1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_CLASS 24 #undef ELF_DATA 25 #undef ELF_ARCH 26 #endif 27 28 #define ELF_OSABI ELFOSABI_SYSV 29 30 /* from personality.h */ 31 32 /* 33 * Flags for bug emulation. 34 * 35 * These occupy the top three bytes. 36 */ 37 enum { 38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 40 descriptors (signal handling) */ 41 MMAP_PAGE_ZERO = 0x0100000, 42 ADDR_COMPAT_LAYOUT = 0x0200000, 43 READ_IMPLIES_EXEC = 0x0400000, 44 ADDR_LIMIT_32BIT = 0x0800000, 45 SHORT_INODE = 0x1000000, 46 WHOLE_SECONDS = 0x2000000, 47 STICKY_TIMEOUTS = 0x4000000, 48 ADDR_LIMIT_3GB = 0x8000000, 49 }; 50 51 /* 52 * Personality types. 53 * 54 * These go in the low byte. Avoid using the top bit, it will 55 * conflict with error returns. 56 */ 57 enum { 58 PER_LINUX = 0x0000, 59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 67 PER_BSD = 0x0006, 68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 70 PER_LINUX32 = 0x0008, 71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 75 PER_RISCOS = 0x000c, 76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 78 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 79 PER_HPUX = 0x0010, 80 PER_MASK = 0x00ff, 81 }; 82 83 /* 84 * Return the base personality without flags. 85 */ 86 #define personality(pers) (pers & PER_MASK) 87 88 /* this flag is uneffective under linux too, should be deleted */ 89 #ifndef MAP_DENYWRITE 90 #define MAP_DENYWRITE 0 91 #endif 92 93 /* should probably go in elf.h */ 94 #ifndef ELIBBAD 95 #define ELIBBAD 80 96 #endif 97 98 #ifdef TARGET_WORDS_BIGENDIAN 99 #define ELF_DATA ELFDATA2MSB 100 #else 101 #define ELF_DATA ELFDATA2LSB 102 #endif 103 104 typedef target_ulong target_elf_greg_t; 105 #ifdef USE_UID16 106 typedef uint16_t target_uid_t; 107 typedef uint16_t target_gid_t; 108 #else 109 typedef uint32_t target_uid_t; 110 typedef uint32_t target_gid_t; 111 #endif 112 typedef int32_t target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = (thread_env->cpuid_version >> 8) & 0xff; 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 return thread_env->cpuid_features; 134 } 135 136 #ifdef TARGET_X86_64 137 #define ELF_START_MMAP 0x2aaaaab000ULL 138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 139 140 #define ELF_CLASS ELFCLASS64 141 #define ELF_ARCH EM_X86_64 142 143 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 144 { 145 regs->rax = 0; 146 regs->rsp = infop->start_stack; 147 regs->rip = infop->entry; 148 } 149 150 #define ELF_NREG 27 151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 152 153 /* 154 * Note that ELF_NREG should be 29 as there should be place for 155 * TRAPNO and ERR "registers" as well but linux doesn't dump 156 * those. 157 * 158 * See linux kernel: arch/x86/include/asm/elf.h 159 */ 160 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 161 { 162 (*regs)[0] = env->regs[15]; 163 (*regs)[1] = env->regs[14]; 164 (*regs)[2] = env->regs[13]; 165 (*regs)[3] = env->regs[12]; 166 (*regs)[4] = env->regs[R_EBP]; 167 (*regs)[5] = env->regs[R_EBX]; 168 (*regs)[6] = env->regs[11]; 169 (*regs)[7] = env->regs[10]; 170 (*regs)[8] = env->regs[9]; 171 (*regs)[9] = env->regs[8]; 172 (*regs)[10] = env->regs[R_EAX]; 173 (*regs)[11] = env->regs[R_ECX]; 174 (*regs)[12] = env->regs[R_EDX]; 175 (*regs)[13] = env->regs[R_ESI]; 176 (*regs)[14] = env->regs[R_EDI]; 177 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 178 (*regs)[16] = env->eip; 179 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 180 (*regs)[18] = env->eflags; 181 (*regs)[19] = env->regs[R_ESP]; 182 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 183 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 184 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 185 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 186 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 187 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 188 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 189 } 190 191 #else 192 193 #define ELF_START_MMAP 0x80000000 194 195 /* 196 * This is used to ensure we don't load something for the wrong architecture. 197 */ 198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 199 200 /* 201 * These are used to set parameters in the core dumps. 202 */ 203 #define ELF_CLASS ELFCLASS32 204 #define ELF_ARCH EM_386 205 206 static inline void init_thread(struct target_pt_regs *regs, 207 struct image_info *infop) 208 { 209 regs->esp = infop->start_stack; 210 regs->eip = infop->entry; 211 212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 213 starts %edx contains a pointer to a function which might be 214 registered using `atexit'. This provides a mean for the 215 dynamic linker to call DT_FINI functions for shared libraries 216 that have been loaded before the code runs. 217 218 A value of 0 tells we have no such handler. */ 219 regs->edx = 0; 220 } 221 222 #define ELF_NREG 17 223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 224 225 /* 226 * Note that ELF_NREG should be 19 as there should be place for 227 * TRAPNO and ERR "registers" as well but linux doesn't dump 228 * those. 229 * 230 * See linux kernel: arch/x86/include/asm/elf.h 231 */ 232 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 233 { 234 (*regs)[0] = env->regs[R_EBX]; 235 (*regs)[1] = env->regs[R_ECX]; 236 (*regs)[2] = env->regs[R_EDX]; 237 (*regs)[3] = env->regs[R_ESI]; 238 (*regs)[4] = env->regs[R_EDI]; 239 (*regs)[5] = env->regs[R_EBP]; 240 (*regs)[6] = env->regs[R_EAX]; 241 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 242 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 243 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 244 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 245 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 246 (*regs)[12] = env->eip; 247 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 248 (*regs)[14] = env->eflags; 249 (*regs)[15] = env->regs[R_ESP]; 250 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 251 } 252 #endif 253 254 #define USE_ELF_CORE_DUMP 255 #define ELF_EXEC_PAGESIZE 4096 256 257 #endif 258 259 #ifdef TARGET_ARM 260 261 #define ELF_START_MMAP 0x80000000 262 263 #define elf_check_arch(x) ( (x) == EM_ARM ) 264 265 #define ELF_CLASS ELFCLASS32 266 #define ELF_ARCH EM_ARM 267 268 static inline void init_thread(struct target_pt_regs *regs, 269 struct image_info *infop) 270 { 271 abi_long stack = infop->start_stack; 272 memset(regs, 0, sizeof(*regs)); 273 regs->ARM_cpsr = 0x10; 274 if (infop->entry & 1) 275 regs->ARM_cpsr |= CPSR_T; 276 regs->ARM_pc = infop->entry & 0xfffffffe; 277 regs->ARM_sp = infop->start_stack; 278 /* FIXME - what to for failure of get_user()? */ 279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 281 /* XXX: it seems that r0 is zeroed after ! */ 282 regs->ARM_r0 = 0; 283 /* For uClinux PIC binaries. */ 284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 285 regs->ARM_r10 = infop->start_data; 286 } 287 288 #define ELF_NREG 18 289 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 290 291 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 292 { 293 (*regs)[0] = tswapl(env->regs[0]); 294 (*regs)[1] = tswapl(env->regs[1]); 295 (*regs)[2] = tswapl(env->regs[2]); 296 (*regs)[3] = tswapl(env->regs[3]); 297 (*regs)[4] = tswapl(env->regs[4]); 298 (*regs)[5] = tswapl(env->regs[5]); 299 (*regs)[6] = tswapl(env->regs[6]); 300 (*regs)[7] = tswapl(env->regs[7]); 301 (*regs)[8] = tswapl(env->regs[8]); 302 (*regs)[9] = tswapl(env->regs[9]); 303 (*regs)[10] = tswapl(env->regs[10]); 304 (*regs)[11] = tswapl(env->regs[11]); 305 (*regs)[12] = tswapl(env->regs[12]); 306 (*regs)[13] = tswapl(env->regs[13]); 307 (*regs)[14] = tswapl(env->regs[14]); 308 (*regs)[15] = tswapl(env->regs[15]); 309 310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env)); 311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */ 312 } 313 314 #define USE_ELF_CORE_DUMP 315 #define ELF_EXEC_PAGESIZE 4096 316 317 enum 318 { 319 ARM_HWCAP_ARM_SWP = 1 << 0, 320 ARM_HWCAP_ARM_HALF = 1 << 1, 321 ARM_HWCAP_ARM_THUMB = 1 << 2, 322 ARM_HWCAP_ARM_26BIT = 1 << 3, 323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 324 ARM_HWCAP_ARM_FPA = 1 << 5, 325 ARM_HWCAP_ARM_VFP = 1 << 6, 326 ARM_HWCAP_ARM_EDSP = 1 << 7, 327 ARM_HWCAP_ARM_JAVA = 1 << 8, 328 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 329 ARM_HWCAP_ARM_THUMBEE = 1 << 10, 330 ARM_HWCAP_ARM_NEON = 1 << 11, 331 ARM_HWCAP_ARM_VFPv3 = 1 << 12, 332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13, 333 }; 334 335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \ 336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \ 337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \ 338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 ) 339 340 #endif 341 342 #ifdef TARGET_SPARC 343 #ifdef TARGET_SPARC64 344 345 #define ELF_START_MMAP 0x80000000 346 347 #ifndef TARGET_ABI32 348 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 349 #else 350 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 351 #endif 352 353 #define ELF_CLASS ELFCLASS64 354 #define ELF_ARCH EM_SPARCV9 355 356 #define STACK_BIAS 2047 357 358 static inline void init_thread(struct target_pt_regs *regs, 359 struct image_info *infop) 360 { 361 #ifndef TARGET_ABI32 362 regs->tstate = 0; 363 #endif 364 regs->pc = infop->entry; 365 regs->npc = regs->pc + 4; 366 regs->y = 0; 367 #ifdef TARGET_ABI32 368 regs->u_regs[14] = infop->start_stack - 16 * 4; 369 #else 370 if (personality(infop->personality) == PER_LINUX32) 371 regs->u_regs[14] = infop->start_stack - 16 * 4; 372 else 373 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 374 #endif 375 } 376 377 #else 378 #define ELF_START_MMAP 0x80000000 379 380 #define elf_check_arch(x) ( (x) == EM_SPARC ) 381 382 #define ELF_CLASS ELFCLASS32 383 #define ELF_ARCH EM_SPARC 384 385 static inline void init_thread(struct target_pt_regs *regs, 386 struct image_info *infop) 387 { 388 regs->psr = 0; 389 regs->pc = infop->entry; 390 regs->npc = regs->pc + 4; 391 regs->y = 0; 392 regs->u_regs[14] = infop->start_stack - 16 * 4; 393 } 394 395 #endif 396 #endif 397 398 #ifdef TARGET_PPC 399 400 #define ELF_START_MMAP 0x80000000 401 402 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 403 404 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 405 406 #define ELF_CLASS ELFCLASS64 407 408 #else 409 410 #define elf_check_arch(x) ( (x) == EM_PPC ) 411 412 #define ELF_CLASS ELFCLASS32 413 414 #endif 415 416 #define ELF_ARCH EM_PPC 417 418 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 419 See arch/powerpc/include/asm/cputable.h. */ 420 enum { 421 QEMU_PPC_FEATURE_32 = 0x80000000, 422 QEMU_PPC_FEATURE_64 = 0x40000000, 423 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 424 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 425 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 426 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 427 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 428 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 429 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 430 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 431 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 432 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 433 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 434 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 435 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 436 QEMU_PPC_FEATURE_CELL = 0x00010000, 437 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 438 QEMU_PPC_FEATURE_SMT = 0x00004000, 439 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 440 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 441 QEMU_PPC_FEATURE_PA6T = 0x00000800, 442 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 443 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 444 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 445 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 446 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 447 448 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 449 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 450 }; 451 452 #define ELF_HWCAP get_elf_hwcap() 453 454 static uint32_t get_elf_hwcap(void) 455 { 456 CPUState *e = thread_env; 457 uint32_t features = 0; 458 459 /* We don't have to be terribly complete here; the high points are 460 Altivec/FP/SPE support. Anything else is just a bonus. */ 461 #define GET_FEATURE(flag, feature) \ 462 do {if (e->insns_flags & flag) features |= feature; } while(0) 463 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 464 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 465 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 466 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 467 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 468 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 469 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 470 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 471 #undef GET_FEATURE 472 473 return features; 474 } 475 476 /* 477 * The requirements here are: 478 * - keep the final alignment of sp (sp & 0xf) 479 * - make sure the 32-bit value at the first 16 byte aligned position of 480 * AUXV is greater than 16 for glibc compatibility. 481 * AT_IGNOREPPC is used for that. 482 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 483 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 484 */ 485 #define DLINFO_ARCH_ITEMS 5 486 #define ARCH_DLINFO \ 487 do { \ 488 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \ 489 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \ 490 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 491 /* \ 492 * Now handle glibc compatibility. \ 493 */ \ 494 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 495 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 496 } while (0) 497 498 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 499 { 500 _regs->gpr[1] = infop->start_stack; 501 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 502 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr; 503 infop->entry = ldq_raw(infop->entry) + infop->load_addr; 504 #endif 505 _regs->nip = infop->entry; 506 } 507 508 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 509 #define ELF_NREG 48 510 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 511 512 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 513 { 514 int i; 515 target_ulong ccr = 0; 516 517 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 518 (*regs)[i] = tswapl(env->gpr[i]); 519 } 520 521 (*regs)[32] = tswapl(env->nip); 522 (*regs)[33] = tswapl(env->msr); 523 (*regs)[35] = tswapl(env->ctr); 524 (*regs)[36] = tswapl(env->lr); 525 (*regs)[37] = tswapl(env->xer); 526 527 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 528 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 529 } 530 (*regs)[38] = tswapl(ccr); 531 } 532 533 #define USE_ELF_CORE_DUMP 534 #define ELF_EXEC_PAGESIZE 4096 535 536 #endif 537 538 #ifdef TARGET_MIPS 539 540 #define ELF_START_MMAP 0x80000000 541 542 #define elf_check_arch(x) ( (x) == EM_MIPS ) 543 544 #ifdef TARGET_MIPS64 545 #define ELF_CLASS ELFCLASS64 546 #else 547 #define ELF_CLASS ELFCLASS32 548 #endif 549 #define ELF_ARCH EM_MIPS 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 regs->cp0_status = 2 << CP0St_KSU; 555 regs->cp0_epc = infop->entry; 556 regs->regs[29] = infop->start_stack; 557 } 558 559 /* See linux kernel: arch/mips/include/asm/elf.h. */ 560 #define ELF_NREG 45 561 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 562 563 /* See linux kernel: arch/mips/include/asm/reg.h. */ 564 enum { 565 #ifdef TARGET_MIPS64 566 TARGET_EF_R0 = 0, 567 #else 568 TARGET_EF_R0 = 6, 569 #endif 570 TARGET_EF_R26 = TARGET_EF_R0 + 26, 571 TARGET_EF_R27 = TARGET_EF_R0 + 27, 572 TARGET_EF_LO = TARGET_EF_R0 + 32, 573 TARGET_EF_HI = TARGET_EF_R0 + 33, 574 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 575 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 576 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 577 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 578 }; 579 580 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 581 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 582 { 583 int i; 584 585 for (i = 0; i < TARGET_EF_R0; i++) { 586 (*regs)[i] = 0; 587 } 588 (*regs)[TARGET_EF_R0] = 0; 589 590 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 591 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]); 592 } 593 594 (*regs)[TARGET_EF_R26] = 0; 595 (*regs)[TARGET_EF_R27] = 0; 596 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]); 597 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]); 598 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC); 599 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr); 600 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status); 601 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause); 602 } 603 604 #define USE_ELF_CORE_DUMP 605 #define ELF_EXEC_PAGESIZE 4096 606 607 #endif /* TARGET_MIPS */ 608 609 #ifdef TARGET_MICROBLAZE 610 611 #define ELF_START_MMAP 0x80000000 612 613 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 614 615 #define ELF_CLASS ELFCLASS32 616 #define ELF_ARCH EM_MICROBLAZE 617 618 static inline void init_thread(struct target_pt_regs *regs, 619 struct image_info *infop) 620 { 621 regs->pc = infop->entry; 622 regs->r1 = infop->start_stack; 623 624 } 625 626 #define ELF_EXEC_PAGESIZE 4096 627 628 #define USE_ELF_CORE_DUMP 629 #define ELF_NREG 38 630 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 631 632 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 633 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 634 { 635 int i, pos = 0; 636 637 for (i = 0; i < 32; i++) { 638 (*regs)[pos++] = tswapl(env->regs[i]); 639 } 640 641 for (i = 0; i < 6; i++) { 642 (*regs)[pos++] = tswapl(env->sregs[i]); 643 } 644 } 645 646 #endif /* TARGET_MICROBLAZE */ 647 648 #ifdef TARGET_SH4 649 650 #define ELF_START_MMAP 0x80000000 651 652 #define elf_check_arch(x) ( (x) == EM_SH ) 653 654 #define ELF_CLASS ELFCLASS32 655 #define ELF_ARCH EM_SH 656 657 static inline void init_thread(struct target_pt_regs *regs, 658 struct image_info *infop) 659 { 660 /* Check other registers XXXXX */ 661 regs->pc = infop->entry; 662 regs->regs[15] = infop->start_stack; 663 } 664 665 /* See linux kernel: arch/sh/include/asm/elf.h. */ 666 #define ELF_NREG 23 667 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 668 669 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 670 enum { 671 TARGET_REG_PC = 16, 672 TARGET_REG_PR = 17, 673 TARGET_REG_SR = 18, 674 TARGET_REG_GBR = 19, 675 TARGET_REG_MACH = 20, 676 TARGET_REG_MACL = 21, 677 TARGET_REG_SYSCALL = 22 678 }; 679 680 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 681 const CPUState *env) 682 { 683 int i; 684 685 for (i = 0; i < 16; i++) { 686 (*regs[i]) = tswapl(env->gregs[i]); 687 } 688 689 (*regs)[TARGET_REG_PC] = tswapl(env->pc); 690 (*regs)[TARGET_REG_PR] = tswapl(env->pr); 691 (*regs)[TARGET_REG_SR] = tswapl(env->sr); 692 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr); 693 (*regs)[TARGET_REG_MACH] = tswapl(env->mach); 694 (*regs)[TARGET_REG_MACL] = tswapl(env->macl); 695 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 696 } 697 698 #define USE_ELF_CORE_DUMP 699 #define ELF_EXEC_PAGESIZE 4096 700 701 #endif 702 703 #ifdef TARGET_CRIS 704 705 #define ELF_START_MMAP 0x80000000 706 707 #define elf_check_arch(x) ( (x) == EM_CRIS ) 708 709 #define ELF_CLASS ELFCLASS32 710 #define ELF_ARCH EM_CRIS 711 712 static inline void init_thread(struct target_pt_regs *regs, 713 struct image_info *infop) 714 { 715 regs->erp = infop->entry; 716 } 717 718 #define ELF_EXEC_PAGESIZE 8192 719 720 #endif 721 722 #ifdef TARGET_M68K 723 724 #define ELF_START_MMAP 0x80000000 725 726 #define elf_check_arch(x) ( (x) == EM_68K ) 727 728 #define ELF_CLASS ELFCLASS32 729 #define ELF_ARCH EM_68K 730 731 /* ??? Does this need to do anything? 732 #define ELF_PLAT_INIT(_r) */ 733 734 static inline void init_thread(struct target_pt_regs *regs, 735 struct image_info *infop) 736 { 737 regs->usp = infop->start_stack; 738 regs->sr = 0; 739 regs->pc = infop->entry; 740 } 741 742 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 743 #define ELF_NREG 20 744 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 745 746 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env) 747 { 748 (*regs)[0] = tswapl(env->dregs[1]); 749 (*regs)[1] = tswapl(env->dregs[2]); 750 (*regs)[2] = tswapl(env->dregs[3]); 751 (*regs)[3] = tswapl(env->dregs[4]); 752 (*regs)[4] = tswapl(env->dregs[5]); 753 (*regs)[5] = tswapl(env->dregs[6]); 754 (*regs)[6] = tswapl(env->dregs[7]); 755 (*regs)[7] = tswapl(env->aregs[0]); 756 (*regs)[8] = tswapl(env->aregs[1]); 757 (*regs)[9] = tswapl(env->aregs[2]); 758 (*regs)[10] = tswapl(env->aregs[3]); 759 (*regs)[11] = tswapl(env->aregs[4]); 760 (*regs)[12] = tswapl(env->aregs[5]); 761 (*regs)[13] = tswapl(env->aregs[6]); 762 (*regs)[14] = tswapl(env->dregs[0]); 763 (*regs)[15] = tswapl(env->aregs[7]); 764 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */ 765 (*regs)[17] = tswapl(env->sr); 766 (*regs)[18] = tswapl(env->pc); 767 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 768 } 769 770 #define USE_ELF_CORE_DUMP 771 #define ELF_EXEC_PAGESIZE 8192 772 773 #endif 774 775 #ifdef TARGET_ALPHA 776 777 #define ELF_START_MMAP (0x30000000000ULL) 778 779 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 780 781 #define ELF_CLASS ELFCLASS64 782 #define ELF_ARCH EM_ALPHA 783 784 static inline void init_thread(struct target_pt_regs *regs, 785 struct image_info *infop) 786 { 787 regs->pc = infop->entry; 788 regs->ps = 8; 789 regs->usp = infop->start_stack; 790 } 791 792 #define ELF_EXEC_PAGESIZE 8192 793 794 #endif /* TARGET_ALPHA */ 795 796 #ifndef ELF_PLATFORM 797 #define ELF_PLATFORM (NULL) 798 #endif 799 800 #ifndef ELF_HWCAP 801 #define ELF_HWCAP 0 802 #endif 803 804 #ifdef TARGET_ABI32 805 #undef ELF_CLASS 806 #define ELF_CLASS ELFCLASS32 807 #undef bswaptls 808 #define bswaptls(ptr) bswap32s(ptr) 809 #endif 810 811 #include "elf.h" 812 813 struct exec 814 { 815 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 816 unsigned int a_text; /* length of text, in bytes */ 817 unsigned int a_data; /* length of data, in bytes */ 818 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 819 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 820 unsigned int a_entry; /* start address */ 821 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 822 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 823 }; 824 825 826 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 827 #define OMAGIC 0407 828 #define NMAGIC 0410 829 #define ZMAGIC 0413 830 #define QMAGIC 0314 831 832 /* Necessary parameters */ 833 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 834 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1)) 835 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 836 837 #define DLINFO_ITEMS 12 838 839 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 840 { 841 memcpy(to, from, n); 842 } 843 844 #ifdef BSWAP_NEEDED 845 static void bswap_ehdr(struct elfhdr *ehdr) 846 { 847 bswap16s(&ehdr->e_type); /* Object file type */ 848 bswap16s(&ehdr->e_machine); /* Architecture */ 849 bswap32s(&ehdr->e_version); /* Object file version */ 850 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 851 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 852 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 853 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 854 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 855 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 856 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 857 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 858 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 859 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 860 } 861 862 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 863 { 864 int i; 865 for (i = 0; i < phnum; ++i, ++phdr) { 866 bswap32s(&phdr->p_type); /* Segment type */ 867 bswap32s(&phdr->p_flags); /* Segment flags */ 868 bswaptls(&phdr->p_offset); /* Segment file offset */ 869 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 870 bswaptls(&phdr->p_paddr); /* Segment physical address */ 871 bswaptls(&phdr->p_filesz); /* Segment size in file */ 872 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 873 bswaptls(&phdr->p_align); /* Segment alignment */ 874 } 875 } 876 877 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 878 { 879 int i; 880 for (i = 0; i < shnum; ++i, ++shdr) { 881 bswap32s(&shdr->sh_name); 882 bswap32s(&shdr->sh_type); 883 bswaptls(&shdr->sh_flags); 884 bswaptls(&shdr->sh_addr); 885 bswaptls(&shdr->sh_offset); 886 bswaptls(&shdr->sh_size); 887 bswap32s(&shdr->sh_link); 888 bswap32s(&shdr->sh_info); 889 bswaptls(&shdr->sh_addralign); 890 bswaptls(&shdr->sh_entsize); 891 } 892 } 893 894 static void bswap_sym(struct elf_sym *sym) 895 { 896 bswap32s(&sym->st_name); 897 bswaptls(&sym->st_value); 898 bswaptls(&sym->st_size); 899 bswap16s(&sym->st_shndx); 900 } 901 #else 902 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 903 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 904 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 905 static inline void bswap_sym(struct elf_sym *sym) { } 906 #endif 907 908 #ifdef USE_ELF_CORE_DUMP 909 static int elf_core_dump(int, const CPUState *); 910 #endif /* USE_ELF_CORE_DUMP */ 911 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 912 913 /* Verify the portions of EHDR within E_IDENT for the target. 914 This can be performed before bswapping the entire header. */ 915 static bool elf_check_ident(struct elfhdr *ehdr) 916 { 917 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 918 && ehdr->e_ident[EI_MAG1] == ELFMAG1 919 && ehdr->e_ident[EI_MAG2] == ELFMAG2 920 && ehdr->e_ident[EI_MAG3] == ELFMAG3 921 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 922 && ehdr->e_ident[EI_DATA] == ELF_DATA 923 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 924 } 925 926 /* Verify the portions of EHDR outside of E_IDENT for the target. 927 This has to wait until after bswapping the header. */ 928 static bool elf_check_ehdr(struct elfhdr *ehdr) 929 { 930 return (elf_check_arch(ehdr->e_machine) 931 && ehdr->e_ehsize == sizeof(struct elfhdr) 932 && ehdr->e_phentsize == sizeof(struct elf_phdr) 933 && ehdr->e_shentsize == sizeof(struct elf_shdr) 934 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 935 } 936 937 /* 938 * 'copy_elf_strings()' copies argument/envelope strings from user 939 * memory to free pages in kernel mem. These are in a format ready 940 * to be put directly into the top of new user memory. 941 * 942 */ 943 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 944 abi_ulong p) 945 { 946 char *tmp, *tmp1, *pag = NULL; 947 int len, offset = 0; 948 949 if (!p) { 950 return 0; /* bullet-proofing */ 951 } 952 while (argc-- > 0) { 953 tmp = argv[argc]; 954 if (!tmp) { 955 fprintf(stderr, "VFS: argc is wrong"); 956 exit(-1); 957 } 958 tmp1 = tmp; 959 while (*tmp++); 960 len = tmp - tmp1; 961 if (p < len) { /* this shouldn't happen - 128kB */ 962 return 0; 963 } 964 while (len) { 965 --p; --tmp; --len; 966 if (--offset < 0) { 967 offset = p % TARGET_PAGE_SIZE; 968 pag = (char *)page[p/TARGET_PAGE_SIZE]; 969 if (!pag) { 970 pag = (char *)malloc(TARGET_PAGE_SIZE); 971 memset(pag, 0, TARGET_PAGE_SIZE); 972 page[p/TARGET_PAGE_SIZE] = pag; 973 if (!pag) 974 return 0; 975 } 976 } 977 if (len == 0 || offset == 0) { 978 *(pag + offset) = *tmp; 979 } 980 else { 981 int bytes_to_copy = (len > offset) ? offset : len; 982 tmp -= bytes_to_copy; 983 p -= bytes_to_copy; 984 offset -= bytes_to_copy; 985 len -= bytes_to_copy; 986 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 987 } 988 } 989 } 990 return p; 991 } 992 993 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 994 struct image_info *info) 995 { 996 abi_ulong stack_base, size, error, guard; 997 int i; 998 999 /* Create enough stack to hold everything. If we don't use 1000 it for args, we'll use it for something else. */ 1001 size = guest_stack_size; 1002 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1003 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1004 } 1005 guard = TARGET_PAGE_SIZE; 1006 if (guard < qemu_real_host_page_size) { 1007 guard = qemu_real_host_page_size; 1008 } 1009 1010 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1011 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1012 if (error == -1) { 1013 perror("mmap stack"); 1014 exit(-1); 1015 } 1016 1017 /* We reserve one extra page at the top of the stack as guard. */ 1018 target_mprotect(error, guard, PROT_NONE); 1019 1020 info->stack_limit = error + guard; 1021 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1022 p += stack_base; 1023 1024 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1025 if (bprm->page[i]) { 1026 info->rss++; 1027 /* FIXME - check return value of memcpy_to_target() for failure */ 1028 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1029 free(bprm->page[i]); 1030 } 1031 stack_base += TARGET_PAGE_SIZE; 1032 } 1033 return p; 1034 } 1035 1036 /* Map and zero the bss. We need to explicitly zero any fractional pages 1037 after the data section (i.e. bss). */ 1038 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1039 { 1040 uintptr_t host_start, host_map_start, host_end; 1041 1042 last_bss = TARGET_PAGE_ALIGN(last_bss); 1043 1044 /* ??? There is confusion between qemu_real_host_page_size and 1045 qemu_host_page_size here and elsewhere in target_mmap, which 1046 may lead to the end of the data section mapping from the file 1047 not being mapped. At least there was an explicit test and 1048 comment for that here, suggesting that "the file size must 1049 be known". The comment probably pre-dates the introduction 1050 of the fstat system call in target_mmap which does in fact 1051 find out the size. What isn't clear is if the workaround 1052 here is still actually needed. For now, continue with it, 1053 but merge it with the "normal" mmap that would allocate the bss. */ 1054 1055 host_start = (uintptr_t) g2h(elf_bss); 1056 host_end = (uintptr_t) g2h(last_bss); 1057 host_map_start = (host_start + qemu_real_host_page_size - 1); 1058 host_map_start &= -qemu_real_host_page_size; 1059 1060 if (host_map_start < host_end) { 1061 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1062 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1063 if (p == MAP_FAILED) { 1064 perror("cannot mmap brk"); 1065 exit(-1); 1066 } 1067 1068 /* Since we didn't use target_mmap, make sure to record 1069 the validity of the pages with qemu. */ 1070 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID); 1071 } 1072 1073 if (host_start < host_map_start) { 1074 memset((void *)host_start, 0, host_map_start - host_start); 1075 } 1076 } 1077 1078 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1079 struct elfhdr *exec, 1080 struct image_info *info, 1081 struct image_info *interp_info) 1082 { 1083 abi_ulong sp; 1084 int size; 1085 abi_ulong u_platform; 1086 const char *k_platform; 1087 const int n = sizeof(elf_addr_t); 1088 1089 sp = p; 1090 u_platform = 0; 1091 k_platform = ELF_PLATFORM; 1092 if (k_platform) { 1093 size_t len = strlen(k_platform) + 1; 1094 sp -= (len + n - 1) & ~(n - 1); 1095 u_platform = sp; 1096 /* FIXME - check return value of memcpy_to_target() for failure */ 1097 memcpy_to_target(sp, k_platform, len); 1098 } 1099 /* 1100 * Force 16 byte _final_ alignment here for generality. 1101 */ 1102 sp = sp &~ (abi_ulong)15; 1103 size = (DLINFO_ITEMS + 1) * 2; 1104 if (k_platform) 1105 size += 2; 1106 #ifdef DLINFO_ARCH_ITEMS 1107 size += DLINFO_ARCH_ITEMS * 2; 1108 #endif 1109 size += envc + argc + 2; 1110 size += 1; /* argc itself */ 1111 size *= n; 1112 if (size & 15) 1113 sp -= 16 - (size & 15); 1114 1115 /* This is correct because Linux defines 1116 * elf_addr_t as Elf32_Off / Elf64_Off 1117 */ 1118 #define NEW_AUX_ENT(id, val) do { \ 1119 sp -= n; put_user_ual(val, sp); \ 1120 sp -= n; put_user_ual(id, sp); \ 1121 } while(0) 1122 1123 NEW_AUX_ENT (AT_NULL, 0); 1124 1125 /* There must be exactly DLINFO_ITEMS entries here. */ 1126 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1127 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1128 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1129 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1130 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1131 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1132 NEW_AUX_ENT(AT_ENTRY, info->entry); 1133 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1134 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1135 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1136 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1137 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1138 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1139 if (k_platform) 1140 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1141 #ifdef ARCH_DLINFO 1142 /* 1143 * ARCH_DLINFO must come last so platform specific code can enforce 1144 * special alignment requirements on the AUXV if necessary (eg. PPC). 1145 */ 1146 ARCH_DLINFO; 1147 #endif 1148 #undef NEW_AUX_ENT 1149 1150 info->saved_auxv = sp; 1151 1152 sp = loader_build_argptr(envc, argc, sp, p, 0); 1153 return sp; 1154 } 1155 1156 /* Load an ELF image into the address space. 1157 1158 IMAGE_NAME is the filename of the image, to use in error messages. 1159 IMAGE_FD is the open file descriptor for the image. 1160 1161 BPRM_BUF is a copy of the beginning of the file; this of course 1162 contains the elf file header at offset 0. It is assumed that this 1163 buffer is sufficiently aligned to present no problems to the host 1164 in accessing data at aligned offsets within the buffer. 1165 1166 On return: INFO values will be filled in, as necessary or available. */ 1167 1168 static void load_elf_image(const char *image_name, int image_fd, 1169 struct image_info *info, char **pinterp_name, 1170 char bprm_buf[BPRM_BUF_SIZE]) 1171 { 1172 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1173 struct elf_phdr *phdr; 1174 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1175 int i, retval; 1176 const char *errmsg; 1177 1178 /* First of all, some simple consistency checks */ 1179 errmsg = "Invalid ELF image for this architecture"; 1180 if (!elf_check_ident(ehdr)) { 1181 goto exit_errmsg; 1182 } 1183 bswap_ehdr(ehdr); 1184 if (!elf_check_ehdr(ehdr)) { 1185 goto exit_errmsg; 1186 } 1187 1188 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1189 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1190 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1191 } else { 1192 phdr = (struct elf_phdr *) alloca(i); 1193 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1194 if (retval != i) { 1195 goto exit_read; 1196 } 1197 } 1198 bswap_phdr(phdr, ehdr->e_phnum); 1199 1200 /* Find the maximum size of the image and allocate an appropriate 1201 amount of memory to handle that. */ 1202 loaddr = -1, hiaddr = 0; 1203 for (i = 0; i < ehdr->e_phnum; ++i) { 1204 if (phdr[i].p_type == PT_LOAD) { 1205 abi_ulong a = phdr[i].p_vaddr; 1206 if (a < loaddr) { 1207 loaddr = a; 1208 } 1209 a += phdr[i].p_memsz; 1210 if (a > hiaddr) { 1211 hiaddr = a; 1212 } 1213 } 1214 } 1215 1216 load_addr = loaddr; 1217 if (ehdr->e_type == ET_DYN) { 1218 /* The image indicates that it can be loaded anywhere. Find a 1219 location that can hold the memory space required. If the 1220 image is pre-linked, LOADDR will be non-zero. Since we do 1221 not supply MAP_FIXED here we'll use that address if and 1222 only if it remains available. */ 1223 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1224 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1225 -1, 0); 1226 if (load_addr == -1) { 1227 goto exit_perror; 1228 } 1229 } else if (pinterp_name != NULL) { 1230 /* This is the main executable. Make sure that the low 1231 address does not conflict with MMAP_MIN_ADDR or the 1232 QEMU application itself. */ 1233 #if defined(CONFIG_USE_GUEST_BASE) 1234 /* 1235 * In case where user has not explicitly set the guest_base, we 1236 * probe here that should we set it automatically. 1237 */ 1238 if (!have_guest_base && !reserved_va) { 1239 unsigned long host_start, real_start, host_size; 1240 1241 /* Round addresses to page boundaries. */ 1242 loaddr &= qemu_host_page_mask; 1243 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1244 1245 if (loaddr < mmap_min_addr) { 1246 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1247 } else { 1248 host_start = loaddr; 1249 if (host_start != loaddr) { 1250 errmsg = "Address overflow loading ELF binary"; 1251 goto exit_errmsg; 1252 } 1253 } 1254 host_size = hiaddr - loaddr; 1255 while (1) { 1256 /* Do not use mmap_find_vma here because that is limited to the 1257 guest address space. We are going to make the 1258 guest address space fit whatever we're given. */ 1259 real_start = (unsigned long) 1260 mmap((void *)host_start, host_size, PROT_NONE, 1261 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0); 1262 if (real_start == (unsigned long)-1) { 1263 goto exit_perror; 1264 } 1265 if (real_start == host_start) { 1266 break; 1267 } 1268 /* That address didn't work. Unmap and try a different one. 1269 The address the host picked because is typically right at 1270 the top of the host address space and leaves the guest with 1271 no usable address space. Resort to a linear search. We 1272 already compensated for mmap_min_addr, so this should not 1273 happen often. Probably means we got unlucky and host 1274 address space randomization put a shared library somewhere 1275 inconvenient. */ 1276 munmap((void *)real_start, host_size); 1277 host_start += qemu_host_page_size; 1278 if (host_start == loaddr) { 1279 /* Theoretically possible if host doesn't have any suitably 1280 aligned areas. Normally the first mmap will fail. */ 1281 errmsg = "Unable to find space for application"; 1282 goto exit_errmsg; 1283 } 1284 } 1285 qemu_log("Relocating guest address space from 0x" 1286 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start); 1287 guest_base = real_start - loaddr; 1288 } 1289 #endif 1290 } 1291 load_bias = load_addr - loaddr; 1292 1293 info->load_bias = load_bias; 1294 info->load_addr = load_addr; 1295 info->entry = ehdr->e_entry + load_bias; 1296 info->start_code = -1; 1297 info->end_code = 0; 1298 info->start_data = -1; 1299 info->end_data = 0; 1300 info->brk = 0; 1301 1302 for (i = 0; i < ehdr->e_phnum; i++) { 1303 struct elf_phdr *eppnt = phdr + i; 1304 if (eppnt->p_type == PT_LOAD) { 1305 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1306 int elf_prot = 0; 1307 1308 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1309 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1310 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1311 1312 vaddr = load_bias + eppnt->p_vaddr; 1313 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1314 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1315 1316 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1317 elf_prot, MAP_PRIVATE | MAP_FIXED, 1318 image_fd, eppnt->p_offset - vaddr_po); 1319 if (error == -1) { 1320 goto exit_perror; 1321 } 1322 1323 vaddr_ef = vaddr + eppnt->p_filesz; 1324 vaddr_em = vaddr + eppnt->p_memsz; 1325 1326 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1327 if (vaddr_ef < vaddr_em) { 1328 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1329 } 1330 1331 /* Find the full program boundaries. */ 1332 if (elf_prot & PROT_EXEC) { 1333 if (vaddr < info->start_code) { 1334 info->start_code = vaddr; 1335 } 1336 if (vaddr_ef > info->end_code) { 1337 info->end_code = vaddr_ef; 1338 } 1339 } 1340 if (elf_prot & PROT_WRITE) { 1341 if (vaddr < info->start_data) { 1342 info->start_data = vaddr; 1343 } 1344 if (vaddr_ef > info->end_data) { 1345 info->end_data = vaddr_ef; 1346 } 1347 if (vaddr_em > info->brk) { 1348 info->brk = vaddr_em; 1349 } 1350 } 1351 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1352 char *interp_name; 1353 1354 if (*pinterp_name) { 1355 errmsg = "Multiple PT_INTERP entries"; 1356 goto exit_errmsg; 1357 } 1358 interp_name = malloc(eppnt->p_filesz); 1359 if (!interp_name) { 1360 goto exit_perror; 1361 } 1362 1363 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1364 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1365 eppnt->p_filesz); 1366 } else { 1367 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1368 eppnt->p_offset); 1369 if (retval != eppnt->p_filesz) { 1370 goto exit_perror; 1371 } 1372 } 1373 if (interp_name[eppnt->p_filesz - 1] != 0) { 1374 errmsg = "Invalid PT_INTERP entry"; 1375 goto exit_errmsg; 1376 } 1377 *pinterp_name = interp_name; 1378 } 1379 } 1380 1381 if (info->end_data == 0) { 1382 info->start_data = info->end_code; 1383 info->end_data = info->end_code; 1384 info->brk = info->end_code; 1385 } 1386 1387 if (qemu_log_enabled()) { 1388 load_symbols(ehdr, image_fd, load_bias); 1389 } 1390 1391 close(image_fd); 1392 return; 1393 1394 exit_read: 1395 if (retval >= 0) { 1396 errmsg = "Incomplete read of file header"; 1397 goto exit_errmsg; 1398 } 1399 exit_perror: 1400 errmsg = strerror(errno); 1401 exit_errmsg: 1402 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1403 exit(-1); 1404 } 1405 1406 static void load_elf_interp(const char *filename, struct image_info *info, 1407 char bprm_buf[BPRM_BUF_SIZE]) 1408 { 1409 int fd, retval; 1410 1411 fd = open(path(filename), O_RDONLY); 1412 if (fd < 0) { 1413 goto exit_perror; 1414 } 1415 1416 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 1417 if (retval < 0) { 1418 goto exit_perror; 1419 } 1420 if (retval < BPRM_BUF_SIZE) { 1421 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 1422 } 1423 1424 load_elf_image(filename, fd, info, NULL, bprm_buf); 1425 return; 1426 1427 exit_perror: 1428 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 1429 exit(-1); 1430 } 1431 1432 static int symfind(const void *s0, const void *s1) 1433 { 1434 struct elf_sym *key = (struct elf_sym *)s0; 1435 struct elf_sym *sym = (struct elf_sym *)s1; 1436 int result = 0; 1437 if (key->st_value < sym->st_value) { 1438 result = -1; 1439 } else if (key->st_value >= sym->st_value + sym->st_size) { 1440 result = 1; 1441 } 1442 return result; 1443 } 1444 1445 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 1446 { 1447 #if ELF_CLASS == ELFCLASS32 1448 struct elf_sym *syms = s->disas_symtab.elf32; 1449 #else 1450 struct elf_sym *syms = s->disas_symtab.elf64; 1451 #endif 1452 1453 // binary search 1454 struct elf_sym key; 1455 struct elf_sym *sym; 1456 1457 key.st_value = orig_addr; 1458 1459 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind); 1460 if (sym != NULL) { 1461 return s->disas_strtab + sym->st_name; 1462 } 1463 1464 return ""; 1465 } 1466 1467 /* FIXME: This should use elf_ops.h */ 1468 static int symcmp(const void *s0, const void *s1) 1469 { 1470 struct elf_sym *sym0 = (struct elf_sym *)s0; 1471 struct elf_sym *sym1 = (struct elf_sym *)s1; 1472 return (sym0->st_value < sym1->st_value) 1473 ? -1 1474 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 1475 } 1476 1477 /* Best attempt to load symbols from this ELF object. */ 1478 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 1479 { 1480 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 1481 struct elf_shdr *shdr; 1482 char *strings; 1483 struct syminfo *s; 1484 struct elf_sym *syms; 1485 1486 shnum = hdr->e_shnum; 1487 i = shnum * sizeof(struct elf_shdr); 1488 shdr = (struct elf_shdr *)alloca(i); 1489 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 1490 return; 1491 } 1492 1493 bswap_shdr(shdr, shnum); 1494 for (i = 0; i < shnum; ++i) { 1495 if (shdr[i].sh_type == SHT_SYMTAB) { 1496 sym_idx = i; 1497 str_idx = shdr[i].sh_link; 1498 goto found; 1499 } 1500 } 1501 1502 /* There will be no symbol table if the file was stripped. */ 1503 return; 1504 1505 found: 1506 /* Now know where the strtab and symtab are. Snarf them. */ 1507 s = malloc(sizeof(*s)); 1508 if (!s) { 1509 return; 1510 } 1511 1512 i = shdr[str_idx].sh_size; 1513 s->disas_strtab = strings = malloc(i); 1514 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 1515 free(s); 1516 free(strings); 1517 return; 1518 } 1519 1520 i = shdr[sym_idx].sh_size; 1521 syms = malloc(i); 1522 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 1523 free(s); 1524 free(strings); 1525 free(syms); 1526 return; 1527 } 1528 1529 nsyms = i / sizeof(struct elf_sym); 1530 for (i = 0; i < nsyms; ) { 1531 bswap_sym(syms + i); 1532 /* Throw away entries which we do not need. */ 1533 if (syms[i].st_shndx == SHN_UNDEF 1534 || syms[i].st_shndx >= SHN_LORESERVE 1535 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 1536 if (i < --nsyms) { 1537 syms[i] = syms[nsyms]; 1538 } 1539 } else { 1540 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 1541 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 1542 syms[i].st_value &= ~(target_ulong)1; 1543 #endif 1544 syms[i].st_value += load_bias; 1545 i++; 1546 } 1547 } 1548 1549 /* Attempt to free the storage associated with the local symbols 1550 that we threw away. Whether or not this has any effect on the 1551 memory allocation depends on the malloc implementation and how 1552 many symbols we managed to discard. */ 1553 syms = realloc(syms, nsyms * sizeof(*syms)); 1554 if (syms == NULL) { 1555 free(s); 1556 free(strings); 1557 return; 1558 } 1559 1560 qsort(syms, nsyms, sizeof(*syms), symcmp); 1561 1562 s->disas_num_syms = nsyms; 1563 #if ELF_CLASS == ELFCLASS32 1564 s->disas_symtab.elf32 = syms; 1565 #else 1566 s->disas_symtab.elf64 = syms; 1567 #endif 1568 s->lookup_symbol = lookup_symbolxx; 1569 s->next = syminfos; 1570 syminfos = s; 1571 } 1572 1573 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs, 1574 struct image_info * info) 1575 { 1576 struct image_info interp_info; 1577 struct elfhdr elf_ex; 1578 char *elf_interpreter = NULL; 1579 1580 info->start_mmap = (abi_ulong)ELF_START_MMAP; 1581 info->mmap = 0; 1582 info->rss = 0; 1583 1584 load_elf_image(bprm->filename, bprm->fd, info, 1585 &elf_interpreter, bprm->buf); 1586 1587 /* ??? We need a copy of the elf header for passing to create_elf_tables. 1588 If we do nothing, we'll have overwritten this when we re-use bprm->buf 1589 when we load the interpreter. */ 1590 elf_ex = *(struct elfhdr *)bprm->buf; 1591 1592 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 1593 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 1594 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 1595 if (!bprm->p) { 1596 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 1597 exit(-1); 1598 } 1599 1600 /* Do this so that we can load the interpreter, if need be. We will 1601 change some of these later */ 1602 bprm->p = setup_arg_pages(bprm->p, bprm, info); 1603 1604 if (elf_interpreter) { 1605 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 1606 1607 /* If the program interpreter is one of these two, then assume 1608 an iBCS2 image. Otherwise assume a native linux image. */ 1609 1610 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 1611 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 1612 info->personality = PER_SVR4; 1613 1614 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 1615 and some applications "depend" upon this behavior. Since 1616 we do not have the power to recompile these, we emulate 1617 the SVr4 behavior. Sigh. */ 1618 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 1619 MAP_FIXED | MAP_PRIVATE, -1, 0); 1620 } 1621 } 1622 1623 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 1624 info, (elf_interpreter ? &interp_info : NULL)); 1625 info->start_stack = bprm->p; 1626 1627 /* If we have an interpreter, set that as the program's entry point. 1628 Copy the load_addr as well, to help PPC64 interpret the entry 1629 point as a function descriptor. Do this after creating elf tables 1630 so that we copy the original program entry point into the AUXV. */ 1631 if (elf_interpreter) { 1632 info->load_addr = interp_info.load_addr; 1633 info->entry = interp_info.entry; 1634 free(elf_interpreter); 1635 } 1636 1637 #ifdef USE_ELF_CORE_DUMP 1638 bprm->core_dump = &elf_core_dump; 1639 #endif 1640 1641 return 0; 1642 } 1643 1644 #ifdef USE_ELF_CORE_DUMP 1645 /* 1646 * Definitions to generate Intel SVR4-like core files. 1647 * These mostly have the same names as the SVR4 types with "target_elf_" 1648 * tacked on the front to prevent clashes with linux definitions, 1649 * and the typedef forms have been avoided. This is mostly like 1650 * the SVR4 structure, but more Linuxy, with things that Linux does 1651 * not support and which gdb doesn't really use excluded. 1652 * 1653 * Fields we don't dump (their contents is zero) in linux-user qemu 1654 * are marked with XXX. 1655 * 1656 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 1657 * 1658 * Porting ELF coredump for target is (quite) simple process. First you 1659 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 1660 * the target resides): 1661 * 1662 * #define USE_ELF_CORE_DUMP 1663 * 1664 * Next you define type of register set used for dumping. ELF specification 1665 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 1666 * 1667 * typedef <target_regtype> target_elf_greg_t; 1668 * #define ELF_NREG <number of registers> 1669 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1670 * 1671 * Last step is to implement target specific function that copies registers 1672 * from given cpu into just specified register set. Prototype is: 1673 * 1674 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 1675 * const CPUState *env); 1676 * 1677 * Parameters: 1678 * regs - copy register values into here (allocated and zeroed by caller) 1679 * env - copy registers from here 1680 * 1681 * Example for ARM target is provided in this file. 1682 */ 1683 1684 /* An ELF note in memory */ 1685 struct memelfnote { 1686 const char *name; 1687 size_t namesz; 1688 size_t namesz_rounded; 1689 int type; 1690 size_t datasz; 1691 void *data; 1692 size_t notesz; 1693 }; 1694 1695 struct target_elf_siginfo { 1696 int si_signo; /* signal number */ 1697 int si_code; /* extra code */ 1698 int si_errno; /* errno */ 1699 }; 1700 1701 struct target_elf_prstatus { 1702 struct target_elf_siginfo pr_info; /* Info associated with signal */ 1703 short pr_cursig; /* Current signal */ 1704 target_ulong pr_sigpend; /* XXX */ 1705 target_ulong pr_sighold; /* XXX */ 1706 target_pid_t pr_pid; 1707 target_pid_t pr_ppid; 1708 target_pid_t pr_pgrp; 1709 target_pid_t pr_sid; 1710 struct target_timeval pr_utime; /* XXX User time */ 1711 struct target_timeval pr_stime; /* XXX System time */ 1712 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 1713 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 1714 target_elf_gregset_t pr_reg; /* GP registers */ 1715 int pr_fpvalid; /* XXX */ 1716 }; 1717 1718 #define ELF_PRARGSZ (80) /* Number of chars for args */ 1719 1720 struct target_elf_prpsinfo { 1721 char pr_state; /* numeric process state */ 1722 char pr_sname; /* char for pr_state */ 1723 char pr_zomb; /* zombie */ 1724 char pr_nice; /* nice val */ 1725 target_ulong pr_flag; /* flags */ 1726 target_uid_t pr_uid; 1727 target_gid_t pr_gid; 1728 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 1729 /* Lots missing */ 1730 char pr_fname[16]; /* filename of executable */ 1731 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 1732 }; 1733 1734 /* Here is the structure in which status of each thread is captured. */ 1735 struct elf_thread_status { 1736 QTAILQ_ENTRY(elf_thread_status) ets_link; 1737 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 1738 #if 0 1739 elf_fpregset_t fpu; /* NT_PRFPREG */ 1740 struct task_struct *thread; 1741 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 1742 #endif 1743 struct memelfnote notes[1]; 1744 int num_notes; 1745 }; 1746 1747 struct elf_note_info { 1748 struct memelfnote *notes; 1749 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 1750 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 1751 1752 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 1753 #if 0 1754 /* 1755 * Current version of ELF coredump doesn't support 1756 * dumping fp regs etc. 1757 */ 1758 elf_fpregset_t *fpu; 1759 elf_fpxregset_t *xfpu; 1760 int thread_status_size; 1761 #endif 1762 int notes_size; 1763 int numnote; 1764 }; 1765 1766 struct vm_area_struct { 1767 abi_ulong vma_start; /* start vaddr of memory region */ 1768 abi_ulong vma_end; /* end vaddr of memory region */ 1769 abi_ulong vma_flags; /* protection etc. flags for the region */ 1770 QTAILQ_ENTRY(vm_area_struct) vma_link; 1771 }; 1772 1773 struct mm_struct { 1774 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 1775 int mm_count; /* number of mappings */ 1776 }; 1777 1778 static struct mm_struct *vma_init(void); 1779 static void vma_delete(struct mm_struct *); 1780 static int vma_add_mapping(struct mm_struct *, abi_ulong, 1781 abi_ulong, abi_ulong); 1782 static int vma_get_mapping_count(const struct mm_struct *); 1783 static struct vm_area_struct *vma_first(const struct mm_struct *); 1784 static struct vm_area_struct *vma_next(struct vm_area_struct *); 1785 static abi_ulong vma_dump_size(const struct vm_area_struct *); 1786 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 1787 unsigned long flags); 1788 1789 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 1790 static void fill_note(struct memelfnote *, const char *, int, 1791 unsigned int, void *); 1792 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 1793 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 1794 static void fill_auxv_note(struct memelfnote *, const TaskState *); 1795 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 1796 static size_t note_size(const struct memelfnote *); 1797 static void free_note_info(struct elf_note_info *); 1798 static int fill_note_info(struct elf_note_info *, long, const CPUState *); 1799 static void fill_thread_info(struct elf_note_info *, const CPUState *); 1800 static int core_dump_filename(const TaskState *, char *, size_t); 1801 1802 static int dump_write(int, const void *, size_t); 1803 static int write_note(struct memelfnote *, int); 1804 static int write_note_info(struct elf_note_info *, int); 1805 1806 #ifdef BSWAP_NEEDED 1807 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 1808 { 1809 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo); 1810 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code); 1811 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno); 1812 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 1813 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend); 1814 prstatus->pr_sighold = tswapl(prstatus->pr_sighold); 1815 prstatus->pr_pid = tswap32(prstatus->pr_pid); 1816 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 1817 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 1818 prstatus->pr_sid = tswap32(prstatus->pr_sid); 1819 /* cpu times are not filled, so we skip them */ 1820 /* regs should be in correct format already */ 1821 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 1822 } 1823 1824 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 1825 { 1826 psinfo->pr_flag = tswapl(psinfo->pr_flag); 1827 psinfo->pr_uid = tswap16(psinfo->pr_uid); 1828 psinfo->pr_gid = tswap16(psinfo->pr_gid); 1829 psinfo->pr_pid = tswap32(psinfo->pr_pid); 1830 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 1831 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 1832 psinfo->pr_sid = tswap32(psinfo->pr_sid); 1833 } 1834 1835 static void bswap_note(struct elf_note *en) 1836 { 1837 bswap32s(&en->n_namesz); 1838 bswap32s(&en->n_descsz); 1839 bswap32s(&en->n_type); 1840 } 1841 #else 1842 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 1843 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 1844 static inline void bswap_note(struct elf_note *en) { } 1845 #endif /* BSWAP_NEEDED */ 1846 1847 /* 1848 * Minimal support for linux memory regions. These are needed 1849 * when we are finding out what memory exactly belongs to 1850 * emulated process. No locks needed here, as long as 1851 * thread that received the signal is stopped. 1852 */ 1853 1854 static struct mm_struct *vma_init(void) 1855 { 1856 struct mm_struct *mm; 1857 1858 if ((mm = qemu_malloc(sizeof (*mm))) == NULL) 1859 return (NULL); 1860 1861 mm->mm_count = 0; 1862 QTAILQ_INIT(&mm->mm_mmap); 1863 1864 return (mm); 1865 } 1866 1867 static void vma_delete(struct mm_struct *mm) 1868 { 1869 struct vm_area_struct *vma; 1870 1871 while ((vma = vma_first(mm)) != NULL) { 1872 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 1873 qemu_free(vma); 1874 } 1875 qemu_free(mm); 1876 } 1877 1878 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start, 1879 abi_ulong end, abi_ulong flags) 1880 { 1881 struct vm_area_struct *vma; 1882 1883 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL) 1884 return (-1); 1885 1886 vma->vma_start = start; 1887 vma->vma_end = end; 1888 vma->vma_flags = flags; 1889 1890 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 1891 mm->mm_count++; 1892 1893 return (0); 1894 } 1895 1896 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 1897 { 1898 return (QTAILQ_FIRST(&mm->mm_mmap)); 1899 } 1900 1901 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 1902 { 1903 return (QTAILQ_NEXT(vma, vma_link)); 1904 } 1905 1906 static int vma_get_mapping_count(const struct mm_struct *mm) 1907 { 1908 return (mm->mm_count); 1909 } 1910 1911 /* 1912 * Calculate file (dump) size of given memory region. 1913 */ 1914 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 1915 { 1916 /* if we cannot even read the first page, skip it */ 1917 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 1918 return (0); 1919 1920 /* 1921 * Usually we don't dump executable pages as they contain 1922 * non-writable code that debugger can read directly from 1923 * target library etc. However, thread stacks are marked 1924 * also executable so we read in first page of given region 1925 * and check whether it contains elf header. If there is 1926 * no elf header, we dump it. 1927 */ 1928 if (vma->vma_flags & PROT_EXEC) { 1929 char page[TARGET_PAGE_SIZE]; 1930 1931 copy_from_user(page, vma->vma_start, sizeof (page)); 1932 if ((page[EI_MAG0] == ELFMAG0) && 1933 (page[EI_MAG1] == ELFMAG1) && 1934 (page[EI_MAG2] == ELFMAG2) && 1935 (page[EI_MAG3] == ELFMAG3)) { 1936 /* 1937 * Mappings are possibly from ELF binary. Don't dump 1938 * them. 1939 */ 1940 return (0); 1941 } 1942 } 1943 1944 return (vma->vma_end - vma->vma_start); 1945 } 1946 1947 static int vma_walker(void *priv, abi_ulong start, abi_ulong end, 1948 unsigned long flags) 1949 { 1950 struct mm_struct *mm = (struct mm_struct *)priv; 1951 1952 vma_add_mapping(mm, start, end, flags); 1953 return (0); 1954 } 1955 1956 static void fill_note(struct memelfnote *note, const char *name, int type, 1957 unsigned int sz, void *data) 1958 { 1959 unsigned int namesz; 1960 1961 namesz = strlen(name) + 1; 1962 note->name = name; 1963 note->namesz = namesz; 1964 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 1965 note->type = type; 1966 note->datasz = roundup(sz, sizeof (int32_t));; 1967 note->data = data; 1968 1969 /* 1970 * We calculate rounded up note size here as specified by 1971 * ELF document. 1972 */ 1973 note->notesz = sizeof (struct elf_note) + 1974 note->namesz_rounded + note->datasz; 1975 } 1976 1977 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 1978 uint32_t flags) 1979 { 1980 (void) memset(elf, 0, sizeof(*elf)); 1981 1982 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 1983 elf->e_ident[EI_CLASS] = ELF_CLASS; 1984 elf->e_ident[EI_DATA] = ELF_DATA; 1985 elf->e_ident[EI_VERSION] = EV_CURRENT; 1986 elf->e_ident[EI_OSABI] = ELF_OSABI; 1987 1988 elf->e_type = ET_CORE; 1989 elf->e_machine = machine; 1990 elf->e_version = EV_CURRENT; 1991 elf->e_phoff = sizeof(struct elfhdr); 1992 elf->e_flags = flags; 1993 elf->e_ehsize = sizeof(struct elfhdr); 1994 elf->e_phentsize = sizeof(struct elf_phdr); 1995 elf->e_phnum = segs; 1996 1997 bswap_ehdr(elf); 1998 } 1999 2000 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2001 { 2002 phdr->p_type = PT_NOTE; 2003 phdr->p_offset = offset; 2004 phdr->p_vaddr = 0; 2005 phdr->p_paddr = 0; 2006 phdr->p_filesz = sz; 2007 phdr->p_memsz = 0; 2008 phdr->p_flags = 0; 2009 phdr->p_align = 0; 2010 2011 bswap_phdr(phdr, 1); 2012 } 2013 2014 static size_t note_size(const struct memelfnote *note) 2015 { 2016 return (note->notesz); 2017 } 2018 2019 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2020 const TaskState *ts, int signr) 2021 { 2022 (void) memset(prstatus, 0, sizeof (*prstatus)); 2023 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2024 prstatus->pr_pid = ts->ts_tid; 2025 prstatus->pr_ppid = getppid(); 2026 prstatus->pr_pgrp = getpgrp(); 2027 prstatus->pr_sid = getsid(0); 2028 2029 bswap_prstatus(prstatus); 2030 } 2031 2032 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2033 { 2034 char *filename, *base_filename; 2035 unsigned int i, len; 2036 2037 (void) memset(psinfo, 0, sizeof (*psinfo)); 2038 2039 len = ts->info->arg_end - ts->info->arg_start; 2040 if (len >= ELF_PRARGSZ) 2041 len = ELF_PRARGSZ - 1; 2042 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2043 return -EFAULT; 2044 for (i = 0; i < len; i++) 2045 if (psinfo->pr_psargs[i] == 0) 2046 psinfo->pr_psargs[i] = ' '; 2047 psinfo->pr_psargs[len] = 0; 2048 2049 psinfo->pr_pid = getpid(); 2050 psinfo->pr_ppid = getppid(); 2051 psinfo->pr_pgrp = getpgrp(); 2052 psinfo->pr_sid = getsid(0); 2053 psinfo->pr_uid = getuid(); 2054 psinfo->pr_gid = getgid(); 2055 2056 filename = strdup(ts->bprm->filename); 2057 base_filename = strdup(basename(filename)); 2058 (void) strncpy(psinfo->pr_fname, base_filename, 2059 sizeof(psinfo->pr_fname)); 2060 free(base_filename); 2061 free(filename); 2062 2063 bswap_psinfo(psinfo); 2064 return (0); 2065 } 2066 2067 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2068 { 2069 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2070 elf_addr_t orig_auxv = auxv; 2071 abi_ulong val; 2072 void *ptr; 2073 int i, len; 2074 2075 /* 2076 * Auxiliary vector is stored in target process stack. It contains 2077 * {type, value} pairs that we need to dump into note. This is not 2078 * strictly necessary but we do it here for sake of completeness. 2079 */ 2080 2081 /* find out lenght of the vector, AT_NULL is terminator */ 2082 i = len = 0; 2083 do { 2084 get_user_ual(val, auxv); 2085 i += 2; 2086 auxv += 2 * sizeof (elf_addr_t); 2087 } while (val != AT_NULL); 2088 len = i * sizeof (elf_addr_t); 2089 2090 /* read in whole auxv vector and copy it to memelfnote */ 2091 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2092 if (ptr != NULL) { 2093 fill_note(note, "CORE", NT_AUXV, len, ptr); 2094 unlock_user(ptr, auxv, len); 2095 } 2096 } 2097 2098 /* 2099 * Constructs name of coredump file. We have following convention 2100 * for the name: 2101 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2102 * 2103 * Returns 0 in case of success, -1 otherwise (errno is set). 2104 */ 2105 static int core_dump_filename(const TaskState *ts, char *buf, 2106 size_t bufsize) 2107 { 2108 char timestamp[64]; 2109 char *filename = NULL; 2110 char *base_filename = NULL; 2111 struct timeval tv; 2112 struct tm tm; 2113 2114 assert(bufsize >= PATH_MAX); 2115 2116 if (gettimeofday(&tv, NULL) < 0) { 2117 (void) fprintf(stderr, "unable to get current timestamp: %s", 2118 strerror(errno)); 2119 return (-1); 2120 } 2121 2122 filename = strdup(ts->bprm->filename); 2123 base_filename = strdup(basename(filename)); 2124 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2125 localtime_r(&tv.tv_sec, &tm)); 2126 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2127 base_filename, timestamp, (int)getpid()); 2128 free(base_filename); 2129 free(filename); 2130 2131 return (0); 2132 } 2133 2134 static int dump_write(int fd, const void *ptr, size_t size) 2135 { 2136 const char *bufp = (const char *)ptr; 2137 ssize_t bytes_written, bytes_left; 2138 struct rlimit dumpsize; 2139 off_t pos; 2140 2141 bytes_written = 0; 2142 getrlimit(RLIMIT_CORE, &dumpsize); 2143 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2144 if (errno == ESPIPE) { /* not a seekable stream */ 2145 bytes_left = size; 2146 } else { 2147 return pos; 2148 } 2149 } else { 2150 if (dumpsize.rlim_cur <= pos) { 2151 return -1; 2152 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2153 bytes_left = size; 2154 } else { 2155 size_t limit_left=dumpsize.rlim_cur - pos; 2156 bytes_left = limit_left >= size ? size : limit_left ; 2157 } 2158 } 2159 2160 /* 2161 * In normal conditions, single write(2) should do but 2162 * in case of socket etc. this mechanism is more portable. 2163 */ 2164 do { 2165 bytes_written = write(fd, bufp, bytes_left); 2166 if (bytes_written < 0) { 2167 if (errno == EINTR) 2168 continue; 2169 return (-1); 2170 } else if (bytes_written == 0) { /* eof */ 2171 return (-1); 2172 } 2173 bufp += bytes_written; 2174 bytes_left -= bytes_written; 2175 } while (bytes_left > 0); 2176 2177 return (0); 2178 } 2179 2180 static int write_note(struct memelfnote *men, int fd) 2181 { 2182 struct elf_note en; 2183 2184 en.n_namesz = men->namesz; 2185 en.n_type = men->type; 2186 en.n_descsz = men->datasz; 2187 2188 bswap_note(&en); 2189 2190 if (dump_write(fd, &en, sizeof(en)) != 0) 2191 return (-1); 2192 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2193 return (-1); 2194 if (dump_write(fd, men->data, men->datasz) != 0) 2195 return (-1); 2196 2197 return (0); 2198 } 2199 2200 static void fill_thread_info(struct elf_note_info *info, const CPUState *env) 2201 { 2202 TaskState *ts = (TaskState *)env->opaque; 2203 struct elf_thread_status *ets; 2204 2205 ets = qemu_mallocz(sizeof (*ets)); 2206 ets->num_notes = 1; /* only prstatus is dumped */ 2207 fill_prstatus(&ets->prstatus, ts, 0); 2208 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2209 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2210 &ets->prstatus); 2211 2212 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2213 2214 info->notes_size += note_size(&ets->notes[0]); 2215 } 2216 2217 static int fill_note_info(struct elf_note_info *info, 2218 long signr, const CPUState *env) 2219 { 2220 #define NUMNOTES 3 2221 CPUState *cpu = NULL; 2222 TaskState *ts = (TaskState *)env->opaque; 2223 int i; 2224 2225 (void) memset(info, 0, sizeof (*info)); 2226 2227 QTAILQ_INIT(&info->thread_list); 2228 2229 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote)); 2230 if (info->notes == NULL) 2231 return (-ENOMEM); 2232 info->prstatus = qemu_mallocz(sizeof (*info->prstatus)); 2233 if (info->prstatus == NULL) 2234 return (-ENOMEM); 2235 info->psinfo = qemu_mallocz(sizeof (*info->psinfo)); 2236 if (info->prstatus == NULL) 2237 return (-ENOMEM); 2238 2239 /* 2240 * First fill in status (and registers) of current thread 2241 * including process info & aux vector. 2242 */ 2243 fill_prstatus(info->prstatus, ts, signr); 2244 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2245 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2246 sizeof (*info->prstatus), info->prstatus); 2247 fill_psinfo(info->psinfo, ts); 2248 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2249 sizeof (*info->psinfo), info->psinfo); 2250 fill_auxv_note(&info->notes[2], ts); 2251 info->numnote = 3; 2252 2253 info->notes_size = 0; 2254 for (i = 0; i < info->numnote; i++) 2255 info->notes_size += note_size(&info->notes[i]); 2256 2257 /* read and fill status of all threads */ 2258 cpu_list_lock(); 2259 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) { 2260 if (cpu == thread_env) 2261 continue; 2262 fill_thread_info(info, cpu); 2263 } 2264 cpu_list_unlock(); 2265 2266 return (0); 2267 } 2268 2269 static void free_note_info(struct elf_note_info *info) 2270 { 2271 struct elf_thread_status *ets; 2272 2273 while (!QTAILQ_EMPTY(&info->thread_list)) { 2274 ets = QTAILQ_FIRST(&info->thread_list); 2275 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2276 qemu_free(ets); 2277 } 2278 2279 qemu_free(info->prstatus); 2280 qemu_free(info->psinfo); 2281 qemu_free(info->notes); 2282 } 2283 2284 static int write_note_info(struct elf_note_info *info, int fd) 2285 { 2286 struct elf_thread_status *ets; 2287 int i, error = 0; 2288 2289 /* write prstatus, psinfo and auxv for current thread */ 2290 for (i = 0; i < info->numnote; i++) 2291 if ((error = write_note(&info->notes[i], fd)) != 0) 2292 return (error); 2293 2294 /* write prstatus for each thread */ 2295 for (ets = info->thread_list.tqh_first; ets != NULL; 2296 ets = ets->ets_link.tqe_next) { 2297 if ((error = write_note(&ets->notes[0], fd)) != 0) 2298 return (error); 2299 } 2300 2301 return (0); 2302 } 2303 2304 /* 2305 * Write out ELF coredump. 2306 * 2307 * See documentation of ELF object file format in: 2308 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2309 * 2310 * Coredump format in linux is following: 2311 * 2312 * 0 +----------------------+ \ 2313 * | ELF header | ET_CORE | 2314 * +----------------------+ | 2315 * | ELF program headers | |--- headers 2316 * | - NOTE section | | 2317 * | - PT_LOAD sections | | 2318 * +----------------------+ / 2319 * | NOTEs: | 2320 * | - NT_PRSTATUS | 2321 * | - NT_PRSINFO | 2322 * | - NT_AUXV | 2323 * +----------------------+ <-- aligned to target page 2324 * | Process memory dump | 2325 * : : 2326 * . . 2327 * : : 2328 * | | 2329 * +----------------------+ 2330 * 2331 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2332 * NT_PRSINFO -> struct elf_prpsinfo 2333 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2334 * 2335 * Format follows System V format as close as possible. Current 2336 * version limitations are as follows: 2337 * - no floating point registers are dumped 2338 * 2339 * Function returns 0 in case of success, negative errno otherwise. 2340 * 2341 * TODO: make this work also during runtime: it should be 2342 * possible to force coredump from running process and then 2343 * continue processing. For example qemu could set up SIGUSR2 2344 * handler (provided that target process haven't registered 2345 * handler for that) that does the dump when signal is received. 2346 */ 2347 static int elf_core_dump(int signr, const CPUState *env) 2348 { 2349 const TaskState *ts = (const TaskState *)env->opaque; 2350 struct vm_area_struct *vma = NULL; 2351 char corefile[PATH_MAX]; 2352 struct elf_note_info info; 2353 struct elfhdr elf; 2354 struct elf_phdr phdr; 2355 struct rlimit dumpsize; 2356 struct mm_struct *mm = NULL; 2357 off_t offset = 0, data_offset = 0; 2358 int segs = 0; 2359 int fd = -1; 2360 2361 errno = 0; 2362 getrlimit(RLIMIT_CORE, &dumpsize); 2363 if (dumpsize.rlim_cur == 0) 2364 return 0; 2365 2366 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2367 return (-errno); 2368 2369 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2370 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2371 return (-errno); 2372 2373 /* 2374 * Walk through target process memory mappings and 2375 * set up structure containing this information. After 2376 * this point vma_xxx functions can be used. 2377 */ 2378 if ((mm = vma_init()) == NULL) 2379 goto out; 2380 2381 walk_memory_regions(mm, vma_walker); 2382 segs = vma_get_mapping_count(mm); 2383 2384 /* 2385 * Construct valid coredump ELF header. We also 2386 * add one more segment for notes. 2387 */ 2388 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 2389 if (dump_write(fd, &elf, sizeof (elf)) != 0) 2390 goto out; 2391 2392 /* fill in in-memory version of notes */ 2393 if (fill_note_info(&info, signr, env) < 0) 2394 goto out; 2395 2396 offset += sizeof (elf); /* elf header */ 2397 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 2398 2399 /* write out notes program header */ 2400 fill_elf_note_phdr(&phdr, info.notes_size, offset); 2401 2402 offset += info.notes_size; 2403 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 2404 goto out; 2405 2406 /* 2407 * ELF specification wants data to start at page boundary so 2408 * we align it here. 2409 */ 2410 offset = roundup(offset, ELF_EXEC_PAGESIZE); 2411 2412 /* 2413 * Write program headers for memory regions mapped in 2414 * the target process. 2415 */ 2416 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2417 (void) memset(&phdr, 0, sizeof (phdr)); 2418 2419 phdr.p_type = PT_LOAD; 2420 phdr.p_offset = offset; 2421 phdr.p_vaddr = vma->vma_start; 2422 phdr.p_paddr = 0; 2423 phdr.p_filesz = vma_dump_size(vma); 2424 offset += phdr.p_filesz; 2425 phdr.p_memsz = vma->vma_end - vma->vma_start; 2426 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 2427 if (vma->vma_flags & PROT_WRITE) 2428 phdr.p_flags |= PF_W; 2429 if (vma->vma_flags & PROT_EXEC) 2430 phdr.p_flags |= PF_X; 2431 phdr.p_align = ELF_EXEC_PAGESIZE; 2432 2433 dump_write(fd, &phdr, sizeof (phdr)); 2434 } 2435 2436 /* 2437 * Next we write notes just after program headers. No 2438 * alignment needed here. 2439 */ 2440 if (write_note_info(&info, fd) < 0) 2441 goto out; 2442 2443 /* align data to page boundary */ 2444 data_offset = lseek(fd, 0, SEEK_CUR); 2445 data_offset = TARGET_PAGE_ALIGN(data_offset); 2446 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 2447 goto out; 2448 2449 /* 2450 * Finally we can dump process memory into corefile as well. 2451 */ 2452 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 2453 abi_ulong addr; 2454 abi_ulong end; 2455 2456 end = vma->vma_start + vma_dump_size(vma); 2457 2458 for (addr = vma->vma_start; addr < end; 2459 addr += TARGET_PAGE_SIZE) { 2460 char page[TARGET_PAGE_SIZE]; 2461 int error; 2462 2463 /* 2464 * Read in page from target process memory and 2465 * write it to coredump file. 2466 */ 2467 error = copy_from_user(page, addr, sizeof (page)); 2468 if (error != 0) { 2469 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 2470 addr); 2471 errno = -error; 2472 goto out; 2473 } 2474 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 2475 goto out; 2476 } 2477 } 2478 2479 out: 2480 free_note_info(&info); 2481 if (mm != NULL) 2482 vma_delete(mm); 2483 (void) close(fd); 2484 2485 if (errno != 0) 2486 return (-errno); 2487 return (0); 2488 } 2489 #endif /* USE_ELF_CORE_DUMP */ 2490 2491 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 2492 { 2493 init_thread(regs, infop); 2494 } 2495