xref: /openbmc/qemu/linux-user/elfload.c (revision bdd2d42b890b3a908fa3fbdc9661541e1b57eb15)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475      * to our VFP_FP16 feature bit.
476      */
477     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479 
480     return hwcaps;
481 }
482 
483 static uint32_t get_elf_hwcap2(void)
484 {
485     ARMCPU *cpu = ARM_CPU(thread_cpu);
486     uint32_t hwcaps = 0;
487 
488     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493     return hwcaps;
494 }
495 
496 #undef GET_FEATURE
497 
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
501 
502 #define ELF_ARCH        EM_AARCH64
503 #define ELF_CLASS       ELFCLASS64
504 #define ELF_PLATFORM    "aarch64"
505 
506 static inline void init_thread(struct target_pt_regs *regs,
507                                struct image_info *infop)
508 {
509     abi_long stack = infop->start_stack;
510     memset(regs, 0, sizeof(*regs));
511 
512     regs->pc = infop->entry & ~0x3ULL;
513     regs->sp = stack;
514 }
515 
516 #define ELF_NREG    34
517 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
518 
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520                                const CPUARMState *env)
521 {
522     int i;
523 
524     for (i = 0; i < 32; i++) {
525         (*regs)[i] = tswapreg(env->xregs[i]);
526     }
527     (*regs)[32] = tswapreg(env->pc);
528     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529 }
530 
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE       4096
533 
534 enum {
535     ARM_HWCAP_A64_FP            = 1 << 0,
536     ARM_HWCAP_A64_ASIMD         = 1 << 1,
537     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
538     ARM_HWCAP_A64_AES           = 1 << 3,
539     ARM_HWCAP_A64_PMULL         = 1 << 4,
540     ARM_HWCAP_A64_SHA1          = 1 << 5,
541     ARM_HWCAP_A64_SHA2          = 1 << 6,
542     ARM_HWCAP_A64_CRC32         = 1 << 7,
543     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
544     ARM_HWCAP_A64_FPHP          = 1 << 9,
545     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
546     ARM_HWCAP_A64_CPUID         = 1 << 11,
547     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
548     ARM_HWCAP_A64_JSCVT         = 1 << 13,
549     ARM_HWCAP_A64_FCMA          = 1 << 14,
550     ARM_HWCAP_A64_LRCPC         = 1 << 15,
551     ARM_HWCAP_A64_DCPOP         = 1 << 16,
552     ARM_HWCAP_A64_SHA3          = 1 << 17,
553     ARM_HWCAP_A64_SM3           = 1 << 18,
554     ARM_HWCAP_A64_SM4           = 1 << 19,
555     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
556     ARM_HWCAP_A64_SHA512        = 1 << 21,
557     ARM_HWCAP_A64_SVE           = 1 << 22,
558 };
559 
560 #define ELF_HWCAP get_elf_hwcap()
561 
562 static uint32_t get_elf_hwcap(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint32_t hwcaps = 0;
566 
567     hwcaps |= ARM_HWCAP_A64_FP;
568     hwcaps |= ARM_HWCAP_A64_ASIMD;
569 
570     /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578     GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579     GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580     GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581     GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582     GET_FEATURE(ARM_FEATURE_V8_FP16,
583                 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584     GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS);
585     GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
586     GET_FEATURE(ARM_FEATURE_V8_DOTPROD, ARM_HWCAP_A64_ASIMDDP);
587     GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
588     GET_FEATURE(ARM_FEATURE_SVE, ARM_HWCAP_A64_SVE);
589 #undef GET_FEATURE
590 
591     return hwcaps;
592 }
593 
594 #endif /* not TARGET_AARCH64 */
595 #endif /* TARGET_ARM */
596 
597 #ifdef TARGET_SPARC
598 #ifdef TARGET_SPARC64
599 
600 #define ELF_START_MMAP 0x80000000
601 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
602                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
603 #ifndef TARGET_ABI32
604 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
605 #else
606 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
607 #endif
608 
609 #define ELF_CLASS   ELFCLASS64
610 #define ELF_ARCH    EM_SPARCV9
611 
612 #define STACK_BIAS              2047
613 
614 static inline void init_thread(struct target_pt_regs *regs,
615                                struct image_info *infop)
616 {
617 #ifndef TARGET_ABI32
618     regs->tstate = 0;
619 #endif
620     regs->pc = infop->entry;
621     regs->npc = regs->pc + 4;
622     regs->y = 0;
623 #ifdef TARGET_ABI32
624     regs->u_regs[14] = infop->start_stack - 16 * 4;
625 #else
626     if (personality(infop->personality) == PER_LINUX32)
627         regs->u_regs[14] = infop->start_stack - 16 * 4;
628     else
629         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
630 #endif
631 }
632 
633 #else
634 #define ELF_START_MMAP 0x80000000
635 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
636                     | HWCAP_SPARC_MULDIV)
637 
638 #define ELF_CLASS   ELFCLASS32
639 #define ELF_ARCH    EM_SPARC
640 
641 static inline void init_thread(struct target_pt_regs *regs,
642                                struct image_info *infop)
643 {
644     regs->psr = 0;
645     regs->pc = infop->entry;
646     regs->npc = regs->pc + 4;
647     regs->y = 0;
648     regs->u_regs[14] = infop->start_stack - 16 * 4;
649 }
650 
651 #endif
652 #endif
653 
654 #ifdef TARGET_PPC
655 
656 #define ELF_MACHINE    PPC_ELF_MACHINE
657 #define ELF_START_MMAP 0x80000000
658 
659 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
660 
661 #define elf_check_arch(x) ( (x) == EM_PPC64 )
662 
663 #define ELF_CLASS       ELFCLASS64
664 
665 #else
666 
667 #define ELF_CLASS       ELFCLASS32
668 
669 #endif
670 
671 #define ELF_ARCH        EM_PPC
672 
673 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
674    See arch/powerpc/include/asm/cputable.h.  */
675 enum {
676     QEMU_PPC_FEATURE_32 = 0x80000000,
677     QEMU_PPC_FEATURE_64 = 0x40000000,
678     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
679     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
680     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
681     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
682     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
683     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
684     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
685     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
686     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
687     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
688     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
689     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
690     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
691     QEMU_PPC_FEATURE_CELL = 0x00010000,
692     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
693     QEMU_PPC_FEATURE_SMT = 0x00004000,
694     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
695     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
696     QEMU_PPC_FEATURE_PA6T = 0x00000800,
697     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
698     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
699     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
700     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
701     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
702 
703     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
704     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
705 
706     /* Feature definitions in AT_HWCAP2.  */
707     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
708     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
709     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
710     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
711     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
712     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
713 };
714 
715 #define ELF_HWCAP get_elf_hwcap()
716 
717 static uint32_t get_elf_hwcap(void)
718 {
719     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
720     uint32_t features = 0;
721 
722     /* We don't have to be terribly complete here; the high points are
723        Altivec/FP/SPE support.  Anything else is just a bonus.  */
724 #define GET_FEATURE(flag, feature)                                      \
725     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
726 #define GET_FEATURE2(flags, feature) \
727     do { \
728         if ((cpu->env.insns_flags2 & flags) == flags) { \
729             features |= feature; \
730         } \
731     } while (0)
732     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
733     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
734     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
735     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
736     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
737     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
738     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
739     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
740     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
741     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
742     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
743                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
744                   QEMU_PPC_FEATURE_ARCH_2_06);
745 #undef GET_FEATURE
746 #undef GET_FEATURE2
747 
748     return features;
749 }
750 
751 #define ELF_HWCAP2 get_elf_hwcap2()
752 
753 static uint32_t get_elf_hwcap2(void)
754 {
755     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
756     uint32_t features = 0;
757 
758 #define GET_FEATURE(flag, feature)                                      \
759     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
760 #define GET_FEATURE2(flag, feature)                                      \
761     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
762 
763     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
764     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
765     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
766                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
767 
768 #undef GET_FEATURE
769 #undef GET_FEATURE2
770 
771     return features;
772 }
773 
774 /*
775  * The requirements here are:
776  * - keep the final alignment of sp (sp & 0xf)
777  * - make sure the 32-bit value at the first 16 byte aligned position of
778  *   AUXV is greater than 16 for glibc compatibility.
779  *   AT_IGNOREPPC is used for that.
780  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
781  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
782  */
783 #define DLINFO_ARCH_ITEMS       5
784 #define ARCH_DLINFO                                     \
785     do {                                                \
786         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
787         /*                                              \
788          * Handle glibc compatibility: these magic entries must \
789          * be at the lowest addresses in the final auxv.        \
790          */                                             \
791         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
792         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
793         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
794         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
795         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
796     } while (0)
797 
798 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
799 {
800     _regs->gpr[1] = infop->start_stack;
801 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
802     if (get_ppc64_abi(infop) < 2) {
803         uint64_t val;
804         get_user_u64(val, infop->entry + 8);
805         _regs->gpr[2] = val + infop->load_bias;
806         get_user_u64(val, infop->entry);
807         infop->entry = val + infop->load_bias;
808     } else {
809         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
810     }
811 #endif
812     _regs->nip = infop->entry;
813 }
814 
815 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
816 #define ELF_NREG 48
817 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
818 
819 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
820 {
821     int i;
822     target_ulong ccr = 0;
823 
824     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
825         (*regs)[i] = tswapreg(env->gpr[i]);
826     }
827 
828     (*regs)[32] = tswapreg(env->nip);
829     (*regs)[33] = tswapreg(env->msr);
830     (*regs)[35] = tswapreg(env->ctr);
831     (*regs)[36] = tswapreg(env->lr);
832     (*regs)[37] = tswapreg(env->xer);
833 
834     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
835         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
836     }
837     (*regs)[38] = tswapreg(ccr);
838 }
839 
840 #define USE_ELF_CORE_DUMP
841 #define ELF_EXEC_PAGESIZE       4096
842 
843 #endif
844 
845 #ifdef TARGET_MIPS
846 
847 #define ELF_START_MMAP 0x80000000
848 
849 #ifdef TARGET_MIPS64
850 #define ELF_CLASS   ELFCLASS64
851 #else
852 #define ELF_CLASS   ELFCLASS32
853 #endif
854 #define ELF_ARCH    EM_MIPS
855 
856 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
857 
858 static inline void init_thread(struct target_pt_regs *regs,
859                                struct image_info *infop)
860 {
861     regs->cp0_status = 2 << CP0St_KSU;
862     regs->cp0_epc = infop->entry;
863     regs->regs[29] = infop->start_stack;
864 }
865 
866 /* See linux kernel: arch/mips/include/asm/elf.h.  */
867 #define ELF_NREG 45
868 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
869 
870 /* See linux kernel: arch/mips/include/asm/reg.h.  */
871 enum {
872 #ifdef TARGET_MIPS64
873     TARGET_EF_R0 = 0,
874 #else
875     TARGET_EF_R0 = 6,
876 #endif
877     TARGET_EF_R26 = TARGET_EF_R0 + 26,
878     TARGET_EF_R27 = TARGET_EF_R0 + 27,
879     TARGET_EF_LO = TARGET_EF_R0 + 32,
880     TARGET_EF_HI = TARGET_EF_R0 + 33,
881     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
882     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
883     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
884     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
885 };
886 
887 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
888 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
889 {
890     int i;
891 
892     for (i = 0; i < TARGET_EF_R0; i++) {
893         (*regs)[i] = 0;
894     }
895     (*regs)[TARGET_EF_R0] = 0;
896 
897     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
898         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
899     }
900 
901     (*regs)[TARGET_EF_R26] = 0;
902     (*regs)[TARGET_EF_R27] = 0;
903     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
904     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
905     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
906     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
907     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
908     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
909 }
910 
911 #define USE_ELF_CORE_DUMP
912 #define ELF_EXEC_PAGESIZE        4096
913 
914 /* See arch/mips/include/uapi/asm/hwcap.h.  */
915 enum {
916     HWCAP_MIPS_R6           = (1 << 0),
917     HWCAP_MIPS_MSA          = (1 << 1),
918 };
919 
920 #define ELF_HWCAP get_elf_hwcap()
921 
922 static uint32_t get_elf_hwcap(void)
923 {
924     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
925     uint32_t hwcaps = 0;
926 
927 #define GET_FEATURE(flag, hwcap) \
928     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
929 
930     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
931     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
932 
933 #undef GET_FEATURE
934 
935     return hwcaps;
936 }
937 
938 #endif /* TARGET_MIPS */
939 
940 #ifdef TARGET_MICROBLAZE
941 
942 #define ELF_START_MMAP 0x80000000
943 
944 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
945 
946 #define ELF_CLASS   ELFCLASS32
947 #define ELF_ARCH    EM_MICROBLAZE
948 
949 static inline void init_thread(struct target_pt_regs *regs,
950                                struct image_info *infop)
951 {
952     regs->pc = infop->entry;
953     regs->r1 = infop->start_stack;
954 
955 }
956 
957 #define ELF_EXEC_PAGESIZE        4096
958 
959 #define USE_ELF_CORE_DUMP
960 #define ELF_NREG 38
961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
962 
963 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
964 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
965 {
966     int i, pos = 0;
967 
968     for (i = 0; i < 32; i++) {
969         (*regs)[pos++] = tswapreg(env->regs[i]);
970     }
971 
972     for (i = 0; i < 6; i++) {
973         (*regs)[pos++] = tswapreg(env->sregs[i]);
974     }
975 }
976 
977 #endif /* TARGET_MICROBLAZE */
978 
979 #ifdef TARGET_NIOS2
980 
981 #define ELF_START_MMAP 0x80000000
982 
983 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
984 
985 #define ELF_CLASS   ELFCLASS32
986 #define ELF_ARCH    EM_ALTERA_NIOS2
987 
988 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
989 {
990     regs->ea = infop->entry;
991     regs->sp = infop->start_stack;
992     regs->estatus = 0x3;
993 }
994 
995 #define ELF_EXEC_PAGESIZE        4096
996 
997 #define USE_ELF_CORE_DUMP
998 #define ELF_NREG 49
999 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1000 
1001 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1002 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1003                                const CPUNios2State *env)
1004 {
1005     int i;
1006 
1007     (*regs)[0] = -1;
1008     for (i = 1; i < 8; i++)    /* r0-r7 */
1009         (*regs)[i] = tswapreg(env->regs[i + 7]);
1010 
1011     for (i = 8; i < 16; i++)   /* r8-r15 */
1012         (*regs)[i] = tswapreg(env->regs[i - 8]);
1013 
1014     for (i = 16; i < 24; i++)  /* r16-r23 */
1015         (*regs)[i] = tswapreg(env->regs[i + 7]);
1016     (*regs)[24] = -1;    /* R_ET */
1017     (*regs)[25] = -1;    /* R_BT */
1018     (*regs)[26] = tswapreg(env->regs[R_GP]);
1019     (*regs)[27] = tswapreg(env->regs[R_SP]);
1020     (*regs)[28] = tswapreg(env->regs[R_FP]);
1021     (*regs)[29] = tswapreg(env->regs[R_EA]);
1022     (*regs)[30] = -1;    /* R_SSTATUS */
1023     (*regs)[31] = tswapreg(env->regs[R_RA]);
1024 
1025     (*regs)[32] = tswapreg(env->regs[R_PC]);
1026 
1027     (*regs)[33] = -1; /* R_STATUS */
1028     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1029 
1030     for (i = 35; i < 49; i++)    /* ... */
1031         (*regs)[i] = -1;
1032 }
1033 
1034 #endif /* TARGET_NIOS2 */
1035 
1036 #ifdef TARGET_OPENRISC
1037 
1038 #define ELF_START_MMAP 0x08000000
1039 
1040 #define ELF_ARCH EM_OPENRISC
1041 #define ELF_CLASS ELFCLASS32
1042 #define ELF_DATA  ELFDATA2MSB
1043 
1044 static inline void init_thread(struct target_pt_regs *regs,
1045                                struct image_info *infop)
1046 {
1047     regs->pc = infop->entry;
1048     regs->gpr[1] = infop->start_stack;
1049 }
1050 
1051 #define USE_ELF_CORE_DUMP
1052 #define ELF_EXEC_PAGESIZE 8192
1053 
1054 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1055 #define ELF_NREG 34 /* gprs and pc, sr */
1056 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1057 
1058 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1059                                const CPUOpenRISCState *env)
1060 {
1061     int i;
1062 
1063     for (i = 0; i < 32; i++) {
1064         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1065     }
1066     (*regs)[32] = tswapreg(env->pc);
1067     (*regs)[33] = tswapreg(cpu_get_sr(env));
1068 }
1069 #define ELF_HWCAP 0
1070 #define ELF_PLATFORM NULL
1071 
1072 #endif /* TARGET_OPENRISC */
1073 
1074 #ifdef TARGET_SH4
1075 
1076 #define ELF_START_MMAP 0x80000000
1077 
1078 #define ELF_CLASS ELFCLASS32
1079 #define ELF_ARCH  EM_SH
1080 
1081 static inline void init_thread(struct target_pt_regs *regs,
1082                                struct image_info *infop)
1083 {
1084     /* Check other registers XXXXX */
1085     regs->pc = infop->entry;
1086     regs->regs[15] = infop->start_stack;
1087 }
1088 
1089 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1090 #define ELF_NREG 23
1091 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1092 
1093 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1094 enum {
1095     TARGET_REG_PC = 16,
1096     TARGET_REG_PR = 17,
1097     TARGET_REG_SR = 18,
1098     TARGET_REG_GBR = 19,
1099     TARGET_REG_MACH = 20,
1100     TARGET_REG_MACL = 21,
1101     TARGET_REG_SYSCALL = 22
1102 };
1103 
1104 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1105                                       const CPUSH4State *env)
1106 {
1107     int i;
1108 
1109     for (i = 0; i < 16; i++) {
1110         (*regs)[i] = tswapreg(env->gregs[i]);
1111     }
1112 
1113     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1114     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1115     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1116     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1117     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1118     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1119     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1120 }
1121 
1122 #define USE_ELF_CORE_DUMP
1123 #define ELF_EXEC_PAGESIZE        4096
1124 
1125 enum {
1126     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1127     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1128     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1129     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1130     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1131     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1132     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1133     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1134     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1135     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1136 };
1137 
1138 #define ELF_HWCAP get_elf_hwcap()
1139 
1140 static uint32_t get_elf_hwcap(void)
1141 {
1142     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1143     uint32_t hwcap = 0;
1144 
1145     hwcap |= SH_CPU_HAS_FPU;
1146 
1147     if (cpu->env.features & SH_FEATURE_SH4A) {
1148         hwcap |= SH_CPU_HAS_LLSC;
1149     }
1150 
1151     return hwcap;
1152 }
1153 
1154 #endif
1155 
1156 #ifdef TARGET_CRIS
1157 
1158 #define ELF_START_MMAP 0x80000000
1159 
1160 #define ELF_CLASS ELFCLASS32
1161 #define ELF_ARCH  EM_CRIS
1162 
1163 static inline void init_thread(struct target_pt_regs *regs,
1164                                struct image_info *infop)
1165 {
1166     regs->erp = infop->entry;
1167 }
1168 
1169 #define ELF_EXEC_PAGESIZE        8192
1170 
1171 #endif
1172 
1173 #ifdef TARGET_M68K
1174 
1175 #define ELF_START_MMAP 0x80000000
1176 
1177 #define ELF_CLASS       ELFCLASS32
1178 #define ELF_ARCH        EM_68K
1179 
1180 /* ??? Does this need to do anything?
1181    #define ELF_PLAT_INIT(_r) */
1182 
1183 static inline void init_thread(struct target_pt_regs *regs,
1184                                struct image_info *infop)
1185 {
1186     regs->usp = infop->start_stack;
1187     regs->sr = 0;
1188     regs->pc = infop->entry;
1189 }
1190 
1191 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1192 #define ELF_NREG 20
1193 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1194 
1195 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1196 {
1197     (*regs)[0] = tswapreg(env->dregs[1]);
1198     (*regs)[1] = tswapreg(env->dregs[2]);
1199     (*regs)[2] = tswapreg(env->dregs[3]);
1200     (*regs)[3] = tswapreg(env->dregs[4]);
1201     (*regs)[4] = tswapreg(env->dregs[5]);
1202     (*regs)[5] = tswapreg(env->dregs[6]);
1203     (*regs)[6] = tswapreg(env->dregs[7]);
1204     (*regs)[7] = tswapreg(env->aregs[0]);
1205     (*regs)[8] = tswapreg(env->aregs[1]);
1206     (*regs)[9] = tswapreg(env->aregs[2]);
1207     (*regs)[10] = tswapreg(env->aregs[3]);
1208     (*regs)[11] = tswapreg(env->aregs[4]);
1209     (*regs)[12] = tswapreg(env->aregs[5]);
1210     (*regs)[13] = tswapreg(env->aregs[6]);
1211     (*regs)[14] = tswapreg(env->dregs[0]);
1212     (*regs)[15] = tswapreg(env->aregs[7]);
1213     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1214     (*regs)[17] = tswapreg(env->sr);
1215     (*regs)[18] = tswapreg(env->pc);
1216     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1217 }
1218 
1219 #define USE_ELF_CORE_DUMP
1220 #define ELF_EXEC_PAGESIZE       8192
1221 
1222 #endif
1223 
1224 #ifdef TARGET_ALPHA
1225 
1226 #define ELF_START_MMAP (0x30000000000ULL)
1227 
1228 #define ELF_CLASS      ELFCLASS64
1229 #define ELF_ARCH       EM_ALPHA
1230 
1231 static inline void init_thread(struct target_pt_regs *regs,
1232                                struct image_info *infop)
1233 {
1234     regs->pc = infop->entry;
1235     regs->ps = 8;
1236     regs->usp = infop->start_stack;
1237 }
1238 
1239 #define ELF_EXEC_PAGESIZE        8192
1240 
1241 #endif /* TARGET_ALPHA */
1242 
1243 #ifdef TARGET_S390X
1244 
1245 #define ELF_START_MMAP (0x20000000000ULL)
1246 
1247 #define ELF_CLASS	ELFCLASS64
1248 #define ELF_DATA	ELFDATA2MSB
1249 #define ELF_ARCH	EM_S390
1250 
1251 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1252 {
1253     regs->psw.addr = infop->entry;
1254     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1255     regs->gprs[15] = infop->start_stack;
1256 }
1257 
1258 #endif /* TARGET_S390X */
1259 
1260 #ifdef TARGET_TILEGX
1261 
1262 /* 42 bits real used address, a half for user mode */
1263 #define ELF_START_MMAP (0x00000020000000000ULL)
1264 
1265 #define elf_check_arch(x) ((x) == EM_TILEGX)
1266 
1267 #define ELF_CLASS   ELFCLASS64
1268 #define ELF_DATA    ELFDATA2LSB
1269 #define ELF_ARCH    EM_TILEGX
1270 
1271 static inline void init_thread(struct target_pt_regs *regs,
1272                                struct image_info *infop)
1273 {
1274     regs->pc = infop->entry;
1275     regs->sp = infop->start_stack;
1276 
1277 }
1278 
1279 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1280 
1281 #endif /* TARGET_TILEGX */
1282 
1283 #ifdef TARGET_RISCV
1284 
1285 #define ELF_START_MMAP 0x80000000
1286 #define ELF_ARCH  EM_RISCV
1287 
1288 #ifdef TARGET_RISCV32
1289 #define ELF_CLASS ELFCLASS32
1290 #else
1291 #define ELF_CLASS ELFCLASS64
1292 #endif
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->sepc = infop->entry;
1298     regs->sp = infop->start_stack;
1299 }
1300 
1301 #define ELF_EXEC_PAGESIZE 4096
1302 
1303 #endif /* TARGET_RISCV */
1304 
1305 #ifdef TARGET_HPPA
1306 
1307 #define ELF_START_MMAP  0x80000000
1308 #define ELF_CLASS       ELFCLASS32
1309 #define ELF_ARCH        EM_PARISC
1310 #define ELF_PLATFORM    "PARISC"
1311 #define STACK_GROWS_DOWN 0
1312 #define STACK_ALIGNMENT  64
1313 
1314 static inline void init_thread(struct target_pt_regs *regs,
1315                                struct image_info *infop)
1316 {
1317     regs->iaoq[0] = infop->entry;
1318     regs->iaoq[1] = infop->entry + 4;
1319     regs->gr[23] = 0;
1320     regs->gr[24] = infop->arg_start;
1321     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1322     /* The top-of-stack contains a linkage buffer.  */
1323     regs->gr[30] = infop->start_stack + 64;
1324     regs->gr[31] = infop->entry;
1325 }
1326 
1327 #endif /* TARGET_HPPA */
1328 
1329 #ifdef TARGET_XTENSA
1330 
1331 #define ELF_START_MMAP 0x20000000
1332 
1333 #define ELF_CLASS       ELFCLASS32
1334 #define ELF_ARCH        EM_XTENSA
1335 
1336 static inline void init_thread(struct target_pt_regs *regs,
1337                                struct image_info *infop)
1338 {
1339     regs->windowbase = 0;
1340     regs->windowstart = 1;
1341     regs->areg[1] = infop->start_stack;
1342     regs->pc = infop->entry;
1343 }
1344 
1345 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1346 #define ELF_NREG 128
1347 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1348 
1349 enum {
1350     TARGET_REG_PC,
1351     TARGET_REG_PS,
1352     TARGET_REG_LBEG,
1353     TARGET_REG_LEND,
1354     TARGET_REG_LCOUNT,
1355     TARGET_REG_SAR,
1356     TARGET_REG_WINDOWSTART,
1357     TARGET_REG_WINDOWBASE,
1358     TARGET_REG_THREADPTR,
1359     TARGET_REG_AR0 = 64,
1360 };
1361 
1362 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1363                                const CPUXtensaState *env)
1364 {
1365     unsigned i;
1366 
1367     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1368     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1369     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1370     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1371     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1372     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1373     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1374     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1375     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1376     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1377     for (i = 0; i < env->config->nareg; ++i) {
1378         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1379     }
1380 }
1381 
1382 #define USE_ELF_CORE_DUMP
1383 #define ELF_EXEC_PAGESIZE       4096
1384 
1385 #endif /* TARGET_XTENSA */
1386 
1387 #ifndef ELF_PLATFORM
1388 #define ELF_PLATFORM (NULL)
1389 #endif
1390 
1391 #ifndef ELF_MACHINE
1392 #define ELF_MACHINE ELF_ARCH
1393 #endif
1394 
1395 #ifndef elf_check_arch
1396 #define elf_check_arch(x) ((x) == ELF_ARCH)
1397 #endif
1398 
1399 #ifndef ELF_HWCAP
1400 #define ELF_HWCAP 0
1401 #endif
1402 
1403 #ifndef STACK_GROWS_DOWN
1404 #define STACK_GROWS_DOWN 1
1405 #endif
1406 
1407 #ifndef STACK_ALIGNMENT
1408 #define STACK_ALIGNMENT 16
1409 #endif
1410 
1411 #ifdef TARGET_ABI32
1412 #undef ELF_CLASS
1413 #define ELF_CLASS ELFCLASS32
1414 #undef bswaptls
1415 #define bswaptls(ptr) bswap32s(ptr)
1416 #endif
1417 
1418 #include "elf.h"
1419 
1420 struct exec
1421 {
1422     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1423     unsigned int a_text;   /* length of text, in bytes */
1424     unsigned int a_data;   /* length of data, in bytes */
1425     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1426     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1427     unsigned int a_entry;  /* start address */
1428     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1429     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1430 };
1431 
1432 
1433 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1434 #define OMAGIC 0407
1435 #define NMAGIC 0410
1436 #define ZMAGIC 0413
1437 #define QMAGIC 0314
1438 
1439 /* Necessary parameters */
1440 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1441 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1442                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1443 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1444 
1445 #define DLINFO_ITEMS 15
1446 
1447 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1448 {
1449     memcpy(to, from, n);
1450 }
1451 
1452 #ifdef BSWAP_NEEDED
1453 static void bswap_ehdr(struct elfhdr *ehdr)
1454 {
1455     bswap16s(&ehdr->e_type);            /* Object file type */
1456     bswap16s(&ehdr->e_machine);         /* Architecture */
1457     bswap32s(&ehdr->e_version);         /* Object file version */
1458     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1459     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1460     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1461     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1462     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1463     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1464     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1465     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1466     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1467     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1468 }
1469 
1470 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1471 {
1472     int i;
1473     for (i = 0; i < phnum; ++i, ++phdr) {
1474         bswap32s(&phdr->p_type);        /* Segment type */
1475         bswap32s(&phdr->p_flags);       /* Segment flags */
1476         bswaptls(&phdr->p_offset);      /* Segment file offset */
1477         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1478         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1479         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1480         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1481         bswaptls(&phdr->p_align);       /* Segment alignment */
1482     }
1483 }
1484 
1485 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1486 {
1487     int i;
1488     for (i = 0; i < shnum; ++i, ++shdr) {
1489         bswap32s(&shdr->sh_name);
1490         bswap32s(&shdr->sh_type);
1491         bswaptls(&shdr->sh_flags);
1492         bswaptls(&shdr->sh_addr);
1493         bswaptls(&shdr->sh_offset);
1494         bswaptls(&shdr->sh_size);
1495         bswap32s(&shdr->sh_link);
1496         bswap32s(&shdr->sh_info);
1497         bswaptls(&shdr->sh_addralign);
1498         bswaptls(&shdr->sh_entsize);
1499     }
1500 }
1501 
1502 static void bswap_sym(struct elf_sym *sym)
1503 {
1504     bswap32s(&sym->st_name);
1505     bswaptls(&sym->st_value);
1506     bswaptls(&sym->st_size);
1507     bswap16s(&sym->st_shndx);
1508 }
1509 #else
1510 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1511 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1512 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1513 static inline void bswap_sym(struct elf_sym *sym) { }
1514 #endif
1515 
1516 #ifdef USE_ELF_CORE_DUMP
1517 static int elf_core_dump(int, const CPUArchState *);
1518 #endif /* USE_ELF_CORE_DUMP */
1519 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1520 
1521 /* Verify the portions of EHDR within E_IDENT for the target.
1522    This can be performed before bswapping the entire header.  */
1523 static bool elf_check_ident(struct elfhdr *ehdr)
1524 {
1525     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1526             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1527             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1528             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1529             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1530             && ehdr->e_ident[EI_DATA] == ELF_DATA
1531             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1532 }
1533 
1534 /* Verify the portions of EHDR outside of E_IDENT for the target.
1535    This has to wait until after bswapping the header.  */
1536 static bool elf_check_ehdr(struct elfhdr *ehdr)
1537 {
1538     return (elf_check_arch(ehdr->e_machine)
1539             && ehdr->e_ehsize == sizeof(struct elfhdr)
1540             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1541             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1542 }
1543 
1544 /*
1545  * 'copy_elf_strings()' copies argument/envelope strings from user
1546  * memory to free pages in kernel mem. These are in a format ready
1547  * to be put directly into the top of new user memory.
1548  *
1549  */
1550 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1551                                   abi_ulong p, abi_ulong stack_limit)
1552 {
1553     char *tmp;
1554     int len, i;
1555     abi_ulong top = p;
1556 
1557     if (!p) {
1558         return 0;       /* bullet-proofing */
1559     }
1560 
1561     if (STACK_GROWS_DOWN) {
1562         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1563         for (i = argc - 1; i >= 0; --i) {
1564             tmp = argv[i];
1565             if (!tmp) {
1566                 fprintf(stderr, "VFS: argc is wrong");
1567                 exit(-1);
1568             }
1569             len = strlen(tmp) + 1;
1570             tmp += len;
1571 
1572             if (len > (p - stack_limit)) {
1573                 return 0;
1574             }
1575             while (len) {
1576                 int bytes_to_copy = (len > offset) ? offset : len;
1577                 tmp -= bytes_to_copy;
1578                 p -= bytes_to_copy;
1579                 offset -= bytes_to_copy;
1580                 len -= bytes_to_copy;
1581 
1582                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1583 
1584                 if (offset == 0) {
1585                     memcpy_to_target(p, scratch, top - p);
1586                     top = p;
1587                     offset = TARGET_PAGE_SIZE;
1588                 }
1589             }
1590         }
1591         if (p != top) {
1592             memcpy_to_target(p, scratch + offset, top - p);
1593         }
1594     } else {
1595         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1596         for (i = 0; i < argc; ++i) {
1597             tmp = argv[i];
1598             if (!tmp) {
1599                 fprintf(stderr, "VFS: argc is wrong");
1600                 exit(-1);
1601             }
1602             len = strlen(tmp) + 1;
1603             if (len > (stack_limit - p)) {
1604                 return 0;
1605             }
1606             while (len) {
1607                 int bytes_to_copy = (len > remaining) ? remaining : len;
1608 
1609                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1610 
1611                 tmp += bytes_to_copy;
1612                 remaining -= bytes_to_copy;
1613                 p += bytes_to_copy;
1614                 len -= bytes_to_copy;
1615 
1616                 if (remaining == 0) {
1617                     memcpy_to_target(top, scratch, p - top);
1618                     top = p;
1619                     remaining = TARGET_PAGE_SIZE;
1620                 }
1621             }
1622         }
1623         if (p != top) {
1624             memcpy_to_target(top, scratch, p - top);
1625         }
1626     }
1627 
1628     return p;
1629 }
1630 
1631 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1632  * argument/environment space. Newer kernels (>2.6.33) allow more,
1633  * dependent on stack size, but guarantee at least 32 pages for
1634  * backwards compatibility.
1635  */
1636 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1637 
1638 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1639                                  struct image_info *info)
1640 {
1641     abi_ulong size, error, guard;
1642 
1643     size = guest_stack_size;
1644     if (size < STACK_LOWER_LIMIT) {
1645         size = STACK_LOWER_LIMIT;
1646     }
1647     guard = TARGET_PAGE_SIZE;
1648     if (guard < qemu_real_host_page_size) {
1649         guard = qemu_real_host_page_size;
1650     }
1651 
1652     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1653                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1654     if (error == -1) {
1655         perror("mmap stack");
1656         exit(-1);
1657     }
1658 
1659     /* We reserve one extra page at the top of the stack as guard.  */
1660     if (STACK_GROWS_DOWN) {
1661         target_mprotect(error, guard, PROT_NONE);
1662         info->stack_limit = error + guard;
1663         return info->stack_limit + size - sizeof(void *);
1664     } else {
1665         target_mprotect(error + size, guard, PROT_NONE);
1666         info->stack_limit = error + size;
1667         return error;
1668     }
1669 }
1670 
1671 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1672    after the data section (i.e. bss).  */
1673 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1674 {
1675     uintptr_t host_start, host_map_start, host_end;
1676 
1677     last_bss = TARGET_PAGE_ALIGN(last_bss);
1678 
1679     /* ??? There is confusion between qemu_real_host_page_size and
1680        qemu_host_page_size here and elsewhere in target_mmap, which
1681        may lead to the end of the data section mapping from the file
1682        not being mapped.  At least there was an explicit test and
1683        comment for that here, suggesting that "the file size must
1684        be known".  The comment probably pre-dates the introduction
1685        of the fstat system call in target_mmap which does in fact
1686        find out the size.  What isn't clear is if the workaround
1687        here is still actually needed.  For now, continue with it,
1688        but merge it with the "normal" mmap that would allocate the bss.  */
1689 
1690     host_start = (uintptr_t) g2h(elf_bss);
1691     host_end = (uintptr_t) g2h(last_bss);
1692     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1693 
1694     if (host_map_start < host_end) {
1695         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1696                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1697         if (p == MAP_FAILED) {
1698             perror("cannot mmap brk");
1699             exit(-1);
1700         }
1701     }
1702 
1703     /* Ensure that the bss page(s) are valid */
1704     if ((page_get_flags(last_bss-1) & prot) != prot) {
1705         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1706     }
1707 
1708     if (host_start < host_map_start) {
1709         memset((void *)host_start, 0, host_map_start - host_start);
1710     }
1711 }
1712 
1713 #ifdef TARGET_ARM
1714 static int elf_is_fdpic(struct elfhdr *exec)
1715 {
1716     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1717 }
1718 #else
1719 /* Default implementation, always false.  */
1720 static int elf_is_fdpic(struct elfhdr *exec)
1721 {
1722     return 0;
1723 }
1724 #endif
1725 
1726 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1727 {
1728     uint16_t n;
1729     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1730 
1731     /* elf32_fdpic_loadseg */
1732     n = info->nsegs;
1733     while (n--) {
1734         sp -= 12;
1735         put_user_u32(loadsegs[n].addr, sp+0);
1736         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1737         put_user_u32(loadsegs[n].p_memsz, sp+8);
1738     }
1739 
1740     /* elf32_fdpic_loadmap */
1741     sp -= 4;
1742     put_user_u16(0, sp+0); /* version */
1743     put_user_u16(info->nsegs, sp+2); /* nsegs */
1744 
1745     info->personality = PER_LINUX_FDPIC;
1746     info->loadmap_addr = sp;
1747 
1748     return sp;
1749 }
1750 
1751 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1752                                    struct elfhdr *exec,
1753                                    struct image_info *info,
1754                                    struct image_info *interp_info)
1755 {
1756     abi_ulong sp;
1757     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1758     int size;
1759     int i;
1760     abi_ulong u_rand_bytes;
1761     uint8_t k_rand_bytes[16];
1762     abi_ulong u_platform;
1763     const char *k_platform;
1764     const int n = sizeof(elf_addr_t);
1765 
1766     sp = p;
1767 
1768     /* Needs to be before we load the env/argc/... */
1769     if (elf_is_fdpic(exec)) {
1770         /* Need 4 byte alignment for these structs */
1771         sp &= ~3;
1772         sp = loader_build_fdpic_loadmap(info, sp);
1773         info->other_info = interp_info;
1774         if (interp_info) {
1775             interp_info->other_info = info;
1776             sp = loader_build_fdpic_loadmap(interp_info, sp);
1777             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1778             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1779         } else {
1780             info->interpreter_loadmap_addr = 0;
1781             info->interpreter_pt_dynamic_addr = 0;
1782         }
1783     }
1784 
1785     u_platform = 0;
1786     k_platform = ELF_PLATFORM;
1787     if (k_platform) {
1788         size_t len = strlen(k_platform) + 1;
1789         if (STACK_GROWS_DOWN) {
1790             sp -= (len + n - 1) & ~(n - 1);
1791             u_platform = sp;
1792             /* FIXME - check return value of memcpy_to_target() for failure */
1793             memcpy_to_target(sp, k_platform, len);
1794         } else {
1795             memcpy_to_target(sp, k_platform, len);
1796             u_platform = sp;
1797             sp += len + 1;
1798         }
1799     }
1800 
1801     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1802      * the argv and envp pointers.
1803      */
1804     if (STACK_GROWS_DOWN) {
1805         sp = QEMU_ALIGN_DOWN(sp, 16);
1806     } else {
1807         sp = QEMU_ALIGN_UP(sp, 16);
1808     }
1809 
1810     /*
1811      * Generate 16 random bytes for userspace PRNG seeding (not
1812      * cryptically secure but it's not the aim of QEMU).
1813      */
1814     for (i = 0; i < 16; i++) {
1815         k_rand_bytes[i] = rand();
1816     }
1817     if (STACK_GROWS_DOWN) {
1818         sp -= 16;
1819         u_rand_bytes = sp;
1820         /* FIXME - check return value of memcpy_to_target() for failure */
1821         memcpy_to_target(sp, k_rand_bytes, 16);
1822     } else {
1823         memcpy_to_target(sp, k_rand_bytes, 16);
1824         u_rand_bytes = sp;
1825         sp += 16;
1826     }
1827 
1828     size = (DLINFO_ITEMS + 1) * 2;
1829     if (k_platform)
1830         size += 2;
1831 #ifdef DLINFO_ARCH_ITEMS
1832     size += DLINFO_ARCH_ITEMS * 2;
1833 #endif
1834 #ifdef ELF_HWCAP2
1835     size += 2;
1836 #endif
1837     info->auxv_len = size * n;
1838 
1839     size += envc + argc + 2;
1840     size += 1;  /* argc itself */
1841     size *= n;
1842 
1843     /* Allocate space and finalize stack alignment for entry now.  */
1844     if (STACK_GROWS_DOWN) {
1845         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1846         sp = u_argc;
1847     } else {
1848         u_argc = sp;
1849         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1850     }
1851 
1852     u_argv = u_argc + n;
1853     u_envp = u_argv + (argc + 1) * n;
1854     u_auxv = u_envp + (envc + 1) * n;
1855     info->saved_auxv = u_auxv;
1856     info->arg_start = u_argv;
1857     info->arg_end = u_argv + argc * n;
1858 
1859     /* This is correct because Linux defines
1860      * elf_addr_t as Elf32_Off / Elf64_Off
1861      */
1862 #define NEW_AUX_ENT(id, val) do {               \
1863         put_user_ual(id, u_auxv);  u_auxv += n; \
1864         put_user_ual(val, u_auxv); u_auxv += n; \
1865     } while(0)
1866 
1867 #ifdef ARCH_DLINFO
1868     /*
1869      * ARCH_DLINFO must come first so platform specific code can enforce
1870      * special alignment requirements on the AUXV if necessary (eg. PPC).
1871      */
1872     ARCH_DLINFO;
1873 #endif
1874     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1875      * on info->auxv_len will trigger.
1876      */
1877     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1878     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1879     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1880     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1881         /* Target doesn't support host page size alignment */
1882         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1883     } else {
1884         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1885                                                qemu_host_page_size)));
1886     }
1887     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1888     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1889     NEW_AUX_ENT(AT_ENTRY, info->entry);
1890     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1891     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1892     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1893     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1894     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1895     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1896     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1897     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1898 
1899 #ifdef ELF_HWCAP2
1900     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1901 #endif
1902 
1903     if (u_platform) {
1904         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1905     }
1906     NEW_AUX_ENT (AT_NULL, 0);
1907 #undef NEW_AUX_ENT
1908 
1909     /* Check that our initial calculation of the auxv length matches how much
1910      * we actually put into it.
1911      */
1912     assert(info->auxv_len == u_auxv - info->saved_auxv);
1913 
1914     put_user_ual(argc, u_argc);
1915 
1916     p = info->arg_strings;
1917     for (i = 0; i < argc; ++i) {
1918         put_user_ual(p, u_argv);
1919         u_argv += n;
1920         p += target_strlen(p) + 1;
1921     }
1922     put_user_ual(0, u_argv);
1923 
1924     p = info->env_strings;
1925     for (i = 0; i < envc; ++i) {
1926         put_user_ual(p, u_envp);
1927         u_envp += n;
1928         p += target_strlen(p) + 1;
1929     }
1930     put_user_ual(0, u_envp);
1931 
1932     return sp;
1933 }
1934 
1935 unsigned long init_guest_space(unsigned long host_start,
1936                                unsigned long host_size,
1937                                unsigned long guest_start,
1938                                bool fixed)
1939 {
1940     unsigned long current_start, aligned_start;
1941     int flags;
1942 
1943     assert(host_start || host_size);
1944 
1945     /* If just a starting address is given, then just verify that
1946      * address.  */
1947     if (host_start && !host_size) {
1948 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1949         if (init_guest_commpage(host_start, host_size) != 1) {
1950             return (unsigned long)-1;
1951         }
1952 #endif
1953         return host_start;
1954     }
1955 
1956     /* Setup the initial flags and start address.  */
1957     current_start = host_start & qemu_host_page_mask;
1958     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1959     if (fixed) {
1960         flags |= MAP_FIXED;
1961     }
1962 
1963     /* Otherwise, a non-zero size region of memory needs to be mapped
1964      * and validated.  */
1965 
1966 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1967     /* On 32-bit ARM, we need to map not just the usable memory, but
1968      * also the commpage.  Try to find a suitable place by allocating
1969      * a big chunk for all of it.  If host_start, then the naive
1970      * strategy probably does good enough.
1971      */
1972     if (!host_start) {
1973         unsigned long guest_full_size, host_full_size, real_start;
1974 
1975         guest_full_size =
1976             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1977         host_full_size = guest_full_size - guest_start;
1978         real_start = (unsigned long)
1979             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1980         if (real_start == (unsigned long)-1) {
1981             if (host_size < host_full_size - qemu_host_page_size) {
1982                 /* We failed to map a continous segment, but we're
1983                  * allowed to have a gap between the usable memory and
1984                  * the commpage where other things can be mapped.
1985                  * This sparseness gives us more flexibility to find
1986                  * an address range.
1987                  */
1988                 goto naive;
1989             }
1990             return (unsigned long)-1;
1991         }
1992         munmap((void *)real_start, host_full_size);
1993         if (real_start & ~qemu_host_page_mask) {
1994             /* The same thing again, but with an extra qemu_host_page_size
1995              * so that we can shift around alignment.
1996              */
1997             unsigned long real_size = host_full_size + qemu_host_page_size;
1998             real_start = (unsigned long)
1999                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2000             if (real_start == (unsigned long)-1) {
2001                 if (host_size < host_full_size - qemu_host_page_size) {
2002                     goto naive;
2003                 }
2004                 return (unsigned long)-1;
2005             }
2006             munmap((void *)real_start, real_size);
2007             real_start = HOST_PAGE_ALIGN(real_start);
2008         }
2009         current_start = real_start;
2010     }
2011  naive:
2012 #endif
2013 
2014     while (1) {
2015         unsigned long real_start, real_size, aligned_size;
2016         aligned_size = real_size = host_size;
2017 
2018         /* Do not use mmap_find_vma here because that is limited to the
2019          * guest address space.  We are going to make the
2020          * guest address space fit whatever we're given.
2021          */
2022         real_start = (unsigned long)
2023             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2024         if (real_start == (unsigned long)-1) {
2025             return (unsigned long)-1;
2026         }
2027 
2028         /* Check to see if the address is valid.  */
2029         if (host_start && real_start != current_start) {
2030             goto try_again;
2031         }
2032 
2033         /* Ensure the address is properly aligned.  */
2034         if (real_start & ~qemu_host_page_mask) {
2035             /* Ideally, we adjust like
2036              *
2037              *    pages: [  ][  ][  ][  ][  ]
2038              *      old:   [   real   ]
2039              *             [ aligned  ]
2040              *      new:   [     real     ]
2041              *               [ aligned  ]
2042              *
2043              * But if there is something else mapped right after it,
2044              * then obviously it won't have room to grow, and the
2045              * kernel will put the new larger real someplace else with
2046              * unknown alignment (if we made it to here, then
2047              * fixed=false).  Which is why we grow real by a full page
2048              * size, instead of by part of one; so that even if we get
2049              * moved, we can still guarantee alignment.  But this does
2050              * mean that there is a padding of < 1 page both before
2051              * and after the aligned range; the "after" could could
2052              * cause problems for ARM emulation where it could butt in
2053              * to where we need to put the commpage.
2054              */
2055             munmap((void *)real_start, host_size);
2056             real_size = aligned_size + qemu_host_page_size;
2057             real_start = (unsigned long)
2058                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2059             if (real_start == (unsigned long)-1) {
2060                 return (unsigned long)-1;
2061             }
2062             aligned_start = HOST_PAGE_ALIGN(real_start);
2063         } else {
2064             aligned_start = real_start;
2065         }
2066 
2067 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2068         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2069         int valid = init_guest_commpage(aligned_start - guest_start,
2070                                         aligned_size + guest_start);
2071         if (valid == -1) {
2072             munmap((void *)real_start, real_size);
2073             return (unsigned long)-1;
2074         } else if (valid == 0) {
2075             goto try_again;
2076         }
2077 #endif
2078 
2079         /* If nothing has said `return -1` or `goto try_again` yet,
2080          * then the address we have is good.
2081          */
2082         break;
2083 
2084     try_again:
2085         /* That address didn't work.  Unmap and try a different one.
2086          * The address the host picked because is typically right at
2087          * the top of the host address space and leaves the guest with
2088          * no usable address space.  Resort to a linear search.  We
2089          * already compensated for mmap_min_addr, so this should not
2090          * happen often.  Probably means we got unlucky and host
2091          * address space randomization put a shared library somewhere
2092          * inconvenient.
2093          *
2094          * This is probably a good strategy if host_start, but is
2095          * probably a bad strategy if not, which means we got here
2096          * because of trouble with ARM commpage setup.
2097          */
2098         munmap((void *)real_start, real_size);
2099         current_start += qemu_host_page_size;
2100         if (host_start == current_start) {
2101             /* Theoretically possible if host doesn't have any suitably
2102              * aligned areas.  Normally the first mmap will fail.
2103              */
2104             return (unsigned long)-1;
2105         }
2106     }
2107 
2108     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2109 
2110     return aligned_start;
2111 }
2112 
2113 static void probe_guest_base(const char *image_name,
2114                              abi_ulong loaddr, abi_ulong hiaddr)
2115 {
2116     /* Probe for a suitable guest base address, if the user has not set
2117      * it explicitly, and set guest_base appropriately.
2118      * In case of error we will print a suitable message and exit.
2119      */
2120     const char *errmsg;
2121     if (!have_guest_base && !reserved_va) {
2122         unsigned long host_start, real_start, host_size;
2123 
2124         /* Round addresses to page boundaries.  */
2125         loaddr &= qemu_host_page_mask;
2126         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2127 
2128         if (loaddr < mmap_min_addr) {
2129             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2130         } else {
2131             host_start = loaddr;
2132             if (host_start != loaddr) {
2133                 errmsg = "Address overflow loading ELF binary";
2134                 goto exit_errmsg;
2135             }
2136         }
2137         host_size = hiaddr - loaddr;
2138 
2139         /* Setup the initial guest memory space with ranges gleaned from
2140          * the ELF image that is being loaded.
2141          */
2142         real_start = init_guest_space(host_start, host_size, loaddr, false);
2143         if (real_start == (unsigned long)-1) {
2144             errmsg = "Unable to find space for application";
2145             goto exit_errmsg;
2146         }
2147         guest_base = real_start - loaddr;
2148 
2149         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2150                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2151                       loaddr, real_start);
2152     }
2153     return;
2154 
2155 exit_errmsg:
2156     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2157     exit(-1);
2158 }
2159 
2160 
2161 /* Load an ELF image into the address space.
2162 
2163    IMAGE_NAME is the filename of the image, to use in error messages.
2164    IMAGE_FD is the open file descriptor for the image.
2165 
2166    BPRM_BUF is a copy of the beginning of the file; this of course
2167    contains the elf file header at offset 0.  It is assumed that this
2168    buffer is sufficiently aligned to present no problems to the host
2169    in accessing data at aligned offsets within the buffer.
2170 
2171    On return: INFO values will be filled in, as necessary or available.  */
2172 
2173 static void load_elf_image(const char *image_name, int image_fd,
2174                            struct image_info *info, char **pinterp_name,
2175                            char bprm_buf[BPRM_BUF_SIZE])
2176 {
2177     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2178     struct elf_phdr *phdr;
2179     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2180     int i, retval;
2181     const char *errmsg;
2182 
2183     /* First of all, some simple consistency checks */
2184     errmsg = "Invalid ELF image for this architecture";
2185     if (!elf_check_ident(ehdr)) {
2186         goto exit_errmsg;
2187     }
2188     bswap_ehdr(ehdr);
2189     if (!elf_check_ehdr(ehdr)) {
2190         goto exit_errmsg;
2191     }
2192 
2193     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2194     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2195         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2196     } else {
2197         phdr = (struct elf_phdr *) alloca(i);
2198         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2199         if (retval != i) {
2200             goto exit_read;
2201         }
2202     }
2203     bswap_phdr(phdr, ehdr->e_phnum);
2204 
2205     info->nsegs = 0;
2206     info->pt_dynamic_addr = 0;
2207 
2208     mmap_lock();
2209 
2210     /* Find the maximum size of the image and allocate an appropriate
2211        amount of memory to handle that.  */
2212     loaddr = -1, hiaddr = 0;
2213     info->alignment = 0;
2214     for (i = 0; i < ehdr->e_phnum; ++i) {
2215         if (phdr[i].p_type == PT_LOAD) {
2216             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2217             if (a < loaddr) {
2218                 loaddr = a;
2219             }
2220             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2221             if (a > hiaddr) {
2222                 hiaddr = a;
2223             }
2224             ++info->nsegs;
2225             info->alignment |= phdr[i].p_align;
2226         }
2227     }
2228 
2229     load_addr = loaddr;
2230     if (ehdr->e_type == ET_DYN) {
2231         /* The image indicates that it can be loaded anywhere.  Find a
2232            location that can hold the memory space required.  If the
2233            image is pre-linked, LOADDR will be non-zero.  Since we do
2234            not supply MAP_FIXED here we'll use that address if and
2235            only if it remains available.  */
2236         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2237                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2238                                 -1, 0);
2239         if (load_addr == -1) {
2240             goto exit_perror;
2241         }
2242     } else if (pinterp_name != NULL) {
2243         /* This is the main executable.  Make sure that the low
2244            address does not conflict with MMAP_MIN_ADDR or the
2245            QEMU application itself.  */
2246         probe_guest_base(image_name, loaddr, hiaddr);
2247     }
2248     load_bias = load_addr - loaddr;
2249 
2250     if (elf_is_fdpic(ehdr)) {
2251         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2252             g_malloc(sizeof(*loadsegs) * info->nsegs);
2253 
2254         for (i = 0; i < ehdr->e_phnum; ++i) {
2255             switch (phdr[i].p_type) {
2256             case PT_DYNAMIC:
2257                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2258                 break;
2259             case PT_LOAD:
2260                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2261                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2262                 loadsegs->p_memsz = phdr[i].p_memsz;
2263                 ++loadsegs;
2264                 break;
2265             }
2266         }
2267     }
2268 
2269     info->load_bias = load_bias;
2270     info->load_addr = load_addr;
2271     info->entry = ehdr->e_entry + load_bias;
2272     info->start_code = -1;
2273     info->end_code = 0;
2274     info->start_data = -1;
2275     info->end_data = 0;
2276     info->brk = 0;
2277     info->elf_flags = ehdr->e_flags;
2278 
2279     for (i = 0; i < ehdr->e_phnum; i++) {
2280         struct elf_phdr *eppnt = phdr + i;
2281         if (eppnt->p_type == PT_LOAD) {
2282             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2283             int elf_prot = 0;
2284 
2285             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2286             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2287             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2288 
2289             vaddr = load_bias + eppnt->p_vaddr;
2290             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2291             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2292 
2293             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2294                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2295                                 image_fd, eppnt->p_offset - vaddr_po);
2296             if (error == -1) {
2297                 goto exit_perror;
2298             }
2299 
2300             vaddr_ef = vaddr + eppnt->p_filesz;
2301             vaddr_em = vaddr + eppnt->p_memsz;
2302 
2303             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2304             if (vaddr_ef < vaddr_em) {
2305                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2306             }
2307 
2308             /* Find the full program boundaries.  */
2309             if (elf_prot & PROT_EXEC) {
2310                 if (vaddr < info->start_code) {
2311                     info->start_code = vaddr;
2312                 }
2313                 if (vaddr_ef > info->end_code) {
2314                     info->end_code = vaddr_ef;
2315                 }
2316             }
2317             if (elf_prot & PROT_WRITE) {
2318                 if (vaddr < info->start_data) {
2319                     info->start_data = vaddr;
2320                 }
2321                 if (vaddr_ef > info->end_data) {
2322                     info->end_data = vaddr_ef;
2323                 }
2324                 if (vaddr_em > info->brk) {
2325                     info->brk = vaddr_em;
2326                 }
2327             }
2328         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2329             char *interp_name;
2330 
2331             if (*pinterp_name) {
2332                 errmsg = "Multiple PT_INTERP entries";
2333                 goto exit_errmsg;
2334             }
2335             interp_name = malloc(eppnt->p_filesz);
2336             if (!interp_name) {
2337                 goto exit_perror;
2338             }
2339 
2340             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2341                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2342                        eppnt->p_filesz);
2343             } else {
2344                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2345                                eppnt->p_offset);
2346                 if (retval != eppnt->p_filesz) {
2347                     goto exit_perror;
2348                 }
2349             }
2350             if (interp_name[eppnt->p_filesz - 1] != 0) {
2351                 errmsg = "Invalid PT_INTERP entry";
2352                 goto exit_errmsg;
2353             }
2354             *pinterp_name = interp_name;
2355         }
2356     }
2357 
2358     if (info->end_data == 0) {
2359         info->start_data = info->end_code;
2360         info->end_data = info->end_code;
2361         info->brk = info->end_code;
2362     }
2363 
2364     if (qemu_log_enabled()) {
2365         load_symbols(ehdr, image_fd, load_bias);
2366     }
2367 
2368     mmap_unlock();
2369 
2370     close(image_fd);
2371     return;
2372 
2373  exit_read:
2374     if (retval >= 0) {
2375         errmsg = "Incomplete read of file header";
2376         goto exit_errmsg;
2377     }
2378  exit_perror:
2379     errmsg = strerror(errno);
2380  exit_errmsg:
2381     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2382     exit(-1);
2383 }
2384 
2385 static void load_elf_interp(const char *filename, struct image_info *info,
2386                             char bprm_buf[BPRM_BUF_SIZE])
2387 {
2388     int fd, retval;
2389 
2390     fd = open(path(filename), O_RDONLY);
2391     if (fd < 0) {
2392         goto exit_perror;
2393     }
2394 
2395     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2396     if (retval < 0) {
2397         goto exit_perror;
2398     }
2399     if (retval < BPRM_BUF_SIZE) {
2400         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2401     }
2402 
2403     load_elf_image(filename, fd, info, NULL, bprm_buf);
2404     return;
2405 
2406  exit_perror:
2407     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2408     exit(-1);
2409 }
2410 
2411 static int symfind(const void *s0, const void *s1)
2412 {
2413     target_ulong addr = *(target_ulong *)s0;
2414     struct elf_sym *sym = (struct elf_sym *)s1;
2415     int result = 0;
2416     if (addr < sym->st_value) {
2417         result = -1;
2418     } else if (addr >= sym->st_value + sym->st_size) {
2419         result = 1;
2420     }
2421     return result;
2422 }
2423 
2424 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2425 {
2426 #if ELF_CLASS == ELFCLASS32
2427     struct elf_sym *syms = s->disas_symtab.elf32;
2428 #else
2429     struct elf_sym *syms = s->disas_symtab.elf64;
2430 #endif
2431 
2432     // binary search
2433     struct elf_sym *sym;
2434 
2435     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2436     if (sym != NULL) {
2437         return s->disas_strtab + sym->st_name;
2438     }
2439 
2440     return "";
2441 }
2442 
2443 /* FIXME: This should use elf_ops.h  */
2444 static int symcmp(const void *s0, const void *s1)
2445 {
2446     struct elf_sym *sym0 = (struct elf_sym *)s0;
2447     struct elf_sym *sym1 = (struct elf_sym *)s1;
2448     return (sym0->st_value < sym1->st_value)
2449         ? -1
2450         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2451 }
2452 
2453 /* Best attempt to load symbols from this ELF object. */
2454 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2455 {
2456     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2457     uint64_t segsz;
2458     struct elf_shdr *shdr;
2459     char *strings = NULL;
2460     struct syminfo *s = NULL;
2461     struct elf_sym *new_syms, *syms = NULL;
2462 
2463     shnum = hdr->e_shnum;
2464     i = shnum * sizeof(struct elf_shdr);
2465     shdr = (struct elf_shdr *)alloca(i);
2466     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2467         return;
2468     }
2469 
2470     bswap_shdr(shdr, shnum);
2471     for (i = 0; i < shnum; ++i) {
2472         if (shdr[i].sh_type == SHT_SYMTAB) {
2473             sym_idx = i;
2474             str_idx = shdr[i].sh_link;
2475             goto found;
2476         }
2477     }
2478 
2479     /* There will be no symbol table if the file was stripped.  */
2480     return;
2481 
2482  found:
2483     /* Now know where the strtab and symtab are.  Snarf them.  */
2484     s = g_try_new(struct syminfo, 1);
2485     if (!s) {
2486         goto give_up;
2487     }
2488 
2489     segsz = shdr[str_idx].sh_size;
2490     s->disas_strtab = strings = g_try_malloc(segsz);
2491     if (!strings ||
2492         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2493         goto give_up;
2494     }
2495 
2496     segsz = shdr[sym_idx].sh_size;
2497     syms = g_try_malloc(segsz);
2498     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2499         goto give_up;
2500     }
2501 
2502     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2503         /* Implausibly large symbol table: give up rather than ploughing
2504          * on with the number of symbols calculation overflowing
2505          */
2506         goto give_up;
2507     }
2508     nsyms = segsz / sizeof(struct elf_sym);
2509     for (i = 0; i < nsyms; ) {
2510         bswap_sym(syms + i);
2511         /* Throw away entries which we do not need.  */
2512         if (syms[i].st_shndx == SHN_UNDEF
2513             || syms[i].st_shndx >= SHN_LORESERVE
2514             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2515             if (i < --nsyms) {
2516                 syms[i] = syms[nsyms];
2517             }
2518         } else {
2519 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2520             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2521             syms[i].st_value &= ~(target_ulong)1;
2522 #endif
2523             syms[i].st_value += load_bias;
2524             i++;
2525         }
2526     }
2527 
2528     /* No "useful" symbol.  */
2529     if (nsyms == 0) {
2530         goto give_up;
2531     }
2532 
2533     /* Attempt to free the storage associated with the local symbols
2534        that we threw away.  Whether or not this has any effect on the
2535        memory allocation depends on the malloc implementation and how
2536        many symbols we managed to discard.  */
2537     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2538     if (new_syms == NULL) {
2539         goto give_up;
2540     }
2541     syms = new_syms;
2542 
2543     qsort(syms, nsyms, sizeof(*syms), symcmp);
2544 
2545     s->disas_num_syms = nsyms;
2546 #if ELF_CLASS == ELFCLASS32
2547     s->disas_symtab.elf32 = syms;
2548 #else
2549     s->disas_symtab.elf64 = syms;
2550 #endif
2551     s->lookup_symbol = lookup_symbolxx;
2552     s->next = syminfos;
2553     syminfos = s;
2554 
2555     return;
2556 
2557 give_up:
2558     g_free(s);
2559     g_free(strings);
2560     g_free(syms);
2561 }
2562 
2563 uint32_t get_elf_eflags(int fd)
2564 {
2565     struct elfhdr ehdr;
2566     off_t offset;
2567     int ret;
2568 
2569     /* Read ELF header */
2570     offset = lseek(fd, 0, SEEK_SET);
2571     if (offset == (off_t) -1) {
2572         return 0;
2573     }
2574     ret = read(fd, &ehdr, sizeof(ehdr));
2575     if (ret < sizeof(ehdr)) {
2576         return 0;
2577     }
2578     offset = lseek(fd, offset, SEEK_SET);
2579     if (offset == (off_t) -1) {
2580         return 0;
2581     }
2582 
2583     /* Check ELF signature */
2584     if (!elf_check_ident(&ehdr)) {
2585         return 0;
2586     }
2587 
2588     /* check header */
2589     bswap_ehdr(&ehdr);
2590     if (!elf_check_ehdr(&ehdr)) {
2591         return 0;
2592     }
2593 
2594     /* return architecture id */
2595     return ehdr.e_flags;
2596 }
2597 
2598 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2599 {
2600     struct image_info interp_info;
2601     struct elfhdr elf_ex;
2602     char *elf_interpreter = NULL;
2603     char *scratch;
2604 
2605     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2606 
2607     load_elf_image(bprm->filename, bprm->fd, info,
2608                    &elf_interpreter, bprm->buf);
2609 
2610     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2611        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2612        when we load the interpreter.  */
2613     elf_ex = *(struct elfhdr *)bprm->buf;
2614 
2615     /* Do this so that we can load the interpreter, if need be.  We will
2616        change some of these later */
2617     bprm->p = setup_arg_pages(bprm, info);
2618 
2619     scratch = g_new0(char, TARGET_PAGE_SIZE);
2620     if (STACK_GROWS_DOWN) {
2621         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2622                                    bprm->p, info->stack_limit);
2623         info->file_string = bprm->p;
2624         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2625                                    bprm->p, info->stack_limit);
2626         info->env_strings = bprm->p;
2627         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2628                                    bprm->p, info->stack_limit);
2629         info->arg_strings = bprm->p;
2630     } else {
2631         info->arg_strings = bprm->p;
2632         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2633                                    bprm->p, info->stack_limit);
2634         info->env_strings = bprm->p;
2635         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2636                                    bprm->p, info->stack_limit);
2637         info->file_string = bprm->p;
2638         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2639                                    bprm->p, info->stack_limit);
2640     }
2641 
2642     g_free(scratch);
2643 
2644     if (!bprm->p) {
2645         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2646         exit(-1);
2647     }
2648 
2649     if (elf_interpreter) {
2650         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2651 
2652         /* If the program interpreter is one of these two, then assume
2653            an iBCS2 image.  Otherwise assume a native linux image.  */
2654 
2655         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2656             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2657             info->personality = PER_SVR4;
2658 
2659             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2660                and some applications "depend" upon this behavior.  Since
2661                we do not have the power to recompile these, we emulate
2662                the SVr4 behavior.  Sigh.  */
2663             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2664                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2665         }
2666     }
2667 
2668     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2669                                 info, (elf_interpreter ? &interp_info : NULL));
2670     info->start_stack = bprm->p;
2671 
2672     /* If we have an interpreter, set that as the program's entry point.
2673        Copy the load_bias as well, to help PPC64 interpret the entry
2674        point as a function descriptor.  Do this after creating elf tables
2675        so that we copy the original program entry point into the AUXV.  */
2676     if (elf_interpreter) {
2677         info->load_bias = interp_info.load_bias;
2678         info->entry = interp_info.entry;
2679         free(elf_interpreter);
2680     }
2681 
2682 #ifdef USE_ELF_CORE_DUMP
2683     bprm->core_dump = &elf_core_dump;
2684 #endif
2685 
2686     return 0;
2687 }
2688 
2689 #ifdef USE_ELF_CORE_DUMP
2690 /*
2691  * Definitions to generate Intel SVR4-like core files.
2692  * These mostly have the same names as the SVR4 types with "target_elf_"
2693  * tacked on the front to prevent clashes with linux definitions,
2694  * and the typedef forms have been avoided.  This is mostly like
2695  * the SVR4 structure, but more Linuxy, with things that Linux does
2696  * not support and which gdb doesn't really use excluded.
2697  *
2698  * Fields we don't dump (their contents is zero) in linux-user qemu
2699  * are marked with XXX.
2700  *
2701  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2702  *
2703  * Porting ELF coredump for target is (quite) simple process.  First you
2704  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2705  * the target resides):
2706  *
2707  * #define USE_ELF_CORE_DUMP
2708  *
2709  * Next you define type of register set used for dumping.  ELF specification
2710  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2711  *
2712  * typedef <target_regtype> target_elf_greg_t;
2713  * #define ELF_NREG <number of registers>
2714  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2715  *
2716  * Last step is to implement target specific function that copies registers
2717  * from given cpu into just specified register set.  Prototype is:
2718  *
2719  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2720  *                                const CPUArchState *env);
2721  *
2722  * Parameters:
2723  *     regs - copy register values into here (allocated and zeroed by caller)
2724  *     env - copy registers from here
2725  *
2726  * Example for ARM target is provided in this file.
2727  */
2728 
2729 /* An ELF note in memory */
2730 struct memelfnote {
2731     const char *name;
2732     size_t     namesz;
2733     size_t     namesz_rounded;
2734     int        type;
2735     size_t     datasz;
2736     size_t     datasz_rounded;
2737     void       *data;
2738     size_t     notesz;
2739 };
2740 
2741 struct target_elf_siginfo {
2742     abi_int    si_signo; /* signal number */
2743     abi_int    si_code;  /* extra code */
2744     abi_int    si_errno; /* errno */
2745 };
2746 
2747 struct target_elf_prstatus {
2748     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2749     abi_short          pr_cursig;    /* Current signal */
2750     abi_ulong          pr_sigpend;   /* XXX */
2751     abi_ulong          pr_sighold;   /* XXX */
2752     target_pid_t       pr_pid;
2753     target_pid_t       pr_ppid;
2754     target_pid_t       pr_pgrp;
2755     target_pid_t       pr_sid;
2756     struct target_timeval pr_utime;  /* XXX User time */
2757     struct target_timeval pr_stime;  /* XXX System time */
2758     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2759     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2760     target_elf_gregset_t      pr_reg;       /* GP registers */
2761     abi_int            pr_fpvalid;   /* XXX */
2762 };
2763 
2764 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2765 
2766 struct target_elf_prpsinfo {
2767     char         pr_state;       /* numeric process state */
2768     char         pr_sname;       /* char for pr_state */
2769     char         pr_zomb;        /* zombie */
2770     char         pr_nice;        /* nice val */
2771     abi_ulong    pr_flag;        /* flags */
2772     target_uid_t pr_uid;
2773     target_gid_t pr_gid;
2774     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2775     /* Lots missing */
2776     char    pr_fname[16];           /* filename of executable */
2777     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2778 };
2779 
2780 /* Here is the structure in which status of each thread is captured. */
2781 struct elf_thread_status {
2782     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2783     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2784 #if 0
2785     elf_fpregset_t fpu;             /* NT_PRFPREG */
2786     struct task_struct *thread;
2787     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2788 #endif
2789     struct memelfnote notes[1];
2790     int num_notes;
2791 };
2792 
2793 struct elf_note_info {
2794     struct memelfnote   *notes;
2795     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2796     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2797 
2798     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2799 #if 0
2800     /*
2801      * Current version of ELF coredump doesn't support
2802      * dumping fp regs etc.
2803      */
2804     elf_fpregset_t *fpu;
2805     elf_fpxregset_t *xfpu;
2806     int thread_status_size;
2807 #endif
2808     int notes_size;
2809     int numnote;
2810 };
2811 
2812 struct vm_area_struct {
2813     target_ulong   vma_start;  /* start vaddr of memory region */
2814     target_ulong   vma_end;    /* end vaddr of memory region */
2815     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2816     QTAILQ_ENTRY(vm_area_struct) vma_link;
2817 };
2818 
2819 struct mm_struct {
2820     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2821     int mm_count;           /* number of mappings */
2822 };
2823 
2824 static struct mm_struct *vma_init(void);
2825 static void vma_delete(struct mm_struct *);
2826 static int vma_add_mapping(struct mm_struct *, target_ulong,
2827                            target_ulong, abi_ulong);
2828 static int vma_get_mapping_count(const struct mm_struct *);
2829 static struct vm_area_struct *vma_first(const struct mm_struct *);
2830 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2831 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2832 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2833                       unsigned long flags);
2834 
2835 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2836 static void fill_note(struct memelfnote *, const char *, int,
2837                       unsigned int, void *);
2838 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2839 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2840 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2841 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2842 static size_t note_size(const struct memelfnote *);
2843 static void free_note_info(struct elf_note_info *);
2844 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2845 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2846 static int core_dump_filename(const TaskState *, char *, size_t);
2847 
2848 static int dump_write(int, const void *, size_t);
2849 static int write_note(struct memelfnote *, int);
2850 static int write_note_info(struct elf_note_info *, int);
2851 
2852 #ifdef BSWAP_NEEDED
2853 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2854 {
2855     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2856     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2857     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2858     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2859     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2860     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2861     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2862     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2863     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2864     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2865     /* cpu times are not filled, so we skip them */
2866     /* regs should be in correct format already */
2867     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2868 }
2869 
2870 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2871 {
2872     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2873     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2874     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2875     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2876     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2877     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2878     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2879 }
2880 
2881 static void bswap_note(struct elf_note *en)
2882 {
2883     bswap32s(&en->n_namesz);
2884     bswap32s(&en->n_descsz);
2885     bswap32s(&en->n_type);
2886 }
2887 #else
2888 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2889 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2890 static inline void bswap_note(struct elf_note *en) { }
2891 #endif /* BSWAP_NEEDED */
2892 
2893 /*
2894  * Minimal support for linux memory regions.  These are needed
2895  * when we are finding out what memory exactly belongs to
2896  * emulated process.  No locks needed here, as long as
2897  * thread that received the signal is stopped.
2898  */
2899 
2900 static struct mm_struct *vma_init(void)
2901 {
2902     struct mm_struct *mm;
2903 
2904     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2905         return (NULL);
2906 
2907     mm->mm_count = 0;
2908     QTAILQ_INIT(&mm->mm_mmap);
2909 
2910     return (mm);
2911 }
2912 
2913 static void vma_delete(struct mm_struct *mm)
2914 {
2915     struct vm_area_struct *vma;
2916 
2917     while ((vma = vma_first(mm)) != NULL) {
2918         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2919         g_free(vma);
2920     }
2921     g_free(mm);
2922 }
2923 
2924 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2925                            target_ulong end, abi_ulong flags)
2926 {
2927     struct vm_area_struct *vma;
2928 
2929     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2930         return (-1);
2931 
2932     vma->vma_start = start;
2933     vma->vma_end = end;
2934     vma->vma_flags = flags;
2935 
2936     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2937     mm->mm_count++;
2938 
2939     return (0);
2940 }
2941 
2942 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2943 {
2944     return (QTAILQ_FIRST(&mm->mm_mmap));
2945 }
2946 
2947 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2948 {
2949     return (QTAILQ_NEXT(vma, vma_link));
2950 }
2951 
2952 static int vma_get_mapping_count(const struct mm_struct *mm)
2953 {
2954     return (mm->mm_count);
2955 }
2956 
2957 /*
2958  * Calculate file (dump) size of given memory region.
2959  */
2960 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2961 {
2962     /* if we cannot even read the first page, skip it */
2963     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2964         return (0);
2965 
2966     /*
2967      * Usually we don't dump executable pages as they contain
2968      * non-writable code that debugger can read directly from
2969      * target library etc.  However, thread stacks are marked
2970      * also executable so we read in first page of given region
2971      * and check whether it contains elf header.  If there is
2972      * no elf header, we dump it.
2973      */
2974     if (vma->vma_flags & PROT_EXEC) {
2975         char page[TARGET_PAGE_SIZE];
2976 
2977         copy_from_user(page, vma->vma_start, sizeof (page));
2978         if ((page[EI_MAG0] == ELFMAG0) &&
2979             (page[EI_MAG1] == ELFMAG1) &&
2980             (page[EI_MAG2] == ELFMAG2) &&
2981             (page[EI_MAG3] == ELFMAG3)) {
2982             /*
2983              * Mappings are possibly from ELF binary.  Don't dump
2984              * them.
2985              */
2986             return (0);
2987         }
2988     }
2989 
2990     return (vma->vma_end - vma->vma_start);
2991 }
2992 
2993 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2994                       unsigned long flags)
2995 {
2996     struct mm_struct *mm = (struct mm_struct *)priv;
2997 
2998     vma_add_mapping(mm, start, end, flags);
2999     return (0);
3000 }
3001 
3002 static void fill_note(struct memelfnote *note, const char *name, int type,
3003                       unsigned int sz, void *data)
3004 {
3005     unsigned int namesz;
3006 
3007     namesz = strlen(name) + 1;
3008     note->name = name;
3009     note->namesz = namesz;
3010     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3011     note->type = type;
3012     note->datasz = sz;
3013     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3014 
3015     note->data = data;
3016 
3017     /*
3018      * We calculate rounded up note size here as specified by
3019      * ELF document.
3020      */
3021     note->notesz = sizeof (struct elf_note) +
3022         note->namesz_rounded + note->datasz_rounded;
3023 }
3024 
3025 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3026                             uint32_t flags)
3027 {
3028     (void) memset(elf, 0, sizeof(*elf));
3029 
3030     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3031     elf->e_ident[EI_CLASS] = ELF_CLASS;
3032     elf->e_ident[EI_DATA] = ELF_DATA;
3033     elf->e_ident[EI_VERSION] = EV_CURRENT;
3034     elf->e_ident[EI_OSABI] = ELF_OSABI;
3035 
3036     elf->e_type = ET_CORE;
3037     elf->e_machine = machine;
3038     elf->e_version = EV_CURRENT;
3039     elf->e_phoff = sizeof(struct elfhdr);
3040     elf->e_flags = flags;
3041     elf->e_ehsize = sizeof(struct elfhdr);
3042     elf->e_phentsize = sizeof(struct elf_phdr);
3043     elf->e_phnum = segs;
3044 
3045     bswap_ehdr(elf);
3046 }
3047 
3048 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3049 {
3050     phdr->p_type = PT_NOTE;
3051     phdr->p_offset = offset;
3052     phdr->p_vaddr = 0;
3053     phdr->p_paddr = 0;
3054     phdr->p_filesz = sz;
3055     phdr->p_memsz = 0;
3056     phdr->p_flags = 0;
3057     phdr->p_align = 0;
3058 
3059     bswap_phdr(phdr, 1);
3060 }
3061 
3062 static size_t note_size(const struct memelfnote *note)
3063 {
3064     return (note->notesz);
3065 }
3066 
3067 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3068                           const TaskState *ts, int signr)
3069 {
3070     (void) memset(prstatus, 0, sizeof (*prstatus));
3071     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3072     prstatus->pr_pid = ts->ts_tid;
3073     prstatus->pr_ppid = getppid();
3074     prstatus->pr_pgrp = getpgrp();
3075     prstatus->pr_sid = getsid(0);
3076 
3077     bswap_prstatus(prstatus);
3078 }
3079 
3080 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3081 {
3082     char *base_filename;
3083     unsigned int i, len;
3084 
3085     (void) memset(psinfo, 0, sizeof (*psinfo));
3086 
3087     len = ts->info->arg_end - ts->info->arg_start;
3088     if (len >= ELF_PRARGSZ)
3089         len = ELF_PRARGSZ - 1;
3090     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3091         return -EFAULT;
3092     for (i = 0; i < len; i++)
3093         if (psinfo->pr_psargs[i] == 0)
3094             psinfo->pr_psargs[i] = ' ';
3095     psinfo->pr_psargs[len] = 0;
3096 
3097     psinfo->pr_pid = getpid();
3098     psinfo->pr_ppid = getppid();
3099     psinfo->pr_pgrp = getpgrp();
3100     psinfo->pr_sid = getsid(0);
3101     psinfo->pr_uid = getuid();
3102     psinfo->pr_gid = getgid();
3103 
3104     base_filename = g_path_get_basename(ts->bprm->filename);
3105     /*
3106      * Using strncpy here is fine: at max-length,
3107      * this field is not NUL-terminated.
3108      */
3109     (void) strncpy(psinfo->pr_fname, base_filename,
3110                    sizeof(psinfo->pr_fname));
3111 
3112     g_free(base_filename);
3113     bswap_psinfo(psinfo);
3114     return (0);
3115 }
3116 
3117 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3118 {
3119     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3120     elf_addr_t orig_auxv = auxv;
3121     void *ptr;
3122     int len = ts->info->auxv_len;
3123 
3124     /*
3125      * Auxiliary vector is stored in target process stack.  It contains
3126      * {type, value} pairs that we need to dump into note.  This is not
3127      * strictly necessary but we do it here for sake of completeness.
3128      */
3129 
3130     /* read in whole auxv vector and copy it to memelfnote */
3131     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3132     if (ptr != NULL) {
3133         fill_note(note, "CORE", NT_AUXV, len, ptr);
3134         unlock_user(ptr, auxv, len);
3135     }
3136 }
3137 
3138 /*
3139  * Constructs name of coredump file.  We have following convention
3140  * for the name:
3141  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3142  *
3143  * Returns 0 in case of success, -1 otherwise (errno is set).
3144  */
3145 static int core_dump_filename(const TaskState *ts, char *buf,
3146                               size_t bufsize)
3147 {
3148     char timestamp[64];
3149     char *base_filename = NULL;
3150     struct timeval tv;
3151     struct tm tm;
3152 
3153     assert(bufsize >= PATH_MAX);
3154 
3155     if (gettimeofday(&tv, NULL) < 0) {
3156         (void) fprintf(stderr, "unable to get current timestamp: %s",
3157                        strerror(errno));
3158         return (-1);
3159     }
3160 
3161     base_filename = g_path_get_basename(ts->bprm->filename);
3162     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3163                     localtime_r(&tv.tv_sec, &tm));
3164     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3165                     base_filename, timestamp, (int)getpid());
3166     g_free(base_filename);
3167 
3168     return (0);
3169 }
3170 
3171 static int dump_write(int fd, const void *ptr, size_t size)
3172 {
3173     const char *bufp = (const char *)ptr;
3174     ssize_t bytes_written, bytes_left;
3175     struct rlimit dumpsize;
3176     off_t pos;
3177 
3178     bytes_written = 0;
3179     getrlimit(RLIMIT_CORE, &dumpsize);
3180     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3181         if (errno == ESPIPE) { /* not a seekable stream */
3182             bytes_left = size;
3183         } else {
3184             return pos;
3185         }
3186     } else {
3187         if (dumpsize.rlim_cur <= pos) {
3188             return -1;
3189         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3190             bytes_left = size;
3191         } else {
3192             size_t limit_left=dumpsize.rlim_cur - pos;
3193             bytes_left = limit_left >= size ? size : limit_left ;
3194         }
3195     }
3196 
3197     /*
3198      * In normal conditions, single write(2) should do but
3199      * in case of socket etc. this mechanism is more portable.
3200      */
3201     do {
3202         bytes_written = write(fd, bufp, bytes_left);
3203         if (bytes_written < 0) {
3204             if (errno == EINTR)
3205                 continue;
3206             return (-1);
3207         } else if (bytes_written == 0) { /* eof */
3208             return (-1);
3209         }
3210         bufp += bytes_written;
3211         bytes_left -= bytes_written;
3212     } while (bytes_left > 0);
3213 
3214     return (0);
3215 }
3216 
3217 static int write_note(struct memelfnote *men, int fd)
3218 {
3219     struct elf_note en;
3220 
3221     en.n_namesz = men->namesz;
3222     en.n_type = men->type;
3223     en.n_descsz = men->datasz;
3224 
3225     bswap_note(&en);
3226 
3227     if (dump_write(fd, &en, sizeof(en)) != 0)
3228         return (-1);
3229     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3230         return (-1);
3231     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3232         return (-1);
3233 
3234     return (0);
3235 }
3236 
3237 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3238 {
3239     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3240     TaskState *ts = (TaskState *)cpu->opaque;
3241     struct elf_thread_status *ets;
3242 
3243     ets = g_malloc0(sizeof (*ets));
3244     ets->num_notes = 1; /* only prstatus is dumped */
3245     fill_prstatus(&ets->prstatus, ts, 0);
3246     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3247     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3248               &ets->prstatus);
3249 
3250     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3251 
3252     info->notes_size += note_size(&ets->notes[0]);
3253 }
3254 
3255 static void init_note_info(struct elf_note_info *info)
3256 {
3257     /* Initialize the elf_note_info structure so that it is at
3258      * least safe to call free_note_info() on it. Must be
3259      * called before calling fill_note_info().
3260      */
3261     memset(info, 0, sizeof (*info));
3262     QTAILQ_INIT(&info->thread_list);
3263 }
3264 
3265 static int fill_note_info(struct elf_note_info *info,
3266                           long signr, const CPUArchState *env)
3267 {
3268 #define NUMNOTES 3
3269     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3270     TaskState *ts = (TaskState *)cpu->opaque;
3271     int i;
3272 
3273     info->notes = g_new0(struct memelfnote, NUMNOTES);
3274     if (info->notes == NULL)
3275         return (-ENOMEM);
3276     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3277     if (info->prstatus == NULL)
3278         return (-ENOMEM);
3279     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3280     if (info->prstatus == NULL)
3281         return (-ENOMEM);
3282 
3283     /*
3284      * First fill in status (and registers) of current thread
3285      * including process info & aux vector.
3286      */
3287     fill_prstatus(info->prstatus, ts, signr);
3288     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3289     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3290               sizeof (*info->prstatus), info->prstatus);
3291     fill_psinfo(info->psinfo, ts);
3292     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3293               sizeof (*info->psinfo), info->psinfo);
3294     fill_auxv_note(&info->notes[2], ts);
3295     info->numnote = 3;
3296 
3297     info->notes_size = 0;
3298     for (i = 0; i < info->numnote; i++)
3299         info->notes_size += note_size(&info->notes[i]);
3300 
3301     /* read and fill status of all threads */
3302     cpu_list_lock();
3303     CPU_FOREACH(cpu) {
3304         if (cpu == thread_cpu) {
3305             continue;
3306         }
3307         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3308     }
3309     cpu_list_unlock();
3310 
3311     return (0);
3312 }
3313 
3314 static void free_note_info(struct elf_note_info *info)
3315 {
3316     struct elf_thread_status *ets;
3317 
3318     while (!QTAILQ_EMPTY(&info->thread_list)) {
3319         ets = QTAILQ_FIRST(&info->thread_list);
3320         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3321         g_free(ets);
3322     }
3323 
3324     g_free(info->prstatus);
3325     g_free(info->psinfo);
3326     g_free(info->notes);
3327 }
3328 
3329 static int write_note_info(struct elf_note_info *info, int fd)
3330 {
3331     struct elf_thread_status *ets;
3332     int i, error = 0;
3333 
3334     /* write prstatus, psinfo and auxv for current thread */
3335     for (i = 0; i < info->numnote; i++)
3336         if ((error = write_note(&info->notes[i], fd)) != 0)
3337             return (error);
3338 
3339     /* write prstatus for each thread */
3340     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3341         if ((error = write_note(&ets->notes[0], fd)) != 0)
3342             return (error);
3343     }
3344 
3345     return (0);
3346 }
3347 
3348 /*
3349  * Write out ELF coredump.
3350  *
3351  * See documentation of ELF object file format in:
3352  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3353  *
3354  * Coredump format in linux is following:
3355  *
3356  * 0   +----------------------+         \
3357  *     | ELF header           | ET_CORE  |
3358  *     +----------------------+          |
3359  *     | ELF program headers  |          |--- headers
3360  *     | - NOTE section       |          |
3361  *     | - PT_LOAD sections   |          |
3362  *     +----------------------+         /
3363  *     | NOTEs:               |
3364  *     | - NT_PRSTATUS        |
3365  *     | - NT_PRSINFO         |
3366  *     | - NT_AUXV            |
3367  *     +----------------------+ <-- aligned to target page
3368  *     | Process memory dump  |
3369  *     :                      :
3370  *     .                      .
3371  *     :                      :
3372  *     |                      |
3373  *     +----------------------+
3374  *
3375  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3376  * NT_PRSINFO  -> struct elf_prpsinfo
3377  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3378  *
3379  * Format follows System V format as close as possible.  Current
3380  * version limitations are as follows:
3381  *     - no floating point registers are dumped
3382  *
3383  * Function returns 0 in case of success, negative errno otherwise.
3384  *
3385  * TODO: make this work also during runtime: it should be
3386  * possible to force coredump from running process and then
3387  * continue processing.  For example qemu could set up SIGUSR2
3388  * handler (provided that target process haven't registered
3389  * handler for that) that does the dump when signal is received.
3390  */
3391 static int elf_core_dump(int signr, const CPUArchState *env)
3392 {
3393     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3394     const TaskState *ts = (const TaskState *)cpu->opaque;
3395     struct vm_area_struct *vma = NULL;
3396     char corefile[PATH_MAX];
3397     struct elf_note_info info;
3398     struct elfhdr elf;
3399     struct elf_phdr phdr;
3400     struct rlimit dumpsize;
3401     struct mm_struct *mm = NULL;
3402     off_t offset = 0, data_offset = 0;
3403     int segs = 0;
3404     int fd = -1;
3405 
3406     init_note_info(&info);
3407 
3408     errno = 0;
3409     getrlimit(RLIMIT_CORE, &dumpsize);
3410     if (dumpsize.rlim_cur == 0)
3411         return 0;
3412 
3413     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3414         return (-errno);
3415 
3416     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3417                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3418         return (-errno);
3419 
3420     /*
3421      * Walk through target process memory mappings and
3422      * set up structure containing this information.  After
3423      * this point vma_xxx functions can be used.
3424      */
3425     if ((mm = vma_init()) == NULL)
3426         goto out;
3427 
3428     walk_memory_regions(mm, vma_walker);
3429     segs = vma_get_mapping_count(mm);
3430 
3431     /*
3432      * Construct valid coredump ELF header.  We also
3433      * add one more segment for notes.
3434      */
3435     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3436     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3437         goto out;
3438 
3439     /* fill in the in-memory version of notes */
3440     if (fill_note_info(&info, signr, env) < 0)
3441         goto out;
3442 
3443     offset += sizeof (elf);                             /* elf header */
3444     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3445 
3446     /* write out notes program header */
3447     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3448 
3449     offset += info.notes_size;
3450     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3451         goto out;
3452 
3453     /*
3454      * ELF specification wants data to start at page boundary so
3455      * we align it here.
3456      */
3457     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3458 
3459     /*
3460      * Write program headers for memory regions mapped in
3461      * the target process.
3462      */
3463     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3464         (void) memset(&phdr, 0, sizeof (phdr));
3465 
3466         phdr.p_type = PT_LOAD;
3467         phdr.p_offset = offset;
3468         phdr.p_vaddr = vma->vma_start;
3469         phdr.p_paddr = 0;
3470         phdr.p_filesz = vma_dump_size(vma);
3471         offset += phdr.p_filesz;
3472         phdr.p_memsz = vma->vma_end - vma->vma_start;
3473         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3474         if (vma->vma_flags & PROT_WRITE)
3475             phdr.p_flags |= PF_W;
3476         if (vma->vma_flags & PROT_EXEC)
3477             phdr.p_flags |= PF_X;
3478         phdr.p_align = ELF_EXEC_PAGESIZE;
3479 
3480         bswap_phdr(&phdr, 1);
3481         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3482             goto out;
3483         }
3484     }
3485 
3486     /*
3487      * Next we write notes just after program headers.  No
3488      * alignment needed here.
3489      */
3490     if (write_note_info(&info, fd) < 0)
3491         goto out;
3492 
3493     /* align data to page boundary */
3494     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3495         goto out;
3496 
3497     /*
3498      * Finally we can dump process memory into corefile as well.
3499      */
3500     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3501         abi_ulong addr;
3502         abi_ulong end;
3503 
3504         end = vma->vma_start + vma_dump_size(vma);
3505 
3506         for (addr = vma->vma_start; addr < end;
3507              addr += TARGET_PAGE_SIZE) {
3508             char page[TARGET_PAGE_SIZE];
3509             int error;
3510 
3511             /*
3512              *  Read in page from target process memory and
3513              *  write it to coredump file.
3514              */
3515             error = copy_from_user(page, addr, sizeof (page));
3516             if (error != 0) {
3517                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3518                                addr);
3519                 errno = -error;
3520                 goto out;
3521             }
3522             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3523                 goto out;
3524         }
3525     }
3526 
3527  out:
3528     free_note_info(&info);
3529     if (mm != NULL)
3530         vma_delete(mm);
3531     (void) close(fd);
3532 
3533     if (errno != 0)
3534         return (-errno);
3535     return (0);
3536 }
3537 #endif /* USE_ELF_CORE_DUMP */
3538 
3539 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3540 {
3541     init_thread(regs, infop);
3542 }
3543