMIT) {
2188         size = STACK_LOWER_LIMIT;
2189     }
2190 
2191     if (STACK_GROWS_DOWN) {
2192         guard = TARGET_PAGE_SIZE;
2193         if (guard < qemu_real_host_page_size()) {
2194             guard = qemu_real_host_page_size();
2195         }
2196     } else {
2197         /* no guard page for hppa target where stack grows upwards. */
2198         guard = 0;
2199     }
2200 
2201     prot = PROT_READ | PROT_WRITE;
2202     if (info->exec_stack) {
2203         prot |= PROT_EXEC;
2204     }
2205     error = target_mmap(0, size + guard, prot,
2206                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2207     if (error == -1) {
2208         perror("mmap stack");
2209         exit(-1);
2210     }
2211 
2212     /* We reserve one extra page at the top of the stack as guard.  */
2213     if (STACK_GROWS_DOWN) {
2214         target_mprotect(error, guard, PROT_NONE);
2215         info->stack_limit = error + guard;
2216         return info->stack_limit + size - sizeof(void *);
2217     } else {
2218         info->stack_limit = error + size;
2219         return error;
2220     }
2221 }
2222 
2223 /* Map and zero the bss.  We need to explicitly zero any fractional pages
2224    after the data section (i.e. bss).  */
2225 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
2226 {
2227     uintptr_t host_start, host_map_start, host_end;
2228 
2229     last_bss = TARGET_PAGE_ALIGN(last_bss);
2230 
2231     /* ??? There is confusion between qemu_real_host_page_size and
2232        qemu_host_page_size here and elsewhere in target_mmap, which
2233        may lead to the end of the data section mapping from the file
2234        not being mapped.  At least there was an explicit test and
2235        comment for that here, suggesting that "the file size must
2236        be known".  The comment probably pre-dates the introduction
2237        of the fstat system call in target_mmap which does in fact
2238        find out the size.  What isn't clear is if the workaround
2239        here is still actually needed.  For now, continue with it,
2240        but merge it with the "normal" mmap that would allocate the bss.  */
2241 
2242     host_start = (uintptr_t) g2h_untagged(elf_bss);
2243     host_end = (uintptr_t) g2h_untagged(last_bss);
2244     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
2245 
2246     if (host_map_start < host_end) {
2247         void *p = mmap((void *)host_map_start, host_end - host_map_start,
2248                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2249         if (p == MAP_FAILED) {
2250             perror("cannot mmap brk");
2251             exit(-1);
2252         }
2253     }
2254 
2255     /* Ensure that the bss page(s) are valid */
2256     if ((page_get_flags(last_bss-1) & prot) != prot) {
2257         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss - 1,
2258                        prot | PAGE_VALID);
2259     }
2260 
2261     if (host_start < host_map_start) {
2262         memset((void *)host_start, 0, host_map_start - host_start);
2263     }
2264 }
2265 
2266 #if defined(TARGET_ARM)
2267 static int elf_is_fdpic(struct elfhdr *exec)
2268 {
2269     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2270 }
2271 #elif defined(TARGET_XTENSA)
2272 static int elf_is_fdpic(struct elfhdr *exec)
2273 {
2274     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2275 }
2276 #else
2277 /* Default implementation, always false.  */
2278 static int elf_is_fdpic(struct elfhdr *exec)
2279 {
2280     return 0;
2281 }
2282 #endif
2283 
2284 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2285 {
2286     uint16_t n;
2287     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2288 
2289     /* elf32_fdpic_loadseg */
2290     n = info->nsegs;
2291     while (n--) {
2292         sp -= 12;
2293         put_user_u32(loadsegs[n].addr, sp+0);
2294         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2295         put_user_u32(loadsegs[n].p_memsz, sp+8);
2296     }
2297 
2298     /* elf32_fdpic_loadmap */
2299     sp -= 4;
2300     put_user_u16(0, sp+0); /* version */
2301     put_user_u16(info->nsegs, sp+2); /* nsegs */
2302 
2303     info->personality = PER_LINUX_FDPIC;
2304     info->loadmap_addr = sp;
2305 
2306     return sp;
2307 }
2308 
2309 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2310                                    struct elfhdr *exec,
2311                                    struct image_info *info,
2312                                    struct image_info *interp_info)
2313 {
2314     abi_ulong sp;
2315     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2316     int size;
2317     int i;
2318     abi_ulong u_rand_bytes;
2319     uint8_t k_rand_bytes[16];
2320     abi_ulong u_platform, u_base_platform;
2321     const char *k_platform, *k_base_platform;
2322     const int n = sizeof(elf_addr_t);
2323 
2324     sp = p;
2325 
2326     /* Needs to be before we load the env/argc/... */
2327     if (elf_is_fdpic(exec)) {
2328         /* Need 4 byte alignment for these structs */
2329         sp &= ~3;
2330         sp = loader_build_fdpic_loadmap(info, sp);
2331         info->other_info = interp_info;
2332         if (interp_info) {
2333             interp_info->other_info = info;
2334             sp = loader_build_fdpic_loadmap(interp_info, sp);
2335             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2336             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2337         } else {
2338             info->interpreter_loadmap_addr = 0;
2339             info->interpreter_pt_dynamic_addr = 0;
2340         }
2341     }
2342 
2343     u_base_platform = 0;
2344     k_base_platform = ELF_BASE_PLATFORM;
2345     if (k_base_platform) {
2346         size_t len = strlen(k_base_platform) + 1;
2347         if (STACK_GROWS_DOWN) {
2348             sp -= (len + n - 1) & ~(n - 1);
2349             u_base_platform = sp;
2350             /* FIXME - check return value of memcpy_to_target() for failure */
2351             memcpy_to_target(sp, k_base_platform, len);
2352         } else {
2353             memcpy_to_target(sp, k_base_platform, len);
2354             u_base_platform = sp;
2355             sp += len + 1;
2356         }
2357     }
2358 
2359     u_platform = 0;
2360     k_platform = ELF_PLATFORM;
2361     if (k_platform) {
2362         size_t len = strlen(k_platform) + 1;
2363         if (STACK_GROWS_DOWN) {
2364             sp -= (len + n - 1) & ~(n - 1);
2365             u_platform = sp;
2366             /* FIXME - check return value of memcpy_to_target() for failure */
2367             memcpy_to_target(sp, k_platform, len);
2368         } else {
2369             memcpy_to_target(sp, k_platform, len);
2370             u_platform = sp;
2371             sp += len + 1;
2372         }
2373     }
2374 
2375     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2376      * the argv and envp pointers.
2377      */
2378     if (STACK_GROWS_DOWN) {
2379         sp = QEMU_ALIGN_DOWN(sp, 16);
2380     } else {
2381         sp = QEMU_ALIGN_UP(sp, 16);
2382     }
2383 
2384     /*
2385      * Generate 16 random bytes for userspace PRNG seeding.
2386      */
2387     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2388     if (STACK_GROWS_DOWN) {
2389         sp -= 16;
2390         u_rand_bytes = sp;
2391         /* FIXME - check return value of memcpy_to_target() for failure */
2392         memcpy_to_target(sp, k_rand_bytes, 16);
2393     } else {
2394         memcpy_to_target(sp, k_rand_bytes, 16);
2395         u_rand_bytes = sp;
2396         sp += 16;
2397     }
2398 
2399     size = (DLINFO_ITEMS + 1) * 2;
2400     if (k_base_platform)
2401         size += 2;
2402     if (k_platform)
2403         size += 2;
2404 #ifdef DLINFO_ARCH_ITEMS
2405     size += DLINFO_ARCH_ITEMS * 2;
2406 #endif
2407 #ifdef ELF_HWCAP2
2408     size += 2;
2409 #endif
2410     info->auxv_len = size * n;
2411 
2412     size += envc + argc + 2;
2413     size += 1;  /* argc itself */
2414     size *= n;
2415 
2416     /* Allocate space and finalize stack alignment for entry now.  */
2417     if (STACK_GROWS_DOWN) {
2418         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2419         sp = u_argc;
2420     } else {
2421         u_argc = sp;
2422         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2423     }
2424 
2425     u_argv = u_argc + n;
2426     u_envp = u_argv + (argc + 1) * n;
2427     u_auxv = u_envp + (envc + 1) * n;
2428     info->saved_auxv = u_auxv;
2429     info->argc = argc;
2430     info->envc = envc;
2431     info->argv = u_argv;
2432     info->envp = u_envp;
2433 
2434     /* This is correct because Linux defines
2435      * elf_addr_t as Elf32_Off / Elf64_Off
2436      */
2437 #define NEW_AUX_ENT(id, val) do {               \
2438         put_user_ual(id, u_auxv);  u_auxv += n; \
2439         put_user_ual(val, u_auxv); u_auxv += n; \
2440     } while(0)
2441 
2442 #ifdef ARCH_DLINFO
2443     /*
2444      * ARCH_DLINFO must come first so platform specific code can enforce
2445      * special alignment requirements on the AUXV if necessary (eg. PPC).
2446      */
2447     ARCH_DLINFO;
2448 #endif
2449     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2450      * on info->auxv_len will trigger.
2451      */
2452     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2453     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2454     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2455     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2456         /* Target doesn't support host page size alignment */
2457         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2458     } else {
2459         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2460                                                qemu_host_page_size)));
2461     }
2462     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2463     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2464     NEW_AUX_ENT(AT_ENTRY, info->entry);
2465     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2466     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2467     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2468     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2469     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2470     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2471     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2472     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2473     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2474 
2475 #ifdef ELF_HWCAP2
2476     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2477 #endif
2478 
2479     if (u_base_platform) {
2480         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2481     }
2482     if (u_platform) {
2483         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2484     }
2485     NEW_AUX_ENT (AT_NULL, 0);
2486 #undef NEW_AUX_ENT
2487 
2488     /* Check that our initial calculation of the auxv length matches how much
2489      * we actually put into it.
2490      */
2491     assert(info->auxv_len == u_auxv - info->saved_auxv);
2492 
2493     put_user_ual(argc, u_argc);
2494 
2495     p = info->arg_strings;
2496     for (i = 0; i < argc; ++i) {
2497         put_user_ual(p, u_argv);
2498         u_argv += n;
2499         p += target_strlen(p) + 1;
2500     }
2501     put_user_ual(0, u_argv);
2502 
2503     p = info->env_strings;
2504     for (i = 0; i < envc; ++i) {
2505         put_user_ual(p, u_envp);
2506         u_envp += n;
2507         p += target_strlen(p) + 1;
2508     }
2509     put_user_ual(0, u_envp);
2510 
2511     return sp;
2512 }
2513 
2514 #if defined(HI_COMMPAGE)
2515 #define LO_COMMPAGE -1
2516 #elif defined(LO_COMMPAGE)
2517 #define HI_COMMPAGE 0
2518 #else
2519 #define HI_COMMPAGE 0
2520 #define LO_COMMPAGE -1
2521 #ifndef INIT_GUEST_COMMPAGE
2522 #define init_guest_commpage() true
2523 #endif
2524 #endif
2525 
2526 static void pgb_fail_in_use(const char *image_name)
2527 {
2528     error_report("%s: requires virtual address space that is in use "
2529                  "(omit the -B option or choose a different value)",
2530                  image_name);
2531     exit(EXIT_FAILURE);
2532 }
2533 
2534 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2535                                 abi_ulong guest_hiaddr, long align)
2536 {
2537     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2538     void *addr, *test;
2539 
2540     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2541         fprintf(stderr, "Requested guest base %p does not satisfy "
2542                 "host minimum alignment (0x%lx)\n",
2543                 (void *)guest_base, align);
2544         exit(EXIT_FAILURE);
2545     }
2546 
2547     /* Sanity check the guest binary. */
2548     if (reserved_va) {
2549         if (guest_hiaddr > reserved_va) {
2550             error_report("%s: requires more than reserved virtual "
2551                          "address space (0x%" PRIx64 " > 0x%lx)",
2552                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2553             exit(EXIT_FAILURE);
2554         }
2555     } else {
2556 #if HOST_LONG_BITS < TARGET_ABI_BITS
2557         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2558             error_report("%s: requires more virtual address space "
2559                          "than the host can provide (0x%" PRIx64 ")",
2560                          image_name, (uint64_t)guest_hiaddr + 1 - guest_base);
2561             exit(EXIT_FAILURE);
2562         }
2563 #endif
2564     }
2565 
2566     /*
2567      * Expand the allocation to the entire reserved_va.
2568      * Exclude the mmap_min_addr hole.
2569      */
2570     if (reserved_va) {
2571         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2572                         : mmap_min_addr - guest_base);
2573         guest_hiaddr = reserved_va;
2574     }
2575 
2576     /* Reserve the address space for the binary, or reserved_va. */
2577     test = g2h_untagged(guest_loaddr);
2578     addr = mmap(test, guest_hiaddr - guest_loaddr + 1, PROT_NONE, flags, -1, 0);
2579     if (test != addr) {
2580         pgb_fail_in_use(image_name);
2581     }
2582     qemu_log_mask(CPU_LOG_PAGE,
2583                   "%s: base @ %p for %" PRIu64 " bytes\n",
2584                   __func__, addr, (uint64_t)guest_hiaddr - guest_loaddr + 1);
2585 }
2586 
2587 /**
2588  * pgd_find_hole_fallback: potential mmap address
2589  * @guest_size: size of available space
2590  * @brk: location of break
2591  * @align: memory alignment
2592  *
2593  * This is a fallback method for finding a hole in the host address
2594  * space if we don't have the benefit of being able to access
2595  * /proc/self/map. It can potentially take a very long time as we can
2596  * only dumbly iterate up the host address space seeing if the
2597  * allocation would work.
2598  */
2599 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2600                                         long align, uintptr_t offset)
2601 {
2602     uintptr_t base;
2603 
2604     /* Start (aligned) at the bottom and work our way up */
2605     base = ROUND_UP(mmap_min_addr, align);
2606 
2607     while (true) {
2608         uintptr_t align_start, end;
2609         align_start = ROUND_UP(base, align);
2610         end = align_start + guest_size + offset;
2611 
2612         /* if brk is anywhere in the range give ourselves some room to grow. */
2613         if (align_start <= brk && brk < end) {
2614             base = brk + (16 * MiB);
2615             continue;
2616         } else if (align_start + guest_size < align_start) {
2617             /* we have run out of space */
2618             return -1;
2619         } else {
2620             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2621                 MAP_FIXED_NOREPLACE;
2622             void * mmap_start = mmap((void *) align_start, guest_size,
2623                                      PROT_NONE, flags, -1, 0);
2624             if (mmap_start != MAP_FAILED) {
2625                 munmap(mmap_start, guest_size);
2626                 if (mmap_start == (void *) align_start) {
2627                     qemu_log_mask(CPU_LOG_PAGE,
2628                                   "%s: base @ %p for %" PRIdPTR" bytes\n",
2629                                   __func__, mmap_start + offset, guest_size);
2630                     return (uintptr_t) mmap_start + offset;
2631                 }
2632             }
2633             base += qemu_host_page_size;
2634         }
2635     }
2636 }
2637 
2638 /* Return value for guest_base, or -1 if no hole found. */
2639 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2640                                long align, uintptr_t offset)
2641 {
2642     GSList *maps, *iter;
2643     uintptr_t this_start, this_end, next_start, brk;
2644     intptr_t ret = -1;
2645 
2646     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2647 
2648     maps = read_self_maps();
2649 
2650     /* Read brk after we've read the maps, which will malloc. */
2651     brk = (uintptr_t)sbrk(0);
2652 
2653     if (!maps) {
2654         return pgd_find_hole_fallback(guest_size, brk, align, offset);
2655     }
2656 
2657     /* The first hole is before the first map entry. */
2658     this_start = mmap_min_addr;
2659 
2660     for (iter = maps; iter;
2661          this_start = next_start, iter = g_slist_next(iter)) {
2662         uintptr_t align_start, hole_size;
2663 
2664         this_end = ((MapInfo *)iter->data)->start;
2665         next_start = ((MapInfo *)iter->data)->end;
2666         align_start = ROUND_UP(this_start + offset, align);
2667 
2668         /* Skip holes that are too small. */
2669         if (align_start >= this_end) {
2670             continue;
2671         }
2672         hole_size = this_end - align_start;
2673         if (hole_size < guest_size) {
2674             continue;
2675         }
2676 
2677         /* If this hole contains brk, give ourselves some room to grow. */
2678         if (this_start <= brk && brk < this_end) {
2679             hole_size -= guest_size;
2680             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2681                 align_start += 1 * GiB;
2682             } else if (hole_size >= 16 * MiB) {
2683                 align_start += 16 * MiB;
2684             } else {
2685                 align_start = (this_end - guest_size) & -align;
2686                 if (align_start < this_start) {
2687                     continue;
2688                 }
2689             }
2690         }
2691 
2692         /* Record the lowest successful match. */
2693         if (ret < 0) {
2694             ret = align_start;
2695         }
2696         /* If this hole contains the identity map, select it. */
2697         if (align_start <= guest_loaddr &&
2698             guest_loaddr + guest_size <= this_end) {
2699             ret = 0;
2700         }
2701         /* If this hole ends above the identity map, stop looking. */
2702         if (this_end >= guest_loaddr) {
2703             break;
2704         }
2705     }
2706     free_self_maps(maps);
2707 
2708     if (ret != -1) {
2709         qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR
2710                       " for %" PRIuPTR " bytes\n",
2711                       __func__, ret, guest_size);
2712     }
2713 
2714     return ret;
2715 }
2716 
2717 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2718                        abi_ulong orig_hiaddr, long align)
2719 {
2720     uintptr_t loaddr = orig_loaddr;
2721     uintptr_t hiaddr = orig_hiaddr;
2722     uintptr_t offset = 0;
2723     uintptr_t addr;
2724 
2725     if (hiaddr != orig_hiaddr) {
2726         error_report("%s: requires virtual address space that the "
2727                      "host cannot provide (0x%" PRIx64 ")",
2728                      image_name, (uint64_t)orig_hiaddr + 1);
2729         exit(EXIT_FAILURE);
2730     }
2731 
2732     loaddr &= -align;
2733     if (HI_COMMPAGE) {
2734         /*
2735          * Extend the allocation to include the commpage.
2736          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2737          * need to ensure there is space bellow the guest_base so we
2738          * can map the commpage in the place needed when the address
2739          * arithmetic wraps around.
2740          */
2741         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2742             hiaddr = UINT32_MAX;
2743         } else {
2744             offset = -(HI_COMMPAGE & -align);
2745         }
2746     } else if (LO_COMMPAGE != -1) {
2747         loaddr = MIN(loaddr, LO_COMMPAGE & -align);
2748     }
2749 
2750     addr = pgb_find_hole(loaddr, hiaddr - loaddr + 1, align, offset);
2751     if (addr == -1) {
2752         /*
2753          * If HI_COMMPAGE, there *might* be a non-consecutive allocation
2754          * that can satisfy both.  But as the normal arm32 link base address
2755          * is ~32k, and we extend down to include the commpage, making the
2756          * overhead only ~96k, this is unlikely.
2757          */
2758         error_report("%s: Unable to allocate %#zx bytes of "
2759                      "virtual address space", image_name,
2760                      (size_t)(hiaddr - loaddr));
2761         exit(EXIT_FAILURE);
2762     }
2763 
2764     guest_base = addr;
2765 
2766     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n",
2767                   __func__, addr, hiaddr - loaddr);
2768 }
2769 
2770 static void pgb_dynamic(const char *image_name, long align)
2771 {
2772     /*
2773      * The executable is dynamic and does not require a fixed address.
2774      * All we need is a commpage that satisfies align.
2775      * If we do not need a commpage, leave guest_base == 0.
2776      */
2777     if (HI_COMMPAGE) {
2778         uintptr_t addr, commpage;
2779 
2780         /* 64-bit hosts should have used reserved_va. */
2781         assert(sizeof(uintptr_t) == 4);
2782 
2783         /*
2784          * By putting the commpage at the first hole, that puts guest_base
2785          * just above that, and maximises the positive guest addresses.
2786          */
2787         commpage = HI_COMMPAGE & -align;
2788         addr = pgb_find_hole(commpage, -commpage, align, 0);
2789         assert(addr != -1);
2790         guest_base = addr;
2791     }
2792 }
2793 
2794 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2795                             abi_ulong guest_hiaddr, long align)
2796 {
2797     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2798     void *addr, *test;
2799 
2800     if (guest_hiaddr > reserved_va) {
2801         error_report("%s: requires more than reserved virtual "
2802                      "address space (0x%" PRIx64 " > 0x%lx)",
2803                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2804         exit(EXIT_FAILURE);
2805     }
2806 
2807     /* Widen the "image" to the entire reserved address space. */
2808     pgb_static(image_name, 0, reserved_va, align);
2809 
2810     /* osdep.h defines this as 0 if it's missing */
2811     flags |= MAP_FIXED_NOREPLACE;
2812 
2813     /* Reserve the memory on the host. */
2814     assert(guest_base != 0);
2815     test = g2h_untagged(0);
2816     addr = mmap(test, reserved_va + 1, PROT_NONE, flags, -1, 0);
2817     if (addr == MAP_FAILED || addr != test) {
2818         error_report("Unable to reserve 0x%lx bytes of virtual address "
2819                      "space at %p (%s) for use as guest address space (check your "
2820                      "virtual memory ulimit setting, mmap_min_addr or reserve less "
2821                      "using qemu-user's -R option)",
2822                      reserved_va + 1, test, strerror(errno));
2823         exit(EXIT_FAILURE);
2824     }
2825 
2826     qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n",
2827                   __func__, addr, reserved_va + 1);
2828 }
2829 
2830 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2831                       abi_ulong guest_hiaddr)
2832 {
2833     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2834     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2835 
2836     if (have_guest_base) {
2837         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2838     } else if (reserved_va) {
2839         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2840     } else if (guest_loaddr) {
2841         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2842     } else {
2843         pgb_dynamic(image_name, align);
2844     }
2845 
2846     /* Reserve and initialize the commpage. */
2847     if (!init_guest_commpage()) {
2848         /*
2849          * With have_guest_base, the user has selected the address and
2850          * we are trying to work with that.  Otherwise, we have selected
2851          * free space and init_guest_commpage must succeeded.
2852          */
2853         assert(have_guest_base);
2854         pgb_fail_in_use(image_name);
2855     }
2856 
2857     assert(QEMU_IS_ALIGNED(guest_base, align));
2858     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2859                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2860 }
2861 
2862 enum {
2863     /* The string "GNU\0" as a magic number. */
2864     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2865     NOTE_DATA_SZ = 1 * KiB,
2866     NOTE_NAME_SZ = 4,
2867     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2868 };
2869 
2870 /*
2871  * Process a single gnu_property entry.
2872  * Return false for error.
2873  */
2874 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2875                                struct image_info *info, bool have_prev_type,
2876                                uint32_t *prev_type, Error **errp)
2877 {
2878     uint32_t pr_type, pr_datasz, step;
2879 
2880     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2881         goto error_data;
2882     }
2883     datasz -= *off;
2884     data += *off / sizeof(uint32_t);
2885 
2886     if (datasz < 2 * sizeof(uint32_t)) {
2887         goto error_data;
2888     }
2889     pr_type = data[0];
2890     pr_datasz = data[1];
2891     data += 2;
2892     datasz -= 2 * sizeof(uint32_t);
2893     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2894     if (step > datasz) {
2895         goto error_data;
2896     }
2897 
2898     /* Properties are supposed to be unique and sorted on pr_type. */
2899     if (have_prev_type && pr_type <= *prev_type) {
2900         if (pr_type == *prev_type) {
2901             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2902         } else {
2903             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2904         }
2905         return false;
2906     }
2907     *prev_type = pr_type;
2908 
2909     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2910         return false;
2911     }
2912 
2913     *off += 2 * sizeof(uint32_t) + step;
2914     return true;
2915 
2916  error_data:
2917     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2918     return false;
2919 }
2920 
2921 /* Process NT_GNU_PROPERTY_TYPE_0. */
2922 static bool parse_elf_properties(int image_fd,
2923                                  struct image_info *info,
2924                                  const struct elf_phdr *phdr,
2925                                  char bprm_buf[BPRM_BUF_SIZE],
2926                                  Error **errp)
2927 {
2928     union {
2929         struct elf_note nhdr;
2930         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2931     } note;
2932 
2933     int n, off, datasz;
2934     bool have_prev_type;
2935     uint32_t prev_type;
2936 
2937     /* Unless the arch requires properties, ignore them. */
2938     if (!ARCH_USE_GNU_PROPERTY) {
2939         return true;
2940     }
2941 
2942     /* If the properties are crazy large, that's too bad. */
2943     n = phdr->p_filesz;
2944     if (n > sizeof(note)) {
2945         error_setg(errp, "PT_GNU_PROPERTY too large");
2946         return false;
2947     }
2948     if (n < sizeof(note.nhdr)) {
2949         error_setg(errp, "PT_GNU_PROPERTY too small");
2950         return false;
2951     }
2952 
2953     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2954         memcpy(&note, bprm_buf + phdr->p_offset, n);
2955     } else {
2956         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2957         if (len != n) {
2958             error_setg_errno(errp, errno, "Error reading file header");
2959             return false;
2960         }
2961     }
2962 
2963     /*
2964      * The contents of a valid PT_GNU_PROPERTY is a sequence
2965      * of uint32_t -- swap them all now.
2966      */
2967 #ifdef BSWAP_NEEDED
2968     for (int i = 0; i < n / 4; i++) {
2969         bswap32s(note.data + i);
2970     }
2971 #endif
2972 
2973     /*
2974      * Note that nhdr is 3 words, and that the "name" described by namesz
2975      * immediately follows nhdr and is thus at the 4th word.  Further, all
2976      * of the inputs to the kernel's round_up are multiples of 4.
2977      */
2978     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2979         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2980         note.data[3] != GNU0_MAGIC) {
2981         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2982         return false;
2983     }
2984     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2985 
2986     datasz = note.nhdr.n_descsz + off;
2987     if (datasz > n) {
2988         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2989         return false;
2990     }
2991 
2992     have_prev_type = false;
2993     prev_type = 0;
2994     while (1) {
2995         if (off == datasz) {
2996             return true;  /* end, exit ok */
2997         }
2998         if (!parse_elf_property(note.data, &off, datasz, info,
2999                                 have_prev_type, &prev_type, errp)) {
3000             return false;
3001         }
3002         have_prev_type = true;
3003     }
3004 }
3005 
3006 /* Load an ELF image into the address space.
3007 
3008    IMAGE_NAME is the filename of the image, to use in error messages.
3009    IMAGE_FD is the open file descriptor for the image.
3010 
3011    BPRM_BUF is a copy of the beginning of the file; this of course
3012    contains the elf file header at offset 0.  It is assumed that this
3013    buffer is sufficiently aligned to present no problems to the host
3014    in accessing data at aligned offsets within the buffer.
3015 
3016    On return: INFO values will be filled in, as necessary or available.  */
3017 
3018 static void load_elf_image(const char *image_name, int image_fd,
3019                            struct image_info *info, char **pinterp_name,
3020                            char bprm_buf[BPRM_BUF_SIZE])
3021 {
3022     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3023     struct elf_phdr *phdr;
3024     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3025     int i, retval, prot_exec;
3026     Error *err = NULL;
3027 
3028     /* First of all, some simple consistency checks */
3029     if (!elf_check_ident(ehdr)) {
3030         error_setg(&err, "Invalid ELF image for this architecture");
3031         goto exit_errmsg;
3032     }
3033     bswap_ehdr(ehdr);
3034     if (!elf_check_ehdr(ehdr)) {
3035         error_setg(&err, "Invalid ELF image for this architecture");
3036         goto exit_errmsg;
3037     }
3038 
3039     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3040     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3041         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3042     } else {
3043         phdr = (struct elf_phdr *) alloca(i);
3044         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3045         if (retval != i) {
3046             goto exit_read;
3047         }
3048     }
3049     bswap_phdr(phdr, ehdr->e_phnum);
3050 
3051     info->nsegs = 0;
3052     info->pt_dynamic_addr = 0;
3053 
3054     mmap_lock();
3055 
3056     /*
3057      * Find the maximum size of the image and allocate an appropriate
3058      * amount of memory to handle that.  Locate the interpreter, if any.
3059      */
3060     loaddr = -1, hiaddr = 0;
3061     info->alignment = 0;
3062     info->exec_stack = EXSTACK_DEFAULT;
3063     for (i = 0; i < ehdr->e_phnum; ++i) {
3064         struct elf_phdr *eppnt = phdr + i;
3065         if (eppnt->p_type == PT_LOAD) {
3066             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3067             if (a < loaddr) {
3068                 loaddr = a;
3069             }
3070             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3071             if (a > hiaddr) {
3072                 hiaddr = a;
3073             }
3074             ++info->nsegs;
3075             info->alignment |= eppnt->p_align;
3076         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3077             g_autofree char *interp_name = NULL;
3078 
3079             if (*pinterp_name) {
3080                 error_setg(&err, "Multiple PT_INTERP entries");
3081                 goto exit_errmsg;
3082             }
3083 
3084             interp_name = g_malloc(eppnt->p_filesz);
3085 
3086             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3087                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3088                        eppnt->p_filesz);
3089             } else {
3090                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3091                                eppnt->p_offset);
3092                 if (retval != eppnt->p_filesz) {
3093                     goto exit_read;
3094                 }
3095             }
3096             if (interp_name[eppnt->p_filesz - 1] != 0) {
3097                 error_setg(&err, "Invalid PT_INTERP entry");
3098                 goto exit_errmsg;
3099             }
3100             *pinterp_name = g_steal_pointer(&interp_name);
3101         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3102             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3103                 goto exit_errmsg;
3104             }
3105         } else if (eppnt->p_type == PT_GNU_STACK) {
3106             info->exec_stack = eppnt->p_flags & PF_X;
3107         }
3108     }
3109 
3110     if (pinterp_name != NULL) {
3111         /*
3112          * This is the main executable.
3113          *
3114          * Reserve extra space for brk.
3115          * We hold on to this space while placing the interpreter
3116          * and the stack, lest they be placed immediately after
3117          * the data segment and block allocation from the brk.
3118          *
3119          * 16MB is chosen as "large enough" without being so large as
3120          * to allow the result to not fit with a 32-bit guest on a
3121          * 32-bit host. However some 64 bit guests (e.g. s390x)
3122          * attempt to place their heap further ahead and currently
3123          * nothing stops them smashing into QEMUs address space.
3124          */
3125 #if TARGET_LONG_BITS == 64
3126         info->reserve_brk = 32 * MiB;
3127 #else
3128         info->reserve_brk = 16 * MiB;
3129 #endif
3130         hiaddr += info->reserve_brk;
3131 
3132         if (ehdr->e_type == ET_EXEC) {
3133             /*
3134              * Make sure that the low address does not conflict with
3135              * MMAP_MIN_ADDR or the QEMU application itself.
3136              */
3137             probe_guest_base(image_name, loaddr, hiaddr);
3138         } else {
3139             /*
3140              * The binary is dynamic, but we still need to
3141              * select guest_base.  In this case we pass a size.
3142              */
3143             probe_guest_base(image_name, 0, hiaddr - loaddr);
3144         }
3145     }
3146 
3147     /*
3148      * Reserve address space for all of this.
3149      *
3150      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
3151      * exactly the address range that is required.
3152      *
3153      * Otherwise this is ET_DYN, and we are searching for a location
3154      * that can hold the memory space required.  If the image is
3155      * pre-linked, LOADDR will be non-zero, and the kernel should
3156      * honor that address if it happens to be free.
3157      *
3158      * In both cases, we will overwrite pages in this range with mappings
3159      * from the executable.
3160      */
3161     load_addr = target_mmap(loaddr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3162                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3163                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
3164                             -1, 0);
3165     if (load_addr == -1) {
3166         goto exit_mmap;
3167     }
3168     load_bias = load_addr - loaddr;
3169 
3170     if (elf_is_fdpic(ehdr)) {
3171         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3172             g_malloc(sizeof(*loadsegs) * info->nsegs);
3173 
3174         for (i = 0; i < ehdr->e_phnum; ++i) {
3175             switch (phdr[i].p_type) {
3176             case PT_DYNAMIC:
3177                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3178                 break;
3179             case PT_LOAD:
3180                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3181                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3182                 loadsegs->p_memsz = phdr[i].p_memsz;
3183                 ++loadsegs;
3184                 break;
3185             }
3186         }
3187     }
3188 
3189     info->load_bias = load_bias;
3190     info->code_offset = load_bias;
3191     info->data_offset = load_bias;
3192     info->load_addr = load_addr;
3193     info->entry = ehdr->e_entry + load_bias;
3194     info->start_code = -1;
3195     info->end_code = 0;
3196     info->start_data = -1;
3197     info->end_data = 0;
3198     info->brk = 0;
3199     info->elf_flags = ehdr->e_flags;
3200 
3201     prot_exec = PROT_EXEC;
3202 #ifdef TARGET_AARCH64
3203     /*
3204      * If the BTI feature is present, this indicates that the executable
3205      * pages of the startup binary should be mapped with PROT_BTI, so that
3206      * branch targets are enforced.
3207      *
3208      * The startup binary is either the interpreter or the static executable.
3209      * The interpreter is responsible for all pages of a dynamic executable.
3210      *
3211      * Elf notes are backward compatible to older cpus.
3212      * Do not enable BTI unless it is supported.
3213      */
3214     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3215         && (pinterp_name == NULL || *pinterp_name == 0)
3216         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3217         prot_exec |= TARGET_PROT_BTI;
3218     }
3219 #endif
3220 
3221     for (i = 0; i < ehdr->e_phnum; i++) {
3222         struct elf_phdr *eppnt = phdr + i;
3223         if (eppnt->p_type == PT_LOAD) {
3224             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
3225             int elf_prot = 0;
3226 
3227             if (eppnt->p_flags & PF_R) {
3228                 elf_prot |= PROT_READ;
3229             }
3230             if (eppnt->p_flags & PF_W) {
3231                 elf_prot |= PROT_WRITE;
3232             }
3233             if (eppnt->p_flags & PF_X) {
3234                 elf_prot |= prot_exec;
3235             }
3236 
3237             vaddr = load_bias + eppnt->p_vaddr;
3238             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
3239             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
3240 
3241             vaddr_ef = vaddr + eppnt->p_filesz;
3242             vaddr_em = vaddr + eppnt->p_memsz;
3243 
3244             /*
3245              * Some segments may be completely empty, with a non-zero p_memsz
3246              * but no backing file segment.
3247              */
3248             if (eppnt->p_filesz != 0) {
3249                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
3250                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3251                                     MAP_PRIVATE | MAP_FIXED,
3252                                     image_fd, eppnt->p_offset - vaddr_po);
3253 
3254                 if (error == -1) {
3255                     goto exit_mmap;
3256                 }
3257 
3258                 /*
3259                  * If the load segment requests extra zeros (e.g. bss), map it.
3260                  */
3261                 if (eppnt->p_filesz < eppnt->p_memsz) {
3262                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
3263                 }
3264             } else if (eppnt->p_memsz != 0) {
3265                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
3266                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
3267                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
3268                                     -1, 0);
3269 
3270                 if (error == -1) {
3271                     goto exit_mmap;
3272                 }
3273             }
3274 
3275             /* Find the full program boundaries.  */
3276             if (elf_prot & PROT_EXEC) {
3277                 if (vaddr < info->start_code) {
3278                     info->start_code = vaddr;
3279                 }
3280                 if (vaddr_ef > info->end_code) {
3281                     info->end_code = vaddr_ef;
3282                 }
3283             }
3284             if (elf_prot & PROT_WRITE) {
3285                 if (vaddr < info->start_data) {
3286                     info->start_data = vaddr;
3287                 }
3288                 if (vaddr_ef > info->end_data) {
3289                     info->end_data = vaddr_ef;
3290                 }
3291             }
3292             if (vaddr_em > info->brk) {
3293                 info->brk = vaddr_em;
3294             }
3295 #ifdef TARGET_MIPS
3296         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3297             Mips_elf_abiflags_v0 abiflags;
3298             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3299                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3300                 goto exit_errmsg;
3301             }
3302             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3303                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3304                        sizeof(Mips_elf_abiflags_v0));
3305             } else {
3306                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3307                                eppnt->p_offset);
3308                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3309                     goto exit_read;
3310                 }
3311             }
3312             bswap_mips_abiflags(&abiflags);
3313             info->fp_abi = abiflags.fp_abi;
3314 #endif
3315         }
3316     }
3317 
3318     if (info->end_data == 0) {
3319         info->start_data = info->end_code;
3320         info->end_data = info->end_code;
3321     }
3322 
3323     if (qemu_log_enabled()) {
3324         load_symbols(ehdr, image_fd, load_bias);
3325     }
3326 
3327     debuginfo_report_elf(image_name, image_fd, load_bias);
3328 
3329     mmap_unlock();
3330 
3331     close(image_fd);
3332     return;
3333 
3334  exit_read:
3335     if (retval >= 0) {
3336         error_setg(&err, "Incomplete read of file header");
3337     } else {
3338         error_setg_errno(&err, errno, "Error reading file header");
3339     }
3340     goto exit_errmsg;
3341  exit_mmap:
3342     error_setg_errno(&err, errno, "Error mapping file");
3343     goto exit_errmsg;
3344  exit_errmsg:
3345     error_reportf_err(err, "%s: ", image_name);
3346     exit(-1);
3347 }
3348 
3349 static void load_elf_interp(const char *filename, struct image_info *info,
3350                             char bprm_buf[BPRM_BUF_SIZE])
3351 {
3352     int fd, retval;
3353     Error *err = NULL;
3354 
3355     fd = open(path(filename), O_RDONLY);
3356     if (fd < 0) {
3357         error_setg_file_open(&err, errno, filename);
3358         error_report_err(err);
3359         exit(-1);
3360     }
3361 
3362     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3363     if (retval < 0) {
3364         error_setg_errno(&err, errno, "Error reading file header");
3365         error_reportf_err(err, "%s: ", filename);
3366         exit(-1);
3367     }
3368 
3369     if (retval < BPRM_BUF_SIZE) {
3370         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3371     }
3372 
3373     load_elf_image(filename, fd, info, NULL, bprm_buf);
3374 }
3375 
3376 static int symfind(const void *s0, const void *s1)
3377 {
3378     struct elf_sym *sym = (struct elf_sym *)s1;
3379     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3380     int result = 0;
3381 
3382     if (addr < sym->st_value) {
3383         result = -1;
3384     } else if (addr >= sym->st_value + sym->st_size) {
3385         result = 1;
3386     }
3387     return result;
3388 }
3389 
3390 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3391 {
3392 #if ELF_CLASS == ELFCLASS32
3393     struct elf_sym *syms = s->disas_symtab.elf32;
3394 #else
3395     struct elf_sym *syms = s->disas_symtab.elf64;
3396 #endif
3397 
3398     // binary search
3399     struct elf_sym *sym;
3400 
3401     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3402     if (sym != NULL) {
3403         return s->disas_strtab + sym->st_name;
3404     }
3405 
3406     return "";
3407 }
3408 
3409 /* FIXME: This should use elf_ops.h  */
3410 static int symcmp(const void *s0, const void *s1)
3411 {
3412     struct elf_sym *sym0 = (struct elf_sym *)s0;
3413     struct elf_sym *sym1 = (struct elf_sym *)s1;
3414     return (sym0->st_value < sym1->st_value)
3415         ? -1
3416         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3417 }
3418 
3419 /* Best attempt to load symbols from this ELF object. */
3420 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3421 {
3422     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3423     uint64_t segsz;
3424     struct elf_shdr *shdr;
3425     char *strings = NULL;
3426     struct syminfo *s = NULL;
3427     struct elf_sym *new_syms, *syms = NULL;
3428 
3429     shnum = hdr->e_shnum;
3430     i = shnum * sizeof(struct elf_shdr);
3431     shdr = (struct elf_shdr *)alloca(i);
3432     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3433         return;
3434     }
3435 
3436     bswap_shdr(shdr, shnum);
3437     for (i = 0; i < shnum; ++i) {
3438         if (shdr[i].sh_type == SHT_SYMTAB) {
3439             sym_idx = i;
3440             str_idx = shdr[i].sh_link;
3441             goto found;
3442         }
3443     }
3444 
3445     /* There will be no symbol table if the file was stripped.  */
3446     return;
3447 
3448  found:
3449     /* Now know where the strtab and symtab are.  Snarf them.  */
3450     s = g_try_new(struct syminfo, 1);
3451     if (!s) {
3452         goto give_up;
3453     }
3454 
3455     segsz = shdr[str_idx].sh_size;
3456     s->disas_strtab = strings = g_try_malloc(segsz);
3457     if (!strings ||
3458         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3459         goto give_up;
3460     }
3461 
3462     segsz = shdr[sym_idx].sh_size;
3463     syms = g_try_malloc(segsz);
3464     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3465         goto give_up;
3466     }
3467 
3468     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3469         /* Implausibly large symbol table: give up rather than ploughing
3470          * on with the number of symbols calculation overflowing
3471          */
3472         goto give_up;
3473     }
3474     nsyms = segsz / sizeof(struct elf_sym);
3475     for (i = 0; i < nsyms; ) {
3476         bswap_sym(syms + i);
3477         /* Throw away entries which we do not need.  */
3478         if (syms[i].st_shndx == SHN_UNDEF
3479             || syms[i].st_shndx >= SHN_LORESERVE
3480             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3481             if (i < --nsyms) {
3482                 syms[i] = syms[nsyms];
3483             }
3484         } else {
3485 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3486             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3487             syms[i].st_value &= ~(target_ulong)1;
3488 #endif
3489             syms[i].st_value += load_bias;
3490             i++;
3491         }
3492     }
3493 
3494     /* No "useful" symbol.  */
3495     if (nsyms == 0) {
3496         goto give_up;
3497     }
3498 
3499     /* Attempt to free the storage associated with the local symbols
3500        that we threw away.  Whether or not this has any effect on the
3501        memory allocation depends on the malloc implementation and how
3502        many symbols we managed to discard.  */
3503     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3504     if (new_syms == NULL) {
3505         goto give_up;
3506     }
3507     syms = new_syms;
3508 
3509     qsort(syms, nsyms, sizeof(*syms), symcmp);
3510 
3511     s->disas_num_syms = nsyms;
3512 #if ELF_CLASS == ELFCLASS32
3513     s->disas_symtab.elf32 = syms;
3514 #else
3515     s->disas_symtab.elf64 = syms;
3516 #endif
3517     s->lookup_symbol = lookup_symbolxx;
3518     s->next = syminfos;
3519     syminfos = s;
3520 
3521     return;
3522 
3523 give_up:
3524     g_free(s);
3525     g_free(strings);
3526     g_free(syms);
3527 }
3528 
3529 uint32_t get_elf_eflags(int fd)
3530 {
3531     struct elfhdr ehdr;
3532     off_t offset;
3533     int ret;
3534 
3535     /* Read ELF header */
3536     offset = lseek(fd, 0, SEEK_SET);
3537     if (offset == (off_t) -1) {
3538         return 0;
3539     }
3540     ret = read(fd, &ehdr, sizeof(ehdr));
3541     if (ret < sizeof(ehdr)) {
3542         return 0;
3543     }
3544     offset = lseek(fd, offset, SEEK_SET);
3545     if (offset == (off_t) -1) {
3546         return 0;
3547     }
3548 
3549     /* Check ELF signature */
3550     if (!elf_check_ident(&ehdr)) {
3551         return 0;
3552     }
3553 
3554     /* check header */
3555     bswap_ehdr(&ehdr);
3556     if (!elf_check_ehdr(&ehdr)) {
3557         return 0;
3558     }
3559 
3560     /* return architecture id */
3561     return ehdr.e_flags;
3562 }
3563 
3564 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3565 {
3566     struct image_info interp_info;
3567     struct elfhdr elf_ex;
3568     char *elf_interpreter = NULL;
3569     char *scratch;
3570 
3571     memset(&interp_info, 0, sizeof(interp_info));
3572 #ifdef TARGET_MIPS
3573     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3574 #endif
3575 
3576     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3577 
3578     load_elf_image(bprm->filename, bprm->fd, info,
3579                    &elf_interpreter, bprm->buf);
3580 
3581     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3582        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3583        when we load the interpreter.  */
3584     elf_ex = *(struct elfhdr *)bprm->buf;
3585 
3586     /* Do this so that we can load the interpreter, if need be.  We will
3587        change some of these later */
3588     bprm->p = setup_arg_pages(bprm, info);
3589 
3590     scratch = g_new0(char, TARGET_PAGE_SIZE);
3591     if (STACK_GROWS_DOWN) {
3592         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3593                                    bprm->p, info->stack_limit);
3594         info->file_string = bprm->p;
3595         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3596                                    bprm->p, info->stack_limit);
3597         info->env_strings = bprm->p;
3598         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3599                                    bprm->p, info->stack_limit);
3600         info->arg_strings = bprm->p;
3601     } else {
3602         info->arg_strings = bprm->p;
3603         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3604                                    bprm->p, info->stack_limit);
3605         info->env_strings = bprm->p;
3606         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3607                                    bprm->p, info->stack_limit);
3608         info->file_string = bprm->p;
3609         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3610                                    bprm->p, info->stack_limit);
3611     }
3612 
3613     g_free(scratch);
3614 
3615     if (!bprm->p) {
3616         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3617         exit(-1);
3618     }
3619 
3620     if (elf_interpreter) {
3621         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3622 
3623         /* If the program interpreter is one of these two, then assume
3624            an iBCS2 image.  Otherwise assume a native linux image.  */
3625 
3626         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3627             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3628             info->personality = PER_SVR4;
3629 
3630             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3631                and some applications "depend" upon this behavior.  Since
3632                we do not have the power to recompile these, we emulate
3633                the SVr4 behavior.  Sigh.  */
3634             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3635                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3636         }
3637 #ifdef TARGET_MIPS
3638         info->interp_fp_abi = interp_info.fp_abi;
3639 #endif
3640     }
3641 
3642     /*
3643      * TODO: load a vdso, which would also contain the signal trampolines.
3644      * Otherwise, allocate a private page to hold them.
3645      */
3646     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3647         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3648                                           PROT_READ | PROT_WRITE,
3649                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3650         if (tramp_page == -1) {
3651             return -errno;
3652         }
3653 
3654         setup_sigtramp(tramp_page);
3655         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3656     }
3657 
3658     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3659                                 info, (elf_interpreter ? &interp_info : NULL));
3660     info->start_stack = bprm->p;
3661 
3662     /* If we have an interpreter, set that as the program's entry point.
3663        Copy the load_bias as well, to help PPC64 interpret the entry
3664        point as a function descriptor.  Do this after creating elf tables
3665        so that we copy the original program entry point into the AUXV.  */
3666     if (elf_interpreter) {
3667         info->load_bias = interp_info.load_bias;
3668         info->entry = interp_info.entry;
3669         g_free(elf_interpreter);
3670     }
3671 
3672 #ifdef USE_ELF_CORE_DUMP
3673     bprm->core_dump = &elf_core_dump;
3674 #endif
3675 
3676     /*
3677      * If we reserved extra space for brk, release it now.
3678      * The implementation of do_brk in syscalls.c expects to be able
3679      * to mmap pages in this space.
3680      */
3681     if (info->reserve_brk) {
3682         abi_ulong start_brk = TARGET_PAGE_ALIGN(info->brk);
3683         abi_ulong end_brk = TARGET_PAGE_ALIGN(info->brk + info->reserve_brk);
3684         target_munmap(start_brk, end_brk - start_brk);
3685     }
3686 
3687     return 0;
3688 }
3689 
3690 #ifdef USE_ELF_CORE_DUMP
3691 /*
3692  * Definitions to generate Intel SVR4-like core files.
3693  * These mostly have the same names as the SVR4 types with "target_elf_"
3694  * tacked on the front to prevent clashes with linux definitions,
3695  * and the typedef forms have been avoided.  This is mostly like
3696  * the SVR4 structure, but more Linuxy, with things that Linux does
3697  * not support and which gdb doesn't really use excluded.
3698  *
3699  * Fields we don't dump (their contents is zero) in linux-user qemu
3700  * are marked with XXX.
3701  *
3702  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3703  *
3704  * Porting ELF coredump for target is (quite) simple process.  First you
3705  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3706  * the target resides):
3707  *
3708  * #define USE_ELF_CORE_DUMP
3709  *
3710  * Next you define type of register set used for dumping.  ELF specification
3711  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3712  *
3713  * typedef <target_regtype> target_elf_greg_t;
3714  * #define ELF_NREG <number of registers>
3715  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3716  *
3717  * Last step is to implement target specific function that copies registers
3718  * from given cpu into just specified register set.  Prototype is:
3719  *
3720  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3721  *                                const CPUArchState *env);
3722  *
3723  * Parameters:
3724  *     regs - copy register values into here (allocated and zeroed by caller)
3725  *     env - copy registers from here
3726  *
3727  * Example for ARM target is provided in this file.
3728  */
3729 
3730 /* An ELF note in memory */
3731 struct memelfnote {
3732     const char *name;
3733     size_t     namesz;
3734     size_t     namesz_rounded;
3735     int        type;
3736     size_t     datasz;
3737     size_t     datasz_rounded;
3738     void       *data;
3739     size_t     notesz;
3740 };
3741 
3742 struct target_elf_siginfo {
3743     abi_int    si_signo; /* signal number */
3744     abi_int    si_code;  /* extra code */
3745     abi_int    si_errno; /* errno */
3746 };
3747 
3748 struct target_elf_prstatus {
3749     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3750     abi_short          pr_cursig;    /* Current signal */
3751     abi_ulong          pr_sigpend;   /* XXX */
3752     abi_ulong          pr_sighold;   /* XXX */
3753     target_pid_t       pr_pid;
3754     target_pid_t       pr_ppid;
3755     target_pid_t       pr_pgrp;
3756     target_pid_t       pr_sid;
3757     struct target_timeval pr_utime;  /* XXX User time */
3758     struct target_timeval pr_stime;  /* XXX System time */
3759     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3760     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3761     target_elf_gregset_t      pr_reg;       /* GP registers */
3762     abi_int            pr_fpvalid;   /* XXX */
3763 };
3764 
3765 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3766 
3767 struct target_elf_prpsinfo {
3768     char         pr_state;       /* numeric process state */
3769     char         pr_sname;       /* char for pr_state */
3770     char         pr_zomb;        /* zombie */
3771     char         pr_nice;        /* nice val */
3772     abi_ulong    pr_flag;        /* flags */
3773     target_uid_t pr_uid;
3774     target_gid_t pr_gid;
3775     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3776     /* Lots missing */
3777     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3778     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3779 };
3780 
3781 /* Here is the structure in which status of each thread is captured. */
3782 struct elf_thread_status {
3783     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3784     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3785 #if 0
3786     elf_fpregset_t fpu;             /* NT_PRFPREG */
3787     struct task_struct *thread;
3788     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3789 #endif
3790     struct memelfnote notes[1];
3791     int num_notes;
3792 };
3793 
3794 struct elf_note_info {
3795     struct memelfnote   *notes;
3796     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3797     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3798 
3799     QTAILQ_HEAD(, elf_thread_status) thread_list;
3800 #if 0
3801     /*
3802      * Current version of ELF coredump doesn't support
3803      * dumping fp regs etc.
3804      */
3805     elf_fpregset_t *fpu;
3806     elf_fpxregset_t *xfpu;
3807     int thread_status_size;
3808 #endif
3809     int notes_size;
3810     int numnote;
3811 };
3812 
3813 struct vm_area_struct {
3814     target_ulong   vma_start;  /* start vaddr of memory region */
3815     target_ulong   vma_end;    /* end vaddr of memory region */
3816     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3817     QTAILQ_ENTRY(vm_area_struct) vma_link;
3818 };
3819 
3820 struct mm_struct {
3821     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3822     int mm_count;           /* number of mappings */
3823 };
3824 
3825 static struct mm_struct *vma_init(void);
3826 static void vma_delete(struct mm_struct *);
3827 static int vma_add_mapping(struct mm_struct *, target_ulong,
3828                            target_ulong, abi_ulong);
3829 static int vma_get_mapping_count(const struct mm_struct *);
3830 static struct vm_area_struct *vma_first(const struct mm_struct *);
3831 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3832 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3833 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3834                       unsigned long flags);
3835 
3836 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3837 static void fill_note(struct memelfnote *, const char *, int,
3838                       unsigned int, void *);
3839 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3840 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3841 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3842 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3843 static size_t note_size(const struct memelfnote *);
3844 static void free_note_info(struct elf_note_info *);
3845 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3846 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3847 
3848 static int dump_write(int, const void *, size_t);
3849 static int write_note(struct memelfnote *, int);
3850 static int write_note_info(struct elf_note_info *, int);
3851 
3852 #ifdef BSWAP_NEEDED
3853 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3854 {
3855     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3856     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3857     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3858     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3859     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3860     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3861     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3862     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3863     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3864     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3865     /* cpu times are not filled, so we skip them */
3866     /* regs should be in correct format already */
3867     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3868 }
3869 
3870 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3871 {
3872     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3873     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3874     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3875     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3876     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3877     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3878     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3879 }
3880 
3881 static void bswap_note(struct elf_note *en)
3882 {
3883     bswap32s(&en->n_namesz);
3884     bswap32s(&en->n_descsz);
3885     bswap32s(&en->n_type);
3886 }
3887 #else
3888 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3889 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3890 static inline void bswap_note(struct elf_note *en) { }
3891 #endif /* BSWAP_NEEDED */
3892 
3893 /*
3894  * Minimal support for linux memory regions.  These are needed
3895  * when we are finding out what memory exactly belongs to
3896  * emulated process.  No locks needed here, as long as
3897  * thread that received the signal is stopped.
3898  */
3899 
3900 static struct mm_struct *vma_init(void)
3901 {
3902     struct mm_struct *mm;
3903 
3904     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3905         return (NULL);
3906 
3907     mm->mm_count = 0;
3908     QTAILQ_INIT(&mm->mm_mmap);
3909 
3910     return (mm);
3911 }
3912 
3913 static void vma_delete(struct mm_struct *mm)
3914 {
3915     struct vm_area_struct *vma;
3916 
3917     while ((vma = vma_first(mm)) != NULL) {
3918         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3919         g_free(vma);
3920     }
3921     g_free(mm);
3922 }
3923 
3924 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3925                            target_ulong end, abi_ulong flags)
3926 {
3927     struct vm_area_struct *vma;
3928 
3929     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3930         return (-1);
3931 
3932     vma->vma_start = start;
3933     vma->vma_end = end;
3934     vma->vma_flags = flags;
3935 
3936     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3937     mm->mm_count++;
3938 
3939     return (0);
3940 }
3941 
3942 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3943 {
3944     return (QTAILQ_FIRST(&mm->mm_mmap));
3945 }
3946 
3947 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3948 {
3949     return (QTAILQ_NEXT(vma, vma_link));
3950 }
3951 
3952 static int vma_get_mapping_count(const struct mm_struct *mm)
3953 {
3954     return (mm->mm_count);
3955 }
3956 
3957 /*
3958  * Calculate file (dump) size of given memory region.
3959  */
3960 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3961 {
3962     /* if we cannot even read the first page, skip it */
3963     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3964         return (0);
3965 
3966     /*
3967      * Usually we don't dump executable pages as they contain
3968      * non-writable code that debugger can read directly from
3969      * target library etc.  However, thread stacks are marked
3970      * also executable so we read in first page of given region
3971      * and check whether it contains elf header.  If there is
3972      * no elf header, we dump it.
3973      */
3974     if (vma->vma_flags & PROT_EXEC) {
3975         char page[TARGET_PAGE_SIZE];
3976 
3977         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3978             return 0;
3979         }
3980         if ((page[EI_MAG0] == ELFMAG0) &&
3981             (page[EI_MAG1] == ELFMAG1) &&
3982             (page[EI_MAG2] == ELFMAG2) &&
3983             (page[EI_MAG3] == ELFMAG3)) {
3984             /*
3985              * Mappings are possibly from ELF binary.  Don't dump
3986              * them.
3987              */
3988             return (0);
3989         }
3990     }
3991 
3992     return (vma->vma_end - vma->vma_start);
3993 }
3994 
3995 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3996                       unsigned long flags)
3997 {
3998     struct mm_struct *mm = (struct mm_struct *)priv;
3999 
4000     vma_add_mapping(mm, start, end, flags);
4001     return (0);
4002 }
4003 
4004 static void fill_note(struct memelfnote *note, const char *name, int type,
4005                       unsigned int sz, void *data)
4006 {
4007     unsigned int namesz;
4008 
4009     namesz = strlen(name) + 1;
4010     note->name = name;
4011     note->namesz = namesz;
4012     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4013     note->type = type;
4014     note->datasz = sz;
4015     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4016 
4017     note->data = data;
4018 
4019     /*
4020      * We calculate rounded up note size here as specified by
4021      * ELF document.
4022      */
4023     note->notesz = sizeof (struct elf_note) +
4024         note->namesz_rounded + note->datasz_rounded;
4025 }
4026 
4027 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4028                             uint32_t flags)
4029 {
4030     (void) memset(elf, 0, sizeof(*elf));
4031 
4032     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4033     elf->e_ident[EI_CLASS] = ELF_CLASS;
4034     elf->e_ident[EI_DATA] = ELF_DATA;
4035     elf->e_ident[EI_VERSION] = EV_CURRENT;
4036     elf->e_ident[EI_OSABI] = ELF_OSABI;
4037 
4038     elf->e_type = ET_CORE;
4039     elf->e_machine = machine;
4040     elf->e_version = EV_CURRENT;
4041     elf->e_phoff = sizeof(struct elfhdr);
4042     elf->e_flags = flags;
4043     elf->e_ehsize = sizeof(struct elfhdr);
4044     elf->e_phentsize = sizeof(struct elf_phdr);
4045     elf->e_phnum = segs;
4046 
4047     bswap_ehdr(elf);
4048 }
4049 
4050 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4051 {
4052     phdr->p_type = PT_NOTE;
4053     phdr->p_offset = offset;
4054     phdr->p_vaddr = 0;
4055     phdr->p_paddr = 0;
4056     phdr->p_filesz = sz;
4057     phdr->p_memsz = 0;
4058     phdr->p_flags = 0;
4059     phdr->p_align = 0;
4060 
4061     bswap_phdr(phdr, 1);
4062 }
4063 
4064 static size_t note_size(const struct memelfnote *note)
4065 {
4066     return (note->notesz);
4067 }
4068 
4069 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4070                           const TaskState *ts, int signr)
4071 {
4072     (void) memset(prstatus, 0, sizeof (*prstatus));
4073     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4074     prstatus->pr_pid = ts->ts_tid;
4075     prstatus->pr_ppid = getppid();
4076     prstatus->pr_pgrp = getpgrp();
4077     prstatus->pr_sid = getsid(0);
4078 
4079     bswap_prstatus(prstatus);
4080 }
4081 
4082 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4083 {
4084     char *base_filename;
4085     unsigned int i, len;
4086 
4087     (void) memset(psinfo, 0, sizeof (*psinfo));
4088 
4089     len = ts->info->env_strings - ts->info->arg_strings;
4090     if (len >= ELF_PRARGSZ)
4091         len = ELF_PRARGSZ - 1;
4092     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4093         return -EFAULT;
4094     }
4095     for (i = 0; i < len; i++)
4096         if (psinfo->pr_psargs[i] == 0)
4097             psinfo->pr_psargs[i] = ' ';
4098     psinfo->pr_psargs[len] = 0;
4099 
4100     psinfo->pr_pid = getpid();
4101     psinfo->pr_ppid = getppid();
4102     psinfo->pr_pgrp = getpgrp();
4103     psinfo->pr_sid = getsid(0);
4104     psinfo->pr_uid = getuid();
4105     psinfo->pr_gid = getgid();
4106 
4107     base_filename = g_path_get_basename(ts->bprm->filename);
4108     /*
4109      * Using strncpy here is fine: at max-length,
4110      * this field is not NUL-terminated.
4111      */
4112     (void) strncpy(psinfo->pr_fname, base_filename,
4113                    sizeof(psinfo->pr_fname));
4114 
4115     g_free(base_filename);
4116     bswap_psinfo(psinfo);
4117     return (0);
4118 }
4119 
4120 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4121 {
4122     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4123     elf_addr_t orig_auxv = auxv;
4124     void *ptr;
4125     int len = ts->info->auxv_len;
4126 
4127     /*
4128      * Auxiliary vector is stored in target process stack.  It contains
4129      * {type, value} pairs that we need to dump into note.  This is not
4130      * strictly necessary but we do it here for sake of completeness.
4131      */
4132 
4133     /* read in whole auxv vector and copy it to memelfnote */
4134     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4135     if (ptr != NULL) {
4136         fill_note(note, "CORE", NT_AUXV, len, ptr);
4137         unlock_user(ptr, auxv, len);
4138     }
4139 }
4140 
4141 /*
4142  * Constructs name of coredump file.  We have following convention
4143  * for the name:
4144  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4145  *
4146  * Returns the filename
4147  */
4148 static char *core_dump_filename(const TaskState *ts)
4149 {
4150     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4151     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4152     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4153 
4154     return g_strdup_printf("qemu_%s_%s_%d.core",
4155                            base_filename, nowstr, (int)getpid());
4156 }
4157 
4158 static int dump_write(int fd, const void *ptr, size_t size)
4159 {
4160     const char *bufp = (const char *)ptr;
4161     ssize_t bytes_written, bytes_left;
4162     struct rlimit dumpsize;
4163     off_t pos;
4164 
4165     bytes_written = 0;
4166     getrlimit(RLIMIT_CORE, &dumpsize);
4167     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4168         if (errno == ESPIPE) { /* not a seekable stream */
4169             bytes_left = size;
4170         } else {
4171             return pos;
4172         }
4173     } else {
4174         if (dumpsize.rlim_cur <= pos) {
4175             return -1;
4176         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4177             bytes_left = size;
4178         } else {
4179             size_t limit_left=dumpsize.rlim_cur - pos;
4180             bytes_left = limit_left >= size ? size : limit_left ;
4181         }
4182     }
4183 
4184     /*
4185      * In normal conditions, single write(2) should do but
4186      * in case of socket etc. this mechanism is more portable.
4187      */
4188     do {
4189         bytes_written = write(fd, bufp, bytes_left);
4190         if (bytes_written < 0) {
4191             if (errno == EINTR)
4192                 continue;
4193             return (-1);
4194         } else if (bytes_written == 0) { /* eof */
4195             return (-1);
4196         }
4197         bufp += bytes_written;
4198         bytes_left -= bytes_written;
4199     } while (bytes_left > 0);
4200 
4201     return (0);
4202 }
4203 
4204 static int write_note(struct memelfnote *men, int fd)
4205 {
4206     struct elf_note en;
4207 
4208     en.n_namesz = men->namesz;
4209     en.n_type = men->type;
4210     en.n_descsz = men->datasz;
4211 
4212     bswap_note(&en);
4213 
4214     if (dump_write(fd, &en, sizeof(en)) != 0)
4215         return (-1);
4216     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4217         return (-1);
4218     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4219         return (-1);
4220 
4221     return (0);
4222 }
4223 
4224 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4225 {
4226     CPUState *cpu = env_cpu((CPUArchState *)env);
4227     TaskState *ts = (TaskState *)cpu->opaque;
4228     struct elf_thread_status *ets;
4229 
4230     ets = g_malloc0(sizeof (*ets));
4231     ets->num_notes = 1; /* only prstatus is dumped */
4232     fill_prstatus(&ets->prstatus, ts, 0);
4233     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4234     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4235               &ets->prstatus);
4236 
4237     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4238 
4239     info->notes_size += note_size(&ets->notes[0]);
4240 }
4241 
4242 static void init_note_info(struct elf_note_info *info)
4243 {
4244     /* Initialize the elf_note_info structure so that it is at
4245      * least safe to call free_note_info() on it. Must be
4246      * called before calling fill_note_info().
4247      */
4248     memset(info, 0, sizeof (*info));
4249     QTAILQ_INIT(&info->thread_list);
4250 }
4251 
4252 static int fill_note_info(struct elf_note_info *info,
4253                           long signr, const CPUArchState *env)
4254 {
4255 #define NUMNOTES 3
4256     CPUState *cpu = env_cpu((CPUArchState *)env);
4257     TaskState *ts = (TaskState *)cpu->opaque;
4258     int i;
4259 
4260     info->notes = g_new0(struct memelfnote, NUMNOTES);
4261     if (info->notes == NULL)
4262         return (-ENOMEM);
4263     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4264     if (info->prstatus == NULL)
4265         return (-ENOMEM);
4266     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4267     if (info->prstatus == NULL)
4268         return (-ENOMEM);
4269 
4270     /*
4271      * First fill in status (and registers) of current thread
4272      * including process info & aux vector.
4273      */
4274     fill_prstatus(info->prstatus, ts, signr);
4275     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4276     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4277               sizeof (*info->prstatus), info->prstatus);
4278     fill_psinfo(info->psinfo, ts);
4279     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4280               sizeof (*info->psinfo), info->psinfo);
4281     fill_auxv_note(&info->notes[2], ts);
4282     info->numnote = 3;
4283 
4284     info->notes_size = 0;
4285     for (i = 0; i < info->numnote; i++)
4286         info->notes_size += note_size(&info->notes[i]);
4287 
4288     /* read and fill status of all threads */
4289     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4290         CPU_FOREACH(cpu) {
4291             if (cpu == thread_cpu) {
4292                 continue;
4293             }
4294             fill_thread_info(info, cpu->env_ptr);
4295         }
4296     }
4297 
4298     return (0);
4299 }
4300 
4301 static void free_note_info(struct elf_note_info *info)
4302 {
4303     struct elf_thread_status *ets;
4304 
4305     while (!QTAILQ_EMPTY(&info->thread_list)) {
4306         ets = QTAILQ_FIRST(&info->thread_list);
4307         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4308         g_free(ets);
4309     }
4310 
4311     g_free(info->prstatus);
4312     g_free(info->psinfo);
4313     g_free(info->notes);
4314 }
4315 
4316 static int write_note_info(struct elf_note_info *info, int fd)
4317 {
4318     struct elf_thread_status *ets;
4319     int i, error = 0;
4320 
4321     /* write prstatus, psinfo and auxv for current thread */
4322     for (i = 0; i < info->numnote; i++)
4323         if ((error = write_note(&info->notes[i], fd)) != 0)
4324             return (error);
4325 
4326     /* write prstatus for each thread */
4327     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4328         if ((error = write_note(&ets->notes[0], fd)) != 0)
4329             return (error);
4330     }
4331 
4332     return (0);
4333 }
4334 
4335 /*
4336  * Write out ELF coredump.
4337  *
4338  * See documentation of ELF object file format in:
4339  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4340  *
4341  * Coredump format in linux is following:
4342  *
4343  * 0   +----------------------+         \
4344  *     | ELF header           | ET_CORE  |
4345  *     +----------------------+          |
4346  *     | ELF program headers  |          |--- headers
4347  *     | - NOTE section       |          |
4348  *     | - PT_LOAD sections   |          |
4349  *     +----------------------+         /
4350  *     | NOTEs:               |
4351  *     | - NT_PRSTATUS        |
4352  *     | - NT_PRSINFO         |
4353  *     | - NT_AUXV            |
4354  *     +----------------------+ <-- aligned to target page
4355  *     | Process memory dump  |
4356  *     :                      :
4357  *     .                      .
4358  *     :                      :
4359  *     |                      |
4360  *     +----------------------+
4361  *
4362  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4363  * NT_PRSINFO  -> struct elf_prpsinfo
4364  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4365  *
4366  * Format follows System V format as close as possible.  Current
4367  * version limitations are as follows:
4368  *     - no floating point registers are dumped
4369  *
4370  * Function returns 0 in case of success, negative errno otherwise.
4371  *
4372  * TODO: make this work also during runtime: it should be
4373  * possible to force coredump from running process and then
4374  * continue processing.  For example qemu could set up SIGUSR2
4375  * handler (provided that target process haven't registered
4376  * handler for that) that does the dump when signal is received.
4377  */
4378 static int elf_core_dump(int signr, const CPUArchState *env)
4379 {
4380     const CPUState *cpu = env_cpu((CPUArchState *)env);
4381     const TaskState *ts = (const TaskState *)cpu->opaque;
4382     struct vm_area_struct *vma = NULL;
4383     g_autofree char *corefile = NULL;
4384     struct elf_note_info info;
4385     struct elfhdr elf;
4386     struct elf_phdr phdr;
4387     struct rlimit dumpsize;
4388     struct mm_struct *mm = NULL;
4389     off_t offset = 0, data_offset = 0;
4390     int segs = 0;
4391     int fd = -1;
4392 
4393     init_note_info(&info);
4394 
4395     errno = 0;
4396     getrlimit(RLIMIT_CORE, &dumpsize);
4397     if (dumpsize.rlim_cur == 0)
4398         return 0;
4399 
4400     corefile = core_dump_filename(ts);
4401 
4402     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4403                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4404         return (-errno);
4405 
4406     /*
4407      * Walk through target process memory mappings and
4408      * set up structure containing this information.  After
4409      * this point vma_xxx functions can be used.
4410      */
4411     if ((mm = vma_init()) == NULL)
4412         goto out;
4413 
4414     walk_memory_regions(mm, vma_walker);
4415     segs = vma_get_mapping_count(mm);
4416 
4417     /*
4418      * Construct valid coredump ELF header.  We also
4419      * add one more segment for notes.
4420      */
4421     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4422     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4423         goto out;
4424 
4425     /* fill in the in-memory version of notes */
4426     if (fill_note_info(&info, signr, env) < 0)
4427         goto out;
4428 
4429     offset += sizeof (elf);                             /* elf header */
4430     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4431 
4432     /* write out notes program header */
4433     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4434 
4435     offset += info.notes_size;
4436     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4437         goto out;
4438 
4439     /*
4440      * ELF specification wants data to start at page boundary so
4441      * we align it here.
4442      */
4443     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4444 
4445     /*
4446      * Write program headers for memory regions mapped in
4447      * the target process.
4448      */
4449     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4450         (void) memset(&phdr, 0, sizeof (phdr));
4451 
4452         phdr.p_type = PT_LOAD;
4453         phdr.p_offset = offset;
4454         phdr.p_vaddr = vma->vma_start;
4455         phdr.p_paddr = 0;
4456         phdr.p_filesz = vma_dump_size(vma);
4457         offset += phdr.p_filesz;
4458         phdr.p_memsz = vma->vma_end - vma->vma_start;
4459         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4460         if (vma->vma_flags & PROT_WRITE)
4461             phdr.p_flags |= PF_W;
4462         if (vma->vma_flags & PROT_EXEC)
4463             phdr.p_flags |= PF_X;
4464         phdr.p_align = ELF_EXEC_PAGESIZE;
4465 
4466         bswap_phdr(&phdr, 1);
4467         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4468             goto out;
4469         }
4470     }
4471 
4472     /*
4473      * Next we write notes just after program headers.  No
4474      * alignment needed here.
4475      */
4476     if (write_note_info(&info, fd) < 0)
4477         goto out;
4478 
4479     /* align data to page boundary */
4480     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4481         goto out;
4482 
4483     /*
4484      * Finally we can dump process memory into corefile as well.
4485      */
4486     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4487         abi_ulong addr;
4488         abi_ulong end;
4489 
4490         end = vma->vma_start + vma_dump_size(vma);
4491 
4492         for (addr = vma->vma_start; addr < end;
4493              addr += TARGET_PAGE_SIZE) {
4494             char page[TARGET_PAGE_SIZE];
4495             int error;
4496 
4497             /*
4498              *  Read in page from target process memory and
4499              *  write it to coredump file.
4500              */
4501             error = copy_from_user(page, addr, sizeof (page));
4502             if (error != 0) {
4503                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4504                                addr);
4505                 errno = -error;
4506                 goto out;
4507             }
4508             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4509                 goto out;
4510         }
4511     }
4512 
4513  out:
4514     free_note_info(&info);
4515     if (mm != NULL)
4516         vma_delete(mm);
4517     (void) close(fd);
4518 
4519     if (errno != 0)
4520         return (-errno);
4521     return (0);
4522 }
4523 #endif /* USE_ELF_CORE_DUMP */
4524 
4525 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4526 {
4527     init_thread(regs, infop);
4528 }
4529