1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 #define elf_check_arch(x) ( ((x) == ELF_ARCH) ) 149 150 #define ELF_CLASS ELFCLASS64 151 #define ELF_ARCH EM_X86_64 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = env->regs[15]; 173 (*regs)[1] = env->regs[14]; 174 (*regs)[2] = env->regs[13]; 175 (*regs)[3] = env->regs[12]; 176 (*regs)[4] = env->regs[R_EBP]; 177 (*regs)[5] = env->regs[R_EBX]; 178 (*regs)[6] = env->regs[11]; 179 (*regs)[7] = env->regs[10]; 180 (*regs)[8] = env->regs[9]; 181 (*regs)[9] = env->regs[8]; 182 (*regs)[10] = env->regs[R_EAX]; 183 (*regs)[11] = env->regs[R_ECX]; 184 (*regs)[12] = env->regs[R_EDX]; 185 (*regs)[13] = env->regs[R_ESI]; 186 (*regs)[14] = env->regs[R_EDI]; 187 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 188 (*regs)[16] = env->eip; 189 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 190 (*regs)[18] = env->eflags; 191 (*regs)[19] = env->regs[R_ESP]; 192 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 193 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 195 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 196 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 197 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 198 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 199 } 200 201 #else 202 203 #define ELF_START_MMAP 0x80000000 204 205 /* 206 * This is used to ensure we don't load something for the wrong architecture. 207 */ 208 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 209 210 /* 211 * These are used to set parameters in the core dumps. 212 */ 213 #define ELF_CLASS ELFCLASS32 214 #define ELF_ARCH EM_386 215 216 static inline void init_thread(struct target_pt_regs *regs, 217 struct image_info *infop) 218 { 219 regs->esp = infop->start_stack; 220 regs->eip = infop->entry; 221 222 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 223 starts %edx contains a pointer to a function which might be 224 registered using `atexit'. This provides a mean for the 225 dynamic linker to call DT_FINI functions for shared libraries 226 that have been loaded before the code runs. 227 228 A value of 0 tells we have no such handler. */ 229 regs->edx = 0; 230 } 231 232 #define ELF_NREG 17 233 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 234 235 /* 236 * Note that ELF_NREG should be 19 as there should be place for 237 * TRAPNO and ERR "registers" as well but linux doesn't dump 238 * those. 239 * 240 * See linux kernel: arch/x86/include/asm/elf.h 241 */ 242 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 243 { 244 (*regs)[0] = env->regs[R_EBX]; 245 (*regs)[1] = env->regs[R_ECX]; 246 (*regs)[2] = env->regs[R_EDX]; 247 (*regs)[3] = env->regs[R_ESI]; 248 (*regs)[4] = env->regs[R_EDI]; 249 (*regs)[5] = env->regs[R_EBP]; 250 (*regs)[6] = env->regs[R_EAX]; 251 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 252 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 253 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 254 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 255 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 256 (*regs)[12] = env->eip; 257 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 258 (*regs)[14] = env->eflags; 259 (*regs)[15] = env->regs[R_ESP]; 260 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 261 } 262 #endif 263 264 #define USE_ELF_CORE_DUMP 265 #define ELF_EXEC_PAGESIZE 4096 266 267 #endif 268 269 #ifdef TARGET_ARM 270 271 #ifndef TARGET_AARCH64 272 /* 32 bit ARM definitions */ 273 274 #define ELF_START_MMAP 0x80000000 275 276 #define elf_check_arch(x) ((x) == ELF_MACHINE) 277 278 #define ELF_ARCH ELF_MACHINE 279 #define ELF_CLASS ELFCLASS32 280 281 static inline void init_thread(struct target_pt_regs *regs, 282 struct image_info *infop) 283 { 284 abi_long stack = infop->start_stack; 285 memset(regs, 0, sizeof(*regs)); 286 287 regs->ARM_cpsr = 0x10; 288 if (infop->entry & 1) 289 regs->ARM_cpsr |= CPSR_T; 290 regs->ARM_pc = infop->entry & 0xfffffffe; 291 regs->ARM_sp = infop->start_stack; 292 /* FIXME - what to for failure of get_user()? */ 293 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 294 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 295 /* XXX: it seems that r0 is zeroed after ! */ 296 regs->ARM_r0 = 0; 297 /* For uClinux PIC binaries. */ 298 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 299 regs->ARM_r10 = infop->start_data; 300 } 301 302 #define ELF_NREG 18 303 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 304 305 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 306 { 307 (*regs)[0] = tswapreg(env->regs[0]); 308 (*regs)[1] = tswapreg(env->regs[1]); 309 (*regs)[2] = tswapreg(env->regs[2]); 310 (*regs)[3] = tswapreg(env->regs[3]); 311 (*regs)[4] = tswapreg(env->regs[4]); 312 (*regs)[5] = tswapreg(env->regs[5]); 313 (*regs)[6] = tswapreg(env->regs[6]); 314 (*regs)[7] = tswapreg(env->regs[7]); 315 (*regs)[8] = tswapreg(env->regs[8]); 316 (*regs)[9] = tswapreg(env->regs[9]); 317 (*regs)[10] = tswapreg(env->regs[10]); 318 (*regs)[11] = tswapreg(env->regs[11]); 319 (*regs)[12] = tswapreg(env->regs[12]); 320 (*regs)[13] = tswapreg(env->regs[13]); 321 (*regs)[14] = tswapreg(env->regs[14]); 322 (*regs)[15] = tswapreg(env->regs[15]); 323 324 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 325 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 326 } 327 328 #define USE_ELF_CORE_DUMP 329 #define ELF_EXEC_PAGESIZE 4096 330 331 enum 332 { 333 ARM_HWCAP_ARM_SWP = 1 << 0, 334 ARM_HWCAP_ARM_HALF = 1 << 1, 335 ARM_HWCAP_ARM_THUMB = 1 << 2, 336 ARM_HWCAP_ARM_26BIT = 1 << 3, 337 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 338 ARM_HWCAP_ARM_FPA = 1 << 5, 339 ARM_HWCAP_ARM_VFP = 1 << 6, 340 ARM_HWCAP_ARM_EDSP = 1 << 7, 341 ARM_HWCAP_ARM_JAVA = 1 << 8, 342 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 343 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 344 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 345 ARM_HWCAP_ARM_NEON = 1 << 12, 346 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 347 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 348 ARM_HWCAP_ARM_TLS = 1 << 15, 349 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 350 ARM_HWCAP_ARM_IDIVA = 1 << 17, 351 ARM_HWCAP_ARM_IDIVT = 1 << 18, 352 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 353 ARM_HWCAP_ARM_LPAE = 1 << 20, 354 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 355 }; 356 357 enum { 358 ARM_HWCAP2_ARM_AES = 1 << 0, 359 ARM_HWCAP2_ARM_PMULL = 1 << 1, 360 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 361 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 362 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 363 }; 364 365 /* The commpage only exists for 32 bit kernels */ 366 367 #define TARGET_HAS_VALIDATE_GUEST_SPACE 368 /* Return 1 if the proposed guest space is suitable for the guest. 369 * Return 0 if the proposed guest space isn't suitable, but another 370 * address space should be tried. 371 * Return -1 if there is no way the proposed guest space can be 372 * valid regardless of the base. 373 * The guest code may leave a page mapped and populate it if the 374 * address is suitable. 375 */ 376 static int validate_guest_space(unsigned long guest_base, 377 unsigned long guest_size) 378 { 379 unsigned long real_start, test_page_addr; 380 381 /* We need to check that we can force a fault on access to the 382 * commpage at 0xffff0fxx 383 */ 384 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 385 386 /* If the commpage lies within the already allocated guest space, 387 * then there is no way we can allocate it. 388 */ 389 if (test_page_addr >= guest_base 390 && test_page_addr <= (guest_base + guest_size)) { 391 return -1; 392 } 393 394 /* Note it needs to be writeable to let us initialise it */ 395 real_start = (unsigned long) 396 mmap((void *)test_page_addr, qemu_host_page_size, 397 PROT_READ | PROT_WRITE, 398 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 399 400 /* If we can't map it then try another address */ 401 if (real_start == -1ul) { 402 return 0; 403 } 404 405 if (real_start != test_page_addr) { 406 /* OS didn't put the page where we asked - unmap and reject */ 407 munmap((void *)real_start, qemu_host_page_size); 408 return 0; 409 } 410 411 /* Leave the page mapped 412 * Populate it (mmap should have left it all 0'd) 413 */ 414 415 /* Kernel helper versions */ 416 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 417 418 /* Now it's populated make it RO */ 419 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 420 perror("Protecting guest commpage"); 421 exit(-1); 422 } 423 424 return 1; /* All good */ 425 } 426 427 #define ELF_HWCAP get_elf_hwcap() 428 #define ELF_HWCAP2 get_elf_hwcap2() 429 430 static uint32_t get_elf_hwcap(void) 431 { 432 ARMCPU *cpu = ARM_CPU(thread_cpu); 433 uint32_t hwcaps = 0; 434 435 hwcaps |= ARM_HWCAP_ARM_SWP; 436 hwcaps |= ARM_HWCAP_ARM_HALF; 437 hwcaps |= ARM_HWCAP_ARM_THUMB; 438 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 439 440 /* probe for the extra features */ 441 #define GET_FEATURE(feat, hwcap) \ 442 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 445 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 446 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 447 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 448 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 450 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 451 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 452 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 453 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 454 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 455 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 456 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 457 * to our VFP_FP16 feature bit. 458 */ 459 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 460 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 461 462 return hwcaps; 463 } 464 465 static uint32_t get_elf_hwcap2(void) 466 { 467 ARMCPU *cpu = ARM_CPU(thread_cpu); 468 uint32_t hwcaps = 0; 469 470 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 471 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 472 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 473 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 474 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 475 return hwcaps; 476 } 477 478 #undef GET_FEATURE 479 480 #else 481 /* 64 bit ARM definitions */ 482 #define ELF_START_MMAP 0x80000000 483 484 #define elf_check_arch(x) ((x) == ELF_MACHINE) 485 486 #define ELF_ARCH ELF_MACHINE 487 #define ELF_CLASS ELFCLASS64 488 #define ELF_PLATFORM "aarch64" 489 490 static inline void init_thread(struct target_pt_regs *regs, 491 struct image_info *infop) 492 { 493 abi_long stack = infop->start_stack; 494 memset(regs, 0, sizeof(*regs)); 495 496 regs->pc = infop->entry & ~0x3ULL; 497 regs->sp = stack; 498 } 499 500 #define ELF_NREG 34 501 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 502 503 static void elf_core_copy_regs(target_elf_gregset_t *regs, 504 const CPUARMState *env) 505 { 506 int i; 507 508 for (i = 0; i < 32; i++) { 509 (*regs)[i] = tswapreg(env->xregs[i]); 510 } 511 (*regs)[32] = tswapreg(env->pc); 512 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 513 } 514 515 #define USE_ELF_CORE_DUMP 516 #define ELF_EXEC_PAGESIZE 4096 517 518 enum { 519 ARM_HWCAP_A64_FP = 1 << 0, 520 ARM_HWCAP_A64_ASIMD = 1 << 1, 521 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 522 ARM_HWCAP_A64_AES = 1 << 3, 523 ARM_HWCAP_A64_PMULL = 1 << 4, 524 ARM_HWCAP_A64_SHA1 = 1 << 5, 525 ARM_HWCAP_A64_SHA2 = 1 << 6, 526 ARM_HWCAP_A64_CRC32 = 1 << 7, 527 }; 528 529 #define ELF_HWCAP get_elf_hwcap() 530 531 static uint32_t get_elf_hwcap(void) 532 { 533 ARMCPU *cpu = ARM_CPU(thread_cpu); 534 uint32_t hwcaps = 0; 535 536 hwcaps |= ARM_HWCAP_A64_FP; 537 hwcaps |= ARM_HWCAP_A64_ASIMD; 538 539 /* probe for the extra features */ 540 #define GET_FEATURE(feat, hwcap) \ 541 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 542 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 543 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 544 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 545 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 546 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 547 #undef GET_FEATURE 548 549 return hwcaps; 550 } 551 552 #endif /* not TARGET_AARCH64 */ 553 #endif /* TARGET_ARM */ 554 555 #ifdef TARGET_UNICORE32 556 557 #define ELF_START_MMAP 0x80000000 558 559 #define elf_check_arch(x) ((x) == EM_UNICORE32) 560 561 #define ELF_CLASS ELFCLASS32 562 #define ELF_DATA ELFDATA2LSB 563 #define ELF_ARCH EM_UNICORE32 564 565 static inline void init_thread(struct target_pt_regs *regs, 566 struct image_info *infop) 567 { 568 abi_long stack = infop->start_stack; 569 memset(regs, 0, sizeof(*regs)); 570 regs->UC32_REG_asr = 0x10; 571 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 572 regs->UC32_REG_sp = infop->start_stack; 573 /* FIXME - what to for failure of get_user()? */ 574 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 575 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 576 /* XXX: it seems that r0 is zeroed after ! */ 577 regs->UC32_REG_00 = 0; 578 } 579 580 #define ELF_NREG 34 581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 582 583 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 584 { 585 (*regs)[0] = env->regs[0]; 586 (*regs)[1] = env->regs[1]; 587 (*regs)[2] = env->regs[2]; 588 (*regs)[3] = env->regs[3]; 589 (*regs)[4] = env->regs[4]; 590 (*regs)[5] = env->regs[5]; 591 (*regs)[6] = env->regs[6]; 592 (*regs)[7] = env->regs[7]; 593 (*regs)[8] = env->regs[8]; 594 (*regs)[9] = env->regs[9]; 595 (*regs)[10] = env->regs[10]; 596 (*regs)[11] = env->regs[11]; 597 (*regs)[12] = env->regs[12]; 598 (*regs)[13] = env->regs[13]; 599 (*regs)[14] = env->regs[14]; 600 (*regs)[15] = env->regs[15]; 601 (*regs)[16] = env->regs[16]; 602 (*regs)[17] = env->regs[17]; 603 (*regs)[18] = env->regs[18]; 604 (*regs)[19] = env->regs[19]; 605 (*regs)[20] = env->regs[20]; 606 (*regs)[21] = env->regs[21]; 607 (*regs)[22] = env->regs[22]; 608 (*regs)[23] = env->regs[23]; 609 (*regs)[24] = env->regs[24]; 610 (*regs)[25] = env->regs[25]; 611 (*regs)[26] = env->regs[26]; 612 (*regs)[27] = env->regs[27]; 613 (*regs)[28] = env->regs[28]; 614 (*regs)[29] = env->regs[29]; 615 (*regs)[30] = env->regs[30]; 616 (*regs)[31] = env->regs[31]; 617 618 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 619 (*regs)[33] = env->regs[0]; /* XXX */ 620 } 621 622 #define USE_ELF_CORE_DUMP 623 #define ELF_EXEC_PAGESIZE 4096 624 625 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 626 627 #endif 628 629 #ifdef TARGET_SPARC 630 #ifdef TARGET_SPARC64 631 632 #define ELF_START_MMAP 0x80000000 633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 634 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 635 #ifndef TARGET_ABI32 636 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 637 #else 638 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 639 #endif 640 641 #define ELF_CLASS ELFCLASS64 642 #define ELF_ARCH EM_SPARCV9 643 644 #define STACK_BIAS 2047 645 646 static inline void init_thread(struct target_pt_regs *regs, 647 struct image_info *infop) 648 { 649 #ifndef TARGET_ABI32 650 regs->tstate = 0; 651 #endif 652 regs->pc = infop->entry; 653 regs->npc = regs->pc + 4; 654 regs->y = 0; 655 #ifdef TARGET_ABI32 656 regs->u_regs[14] = infop->start_stack - 16 * 4; 657 #else 658 if (personality(infop->personality) == PER_LINUX32) 659 regs->u_regs[14] = infop->start_stack - 16 * 4; 660 else 661 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 662 #endif 663 } 664 665 #else 666 #define ELF_START_MMAP 0x80000000 667 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 668 | HWCAP_SPARC_MULDIV) 669 #define elf_check_arch(x) ( (x) == EM_SPARC ) 670 671 #define ELF_CLASS ELFCLASS32 672 #define ELF_ARCH EM_SPARC 673 674 static inline void init_thread(struct target_pt_regs *regs, 675 struct image_info *infop) 676 { 677 regs->psr = 0; 678 regs->pc = infop->entry; 679 regs->npc = regs->pc + 4; 680 regs->y = 0; 681 regs->u_regs[14] = infop->start_stack - 16 * 4; 682 } 683 684 #endif 685 #endif 686 687 #ifdef TARGET_PPC 688 689 #define ELF_START_MMAP 0x80000000 690 691 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 692 693 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 694 695 #define ELF_CLASS ELFCLASS64 696 697 #else 698 699 #define elf_check_arch(x) ( (x) == EM_PPC ) 700 701 #define ELF_CLASS ELFCLASS32 702 703 #endif 704 705 #define ELF_ARCH EM_PPC 706 707 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 708 See arch/powerpc/include/asm/cputable.h. */ 709 enum { 710 QEMU_PPC_FEATURE_32 = 0x80000000, 711 QEMU_PPC_FEATURE_64 = 0x40000000, 712 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 713 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 714 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 715 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 716 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 717 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 718 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 719 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 720 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 721 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 722 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 723 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 724 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 725 QEMU_PPC_FEATURE_CELL = 0x00010000, 726 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 727 QEMU_PPC_FEATURE_SMT = 0x00004000, 728 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 729 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 730 QEMU_PPC_FEATURE_PA6T = 0x00000800, 731 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 732 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 733 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 734 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 735 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 736 737 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 738 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 739 740 /* Feature definitions in AT_HWCAP2. */ 741 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 742 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 743 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 744 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 745 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 746 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 747 }; 748 749 #define ELF_HWCAP get_elf_hwcap() 750 751 static uint32_t get_elf_hwcap(void) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 754 uint32_t features = 0; 755 756 /* We don't have to be terribly complete here; the high points are 757 Altivec/FP/SPE support. Anything else is just a bonus. */ 758 #define GET_FEATURE(flag, feature) \ 759 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 760 #define GET_FEATURE2(flag, feature) \ 761 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 762 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 763 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 764 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 765 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 766 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 767 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 768 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 769 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 770 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 771 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 772 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 773 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 774 QEMU_PPC_FEATURE_ARCH_2_06); 775 #undef GET_FEATURE 776 #undef GET_FEATURE2 777 778 return features; 779 } 780 781 #define ELF_HWCAP2 get_elf_hwcap2() 782 783 static uint32_t get_elf_hwcap2(void) 784 { 785 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 786 uint32_t features = 0; 787 788 #define GET_FEATURE(flag, feature) \ 789 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 790 #define GET_FEATURE2(flag, feature) \ 791 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 792 793 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 794 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 795 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 796 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 797 798 #undef GET_FEATURE 799 #undef GET_FEATURE2 800 801 return features; 802 } 803 804 /* 805 * The requirements here are: 806 * - keep the final alignment of sp (sp & 0xf) 807 * - make sure the 32-bit value at the first 16 byte aligned position of 808 * AUXV is greater than 16 for glibc compatibility. 809 * AT_IGNOREPPC is used for that. 810 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 811 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 812 */ 813 #define DLINFO_ARCH_ITEMS 5 814 #define ARCH_DLINFO \ 815 do { \ 816 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 817 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 818 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 819 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 820 /* \ 821 * Now handle glibc compatibility. \ 822 */ \ 823 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 824 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 825 } while (0) 826 827 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 828 { 829 _regs->gpr[1] = infop->start_stack; 830 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 831 if (get_ppc64_abi(infop) < 2) { 832 uint64_t val; 833 get_user_u64(val, infop->entry + 8); 834 _regs->gpr[2] = val + infop->load_bias; 835 get_user_u64(val, infop->entry); 836 infop->entry = val + infop->load_bias; 837 } else { 838 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 839 } 840 #endif 841 _regs->nip = infop->entry; 842 } 843 844 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 845 #define ELF_NREG 48 846 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 847 848 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 849 { 850 int i; 851 target_ulong ccr = 0; 852 853 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 854 (*regs)[i] = tswapreg(env->gpr[i]); 855 } 856 857 (*regs)[32] = tswapreg(env->nip); 858 (*regs)[33] = tswapreg(env->msr); 859 (*regs)[35] = tswapreg(env->ctr); 860 (*regs)[36] = tswapreg(env->lr); 861 (*regs)[37] = tswapreg(env->xer); 862 863 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 864 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 865 } 866 (*regs)[38] = tswapreg(ccr); 867 } 868 869 #define USE_ELF_CORE_DUMP 870 #define ELF_EXEC_PAGESIZE 4096 871 872 #endif 873 874 #ifdef TARGET_MIPS 875 876 #define ELF_START_MMAP 0x80000000 877 878 #define elf_check_arch(x) ( (x) == EM_MIPS ) 879 880 #ifdef TARGET_MIPS64 881 #define ELF_CLASS ELFCLASS64 882 #else 883 #define ELF_CLASS ELFCLASS32 884 #endif 885 #define ELF_ARCH EM_MIPS 886 887 static inline void init_thread(struct target_pt_regs *regs, 888 struct image_info *infop) 889 { 890 regs->cp0_status = 2 << CP0St_KSU; 891 regs->cp0_epc = infop->entry; 892 regs->regs[29] = infop->start_stack; 893 } 894 895 /* See linux kernel: arch/mips/include/asm/elf.h. */ 896 #define ELF_NREG 45 897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 898 899 /* See linux kernel: arch/mips/include/asm/reg.h. */ 900 enum { 901 #ifdef TARGET_MIPS64 902 TARGET_EF_R0 = 0, 903 #else 904 TARGET_EF_R0 = 6, 905 #endif 906 TARGET_EF_R26 = TARGET_EF_R0 + 26, 907 TARGET_EF_R27 = TARGET_EF_R0 + 27, 908 TARGET_EF_LO = TARGET_EF_R0 + 32, 909 TARGET_EF_HI = TARGET_EF_R0 + 33, 910 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 911 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 912 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 913 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 914 }; 915 916 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 917 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 918 { 919 int i; 920 921 for (i = 0; i < TARGET_EF_R0; i++) { 922 (*regs)[i] = 0; 923 } 924 (*regs)[TARGET_EF_R0] = 0; 925 926 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 927 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 928 } 929 930 (*regs)[TARGET_EF_R26] = 0; 931 (*regs)[TARGET_EF_R27] = 0; 932 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 933 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 934 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 935 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 936 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 937 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 938 } 939 940 #define USE_ELF_CORE_DUMP 941 #define ELF_EXEC_PAGESIZE 4096 942 943 #endif /* TARGET_MIPS */ 944 945 #ifdef TARGET_MICROBLAZE 946 947 #define ELF_START_MMAP 0x80000000 948 949 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 950 951 #define ELF_CLASS ELFCLASS32 952 #define ELF_ARCH EM_MICROBLAZE 953 954 static inline void init_thread(struct target_pt_regs *regs, 955 struct image_info *infop) 956 { 957 regs->pc = infop->entry; 958 regs->r1 = infop->start_stack; 959 960 } 961 962 #define ELF_EXEC_PAGESIZE 4096 963 964 #define USE_ELF_CORE_DUMP 965 #define ELF_NREG 38 966 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 967 968 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 969 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 970 { 971 int i, pos = 0; 972 973 for (i = 0; i < 32; i++) { 974 (*regs)[pos++] = tswapreg(env->regs[i]); 975 } 976 977 for (i = 0; i < 6; i++) { 978 (*regs)[pos++] = tswapreg(env->sregs[i]); 979 } 980 } 981 982 #endif /* TARGET_MICROBLAZE */ 983 984 #ifdef TARGET_OPENRISC 985 986 #define ELF_START_MMAP 0x08000000 987 988 #define elf_check_arch(x) ((x) == EM_OPENRISC) 989 990 #define ELF_ARCH EM_OPENRISC 991 #define ELF_CLASS ELFCLASS32 992 #define ELF_DATA ELFDATA2MSB 993 994 static inline void init_thread(struct target_pt_regs *regs, 995 struct image_info *infop) 996 { 997 regs->pc = infop->entry; 998 regs->gpr[1] = infop->start_stack; 999 } 1000 1001 #define USE_ELF_CORE_DUMP 1002 #define ELF_EXEC_PAGESIZE 8192 1003 1004 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1005 #define ELF_NREG 34 /* gprs and pc, sr */ 1006 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1007 1008 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1009 const CPUOpenRISCState *env) 1010 { 1011 int i; 1012 1013 for (i = 0; i < 32; i++) { 1014 (*regs)[i] = tswapreg(env->gpr[i]); 1015 } 1016 1017 (*regs)[32] = tswapreg(env->pc); 1018 (*regs)[33] = tswapreg(env->sr); 1019 } 1020 #define ELF_HWCAP 0 1021 #define ELF_PLATFORM NULL 1022 1023 #endif /* TARGET_OPENRISC */ 1024 1025 #ifdef TARGET_SH4 1026 1027 #define ELF_START_MMAP 0x80000000 1028 1029 #define elf_check_arch(x) ( (x) == EM_SH ) 1030 1031 #define ELF_CLASS ELFCLASS32 1032 #define ELF_ARCH EM_SH 1033 1034 static inline void init_thread(struct target_pt_regs *regs, 1035 struct image_info *infop) 1036 { 1037 /* Check other registers XXXXX */ 1038 regs->pc = infop->entry; 1039 regs->regs[15] = infop->start_stack; 1040 } 1041 1042 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1043 #define ELF_NREG 23 1044 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1045 1046 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1047 enum { 1048 TARGET_REG_PC = 16, 1049 TARGET_REG_PR = 17, 1050 TARGET_REG_SR = 18, 1051 TARGET_REG_GBR = 19, 1052 TARGET_REG_MACH = 20, 1053 TARGET_REG_MACL = 21, 1054 TARGET_REG_SYSCALL = 22 1055 }; 1056 1057 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1058 const CPUSH4State *env) 1059 { 1060 int i; 1061 1062 for (i = 0; i < 16; i++) { 1063 (*regs[i]) = tswapreg(env->gregs[i]); 1064 } 1065 1066 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1067 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1068 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1069 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1070 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1071 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1072 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1073 } 1074 1075 #define USE_ELF_CORE_DUMP 1076 #define ELF_EXEC_PAGESIZE 4096 1077 1078 enum { 1079 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1080 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1081 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1082 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1083 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1084 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1085 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1086 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1087 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1088 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1089 }; 1090 1091 #define ELF_HWCAP get_elf_hwcap() 1092 1093 static uint32_t get_elf_hwcap(void) 1094 { 1095 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1096 uint32_t hwcap = 0; 1097 1098 hwcap |= SH_CPU_HAS_FPU; 1099 1100 if (cpu->env.features & SH_FEATURE_SH4A) { 1101 hwcap |= SH_CPU_HAS_LLSC; 1102 } 1103 1104 return hwcap; 1105 } 1106 1107 #endif 1108 1109 #ifdef TARGET_CRIS 1110 1111 #define ELF_START_MMAP 0x80000000 1112 1113 #define elf_check_arch(x) ( (x) == EM_CRIS ) 1114 1115 #define ELF_CLASS ELFCLASS32 1116 #define ELF_ARCH EM_CRIS 1117 1118 static inline void init_thread(struct target_pt_regs *regs, 1119 struct image_info *infop) 1120 { 1121 regs->erp = infop->entry; 1122 } 1123 1124 #define ELF_EXEC_PAGESIZE 8192 1125 1126 #endif 1127 1128 #ifdef TARGET_M68K 1129 1130 #define ELF_START_MMAP 0x80000000 1131 1132 #define elf_check_arch(x) ( (x) == EM_68K ) 1133 1134 #define ELF_CLASS ELFCLASS32 1135 #define ELF_ARCH EM_68K 1136 1137 /* ??? Does this need to do anything? 1138 #define ELF_PLAT_INIT(_r) */ 1139 1140 static inline void init_thread(struct target_pt_regs *regs, 1141 struct image_info *infop) 1142 { 1143 regs->usp = infop->start_stack; 1144 regs->sr = 0; 1145 regs->pc = infop->entry; 1146 } 1147 1148 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1149 #define ELF_NREG 20 1150 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1151 1152 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1153 { 1154 (*regs)[0] = tswapreg(env->dregs[1]); 1155 (*regs)[1] = tswapreg(env->dregs[2]); 1156 (*regs)[2] = tswapreg(env->dregs[3]); 1157 (*regs)[3] = tswapreg(env->dregs[4]); 1158 (*regs)[4] = tswapreg(env->dregs[5]); 1159 (*regs)[5] = tswapreg(env->dregs[6]); 1160 (*regs)[6] = tswapreg(env->dregs[7]); 1161 (*regs)[7] = tswapreg(env->aregs[0]); 1162 (*regs)[8] = tswapreg(env->aregs[1]); 1163 (*regs)[9] = tswapreg(env->aregs[2]); 1164 (*regs)[10] = tswapreg(env->aregs[3]); 1165 (*regs)[11] = tswapreg(env->aregs[4]); 1166 (*regs)[12] = tswapreg(env->aregs[5]); 1167 (*regs)[13] = tswapreg(env->aregs[6]); 1168 (*regs)[14] = tswapreg(env->dregs[0]); 1169 (*regs)[15] = tswapreg(env->aregs[7]); 1170 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1171 (*regs)[17] = tswapreg(env->sr); 1172 (*regs)[18] = tswapreg(env->pc); 1173 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1174 } 1175 1176 #define USE_ELF_CORE_DUMP 1177 #define ELF_EXEC_PAGESIZE 8192 1178 1179 #endif 1180 1181 #ifdef TARGET_ALPHA 1182 1183 #define ELF_START_MMAP (0x30000000000ULL) 1184 1185 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1186 1187 #define ELF_CLASS ELFCLASS64 1188 #define ELF_ARCH EM_ALPHA 1189 1190 static inline void init_thread(struct target_pt_regs *regs, 1191 struct image_info *infop) 1192 { 1193 regs->pc = infop->entry; 1194 regs->ps = 8; 1195 regs->usp = infop->start_stack; 1196 } 1197 1198 #define ELF_EXEC_PAGESIZE 8192 1199 1200 #endif /* TARGET_ALPHA */ 1201 1202 #ifdef TARGET_S390X 1203 1204 #define ELF_START_MMAP (0x20000000000ULL) 1205 1206 #define elf_check_arch(x) ( (x) == ELF_ARCH ) 1207 1208 #define ELF_CLASS ELFCLASS64 1209 #define ELF_DATA ELFDATA2MSB 1210 #define ELF_ARCH EM_S390 1211 1212 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1213 { 1214 regs->psw.addr = infop->entry; 1215 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1216 regs->gprs[15] = infop->start_stack; 1217 } 1218 1219 #endif /* TARGET_S390X */ 1220 1221 #ifndef ELF_PLATFORM 1222 #define ELF_PLATFORM (NULL) 1223 #endif 1224 1225 #ifndef ELF_HWCAP 1226 #define ELF_HWCAP 0 1227 #endif 1228 1229 #ifdef TARGET_ABI32 1230 #undef ELF_CLASS 1231 #define ELF_CLASS ELFCLASS32 1232 #undef bswaptls 1233 #define bswaptls(ptr) bswap32s(ptr) 1234 #endif 1235 1236 #include "elf.h" 1237 1238 struct exec 1239 { 1240 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1241 unsigned int a_text; /* length of text, in bytes */ 1242 unsigned int a_data; /* length of data, in bytes */ 1243 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1244 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1245 unsigned int a_entry; /* start address */ 1246 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1247 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1248 }; 1249 1250 1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1252 #define OMAGIC 0407 1253 #define NMAGIC 0410 1254 #define ZMAGIC 0413 1255 #define QMAGIC 0314 1256 1257 /* Necessary parameters */ 1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1260 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1261 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1262 1263 #define DLINFO_ITEMS 14 1264 1265 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1266 { 1267 memcpy(to, from, n); 1268 } 1269 1270 #ifdef BSWAP_NEEDED 1271 static void bswap_ehdr(struct elfhdr *ehdr) 1272 { 1273 bswap16s(&ehdr->e_type); /* Object file type */ 1274 bswap16s(&ehdr->e_machine); /* Architecture */ 1275 bswap32s(&ehdr->e_version); /* Object file version */ 1276 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1277 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1278 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1279 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1280 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1281 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1282 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1283 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1284 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1285 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1286 } 1287 1288 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1289 { 1290 int i; 1291 for (i = 0; i < phnum; ++i, ++phdr) { 1292 bswap32s(&phdr->p_type); /* Segment type */ 1293 bswap32s(&phdr->p_flags); /* Segment flags */ 1294 bswaptls(&phdr->p_offset); /* Segment file offset */ 1295 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1296 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1297 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1298 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1299 bswaptls(&phdr->p_align); /* Segment alignment */ 1300 } 1301 } 1302 1303 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1304 { 1305 int i; 1306 for (i = 0; i < shnum; ++i, ++shdr) { 1307 bswap32s(&shdr->sh_name); 1308 bswap32s(&shdr->sh_type); 1309 bswaptls(&shdr->sh_flags); 1310 bswaptls(&shdr->sh_addr); 1311 bswaptls(&shdr->sh_offset); 1312 bswaptls(&shdr->sh_size); 1313 bswap32s(&shdr->sh_link); 1314 bswap32s(&shdr->sh_info); 1315 bswaptls(&shdr->sh_addralign); 1316 bswaptls(&shdr->sh_entsize); 1317 } 1318 } 1319 1320 static void bswap_sym(struct elf_sym *sym) 1321 { 1322 bswap32s(&sym->st_name); 1323 bswaptls(&sym->st_value); 1324 bswaptls(&sym->st_size); 1325 bswap16s(&sym->st_shndx); 1326 } 1327 #else 1328 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1329 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1330 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1331 static inline void bswap_sym(struct elf_sym *sym) { } 1332 #endif 1333 1334 #ifdef USE_ELF_CORE_DUMP 1335 static int elf_core_dump(int, const CPUArchState *); 1336 #endif /* USE_ELF_CORE_DUMP */ 1337 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1338 1339 /* Verify the portions of EHDR within E_IDENT for the target. 1340 This can be performed before bswapping the entire header. */ 1341 static bool elf_check_ident(struct elfhdr *ehdr) 1342 { 1343 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1344 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1345 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1346 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1347 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1348 && ehdr->e_ident[EI_DATA] == ELF_DATA 1349 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1350 } 1351 1352 /* Verify the portions of EHDR outside of E_IDENT for the target. 1353 This has to wait until after bswapping the header. */ 1354 static bool elf_check_ehdr(struct elfhdr *ehdr) 1355 { 1356 return (elf_check_arch(ehdr->e_machine) 1357 && ehdr->e_ehsize == sizeof(struct elfhdr) 1358 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1359 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1360 } 1361 1362 /* 1363 * 'copy_elf_strings()' copies argument/envelope strings from user 1364 * memory to free pages in kernel mem. These are in a format ready 1365 * to be put directly into the top of new user memory. 1366 * 1367 */ 1368 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page, 1369 abi_ulong p) 1370 { 1371 char *tmp, *tmp1, *pag = NULL; 1372 int len, offset = 0; 1373 1374 if (!p) { 1375 return 0; /* bullet-proofing */ 1376 } 1377 while (argc-- > 0) { 1378 tmp = argv[argc]; 1379 if (!tmp) { 1380 fprintf(stderr, "VFS: argc is wrong"); 1381 exit(-1); 1382 } 1383 tmp1 = tmp; 1384 while (*tmp++); 1385 len = tmp - tmp1; 1386 if (p < len) { /* this shouldn't happen - 128kB */ 1387 return 0; 1388 } 1389 while (len) { 1390 --p; --tmp; --len; 1391 if (--offset < 0) { 1392 offset = p % TARGET_PAGE_SIZE; 1393 pag = (char *)page[p/TARGET_PAGE_SIZE]; 1394 if (!pag) { 1395 pag = g_try_malloc0(TARGET_PAGE_SIZE); 1396 page[p/TARGET_PAGE_SIZE] = pag; 1397 if (!pag) 1398 return 0; 1399 } 1400 } 1401 if (len == 0 || offset == 0) { 1402 *(pag + offset) = *tmp; 1403 } 1404 else { 1405 int bytes_to_copy = (len > offset) ? offset : len; 1406 tmp -= bytes_to_copy; 1407 p -= bytes_to_copy; 1408 offset -= bytes_to_copy; 1409 len -= bytes_to_copy; 1410 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1); 1411 } 1412 } 1413 } 1414 return p; 1415 } 1416 1417 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm, 1418 struct image_info *info) 1419 { 1420 abi_ulong stack_base, size, error, guard; 1421 int i; 1422 1423 /* Create enough stack to hold everything. If we don't use 1424 it for args, we'll use it for something else. */ 1425 size = guest_stack_size; 1426 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) { 1427 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1428 } 1429 guard = TARGET_PAGE_SIZE; 1430 if (guard < qemu_real_host_page_size) { 1431 guard = qemu_real_host_page_size; 1432 } 1433 1434 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1435 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1436 if (error == -1) { 1437 perror("mmap stack"); 1438 exit(-1); 1439 } 1440 1441 /* We reserve one extra page at the top of the stack as guard. */ 1442 target_mprotect(error, guard, PROT_NONE); 1443 1444 info->stack_limit = error + guard; 1445 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE; 1446 p += stack_base; 1447 1448 for (i = 0 ; i < MAX_ARG_PAGES ; i++) { 1449 if (bprm->page[i]) { 1450 info->rss++; 1451 /* FIXME - check return value of memcpy_to_target() for failure */ 1452 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE); 1453 g_free(bprm->page[i]); 1454 } 1455 stack_base += TARGET_PAGE_SIZE; 1456 } 1457 return p; 1458 } 1459 1460 /* Map and zero the bss. We need to explicitly zero any fractional pages 1461 after the data section (i.e. bss). */ 1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1463 { 1464 uintptr_t host_start, host_map_start, host_end; 1465 1466 last_bss = TARGET_PAGE_ALIGN(last_bss); 1467 1468 /* ??? There is confusion between qemu_real_host_page_size and 1469 qemu_host_page_size here and elsewhere in target_mmap, which 1470 may lead to the end of the data section mapping from the file 1471 not being mapped. At least there was an explicit test and 1472 comment for that here, suggesting that "the file size must 1473 be known". The comment probably pre-dates the introduction 1474 of the fstat system call in target_mmap which does in fact 1475 find out the size. What isn't clear is if the workaround 1476 here is still actually needed. For now, continue with it, 1477 but merge it with the "normal" mmap that would allocate the bss. */ 1478 1479 host_start = (uintptr_t) g2h(elf_bss); 1480 host_end = (uintptr_t) g2h(last_bss); 1481 host_map_start = (host_start + qemu_real_host_page_size - 1); 1482 host_map_start &= -qemu_real_host_page_size; 1483 1484 if (host_map_start < host_end) { 1485 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1486 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1487 if (p == MAP_FAILED) { 1488 perror("cannot mmap brk"); 1489 exit(-1); 1490 } 1491 } 1492 1493 /* Ensure that the bss page(s) are valid */ 1494 if ((page_get_flags(last_bss-1) & prot) != prot) { 1495 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1496 } 1497 1498 if (host_start < host_map_start) { 1499 memset((void *)host_start, 0, host_map_start - host_start); 1500 } 1501 } 1502 1503 #ifdef CONFIG_USE_FDPIC 1504 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1505 { 1506 uint16_t n; 1507 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1508 1509 /* elf32_fdpic_loadseg */ 1510 n = info->nsegs; 1511 while (n--) { 1512 sp -= 12; 1513 put_user_u32(loadsegs[n].addr, sp+0); 1514 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1515 put_user_u32(loadsegs[n].p_memsz, sp+8); 1516 } 1517 1518 /* elf32_fdpic_loadmap */ 1519 sp -= 4; 1520 put_user_u16(0, sp+0); /* version */ 1521 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1522 1523 info->personality = PER_LINUX_FDPIC; 1524 info->loadmap_addr = sp; 1525 1526 return sp; 1527 } 1528 #endif 1529 1530 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1531 struct elfhdr *exec, 1532 struct image_info *info, 1533 struct image_info *interp_info) 1534 { 1535 abi_ulong sp; 1536 abi_ulong sp_auxv; 1537 int size; 1538 int i; 1539 abi_ulong u_rand_bytes; 1540 uint8_t k_rand_bytes[16]; 1541 abi_ulong u_platform; 1542 const char *k_platform; 1543 const int n = sizeof(elf_addr_t); 1544 1545 sp = p; 1546 1547 #ifdef CONFIG_USE_FDPIC 1548 /* Needs to be before we load the env/argc/... */ 1549 if (elf_is_fdpic(exec)) { 1550 /* Need 4 byte alignment for these structs */ 1551 sp &= ~3; 1552 sp = loader_build_fdpic_loadmap(info, sp); 1553 info->other_info = interp_info; 1554 if (interp_info) { 1555 interp_info->other_info = info; 1556 sp = loader_build_fdpic_loadmap(interp_info, sp); 1557 } 1558 } 1559 #endif 1560 1561 u_platform = 0; 1562 k_platform = ELF_PLATFORM; 1563 if (k_platform) { 1564 size_t len = strlen(k_platform) + 1; 1565 sp -= (len + n - 1) & ~(n - 1); 1566 u_platform = sp; 1567 /* FIXME - check return value of memcpy_to_target() for failure */ 1568 memcpy_to_target(sp, k_platform, len); 1569 } 1570 1571 /* 1572 * Generate 16 random bytes for userspace PRNG seeding (not 1573 * cryptically secure but it's not the aim of QEMU). 1574 */ 1575 for (i = 0; i < 16; i++) { 1576 k_rand_bytes[i] = rand(); 1577 } 1578 sp -= 16; 1579 u_rand_bytes = sp; 1580 /* FIXME - check return value of memcpy_to_target() for failure */ 1581 memcpy_to_target(sp, k_rand_bytes, 16); 1582 1583 /* 1584 * Force 16 byte _final_ alignment here for generality. 1585 */ 1586 sp = sp &~ (abi_ulong)15; 1587 size = (DLINFO_ITEMS + 1) * 2; 1588 if (k_platform) 1589 size += 2; 1590 #ifdef DLINFO_ARCH_ITEMS 1591 size += DLINFO_ARCH_ITEMS * 2; 1592 #endif 1593 #ifdef ELF_HWCAP2 1594 size += 2; 1595 #endif 1596 size += envc + argc + 2; 1597 size += 1; /* argc itself */ 1598 size *= n; 1599 if (size & 15) 1600 sp -= 16 - (size & 15); 1601 1602 /* This is correct because Linux defines 1603 * elf_addr_t as Elf32_Off / Elf64_Off 1604 */ 1605 #define NEW_AUX_ENT(id, val) do { \ 1606 sp -= n; put_user_ual(val, sp); \ 1607 sp -= n; put_user_ual(id, sp); \ 1608 } while(0) 1609 1610 sp_auxv = sp; 1611 NEW_AUX_ENT (AT_NULL, 0); 1612 1613 /* There must be exactly DLINFO_ITEMS entries here. */ 1614 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1615 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1616 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1617 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1618 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1619 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1620 NEW_AUX_ENT(AT_ENTRY, info->entry); 1621 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1622 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1623 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1624 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1625 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1626 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1627 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1628 1629 #ifdef ELF_HWCAP2 1630 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1631 #endif 1632 1633 if (k_platform) 1634 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1635 #ifdef ARCH_DLINFO 1636 /* 1637 * ARCH_DLINFO must come last so platform specific code can enforce 1638 * special alignment requirements on the AUXV if necessary (eg. PPC). 1639 */ 1640 ARCH_DLINFO; 1641 #endif 1642 #undef NEW_AUX_ENT 1643 1644 info->saved_auxv = sp; 1645 info->auxv_len = sp_auxv - sp; 1646 1647 sp = loader_build_argptr(envc, argc, sp, p, 0); 1648 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1649 assert(sp_auxv - sp == size); 1650 return sp; 1651 } 1652 1653 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1654 /* If the guest doesn't have a validation function just agree */ 1655 static int validate_guest_space(unsigned long guest_base, 1656 unsigned long guest_size) 1657 { 1658 return 1; 1659 } 1660 #endif 1661 1662 unsigned long init_guest_space(unsigned long host_start, 1663 unsigned long host_size, 1664 unsigned long guest_start, 1665 bool fixed) 1666 { 1667 unsigned long current_start, real_start; 1668 int flags; 1669 1670 assert(host_start || host_size); 1671 1672 /* If just a starting address is given, then just verify that 1673 * address. */ 1674 if (host_start && !host_size) { 1675 if (validate_guest_space(host_start, host_size) == 1) { 1676 return host_start; 1677 } else { 1678 return (unsigned long)-1; 1679 } 1680 } 1681 1682 /* Setup the initial flags and start address. */ 1683 current_start = host_start & qemu_host_page_mask; 1684 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1685 if (fixed) { 1686 flags |= MAP_FIXED; 1687 } 1688 1689 /* Otherwise, a non-zero size region of memory needs to be mapped 1690 * and validated. */ 1691 while (1) { 1692 unsigned long real_size = host_size; 1693 1694 /* Do not use mmap_find_vma here because that is limited to the 1695 * guest address space. We are going to make the 1696 * guest address space fit whatever we're given. 1697 */ 1698 real_start = (unsigned long) 1699 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1700 if (real_start == (unsigned long)-1) { 1701 return (unsigned long)-1; 1702 } 1703 1704 /* Ensure the address is properly aligned. */ 1705 if (real_start & ~qemu_host_page_mask) { 1706 munmap((void *)real_start, host_size); 1707 real_size = host_size + qemu_host_page_size; 1708 real_start = (unsigned long) 1709 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1710 if (real_start == (unsigned long)-1) { 1711 return (unsigned long)-1; 1712 } 1713 real_start = HOST_PAGE_ALIGN(real_start); 1714 } 1715 1716 /* Check to see if the address is valid. */ 1717 if (!host_start || real_start == current_start) { 1718 int valid = validate_guest_space(real_start - guest_start, 1719 real_size); 1720 if (valid == 1) { 1721 break; 1722 } else if (valid == -1) { 1723 return (unsigned long)-1; 1724 } 1725 /* valid == 0, so try again. */ 1726 } 1727 1728 /* That address didn't work. Unmap and try a different one. 1729 * The address the host picked because is typically right at 1730 * the top of the host address space and leaves the guest with 1731 * no usable address space. Resort to a linear search. We 1732 * already compensated for mmap_min_addr, so this should not 1733 * happen often. Probably means we got unlucky and host 1734 * address space randomization put a shared library somewhere 1735 * inconvenient. 1736 */ 1737 munmap((void *)real_start, host_size); 1738 current_start += qemu_host_page_size; 1739 if (host_start == current_start) { 1740 /* Theoretically possible if host doesn't have any suitably 1741 * aligned areas. Normally the first mmap will fail. 1742 */ 1743 return (unsigned long)-1; 1744 } 1745 } 1746 1747 qemu_log("Reserved 0x%lx bytes of guest address space\n", host_size); 1748 1749 return real_start; 1750 } 1751 1752 static void probe_guest_base(const char *image_name, 1753 abi_ulong loaddr, abi_ulong hiaddr) 1754 { 1755 /* Probe for a suitable guest base address, if the user has not set 1756 * it explicitly, and set guest_base appropriately. 1757 * In case of error we will print a suitable message and exit. 1758 */ 1759 const char *errmsg; 1760 if (!have_guest_base && !reserved_va) { 1761 unsigned long host_start, real_start, host_size; 1762 1763 /* Round addresses to page boundaries. */ 1764 loaddr &= qemu_host_page_mask; 1765 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1766 1767 if (loaddr < mmap_min_addr) { 1768 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1769 } else { 1770 host_start = loaddr; 1771 if (host_start != loaddr) { 1772 errmsg = "Address overflow loading ELF binary"; 1773 goto exit_errmsg; 1774 } 1775 } 1776 host_size = hiaddr - loaddr; 1777 1778 /* Setup the initial guest memory space with ranges gleaned from 1779 * the ELF image that is being loaded. 1780 */ 1781 real_start = init_guest_space(host_start, host_size, loaddr, false); 1782 if (real_start == (unsigned long)-1) { 1783 errmsg = "Unable to find space for application"; 1784 goto exit_errmsg; 1785 } 1786 guest_base = real_start - loaddr; 1787 1788 qemu_log("Relocating guest address space from 0x" 1789 TARGET_ABI_FMT_lx " to 0x%lx\n", 1790 loaddr, real_start); 1791 } 1792 return; 1793 1794 exit_errmsg: 1795 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1796 exit(-1); 1797 } 1798 1799 1800 /* Load an ELF image into the address space. 1801 1802 IMAGE_NAME is the filename of the image, to use in error messages. 1803 IMAGE_FD is the open file descriptor for the image. 1804 1805 BPRM_BUF is a copy of the beginning of the file; this of course 1806 contains the elf file header at offset 0. It is assumed that this 1807 buffer is sufficiently aligned to present no problems to the host 1808 in accessing data at aligned offsets within the buffer. 1809 1810 On return: INFO values will be filled in, as necessary or available. */ 1811 1812 static void load_elf_image(const char *image_name, int image_fd, 1813 struct image_info *info, char **pinterp_name, 1814 char bprm_buf[BPRM_BUF_SIZE]) 1815 { 1816 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1817 struct elf_phdr *phdr; 1818 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1819 int i, retval; 1820 const char *errmsg; 1821 1822 /* First of all, some simple consistency checks */ 1823 errmsg = "Invalid ELF image for this architecture"; 1824 if (!elf_check_ident(ehdr)) { 1825 goto exit_errmsg; 1826 } 1827 bswap_ehdr(ehdr); 1828 if (!elf_check_ehdr(ehdr)) { 1829 goto exit_errmsg; 1830 } 1831 1832 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1833 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1834 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1835 } else { 1836 phdr = (struct elf_phdr *) alloca(i); 1837 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1838 if (retval != i) { 1839 goto exit_read; 1840 } 1841 } 1842 bswap_phdr(phdr, ehdr->e_phnum); 1843 1844 #ifdef CONFIG_USE_FDPIC 1845 info->nsegs = 0; 1846 info->pt_dynamic_addr = 0; 1847 #endif 1848 1849 /* Find the maximum size of the image and allocate an appropriate 1850 amount of memory to handle that. */ 1851 loaddr = -1, hiaddr = 0; 1852 for (i = 0; i < ehdr->e_phnum; ++i) { 1853 if (phdr[i].p_type == PT_LOAD) { 1854 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1855 if (a < loaddr) { 1856 loaddr = a; 1857 } 1858 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1859 if (a > hiaddr) { 1860 hiaddr = a; 1861 } 1862 #ifdef CONFIG_USE_FDPIC 1863 ++info->nsegs; 1864 #endif 1865 } 1866 } 1867 1868 load_addr = loaddr; 1869 if (ehdr->e_type == ET_DYN) { 1870 /* The image indicates that it can be loaded anywhere. Find a 1871 location that can hold the memory space required. If the 1872 image is pre-linked, LOADDR will be non-zero. Since we do 1873 not supply MAP_FIXED here we'll use that address if and 1874 only if it remains available. */ 1875 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1876 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1877 -1, 0); 1878 if (load_addr == -1) { 1879 goto exit_perror; 1880 } 1881 } else if (pinterp_name != NULL) { 1882 /* This is the main executable. Make sure that the low 1883 address does not conflict with MMAP_MIN_ADDR or the 1884 QEMU application itself. */ 1885 probe_guest_base(image_name, loaddr, hiaddr); 1886 } 1887 load_bias = load_addr - loaddr; 1888 1889 #ifdef CONFIG_USE_FDPIC 1890 { 1891 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1892 g_malloc(sizeof(*loadsegs) * info->nsegs); 1893 1894 for (i = 0; i < ehdr->e_phnum; ++i) { 1895 switch (phdr[i].p_type) { 1896 case PT_DYNAMIC: 1897 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1898 break; 1899 case PT_LOAD: 1900 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1901 loadsegs->p_vaddr = phdr[i].p_vaddr; 1902 loadsegs->p_memsz = phdr[i].p_memsz; 1903 ++loadsegs; 1904 break; 1905 } 1906 } 1907 } 1908 #endif 1909 1910 info->load_bias = load_bias; 1911 info->load_addr = load_addr; 1912 info->entry = ehdr->e_entry + load_bias; 1913 info->start_code = -1; 1914 info->end_code = 0; 1915 info->start_data = -1; 1916 info->end_data = 0; 1917 info->brk = 0; 1918 info->elf_flags = ehdr->e_flags; 1919 1920 for (i = 0; i < ehdr->e_phnum; i++) { 1921 struct elf_phdr *eppnt = phdr + i; 1922 if (eppnt->p_type == PT_LOAD) { 1923 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1924 int elf_prot = 0; 1925 1926 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1927 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1928 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1929 1930 vaddr = load_bias + eppnt->p_vaddr; 1931 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1932 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1933 1934 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1935 elf_prot, MAP_PRIVATE | MAP_FIXED, 1936 image_fd, eppnt->p_offset - vaddr_po); 1937 if (error == -1) { 1938 goto exit_perror; 1939 } 1940 1941 vaddr_ef = vaddr + eppnt->p_filesz; 1942 vaddr_em = vaddr + eppnt->p_memsz; 1943 1944 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1945 if (vaddr_ef < vaddr_em) { 1946 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1947 } 1948 1949 /* Find the full program boundaries. */ 1950 if (elf_prot & PROT_EXEC) { 1951 if (vaddr < info->start_code) { 1952 info->start_code = vaddr; 1953 } 1954 if (vaddr_ef > info->end_code) { 1955 info->end_code = vaddr_ef; 1956 } 1957 } 1958 if (elf_prot & PROT_WRITE) { 1959 if (vaddr < info->start_data) { 1960 info->start_data = vaddr; 1961 } 1962 if (vaddr_ef > info->end_data) { 1963 info->end_data = vaddr_ef; 1964 } 1965 if (vaddr_em > info->brk) { 1966 info->brk = vaddr_em; 1967 } 1968 } 1969 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1970 char *interp_name; 1971 1972 if (*pinterp_name) { 1973 errmsg = "Multiple PT_INTERP entries"; 1974 goto exit_errmsg; 1975 } 1976 interp_name = malloc(eppnt->p_filesz); 1977 if (!interp_name) { 1978 goto exit_perror; 1979 } 1980 1981 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1982 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1983 eppnt->p_filesz); 1984 } else { 1985 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1986 eppnt->p_offset); 1987 if (retval != eppnt->p_filesz) { 1988 goto exit_perror; 1989 } 1990 } 1991 if (interp_name[eppnt->p_filesz - 1] != 0) { 1992 errmsg = "Invalid PT_INTERP entry"; 1993 goto exit_errmsg; 1994 } 1995 *pinterp_name = interp_name; 1996 } 1997 } 1998 1999 if (info->end_data == 0) { 2000 info->start_data = info->end_code; 2001 info->end_data = info->end_code; 2002 info->brk = info->end_code; 2003 } 2004 2005 if (qemu_log_enabled()) { 2006 load_symbols(ehdr, image_fd, load_bias); 2007 } 2008 2009 close(image_fd); 2010 return; 2011 2012 exit_read: 2013 if (retval >= 0) { 2014 errmsg = "Incomplete read of file header"; 2015 goto exit_errmsg; 2016 } 2017 exit_perror: 2018 errmsg = strerror(errno); 2019 exit_errmsg: 2020 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2021 exit(-1); 2022 } 2023 2024 static void load_elf_interp(const char *filename, struct image_info *info, 2025 char bprm_buf[BPRM_BUF_SIZE]) 2026 { 2027 int fd, retval; 2028 2029 fd = open(path(filename), O_RDONLY); 2030 if (fd < 0) { 2031 goto exit_perror; 2032 } 2033 2034 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2035 if (retval < 0) { 2036 goto exit_perror; 2037 } 2038 if (retval < BPRM_BUF_SIZE) { 2039 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2040 } 2041 2042 load_elf_image(filename, fd, info, NULL, bprm_buf); 2043 return; 2044 2045 exit_perror: 2046 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2047 exit(-1); 2048 } 2049 2050 static int symfind(const void *s0, const void *s1) 2051 { 2052 target_ulong addr = *(target_ulong *)s0; 2053 struct elf_sym *sym = (struct elf_sym *)s1; 2054 int result = 0; 2055 if (addr < sym->st_value) { 2056 result = -1; 2057 } else if (addr >= sym->st_value + sym->st_size) { 2058 result = 1; 2059 } 2060 return result; 2061 } 2062 2063 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2064 { 2065 #if ELF_CLASS == ELFCLASS32 2066 struct elf_sym *syms = s->disas_symtab.elf32; 2067 #else 2068 struct elf_sym *syms = s->disas_symtab.elf64; 2069 #endif 2070 2071 // binary search 2072 struct elf_sym *sym; 2073 2074 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2075 if (sym != NULL) { 2076 return s->disas_strtab + sym->st_name; 2077 } 2078 2079 return ""; 2080 } 2081 2082 /* FIXME: This should use elf_ops.h */ 2083 static int symcmp(const void *s0, const void *s1) 2084 { 2085 struct elf_sym *sym0 = (struct elf_sym *)s0; 2086 struct elf_sym *sym1 = (struct elf_sym *)s1; 2087 return (sym0->st_value < sym1->st_value) 2088 ? -1 2089 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2090 } 2091 2092 /* Best attempt to load symbols from this ELF object. */ 2093 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2094 { 2095 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2096 struct elf_shdr *shdr; 2097 char *strings = NULL; 2098 struct syminfo *s = NULL; 2099 struct elf_sym *new_syms, *syms = NULL; 2100 2101 shnum = hdr->e_shnum; 2102 i = shnum * sizeof(struct elf_shdr); 2103 shdr = (struct elf_shdr *)alloca(i); 2104 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2105 return; 2106 } 2107 2108 bswap_shdr(shdr, shnum); 2109 for (i = 0; i < shnum; ++i) { 2110 if (shdr[i].sh_type == SHT_SYMTAB) { 2111 sym_idx = i; 2112 str_idx = shdr[i].sh_link; 2113 goto found; 2114 } 2115 } 2116 2117 /* There will be no symbol table if the file was stripped. */ 2118 return; 2119 2120 found: 2121 /* Now know where the strtab and symtab are. Snarf them. */ 2122 s = malloc(sizeof(*s)); 2123 if (!s) { 2124 goto give_up; 2125 } 2126 2127 i = shdr[str_idx].sh_size; 2128 s->disas_strtab = strings = malloc(i); 2129 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2130 goto give_up; 2131 } 2132 2133 i = shdr[sym_idx].sh_size; 2134 syms = malloc(i); 2135 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2136 goto give_up; 2137 } 2138 2139 nsyms = i / sizeof(struct elf_sym); 2140 for (i = 0; i < nsyms; ) { 2141 bswap_sym(syms + i); 2142 /* Throw away entries which we do not need. */ 2143 if (syms[i].st_shndx == SHN_UNDEF 2144 || syms[i].st_shndx >= SHN_LORESERVE 2145 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2146 if (i < --nsyms) { 2147 syms[i] = syms[nsyms]; 2148 } 2149 } else { 2150 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2151 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2152 syms[i].st_value &= ~(target_ulong)1; 2153 #endif 2154 syms[i].st_value += load_bias; 2155 i++; 2156 } 2157 } 2158 2159 /* No "useful" symbol. */ 2160 if (nsyms == 0) { 2161 goto give_up; 2162 } 2163 2164 /* Attempt to free the storage associated with the local symbols 2165 that we threw away. Whether or not this has any effect on the 2166 memory allocation depends on the malloc implementation and how 2167 many symbols we managed to discard. */ 2168 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2169 if (new_syms == NULL) { 2170 goto give_up; 2171 } 2172 syms = new_syms; 2173 2174 qsort(syms, nsyms, sizeof(*syms), symcmp); 2175 2176 s->disas_num_syms = nsyms; 2177 #if ELF_CLASS == ELFCLASS32 2178 s->disas_symtab.elf32 = syms; 2179 #else 2180 s->disas_symtab.elf64 = syms; 2181 #endif 2182 s->lookup_symbol = lookup_symbolxx; 2183 s->next = syminfos; 2184 syminfos = s; 2185 2186 return; 2187 2188 give_up: 2189 free(s); 2190 free(strings); 2191 free(syms); 2192 } 2193 2194 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2195 { 2196 struct image_info interp_info; 2197 struct elfhdr elf_ex; 2198 char *elf_interpreter = NULL; 2199 2200 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2201 info->mmap = 0; 2202 info->rss = 0; 2203 2204 load_elf_image(bprm->filename, bprm->fd, info, 2205 &elf_interpreter, bprm->buf); 2206 2207 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2208 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2209 when we load the interpreter. */ 2210 elf_ex = *(struct elfhdr *)bprm->buf; 2211 2212 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p); 2213 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p); 2214 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p); 2215 if (!bprm->p) { 2216 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2217 exit(-1); 2218 } 2219 2220 /* Do this so that we can load the interpreter, if need be. We will 2221 change some of these later */ 2222 bprm->p = setup_arg_pages(bprm->p, bprm, info); 2223 2224 if (elf_interpreter) { 2225 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2226 2227 /* If the program interpreter is one of these two, then assume 2228 an iBCS2 image. Otherwise assume a native linux image. */ 2229 2230 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2231 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2232 info->personality = PER_SVR4; 2233 2234 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2235 and some applications "depend" upon this behavior. Since 2236 we do not have the power to recompile these, we emulate 2237 the SVr4 behavior. Sigh. */ 2238 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2239 MAP_FIXED | MAP_PRIVATE, -1, 0); 2240 } 2241 } 2242 2243 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2244 info, (elf_interpreter ? &interp_info : NULL)); 2245 info->start_stack = bprm->p; 2246 2247 /* If we have an interpreter, set that as the program's entry point. 2248 Copy the load_bias as well, to help PPC64 interpret the entry 2249 point as a function descriptor. Do this after creating elf tables 2250 so that we copy the original program entry point into the AUXV. */ 2251 if (elf_interpreter) { 2252 info->load_bias = interp_info.load_bias; 2253 info->entry = interp_info.entry; 2254 free(elf_interpreter); 2255 } 2256 2257 #ifdef USE_ELF_CORE_DUMP 2258 bprm->core_dump = &elf_core_dump; 2259 #endif 2260 2261 return 0; 2262 } 2263 2264 #ifdef USE_ELF_CORE_DUMP 2265 /* 2266 * Definitions to generate Intel SVR4-like core files. 2267 * These mostly have the same names as the SVR4 types with "target_elf_" 2268 * tacked on the front to prevent clashes with linux definitions, 2269 * and the typedef forms have been avoided. This is mostly like 2270 * the SVR4 structure, but more Linuxy, with things that Linux does 2271 * not support and which gdb doesn't really use excluded. 2272 * 2273 * Fields we don't dump (their contents is zero) in linux-user qemu 2274 * are marked with XXX. 2275 * 2276 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2277 * 2278 * Porting ELF coredump for target is (quite) simple process. First you 2279 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2280 * the target resides): 2281 * 2282 * #define USE_ELF_CORE_DUMP 2283 * 2284 * Next you define type of register set used for dumping. ELF specification 2285 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2286 * 2287 * typedef <target_regtype> target_elf_greg_t; 2288 * #define ELF_NREG <number of registers> 2289 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2290 * 2291 * Last step is to implement target specific function that copies registers 2292 * from given cpu into just specified register set. Prototype is: 2293 * 2294 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2295 * const CPUArchState *env); 2296 * 2297 * Parameters: 2298 * regs - copy register values into here (allocated and zeroed by caller) 2299 * env - copy registers from here 2300 * 2301 * Example for ARM target is provided in this file. 2302 */ 2303 2304 /* An ELF note in memory */ 2305 struct memelfnote { 2306 const char *name; 2307 size_t namesz; 2308 size_t namesz_rounded; 2309 int type; 2310 size_t datasz; 2311 size_t datasz_rounded; 2312 void *data; 2313 size_t notesz; 2314 }; 2315 2316 struct target_elf_siginfo { 2317 abi_int si_signo; /* signal number */ 2318 abi_int si_code; /* extra code */ 2319 abi_int si_errno; /* errno */ 2320 }; 2321 2322 struct target_elf_prstatus { 2323 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2324 abi_short pr_cursig; /* Current signal */ 2325 abi_ulong pr_sigpend; /* XXX */ 2326 abi_ulong pr_sighold; /* XXX */ 2327 target_pid_t pr_pid; 2328 target_pid_t pr_ppid; 2329 target_pid_t pr_pgrp; 2330 target_pid_t pr_sid; 2331 struct target_timeval pr_utime; /* XXX User time */ 2332 struct target_timeval pr_stime; /* XXX System time */ 2333 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2334 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2335 target_elf_gregset_t pr_reg; /* GP registers */ 2336 abi_int pr_fpvalid; /* XXX */ 2337 }; 2338 2339 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2340 2341 struct target_elf_prpsinfo { 2342 char pr_state; /* numeric process state */ 2343 char pr_sname; /* char for pr_state */ 2344 char pr_zomb; /* zombie */ 2345 char pr_nice; /* nice val */ 2346 abi_ulong pr_flag; /* flags */ 2347 target_uid_t pr_uid; 2348 target_gid_t pr_gid; 2349 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2350 /* Lots missing */ 2351 char pr_fname[16]; /* filename of executable */ 2352 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2353 }; 2354 2355 /* Here is the structure in which status of each thread is captured. */ 2356 struct elf_thread_status { 2357 QTAILQ_ENTRY(elf_thread_status) ets_link; 2358 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2359 #if 0 2360 elf_fpregset_t fpu; /* NT_PRFPREG */ 2361 struct task_struct *thread; 2362 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2363 #endif 2364 struct memelfnote notes[1]; 2365 int num_notes; 2366 }; 2367 2368 struct elf_note_info { 2369 struct memelfnote *notes; 2370 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2371 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2372 2373 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2374 #if 0 2375 /* 2376 * Current version of ELF coredump doesn't support 2377 * dumping fp regs etc. 2378 */ 2379 elf_fpregset_t *fpu; 2380 elf_fpxregset_t *xfpu; 2381 int thread_status_size; 2382 #endif 2383 int notes_size; 2384 int numnote; 2385 }; 2386 2387 struct vm_area_struct { 2388 target_ulong vma_start; /* start vaddr of memory region */ 2389 target_ulong vma_end; /* end vaddr of memory region */ 2390 abi_ulong vma_flags; /* protection etc. flags for the region */ 2391 QTAILQ_ENTRY(vm_area_struct) vma_link; 2392 }; 2393 2394 struct mm_struct { 2395 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2396 int mm_count; /* number of mappings */ 2397 }; 2398 2399 static struct mm_struct *vma_init(void); 2400 static void vma_delete(struct mm_struct *); 2401 static int vma_add_mapping(struct mm_struct *, target_ulong, 2402 target_ulong, abi_ulong); 2403 static int vma_get_mapping_count(const struct mm_struct *); 2404 static struct vm_area_struct *vma_first(const struct mm_struct *); 2405 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2406 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2407 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2408 unsigned long flags); 2409 2410 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2411 static void fill_note(struct memelfnote *, const char *, int, 2412 unsigned int, void *); 2413 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2414 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2415 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2416 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2417 static size_t note_size(const struct memelfnote *); 2418 static void free_note_info(struct elf_note_info *); 2419 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2420 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2421 static int core_dump_filename(const TaskState *, char *, size_t); 2422 2423 static int dump_write(int, const void *, size_t); 2424 static int write_note(struct memelfnote *, int); 2425 static int write_note_info(struct elf_note_info *, int); 2426 2427 #ifdef BSWAP_NEEDED 2428 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2429 { 2430 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2431 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2432 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2433 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2434 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2435 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2436 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2437 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2438 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2439 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2440 /* cpu times are not filled, so we skip them */ 2441 /* regs should be in correct format already */ 2442 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2443 } 2444 2445 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2446 { 2447 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2448 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2449 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2450 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2451 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2452 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2453 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2454 } 2455 2456 static void bswap_note(struct elf_note *en) 2457 { 2458 bswap32s(&en->n_namesz); 2459 bswap32s(&en->n_descsz); 2460 bswap32s(&en->n_type); 2461 } 2462 #else 2463 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2464 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2465 static inline void bswap_note(struct elf_note *en) { } 2466 #endif /* BSWAP_NEEDED */ 2467 2468 /* 2469 * Minimal support for linux memory regions. These are needed 2470 * when we are finding out what memory exactly belongs to 2471 * emulated process. No locks needed here, as long as 2472 * thread that received the signal is stopped. 2473 */ 2474 2475 static struct mm_struct *vma_init(void) 2476 { 2477 struct mm_struct *mm; 2478 2479 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2480 return (NULL); 2481 2482 mm->mm_count = 0; 2483 QTAILQ_INIT(&mm->mm_mmap); 2484 2485 return (mm); 2486 } 2487 2488 static void vma_delete(struct mm_struct *mm) 2489 { 2490 struct vm_area_struct *vma; 2491 2492 while ((vma = vma_first(mm)) != NULL) { 2493 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2494 g_free(vma); 2495 } 2496 g_free(mm); 2497 } 2498 2499 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2500 target_ulong end, abi_ulong flags) 2501 { 2502 struct vm_area_struct *vma; 2503 2504 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2505 return (-1); 2506 2507 vma->vma_start = start; 2508 vma->vma_end = end; 2509 vma->vma_flags = flags; 2510 2511 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2512 mm->mm_count++; 2513 2514 return (0); 2515 } 2516 2517 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2518 { 2519 return (QTAILQ_FIRST(&mm->mm_mmap)); 2520 } 2521 2522 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2523 { 2524 return (QTAILQ_NEXT(vma, vma_link)); 2525 } 2526 2527 static int vma_get_mapping_count(const struct mm_struct *mm) 2528 { 2529 return (mm->mm_count); 2530 } 2531 2532 /* 2533 * Calculate file (dump) size of given memory region. 2534 */ 2535 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2536 { 2537 /* if we cannot even read the first page, skip it */ 2538 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2539 return (0); 2540 2541 /* 2542 * Usually we don't dump executable pages as they contain 2543 * non-writable code that debugger can read directly from 2544 * target library etc. However, thread stacks are marked 2545 * also executable so we read in first page of given region 2546 * and check whether it contains elf header. If there is 2547 * no elf header, we dump it. 2548 */ 2549 if (vma->vma_flags & PROT_EXEC) { 2550 char page[TARGET_PAGE_SIZE]; 2551 2552 copy_from_user(page, vma->vma_start, sizeof (page)); 2553 if ((page[EI_MAG0] == ELFMAG0) && 2554 (page[EI_MAG1] == ELFMAG1) && 2555 (page[EI_MAG2] == ELFMAG2) && 2556 (page[EI_MAG3] == ELFMAG3)) { 2557 /* 2558 * Mappings are possibly from ELF binary. Don't dump 2559 * them. 2560 */ 2561 return (0); 2562 } 2563 } 2564 2565 return (vma->vma_end - vma->vma_start); 2566 } 2567 2568 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2569 unsigned long flags) 2570 { 2571 struct mm_struct *mm = (struct mm_struct *)priv; 2572 2573 vma_add_mapping(mm, start, end, flags); 2574 return (0); 2575 } 2576 2577 static void fill_note(struct memelfnote *note, const char *name, int type, 2578 unsigned int sz, void *data) 2579 { 2580 unsigned int namesz; 2581 2582 namesz = strlen(name) + 1; 2583 note->name = name; 2584 note->namesz = namesz; 2585 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2586 note->type = type; 2587 note->datasz = sz; 2588 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2589 2590 note->data = data; 2591 2592 /* 2593 * We calculate rounded up note size here as specified by 2594 * ELF document. 2595 */ 2596 note->notesz = sizeof (struct elf_note) + 2597 note->namesz_rounded + note->datasz_rounded; 2598 } 2599 2600 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2601 uint32_t flags) 2602 { 2603 (void) memset(elf, 0, sizeof(*elf)); 2604 2605 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2606 elf->e_ident[EI_CLASS] = ELF_CLASS; 2607 elf->e_ident[EI_DATA] = ELF_DATA; 2608 elf->e_ident[EI_VERSION] = EV_CURRENT; 2609 elf->e_ident[EI_OSABI] = ELF_OSABI; 2610 2611 elf->e_type = ET_CORE; 2612 elf->e_machine = machine; 2613 elf->e_version = EV_CURRENT; 2614 elf->e_phoff = sizeof(struct elfhdr); 2615 elf->e_flags = flags; 2616 elf->e_ehsize = sizeof(struct elfhdr); 2617 elf->e_phentsize = sizeof(struct elf_phdr); 2618 elf->e_phnum = segs; 2619 2620 bswap_ehdr(elf); 2621 } 2622 2623 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2624 { 2625 phdr->p_type = PT_NOTE; 2626 phdr->p_offset = offset; 2627 phdr->p_vaddr = 0; 2628 phdr->p_paddr = 0; 2629 phdr->p_filesz = sz; 2630 phdr->p_memsz = 0; 2631 phdr->p_flags = 0; 2632 phdr->p_align = 0; 2633 2634 bswap_phdr(phdr, 1); 2635 } 2636 2637 static size_t note_size(const struct memelfnote *note) 2638 { 2639 return (note->notesz); 2640 } 2641 2642 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2643 const TaskState *ts, int signr) 2644 { 2645 (void) memset(prstatus, 0, sizeof (*prstatus)); 2646 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2647 prstatus->pr_pid = ts->ts_tid; 2648 prstatus->pr_ppid = getppid(); 2649 prstatus->pr_pgrp = getpgrp(); 2650 prstatus->pr_sid = getsid(0); 2651 2652 bswap_prstatus(prstatus); 2653 } 2654 2655 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2656 { 2657 char *base_filename; 2658 unsigned int i, len; 2659 2660 (void) memset(psinfo, 0, sizeof (*psinfo)); 2661 2662 len = ts->info->arg_end - ts->info->arg_start; 2663 if (len >= ELF_PRARGSZ) 2664 len = ELF_PRARGSZ - 1; 2665 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2666 return -EFAULT; 2667 for (i = 0; i < len; i++) 2668 if (psinfo->pr_psargs[i] == 0) 2669 psinfo->pr_psargs[i] = ' '; 2670 psinfo->pr_psargs[len] = 0; 2671 2672 psinfo->pr_pid = getpid(); 2673 psinfo->pr_ppid = getppid(); 2674 psinfo->pr_pgrp = getpgrp(); 2675 psinfo->pr_sid = getsid(0); 2676 psinfo->pr_uid = getuid(); 2677 psinfo->pr_gid = getgid(); 2678 2679 base_filename = g_path_get_basename(ts->bprm->filename); 2680 /* 2681 * Using strncpy here is fine: at max-length, 2682 * this field is not NUL-terminated. 2683 */ 2684 (void) strncpy(psinfo->pr_fname, base_filename, 2685 sizeof(psinfo->pr_fname)); 2686 2687 g_free(base_filename); 2688 bswap_psinfo(psinfo); 2689 return (0); 2690 } 2691 2692 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2693 { 2694 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2695 elf_addr_t orig_auxv = auxv; 2696 void *ptr; 2697 int len = ts->info->auxv_len; 2698 2699 /* 2700 * Auxiliary vector is stored in target process stack. It contains 2701 * {type, value} pairs that we need to dump into note. This is not 2702 * strictly necessary but we do it here for sake of completeness. 2703 */ 2704 2705 /* read in whole auxv vector and copy it to memelfnote */ 2706 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2707 if (ptr != NULL) { 2708 fill_note(note, "CORE", NT_AUXV, len, ptr); 2709 unlock_user(ptr, auxv, len); 2710 } 2711 } 2712 2713 /* 2714 * Constructs name of coredump file. We have following convention 2715 * for the name: 2716 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2717 * 2718 * Returns 0 in case of success, -1 otherwise (errno is set). 2719 */ 2720 static int core_dump_filename(const TaskState *ts, char *buf, 2721 size_t bufsize) 2722 { 2723 char timestamp[64]; 2724 char *filename = NULL; 2725 char *base_filename = NULL; 2726 struct timeval tv; 2727 struct tm tm; 2728 2729 assert(bufsize >= PATH_MAX); 2730 2731 if (gettimeofday(&tv, NULL) < 0) { 2732 (void) fprintf(stderr, "unable to get current timestamp: %s", 2733 strerror(errno)); 2734 return (-1); 2735 } 2736 2737 filename = strdup(ts->bprm->filename); 2738 base_filename = strdup(basename(filename)); 2739 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2740 localtime_r(&tv.tv_sec, &tm)); 2741 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2742 base_filename, timestamp, (int)getpid()); 2743 free(base_filename); 2744 free(filename); 2745 2746 return (0); 2747 } 2748 2749 static int dump_write(int fd, const void *ptr, size_t size) 2750 { 2751 const char *bufp = (const char *)ptr; 2752 ssize_t bytes_written, bytes_left; 2753 struct rlimit dumpsize; 2754 off_t pos; 2755 2756 bytes_written = 0; 2757 getrlimit(RLIMIT_CORE, &dumpsize); 2758 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2759 if (errno == ESPIPE) { /* not a seekable stream */ 2760 bytes_left = size; 2761 } else { 2762 return pos; 2763 } 2764 } else { 2765 if (dumpsize.rlim_cur <= pos) { 2766 return -1; 2767 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2768 bytes_left = size; 2769 } else { 2770 size_t limit_left=dumpsize.rlim_cur - pos; 2771 bytes_left = limit_left >= size ? size : limit_left ; 2772 } 2773 } 2774 2775 /* 2776 * In normal conditions, single write(2) should do but 2777 * in case of socket etc. this mechanism is more portable. 2778 */ 2779 do { 2780 bytes_written = write(fd, bufp, bytes_left); 2781 if (bytes_written < 0) { 2782 if (errno == EINTR) 2783 continue; 2784 return (-1); 2785 } else if (bytes_written == 0) { /* eof */ 2786 return (-1); 2787 } 2788 bufp += bytes_written; 2789 bytes_left -= bytes_written; 2790 } while (bytes_left > 0); 2791 2792 return (0); 2793 } 2794 2795 static int write_note(struct memelfnote *men, int fd) 2796 { 2797 struct elf_note en; 2798 2799 en.n_namesz = men->namesz; 2800 en.n_type = men->type; 2801 en.n_descsz = men->datasz; 2802 2803 bswap_note(&en); 2804 2805 if (dump_write(fd, &en, sizeof(en)) != 0) 2806 return (-1); 2807 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2808 return (-1); 2809 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2810 return (-1); 2811 2812 return (0); 2813 } 2814 2815 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2816 { 2817 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2818 TaskState *ts = (TaskState *)cpu->opaque; 2819 struct elf_thread_status *ets; 2820 2821 ets = g_malloc0(sizeof (*ets)); 2822 ets->num_notes = 1; /* only prstatus is dumped */ 2823 fill_prstatus(&ets->prstatus, ts, 0); 2824 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2825 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2826 &ets->prstatus); 2827 2828 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2829 2830 info->notes_size += note_size(&ets->notes[0]); 2831 } 2832 2833 static void init_note_info(struct elf_note_info *info) 2834 { 2835 /* Initialize the elf_note_info structure so that it is at 2836 * least safe to call free_note_info() on it. Must be 2837 * called before calling fill_note_info(). 2838 */ 2839 memset(info, 0, sizeof (*info)); 2840 QTAILQ_INIT(&info->thread_list); 2841 } 2842 2843 static int fill_note_info(struct elf_note_info *info, 2844 long signr, const CPUArchState *env) 2845 { 2846 #define NUMNOTES 3 2847 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2848 TaskState *ts = (TaskState *)cpu->opaque; 2849 int i; 2850 2851 info->notes = g_malloc0(NUMNOTES * sizeof (struct memelfnote)); 2852 if (info->notes == NULL) 2853 return (-ENOMEM); 2854 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2855 if (info->prstatus == NULL) 2856 return (-ENOMEM); 2857 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2858 if (info->prstatus == NULL) 2859 return (-ENOMEM); 2860 2861 /* 2862 * First fill in status (and registers) of current thread 2863 * including process info & aux vector. 2864 */ 2865 fill_prstatus(info->prstatus, ts, signr); 2866 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2867 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2868 sizeof (*info->prstatus), info->prstatus); 2869 fill_psinfo(info->psinfo, ts); 2870 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2871 sizeof (*info->psinfo), info->psinfo); 2872 fill_auxv_note(&info->notes[2], ts); 2873 info->numnote = 3; 2874 2875 info->notes_size = 0; 2876 for (i = 0; i < info->numnote; i++) 2877 info->notes_size += note_size(&info->notes[i]); 2878 2879 /* read and fill status of all threads */ 2880 cpu_list_lock(); 2881 CPU_FOREACH(cpu) { 2882 if (cpu == thread_cpu) { 2883 continue; 2884 } 2885 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2886 } 2887 cpu_list_unlock(); 2888 2889 return (0); 2890 } 2891 2892 static void free_note_info(struct elf_note_info *info) 2893 { 2894 struct elf_thread_status *ets; 2895 2896 while (!QTAILQ_EMPTY(&info->thread_list)) { 2897 ets = QTAILQ_FIRST(&info->thread_list); 2898 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2899 g_free(ets); 2900 } 2901 2902 g_free(info->prstatus); 2903 g_free(info->psinfo); 2904 g_free(info->notes); 2905 } 2906 2907 static int write_note_info(struct elf_note_info *info, int fd) 2908 { 2909 struct elf_thread_status *ets; 2910 int i, error = 0; 2911 2912 /* write prstatus, psinfo and auxv for current thread */ 2913 for (i = 0; i < info->numnote; i++) 2914 if ((error = write_note(&info->notes[i], fd)) != 0) 2915 return (error); 2916 2917 /* write prstatus for each thread */ 2918 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2919 if ((error = write_note(&ets->notes[0], fd)) != 0) 2920 return (error); 2921 } 2922 2923 return (0); 2924 } 2925 2926 /* 2927 * Write out ELF coredump. 2928 * 2929 * See documentation of ELF object file format in: 2930 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2931 * 2932 * Coredump format in linux is following: 2933 * 2934 * 0 +----------------------+ \ 2935 * | ELF header | ET_CORE | 2936 * +----------------------+ | 2937 * | ELF program headers | |--- headers 2938 * | - NOTE section | | 2939 * | - PT_LOAD sections | | 2940 * +----------------------+ / 2941 * | NOTEs: | 2942 * | - NT_PRSTATUS | 2943 * | - NT_PRSINFO | 2944 * | - NT_AUXV | 2945 * +----------------------+ <-- aligned to target page 2946 * | Process memory dump | 2947 * : : 2948 * . . 2949 * : : 2950 * | | 2951 * +----------------------+ 2952 * 2953 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2954 * NT_PRSINFO -> struct elf_prpsinfo 2955 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2956 * 2957 * Format follows System V format as close as possible. Current 2958 * version limitations are as follows: 2959 * - no floating point registers are dumped 2960 * 2961 * Function returns 0 in case of success, negative errno otherwise. 2962 * 2963 * TODO: make this work also during runtime: it should be 2964 * possible to force coredump from running process and then 2965 * continue processing. For example qemu could set up SIGUSR2 2966 * handler (provided that target process haven't registered 2967 * handler for that) that does the dump when signal is received. 2968 */ 2969 static int elf_core_dump(int signr, const CPUArchState *env) 2970 { 2971 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2972 const TaskState *ts = (const TaskState *)cpu->opaque; 2973 struct vm_area_struct *vma = NULL; 2974 char corefile[PATH_MAX]; 2975 struct elf_note_info info; 2976 struct elfhdr elf; 2977 struct elf_phdr phdr; 2978 struct rlimit dumpsize; 2979 struct mm_struct *mm = NULL; 2980 off_t offset = 0, data_offset = 0; 2981 int segs = 0; 2982 int fd = -1; 2983 2984 init_note_info(&info); 2985 2986 errno = 0; 2987 getrlimit(RLIMIT_CORE, &dumpsize); 2988 if (dumpsize.rlim_cur == 0) 2989 return 0; 2990 2991 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2992 return (-errno); 2993 2994 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2995 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2996 return (-errno); 2997 2998 /* 2999 * Walk through target process memory mappings and 3000 * set up structure containing this information. After 3001 * this point vma_xxx functions can be used. 3002 */ 3003 if ((mm = vma_init()) == NULL) 3004 goto out; 3005 3006 walk_memory_regions(mm, vma_walker); 3007 segs = vma_get_mapping_count(mm); 3008 3009 /* 3010 * Construct valid coredump ELF header. We also 3011 * add one more segment for notes. 3012 */ 3013 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3014 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3015 goto out; 3016 3017 /* fill in in-memory version of notes */ 3018 if (fill_note_info(&info, signr, env) < 0) 3019 goto out; 3020 3021 offset += sizeof (elf); /* elf header */ 3022 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3023 3024 /* write out notes program header */ 3025 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3026 3027 offset += info.notes_size; 3028 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3029 goto out; 3030 3031 /* 3032 * ELF specification wants data to start at page boundary so 3033 * we align it here. 3034 */ 3035 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3036 3037 /* 3038 * Write program headers for memory regions mapped in 3039 * the target process. 3040 */ 3041 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3042 (void) memset(&phdr, 0, sizeof (phdr)); 3043 3044 phdr.p_type = PT_LOAD; 3045 phdr.p_offset = offset; 3046 phdr.p_vaddr = vma->vma_start; 3047 phdr.p_paddr = 0; 3048 phdr.p_filesz = vma_dump_size(vma); 3049 offset += phdr.p_filesz; 3050 phdr.p_memsz = vma->vma_end - vma->vma_start; 3051 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3052 if (vma->vma_flags & PROT_WRITE) 3053 phdr.p_flags |= PF_W; 3054 if (vma->vma_flags & PROT_EXEC) 3055 phdr.p_flags |= PF_X; 3056 phdr.p_align = ELF_EXEC_PAGESIZE; 3057 3058 bswap_phdr(&phdr, 1); 3059 dump_write(fd, &phdr, sizeof (phdr)); 3060 } 3061 3062 /* 3063 * Next we write notes just after program headers. No 3064 * alignment needed here. 3065 */ 3066 if (write_note_info(&info, fd) < 0) 3067 goto out; 3068 3069 /* align data to page boundary */ 3070 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3071 goto out; 3072 3073 /* 3074 * Finally we can dump process memory into corefile as well. 3075 */ 3076 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3077 abi_ulong addr; 3078 abi_ulong end; 3079 3080 end = vma->vma_start + vma_dump_size(vma); 3081 3082 for (addr = vma->vma_start; addr < end; 3083 addr += TARGET_PAGE_SIZE) { 3084 char page[TARGET_PAGE_SIZE]; 3085 int error; 3086 3087 /* 3088 * Read in page from target process memory and 3089 * write it to coredump file. 3090 */ 3091 error = copy_from_user(page, addr, sizeof (page)); 3092 if (error != 0) { 3093 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3094 addr); 3095 errno = -error; 3096 goto out; 3097 } 3098 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3099 goto out; 3100 } 3101 } 3102 3103 out: 3104 free_note_info(&info); 3105 if (mm != NULL) 3106 vma_delete(mm); 3107 (void) close(fd); 3108 3109 if (errno != 0) 3110 return (-errno); 3111 return (0); 3112 } 3113 #endif /* USE_ELF_CORE_DUMP */ 3114 3115 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3116 { 3117 init_thread(regs, infop); 3118 } 3119