1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qemu/lockable.h" 21 #include "qapi/error.h" 22 #include "qemu/error-report.h" 23 #include "target_signal.h" 24 #include "accel/tcg/debuginfo.h" 25 26 #ifdef _ARCH_PPC64 27 #undef ARCH_DLINFO 28 #undef ELF_PLATFORM 29 #undef ELF_HWCAP 30 #undef ELF_HWCAP2 31 #undef ELF_CLASS 32 #undef ELF_DATA 33 #undef ELF_ARCH 34 #endif 35 36 #define ELF_OSABI ELFOSABI_SYSV 37 38 /* from personality.h */ 39 40 /* 41 * Flags for bug emulation. 42 * 43 * These occupy the top three bytes. 44 */ 45 enum { 46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 48 descriptors (signal handling) */ 49 MMAP_PAGE_ZERO = 0x0100000, 50 ADDR_COMPAT_LAYOUT = 0x0200000, 51 READ_IMPLIES_EXEC = 0x0400000, 52 ADDR_LIMIT_32BIT = 0x0800000, 53 SHORT_INODE = 0x1000000, 54 WHOLE_SECONDS = 0x2000000, 55 STICKY_TIMEOUTS = 0x4000000, 56 ADDR_LIMIT_3GB = 0x8000000, 57 }; 58 59 /* 60 * Personality types. 61 * 62 * These go in the low byte. Avoid using the top bit, it will 63 * conflict with error returns. 64 */ 65 enum { 66 PER_LINUX = 0x0000, 67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 75 PER_BSD = 0x0006, 76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 78 PER_LINUX32 = 0x0008, 79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 83 PER_RISCOS = 0x000c, 84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 86 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 87 PER_HPUX = 0x0010, 88 PER_MASK = 0x00ff, 89 }; 90 91 /* 92 * Return the base personality without flags. 93 */ 94 #define personality(pers) (pers & PER_MASK) 95 96 int info_is_fdpic(struct image_info *info) 97 { 98 return info->personality == PER_LINUX_FDPIC; 99 } 100 101 /* this flag is uneffective under linux too, should be deleted */ 102 #ifndef MAP_DENYWRITE 103 #define MAP_DENYWRITE 0 104 #endif 105 106 /* should probably go in elf.h */ 107 #ifndef ELIBBAD 108 #define ELIBBAD 80 109 #endif 110 111 #if TARGET_BIG_ENDIAN 112 #define ELF_DATA ELFDATA2MSB 113 #else 114 #define ELF_DATA ELFDATA2LSB 115 #endif 116 117 #ifdef TARGET_ABI_MIPSN32 118 typedef abi_ullong target_elf_greg_t; 119 #define tswapreg(ptr) tswap64(ptr) 120 #else 121 typedef abi_ulong target_elf_greg_t; 122 #define tswapreg(ptr) tswapal(ptr) 123 #endif 124 125 #ifdef USE_UID16 126 typedef abi_ushort target_uid_t; 127 typedef abi_ushort target_gid_t; 128 #else 129 typedef abi_uint target_uid_t; 130 typedef abi_uint target_gid_t; 131 #endif 132 typedef abi_int target_pid_t; 133 134 #ifdef TARGET_I386 135 136 #define ELF_HWCAP get_elf_hwcap() 137 138 static uint32_t get_elf_hwcap(void) 139 { 140 X86CPU *cpu = X86_CPU(thread_cpu); 141 142 return cpu->env.features[FEAT_1_EDX]; 143 } 144 145 #ifdef TARGET_X86_64 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 #define ELF_PLATFORM "x86_64" 150 151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 152 { 153 regs->rax = 0; 154 regs->rsp = infop->start_stack; 155 regs->rip = infop->entry; 156 } 157 158 #define ELF_NREG 27 159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 160 161 /* 162 * Note that ELF_NREG should be 29 as there should be place for 163 * TRAPNO and ERR "registers" as well but linux doesn't dump 164 * those. 165 * 166 * See linux kernel: arch/x86/include/asm/elf.h 167 */ 168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 169 { 170 (*regs)[0] = tswapreg(env->regs[15]); 171 (*regs)[1] = tswapreg(env->regs[14]); 172 (*regs)[2] = tswapreg(env->regs[13]); 173 (*regs)[3] = tswapreg(env->regs[12]); 174 (*regs)[4] = tswapreg(env->regs[R_EBP]); 175 (*regs)[5] = tswapreg(env->regs[R_EBX]); 176 (*regs)[6] = tswapreg(env->regs[11]); 177 (*regs)[7] = tswapreg(env->regs[10]); 178 (*regs)[8] = tswapreg(env->regs[9]); 179 (*regs)[9] = tswapreg(env->regs[8]); 180 (*regs)[10] = tswapreg(env->regs[R_EAX]); 181 (*regs)[11] = tswapreg(env->regs[R_ECX]); 182 (*regs)[12] = tswapreg(env->regs[R_EDX]); 183 (*regs)[13] = tswapreg(env->regs[R_ESI]); 184 (*regs)[14] = tswapreg(env->regs[R_EDI]); 185 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 186 (*regs)[16] = tswapreg(env->eip); 187 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 188 (*regs)[18] = tswapreg(env->eflags); 189 (*regs)[19] = tswapreg(env->regs[R_ESP]); 190 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 191 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 192 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 193 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 194 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 195 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 196 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 197 } 198 199 #if ULONG_MAX > UINT32_MAX 200 #define INIT_GUEST_COMMPAGE 201 static bool init_guest_commpage(void) 202 { 203 /* 204 * The vsyscall page is at a high negative address aka kernel space, 205 * which means that we cannot actually allocate it with target_mmap. 206 * We still should be able to use page_set_flags, unless the user 207 * has specified -R reserved_va, which would trigger an assert(). 208 */ 209 if (reserved_va != 0 && 210 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 211 error_report("Cannot allocate vsyscall page"); 212 exit(EXIT_FAILURE); 213 } 214 page_set_flags(TARGET_VSYSCALL_PAGE, 215 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 216 PAGE_EXEC | PAGE_VALID); 217 return true; 218 } 219 #endif 220 #else 221 222 /* 223 * This is used to ensure we don't load something for the wrong architecture. 224 */ 225 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 226 227 /* 228 * These are used to set parameters in the core dumps. 229 */ 230 #define ELF_CLASS ELFCLASS32 231 #define ELF_ARCH EM_386 232 233 #define ELF_PLATFORM get_elf_platform() 234 #define EXSTACK_DEFAULT true 235 236 static const char *get_elf_platform(void) 237 { 238 static char elf_platform[] = "i386"; 239 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 240 if (family > 6) { 241 family = 6; 242 } 243 if (family >= 3) { 244 elf_platform[1] = '0' + family; 245 } 246 return elf_platform; 247 } 248 249 static inline void init_thread(struct target_pt_regs *regs, 250 struct image_info *infop) 251 { 252 regs->esp = infop->start_stack; 253 regs->eip = infop->entry; 254 255 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 256 starts %edx contains a pointer to a function which might be 257 registered using `atexit'. This provides a mean for the 258 dynamic linker to call DT_FINI functions for shared libraries 259 that have been loaded before the code runs. 260 261 A value of 0 tells we have no such handler. */ 262 regs->edx = 0; 263 } 264 265 #define ELF_NREG 17 266 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 267 268 /* 269 * Note that ELF_NREG should be 19 as there should be place for 270 * TRAPNO and ERR "registers" as well but linux doesn't dump 271 * those. 272 * 273 * See linux kernel: arch/x86/include/asm/elf.h 274 */ 275 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 276 { 277 (*regs)[0] = tswapreg(env->regs[R_EBX]); 278 (*regs)[1] = tswapreg(env->regs[R_ECX]); 279 (*regs)[2] = tswapreg(env->regs[R_EDX]); 280 (*regs)[3] = tswapreg(env->regs[R_ESI]); 281 (*regs)[4] = tswapreg(env->regs[R_EDI]); 282 (*regs)[5] = tswapreg(env->regs[R_EBP]); 283 (*regs)[6] = tswapreg(env->regs[R_EAX]); 284 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 285 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 286 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 287 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 288 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 289 (*regs)[12] = tswapreg(env->eip); 290 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 291 (*regs)[14] = tswapreg(env->eflags); 292 (*regs)[15] = tswapreg(env->regs[R_ESP]); 293 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 294 } 295 #endif 296 297 #define USE_ELF_CORE_DUMP 298 #define ELF_EXEC_PAGESIZE 4096 299 300 #endif 301 302 #ifdef TARGET_ARM 303 304 #ifndef TARGET_AARCH64 305 /* 32 bit ARM definitions */ 306 307 #define ELF_ARCH EM_ARM 308 #define ELF_CLASS ELFCLASS32 309 #define EXSTACK_DEFAULT true 310 311 static inline void init_thread(struct target_pt_regs *regs, 312 struct image_info *infop) 313 { 314 abi_long stack = infop->start_stack; 315 memset(regs, 0, sizeof(*regs)); 316 317 regs->uregs[16] = ARM_CPU_MODE_USR; 318 if (infop->entry & 1) { 319 regs->uregs[16] |= CPSR_T; 320 } 321 regs->uregs[15] = infop->entry & 0xfffffffe; 322 regs->uregs[13] = infop->start_stack; 323 /* FIXME - what to for failure of get_user()? */ 324 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 325 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 326 /* XXX: it seems that r0 is zeroed after ! */ 327 regs->uregs[0] = 0; 328 /* For uClinux PIC binaries. */ 329 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 330 regs->uregs[10] = infop->start_data; 331 332 /* Support ARM FDPIC. */ 333 if (info_is_fdpic(infop)) { 334 /* As described in the ABI document, r7 points to the loadmap info 335 * prepared by the kernel. If an interpreter is needed, r8 points 336 * to the interpreter loadmap and r9 points to the interpreter 337 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 338 * r9 points to the main program PT_DYNAMIC info. 339 */ 340 regs->uregs[7] = infop->loadmap_addr; 341 if (infop->interpreter_loadmap_addr) { 342 /* Executable is dynamically loaded. */ 343 regs->uregs[8] = infop->interpreter_loadmap_addr; 344 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 345 } else { 346 regs->uregs[8] = 0; 347 regs->uregs[9] = infop->pt_dynamic_addr; 348 } 349 } 350 } 351 352 #define ELF_NREG 18 353 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 354 355 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 356 { 357 (*regs)[0] = tswapreg(env->regs[0]); 358 (*regs)[1] = tswapreg(env->regs[1]); 359 (*regs)[2] = tswapreg(env->regs[2]); 360 (*regs)[3] = tswapreg(env->regs[3]); 361 (*regs)[4] = tswapreg(env->regs[4]); 362 (*regs)[5] = tswapreg(env->regs[5]); 363 (*regs)[6] = tswapreg(env->regs[6]); 364 (*regs)[7] = tswapreg(env->regs[7]); 365 (*regs)[8] = tswapreg(env->regs[8]); 366 (*regs)[9] = tswapreg(env->regs[9]); 367 (*regs)[10] = tswapreg(env->regs[10]); 368 (*regs)[11] = tswapreg(env->regs[11]); 369 (*regs)[12] = tswapreg(env->regs[12]); 370 (*regs)[13] = tswapreg(env->regs[13]); 371 (*regs)[14] = tswapreg(env->regs[14]); 372 (*regs)[15] = tswapreg(env->regs[15]); 373 374 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 375 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 376 } 377 378 #define USE_ELF_CORE_DUMP 379 #define ELF_EXEC_PAGESIZE 4096 380 381 enum 382 { 383 ARM_HWCAP_ARM_SWP = 1 << 0, 384 ARM_HWCAP_ARM_HALF = 1 << 1, 385 ARM_HWCAP_ARM_THUMB = 1 << 2, 386 ARM_HWCAP_ARM_26BIT = 1 << 3, 387 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 388 ARM_HWCAP_ARM_FPA = 1 << 5, 389 ARM_HWCAP_ARM_VFP = 1 << 6, 390 ARM_HWCAP_ARM_EDSP = 1 << 7, 391 ARM_HWCAP_ARM_JAVA = 1 << 8, 392 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 393 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 394 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 395 ARM_HWCAP_ARM_NEON = 1 << 12, 396 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 397 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 398 ARM_HWCAP_ARM_TLS = 1 << 15, 399 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 400 ARM_HWCAP_ARM_IDIVA = 1 << 17, 401 ARM_HWCAP_ARM_IDIVT = 1 << 18, 402 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 403 ARM_HWCAP_ARM_LPAE = 1 << 20, 404 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 405 ARM_HWCAP_ARM_FPHP = 1 << 22, 406 ARM_HWCAP_ARM_ASIMDHP = 1 << 23, 407 ARM_HWCAP_ARM_ASIMDDP = 1 << 24, 408 ARM_HWCAP_ARM_ASIMDFHM = 1 << 25, 409 ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26, 410 ARM_HWCAP_ARM_I8MM = 1 << 27, 411 }; 412 413 enum { 414 ARM_HWCAP2_ARM_AES = 1 << 0, 415 ARM_HWCAP2_ARM_PMULL = 1 << 1, 416 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 417 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 418 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 419 ARM_HWCAP2_ARM_SB = 1 << 5, 420 ARM_HWCAP2_ARM_SSBS = 1 << 6, 421 }; 422 423 /* The commpage only exists for 32 bit kernels */ 424 425 #define HI_COMMPAGE (intptr_t)0xffff0f00u 426 427 static bool init_guest_commpage(void) 428 { 429 ARMCPU *cpu = ARM_CPU(thread_cpu); 430 abi_ptr commpage; 431 void *want; 432 void *addr; 433 434 /* 435 * M-profile allocates maximum of 2GB address space, so can never 436 * allocate the commpage. Skip it. 437 */ 438 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 439 return true; 440 } 441 442 commpage = HI_COMMPAGE & -qemu_host_page_size; 443 want = g2h_untagged(commpage); 444 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 445 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 446 447 if (addr == MAP_FAILED) { 448 perror("Allocating guest commpage"); 449 exit(EXIT_FAILURE); 450 } 451 if (addr != want) { 452 return false; 453 } 454 455 /* Set kernel helper versions; rest of page is 0. */ 456 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 457 458 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 459 perror("Protecting guest commpage"); 460 exit(EXIT_FAILURE); 461 } 462 463 page_set_flags(commpage, commpage | ~qemu_host_page_mask, 464 PAGE_READ | PAGE_EXEC | PAGE_VALID); 465 return true; 466 } 467 468 #define ELF_HWCAP get_elf_hwcap() 469 #define ELF_HWCAP2 get_elf_hwcap2() 470 471 uint32_t get_elf_hwcap(void) 472 { 473 ARMCPU *cpu = ARM_CPU(thread_cpu); 474 uint32_t hwcaps = 0; 475 476 hwcaps |= ARM_HWCAP_ARM_SWP; 477 hwcaps |= ARM_HWCAP_ARM_HALF; 478 hwcaps |= ARM_HWCAP_ARM_THUMB; 479 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 480 481 /* probe for the extra features */ 482 #define GET_FEATURE(feat, hwcap) \ 483 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 484 485 #define GET_FEATURE_ID(feat, hwcap) \ 486 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 487 488 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 489 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 490 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 491 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 492 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 493 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 494 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 495 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 496 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 497 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 498 499 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 500 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 501 hwcaps |= ARM_HWCAP_ARM_VFPv3; 502 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 503 hwcaps |= ARM_HWCAP_ARM_VFPD32; 504 } else { 505 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 506 } 507 } 508 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 509 /* 510 * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same 511 * isar_feature function for both. The kernel reports them as two hwcaps. 512 */ 513 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP); 514 GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP); 515 GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP); 516 GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM); 517 GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16); 518 GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM); 519 520 return hwcaps; 521 } 522 523 uint32_t get_elf_hwcap2(void) 524 { 525 ARMCPU *cpu = ARM_CPU(thread_cpu); 526 uint32_t hwcaps = 0; 527 528 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 529 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 530 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 531 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 532 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 533 GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB); 534 GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS); 535 return hwcaps; 536 } 537 538 const char *elf_hwcap_str(uint32_t bit) 539 { 540 static const char *hwcap_str[] = { 541 [__builtin_ctz(ARM_HWCAP_ARM_SWP )] = "swp", 542 [__builtin_ctz(ARM_HWCAP_ARM_HALF )] = "half", 543 [__builtin_ctz(ARM_HWCAP_ARM_THUMB )] = "thumb", 544 [__builtin_ctz(ARM_HWCAP_ARM_26BIT )] = "26bit", 545 [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult", 546 [__builtin_ctz(ARM_HWCAP_ARM_FPA )] = "fpa", 547 [__builtin_ctz(ARM_HWCAP_ARM_VFP )] = "vfp", 548 [__builtin_ctz(ARM_HWCAP_ARM_EDSP )] = "edsp", 549 [__builtin_ctz(ARM_HWCAP_ARM_JAVA )] = "java", 550 [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT )] = "iwmmxt", 551 [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH )] = "crunch", 552 [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE )] = "thumbee", 553 [__builtin_ctz(ARM_HWCAP_ARM_NEON )] = "neon", 554 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3 )] = "vfpv3", 555 [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16", 556 [__builtin_ctz(ARM_HWCAP_ARM_TLS )] = "tls", 557 [__builtin_ctz(ARM_HWCAP_ARM_VFPv4 )] = "vfpv4", 558 [__builtin_ctz(ARM_HWCAP_ARM_IDIVA )] = "idiva", 559 [__builtin_ctz(ARM_HWCAP_ARM_IDIVT )] = "idivt", 560 [__builtin_ctz(ARM_HWCAP_ARM_VFPD32 )] = "vfpd32", 561 [__builtin_ctz(ARM_HWCAP_ARM_LPAE )] = "lpae", 562 [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM )] = "evtstrm", 563 [__builtin_ctz(ARM_HWCAP_ARM_FPHP )] = "fphp", 564 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP )] = "asimdhp", 565 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP )] = "asimddp", 566 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm", 567 [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16", 568 [__builtin_ctz(ARM_HWCAP_ARM_I8MM )] = "i8mm", 569 }; 570 571 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 572 } 573 574 const char *elf_hwcap2_str(uint32_t bit) 575 { 576 static const char *hwcap_str[] = { 577 [__builtin_ctz(ARM_HWCAP2_ARM_AES )] = "aes", 578 [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull", 579 [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1", 580 [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2", 581 [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32", 582 [__builtin_ctz(ARM_HWCAP2_ARM_SB )] = "sb", 583 [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs", 584 }; 585 586 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 587 } 588 589 #undef GET_FEATURE 590 #undef GET_FEATURE_ID 591 592 #define ELF_PLATFORM get_elf_platform() 593 594 static const char *get_elf_platform(void) 595 { 596 CPUARMState *env = cpu_env(thread_cpu); 597 598 #if TARGET_BIG_ENDIAN 599 # define END "b" 600 #else 601 # define END "l" 602 #endif 603 604 if (arm_feature(env, ARM_FEATURE_V8)) { 605 return "v8" END; 606 } else if (arm_feature(env, ARM_FEATURE_V7)) { 607 if (arm_feature(env, ARM_FEATURE_M)) { 608 return "v7m" END; 609 } else { 610 return "v7" END; 611 } 612 } else if (arm_feature(env, ARM_FEATURE_V6)) { 613 return "v6" END; 614 } else if (arm_feature(env, ARM_FEATURE_V5)) { 615 return "v5" END; 616 } else { 617 return "v4" END; 618 } 619 620 #undef END 621 } 622 623 #else 624 /* 64 bit ARM definitions */ 625 626 #define ELF_ARCH EM_AARCH64 627 #define ELF_CLASS ELFCLASS64 628 #if TARGET_BIG_ENDIAN 629 # define ELF_PLATFORM "aarch64_be" 630 #else 631 # define ELF_PLATFORM "aarch64" 632 #endif 633 634 static inline void init_thread(struct target_pt_regs *regs, 635 struct image_info *infop) 636 { 637 abi_long stack = infop->start_stack; 638 memset(regs, 0, sizeof(*regs)); 639 640 regs->pc = infop->entry & ~0x3ULL; 641 regs->sp = stack; 642 } 643 644 #define ELF_NREG 34 645 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 646 647 static void elf_core_copy_regs(target_elf_gregset_t *regs, 648 const CPUARMState *env) 649 { 650 int i; 651 652 for (i = 0; i < 32; i++) { 653 (*regs)[i] = tswapreg(env->xregs[i]); 654 } 655 (*regs)[32] = tswapreg(env->pc); 656 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 657 } 658 659 #define USE_ELF_CORE_DUMP 660 #define ELF_EXEC_PAGESIZE 4096 661 662 enum { 663 ARM_HWCAP_A64_FP = 1 << 0, 664 ARM_HWCAP_A64_ASIMD = 1 << 1, 665 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 666 ARM_HWCAP_A64_AES = 1 << 3, 667 ARM_HWCAP_A64_PMULL = 1 << 4, 668 ARM_HWCAP_A64_SHA1 = 1 << 5, 669 ARM_HWCAP_A64_SHA2 = 1 << 6, 670 ARM_HWCAP_A64_CRC32 = 1 << 7, 671 ARM_HWCAP_A64_ATOMICS = 1 << 8, 672 ARM_HWCAP_A64_FPHP = 1 << 9, 673 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 674 ARM_HWCAP_A64_CPUID = 1 << 11, 675 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 676 ARM_HWCAP_A64_JSCVT = 1 << 13, 677 ARM_HWCAP_A64_FCMA = 1 << 14, 678 ARM_HWCAP_A64_LRCPC = 1 << 15, 679 ARM_HWCAP_A64_DCPOP = 1 << 16, 680 ARM_HWCAP_A64_SHA3 = 1 << 17, 681 ARM_HWCAP_A64_SM3 = 1 << 18, 682 ARM_HWCAP_A64_SM4 = 1 << 19, 683 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 684 ARM_HWCAP_A64_SHA512 = 1 << 21, 685 ARM_HWCAP_A64_SVE = 1 << 22, 686 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 687 ARM_HWCAP_A64_DIT = 1 << 24, 688 ARM_HWCAP_A64_USCAT = 1 << 25, 689 ARM_HWCAP_A64_ILRCPC = 1 << 26, 690 ARM_HWCAP_A64_FLAGM = 1 << 27, 691 ARM_HWCAP_A64_SSBS = 1 << 28, 692 ARM_HWCAP_A64_SB = 1 << 29, 693 ARM_HWCAP_A64_PACA = 1 << 30, 694 ARM_HWCAP_A64_PACG = 1UL << 31, 695 696 ARM_HWCAP2_A64_DCPODP = 1 << 0, 697 ARM_HWCAP2_A64_SVE2 = 1 << 1, 698 ARM_HWCAP2_A64_SVEAES = 1 << 2, 699 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 700 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 701 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 702 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 703 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 704 ARM_HWCAP2_A64_FRINT = 1 << 8, 705 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 706 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 707 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 708 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 709 ARM_HWCAP2_A64_I8MM = 1 << 13, 710 ARM_HWCAP2_A64_BF16 = 1 << 14, 711 ARM_HWCAP2_A64_DGH = 1 << 15, 712 ARM_HWCAP2_A64_RNG = 1 << 16, 713 ARM_HWCAP2_A64_BTI = 1 << 17, 714 ARM_HWCAP2_A64_MTE = 1 << 18, 715 ARM_HWCAP2_A64_ECV = 1 << 19, 716 ARM_HWCAP2_A64_AFP = 1 << 20, 717 ARM_HWCAP2_A64_RPRES = 1 << 21, 718 ARM_HWCAP2_A64_MTE3 = 1 << 22, 719 ARM_HWCAP2_A64_SME = 1 << 23, 720 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 721 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 722 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 723 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 724 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 725 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 726 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 727 ARM_HWCAP2_A64_WFXT = 1ULL << 31, 728 ARM_HWCAP2_A64_EBF16 = 1ULL << 32, 729 ARM_HWCAP2_A64_SVE_EBF16 = 1ULL << 33, 730 ARM_HWCAP2_A64_CSSC = 1ULL << 34, 731 ARM_HWCAP2_A64_RPRFM = 1ULL << 35, 732 ARM_HWCAP2_A64_SVE2P1 = 1ULL << 36, 733 ARM_HWCAP2_A64_SME2 = 1ULL << 37, 734 ARM_HWCAP2_A64_SME2P1 = 1ULL << 38, 735 ARM_HWCAP2_A64_SME_I16I32 = 1ULL << 39, 736 ARM_HWCAP2_A64_SME_BI32I32 = 1ULL << 40, 737 ARM_HWCAP2_A64_SME_B16B16 = 1ULL << 41, 738 ARM_HWCAP2_A64_SME_F16F16 = 1ULL << 42, 739 ARM_HWCAP2_A64_MOPS = 1ULL << 43, 740 ARM_HWCAP2_A64_HBC = 1ULL << 44, 741 }; 742 743 #define ELF_HWCAP get_elf_hwcap() 744 #define ELF_HWCAP2 get_elf_hwcap2() 745 746 #define GET_FEATURE_ID(feat, hwcap) \ 747 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 748 749 uint32_t get_elf_hwcap(void) 750 { 751 ARMCPU *cpu = ARM_CPU(thread_cpu); 752 uint32_t hwcaps = 0; 753 754 hwcaps |= ARM_HWCAP_A64_FP; 755 hwcaps |= ARM_HWCAP_A64_ASIMD; 756 hwcaps |= ARM_HWCAP_A64_CPUID; 757 758 /* probe for the extra features */ 759 760 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 761 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 762 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 763 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 764 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 765 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 766 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 767 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 768 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 769 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 770 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 771 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 772 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 773 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 774 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 775 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 776 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 777 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 778 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 779 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 780 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 781 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 782 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 783 784 return hwcaps; 785 } 786 787 uint32_t get_elf_hwcap2(void) 788 { 789 ARMCPU *cpu = ARM_CPU(thread_cpu); 790 uint32_t hwcaps = 0; 791 792 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 793 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 794 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 795 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 796 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 797 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 798 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 799 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 800 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 801 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 802 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 803 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 804 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 805 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 806 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 807 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 808 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 809 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 810 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 811 ARM_HWCAP2_A64_SME_F32F32 | 812 ARM_HWCAP2_A64_SME_B16F32 | 813 ARM_HWCAP2_A64_SME_F16F32 | 814 ARM_HWCAP2_A64_SME_I8I32)); 815 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 816 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 817 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 818 GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC); 819 GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS); 820 821 return hwcaps; 822 } 823 824 const char *elf_hwcap_str(uint32_t bit) 825 { 826 static const char *hwcap_str[] = { 827 [__builtin_ctz(ARM_HWCAP_A64_FP )] = "fp", 828 [__builtin_ctz(ARM_HWCAP_A64_ASIMD )] = "asimd", 829 [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm", 830 [__builtin_ctz(ARM_HWCAP_A64_AES )] = "aes", 831 [__builtin_ctz(ARM_HWCAP_A64_PMULL )] = "pmull", 832 [__builtin_ctz(ARM_HWCAP_A64_SHA1 )] = "sha1", 833 [__builtin_ctz(ARM_HWCAP_A64_SHA2 )] = "sha2", 834 [__builtin_ctz(ARM_HWCAP_A64_CRC32 )] = "crc32", 835 [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics", 836 [__builtin_ctz(ARM_HWCAP_A64_FPHP )] = "fphp", 837 [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp", 838 [__builtin_ctz(ARM_HWCAP_A64_CPUID )] = "cpuid", 839 [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm", 840 [__builtin_ctz(ARM_HWCAP_A64_JSCVT )] = "jscvt", 841 [__builtin_ctz(ARM_HWCAP_A64_FCMA )] = "fcma", 842 [__builtin_ctz(ARM_HWCAP_A64_LRCPC )] = "lrcpc", 843 [__builtin_ctz(ARM_HWCAP_A64_DCPOP )] = "dcpop", 844 [__builtin_ctz(ARM_HWCAP_A64_SHA3 )] = "sha3", 845 [__builtin_ctz(ARM_HWCAP_A64_SM3 )] = "sm3", 846 [__builtin_ctz(ARM_HWCAP_A64_SM4 )] = "sm4", 847 [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp", 848 [__builtin_ctz(ARM_HWCAP_A64_SHA512 )] = "sha512", 849 [__builtin_ctz(ARM_HWCAP_A64_SVE )] = "sve", 850 [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm", 851 [__builtin_ctz(ARM_HWCAP_A64_DIT )] = "dit", 852 [__builtin_ctz(ARM_HWCAP_A64_USCAT )] = "uscat", 853 [__builtin_ctz(ARM_HWCAP_A64_ILRCPC )] = "ilrcpc", 854 [__builtin_ctz(ARM_HWCAP_A64_FLAGM )] = "flagm", 855 [__builtin_ctz(ARM_HWCAP_A64_SSBS )] = "ssbs", 856 [__builtin_ctz(ARM_HWCAP_A64_SB )] = "sb", 857 [__builtin_ctz(ARM_HWCAP_A64_PACA )] = "paca", 858 [__builtin_ctz(ARM_HWCAP_A64_PACG )] = "pacg", 859 }; 860 861 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 862 } 863 864 const char *elf_hwcap2_str(uint32_t bit) 865 { 866 static const char *hwcap_str[] = { 867 [__builtin_ctz(ARM_HWCAP2_A64_DCPODP )] = "dcpodp", 868 [__builtin_ctz(ARM_HWCAP2_A64_SVE2 )] = "sve2", 869 [__builtin_ctz(ARM_HWCAP2_A64_SVEAES )] = "sveaes", 870 [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL )] = "svepmull", 871 [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM )] = "svebitperm", 872 [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3 )] = "svesha3", 873 [__builtin_ctz(ARM_HWCAP2_A64_SVESM4 )] = "svesm4", 874 [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2 )] = "flagm2", 875 [__builtin_ctz(ARM_HWCAP2_A64_FRINT )] = "frint", 876 [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM )] = "svei8mm", 877 [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM )] = "svef32mm", 878 [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM )] = "svef64mm", 879 [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16 )] = "svebf16", 880 [__builtin_ctz(ARM_HWCAP2_A64_I8MM )] = "i8mm", 881 [__builtin_ctz(ARM_HWCAP2_A64_BF16 )] = "bf16", 882 [__builtin_ctz(ARM_HWCAP2_A64_DGH )] = "dgh", 883 [__builtin_ctz(ARM_HWCAP2_A64_RNG )] = "rng", 884 [__builtin_ctz(ARM_HWCAP2_A64_BTI )] = "bti", 885 [__builtin_ctz(ARM_HWCAP2_A64_MTE )] = "mte", 886 [__builtin_ctz(ARM_HWCAP2_A64_ECV )] = "ecv", 887 [__builtin_ctz(ARM_HWCAP2_A64_AFP )] = "afp", 888 [__builtin_ctz(ARM_HWCAP2_A64_RPRES )] = "rpres", 889 [__builtin_ctz(ARM_HWCAP2_A64_MTE3 )] = "mte3", 890 [__builtin_ctz(ARM_HWCAP2_A64_SME )] = "sme", 891 [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64 )] = "smei16i64", 892 [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64 )] = "smef64f64", 893 [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32 )] = "smei8i32", 894 [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32 )] = "smef16f32", 895 [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32 )] = "smeb16f32", 896 [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32 )] = "smef32f32", 897 [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64 )] = "smefa64", 898 [__builtin_ctz(ARM_HWCAP2_A64_WFXT )] = "wfxt", 899 [__builtin_ctzll(ARM_HWCAP2_A64_EBF16 )] = "ebf16", 900 [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16 )] = "sveebf16", 901 [__builtin_ctzll(ARM_HWCAP2_A64_CSSC )] = "cssc", 902 [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM )] = "rprfm", 903 [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1 )] = "sve2p1", 904 [__builtin_ctzll(ARM_HWCAP2_A64_SME2 )] = "sme2", 905 [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1 )] = "sme2p1", 906 [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32", 907 [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32", 908 [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16", 909 [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16", 910 [__builtin_ctzll(ARM_HWCAP2_A64_MOPS )] = "mops", 911 [__builtin_ctzll(ARM_HWCAP2_A64_HBC )] = "hbc", 912 }; 913 914 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 915 } 916 917 #undef GET_FEATURE_ID 918 919 #endif /* not TARGET_AARCH64 */ 920 #endif /* TARGET_ARM */ 921 922 #ifdef TARGET_SPARC 923 #ifdef TARGET_SPARC64 924 925 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 926 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 927 #ifndef TARGET_ABI32 928 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 929 #else 930 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 931 #endif 932 933 #define ELF_CLASS ELFCLASS64 934 #define ELF_ARCH EM_SPARCV9 935 #else 936 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 937 | HWCAP_SPARC_MULDIV) 938 #define ELF_CLASS ELFCLASS32 939 #define ELF_ARCH EM_SPARC 940 #endif /* TARGET_SPARC64 */ 941 942 static inline void init_thread(struct target_pt_regs *regs, 943 struct image_info *infop) 944 { 945 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 946 regs->pc = infop->entry; 947 regs->npc = regs->pc + 4; 948 regs->y = 0; 949 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 950 - TARGET_STACK_BIAS); 951 } 952 #endif /* TARGET_SPARC */ 953 954 #ifdef TARGET_PPC 955 956 #define ELF_MACHINE PPC_ELF_MACHINE 957 958 #if defined(TARGET_PPC64) 959 960 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 961 962 #define ELF_CLASS ELFCLASS64 963 964 #else 965 966 #define ELF_CLASS ELFCLASS32 967 #define EXSTACK_DEFAULT true 968 969 #endif 970 971 #define ELF_ARCH EM_PPC 972 973 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 974 See arch/powerpc/include/asm/cputable.h. */ 975 enum { 976 QEMU_PPC_FEATURE_32 = 0x80000000, 977 QEMU_PPC_FEATURE_64 = 0x40000000, 978 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 979 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 980 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 981 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 982 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 983 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 984 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 985 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 986 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 987 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 988 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 989 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 990 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 991 QEMU_PPC_FEATURE_CELL = 0x00010000, 992 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 993 QEMU_PPC_FEATURE_SMT = 0x00004000, 994 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 995 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 996 QEMU_PPC_FEATURE_PA6T = 0x00000800, 997 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 998 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 999 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 1000 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 1001 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 1002 1003 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 1004 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 1005 1006 /* Feature definitions in AT_HWCAP2. */ 1007 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 1008 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 1009 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 1010 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 1011 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 1012 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 1013 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 1014 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 1015 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 1016 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 1017 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 1018 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 1019 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 1020 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 1021 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 1022 }; 1023 1024 #define ELF_HWCAP get_elf_hwcap() 1025 1026 static uint32_t get_elf_hwcap(void) 1027 { 1028 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1029 uint32_t features = 0; 1030 1031 /* We don't have to be terribly complete here; the high points are 1032 Altivec/FP/SPE support. Anything else is just a bonus. */ 1033 #define GET_FEATURE(flag, feature) \ 1034 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1035 #define GET_FEATURE2(flags, feature) \ 1036 do { \ 1037 if ((cpu->env.insns_flags2 & flags) == flags) { \ 1038 features |= feature; \ 1039 } \ 1040 } while (0) 1041 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 1042 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 1043 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 1044 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 1045 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 1046 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 1047 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 1048 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 1049 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 1050 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 1051 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 1052 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 1053 QEMU_PPC_FEATURE_ARCH_2_06); 1054 #undef GET_FEATURE 1055 #undef GET_FEATURE2 1056 1057 return features; 1058 } 1059 1060 #define ELF_HWCAP2 get_elf_hwcap2() 1061 1062 static uint32_t get_elf_hwcap2(void) 1063 { 1064 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 1065 uint32_t features = 0; 1066 1067 #define GET_FEATURE(flag, feature) \ 1068 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 1069 #define GET_FEATURE2(flag, feature) \ 1070 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 1071 1072 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 1073 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 1074 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 1075 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 1076 QEMU_PPC_FEATURE2_VEC_CRYPTO); 1077 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 1078 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 1079 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 1080 QEMU_PPC_FEATURE2_MMA); 1081 1082 #undef GET_FEATURE 1083 #undef GET_FEATURE2 1084 1085 return features; 1086 } 1087 1088 /* 1089 * The requirements here are: 1090 * - keep the final alignment of sp (sp & 0xf) 1091 * - make sure the 32-bit value at the first 16 byte aligned position of 1092 * AUXV is greater than 16 for glibc compatibility. 1093 * AT_IGNOREPPC is used for that. 1094 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 1095 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 1096 */ 1097 #define DLINFO_ARCH_ITEMS 5 1098 #define ARCH_DLINFO \ 1099 do { \ 1100 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 1101 /* \ 1102 * Handle glibc compatibility: these magic entries must \ 1103 * be at the lowest addresses in the final auxv. \ 1104 */ \ 1105 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1106 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 1107 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 1108 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 1109 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 1110 } while (0) 1111 1112 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 1113 { 1114 _regs->gpr[1] = infop->start_stack; 1115 #if defined(TARGET_PPC64) 1116 if (get_ppc64_abi(infop) < 2) { 1117 uint64_t val; 1118 get_user_u64(val, infop->entry + 8); 1119 _regs->gpr[2] = val + infop->load_bias; 1120 get_user_u64(val, infop->entry); 1121 infop->entry = val + infop->load_bias; 1122 } else { 1123 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 1124 } 1125 #endif 1126 _regs->nip = infop->entry; 1127 } 1128 1129 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 1130 #define ELF_NREG 48 1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1132 1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 1134 { 1135 int i; 1136 target_ulong ccr = 0; 1137 1138 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 1139 (*regs)[i] = tswapreg(env->gpr[i]); 1140 } 1141 1142 (*regs)[32] = tswapreg(env->nip); 1143 (*regs)[33] = tswapreg(env->msr); 1144 (*regs)[35] = tswapreg(env->ctr); 1145 (*regs)[36] = tswapreg(env->lr); 1146 (*regs)[37] = tswapreg(cpu_read_xer(env)); 1147 1148 ccr = ppc_get_cr(env); 1149 (*regs)[38] = tswapreg(ccr); 1150 } 1151 1152 #define USE_ELF_CORE_DUMP 1153 #define ELF_EXEC_PAGESIZE 4096 1154 1155 #endif 1156 1157 #ifdef TARGET_LOONGARCH64 1158 1159 #define ELF_CLASS ELFCLASS64 1160 #define ELF_ARCH EM_LOONGARCH 1161 #define EXSTACK_DEFAULT true 1162 1163 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 1164 1165 static inline void init_thread(struct target_pt_regs *regs, 1166 struct image_info *infop) 1167 { 1168 /*Set crmd PG,DA = 1,0 */ 1169 regs->csr.crmd = 2 << 3; 1170 regs->csr.era = infop->entry; 1171 regs->regs[3] = infop->start_stack; 1172 } 1173 1174 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1175 #define ELF_NREG 45 1176 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1177 1178 enum { 1179 TARGET_EF_R0 = 0, 1180 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1181 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1182 }; 1183 1184 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1185 const CPULoongArchState *env) 1186 { 1187 int i; 1188 1189 (*regs)[TARGET_EF_R0] = 0; 1190 1191 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1192 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1193 } 1194 1195 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1196 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1197 } 1198 1199 #define USE_ELF_CORE_DUMP 1200 #define ELF_EXEC_PAGESIZE 4096 1201 1202 #define ELF_HWCAP get_elf_hwcap() 1203 1204 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1205 enum { 1206 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1207 HWCAP_LOONGARCH_LAM = (1 << 1), 1208 HWCAP_LOONGARCH_UAL = (1 << 2), 1209 HWCAP_LOONGARCH_FPU = (1 << 3), 1210 HWCAP_LOONGARCH_LSX = (1 << 4), 1211 HWCAP_LOONGARCH_LASX = (1 << 5), 1212 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1213 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1214 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1215 HWCAP_LOONGARCH_LVZ = (1 << 9), 1216 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1217 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1218 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1219 }; 1220 1221 static uint32_t get_elf_hwcap(void) 1222 { 1223 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1224 uint32_t hwcaps = 0; 1225 1226 hwcaps |= HWCAP_LOONGARCH_CRC32; 1227 1228 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1229 hwcaps |= HWCAP_LOONGARCH_UAL; 1230 } 1231 1232 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1233 hwcaps |= HWCAP_LOONGARCH_FPU; 1234 } 1235 1236 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1237 hwcaps |= HWCAP_LOONGARCH_LAM; 1238 } 1239 1240 return hwcaps; 1241 } 1242 1243 #define ELF_PLATFORM "loongarch" 1244 1245 #endif /* TARGET_LOONGARCH64 */ 1246 1247 #ifdef TARGET_MIPS 1248 1249 #ifdef TARGET_MIPS64 1250 #define ELF_CLASS ELFCLASS64 1251 #else 1252 #define ELF_CLASS ELFCLASS32 1253 #endif 1254 #define ELF_ARCH EM_MIPS 1255 #define EXSTACK_DEFAULT true 1256 1257 #ifdef TARGET_ABI_MIPSN32 1258 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1259 #else 1260 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1261 #endif 1262 1263 #define ELF_BASE_PLATFORM get_elf_base_platform() 1264 1265 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1266 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1267 { return _base_platform; } } while (0) 1268 1269 static const char *get_elf_base_platform(void) 1270 { 1271 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1272 1273 /* 64 bit ISAs goes first */ 1274 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1275 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1276 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1277 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1278 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1279 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1280 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1281 1282 /* 32 bit ISAs */ 1283 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1284 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1285 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1286 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1287 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1288 1289 /* Fallback */ 1290 return "mips"; 1291 } 1292 #undef MATCH_PLATFORM_INSN 1293 1294 static inline void init_thread(struct target_pt_regs *regs, 1295 struct image_info *infop) 1296 { 1297 regs->cp0_status = 2 << CP0St_KSU; 1298 regs->cp0_epc = infop->entry; 1299 regs->regs[29] = infop->start_stack; 1300 } 1301 1302 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1303 #define ELF_NREG 45 1304 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1305 1306 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1307 enum { 1308 #ifdef TARGET_MIPS64 1309 TARGET_EF_R0 = 0, 1310 #else 1311 TARGET_EF_R0 = 6, 1312 #endif 1313 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1314 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1315 TARGET_EF_LO = TARGET_EF_R0 + 32, 1316 TARGET_EF_HI = TARGET_EF_R0 + 33, 1317 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1318 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1319 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1320 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1321 }; 1322 1323 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1325 { 1326 int i; 1327 1328 for (i = 0; i < TARGET_EF_R0; i++) { 1329 (*regs)[i] = 0; 1330 } 1331 (*regs)[TARGET_EF_R0] = 0; 1332 1333 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1334 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1335 } 1336 1337 (*regs)[TARGET_EF_R26] = 0; 1338 (*regs)[TARGET_EF_R27] = 0; 1339 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1340 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1341 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1342 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1343 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1344 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1345 } 1346 1347 #define USE_ELF_CORE_DUMP 1348 #define ELF_EXEC_PAGESIZE 4096 1349 1350 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1351 enum { 1352 HWCAP_MIPS_R6 = (1 << 0), 1353 HWCAP_MIPS_MSA = (1 << 1), 1354 HWCAP_MIPS_CRC32 = (1 << 2), 1355 HWCAP_MIPS_MIPS16 = (1 << 3), 1356 HWCAP_MIPS_MDMX = (1 << 4), 1357 HWCAP_MIPS_MIPS3D = (1 << 5), 1358 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1359 HWCAP_MIPS_DSP = (1 << 7), 1360 HWCAP_MIPS_DSP2 = (1 << 8), 1361 HWCAP_MIPS_DSP3 = (1 << 9), 1362 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1363 HWCAP_LOONGSON_MMI = (1 << 11), 1364 HWCAP_LOONGSON_EXT = (1 << 12), 1365 HWCAP_LOONGSON_EXT2 = (1 << 13), 1366 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1367 }; 1368 1369 #define ELF_HWCAP get_elf_hwcap() 1370 1371 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1372 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1373 1374 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1375 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1376 1377 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1378 do { \ 1379 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1380 hwcaps |= _hwcap; \ 1381 } \ 1382 } while (0) 1383 1384 static uint32_t get_elf_hwcap(void) 1385 { 1386 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1387 uint32_t hwcaps = 0; 1388 1389 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1390 2, HWCAP_MIPS_R6); 1391 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1392 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1393 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1394 1395 return hwcaps; 1396 } 1397 1398 #undef GET_FEATURE_REG_EQU 1399 #undef GET_FEATURE_REG_SET 1400 #undef GET_FEATURE_INSN 1401 1402 #endif /* TARGET_MIPS */ 1403 1404 #ifdef TARGET_MICROBLAZE 1405 1406 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1407 1408 #define ELF_CLASS ELFCLASS32 1409 #define ELF_ARCH EM_MICROBLAZE 1410 1411 static inline void init_thread(struct target_pt_regs *regs, 1412 struct image_info *infop) 1413 { 1414 regs->pc = infop->entry; 1415 regs->r1 = infop->start_stack; 1416 1417 } 1418 1419 #define ELF_EXEC_PAGESIZE 4096 1420 1421 #define USE_ELF_CORE_DUMP 1422 #define ELF_NREG 38 1423 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1424 1425 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1426 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1427 { 1428 int i, pos = 0; 1429 1430 for (i = 0; i < 32; i++) { 1431 (*regs)[pos++] = tswapreg(env->regs[i]); 1432 } 1433 1434 (*regs)[pos++] = tswapreg(env->pc); 1435 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1436 (*regs)[pos++] = 0; 1437 (*regs)[pos++] = tswapreg(env->ear); 1438 (*regs)[pos++] = 0; 1439 (*regs)[pos++] = tswapreg(env->esr); 1440 } 1441 1442 #endif /* TARGET_MICROBLAZE */ 1443 1444 #ifdef TARGET_NIOS2 1445 1446 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1447 1448 #define ELF_CLASS ELFCLASS32 1449 #define ELF_ARCH EM_ALTERA_NIOS2 1450 1451 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1452 { 1453 regs->ea = infop->entry; 1454 regs->sp = infop->start_stack; 1455 } 1456 1457 #define LO_COMMPAGE TARGET_PAGE_SIZE 1458 1459 static bool init_guest_commpage(void) 1460 { 1461 static const uint8_t kuser_page[4 + 2 * 64] = { 1462 /* __kuser_helper_version */ 1463 [0x00] = 0x02, 0x00, 0x00, 0x00, 1464 1465 /* __kuser_cmpxchg */ 1466 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1467 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1468 1469 /* __kuser_sigtramp */ 1470 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1471 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1472 }; 1473 1474 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1475 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1476 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1477 1478 if (addr == MAP_FAILED) { 1479 perror("Allocating guest commpage"); 1480 exit(EXIT_FAILURE); 1481 } 1482 if (addr != want) { 1483 return false; 1484 } 1485 1486 memcpy(addr, kuser_page, sizeof(kuser_page)); 1487 1488 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1489 perror("Protecting guest commpage"); 1490 exit(EXIT_FAILURE); 1491 } 1492 1493 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1494 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1495 return true; 1496 } 1497 1498 #define ELF_EXEC_PAGESIZE 4096 1499 1500 #define USE_ELF_CORE_DUMP 1501 #define ELF_NREG 49 1502 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1503 1504 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1505 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1506 const CPUNios2State *env) 1507 { 1508 int i; 1509 1510 (*regs)[0] = -1; 1511 for (i = 1; i < 8; i++) /* r0-r7 */ 1512 (*regs)[i] = tswapreg(env->regs[i + 7]); 1513 1514 for (i = 8; i < 16; i++) /* r8-r15 */ 1515 (*regs)[i] = tswapreg(env->regs[i - 8]); 1516 1517 for (i = 16; i < 24; i++) /* r16-r23 */ 1518 (*regs)[i] = tswapreg(env->regs[i + 7]); 1519 (*regs)[24] = -1; /* R_ET */ 1520 (*regs)[25] = -1; /* R_BT */ 1521 (*regs)[26] = tswapreg(env->regs[R_GP]); 1522 (*regs)[27] = tswapreg(env->regs[R_SP]); 1523 (*regs)[28] = tswapreg(env->regs[R_FP]); 1524 (*regs)[29] = tswapreg(env->regs[R_EA]); 1525 (*regs)[30] = -1; /* R_SSTATUS */ 1526 (*regs)[31] = tswapreg(env->regs[R_RA]); 1527 1528 (*regs)[32] = tswapreg(env->pc); 1529 1530 (*regs)[33] = -1; /* R_STATUS */ 1531 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1532 1533 for (i = 35; i < 49; i++) /* ... */ 1534 (*regs)[i] = -1; 1535 } 1536 1537 #endif /* TARGET_NIOS2 */ 1538 1539 #ifdef TARGET_OPENRISC 1540 1541 #define ELF_ARCH EM_OPENRISC 1542 #define ELF_CLASS ELFCLASS32 1543 #define ELF_DATA ELFDATA2MSB 1544 1545 static inline void init_thread(struct target_pt_regs *regs, 1546 struct image_info *infop) 1547 { 1548 regs->pc = infop->entry; 1549 regs->gpr[1] = infop->start_stack; 1550 } 1551 1552 #define USE_ELF_CORE_DUMP 1553 #define ELF_EXEC_PAGESIZE 8192 1554 1555 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1556 #define ELF_NREG 34 /* gprs and pc, sr */ 1557 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1558 1559 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1560 const CPUOpenRISCState *env) 1561 { 1562 int i; 1563 1564 for (i = 0; i < 32; i++) { 1565 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1566 } 1567 (*regs)[32] = tswapreg(env->pc); 1568 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1569 } 1570 #define ELF_HWCAP 0 1571 #define ELF_PLATFORM NULL 1572 1573 #endif /* TARGET_OPENRISC */ 1574 1575 #ifdef TARGET_SH4 1576 1577 #define ELF_CLASS ELFCLASS32 1578 #define ELF_ARCH EM_SH 1579 1580 static inline void init_thread(struct target_pt_regs *regs, 1581 struct image_info *infop) 1582 { 1583 /* Check other registers XXXXX */ 1584 regs->pc = infop->entry; 1585 regs->regs[15] = infop->start_stack; 1586 } 1587 1588 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1589 #define ELF_NREG 23 1590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1591 1592 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1593 enum { 1594 TARGET_REG_PC = 16, 1595 TARGET_REG_PR = 17, 1596 TARGET_REG_SR = 18, 1597 TARGET_REG_GBR = 19, 1598 TARGET_REG_MACH = 20, 1599 TARGET_REG_MACL = 21, 1600 TARGET_REG_SYSCALL = 22 1601 }; 1602 1603 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1604 const CPUSH4State *env) 1605 { 1606 int i; 1607 1608 for (i = 0; i < 16; i++) { 1609 (*regs)[i] = tswapreg(env->gregs[i]); 1610 } 1611 1612 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1613 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1614 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1615 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1616 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1617 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1618 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1619 } 1620 1621 #define USE_ELF_CORE_DUMP 1622 #define ELF_EXEC_PAGESIZE 4096 1623 1624 enum { 1625 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1626 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1627 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1628 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1629 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1630 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1631 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1632 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1633 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1634 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1635 }; 1636 1637 #define ELF_HWCAP get_elf_hwcap() 1638 1639 static uint32_t get_elf_hwcap(void) 1640 { 1641 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1642 uint32_t hwcap = 0; 1643 1644 hwcap |= SH_CPU_HAS_FPU; 1645 1646 if (cpu->env.features & SH_FEATURE_SH4A) { 1647 hwcap |= SH_CPU_HAS_LLSC; 1648 } 1649 1650 return hwcap; 1651 } 1652 1653 #endif 1654 1655 #ifdef TARGET_CRIS 1656 1657 #define ELF_CLASS ELFCLASS32 1658 #define ELF_ARCH EM_CRIS 1659 1660 static inline void init_thread(struct target_pt_regs *regs, 1661 struct image_info *infop) 1662 { 1663 regs->erp = infop->entry; 1664 } 1665 1666 #define ELF_EXEC_PAGESIZE 8192 1667 1668 #endif 1669 1670 #ifdef TARGET_M68K 1671 1672 #define ELF_CLASS ELFCLASS32 1673 #define ELF_ARCH EM_68K 1674 1675 /* ??? Does this need to do anything? 1676 #define ELF_PLAT_INIT(_r) */ 1677 1678 static inline void init_thread(struct target_pt_regs *regs, 1679 struct image_info *infop) 1680 { 1681 regs->usp = infop->start_stack; 1682 regs->sr = 0; 1683 regs->pc = infop->entry; 1684 } 1685 1686 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1687 #define ELF_NREG 20 1688 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1689 1690 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1691 { 1692 (*regs)[0] = tswapreg(env->dregs[1]); 1693 (*regs)[1] = tswapreg(env->dregs[2]); 1694 (*regs)[2] = tswapreg(env->dregs[3]); 1695 (*regs)[3] = tswapreg(env->dregs[4]); 1696 (*regs)[4] = tswapreg(env->dregs[5]); 1697 (*regs)[5] = tswapreg(env->dregs[6]); 1698 (*regs)[6] = tswapreg(env->dregs[7]); 1699 (*regs)[7] = tswapreg(env->aregs[0]); 1700 (*regs)[8] = tswapreg(env->aregs[1]); 1701 (*regs)[9] = tswapreg(env->aregs[2]); 1702 (*regs)[10] = tswapreg(env->aregs[3]); 1703 (*regs)[11] = tswapreg(env->aregs[4]); 1704 (*regs)[12] = tswapreg(env->aregs[5]); 1705 (*regs)[13] = tswapreg(env->aregs[6]); 1706 (*regs)[14] = tswapreg(env->dregs[0]); 1707 (*regs)[15] = tswapreg(env->aregs[7]); 1708 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1709 (*regs)[17] = tswapreg(env->sr); 1710 (*regs)[18] = tswapreg(env->pc); 1711 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1712 } 1713 1714 #define USE_ELF_CORE_DUMP 1715 #define ELF_EXEC_PAGESIZE 8192 1716 1717 #endif 1718 1719 #ifdef TARGET_ALPHA 1720 1721 #define ELF_CLASS ELFCLASS64 1722 #define ELF_ARCH EM_ALPHA 1723 1724 static inline void init_thread(struct target_pt_regs *regs, 1725 struct image_info *infop) 1726 { 1727 regs->pc = infop->entry; 1728 regs->ps = 8; 1729 regs->usp = infop->start_stack; 1730 } 1731 1732 #define ELF_EXEC_PAGESIZE 8192 1733 1734 #endif /* TARGET_ALPHA */ 1735 1736 #ifdef TARGET_S390X 1737 1738 #define ELF_CLASS ELFCLASS64 1739 #define ELF_DATA ELFDATA2MSB 1740 #define ELF_ARCH EM_S390 1741 1742 #include "elf.h" 1743 1744 #define ELF_HWCAP get_elf_hwcap() 1745 1746 #define GET_FEATURE(_feat, _hwcap) \ 1747 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1748 1749 uint32_t get_elf_hwcap(void) 1750 { 1751 /* 1752 * Let's assume we always have esan3 and zarch. 1753 * 31-bit processes can use 64-bit registers (high gprs). 1754 */ 1755 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1756 1757 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1758 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1759 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1760 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1761 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1762 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1763 hwcap |= HWCAP_S390_ETF3EH; 1764 } 1765 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1766 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1767 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1768 1769 return hwcap; 1770 } 1771 1772 const char *elf_hwcap_str(uint32_t bit) 1773 { 1774 static const char *hwcap_str[] = { 1775 [HWCAP_S390_NR_ESAN3] = "esan3", 1776 [HWCAP_S390_NR_ZARCH] = "zarch", 1777 [HWCAP_S390_NR_STFLE] = "stfle", 1778 [HWCAP_S390_NR_MSA] = "msa", 1779 [HWCAP_S390_NR_LDISP] = "ldisp", 1780 [HWCAP_S390_NR_EIMM] = "eimm", 1781 [HWCAP_S390_NR_DFP] = "dfp", 1782 [HWCAP_S390_NR_HPAGE] = "edat", 1783 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1784 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1785 [HWCAP_S390_NR_TE] = "te", 1786 [HWCAP_S390_NR_VXRS] = "vx", 1787 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1788 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1789 [HWCAP_S390_NR_GS] = "gs", 1790 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1791 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1792 [HWCAP_S390_NR_SORT] = "sort", 1793 [HWCAP_S390_NR_DFLT] = "dflt", 1794 [HWCAP_S390_NR_NNPA] = "nnpa", 1795 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1796 [HWCAP_S390_NR_SIE] = "sie", 1797 }; 1798 1799 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1800 } 1801 1802 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1803 { 1804 regs->psw.addr = infop->entry; 1805 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1806 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1807 PSW_MASK_32; 1808 regs->gprs[15] = infop->start_stack; 1809 } 1810 1811 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1812 #define ELF_NREG 27 1813 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1814 1815 enum { 1816 TARGET_REG_PSWM = 0, 1817 TARGET_REG_PSWA = 1, 1818 TARGET_REG_GPRS = 2, 1819 TARGET_REG_ARS = 18, 1820 TARGET_REG_ORIG_R2 = 26, 1821 }; 1822 1823 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1824 const CPUS390XState *env) 1825 { 1826 int i; 1827 uint32_t *aregs; 1828 1829 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1830 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1831 for (i = 0; i < 16; i++) { 1832 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1833 } 1834 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1835 for (i = 0; i < 16; i++) { 1836 aregs[i] = tswap32(env->aregs[i]); 1837 } 1838 (*regs)[TARGET_REG_ORIG_R2] = 0; 1839 } 1840 1841 #define USE_ELF_CORE_DUMP 1842 #define ELF_EXEC_PAGESIZE 4096 1843 1844 #endif /* TARGET_S390X */ 1845 1846 #ifdef TARGET_RISCV 1847 1848 #define ELF_ARCH EM_RISCV 1849 1850 #ifdef TARGET_RISCV32 1851 #define ELF_CLASS ELFCLASS32 1852 #else 1853 #define ELF_CLASS ELFCLASS64 1854 #endif 1855 1856 #define ELF_HWCAP get_elf_hwcap() 1857 1858 static uint32_t get_elf_hwcap(void) 1859 { 1860 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1861 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1862 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1863 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1864 | MISA_BIT('V'); 1865 1866 return cpu->env.misa_ext & mask; 1867 #undef MISA_BIT 1868 } 1869 1870 static inline void init_thread(struct target_pt_regs *regs, 1871 struct image_info *infop) 1872 { 1873 regs->sepc = infop->entry; 1874 regs->sp = infop->start_stack; 1875 } 1876 1877 #define ELF_EXEC_PAGESIZE 4096 1878 1879 #endif /* TARGET_RISCV */ 1880 1881 #ifdef TARGET_HPPA 1882 1883 #define ELF_CLASS ELFCLASS32 1884 #define ELF_ARCH EM_PARISC 1885 #define ELF_PLATFORM "PARISC" 1886 #define STACK_GROWS_DOWN 0 1887 #define STACK_ALIGNMENT 64 1888 1889 static inline void init_thread(struct target_pt_regs *regs, 1890 struct image_info *infop) 1891 { 1892 regs->iaoq[0] = infop->entry; 1893 regs->iaoq[1] = infop->entry + 4; 1894 regs->gr[23] = 0; 1895 regs->gr[24] = infop->argv; 1896 regs->gr[25] = infop->argc; 1897 /* The top-of-stack contains a linkage buffer. */ 1898 regs->gr[30] = infop->start_stack + 64; 1899 regs->gr[31] = infop->entry; 1900 } 1901 1902 #define LO_COMMPAGE 0 1903 1904 static bool init_guest_commpage(void) 1905 { 1906 void *want = g2h_untagged(LO_COMMPAGE); 1907 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1908 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1909 1910 if (addr == MAP_FAILED) { 1911 perror("Allocating guest commpage"); 1912 exit(EXIT_FAILURE); 1913 } 1914 if (addr != want) { 1915 return false; 1916 } 1917 1918 /* 1919 * On Linux, page zero is normally marked execute only + gateway. 1920 * Normal read or write is supposed to fail (thus PROT_NONE above), 1921 * but specific offsets have kernel code mapped to raise permissions 1922 * and implement syscalls. Here, simply mark the page executable. 1923 * Special case the entry points during translation (see do_page_zero). 1924 */ 1925 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1926 PAGE_EXEC | PAGE_VALID); 1927 return true; 1928 } 1929 1930 #endif /* TARGET_HPPA */ 1931 1932 #ifdef TARGET_XTENSA 1933 1934 #define ELF_CLASS ELFCLASS32 1935 #define ELF_ARCH EM_XTENSA 1936 1937 static inline void init_thread(struct target_pt_regs *regs, 1938 struct image_info *infop) 1939 { 1940 regs->windowbase = 0; 1941 regs->windowstart = 1; 1942 regs->areg[1] = infop->start_stack; 1943 regs->pc = infop->entry; 1944 if (info_is_fdpic(infop)) { 1945 regs->areg[4] = infop->loadmap_addr; 1946 regs->areg[5] = infop->interpreter_loadmap_addr; 1947 if (infop->interpreter_loadmap_addr) { 1948 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1949 } else { 1950 regs->areg[6] = infop->pt_dynamic_addr; 1951 } 1952 } 1953 } 1954 1955 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1956 #define ELF_NREG 128 1957 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1958 1959 enum { 1960 TARGET_REG_PC, 1961 TARGET_REG_PS, 1962 TARGET_REG_LBEG, 1963 TARGET_REG_LEND, 1964 TARGET_REG_LCOUNT, 1965 TARGET_REG_SAR, 1966 TARGET_REG_WINDOWSTART, 1967 TARGET_REG_WINDOWBASE, 1968 TARGET_REG_THREADPTR, 1969 TARGET_REG_AR0 = 64, 1970 }; 1971 1972 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1973 const CPUXtensaState *env) 1974 { 1975 unsigned i; 1976 1977 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1978 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1979 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1980 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1981 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1982 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1983 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1984 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1985 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1986 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1987 for (i = 0; i < env->config->nareg; ++i) { 1988 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1989 } 1990 } 1991 1992 #define USE_ELF_CORE_DUMP 1993 #define ELF_EXEC_PAGESIZE 4096 1994 1995 #endif /* TARGET_XTENSA */ 1996 1997 #ifdef TARGET_HEXAGON 1998 1999 #define ELF_CLASS ELFCLASS32 2000 #define ELF_ARCH EM_HEXAGON 2001 2002 static inline void init_thread(struct target_pt_regs *regs, 2003 struct image_info *infop) 2004 { 2005 regs->sepc = infop->entry; 2006 regs->sp = infop->start_stack; 2007 } 2008 2009 #endif /* TARGET_HEXAGON */ 2010 2011 #ifndef ELF_BASE_PLATFORM 2012 #define ELF_BASE_PLATFORM (NULL) 2013 #endif 2014 2015 #ifndef ELF_PLATFORM 2016 #define ELF_PLATFORM (NULL) 2017 #endif 2018 2019 #ifndef ELF_MACHINE 2020 #define ELF_MACHINE ELF_ARCH 2021 #endif 2022 2023 #ifndef elf_check_arch 2024 #define elf_check_arch(x) ((x) == ELF_ARCH) 2025 #endif 2026 2027 #ifndef elf_check_abi 2028 #define elf_check_abi(x) (1) 2029 #endif 2030 2031 #ifndef ELF_HWCAP 2032 #define ELF_HWCAP 0 2033 #endif 2034 2035 #ifndef STACK_GROWS_DOWN 2036 #define STACK_GROWS_DOWN 1 2037 #endif 2038 2039 #ifndef STACK_ALIGNMENT 2040 #define STACK_ALIGNMENT 16 2041 #endif 2042 2043 #ifdef TARGET_ABI32 2044 #undef ELF_CLASS 2045 #define ELF_CLASS ELFCLASS32 2046 #undef bswaptls 2047 #define bswaptls(ptr) bswap32s(ptr) 2048 #endif 2049 2050 #ifndef EXSTACK_DEFAULT 2051 #define EXSTACK_DEFAULT false 2052 #endif 2053 2054 #include "elf.h" 2055 2056 /* We must delay the following stanzas until after "elf.h". */ 2057 #if defined(TARGET_AARCH64) 2058 2059 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2060 const uint32_t *data, 2061 struct image_info *info, 2062 Error **errp) 2063 { 2064 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 2065 if (pr_datasz != sizeof(uint32_t)) { 2066 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 2067 return false; 2068 } 2069 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 2070 info->note_flags = *data; 2071 } 2072 return true; 2073 } 2074 #define ARCH_USE_GNU_PROPERTY 1 2075 2076 #else 2077 2078 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 2079 const uint32_t *data, 2080 struct image_info *info, 2081 Error **errp) 2082 { 2083 g_assert_not_reached(); 2084 } 2085 #define ARCH_USE_GNU_PROPERTY 0 2086 2087 #endif 2088 2089 struct exec 2090 { 2091 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 2092 unsigned int a_text; /* length of text, in bytes */ 2093 unsigned int a_data; /* length of data, in bytes */ 2094 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 2095 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 2096 unsigned int a_entry; /* start address */ 2097 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 2098 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 2099 }; 2100 2101 2102 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 2103 #define OMAGIC 0407 2104 #define NMAGIC 0410 2105 #define ZMAGIC 0413 2106 #define QMAGIC 0314 2107 2108 #define DLINFO_ITEMS 16 2109 2110 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 2111 { 2112 memcpy(to, from, n); 2113 } 2114 2115 #ifdef BSWAP_NEEDED 2116 static void bswap_ehdr(struct elfhdr *ehdr) 2117 { 2118 bswap16s(&ehdr->e_type); /* Object file type */ 2119 bswap16s(&ehdr->e_machine); /* Architecture */ 2120 bswap32s(&ehdr->e_version); /* Object file version */ 2121 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 2122 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 2123 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 2124 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 2125 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 2126 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 2127 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 2128 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 2129 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 2130 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 2131 } 2132 2133 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 2134 { 2135 int i; 2136 for (i = 0; i < phnum; ++i, ++phdr) { 2137 bswap32s(&phdr->p_type); /* Segment type */ 2138 bswap32s(&phdr->p_flags); /* Segment flags */ 2139 bswaptls(&phdr->p_offset); /* Segment file offset */ 2140 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 2141 bswaptls(&phdr->p_paddr); /* Segment physical address */ 2142 bswaptls(&phdr->p_filesz); /* Segment size in file */ 2143 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2144 bswaptls(&phdr->p_align); /* Segment alignment */ 2145 } 2146 } 2147 2148 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2149 { 2150 int i; 2151 for (i = 0; i < shnum; ++i, ++shdr) { 2152 bswap32s(&shdr->sh_name); 2153 bswap32s(&shdr->sh_type); 2154 bswaptls(&shdr->sh_flags); 2155 bswaptls(&shdr->sh_addr); 2156 bswaptls(&shdr->sh_offset); 2157 bswaptls(&shdr->sh_size); 2158 bswap32s(&shdr->sh_link); 2159 bswap32s(&shdr->sh_info); 2160 bswaptls(&shdr->sh_addralign); 2161 bswaptls(&shdr->sh_entsize); 2162 } 2163 } 2164 2165 static void bswap_sym(struct elf_sym *sym) 2166 { 2167 bswap32s(&sym->st_name); 2168 bswaptls(&sym->st_value); 2169 bswaptls(&sym->st_size); 2170 bswap16s(&sym->st_shndx); 2171 } 2172 2173 #ifdef TARGET_MIPS 2174 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2175 { 2176 bswap16s(&abiflags->version); 2177 bswap32s(&abiflags->ases); 2178 bswap32s(&abiflags->isa_ext); 2179 bswap32s(&abiflags->flags1); 2180 bswap32s(&abiflags->flags2); 2181 } 2182 #endif 2183 #else 2184 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2185 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2186 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2187 static inline void bswap_sym(struct elf_sym *sym) { } 2188 #ifdef TARGET_MIPS 2189 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2190 #endif 2191 #endif 2192 2193 #ifdef USE_ELF_CORE_DUMP 2194 static int elf_core_dump(int, const CPUArchState *); 2195 #endif /* USE_ELF_CORE_DUMP */ 2196 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2197 2198 /* Verify the portions of EHDR within E_IDENT for the target. 2199 This can be performed before bswapping the entire header. */ 2200 static bool elf_check_ident(struct elfhdr *ehdr) 2201 { 2202 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2203 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2204 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2205 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2206 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2207 && ehdr->e_ident[EI_DATA] == ELF_DATA 2208 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2209 } 2210 2211 /* Verify the portions of EHDR outside of E_IDENT for the target. 2212 This has to wait until after bswapping the header. */ 2213 static bool elf_check_ehdr(struct elfhdr *ehdr) 2214 { 2215 return (elf_check_arch(ehdr->e_machine) 2216 && elf_check_abi(ehdr->e_flags) 2217 && ehdr->e_ehsize == sizeof(struct elfhdr) 2218 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2219 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2220 } 2221 2222 /* 2223 * 'copy_elf_strings()' copies argument/envelope strings from user 2224 * memory to free pages in kernel mem. These are in a format ready 2225 * to be put directly into the top of new user memory. 2226 * 2227 */ 2228 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2229 abi_ulong p, abi_ulong stack_limit) 2230 { 2231 char *tmp; 2232 int len, i; 2233 abi_ulong top = p; 2234 2235 if (!p) { 2236 return 0; /* bullet-proofing */ 2237 } 2238 2239 if (STACK_GROWS_DOWN) { 2240 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2241 for (i = argc - 1; i >= 0; --i) { 2242 tmp = argv[i]; 2243 if (!tmp) { 2244 fprintf(stderr, "VFS: argc is wrong"); 2245 exit(-1); 2246 } 2247 len = strlen(tmp) + 1; 2248 tmp += len; 2249 2250 if (len > (p - stack_limit)) { 2251 return 0; 2252 } 2253 while (len) { 2254 int bytes_to_copy = (len > offset) ? offset : len; 2255 tmp -= bytes_to_copy; 2256 p -= bytes_to_copy; 2257 offset -= bytes_to_copy; 2258 len -= bytes_to_copy; 2259 2260 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2261 2262 if (offset == 0) { 2263 memcpy_to_target(p, scratch, top - p); 2264 top = p; 2265 offset = TARGET_PAGE_SIZE; 2266 } 2267 } 2268 } 2269 if (p != top) { 2270 memcpy_to_target(p, scratch + offset, top - p); 2271 } 2272 } else { 2273 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2274 for (i = 0; i < argc; ++i) { 2275 tmp = argv[i]; 2276 if (!tmp) { 2277 fprintf(stderr, "VFS: argc is wrong"); 2278 exit(-1); 2279 } 2280 len = strlen(tmp) + 1; 2281 if (len > (stack_limit - p)) { 2282 return 0; 2283 } 2284 while (len) { 2285 int bytes_to_copy = (len > remaining) ? remaining : len; 2286 2287 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2288 2289 tmp += bytes_to_copy; 2290 remaining -= bytes_to_copy; 2291 p += bytes_to_copy; 2292 len -= bytes_to_copy; 2293 2294 if (remaining == 0) { 2295 memcpy_to_target(top, scratch, p - top); 2296 top = p; 2297 remaining = TARGET_PAGE_SIZE; 2298 } 2299 } 2300 } 2301 if (p != top) { 2302 memcpy_to_target(top, scratch, p - top); 2303 } 2304 } 2305 2306 return p; 2307 } 2308 2309 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2310 * argument/environment space. Newer kernels (>2.6.33) allow more, 2311 * dependent on stack size, but guarantee at least 32 pages for 2312 * backwards compatibility. 2313 */ 2314 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2315 2316 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2317 struct image_info *info) 2318 { 2319 abi_ulong size, error, guard; 2320 int prot; 2321 2322 size = guest_stack_size; 2323 if (size < STACK_LOWER_LIMIT) { 2324 size = STACK_LOWER_LIMIT; 2325 } 2326 2327 if (STACK_GROWS_DOWN) { 2328 guard = TARGET_PAGE_SIZE; 2329 if (guard < qemu_real_host_page_size()) { 2330 guard = qemu_real_host_page_size(); 2331 } 2332 } else { 2333 /* no guard page for hppa target where stack grows upwards. */ 2334 guard = 0; 2335 } 2336 2337 prot = PROT_READ | PROT_WRITE; 2338 if (info->exec_stack) { 2339 prot |= PROT_EXEC; 2340 } 2341 error = target_mmap(0, size + guard, prot, 2342 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2343 if (error == -1) { 2344 perror("mmap stack"); 2345 exit(-1); 2346 } 2347 2348 /* We reserve one extra page at the top of the stack as guard. */ 2349 if (STACK_GROWS_DOWN) { 2350 target_mprotect(error, guard, PROT_NONE); 2351 info->stack_limit = error + guard; 2352 return info->stack_limit + size - sizeof(void *); 2353 } else { 2354 info->stack_limit = error + size; 2355 return error; 2356 } 2357 } 2358 2359 /** 2360 * zero_bss: 2361 * 2362 * Map and zero the bss. We need to explicitly zero any fractional pages 2363 * after the data section (i.e. bss). Return false on mapping failure. 2364 */ 2365 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot) 2366 { 2367 abi_ulong align_bss; 2368 2369 align_bss = TARGET_PAGE_ALIGN(start_bss); 2370 end_bss = TARGET_PAGE_ALIGN(end_bss); 2371 2372 if (start_bss < align_bss) { 2373 int flags = page_get_flags(start_bss); 2374 2375 if (!(flags & PAGE_VALID)) { 2376 /* Map the start of the bss. */ 2377 align_bss -= TARGET_PAGE_SIZE; 2378 } else if (flags & PAGE_WRITE) { 2379 /* The page is already mapped writable. */ 2380 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2381 } else { 2382 /* Read-only zeros? */ 2383 g_assert_not_reached(); 2384 } 2385 } 2386 2387 return align_bss >= end_bss || 2388 target_mmap(align_bss, end_bss - align_bss, prot, 2389 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1; 2390 } 2391 2392 #if defined(TARGET_ARM) 2393 static int elf_is_fdpic(struct elfhdr *exec) 2394 { 2395 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2396 } 2397 #elif defined(TARGET_XTENSA) 2398 static int elf_is_fdpic(struct elfhdr *exec) 2399 { 2400 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2401 } 2402 #else 2403 /* Default implementation, always false. */ 2404 static int elf_is_fdpic(struct elfhdr *exec) 2405 { 2406 return 0; 2407 } 2408 #endif 2409 2410 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2411 { 2412 uint16_t n; 2413 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2414 2415 /* elf32_fdpic_loadseg */ 2416 n = info->nsegs; 2417 while (n--) { 2418 sp -= 12; 2419 put_user_u32(loadsegs[n].addr, sp+0); 2420 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2421 put_user_u32(loadsegs[n].p_memsz, sp+8); 2422 } 2423 2424 /* elf32_fdpic_loadmap */ 2425 sp -= 4; 2426 put_user_u16(0, sp+0); /* version */ 2427 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2428 2429 info->personality = PER_LINUX_FDPIC; 2430 info->loadmap_addr = sp; 2431 2432 return sp; 2433 } 2434 2435 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2436 struct elfhdr *exec, 2437 struct image_info *info, 2438 struct image_info *interp_info) 2439 { 2440 abi_ulong sp; 2441 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2442 int size; 2443 int i; 2444 abi_ulong u_rand_bytes; 2445 uint8_t k_rand_bytes[16]; 2446 abi_ulong u_platform, u_base_platform; 2447 const char *k_platform, *k_base_platform; 2448 const int n = sizeof(elf_addr_t); 2449 2450 sp = p; 2451 2452 /* Needs to be before we load the env/argc/... */ 2453 if (elf_is_fdpic(exec)) { 2454 /* Need 4 byte alignment for these structs */ 2455 sp &= ~3; 2456 sp = loader_build_fdpic_loadmap(info, sp); 2457 info->other_info = interp_info; 2458 if (interp_info) { 2459 interp_info->other_info = info; 2460 sp = loader_build_fdpic_loadmap(interp_info, sp); 2461 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2462 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2463 } else { 2464 info->interpreter_loadmap_addr = 0; 2465 info->interpreter_pt_dynamic_addr = 0; 2466 } 2467 } 2468 2469 u_base_platform = 0; 2470 k_base_platform = ELF_BASE_PLATFORM; 2471 if (k_base_platform) { 2472 size_t len = strlen(k_base_platform) + 1; 2473 if (STACK_GROWS_DOWN) { 2474 sp -= (len + n - 1) & ~(n - 1); 2475 u_base_platform = sp; 2476 /* FIXME - check return value of memcpy_to_target() for failure */ 2477 memcpy_to_target(sp, k_base_platform, len); 2478 } else { 2479 memcpy_to_target(sp, k_base_platform, len); 2480 u_base_platform = sp; 2481 sp += len + 1; 2482 } 2483 } 2484 2485 u_platform = 0; 2486 k_platform = ELF_PLATFORM; 2487 if (k_platform) { 2488 size_t len = strlen(k_platform) + 1; 2489 if (STACK_GROWS_DOWN) { 2490 sp -= (len + n - 1) & ~(n - 1); 2491 u_platform = sp; 2492 /* FIXME - check return value of memcpy_to_target() for failure */ 2493 memcpy_to_target(sp, k_platform, len); 2494 } else { 2495 memcpy_to_target(sp, k_platform, len); 2496 u_platform = sp; 2497 sp += len + 1; 2498 } 2499 } 2500 2501 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2502 * the argv and envp pointers. 2503 */ 2504 if (STACK_GROWS_DOWN) { 2505 sp = QEMU_ALIGN_DOWN(sp, 16); 2506 } else { 2507 sp = QEMU_ALIGN_UP(sp, 16); 2508 } 2509 2510 /* 2511 * Generate 16 random bytes for userspace PRNG seeding. 2512 */ 2513 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2514 if (STACK_GROWS_DOWN) { 2515 sp -= 16; 2516 u_rand_bytes = sp; 2517 /* FIXME - check return value of memcpy_to_target() for failure */ 2518 memcpy_to_target(sp, k_rand_bytes, 16); 2519 } else { 2520 memcpy_to_target(sp, k_rand_bytes, 16); 2521 u_rand_bytes = sp; 2522 sp += 16; 2523 } 2524 2525 size = (DLINFO_ITEMS + 1) * 2; 2526 if (k_base_platform) 2527 size += 2; 2528 if (k_platform) 2529 size += 2; 2530 #ifdef DLINFO_ARCH_ITEMS 2531 size += DLINFO_ARCH_ITEMS * 2; 2532 #endif 2533 #ifdef ELF_HWCAP2 2534 size += 2; 2535 #endif 2536 info->auxv_len = size * n; 2537 2538 size += envc + argc + 2; 2539 size += 1; /* argc itself */ 2540 size *= n; 2541 2542 /* Allocate space and finalize stack alignment for entry now. */ 2543 if (STACK_GROWS_DOWN) { 2544 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2545 sp = u_argc; 2546 } else { 2547 u_argc = sp; 2548 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2549 } 2550 2551 u_argv = u_argc + n; 2552 u_envp = u_argv + (argc + 1) * n; 2553 u_auxv = u_envp + (envc + 1) * n; 2554 info->saved_auxv = u_auxv; 2555 info->argc = argc; 2556 info->envc = envc; 2557 info->argv = u_argv; 2558 info->envp = u_envp; 2559 2560 /* This is correct because Linux defines 2561 * elf_addr_t as Elf32_Off / Elf64_Off 2562 */ 2563 #define NEW_AUX_ENT(id, val) do { \ 2564 put_user_ual(id, u_auxv); u_auxv += n; \ 2565 put_user_ual(val, u_auxv); u_auxv += n; \ 2566 } while(0) 2567 2568 #ifdef ARCH_DLINFO 2569 /* 2570 * ARCH_DLINFO must come first so platform specific code can enforce 2571 * special alignment requirements on the AUXV if necessary (eg. PPC). 2572 */ 2573 ARCH_DLINFO; 2574 #endif 2575 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2576 * on info->auxv_len will trigger. 2577 */ 2578 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2579 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2580 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2581 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2582 /* Target doesn't support host page size alignment */ 2583 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2584 } else { 2585 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2586 qemu_host_page_size))); 2587 } 2588 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2589 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2590 NEW_AUX_ENT(AT_ENTRY, info->entry); 2591 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2592 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2593 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2594 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2595 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2596 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2597 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2598 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2599 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2600 2601 #ifdef ELF_HWCAP2 2602 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2603 #endif 2604 2605 if (u_base_platform) { 2606 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2607 } 2608 if (u_platform) { 2609 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2610 } 2611 NEW_AUX_ENT (AT_NULL, 0); 2612 #undef NEW_AUX_ENT 2613 2614 /* Check that our initial calculation of the auxv length matches how much 2615 * we actually put into it. 2616 */ 2617 assert(info->auxv_len == u_auxv - info->saved_auxv); 2618 2619 put_user_ual(argc, u_argc); 2620 2621 p = info->arg_strings; 2622 for (i = 0; i < argc; ++i) { 2623 put_user_ual(p, u_argv); 2624 u_argv += n; 2625 p += target_strlen(p) + 1; 2626 } 2627 put_user_ual(0, u_argv); 2628 2629 p = info->env_strings; 2630 for (i = 0; i < envc; ++i) { 2631 put_user_ual(p, u_envp); 2632 u_envp += n; 2633 p += target_strlen(p) + 1; 2634 } 2635 put_user_ual(0, u_envp); 2636 2637 return sp; 2638 } 2639 2640 #if defined(HI_COMMPAGE) 2641 #define LO_COMMPAGE -1 2642 #elif defined(LO_COMMPAGE) 2643 #define HI_COMMPAGE 0 2644 #else 2645 #define HI_COMMPAGE 0 2646 #define LO_COMMPAGE -1 2647 #ifndef INIT_GUEST_COMMPAGE 2648 #define init_guest_commpage() true 2649 #endif 2650 #endif 2651 2652 /** 2653 * pgb_try_mmap: 2654 * @addr: host start address 2655 * @addr_last: host last address 2656 * @keep: do not unmap the probe region 2657 * 2658 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2659 * return 0 if it is not available to map, and -1 on mmap error. 2660 * If @keep, the region is left mapped on success, otherwise unmapped. 2661 */ 2662 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2663 { 2664 size_t size = addr_last - addr + 1; 2665 void *p = mmap((void *)addr, size, PROT_NONE, 2666 MAP_ANONYMOUS | MAP_PRIVATE | 2667 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2668 int ret; 2669 2670 if (p == MAP_FAILED) { 2671 return errno == EEXIST ? 0 : -1; 2672 } 2673 ret = p == (void *)addr; 2674 if (!keep || !ret) { 2675 munmap(p, size); 2676 } 2677 return ret; 2678 } 2679 2680 /** 2681 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2682 * @addr: host address 2683 * @addr_last: host last address 2684 * @brk: host brk 2685 * 2686 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2687 */ 2688 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2689 uintptr_t brk, bool keep) 2690 { 2691 uintptr_t brk_last = brk + 16 * MiB - 1; 2692 2693 /* Do not map anything close to the host brk. */ 2694 if (addr <= brk_last && brk <= addr_last) { 2695 return 0; 2696 } 2697 return pgb_try_mmap(addr, addr_last, keep); 2698 } 2699 2700 /** 2701 * pgb_try_mmap_set: 2702 * @ga: set of guest addrs 2703 * @base: guest_base 2704 * @brk: host brk 2705 * 2706 * Return true if all @ga can be mapped by the host at @base. 2707 * On success, retain the mapping at index 0 for reserved_va. 2708 */ 2709 2710 typedef struct PGBAddrs { 2711 uintptr_t bounds[3][2]; /* start/last pairs */ 2712 int nbounds; 2713 } PGBAddrs; 2714 2715 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2716 { 2717 for (int i = ga->nbounds - 1; i >= 0; --i) { 2718 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2719 ga->bounds[i][1] + base, 2720 brk, i == 0 && reserved_va) <= 0) { 2721 return false; 2722 } 2723 } 2724 return true; 2725 } 2726 2727 /** 2728 * pgb_addr_set: 2729 * @ga: output set of guest addrs 2730 * @guest_loaddr: guest image low address 2731 * @guest_loaddr: guest image high address 2732 * @identity: create for identity mapping 2733 * 2734 * Fill in @ga with the image, COMMPAGE and NULL page. 2735 */ 2736 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2737 abi_ulong guest_hiaddr, bool try_identity) 2738 { 2739 int n; 2740 2741 /* 2742 * With a low commpage, or a guest mapped very low, 2743 * we may not be able to use the identity map. 2744 */ 2745 if (try_identity) { 2746 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2747 return false; 2748 } 2749 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2750 return false; 2751 } 2752 } 2753 2754 memset(ga, 0, sizeof(*ga)); 2755 n = 0; 2756 2757 if (reserved_va) { 2758 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2759 ga->bounds[n][1] = reserved_va; 2760 n++; 2761 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2762 } else { 2763 /* Add any LO_COMMPAGE or NULL page. */ 2764 if (LO_COMMPAGE != -1) { 2765 ga->bounds[n][0] = 0; 2766 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2767 n++; 2768 } else if (!try_identity) { 2769 ga->bounds[n][0] = 0; 2770 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2771 n++; 2772 } 2773 2774 /* Add the guest image for ET_EXEC. */ 2775 if (guest_loaddr) { 2776 ga->bounds[n][0] = guest_loaddr; 2777 ga->bounds[n][1] = guest_hiaddr; 2778 n++; 2779 } 2780 } 2781 2782 /* 2783 * Temporarily disable 2784 * "comparison is always false due to limited range of data type" 2785 * due to comparison between unsigned and (possible) 0. 2786 */ 2787 #pragma GCC diagnostic push 2788 #pragma GCC diagnostic ignored "-Wtype-limits" 2789 2790 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2791 if (reserved_va < HI_COMMPAGE) { 2792 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask; 2793 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2794 n++; 2795 } 2796 2797 #pragma GCC diagnostic pop 2798 2799 ga->nbounds = n; 2800 return true; 2801 } 2802 2803 static void pgb_fail_in_use(const char *image_name) 2804 { 2805 error_report("%s: requires virtual address space that is in use " 2806 "(omit the -B option or choose a different value)", 2807 image_name); 2808 exit(EXIT_FAILURE); 2809 } 2810 2811 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2812 uintptr_t guest_hiaddr, uintptr_t align) 2813 { 2814 PGBAddrs ga; 2815 uintptr_t brk = (uintptr_t)sbrk(0); 2816 2817 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2818 fprintf(stderr, "Requested guest base %p does not satisfy " 2819 "host minimum alignment (0x%" PRIxPTR ")\n", 2820 (void *)guest_base, align); 2821 exit(EXIT_FAILURE); 2822 } 2823 2824 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2825 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2826 pgb_fail_in_use(image_name); 2827 } 2828 } 2829 2830 /** 2831 * pgb_find_fallback: 2832 * 2833 * This is a fallback method for finding holes in the host address space 2834 * if we don't have the benefit of being able to access /proc/self/map. 2835 * It can potentially take a very long time as we can only dumbly iterate 2836 * up the host address space seeing if the allocation would work. 2837 */ 2838 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2839 uintptr_t brk) 2840 { 2841 /* TODO: come up with a better estimate of how much to skip. */ 2842 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2843 2844 for (uintptr_t base = skip; ; base += skip) { 2845 base = ROUND_UP(base, align); 2846 if (pgb_try_mmap_set(ga, base, brk)) { 2847 return base; 2848 } 2849 if (base >= -skip) { 2850 return -1; 2851 } 2852 } 2853 } 2854 2855 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2856 IntervalTreeRoot *root) 2857 { 2858 for (int i = ga->nbounds - 1; i >= 0; --i) { 2859 uintptr_t s = base + ga->bounds[i][0]; 2860 uintptr_t l = base + ga->bounds[i][1]; 2861 IntervalTreeNode *n; 2862 2863 if (l < s) { 2864 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2865 return mmap_min_addr - s; 2866 } 2867 2868 n = interval_tree_iter_first(root, s, l); 2869 if (n != NULL) { 2870 /* Conflict. Skip to advance S to LAST + 1. */ 2871 return n->last - s + 1; 2872 } 2873 } 2874 return 0; /* success */ 2875 } 2876 2877 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2878 uintptr_t align, uintptr_t brk) 2879 { 2880 uintptr_t last = mmap_min_addr; 2881 uintptr_t base, skip; 2882 2883 while (true) { 2884 base = ROUND_UP(last, align); 2885 if (base < last) { 2886 return -1; 2887 } 2888 2889 skip = pgb_try_itree(ga, base, root); 2890 if (skip == 0) { 2891 break; 2892 } 2893 2894 last = base + skip; 2895 if (last < base) { 2896 return -1; 2897 } 2898 } 2899 2900 /* 2901 * We've chosen 'base' based on holes in the interval tree, 2902 * but we don't yet know if it is a valid host address. 2903 * Because it is the first matching hole, if the host addresses 2904 * are invalid we know there are no further matches. 2905 */ 2906 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 2907 } 2908 2909 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 2910 uintptr_t guest_hiaddr, uintptr_t align) 2911 { 2912 IntervalTreeRoot *root; 2913 uintptr_t brk, ret; 2914 PGBAddrs ga; 2915 2916 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2917 2918 /* Try the identity map first. */ 2919 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 2920 brk = (uintptr_t)sbrk(0); 2921 if (pgb_try_mmap_set(&ga, 0, brk)) { 2922 guest_base = 0; 2923 return; 2924 } 2925 } 2926 2927 /* 2928 * Rebuild the address set for non-identity map. 2929 * This differs in the mapping of the guest NULL page. 2930 */ 2931 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 2932 2933 root = read_self_maps(); 2934 2935 /* Read brk after we've read the maps, which will malloc. */ 2936 brk = (uintptr_t)sbrk(0); 2937 2938 if (!root) { 2939 ret = pgb_find_fallback(&ga, align, brk); 2940 } else { 2941 /* 2942 * Reserve the area close to the host brk. 2943 * This will be freed with the rest of the tree. 2944 */ 2945 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 2946 b->start = brk; 2947 b->last = brk + 16 * MiB - 1; 2948 interval_tree_insert(b, root); 2949 2950 ret = pgb_find_itree(&ga, root, align, brk); 2951 free_self_maps(root); 2952 } 2953 2954 if (ret == -1) { 2955 int w = TARGET_LONG_BITS / 4; 2956 2957 error_report("%s: Unable to find a guest_base to satisfy all " 2958 "guest address mapping requirements", image_name); 2959 2960 for (int i = 0; i < ga.nbounds; ++i) { 2961 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 2962 w, (uint64_t)ga.bounds[i][0], 2963 w, (uint64_t)ga.bounds[i][1]); 2964 } 2965 exit(EXIT_FAILURE); 2966 } 2967 guest_base = ret; 2968 } 2969 2970 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2971 abi_ulong guest_hiaddr) 2972 { 2973 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2974 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2975 2976 /* Sanity check the guest binary. */ 2977 if (reserved_va) { 2978 if (guest_hiaddr > reserved_va) { 2979 error_report("%s: requires more than reserved virtual " 2980 "address space (0x%" PRIx64 " > 0x%lx)", 2981 image_name, (uint64_t)guest_hiaddr, reserved_va); 2982 exit(EXIT_FAILURE); 2983 } 2984 } else { 2985 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 2986 error_report("%s: requires more virtual address space " 2987 "than the host can provide (0x%" PRIx64 ")", 2988 image_name, (uint64_t)guest_hiaddr + 1); 2989 exit(EXIT_FAILURE); 2990 } 2991 } 2992 2993 if (have_guest_base) { 2994 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 2995 } else { 2996 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 2997 } 2998 2999 /* Reserve and initialize the commpage. */ 3000 if (!init_guest_commpage()) { 3001 /* We have already probed for the commpage being free. */ 3002 g_assert_not_reached(); 3003 } 3004 3005 assert(QEMU_IS_ALIGNED(guest_base, align)); 3006 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 3007 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 3008 } 3009 3010 enum { 3011 /* The string "GNU\0" as a magic number. */ 3012 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 3013 NOTE_DATA_SZ = 1 * KiB, 3014 NOTE_NAME_SZ = 4, 3015 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 3016 }; 3017 3018 /* 3019 * Process a single gnu_property entry. 3020 * Return false for error. 3021 */ 3022 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 3023 struct image_info *info, bool have_prev_type, 3024 uint32_t *prev_type, Error **errp) 3025 { 3026 uint32_t pr_type, pr_datasz, step; 3027 3028 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 3029 goto error_data; 3030 } 3031 datasz -= *off; 3032 data += *off / sizeof(uint32_t); 3033 3034 if (datasz < 2 * sizeof(uint32_t)) { 3035 goto error_data; 3036 } 3037 pr_type = data[0]; 3038 pr_datasz = data[1]; 3039 data += 2; 3040 datasz -= 2 * sizeof(uint32_t); 3041 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 3042 if (step > datasz) { 3043 goto error_data; 3044 } 3045 3046 /* Properties are supposed to be unique and sorted on pr_type. */ 3047 if (have_prev_type && pr_type <= *prev_type) { 3048 if (pr_type == *prev_type) { 3049 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 3050 } else { 3051 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 3052 } 3053 return false; 3054 } 3055 *prev_type = pr_type; 3056 3057 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 3058 return false; 3059 } 3060 3061 *off += 2 * sizeof(uint32_t) + step; 3062 return true; 3063 3064 error_data: 3065 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 3066 return false; 3067 } 3068 3069 /* Process NT_GNU_PROPERTY_TYPE_0. */ 3070 static bool parse_elf_properties(int image_fd, 3071 struct image_info *info, 3072 const struct elf_phdr *phdr, 3073 char bprm_buf[BPRM_BUF_SIZE], 3074 Error **errp) 3075 { 3076 union { 3077 struct elf_note nhdr; 3078 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 3079 } note; 3080 3081 int n, off, datasz; 3082 bool have_prev_type; 3083 uint32_t prev_type; 3084 3085 /* Unless the arch requires properties, ignore them. */ 3086 if (!ARCH_USE_GNU_PROPERTY) { 3087 return true; 3088 } 3089 3090 /* If the properties are crazy large, that's too bad. */ 3091 n = phdr->p_filesz; 3092 if (n > sizeof(note)) { 3093 error_setg(errp, "PT_GNU_PROPERTY too large"); 3094 return false; 3095 } 3096 if (n < sizeof(note.nhdr)) { 3097 error_setg(errp, "PT_GNU_PROPERTY too small"); 3098 return false; 3099 } 3100 3101 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 3102 memcpy(¬e, bprm_buf + phdr->p_offset, n); 3103 } else { 3104 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 3105 if (len != n) { 3106 error_setg_errno(errp, errno, "Error reading file header"); 3107 return false; 3108 } 3109 } 3110 3111 /* 3112 * The contents of a valid PT_GNU_PROPERTY is a sequence 3113 * of uint32_t -- swap them all now. 3114 */ 3115 #ifdef BSWAP_NEEDED 3116 for (int i = 0; i < n / 4; i++) { 3117 bswap32s(note.data + i); 3118 } 3119 #endif 3120 3121 /* 3122 * Note that nhdr is 3 words, and that the "name" described by namesz 3123 * immediately follows nhdr and is thus at the 4th word. Further, all 3124 * of the inputs to the kernel's round_up are multiples of 4. 3125 */ 3126 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 3127 note.nhdr.n_namesz != NOTE_NAME_SZ || 3128 note.data[3] != GNU0_MAGIC) { 3129 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 3130 return false; 3131 } 3132 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 3133 3134 datasz = note.nhdr.n_descsz + off; 3135 if (datasz > n) { 3136 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 3137 return false; 3138 } 3139 3140 have_prev_type = false; 3141 prev_type = 0; 3142 while (1) { 3143 if (off == datasz) { 3144 return true; /* end, exit ok */ 3145 } 3146 if (!parse_elf_property(note.data, &off, datasz, info, 3147 have_prev_type, &prev_type, errp)) { 3148 return false; 3149 } 3150 have_prev_type = true; 3151 } 3152 } 3153 3154 /* Load an ELF image into the address space. 3155 3156 IMAGE_NAME is the filename of the image, to use in error messages. 3157 IMAGE_FD is the open file descriptor for the image. 3158 3159 BPRM_BUF is a copy of the beginning of the file; this of course 3160 contains the elf file header at offset 0. It is assumed that this 3161 buffer is sufficiently aligned to present no problems to the host 3162 in accessing data at aligned offsets within the buffer. 3163 3164 On return: INFO values will be filled in, as necessary or available. */ 3165 3166 static void load_elf_image(const char *image_name, int image_fd, 3167 struct image_info *info, char **pinterp_name, 3168 char bprm_buf[BPRM_BUF_SIZE]) 3169 { 3170 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 3171 struct elf_phdr *phdr; 3172 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3173 int i, retval, prot_exec; 3174 Error *err = NULL; 3175 3176 /* First of all, some simple consistency checks */ 3177 if (!elf_check_ident(ehdr)) { 3178 error_setg(&err, "Invalid ELF image for this architecture"); 3179 goto exit_errmsg; 3180 } 3181 bswap_ehdr(ehdr); 3182 if (!elf_check_ehdr(ehdr)) { 3183 error_setg(&err, "Invalid ELF image for this architecture"); 3184 goto exit_errmsg; 3185 } 3186 3187 i = ehdr->e_phnum * sizeof(struct elf_phdr); 3188 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 3189 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 3190 } else { 3191 phdr = (struct elf_phdr *) alloca(i); 3192 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 3193 if (retval != i) { 3194 goto exit_read; 3195 } 3196 } 3197 bswap_phdr(phdr, ehdr->e_phnum); 3198 3199 info->nsegs = 0; 3200 info->pt_dynamic_addr = 0; 3201 3202 mmap_lock(); 3203 3204 /* 3205 * Find the maximum size of the image and allocate an appropriate 3206 * amount of memory to handle that. Locate the interpreter, if any. 3207 */ 3208 loaddr = -1, hiaddr = 0; 3209 info->alignment = 0; 3210 info->exec_stack = EXSTACK_DEFAULT; 3211 for (i = 0; i < ehdr->e_phnum; ++i) { 3212 struct elf_phdr *eppnt = phdr + i; 3213 if (eppnt->p_type == PT_LOAD) { 3214 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3215 if (a < loaddr) { 3216 loaddr = a; 3217 } 3218 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3219 if (a > hiaddr) { 3220 hiaddr = a; 3221 } 3222 ++info->nsegs; 3223 info->alignment |= eppnt->p_align; 3224 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3225 g_autofree char *interp_name = NULL; 3226 3227 if (*pinterp_name) { 3228 error_setg(&err, "Multiple PT_INTERP entries"); 3229 goto exit_errmsg; 3230 } 3231 3232 interp_name = g_malloc(eppnt->p_filesz); 3233 3234 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3235 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3236 eppnt->p_filesz); 3237 } else { 3238 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3239 eppnt->p_offset); 3240 if (retval != eppnt->p_filesz) { 3241 goto exit_read; 3242 } 3243 } 3244 if (interp_name[eppnt->p_filesz - 1] != 0) { 3245 error_setg(&err, "Invalid PT_INTERP entry"); 3246 goto exit_errmsg; 3247 } 3248 *pinterp_name = g_steal_pointer(&interp_name); 3249 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3250 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3251 goto exit_errmsg; 3252 } 3253 } else if (eppnt->p_type == PT_GNU_STACK) { 3254 info->exec_stack = eppnt->p_flags & PF_X; 3255 } 3256 } 3257 3258 load_addr = loaddr; 3259 3260 if (pinterp_name != NULL) { 3261 if (ehdr->e_type == ET_EXEC) { 3262 /* 3263 * Make sure that the low address does not conflict with 3264 * MMAP_MIN_ADDR or the QEMU application itself. 3265 */ 3266 probe_guest_base(image_name, loaddr, hiaddr); 3267 } else { 3268 abi_ulong align; 3269 3270 /* 3271 * The binary is dynamic, but we still need to 3272 * select guest_base. In this case we pass a size. 3273 */ 3274 probe_guest_base(image_name, 0, hiaddr - loaddr); 3275 3276 /* 3277 * Avoid collision with the loader by providing a different 3278 * default load address. 3279 */ 3280 load_addr += elf_et_dyn_base; 3281 3282 /* 3283 * TODO: Better support for mmap alignment is desirable. 3284 * Since we do not have complete control over the guest 3285 * address space, we prefer the kernel to choose some address 3286 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3287 * But without MAP_FIXED we cannot guarantee alignment, 3288 * only suggest it. 3289 */ 3290 align = pow2ceil(info->alignment); 3291 if (align) { 3292 load_addr &= -align; 3293 } 3294 } 3295 } 3296 3297 /* 3298 * Reserve address space for all of this. 3299 * 3300 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3301 * exactly the address range that is required. Without reserved_va, 3302 * the guest address space is not isolated. We have attempted to avoid 3303 * conflict with the host program itself via probe_guest_base, but using 3304 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3305 * 3306 * Otherwise this is ET_DYN, and we are searching for a location 3307 * that can hold the memory space required. If the image is 3308 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3309 * honor that address if it happens to be free. 3310 * 3311 * In both cases, we will overwrite pages in this range with mappings 3312 * from the executable. 3313 */ 3314 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3315 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3316 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3317 -1, 0); 3318 if (load_addr == -1) { 3319 goto exit_mmap; 3320 } 3321 load_bias = load_addr - loaddr; 3322 3323 if (elf_is_fdpic(ehdr)) { 3324 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3325 g_malloc(sizeof(*loadsegs) * info->nsegs); 3326 3327 for (i = 0; i < ehdr->e_phnum; ++i) { 3328 switch (phdr[i].p_type) { 3329 case PT_DYNAMIC: 3330 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3331 break; 3332 case PT_LOAD: 3333 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3334 loadsegs->p_vaddr = phdr[i].p_vaddr; 3335 loadsegs->p_memsz = phdr[i].p_memsz; 3336 ++loadsegs; 3337 break; 3338 } 3339 } 3340 } 3341 3342 info->load_bias = load_bias; 3343 info->code_offset = load_bias; 3344 info->data_offset = load_bias; 3345 info->load_addr = load_addr; 3346 info->entry = ehdr->e_entry + load_bias; 3347 info->start_code = -1; 3348 info->end_code = 0; 3349 info->start_data = -1; 3350 info->end_data = 0; 3351 /* Usual start for brk is after all sections of the main executable. */ 3352 info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias); 3353 info->elf_flags = ehdr->e_flags; 3354 3355 prot_exec = PROT_EXEC; 3356 #ifdef TARGET_AARCH64 3357 /* 3358 * If the BTI feature is present, this indicates that the executable 3359 * pages of the startup binary should be mapped with PROT_BTI, so that 3360 * branch targets are enforced. 3361 * 3362 * The startup binary is either the interpreter or the static executable. 3363 * The interpreter is responsible for all pages of a dynamic executable. 3364 * 3365 * Elf notes are backward compatible to older cpus. 3366 * Do not enable BTI unless it is supported. 3367 */ 3368 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3369 && (pinterp_name == NULL || *pinterp_name == 0) 3370 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3371 prot_exec |= TARGET_PROT_BTI; 3372 } 3373 #endif 3374 3375 for (i = 0; i < ehdr->e_phnum; i++) { 3376 struct elf_phdr *eppnt = phdr + i; 3377 if (eppnt->p_type == PT_LOAD) { 3378 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3379 int elf_prot = 0; 3380 3381 if (eppnt->p_flags & PF_R) { 3382 elf_prot |= PROT_READ; 3383 } 3384 if (eppnt->p_flags & PF_W) { 3385 elf_prot |= PROT_WRITE; 3386 } 3387 if (eppnt->p_flags & PF_X) { 3388 elf_prot |= prot_exec; 3389 } 3390 3391 vaddr = load_bias + eppnt->p_vaddr; 3392 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3393 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3394 3395 vaddr_ef = vaddr + eppnt->p_filesz; 3396 vaddr_em = vaddr + eppnt->p_memsz; 3397 3398 /* 3399 * Some segments may be completely empty, with a non-zero p_memsz 3400 * but no backing file segment. 3401 */ 3402 if (eppnt->p_filesz != 0) { 3403 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3404 elf_prot, MAP_PRIVATE | MAP_FIXED, 3405 image_fd, eppnt->p_offset - vaddr_po); 3406 if (error == -1) { 3407 goto exit_mmap; 3408 } 3409 } 3410 3411 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3412 if (vaddr_ef < vaddr_em && 3413 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) { 3414 goto exit_mmap; 3415 } 3416 3417 /* Find the full program boundaries. */ 3418 if (elf_prot & PROT_EXEC) { 3419 if (vaddr < info->start_code) { 3420 info->start_code = vaddr; 3421 } 3422 if (vaddr_ef > info->end_code) { 3423 info->end_code = vaddr_ef; 3424 } 3425 } 3426 if (elf_prot & PROT_WRITE) { 3427 if (vaddr < info->start_data) { 3428 info->start_data = vaddr; 3429 } 3430 if (vaddr_ef > info->end_data) { 3431 info->end_data = vaddr_ef; 3432 } 3433 } 3434 #ifdef TARGET_MIPS 3435 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3436 Mips_elf_abiflags_v0 abiflags; 3437 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3438 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3439 goto exit_errmsg; 3440 } 3441 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3442 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3443 sizeof(Mips_elf_abiflags_v0)); 3444 } else { 3445 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3446 eppnt->p_offset); 3447 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3448 goto exit_read; 3449 } 3450 } 3451 bswap_mips_abiflags(&abiflags); 3452 info->fp_abi = abiflags.fp_abi; 3453 #endif 3454 } 3455 } 3456 3457 if (info->end_data == 0) { 3458 info->start_data = info->end_code; 3459 info->end_data = info->end_code; 3460 } 3461 3462 if (qemu_log_enabled()) { 3463 load_symbols(ehdr, image_fd, load_bias); 3464 } 3465 3466 debuginfo_report_elf(image_name, image_fd, load_bias); 3467 3468 mmap_unlock(); 3469 3470 close(image_fd); 3471 return; 3472 3473 exit_read: 3474 if (retval >= 0) { 3475 error_setg(&err, "Incomplete read of file header"); 3476 } else { 3477 error_setg_errno(&err, errno, "Error reading file header"); 3478 } 3479 goto exit_errmsg; 3480 exit_mmap: 3481 error_setg_errno(&err, errno, "Error mapping file"); 3482 goto exit_errmsg; 3483 exit_errmsg: 3484 error_reportf_err(err, "%s: ", image_name); 3485 exit(-1); 3486 } 3487 3488 static void load_elf_interp(const char *filename, struct image_info *info, 3489 char bprm_buf[BPRM_BUF_SIZE]) 3490 { 3491 int fd, retval; 3492 Error *err = NULL; 3493 3494 fd = open(path(filename), O_RDONLY); 3495 if (fd < 0) { 3496 error_setg_file_open(&err, errno, filename); 3497 error_report_err(err); 3498 exit(-1); 3499 } 3500 3501 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3502 if (retval < 0) { 3503 error_setg_errno(&err, errno, "Error reading file header"); 3504 error_reportf_err(err, "%s: ", filename); 3505 exit(-1); 3506 } 3507 3508 if (retval < BPRM_BUF_SIZE) { 3509 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3510 } 3511 3512 load_elf_image(filename, fd, info, NULL, bprm_buf); 3513 } 3514 3515 static int symfind(const void *s0, const void *s1) 3516 { 3517 struct elf_sym *sym = (struct elf_sym *)s1; 3518 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3519 int result = 0; 3520 3521 if (addr < sym->st_value) { 3522 result = -1; 3523 } else if (addr >= sym->st_value + sym->st_size) { 3524 result = 1; 3525 } 3526 return result; 3527 } 3528 3529 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3530 { 3531 #if ELF_CLASS == ELFCLASS32 3532 struct elf_sym *syms = s->disas_symtab.elf32; 3533 #else 3534 struct elf_sym *syms = s->disas_symtab.elf64; 3535 #endif 3536 3537 // binary search 3538 struct elf_sym *sym; 3539 3540 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3541 if (sym != NULL) { 3542 return s->disas_strtab + sym->st_name; 3543 } 3544 3545 return ""; 3546 } 3547 3548 /* FIXME: This should use elf_ops.h */ 3549 static int symcmp(const void *s0, const void *s1) 3550 { 3551 struct elf_sym *sym0 = (struct elf_sym *)s0; 3552 struct elf_sym *sym1 = (struct elf_sym *)s1; 3553 return (sym0->st_value < sym1->st_value) 3554 ? -1 3555 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3556 } 3557 3558 /* Best attempt to load symbols from this ELF object. */ 3559 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3560 { 3561 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3562 uint64_t segsz; 3563 struct elf_shdr *shdr; 3564 char *strings = NULL; 3565 struct syminfo *s = NULL; 3566 struct elf_sym *new_syms, *syms = NULL; 3567 3568 shnum = hdr->e_shnum; 3569 i = shnum * sizeof(struct elf_shdr); 3570 shdr = (struct elf_shdr *)alloca(i); 3571 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3572 return; 3573 } 3574 3575 bswap_shdr(shdr, shnum); 3576 for (i = 0; i < shnum; ++i) { 3577 if (shdr[i].sh_type == SHT_SYMTAB) { 3578 sym_idx = i; 3579 str_idx = shdr[i].sh_link; 3580 goto found; 3581 } 3582 } 3583 3584 /* There will be no symbol table if the file was stripped. */ 3585 return; 3586 3587 found: 3588 /* Now know where the strtab and symtab are. Snarf them. */ 3589 s = g_try_new(struct syminfo, 1); 3590 if (!s) { 3591 goto give_up; 3592 } 3593 3594 segsz = shdr[str_idx].sh_size; 3595 s->disas_strtab = strings = g_try_malloc(segsz); 3596 if (!strings || 3597 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3598 goto give_up; 3599 } 3600 3601 segsz = shdr[sym_idx].sh_size; 3602 syms = g_try_malloc(segsz); 3603 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3604 goto give_up; 3605 } 3606 3607 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3608 /* Implausibly large symbol table: give up rather than ploughing 3609 * on with the number of symbols calculation overflowing 3610 */ 3611 goto give_up; 3612 } 3613 nsyms = segsz / sizeof(struct elf_sym); 3614 for (i = 0; i < nsyms; ) { 3615 bswap_sym(syms + i); 3616 /* Throw away entries which we do not need. */ 3617 if (syms[i].st_shndx == SHN_UNDEF 3618 || syms[i].st_shndx >= SHN_LORESERVE 3619 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3620 if (i < --nsyms) { 3621 syms[i] = syms[nsyms]; 3622 } 3623 } else { 3624 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3625 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3626 syms[i].st_value &= ~(target_ulong)1; 3627 #endif 3628 syms[i].st_value += load_bias; 3629 i++; 3630 } 3631 } 3632 3633 /* No "useful" symbol. */ 3634 if (nsyms == 0) { 3635 goto give_up; 3636 } 3637 3638 /* Attempt to free the storage associated with the local symbols 3639 that we threw away. Whether or not this has any effect on the 3640 memory allocation depends on the malloc implementation and how 3641 many symbols we managed to discard. */ 3642 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3643 if (new_syms == NULL) { 3644 goto give_up; 3645 } 3646 syms = new_syms; 3647 3648 qsort(syms, nsyms, sizeof(*syms), symcmp); 3649 3650 s->disas_num_syms = nsyms; 3651 #if ELF_CLASS == ELFCLASS32 3652 s->disas_symtab.elf32 = syms; 3653 #else 3654 s->disas_symtab.elf64 = syms; 3655 #endif 3656 s->lookup_symbol = lookup_symbolxx; 3657 s->next = syminfos; 3658 syminfos = s; 3659 3660 return; 3661 3662 give_up: 3663 g_free(s); 3664 g_free(strings); 3665 g_free(syms); 3666 } 3667 3668 uint32_t get_elf_eflags(int fd) 3669 { 3670 struct elfhdr ehdr; 3671 off_t offset; 3672 int ret; 3673 3674 /* Read ELF header */ 3675 offset = lseek(fd, 0, SEEK_SET); 3676 if (offset == (off_t) -1) { 3677 return 0; 3678 } 3679 ret = read(fd, &ehdr, sizeof(ehdr)); 3680 if (ret < sizeof(ehdr)) { 3681 return 0; 3682 } 3683 offset = lseek(fd, offset, SEEK_SET); 3684 if (offset == (off_t) -1) { 3685 return 0; 3686 } 3687 3688 /* Check ELF signature */ 3689 if (!elf_check_ident(&ehdr)) { 3690 return 0; 3691 } 3692 3693 /* check header */ 3694 bswap_ehdr(&ehdr); 3695 if (!elf_check_ehdr(&ehdr)) { 3696 return 0; 3697 } 3698 3699 /* return architecture id */ 3700 return ehdr.e_flags; 3701 } 3702 3703 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3704 { 3705 struct image_info interp_info; 3706 struct elfhdr elf_ex; 3707 char *elf_interpreter = NULL; 3708 char *scratch; 3709 3710 memset(&interp_info, 0, sizeof(interp_info)); 3711 #ifdef TARGET_MIPS 3712 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3713 #endif 3714 3715 load_elf_image(bprm->filename, bprm->fd, info, 3716 &elf_interpreter, bprm->buf); 3717 3718 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3719 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3720 when we load the interpreter. */ 3721 elf_ex = *(struct elfhdr *)bprm->buf; 3722 3723 /* Do this so that we can load the interpreter, if need be. We will 3724 change some of these later */ 3725 bprm->p = setup_arg_pages(bprm, info); 3726 3727 scratch = g_new0(char, TARGET_PAGE_SIZE); 3728 if (STACK_GROWS_DOWN) { 3729 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3730 bprm->p, info->stack_limit); 3731 info->file_string = bprm->p; 3732 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3733 bprm->p, info->stack_limit); 3734 info->env_strings = bprm->p; 3735 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3736 bprm->p, info->stack_limit); 3737 info->arg_strings = bprm->p; 3738 } else { 3739 info->arg_strings = bprm->p; 3740 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3741 bprm->p, info->stack_limit); 3742 info->env_strings = bprm->p; 3743 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3744 bprm->p, info->stack_limit); 3745 info->file_string = bprm->p; 3746 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3747 bprm->p, info->stack_limit); 3748 } 3749 3750 g_free(scratch); 3751 3752 if (!bprm->p) { 3753 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3754 exit(-1); 3755 } 3756 3757 if (elf_interpreter) { 3758 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3759 3760 /* 3761 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3762 * with the mappings the interpreter can be loaded above but 3763 * near the main executable, which can leave very little room 3764 * for the heap. 3765 * If the current brk has less than 16MB, use the end of the 3766 * interpreter. 3767 */ 3768 if (interp_info.brk > info->brk && 3769 interp_info.load_bias - info->brk < 16 * MiB) { 3770 info->brk = interp_info.brk; 3771 } 3772 3773 /* If the program interpreter is one of these two, then assume 3774 an iBCS2 image. Otherwise assume a native linux image. */ 3775 3776 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3777 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3778 info->personality = PER_SVR4; 3779 3780 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3781 and some applications "depend" upon this behavior. Since 3782 we do not have the power to recompile these, we emulate 3783 the SVr4 behavior. Sigh. */ 3784 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3785 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3786 } 3787 #ifdef TARGET_MIPS 3788 info->interp_fp_abi = interp_info.fp_abi; 3789 #endif 3790 } 3791 3792 /* 3793 * TODO: load a vdso, which would also contain the signal trampolines. 3794 * Otherwise, allocate a private page to hold them. 3795 */ 3796 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3797 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3798 PROT_READ | PROT_WRITE, 3799 MAP_PRIVATE | MAP_ANON, -1, 0); 3800 if (tramp_page == -1) { 3801 return -errno; 3802 } 3803 3804 setup_sigtramp(tramp_page); 3805 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3806 } 3807 3808 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3809 info, (elf_interpreter ? &interp_info : NULL)); 3810 info->start_stack = bprm->p; 3811 3812 /* If we have an interpreter, set that as the program's entry point. 3813 Copy the load_bias as well, to help PPC64 interpret the entry 3814 point as a function descriptor. Do this after creating elf tables 3815 so that we copy the original program entry point into the AUXV. */ 3816 if (elf_interpreter) { 3817 info->load_bias = interp_info.load_bias; 3818 info->entry = interp_info.entry; 3819 g_free(elf_interpreter); 3820 } 3821 3822 #ifdef USE_ELF_CORE_DUMP 3823 bprm->core_dump = &elf_core_dump; 3824 #endif 3825 3826 return 0; 3827 } 3828 3829 #ifdef USE_ELF_CORE_DUMP 3830 /* 3831 * Definitions to generate Intel SVR4-like core files. 3832 * These mostly have the same names as the SVR4 types with "target_elf_" 3833 * tacked on the front to prevent clashes with linux definitions, 3834 * and the typedef forms have been avoided. This is mostly like 3835 * the SVR4 structure, but more Linuxy, with things that Linux does 3836 * not support and which gdb doesn't really use excluded. 3837 * 3838 * Fields we don't dump (their contents is zero) in linux-user qemu 3839 * are marked with XXX. 3840 * 3841 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3842 * 3843 * Porting ELF coredump for target is (quite) simple process. First you 3844 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3845 * the target resides): 3846 * 3847 * #define USE_ELF_CORE_DUMP 3848 * 3849 * Next you define type of register set used for dumping. ELF specification 3850 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3851 * 3852 * typedef <target_regtype> target_elf_greg_t; 3853 * #define ELF_NREG <number of registers> 3854 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3855 * 3856 * Last step is to implement target specific function that copies registers 3857 * from given cpu into just specified register set. Prototype is: 3858 * 3859 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3860 * const CPUArchState *env); 3861 * 3862 * Parameters: 3863 * regs - copy register values into here (allocated and zeroed by caller) 3864 * env - copy registers from here 3865 * 3866 * Example for ARM target is provided in this file. 3867 */ 3868 3869 /* An ELF note in memory */ 3870 struct memelfnote { 3871 const char *name; 3872 size_t namesz; 3873 size_t namesz_rounded; 3874 int type; 3875 size_t datasz; 3876 size_t datasz_rounded; 3877 void *data; 3878 size_t notesz; 3879 }; 3880 3881 struct target_elf_siginfo { 3882 abi_int si_signo; /* signal number */ 3883 abi_int si_code; /* extra code */ 3884 abi_int si_errno; /* errno */ 3885 }; 3886 3887 struct target_elf_prstatus { 3888 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3889 abi_short pr_cursig; /* Current signal */ 3890 abi_ulong pr_sigpend; /* XXX */ 3891 abi_ulong pr_sighold; /* XXX */ 3892 target_pid_t pr_pid; 3893 target_pid_t pr_ppid; 3894 target_pid_t pr_pgrp; 3895 target_pid_t pr_sid; 3896 struct target_timeval pr_utime; /* XXX User time */ 3897 struct target_timeval pr_stime; /* XXX System time */ 3898 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3899 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3900 target_elf_gregset_t pr_reg; /* GP registers */ 3901 abi_int pr_fpvalid; /* XXX */ 3902 }; 3903 3904 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3905 3906 struct target_elf_prpsinfo { 3907 char pr_state; /* numeric process state */ 3908 char pr_sname; /* char for pr_state */ 3909 char pr_zomb; /* zombie */ 3910 char pr_nice; /* nice val */ 3911 abi_ulong pr_flag; /* flags */ 3912 target_uid_t pr_uid; 3913 target_gid_t pr_gid; 3914 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3915 /* Lots missing */ 3916 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3917 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3918 }; 3919 3920 /* Here is the structure in which status of each thread is captured. */ 3921 struct elf_thread_status { 3922 QTAILQ_ENTRY(elf_thread_status) ets_link; 3923 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3924 #if 0 3925 elf_fpregset_t fpu; /* NT_PRFPREG */ 3926 struct task_struct *thread; 3927 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3928 #endif 3929 struct memelfnote notes[1]; 3930 int num_notes; 3931 }; 3932 3933 struct elf_note_info { 3934 struct memelfnote *notes; 3935 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3936 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3937 3938 QTAILQ_HEAD(, elf_thread_status) thread_list; 3939 #if 0 3940 /* 3941 * Current version of ELF coredump doesn't support 3942 * dumping fp regs etc. 3943 */ 3944 elf_fpregset_t *fpu; 3945 elf_fpxregset_t *xfpu; 3946 int thread_status_size; 3947 #endif 3948 int notes_size; 3949 int numnote; 3950 }; 3951 3952 struct vm_area_struct { 3953 target_ulong vma_start; /* start vaddr of memory region */ 3954 target_ulong vma_end; /* end vaddr of memory region */ 3955 abi_ulong vma_flags; /* protection etc. flags for the region */ 3956 QTAILQ_ENTRY(vm_area_struct) vma_link; 3957 }; 3958 3959 struct mm_struct { 3960 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3961 int mm_count; /* number of mappings */ 3962 }; 3963 3964 static struct mm_struct *vma_init(void); 3965 static void vma_delete(struct mm_struct *); 3966 static int vma_add_mapping(struct mm_struct *, target_ulong, 3967 target_ulong, abi_ulong); 3968 static int vma_get_mapping_count(const struct mm_struct *); 3969 static struct vm_area_struct *vma_first(const struct mm_struct *); 3970 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3971 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3972 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3973 unsigned long flags); 3974 3975 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3976 static void fill_note(struct memelfnote *, const char *, int, 3977 unsigned int, void *); 3978 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3979 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3980 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3981 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3982 static size_t note_size(const struct memelfnote *); 3983 static void free_note_info(struct elf_note_info *); 3984 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3985 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3986 3987 static int dump_write(int, const void *, size_t); 3988 static int write_note(struct memelfnote *, int); 3989 static int write_note_info(struct elf_note_info *, int); 3990 3991 #ifdef BSWAP_NEEDED 3992 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3993 { 3994 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3995 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3996 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3997 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3998 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3999 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 4000 prstatus->pr_pid = tswap32(prstatus->pr_pid); 4001 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 4002 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 4003 prstatus->pr_sid = tswap32(prstatus->pr_sid); 4004 /* cpu times are not filled, so we skip them */ 4005 /* regs should be in correct format already */ 4006 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 4007 } 4008 4009 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 4010 { 4011 psinfo->pr_flag = tswapal(psinfo->pr_flag); 4012 psinfo->pr_uid = tswap16(psinfo->pr_uid); 4013 psinfo->pr_gid = tswap16(psinfo->pr_gid); 4014 psinfo->pr_pid = tswap32(psinfo->pr_pid); 4015 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 4016 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 4017 psinfo->pr_sid = tswap32(psinfo->pr_sid); 4018 } 4019 4020 static void bswap_note(struct elf_note *en) 4021 { 4022 bswap32s(&en->n_namesz); 4023 bswap32s(&en->n_descsz); 4024 bswap32s(&en->n_type); 4025 } 4026 #else 4027 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 4028 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 4029 static inline void bswap_note(struct elf_note *en) { } 4030 #endif /* BSWAP_NEEDED */ 4031 4032 /* 4033 * Minimal support for linux memory regions. These are needed 4034 * when we are finding out what memory exactly belongs to 4035 * emulated process. No locks needed here, as long as 4036 * thread that received the signal is stopped. 4037 */ 4038 4039 static struct mm_struct *vma_init(void) 4040 { 4041 struct mm_struct *mm; 4042 4043 if ((mm = g_malloc(sizeof (*mm))) == NULL) 4044 return (NULL); 4045 4046 mm->mm_count = 0; 4047 QTAILQ_INIT(&mm->mm_mmap); 4048 4049 return (mm); 4050 } 4051 4052 static void vma_delete(struct mm_struct *mm) 4053 { 4054 struct vm_area_struct *vma; 4055 4056 while ((vma = vma_first(mm)) != NULL) { 4057 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 4058 g_free(vma); 4059 } 4060 g_free(mm); 4061 } 4062 4063 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 4064 target_ulong end, abi_ulong flags) 4065 { 4066 struct vm_area_struct *vma; 4067 4068 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 4069 return (-1); 4070 4071 vma->vma_start = start; 4072 vma->vma_end = end; 4073 vma->vma_flags = flags; 4074 4075 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 4076 mm->mm_count++; 4077 4078 return (0); 4079 } 4080 4081 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 4082 { 4083 return (QTAILQ_FIRST(&mm->mm_mmap)); 4084 } 4085 4086 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 4087 { 4088 return (QTAILQ_NEXT(vma, vma_link)); 4089 } 4090 4091 static int vma_get_mapping_count(const struct mm_struct *mm) 4092 { 4093 return (mm->mm_count); 4094 } 4095 4096 /* 4097 * Calculate file (dump) size of given memory region. 4098 */ 4099 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 4100 { 4101 /* if we cannot even read the first page, skip it */ 4102 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 4103 return (0); 4104 4105 /* 4106 * Usually we don't dump executable pages as they contain 4107 * non-writable code that debugger can read directly from 4108 * target library etc. However, thread stacks are marked 4109 * also executable so we read in first page of given region 4110 * and check whether it contains elf header. If there is 4111 * no elf header, we dump it. 4112 */ 4113 if (vma->vma_flags & PROT_EXEC) { 4114 char page[TARGET_PAGE_SIZE]; 4115 4116 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 4117 return 0; 4118 } 4119 if ((page[EI_MAG0] == ELFMAG0) && 4120 (page[EI_MAG1] == ELFMAG1) && 4121 (page[EI_MAG2] == ELFMAG2) && 4122 (page[EI_MAG3] == ELFMAG3)) { 4123 /* 4124 * Mappings are possibly from ELF binary. Don't dump 4125 * them. 4126 */ 4127 return (0); 4128 } 4129 } 4130 4131 return (vma->vma_end - vma->vma_start); 4132 } 4133 4134 static int vma_walker(void *priv, target_ulong start, target_ulong end, 4135 unsigned long flags) 4136 { 4137 struct mm_struct *mm = (struct mm_struct *)priv; 4138 4139 vma_add_mapping(mm, start, end, flags); 4140 return (0); 4141 } 4142 4143 static void fill_note(struct memelfnote *note, const char *name, int type, 4144 unsigned int sz, void *data) 4145 { 4146 unsigned int namesz; 4147 4148 namesz = strlen(name) + 1; 4149 note->name = name; 4150 note->namesz = namesz; 4151 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 4152 note->type = type; 4153 note->datasz = sz; 4154 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 4155 4156 note->data = data; 4157 4158 /* 4159 * We calculate rounded up note size here as specified by 4160 * ELF document. 4161 */ 4162 note->notesz = sizeof (struct elf_note) + 4163 note->namesz_rounded + note->datasz_rounded; 4164 } 4165 4166 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4167 uint32_t flags) 4168 { 4169 (void) memset(elf, 0, sizeof(*elf)); 4170 4171 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 4172 elf->e_ident[EI_CLASS] = ELF_CLASS; 4173 elf->e_ident[EI_DATA] = ELF_DATA; 4174 elf->e_ident[EI_VERSION] = EV_CURRENT; 4175 elf->e_ident[EI_OSABI] = ELF_OSABI; 4176 4177 elf->e_type = ET_CORE; 4178 elf->e_machine = machine; 4179 elf->e_version = EV_CURRENT; 4180 elf->e_phoff = sizeof(struct elfhdr); 4181 elf->e_flags = flags; 4182 elf->e_ehsize = sizeof(struct elfhdr); 4183 elf->e_phentsize = sizeof(struct elf_phdr); 4184 elf->e_phnum = segs; 4185 4186 bswap_ehdr(elf); 4187 } 4188 4189 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4190 { 4191 phdr->p_type = PT_NOTE; 4192 phdr->p_offset = offset; 4193 phdr->p_vaddr = 0; 4194 phdr->p_paddr = 0; 4195 phdr->p_filesz = sz; 4196 phdr->p_memsz = 0; 4197 phdr->p_flags = 0; 4198 phdr->p_align = 0; 4199 4200 bswap_phdr(phdr, 1); 4201 } 4202 4203 static size_t note_size(const struct memelfnote *note) 4204 { 4205 return (note->notesz); 4206 } 4207 4208 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4209 const TaskState *ts, int signr) 4210 { 4211 (void) memset(prstatus, 0, sizeof (*prstatus)); 4212 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4213 prstatus->pr_pid = ts->ts_tid; 4214 prstatus->pr_ppid = getppid(); 4215 prstatus->pr_pgrp = getpgrp(); 4216 prstatus->pr_sid = getsid(0); 4217 4218 bswap_prstatus(prstatus); 4219 } 4220 4221 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4222 { 4223 char *base_filename; 4224 unsigned int i, len; 4225 4226 (void) memset(psinfo, 0, sizeof (*psinfo)); 4227 4228 len = ts->info->env_strings - ts->info->arg_strings; 4229 if (len >= ELF_PRARGSZ) 4230 len = ELF_PRARGSZ - 1; 4231 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4232 return -EFAULT; 4233 } 4234 for (i = 0; i < len; i++) 4235 if (psinfo->pr_psargs[i] == 0) 4236 psinfo->pr_psargs[i] = ' '; 4237 psinfo->pr_psargs[len] = 0; 4238 4239 psinfo->pr_pid = getpid(); 4240 psinfo->pr_ppid = getppid(); 4241 psinfo->pr_pgrp = getpgrp(); 4242 psinfo->pr_sid = getsid(0); 4243 psinfo->pr_uid = getuid(); 4244 psinfo->pr_gid = getgid(); 4245 4246 base_filename = g_path_get_basename(ts->bprm->filename); 4247 /* 4248 * Using strncpy here is fine: at max-length, 4249 * this field is not NUL-terminated. 4250 */ 4251 (void) strncpy(psinfo->pr_fname, base_filename, 4252 sizeof(psinfo->pr_fname)); 4253 4254 g_free(base_filename); 4255 bswap_psinfo(psinfo); 4256 return (0); 4257 } 4258 4259 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4260 { 4261 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4262 elf_addr_t orig_auxv = auxv; 4263 void *ptr; 4264 int len = ts->info->auxv_len; 4265 4266 /* 4267 * Auxiliary vector is stored in target process stack. It contains 4268 * {type, value} pairs that we need to dump into note. This is not 4269 * strictly necessary but we do it here for sake of completeness. 4270 */ 4271 4272 /* read in whole auxv vector and copy it to memelfnote */ 4273 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4274 if (ptr != NULL) { 4275 fill_note(note, "CORE", NT_AUXV, len, ptr); 4276 unlock_user(ptr, auxv, len); 4277 } 4278 } 4279 4280 /* 4281 * Constructs name of coredump file. We have following convention 4282 * for the name: 4283 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4284 * 4285 * Returns the filename 4286 */ 4287 static char *core_dump_filename(const TaskState *ts) 4288 { 4289 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4290 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4291 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4292 4293 return g_strdup_printf("qemu_%s_%s_%d.core", 4294 base_filename, nowstr, (int)getpid()); 4295 } 4296 4297 static int dump_write(int fd, const void *ptr, size_t size) 4298 { 4299 const char *bufp = (const char *)ptr; 4300 ssize_t bytes_written, bytes_left; 4301 struct rlimit dumpsize; 4302 off_t pos; 4303 4304 bytes_written = 0; 4305 getrlimit(RLIMIT_CORE, &dumpsize); 4306 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4307 if (errno == ESPIPE) { /* not a seekable stream */ 4308 bytes_left = size; 4309 } else { 4310 return pos; 4311 } 4312 } else { 4313 if (dumpsize.rlim_cur <= pos) { 4314 return -1; 4315 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4316 bytes_left = size; 4317 } else { 4318 size_t limit_left=dumpsize.rlim_cur - pos; 4319 bytes_left = limit_left >= size ? size : limit_left ; 4320 } 4321 } 4322 4323 /* 4324 * In normal conditions, single write(2) should do but 4325 * in case of socket etc. this mechanism is more portable. 4326 */ 4327 do { 4328 bytes_written = write(fd, bufp, bytes_left); 4329 if (bytes_written < 0) { 4330 if (errno == EINTR) 4331 continue; 4332 return (-1); 4333 } else if (bytes_written == 0) { /* eof */ 4334 return (-1); 4335 } 4336 bufp += bytes_written; 4337 bytes_left -= bytes_written; 4338 } while (bytes_left > 0); 4339 4340 return (0); 4341 } 4342 4343 static int write_note(struct memelfnote *men, int fd) 4344 { 4345 struct elf_note en; 4346 4347 en.n_namesz = men->namesz; 4348 en.n_type = men->type; 4349 en.n_descsz = men->datasz; 4350 4351 bswap_note(&en); 4352 4353 if (dump_write(fd, &en, sizeof(en)) != 0) 4354 return (-1); 4355 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4356 return (-1); 4357 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4358 return (-1); 4359 4360 return (0); 4361 } 4362 4363 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4364 { 4365 CPUState *cpu = env_cpu((CPUArchState *)env); 4366 TaskState *ts = (TaskState *)cpu->opaque; 4367 struct elf_thread_status *ets; 4368 4369 ets = g_malloc0(sizeof (*ets)); 4370 ets->num_notes = 1; /* only prstatus is dumped */ 4371 fill_prstatus(&ets->prstatus, ts, 0); 4372 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4373 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4374 &ets->prstatus); 4375 4376 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4377 4378 info->notes_size += note_size(&ets->notes[0]); 4379 } 4380 4381 static void init_note_info(struct elf_note_info *info) 4382 { 4383 /* Initialize the elf_note_info structure so that it is at 4384 * least safe to call free_note_info() on it. Must be 4385 * called before calling fill_note_info(). 4386 */ 4387 memset(info, 0, sizeof (*info)); 4388 QTAILQ_INIT(&info->thread_list); 4389 } 4390 4391 static int fill_note_info(struct elf_note_info *info, 4392 long signr, const CPUArchState *env) 4393 { 4394 #define NUMNOTES 3 4395 CPUState *cpu = env_cpu((CPUArchState *)env); 4396 TaskState *ts = (TaskState *)cpu->opaque; 4397 int i; 4398 4399 info->notes = g_new0(struct memelfnote, NUMNOTES); 4400 if (info->notes == NULL) 4401 return (-ENOMEM); 4402 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4403 if (info->prstatus == NULL) 4404 return (-ENOMEM); 4405 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4406 if (info->prstatus == NULL) 4407 return (-ENOMEM); 4408 4409 /* 4410 * First fill in status (and registers) of current thread 4411 * including process info & aux vector. 4412 */ 4413 fill_prstatus(info->prstatus, ts, signr); 4414 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4415 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4416 sizeof (*info->prstatus), info->prstatus); 4417 fill_psinfo(info->psinfo, ts); 4418 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4419 sizeof (*info->psinfo), info->psinfo); 4420 fill_auxv_note(&info->notes[2], ts); 4421 info->numnote = 3; 4422 4423 info->notes_size = 0; 4424 for (i = 0; i < info->numnote; i++) 4425 info->notes_size += note_size(&info->notes[i]); 4426 4427 /* read and fill status of all threads */ 4428 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) { 4429 CPU_FOREACH(cpu) { 4430 if (cpu == thread_cpu) { 4431 continue; 4432 } 4433 fill_thread_info(info, cpu_env(cpu)); 4434 } 4435 } 4436 4437 return (0); 4438 } 4439 4440 static void free_note_info(struct elf_note_info *info) 4441 { 4442 struct elf_thread_status *ets; 4443 4444 while (!QTAILQ_EMPTY(&info->thread_list)) { 4445 ets = QTAILQ_FIRST(&info->thread_list); 4446 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4447 g_free(ets); 4448 } 4449 4450 g_free(info->prstatus); 4451 g_free(info->psinfo); 4452 g_free(info->notes); 4453 } 4454 4455 static int write_note_info(struct elf_note_info *info, int fd) 4456 { 4457 struct elf_thread_status *ets; 4458 int i, error = 0; 4459 4460 /* write prstatus, psinfo and auxv for current thread */ 4461 for (i = 0; i < info->numnote; i++) 4462 if ((error = write_note(&info->notes[i], fd)) != 0) 4463 return (error); 4464 4465 /* write prstatus for each thread */ 4466 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4467 if ((error = write_note(&ets->notes[0], fd)) != 0) 4468 return (error); 4469 } 4470 4471 return (0); 4472 } 4473 4474 /* 4475 * Write out ELF coredump. 4476 * 4477 * See documentation of ELF object file format in: 4478 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4479 * 4480 * Coredump format in linux is following: 4481 * 4482 * 0 +----------------------+ \ 4483 * | ELF header | ET_CORE | 4484 * +----------------------+ | 4485 * | ELF program headers | |--- headers 4486 * | - NOTE section | | 4487 * | - PT_LOAD sections | | 4488 * +----------------------+ / 4489 * | NOTEs: | 4490 * | - NT_PRSTATUS | 4491 * | - NT_PRSINFO | 4492 * | - NT_AUXV | 4493 * +----------------------+ <-- aligned to target page 4494 * | Process memory dump | 4495 * : : 4496 * . . 4497 * : : 4498 * | | 4499 * +----------------------+ 4500 * 4501 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4502 * NT_PRSINFO -> struct elf_prpsinfo 4503 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4504 * 4505 * Format follows System V format as close as possible. Current 4506 * version limitations are as follows: 4507 * - no floating point registers are dumped 4508 * 4509 * Function returns 0 in case of success, negative errno otherwise. 4510 * 4511 * TODO: make this work also during runtime: it should be 4512 * possible to force coredump from running process and then 4513 * continue processing. For example qemu could set up SIGUSR2 4514 * handler (provided that target process haven't registered 4515 * handler for that) that does the dump when signal is received. 4516 */ 4517 static int elf_core_dump(int signr, const CPUArchState *env) 4518 { 4519 const CPUState *cpu = env_cpu((CPUArchState *)env); 4520 const TaskState *ts = (const TaskState *)cpu->opaque; 4521 struct vm_area_struct *vma = NULL; 4522 g_autofree char *corefile = NULL; 4523 struct elf_note_info info; 4524 struct elfhdr elf; 4525 struct elf_phdr phdr; 4526 struct rlimit dumpsize; 4527 struct mm_struct *mm = NULL; 4528 off_t offset = 0, data_offset = 0; 4529 int segs = 0; 4530 int fd = -1; 4531 4532 init_note_info(&info); 4533 4534 errno = 0; 4535 getrlimit(RLIMIT_CORE, &dumpsize); 4536 if (dumpsize.rlim_cur == 0) 4537 return 0; 4538 4539 corefile = core_dump_filename(ts); 4540 4541 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4542 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4543 return (-errno); 4544 4545 /* 4546 * Walk through target process memory mappings and 4547 * set up structure containing this information. After 4548 * this point vma_xxx functions can be used. 4549 */ 4550 if ((mm = vma_init()) == NULL) 4551 goto out; 4552 4553 walk_memory_regions(mm, vma_walker); 4554 segs = vma_get_mapping_count(mm); 4555 4556 /* 4557 * Construct valid coredump ELF header. We also 4558 * add one more segment for notes. 4559 */ 4560 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4561 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4562 goto out; 4563 4564 /* fill in the in-memory version of notes */ 4565 if (fill_note_info(&info, signr, env) < 0) 4566 goto out; 4567 4568 offset += sizeof (elf); /* elf header */ 4569 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4570 4571 /* write out notes program header */ 4572 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4573 4574 offset += info.notes_size; 4575 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4576 goto out; 4577 4578 /* 4579 * ELF specification wants data to start at page boundary so 4580 * we align it here. 4581 */ 4582 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4583 4584 /* 4585 * Write program headers for memory regions mapped in 4586 * the target process. 4587 */ 4588 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4589 (void) memset(&phdr, 0, sizeof (phdr)); 4590 4591 phdr.p_type = PT_LOAD; 4592 phdr.p_offset = offset; 4593 phdr.p_vaddr = vma->vma_start; 4594 phdr.p_paddr = 0; 4595 phdr.p_filesz = vma_dump_size(vma); 4596 offset += phdr.p_filesz; 4597 phdr.p_memsz = vma->vma_end - vma->vma_start; 4598 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4599 if (vma->vma_flags & PROT_WRITE) 4600 phdr.p_flags |= PF_W; 4601 if (vma->vma_flags & PROT_EXEC) 4602 phdr.p_flags |= PF_X; 4603 phdr.p_align = ELF_EXEC_PAGESIZE; 4604 4605 bswap_phdr(&phdr, 1); 4606 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4607 goto out; 4608 } 4609 } 4610 4611 /* 4612 * Next we write notes just after program headers. No 4613 * alignment needed here. 4614 */ 4615 if (write_note_info(&info, fd) < 0) 4616 goto out; 4617 4618 /* align data to page boundary */ 4619 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4620 goto out; 4621 4622 /* 4623 * Finally we can dump process memory into corefile as well. 4624 */ 4625 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4626 abi_ulong addr; 4627 abi_ulong end; 4628 4629 end = vma->vma_start + vma_dump_size(vma); 4630 4631 for (addr = vma->vma_start; addr < end; 4632 addr += TARGET_PAGE_SIZE) { 4633 char page[TARGET_PAGE_SIZE]; 4634 int error; 4635 4636 /* 4637 * Read in page from target process memory and 4638 * write it to coredump file. 4639 */ 4640 error = copy_from_user(page, addr, sizeof (page)); 4641 if (error != 0) { 4642 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4643 addr); 4644 errno = -error; 4645 goto out; 4646 } 4647 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4648 goto out; 4649 } 4650 } 4651 4652 out: 4653 free_note_info(&info); 4654 if (mm != NULL) 4655 vma_delete(mm); 4656 (void) close(fd); 4657 4658 if (errno != 0) 4659 return (-errno); 4660 return (0); 4661 } 4662 #endif /* USE_ELF_CORE_DUMP */ 4663 4664 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4665 { 4666 init_thread(regs, infop); 4667 } 4668