1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 462 #define GET_FEATURE_ID(feat, hwcap) \ 463 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 464 465 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 466 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 467 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 468 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 469 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 470 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 471 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 472 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 473 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 474 GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA); 475 GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT); 476 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 477 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 478 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 479 * to our VFP_FP16 feature bit. 480 */ 481 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 482 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 483 484 return hwcaps; 485 } 486 487 static uint32_t get_elf_hwcap2(void) 488 { 489 ARMCPU *cpu = ARM_CPU(thread_cpu); 490 uint32_t hwcaps = 0; 491 492 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 493 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 494 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 495 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 496 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 497 return hwcaps; 498 } 499 500 #undef GET_FEATURE 501 #undef GET_FEATURE_ID 502 503 #else 504 /* 64 bit ARM definitions */ 505 #define ELF_START_MMAP 0x80000000 506 507 #define ELF_ARCH EM_AARCH64 508 #define ELF_CLASS ELFCLASS64 509 #define ELF_PLATFORM "aarch64" 510 511 static inline void init_thread(struct target_pt_regs *regs, 512 struct image_info *infop) 513 { 514 abi_long stack = infop->start_stack; 515 memset(regs, 0, sizeof(*regs)); 516 517 regs->pc = infop->entry & ~0x3ULL; 518 regs->sp = stack; 519 } 520 521 #define ELF_NREG 34 522 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 523 524 static void elf_core_copy_regs(target_elf_gregset_t *regs, 525 const CPUARMState *env) 526 { 527 int i; 528 529 for (i = 0; i < 32; i++) { 530 (*regs)[i] = tswapreg(env->xregs[i]); 531 } 532 (*regs)[32] = tswapreg(env->pc); 533 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 534 } 535 536 #define USE_ELF_CORE_DUMP 537 #define ELF_EXEC_PAGESIZE 4096 538 539 enum { 540 ARM_HWCAP_A64_FP = 1 << 0, 541 ARM_HWCAP_A64_ASIMD = 1 << 1, 542 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 543 ARM_HWCAP_A64_AES = 1 << 3, 544 ARM_HWCAP_A64_PMULL = 1 << 4, 545 ARM_HWCAP_A64_SHA1 = 1 << 5, 546 ARM_HWCAP_A64_SHA2 = 1 << 6, 547 ARM_HWCAP_A64_CRC32 = 1 << 7, 548 ARM_HWCAP_A64_ATOMICS = 1 << 8, 549 ARM_HWCAP_A64_FPHP = 1 << 9, 550 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 551 ARM_HWCAP_A64_CPUID = 1 << 11, 552 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 553 ARM_HWCAP_A64_JSCVT = 1 << 13, 554 ARM_HWCAP_A64_FCMA = 1 << 14, 555 ARM_HWCAP_A64_LRCPC = 1 << 15, 556 ARM_HWCAP_A64_DCPOP = 1 << 16, 557 ARM_HWCAP_A64_SHA3 = 1 << 17, 558 ARM_HWCAP_A64_SM3 = 1 << 18, 559 ARM_HWCAP_A64_SM4 = 1 << 19, 560 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 561 ARM_HWCAP_A64_SHA512 = 1 << 21, 562 ARM_HWCAP_A64_SVE = 1 << 22, 563 }; 564 565 #define ELF_HWCAP get_elf_hwcap() 566 567 static uint32_t get_elf_hwcap(void) 568 { 569 ARMCPU *cpu = ARM_CPU(thread_cpu); 570 uint32_t hwcaps = 0; 571 572 hwcaps |= ARM_HWCAP_A64_FP; 573 hwcaps |= ARM_HWCAP_A64_ASIMD; 574 575 /* probe for the extra features */ 576 #define GET_FEATURE_ID(feat, hwcap) \ 577 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 578 579 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 580 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 581 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 582 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 583 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 584 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 585 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 586 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 587 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 588 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 589 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 590 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 591 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 592 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 593 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 594 595 #undef GET_FEATURE_ID 596 597 return hwcaps; 598 } 599 600 #endif /* not TARGET_AARCH64 */ 601 #endif /* TARGET_ARM */ 602 603 #ifdef TARGET_SPARC 604 #ifdef TARGET_SPARC64 605 606 #define ELF_START_MMAP 0x80000000 607 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 608 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 609 #ifndef TARGET_ABI32 610 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 611 #else 612 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 613 #endif 614 615 #define ELF_CLASS ELFCLASS64 616 #define ELF_ARCH EM_SPARCV9 617 618 #define STACK_BIAS 2047 619 620 static inline void init_thread(struct target_pt_regs *regs, 621 struct image_info *infop) 622 { 623 #ifndef TARGET_ABI32 624 regs->tstate = 0; 625 #endif 626 regs->pc = infop->entry; 627 regs->npc = regs->pc + 4; 628 regs->y = 0; 629 #ifdef TARGET_ABI32 630 regs->u_regs[14] = infop->start_stack - 16 * 4; 631 #else 632 if (personality(infop->personality) == PER_LINUX32) 633 regs->u_regs[14] = infop->start_stack - 16 * 4; 634 else 635 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 636 #endif 637 } 638 639 #else 640 #define ELF_START_MMAP 0x80000000 641 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 642 | HWCAP_SPARC_MULDIV) 643 644 #define ELF_CLASS ELFCLASS32 645 #define ELF_ARCH EM_SPARC 646 647 static inline void init_thread(struct target_pt_regs *regs, 648 struct image_info *infop) 649 { 650 regs->psr = 0; 651 regs->pc = infop->entry; 652 regs->npc = regs->pc + 4; 653 regs->y = 0; 654 regs->u_regs[14] = infop->start_stack - 16 * 4; 655 } 656 657 #endif 658 #endif 659 660 #ifdef TARGET_PPC 661 662 #define ELF_MACHINE PPC_ELF_MACHINE 663 #define ELF_START_MMAP 0x80000000 664 665 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 666 667 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 668 669 #define ELF_CLASS ELFCLASS64 670 671 #else 672 673 #define ELF_CLASS ELFCLASS32 674 675 #endif 676 677 #define ELF_ARCH EM_PPC 678 679 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 680 See arch/powerpc/include/asm/cputable.h. */ 681 enum { 682 QEMU_PPC_FEATURE_32 = 0x80000000, 683 QEMU_PPC_FEATURE_64 = 0x40000000, 684 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 685 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 686 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 687 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 688 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 689 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 690 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 691 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 692 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 693 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 694 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 695 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 696 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 697 QEMU_PPC_FEATURE_CELL = 0x00010000, 698 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 699 QEMU_PPC_FEATURE_SMT = 0x00004000, 700 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 701 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 702 QEMU_PPC_FEATURE_PA6T = 0x00000800, 703 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 704 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 705 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 706 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 707 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 708 709 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 710 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 711 712 /* Feature definitions in AT_HWCAP2. */ 713 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 714 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 715 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 716 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 717 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 718 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 719 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 720 }; 721 722 #define ELF_HWCAP get_elf_hwcap() 723 724 static uint32_t get_elf_hwcap(void) 725 { 726 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 727 uint32_t features = 0; 728 729 /* We don't have to be terribly complete here; the high points are 730 Altivec/FP/SPE support. Anything else is just a bonus. */ 731 #define GET_FEATURE(flag, feature) \ 732 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 733 #define GET_FEATURE2(flags, feature) \ 734 do { \ 735 if ((cpu->env.insns_flags2 & flags) == flags) { \ 736 features |= feature; \ 737 } \ 738 } while (0) 739 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 740 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 741 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 742 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 743 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 744 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 745 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 746 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 747 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 748 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 749 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 750 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 751 QEMU_PPC_FEATURE_ARCH_2_06); 752 #undef GET_FEATURE 753 #undef GET_FEATURE2 754 755 return features; 756 } 757 758 #define ELF_HWCAP2 get_elf_hwcap2() 759 760 static uint32_t get_elf_hwcap2(void) 761 { 762 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 763 uint32_t features = 0; 764 765 #define GET_FEATURE(flag, feature) \ 766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 767 #define GET_FEATURE2(flag, feature) \ 768 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 769 770 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 771 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 772 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 773 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 774 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00); 775 776 #undef GET_FEATURE 777 #undef GET_FEATURE2 778 779 return features; 780 } 781 782 /* 783 * The requirements here are: 784 * - keep the final alignment of sp (sp & 0xf) 785 * - make sure the 32-bit value at the first 16 byte aligned position of 786 * AUXV is greater than 16 for glibc compatibility. 787 * AT_IGNOREPPC is used for that. 788 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 789 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 790 */ 791 #define DLINFO_ARCH_ITEMS 5 792 #define ARCH_DLINFO \ 793 do { \ 794 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 795 /* \ 796 * Handle glibc compatibility: these magic entries must \ 797 * be at the lowest addresses in the final auxv. \ 798 */ \ 799 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 800 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 801 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 802 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 803 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 804 } while (0) 805 806 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 807 { 808 _regs->gpr[1] = infop->start_stack; 809 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 810 if (get_ppc64_abi(infop) < 2) { 811 uint64_t val; 812 get_user_u64(val, infop->entry + 8); 813 _regs->gpr[2] = val + infop->load_bias; 814 get_user_u64(val, infop->entry); 815 infop->entry = val + infop->load_bias; 816 } else { 817 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 818 } 819 #endif 820 _regs->nip = infop->entry; 821 } 822 823 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 824 #define ELF_NREG 48 825 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 826 827 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 828 { 829 int i; 830 target_ulong ccr = 0; 831 832 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 833 (*regs)[i] = tswapreg(env->gpr[i]); 834 } 835 836 (*regs)[32] = tswapreg(env->nip); 837 (*regs)[33] = tswapreg(env->msr); 838 (*regs)[35] = tswapreg(env->ctr); 839 (*regs)[36] = tswapreg(env->lr); 840 (*regs)[37] = tswapreg(env->xer); 841 842 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 843 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 844 } 845 (*regs)[38] = tswapreg(ccr); 846 } 847 848 #define USE_ELF_CORE_DUMP 849 #define ELF_EXEC_PAGESIZE 4096 850 851 #endif 852 853 #ifdef TARGET_MIPS 854 855 #define ELF_START_MMAP 0x80000000 856 857 #ifdef TARGET_MIPS64 858 #define ELF_CLASS ELFCLASS64 859 #else 860 #define ELF_CLASS ELFCLASS32 861 #endif 862 #define ELF_ARCH EM_MIPS 863 864 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS) 865 866 static inline void init_thread(struct target_pt_regs *regs, 867 struct image_info *infop) 868 { 869 regs->cp0_status = 2 << CP0St_KSU; 870 regs->cp0_epc = infop->entry; 871 regs->regs[29] = infop->start_stack; 872 } 873 874 /* See linux kernel: arch/mips/include/asm/elf.h. */ 875 #define ELF_NREG 45 876 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 877 878 /* See linux kernel: arch/mips/include/asm/reg.h. */ 879 enum { 880 #ifdef TARGET_MIPS64 881 TARGET_EF_R0 = 0, 882 #else 883 TARGET_EF_R0 = 6, 884 #endif 885 TARGET_EF_R26 = TARGET_EF_R0 + 26, 886 TARGET_EF_R27 = TARGET_EF_R0 + 27, 887 TARGET_EF_LO = TARGET_EF_R0 + 32, 888 TARGET_EF_HI = TARGET_EF_R0 + 33, 889 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 890 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 891 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 892 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 893 }; 894 895 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 896 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 897 { 898 int i; 899 900 for (i = 0; i < TARGET_EF_R0; i++) { 901 (*regs)[i] = 0; 902 } 903 (*regs)[TARGET_EF_R0] = 0; 904 905 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 906 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 907 } 908 909 (*regs)[TARGET_EF_R26] = 0; 910 (*regs)[TARGET_EF_R27] = 0; 911 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 912 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 913 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 914 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 915 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 916 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 917 } 918 919 #define USE_ELF_CORE_DUMP 920 #define ELF_EXEC_PAGESIZE 4096 921 922 /* See arch/mips/include/uapi/asm/hwcap.h. */ 923 enum { 924 HWCAP_MIPS_R6 = (1 << 0), 925 HWCAP_MIPS_MSA = (1 << 1), 926 }; 927 928 #define ELF_HWCAP get_elf_hwcap() 929 930 static uint32_t get_elf_hwcap(void) 931 { 932 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 933 uint32_t hwcaps = 0; 934 935 #define GET_FEATURE(flag, hwcap) \ 936 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 937 938 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 939 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 940 941 #undef GET_FEATURE 942 943 return hwcaps; 944 } 945 946 #endif /* TARGET_MIPS */ 947 948 #ifdef TARGET_MICROBLAZE 949 950 #define ELF_START_MMAP 0x80000000 951 952 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 953 954 #define ELF_CLASS ELFCLASS32 955 #define ELF_ARCH EM_MICROBLAZE 956 957 static inline void init_thread(struct target_pt_regs *regs, 958 struct image_info *infop) 959 { 960 regs->pc = infop->entry; 961 regs->r1 = infop->start_stack; 962 963 } 964 965 #define ELF_EXEC_PAGESIZE 4096 966 967 #define USE_ELF_CORE_DUMP 968 #define ELF_NREG 38 969 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 970 971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 972 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 973 { 974 int i, pos = 0; 975 976 for (i = 0; i < 32; i++) { 977 (*regs)[pos++] = tswapreg(env->regs[i]); 978 } 979 980 for (i = 0; i < 6; i++) { 981 (*regs)[pos++] = tswapreg(env->sregs[i]); 982 } 983 } 984 985 #endif /* TARGET_MICROBLAZE */ 986 987 #ifdef TARGET_NIOS2 988 989 #define ELF_START_MMAP 0x80000000 990 991 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 992 993 #define ELF_CLASS ELFCLASS32 994 #define ELF_ARCH EM_ALTERA_NIOS2 995 996 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 997 { 998 regs->ea = infop->entry; 999 regs->sp = infop->start_stack; 1000 regs->estatus = 0x3; 1001 } 1002 1003 #define ELF_EXEC_PAGESIZE 4096 1004 1005 #define USE_ELF_CORE_DUMP 1006 #define ELF_NREG 49 1007 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1008 1009 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1010 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1011 const CPUNios2State *env) 1012 { 1013 int i; 1014 1015 (*regs)[0] = -1; 1016 for (i = 1; i < 8; i++) /* r0-r7 */ 1017 (*regs)[i] = tswapreg(env->regs[i + 7]); 1018 1019 for (i = 8; i < 16; i++) /* r8-r15 */ 1020 (*regs)[i] = tswapreg(env->regs[i - 8]); 1021 1022 for (i = 16; i < 24; i++) /* r16-r23 */ 1023 (*regs)[i] = tswapreg(env->regs[i + 7]); 1024 (*regs)[24] = -1; /* R_ET */ 1025 (*regs)[25] = -1; /* R_BT */ 1026 (*regs)[26] = tswapreg(env->regs[R_GP]); 1027 (*regs)[27] = tswapreg(env->regs[R_SP]); 1028 (*regs)[28] = tswapreg(env->regs[R_FP]); 1029 (*regs)[29] = tswapreg(env->regs[R_EA]); 1030 (*regs)[30] = -1; /* R_SSTATUS */ 1031 (*regs)[31] = tswapreg(env->regs[R_RA]); 1032 1033 (*regs)[32] = tswapreg(env->regs[R_PC]); 1034 1035 (*regs)[33] = -1; /* R_STATUS */ 1036 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1037 1038 for (i = 35; i < 49; i++) /* ... */ 1039 (*regs)[i] = -1; 1040 } 1041 1042 #endif /* TARGET_NIOS2 */ 1043 1044 #ifdef TARGET_OPENRISC 1045 1046 #define ELF_START_MMAP 0x08000000 1047 1048 #define ELF_ARCH EM_OPENRISC 1049 #define ELF_CLASS ELFCLASS32 1050 #define ELF_DATA ELFDATA2MSB 1051 1052 static inline void init_thread(struct target_pt_regs *regs, 1053 struct image_info *infop) 1054 { 1055 regs->pc = infop->entry; 1056 regs->gpr[1] = infop->start_stack; 1057 } 1058 1059 #define USE_ELF_CORE_DUMP 1060 #define ELF_EXEC_PAGESIZE 8192 1061 1062 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1063 #define ELF_NREG 34 /* gprs and pc, sr */ 1064 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1065 1066 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1067 const CPUOpenRISCState *env) 1068 { 1069 int i; 1070 1071 for (i = 0; i < 32; i++) { 1072 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1073 } 1074 (*regs)[32] = tswapreg(env->pc); 1075 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1076 } 1077 #define ELF_HWCAP 0 1078 #define ELF_PLATFORM NULL 1079 1080 #endif /* TARGET_OPENRISC */ 1081 1082 #ifdef TARGET_SH4 1083 1084 #define ELF_START_MMAP 0x80000000 1085 1086 #define ELF_CLASS ELFCLASS32 1087 #define ELF_ARCH EM_SH 1088 1089 static inline void init_thread(struct target_pt_regs *regs, 1090 struct image_info *infop) 1091 { 1092 /* Check other registers XXXXX */ 1093 regs->pc = infop->entry; 1094 regs->regs[15] = infop->start_stack; 1095 } 1096 1097 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1098 #define ELF_NREG 23 1099 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1100 1101 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1102 enum { 1103 TARGET_REG_PC = 16, 1104 TARGET_REG_PR = 17, 1105 TARGET_REG_SR = 18, 1106 TARGET_REG_GBR = 19, 1107 TARGET_REG_MACH = 20, 1108 TARGET_REG_MACL = 21, 1109 TARGET_REG_SYSCALL = 22 1110 }; 1111 1112 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1113 const CPUSH4State *env) 1114 { 1115 int i; 1116 1117 for (i = 0; i < 16; i++) { 1118 (*regs)[i] = tswapreg(env->gregs[i]); 1119 } 1120 1121 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1122 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1123 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1124 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1125 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1126 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1127 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1128 } 1129 1130 #define USE_ELF_CORE_DUMP 1131 #define ELF_EXEC_PAGESIZE 4096 1132 1133 enum { 1134 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1135 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1136 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1137 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1138 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1139 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1140 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1141 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1142 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1143 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1144 }; 1145 1146 #define ELF_HWCAP get_elf_hwcap() 1147 1148 static uint32_t get_elf_hwcap(void) 1149 { 1150 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1151 uint32_t hwcap = 0; 1152 1153 hwcap |= SH_CPU_HAS_FPU; 1154 1155 if (cpu->env.features & SH_FEATURE_SH4A) { 1156 hwcap |= SH_CPU_HAS_LLSC; 1157 } 1158 1159 return hwcap; 1160 } 1161 1162 #endif 1163 1164 #ifdef TARGET_CRIS 1165 1166 #define ELF_START_MMAP 0x80000000 1167 1168 #define ELF_CLASS ELFCLASS32 1169 #define ELF_ARCH EM_CRIS 1170 1171 static inline void init_thread(struct target_pt_regs *regs, 1172 struct image_info *infop) 1173 { 1174 regs->erp = infop->entry; 1175 } 1176 1177 #define ELF_EXEC_PAGESIZE 8192 1178 1179 #endif 1180 1181 #ifdef TARGET_M68K 1182 1183 #define ELF_START_MMAP 0x80000000 1184 1185 #define ELF_CLASS ELFCLASS32 1186 #define ELF_ARCH EM_68K 1187 1188 /* ??? Does this need to do anything? 1189 #define ELF_PLAT_INIT(_r) */ 1190 1191 static inline void init_thread(struct target_pt_regs *regs, 1192 struct image_info *infop) 1193 { 1194 regs->usp = infop->start_stack; 1195 regs->sr = 0; 1196 regs->pc = infop->entry; 1197 } 1198 1199 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1200 #define ELF_NREG 20 1201 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1202 1203 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1204 { 1205 (*regs)[0] = tswapreg(env->dregs[1]); 1206 (*regs)[1] = tswapreg(env->dregs[2]); 1207 (*regs)[2] = tswapreg(env->dregs[3]); 1208 (*regs)[3] = tswapreg(env->dregs[4]); 1209 (*regs)[4] = tswapreg(env->dregs[5]); 1210 (*regs)[5] = tswapreg(env->dregs[6]); 1211 (*regs)[6] = tswapreg(env->dregs[7]); 1212 (*regs)[7] = tswapreg(env->aregs[0]); 1213 (*regs)[8] = tswapreg(env->aregs[1]); 1214 (*regs)[9] = tswapreg(env->aregs[2]); 1215 (*regs)[10] = tswapreg(env->aregs[3]); 1216 (*regs)[11] = tswapreg(env->aregs[4]); 1217 (*regs)[12] = tswapreg(env->aregs[5]); 1218 (*regs)[13] = tswapreg(env->aregs[6]); 1219 (*regs)[14] = tswapreg(env->dregs[0]); 1220 (*regs)[15] = tswapreg(env->aregs[7]); 1221 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1222 (*regs)[17] = tswapreg(env->sr); 1223 (*regs)[18] = tswapreg(env->pc); 1224 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1225 } 1226 1227 #define USE_ELF_CORE_DUMP 1228 #define ELF_EXEC_PAGESIZE 8192 1229 1230 #endif 1231 1232 #ifdef TARGET_ALPHA 1233 1234 #define ELF_START_MMAP (0x30000000000ULL) 1235 1236 #define ELF_CLASS ELFCLASS64 1237 #define ELF_ARCH EM_ALPHA 1238 1239 static inline void init_thread(struct target_pt_regs *regs, 1240 struct image_info *infop) 1241 { 1242 regs->pc = infop->entry; 1243 regs->ps = 8; 1244 regs->usp = infop->start_stack; 1245 } 1246 1247 #define ELF_EXEC_PAGESIZE 8192 1248 1249 #endif /* TARGET_ALPHA */ 1250 1251 #ifdef TARGET_S390X 1252 1253 #define ELF_START_MMAP (0x20000000000ULL) 1254 1255 #define ELF_CLASS ELFCLASS64 1256 #define ELF_DATA ELFDATA2MSB 1257 #define ELF_ARCH EM_S390 1258 1259 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1260 { 1261 regs->psw.addr = infop->entry; 1262 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1263 regs->gprs[15] = infop->start_stack; 1264 } 1265 1266 #endif /* TARGET_S390X */ 1267 1268 #ifdef TARGET_TILEGX 1269 1270 /* 42 bits real used address, a half for user mode */ 1271 #define ELF_START_MMAP (0x00000020000000000ULL) 1272 1273 #define elf_check_arch(x) ((x) == EM_TILEGX) 1274 1275 #define ELF_CLASS ELFCLASS64 1276 #define ELF_DATA ELFDATA2LSB 1277 #define ELF_ARCH EM_TILEGX 1278 1279 static inline void init_thread(struct target_pt_regs *regs, 1280 struct image_info *infop) 1281 { 1282 regs->pc = infop->entry; 1283 regs->sp = infop->start_stack; 1284 1285 } 1286 1287 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1288 1289 #endif /* TARGET_TILEGX */ 1290 1291 #ifdef TARGET_RISCV 1292 1293 #define ELF_START_MMAP 0x80000000 1294 #define ELF_ARCH EM_RISCV 1295 1296 #ifdef TARGET_RISCV32 1297 #define ELF_CLASS ELFCLASS32 1298 #else 1299 #define ELF_CLASS ELFCLASS64 1300 #endif 1301 1302 static inline void init_thread(struct target_pt_regs *regs, 1303 struct image_info *infop) 1304 { 1305 regs->sepc = infop->entry; 1306 regs->sp = infop->start_stack; 1307 } 1308 1309 #define ELF_EXEC_PAGESIZE 4096 1310 1311 #endif /* TARGET_RISCV */ 1312 1313 #ifdef TARGET_HPPA 1314 1315 #define ELF_START_MMAP 0x80000000 1316 #define ELF_CLASS ELFCLASS32 1317 #define ELF_ARCH EM_PARISC 1318 #define ELF_PLATFORM "PARISC" 1319 #define STACK_GROWS_DOWN 0 1320 #define STACK_ALIGNMENT 64 1321 1322 static inline void init_thread(struct target_pt_regs *regs, 1323 struct image_info *infop) 1324 { 1325 regs->iaoq[0] = infop->entry; 1326 regs->iaoq[1] = infop->entry + 4; 1327 regs->gr[23] = 0; 1328 regs->gr[24] = infop->arg_start; 1329 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1330 /* The top-of-stack contains a linkage buffer. */ 1331 regs->gr[30] = infop->start_stack + 64; 1332 regs->gr[31] = infop->entry; 1333 } 1334 1335 #endif /* TARGET_HPPA */ 1336 1337 #ifdef TARGET_XTENSA 1338 1339 #define ELF_START_MMAP 0x20000000 1340 1341 #define ELF_CLASS ELFCLASS32 1342 #define ELF_ARCH EM_XTENSA 1343 1344 static inline void init_thread(struct target_pt_regs *regs, 1345 struct image_info *infop) 1346 { 1347 regs->windowbase = 0; 1348 regs->windowstart = 1; 1349 regs->areg[1] = infop->start_stack; 1350 regs->pc = infop->entry; 1351 } 1352 1353 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1354 #define ELF_NREG 128 1355 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1356 1357 enum { 1358 TARGET_REG_PC, 1359 TARGET_REG_PS, 1360 TARGET_REG_LBEG, 1361 TARGET_REG_LEND, 1362 TARGET_REG_LCOUNT, 1363 TARGET_REG_SAR, 1364 TARGET_REG_WINDOWSTART, 1365 TARGET_REG_WINDOWBASE, 1366 TARGET_REG_THREADPTR, 1367 TARGET_REG_AR0 = 64, 1368 }; 1369 1370 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1371 const CPUXtensaState *env) 1372 { 1373 unsigned i; 1374 1375 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1376 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1377 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1378 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1379 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1380 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1381 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1382 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1383 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1384 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1385 for (i = 0; i < env->config->nareg; ++i) { 1386 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1387 } 1388 } 1389 1390 #define USE_ELF_CORE_DUMP 1391 #define ELF_EXEC_PAGESIZE 4096 1392 1393 #endif /* TARGET_XTENSA */ 1394 1395 #ifndef ELF_PLATFORM 1396 #define ELF_PLATFORM (NULL) 1397 #endif 1398 1399 #ifndef ELF_MACHINE 1400 #define ELF_MACHINE ELF_ARCH 1401 #endif 1402 1403 #ifndef elf_check_arch 1404 #define elf_check_arch(x) ((x) == ELF_ARCH) 1405 #endif 1406 1407 #ifndef ELF_HWCAP 1408 #define ELF_HWCAP 0 1409 #endif 1410 1411 #ifndef STACK_GROWS_DOWN 1412 #define STACK_GROWS_DOWN 1 1413 #endif 1414 1415 #ifndef STACK_ALIGNMENT 1416 #define STACK_ALIGNMENT 16 1417 #endif 1418 1419 #ifdef TARGET_ABI32 1420 #undef ELF_CLASS 1421 #define ELF_CLASS ELFCLASS32 1422 #undef bswaptls 1423 #define bswaptls(ptr) bswap32s(ptr) 1424 #endif 1425 1426 #include "elf.h" 1427 1428 struct exec 1429 { 1430 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1431 unsigned int a_text; /* length of text, in bytes */ 1432 unsigned int a_data; /* length of data, in bytes */ 1433 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1434 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1435 unsigned int a_entry; /* start address */ 1436 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1437 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1438 }; 1439 1440 1441 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1442 #define OMAGIC 0407 1443 #define NMAGIC 0410 1444 #define ZMAGIC 0413 1445 #define QMAGIC 0314 1446 1447 /* Necessary parameters */ 1448 #define TARGET_ELF_EXEC_PAGESIZE \ 1449 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1450 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1451 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1452 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1453 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1454 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1455 1456 #define DLINFO_ITEMS 15 1457 1458 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1459 { 1460 memcpy(to, from, n); 1461 } 1462 1463 #ifdef BSWAP_NEEDED 1464 static void bswap_ehdr(struct elfhdr *ehdr) 1465 { 1466 bswap16s(&ehdr->e_type); /* Object file type */ 1467 bswap16s(&ehdr->e_machine); /* Architecture */ 1468 bswap32s(&ehdr->e_version); /* Object file version */ 1469 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1470 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1471 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1472 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1473 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1474 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1475 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1476 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1477 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1478 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1479 } 1480 1481 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1482 { 1483 int i; 1484 for (i = 0; i < phnum; ++i, ++phdr) { 1485 bswap32s(&phdr->p_type); /* Segment type */ 1486 bswap32s(&phdr->p_flags); /* Segment flags */ 1487 bswaptls(&phdr->p_offset); /* Segment file offset */ 1488 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1489 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1490 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1491 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1492 bswaptls(&phdr->p_align); /* Segment alignment */ 1493 } 1494 } 1495 1496 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1497 { 1498 int i; 1499 for (i = 0; i < shnum; ++i, ++shdr) { 1500 bswap32s(&shdr->sh_name); 1501 bswap32s(&shdr->sh_type); 1502 bswaptls(&shdr->sh_flags); 1503 bswaptls(&shdr->sh_addr); 1504 bswaptls(&shdr->sh_offset); 1505 bswaptls(&shdr->sh_size); 1506 bswap32s(&shdr->sh_link); 1507 bswap32s(&shdr->sh_info); 1508 bswaptls(&shdr->sh_addralign); 1509 bswaptls(&shdr->sh_entsize); 1510 } 1511 } 1512 1513 static void bswap_sym(struct elf_sym *sym) 1514 { 1515 bswap32s(&sym->st_name); 1516 bswaptls(&sym->st_value); 1517 bswaptls(&sym->st_size); 1518 bswap16s(&sym->st_shndx); 1519 } 1520 1521 #ifdef TARGET_MIPS 1522 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1523 { 1524 bswap16s(&abiflags->version); 1525 bswap32s(&abiflags->ases); 1526 bswap32s(&abiflags->isa_ext); 1527 bswap32s(&abiflags->flags1); 1528 bswap32s(&abiflags->flags2); 1529 } 1530 #endif 1531 #else 1532 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1533 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1534 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1535 static inline void bswap_sym(struct elf_sym *sym) { } 1536 #ifdef TARGET_MIPS 1537 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1538 #endif 1539 #endif 1540 1541 #ifdef USE_ELF_CORE_DUMP 1542 static int elf_core_dump(int, const CPUArchState *); 1543 #endif /* USE_ELF_CORE_DUMP */ 1544 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1545 1546 /* Verify the portions of EHDR within E_IDENT for the target. 1547 This can be performed before bswapping the entire header. */ 1548 static bool elf_check_ident(struct elfhdr *ehdr) 1549 { 1550 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1551 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1552 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1553 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1554 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1555 && ehdr->e_ident[EI_DATA] == ELF_DATA 1556 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1557 } 1558 1559 /* Verify the portions of EHDR outside of E_IDENT for the target. 1560 This has to wait until after bswapping the header. */ 1561 static bool elf_check_ehdr(struct elfhdr *ehdr) 1562 { 1563 return (elf_check_arch(ehdr->e_machine) 1564 && ehdr->e_ehsize == sizeof(struct elfhdr) 1565 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1566 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1567 } 1568 1569 /* 1570 * 'copy_elf_strings()' copies argument/envelope strings from user 1571 * memory to free pages in kernel mem. These are in a format ready 1572 * to be put directly into the top of new user memory. 1573 * 1574 */ 1575 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1576 abi_ulong p, abi_ulong stack_limit) 1577 { 1578 char *tmp; 1579 int len, i; 1580 abi_ulong top = p; 1581 1582 if (!p) { 1583 return 0; /* bullet-proofing */ 1584 } 1585 1586 if (STACK_GROWS_DOWN) { 1587 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1588 for (i = argc - 1; i >= 0; --i) { 1589 tmp = argv[i]; 1590 if (!tmp) { 1591 fprintf(stderr, "VFS: argc is wrong"); 1592 exit(-1); 1593 } 1594 len = strlen(tmp) + 1; 1595 tmp += len; 1596 1597 if (len > (p - stack_limit)) { 1598 return 0; 1599 } 1600 while (len) { 1601 int bytes_to_copy = (len > offset) ? offset : len; 1602 tmp -= bytes_to_copy; 1603 p -= bytes_to_copy; 1604 offset -= bytes_to_copy; 1605 len -= bytes_to_copy; 1606 1607 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1608 1609 if (offset == 0) { 1610 memcpy_to_target(p, scratch, top - p); 1611 top = p; 1612 offset = TARGET_PAGE_SIZE; 1613 } 1614 } 1615 } 1616 if (p != top) { 1617 memcpy_to_target(p, scratch + offset, top - p); 1618 } 1619 } else { 1620 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1621 for (i = 0; i < argc; ++i) { 1622 tmp = argv[i]; 1623 if (!tmp) { 1624 fprintf(stderr, "VFS: argc is wrong"); 1625 exit(-1); 1626 } 1627 len = strlen(tmp) + 1; 1628 if (len > (stack_limit - p)) { 1629 return 0; 1630 } 1631 while (len) { 1632 int bytes_to_copy = (len > remaining) ? remaining : len; 1633 1634 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1635 1636 tmp += bytes_to_copy; 1637 remaining -= bytes_to_copy; 1638 p += bytes_to_copy; 1639 len -= bytes_to_copy; 1640 1641 if (remaining == 0) { 1642 memcpy_to_target(top, scratch, p - top); 1643 top = p; 1644 remaining = TARGET_PAGE_SIZE; 1645 } 1646 } 1647 } 1648 if (p != top) { 1649 memcpy_to_target(top, scratch, p - top); 1650 } 1651 } 1652 1653 return p; 1654 } 1655 1656 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1657 * argument/environment space. Newer kernels (>2.6.33) allow more, 1658 * dependent on stack size, but guarantee at least 32 pages for 1659 * backwards compatibility. 1660 */ 1661 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1662 1663 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1664 struct image_info *info) 1665 { 1666 abi_ulong size, error, guard; 1667 1668 size = guest_stack_size; 1669 if (size < STACK_LOWER_LIMIT) { 1670 size = STACK_LOWER_LIMIT; 1671 } 1672 guard = TARGET_PAGE_SIZE; 1673 if (guard < qemu_real_host_page_size) { 1674 guard = qemu_real_host_page_size; 1675 } 1676 1677 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1678 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1679 if (error == -1) { 1680 perror("mmap stack"); 1681 exit(-1); 1682 } 1683 1684 /* We reserve one extra page at the top of the stack as guard. */ 1685 if (STACK_GROWS_DOWN) { 1686 target_mprotect(error, guard, PROT_NONE); 1687 info->stack_limit = error + guard; 1688 return info->stack_limit + size - sizeof(void *); 1689 } else { 1690 target_mprotect(error + size, guard, PROT_NONE); 1691 info->stack_limit = error + size; 1692 return error; 1693 } 1694 } 1695 1696 /* Map and zero the bss. We need to explicitly zero any fractional pages 1697 after the data section (i.e. bss). */ 1698 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1699 { 1700 uintptr_t host_start, host_map_start, host_end; 1701 1702 last_bss = TARGET_PAGE_ALIGN(last_bss); 1703 1704 /* ??? There is confusion between qemu_real_host_page_size and 1705 qemu_host_page_size here and elsewhere in target_mmap, which 1706 may lead to the end of the data section mapping from the file 1707 not being mapped. At least there was an explicit test and 1708 comment for that here, suggesting that "the file size must 1709 be known". The comment probably pre-dates the introduction 1710 of the fstat system call in target_mmap which does in fact 1711 find out the size. What isn't clear is if the workaround 1712 here is still actually needed. For now, continue with it, 1713 but merge it with the "normal" mmap that would allocate the bss. */ 1714 1715 host_start = (uintptr_t) g2h(elf_bss); 1716 host_end = (uintptr_t) g2h(last_bss); 1717 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1718 1719 if (host_map_start < host_end) { 1720 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1721 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1722 if (p == MAP_FAILED) { 1723 perror("cannot mmap brk"); 1724 exit(-1); 1725 } 1726 } 1727 1728 /* Ensure that the bss page(s) are valid */ 1729 if ((page_get_flags(last_bss-1) & prot) != prot) { 1730 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1731 } 1732 1733 if (host_start < host_map_start) { 1734 memset((void *)host_start, 0, host_map_start - host_start); 1735 } 1736 } 1737 1738 #ifdef TARGET_ARM 1739 static int elf_is_fdpic(struct elfhdr *exec) 1740 { 1741 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1742 } 1743 #else 1744 /* Default implementation, always false. */ 1745 static int elf_is_fdpic(struct elfhdr *exec) 1746 { 1747 return 0; 1748 } 1749 #endif 1750 1751 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1752 { 1753 uint16_t n; 1754 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1755 1756 /* elf32_fdpic_loadseg */ 1757 n = info->nsegs; 1758 while (n--) { 1759 sp -= 12; 1760 put_user_u32(loadsegs[n].addr, sp+0); 1761 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1762 put_user_u32(loadsegs[n].p_memsz, sp+8); 1763 } 1764 1765 /* elf32_fdpic_loadmap */ 1766 sp -= 4; 1767 put_user_u16(0, sp+0); /* version */ 1768 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1769 1770 info->personality = PER_LINUX_FDPIC; 1771 info->loadmap_addr = sp; 1772 1773 return sp; 1774 } 1775 1776 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1777 struct elfhdr *exec, 1778 struct image_info *info, 1779 struct image_info *interp_info) 1780 { 1781 abi_ulong sp; 1782 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1783 int size; 1784 int i; 1785 abi_ulong u_rand_bytes; 1786 uint8_t k_rand_bytes[16]; 1787 abi_ulong u_platform; 1788 const char *k_platform; 1789 const int n = sizeof(elf_addr_t); 1790 1791 sp = p; 1792 1793 /* Needs to be before we load the env/argc/... */ 1794 if (elf_is_fdpic(exec)) { 1795 /* Need 4 byte alignment for these structs */ 1796 sp &= ~3; 1797 sp = loader_build_fdpic_loadmap(info, sp); 1798 info->other_info = interp_info; 1799 if (interp_info) { 1800 interp_info->other_info = info; 1801 sp = loader_build_fdpic_loadmap(interp_info, sp); 1802 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1803 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1804 } else { 1805 info->interpreter_loadmap_addr = 0; 1806 info->interpreter_pt_dynamic_addr = 0; 1807 } 1808 } 1809 1810 u_platform = 0; 1811 k_platform = ELF_PLATFORM; 1812 if (k_platform) { 1813 size_t len = strlen(k_platform) + 1; 1814 if (STACK_GROWS_DOWN) { 1815 sp -= (len + n - 1) & ~(n - 1); 1816 u_platform = sp; 1817 /* FIXME - check return value of memcpy_to_target() for failure */ 1818 memcpy_to_target(sp, k_platform, len); 1819 } else { 1820 memcpy_to_target(sp, k_platform, len); 1821 u_platform = sp; 1822 sp += len + 1; 1823 } 1824 } 1825 1826 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1827 * the argv and envp pointers. 1828 */ 1829 if (STACK_GROWS_DOWN) { 1830 sp = QEMU_ALIGN_DOWN(sp, 16); 1831 } else { 1832 sp = QEMU_ALIGN_UP(sp, 16); 1833 } 1834 1835 /* 1836 * Generate 16 random bytes for userspace PRNG seeding (not 1837 * cryptically secure but it's not the aim of QEMU). 1838 */ 1839 for (i = 0; i < 16; i++) { 1840 k_rand_bytes[i] = rand(); 1841 } 1842 if (STACK_GROWS_DOWN) { 1843 sp -= 16; 1844 u_rand_bytes = sp; 1845 /* FIXME - check return value of memcpy_to_target() for failure */ 1846 memcpy_to_target(sp, k_rand_bytes, 16); 1847 } else { 1848 memcpy_to_target(sp, k_rand_bytes, 16); 1849 u_rand_bytes = sp; 1850 sp += 16; 1851 } 1852 1853 size = (DLINFO_ITEMS + 1) * 2; 1854 if (k_platform) 1855 size += 2; 1856 #ifdef DLINFO_ARCH_ITEMS 1857 size += DLINFO_ARCH_ITEMS * 2; 1858 #endif 1859 #ifdef ELF_HWCAP2 1860 size += 2; 1861 #endif 1862 info->auxv_len = size * n; 1863 1864 size += envc + argc + 2; 1865 size += 1; /* argc itself */ 1866 size *= n; 1867 1868 /* Allocate space and finalize stack alignment for entry now. */ 1869 if (STACK_GROWS_DOWN) { 1870 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1871 sp = u_argc; 1872 } else { 1873 u_argc = sp; 1874 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1875 } 1876 1877 u_argv = u_argc + n; 1878 u_envp = u_argv + (argc + 1) * n; 1879 u_auxv = u_envp + (envc + 1) * n; 1880 info->saved_auxv = u_auxv; 1881 info->arg_start = u_argv; 1882 info->arg_end = u_argv + argc * n; 1883 1884 /* This is correct because Linux defines 1885 * elf_addr_t as Elf32_Off / Elf64_Off 1886 */ 1887 #define NEW_AUX_ENT(id, val) do { \ 1888 put_user_ual(id, u_auxv); u_auxv += n; \ 1889 put_user_ual(val, u_auxv); u_auxv += n; \ 1890 } while(0) 1891 1892 #ifdef ARCH_DLINFO 1893 /* 1894 * ARCH_DLINFO must come first so platform specific code can enforce 1895 * special alignment requirements on the AUXV if necessary (eg. PPC). 1896 */ 1897 ARCH_DLINFO; 1898 #endif 1899 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1900 * on info->auxv_len will trigger. 1901 */ 1902 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1903 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1904 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1905 if ((info->alignment & ~qemu_host_page_mask) != 0) { 1906 /* Target doesn't support host page size alignment */ 1907 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 1908 } else { 1909 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 1910 qemu_host_page_size))); 1911 } 1912 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1913 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1914 NEW_AUX_ENT(AT_ENTRY, info->entry); 1915 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1916 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1917 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1918 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1919 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1920 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1921 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1922 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1923 1924 #ifdef ELF_HWCAP2 1925 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1926 #endif 1927 1928 if (u_platform) { 1929 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1930 } 1931 NEW_AUX_ENT (AT_NULL, 0); 1932 #undef NEW_AUX_ENT 1933 1934 /* Check that our initial calculation of the auxv length matches how much 1935 * we actually put into it. 1936 */ 1937 assert(info->auxv_len == u_auxv - info->saved_auxv); 1938 1939 put_user_ual(argc, u_argc); 1940 1941 p = info->arg_strings; 1942 for (i = 0; i < argc; ++i) { 1943 put_user_ual(p, u_argv); 1944 u_argv += n; 1945 p += target_strlen(p) + 1; 1946 } 1947 put_user_ual(0, u_argv); 1948 1949 p = info->env_strings; 1950 for (i = 0; i < envc; ++i) { 1951 put_user_ual(p, u_envp); 1952 u_envp += n; 1953 p += target_strlen(p) + 1; 1954 } 1955 put_user_ual(0, u_envp); 1956 1957 return sp; 1958 } 1959 1960 unsigned long init_guest_space(unsigned long host_start, 1961 unsigned long host_size, 1962 unsigned long guest_start, 1963 bool fixed) 1964 { 1965 unsigned long current_start, aligned_start; 1966 int flags; 1967 1968 assert(host_start || host_size); 1969 1970 /* If just a starting address is given, then just verify that 1971 * address. */ 1972 if (host_start && !host_size) { 1973 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1974 if (init_guest_commpage(host_start, host_size) != 1) { 1975 return (unsigned long)-1; 1976 } 1977 #endif 1978 return host_start; 1979 } 1980 1981 /* Setup the initial flags and start address. */ 1982 current_start = host_start & qemu_host_page_mask; 1983 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1984 if (fixed) { 1985 flags |= MAP_FIXED; 1986 } 1987 1988 /* Otherwise, a non-zero size region of memory needs to be mapped 1989 * and validated. */ 1990 1991 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1992 /* On 32-bit ARM, we need to map not just the usable memory, but 1993 * also the commpage. Try to find a suitable place by allocating 1994 * a big chunk for all of it. If host_start, then the naive 1995 * strategy probably does good enough. 1996 */ 1997 if (!host_start) { 1998 unsigned long guest_full_size, host_full_size, real_start; 1999 2000 guest_full_size = 2001 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 2002 host_full_size = guest_full_size - guest_start; 2003 real_start = (unsigned long) 2004 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 2005 if (real_start == (unsigned long)-1) { 2006 if (host_size < host_full_size - qemu_host_page_size) { 2007 /* We failed to map a continous segment, but we're 2008 * allowed to have a gap between the usable memory and 2009 * the commpage where other things can be mapped. 2010 * This sparseness gives us more flexibility to find 2011 * an address range. 2012 */ 2013 goto naive; 2014 } 2015 return (unsigned long)-1; 2016 } 2017 munmap((void *)real_start, host_full_size); 2018 if (real_start & ~qemu_host_page_mask) { 2019 /* The same thing again, but with an extra qemu_host_page_size 2020 * so that we can shift around alignment. 2021 */ 2022 unsigned long real_size = host_full_size + qemu_host_page_size; 2023 real_start = (unsigned long) 2024 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 2025 if (real_start == (unsigned long)-1) { 2026 if (host_size < host_full_size - qemu_host_page_size) { 2027 goto naive; 2028 } 2029 return (unsigned long)-1; 2030 } 2031 munmap((void *)real_start, real_size); 2032 real_start = HOST_PAGE_ALIGN(real_start); 2033 } 2034 current_start = real_start; 2035 } 2036 naive: 2037 #endif 2038 2039 while (1) { 2040 unsigned long real_start, real_size, aligned_size; 2041 aligned_size = real_size = host_size; 2042 2043 /* Do not use mmap_find_vma here because that is limited to the 2044 * guest address space. We are going to make the 2045 * guest address space fit whatever we're given. 2046 */ 2047 real_start = (unsigned long) 2048 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2049 if (real_start == (unsigned long)-1) { 2050 return (unsigned long)-1; 2051 } 2052 2053 /* Check to see if the address is valid. */ 2054 if (host_start && real_start != current_start) { 2055 goto try_again; 2056 } 2057 2058 /* Ensure the address is properly aligned. */ 2059 if (real_start & ~qemu_host_page_mask) { 2060 /* Ideally, we adjust like 2061 * 2062 * pages: [ ][ ][ ][ ][ ] 2063 * old: [ real ] 2064 * [ aligned ] 2065 * new: [ real ] 2066 * [ aligned ] 2067 * 2068 * But if there is something else mapped right after it, 2069 * then obviously it won't have room to grow, and the 2070 * kernel will put the new larger real someplace else with 2071 * unknown alignment (if we made it to here, then 2072 * fixed=false). Which is why we grow real by a full page 2073 * size, instead of by part of one; so that even if we get 2074 * moved, we can still guarantee alignment. But this does 2075 * mean that there is a padding of < 1 page both before 2076 * and after the aligned range; the "after" could could 2077 * cause problems for ARM emulation where it could butt in 2078 * to where we need to put the commpage. 2079 */ 2080 munmap((void *)real_start, host_size); 2081 real_size = aligned_size + qemu_host_page_size; 2082 real_start = (unsigned long) 2083 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2084 if (real_start == (unsigned long)-1) { 2085 return (unsigned long)-1; 2086 } 2087 aligned_start = HOST_PAGE_ALIGN(real_start); 2088 } else { 2089 aligned_start = real_start; 2090 } 2091 2092 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2093 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2094 int valid = init_guest_commpage(aligned_start - guest_start, 2095 aligned_size + guest_start); 2096 if (valid == -1) { 2097 munmap((void *)real_start, real_size); 2098 return (unsigned long)-1; 2099 } else if (valid == 0) { 2100 goto try_again; 2101 } 2102 #endif 2103 2104 /* If nothing has said `return -1` or `goto try_again` yet, 2105 * then the address we have is good. 2106 */ 2107 break; 2108 2109 try_again: 2110 /* That address didn't work. Unmap and try a different one. 2111 * The address the host picked because is typically right at 2112 * the top of the host address space and leaves the guest with 2113 * no usable address space. Resort to a linear search. We 2114 * already compensated for mmap_min_addr, so this should not 2115 * happen often. Probably means we got unlucky and host 2116 * address space randomization put a shared library somewhere 2117 * inconvenient. 2118 * 2119 * This is probably a good strategy if host_start, but is 2120 * probably a bad strategy if not, which means we got here 2121 * because of trouble with ARM commpage setup. 2122 */ 2123 munmap((void *)real_start, real_size); 2124 current_start += qemu_host_page_size; 2125 if (host_start == current_start) { 2126 /* Theoretically possible if host doesn't have any suitably 2127 * aligned areas. Normally the first mmap will fail. 2128 */ 2129 return (unsigned long)-1; 2130 } 2131 } 2132 2133 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2134 2135 return aligned_start; 2136 } 2137 2138 static void probe_guest_base(const char *image_name, 2139 abi_ulong loaddr, abi_ulong hiaddr) 2140 { 2141 /* Probe for a suitable guest base address, if the user has not set 2142 * it explicitly, and set guest_base appropriately. 2143 * In case of error we will print a suitable message and exit. 2144 */ 2145 const char *errmsg; 2146 if (!have_guest_base && !reserved_va) { 2147 unsigned long host_start, real_start, host_size; 2148 2149 /* Round addresses to page boundaries. */ 2150 loaddr &= qemu_host_page_mask; 2151 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2152 2153 if (loaddr < mmap_min_addr) { 2154 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2155 } else { 2156 host_start = loaddr; 2157 if (host_start != loaddr) { 2158 errmsg = "Address overflow loading ELF binary"; 2159 goto exit_errmsg; 2160 } 2161 } 2162 host_size = hiaddr - loaddr; 2163 2164 /* Setup the initial guest memory space with ranges gleaned from 2165 * the ELF image that is being loaded. 2166 */ 2167 real_start = init_guest_space(host_start, host_size, loaddr, false); 2168 if (real_start == (unsigned long)-1) { 2169 errmsg = "Unable to find space for application"; 2170 goto exit_errmsg; 2171 } 2172 guest_base = real_start - loaddr; 2173 2174 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2175 TARGET_ABI_FMT_lx " to 0x%lx\n", 2176 loaddr, real_start); 2177 } 2178 return; 2179 2180 exit_errmsg: 2181 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2182 exit(-1); 2183 } 2184 2185 2186 /* Load an ELF image into the address space. 2187 2188 IMAGE_NAME is the filename of the image, to use in error messages. 2189 IMAGE_FD is the open file descriptor for the image. 2190 2191 BPRM_BUF is a copy of the beginning of the file; this of course 2192 contains the elf file header at offset 0. It is assumed that this 2193 buffer is sufficiently aligned to present no problems to the host 2194 in accessing data at aligned offsets within the buffer. 2195 2196 On return: INFO values will be filled in, as necessary or available. */ 2197 2198 static void load_elf_image(const char *image_name, int image_fd, 2199 struct image_info *info, char **pinterp_name, 2200 char bprm_buf[BPRM_BUF_SIZE]) 2201 { 2202 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2203 struct elf_phdr *phdr; 2204 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2205 int i, retval; 2206 const char *errmsg; 2207 2208 /* First of all, some simple consistency checks */ 2209 errmsg = "Invalid ELF image for this architecture"; 2210 if (!elf_check_ident(ehdr)) { 2211 goto exit_errmsg; 2212 } 2213 bswap_ehdr(ehdr); 2214 if (!elf_check_ehdr(ehdr)) { 2215 goto exit_errmsg; 2216 } 2217 2218 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2219 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2220 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2221 } else { 2222 phdr = (struct elf_phdr *) alloca(i); 2223 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2224 if (retval != i) { 2225 goto exit_read; 2226 } 2227 } 2228 bswap_phdr(phdr, ehdr->e_phnum); 2229 2230 info->nsegs = 0; 2231 info->pt_dynamic_addr = 0; 2232 2233 mmap_lock(); 2234 2235 /* Find the maximum size of the image and allocate an appropriate 2236 amount of memory to handle that. */ 2237 loaddr = -1, hiaddr = 0; 2238 info->alignment = 0; 2239 for (i = 0; i < ehdr->e_phnum; ++i) { 2240 if (phdr[i].p_type == PT_LOAD) { 2241 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2242 if (a < loaddr) { 2243 loaddr = a; 2244 } 2245 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2246 if (a > hiaddr) { 2247 hiaddr = a; 2248 } 2249 ++info->nsegs; 2250 info->alignment |= phdr[i].p_align; 2251 } 2252 } 2253 2254 load_addr = loaddr; 2255 if (ehdr->e_type == ET_DYN) { 2256 /* The image indicates that it can be loaded anywhere. Find a 2257 location that can hold the memory space required. If the 2258 image is pre-linked, LOADDR will be non-zero. Since we do 2259 not supply MAP_FIXED here we'll use that address if and 2260 only if it remains available. */ 2261 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2262 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2263 -1, 0); 2264 if (load_addr == -1) { 2265 goto exit_perror; 2266 } 2267 } else if (pinterp_name != NULL) { 2268 /* This is the main executable. Make sure that the low 2269 address does not conflict with MMAP_MIN_ADDR or the 2270 QEMU application itself. */ 2271 probe_guest_base(image_name, loaddr, hiaddr); 2272 } 2273 load_bias = load_addr - loaddr; 2274 2275 if (elf_is_fdpic(ehdr)) { 2276 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2277 g_malloc(sizeof(*loadsegs) * info->nsegs); 2278 2279 for (i = 0; i < ehdr->e_phnum; ++i) { 2280 switch (phdr[i].p_type) { 2281 case PT_DYNAMIC: 2282 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2283 break; 2284 case PT_LOAD: 2285 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2286 loadsegs->p_vaddr = phdr[i].p_vaddr; 2287 loadsegs->p_memsz = phdr[i].p_memsz; 2288 ++loadsegs; 2289 break; 2290 } 2291 } 2292 } 2293 2294 info->load_bias = load_bias; 2295 info->load_addr = load_addr; 2296 info->entry = ehdr->e_entry + load_bias; 2297 info->start_code = -1; 2298 info->end_code = 0; 2299 info->start_data = -1; 2300 info->end_data = 0; 2301 info->brk = 0; 2302 info->elf_flags = ehdr->e_flags; 2303 2304 for (i = 0; i < ehdr->e_phnum; i++) { 2305 struct elf_phdr *eppnt = phdr + i; 2306 if (eppnt->p_type == PT_LOAD) { 2307 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 2308 int elf_prot = 0; 2309 2310 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2311 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2312 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2313 2314 vaddr = load_bias + eppnt->p_vaddr; 2315 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2316 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2317 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 2318 2319 error = target_mmap(vaddr_ps, vaddr_len, 2320 elf_prot, MAP_PRIVATE | MAP_FIXED, 2321 image_fd, eppnt->p_offset - vaddr_po); 2322 if (error == -1) { 2323 goto exit_perror; 2324 } 2325 2326 vaddr_ef = vaddr + eppnt->p_filesz; 2327 vaddr_em = vaddr + eppnt->p_memsz; 2328 2329 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2330 if (vaddr_ef < vaddr_em) { 2331 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2332 } 2333 2334 /* Find the full program boundaries. */ 2335 if (elf_prot & PROT_EXEC) { 2336 if (vaddr < info->start_code) { 2337 info->start_code = vaddr; 2338 } 2339 if (vaddr_ef > info->end_code) { 2340 info->end_code = vaddr_ef; 2341 } 2342 } 2343 if (elf_prot & PROT_WRITE) { 2344 if (vaddr < info->start_data) { 2345 info->start_data = vaddr; 2346 } 2347 if (vaddr_ef > info->end_data) { 2348 info->end_data = vaddr_ef; 2349 } 2350 if (vaddr_em > info->brk) { 2351 info->brk = vaddr_em; 2352 } 2353 } 2354 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2355 char *interp_name; 2356 2357 if (*pinterp_name) { 2358 errmsg = "Multiple PT_INTERP entries"; 2359 goto exit_errmsg; 2360 } 2361 interp_name = malloc(eppnt->p_filesz); 2362 if (!interp_name) { 2363 goto exit_perror; 2364 } 2365 2366 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2367 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2368 eppnt->p_filesz); 2369 } else { 2370 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2371 eppnt->p_offset); 2372 if (retval != eppnt->p_filesz) { 2373 goto exit_perror; 2374 } 2375 } 2376 if (interp_name[eppnt->p_filesz - 1] != 0) { 2377 errmsg = "Invalid PT_INTERP entry"; 2378 goto exit_errmsg; 2379 } 2380 *pinterp_name = interp_name; 2381 #ifdef TARGET_MIPS 2382 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 2383 Mips_elf_abiflags_v0 abiflags; 2384 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 2385 errmsg = "Invalid PT_MIPS_ABIFLAGS entry"; 2386 goto exit_errmsg; 2387 } 2388 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2389 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 2390 sizeof(Mips_elf_abiflags_v0)); 2391 } else { 2392 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 2393 eppnt->p_offset); 2394 if (retval != sizeof(Mips_elf_abiflags_v0)) { 2395 goto exit_perror; 2396 } 2397 } 2398 bswap_mips_abiflags(&abiflags); 2399 info->fp_abi = abiflags.fp_abi; 2400 #endif 2401 } 2402 } 2403 2404 if (info->end_data == 0) { 2405 info->start_data = info->end_code; 2406 info->end_data = info->end_code; 2407 info->brk = info->end_code; 2408 } 2409 2410 if (qemu_log_enabled()) { 2411 load_symbols(ehdr, image_fd, load_bias); 2412 } 2413 2414 mmap_unlock(); 2415 2416 close(image_fd); 2417 return; 2418 2419 exit_read: 2420 if (retval >= 0) { 2421 errmsg = "Incomplete read of file header"; 2422 goto exit_errmsg; 2423 } 2424 exit_perror: 2425 errmsg = strerror(errno); 2426 exit_errmsg: 2427 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2428 exit(-1); 2429 } 2430 2431 static void load_elf_interp(const char *filename, struct image_info *info, 2432 char bprm_buf[BPRM_BUF_SIZE]) 2433 { 2434 int fd, retval; 2435 2436 fd = open(path(filename), O_RDONLY); 2437 if (fd < 0) { 2438 goto exit_perror; 2439 } 2440 2441 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2442 if (retval < 0) { 2443 goto exit_perror; 2444 } 2445 if (retval < BPRM_BUF_SIZE) { 2446 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2447 } 2448 2449 load_elf_image(filename, fd, info, NULL, bprm_buf); 2450 return; 2451 2452 exit_perror: 2453 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2454 exit(-1); 2455 } 2456 2457 static int symfind(const void *s0, const void *s1) 2458 { 2459 target_ulong addr = *(target_ulong *)s0; 2460 struct elf_sym *sym = (struct elf_sym *)s1; 2461 int result = 0; 2462 if (addr < sym->st_value) { 2463 result = -1; 2464 } else if (addr >= sym->st_value + sym->st_size) { 2465 result = 1; 2466 } 2467 return result; 2468 } 2469 2470 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2471 { 2472 #if ELF_CLASS == ELFCLASS32 2473 struct elf_sym *syms = s->disas_symtab.elf32; 2474 #else 2475 struct elf_sym *syms = s->disas_symtab.elf64; 2476 #endif 2477 2478 // binary search 2479 struct elf_sym *sym; 2480 2481 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2482 if (sym != NULL) { 2483 return s->disas_strtab + sym->st_name; 2484 } 2485 2486 return ""; 2487 } 2488 2489 /* FIXME: This should use elf_ops.h */ 2490 static int symcmp(const void *s0, const void *s1) 2491 { 2492 struct elf_sym *sym0 = (struct elf_sym *)s0; 2493 struct elf_sym *sym1 = (struct elf_sym *)s1; 2494 return (sym0->st_value < sym1->st_value) 2495 ? -1 2496 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2497 } 2498 2499 /* Best attempt to load symbols from this ELF object. */ 2500 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2501 { 2502 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2503 uint64_t segsz; 2504 struct elf_shdr *shdr; 2505 char *strings = NULL; 2506 struct syminfo *s = NULL; 2507 struct elf_sym *new_syms, *syms = NULL; 2508 2509 shnum = hdr->e_shnum; 2510 i = shnum * sizeof(struct elf_shdr); 2511 shdr = (struct elf_shdr *)alloca(i); 2512 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2513 return; 2514 } 2515 2516 bswap_shdr(shdr, shnum); 2517 for (i = 0; i < shnum; ++i) { 2518 if (shdr[i].sh_type == SHT_SYMTAB) { 2519 sym_idx = i; 2520 str_idx = shdr[i].sh_link; 2521 goto found; 2522 } 2523 } 2524 2525 /* There will be no symbol table if the file was stripped. */ 2526 return; 2527 2528 found: 2529 /* Now know where the strtab and symtab are. Snarf them. */ 2530 s = g_try_new(struct syminfo, 1); 2531 if (!s) { 2532 goto give_up; 2533 } 2534 2535 segsz = shdr[str_idx].sh_size; 2536 s->disas_strtab = strings = g_try_malloc(segsz); 2537 if (!strings || 2538 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2539 goto give_up; 2540 } 2541 2542 segsz = shdr[sym_idx].sh_size; 2543 syms = g_try_malloc(segsz); 2544 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2545 goto give_up; 2546 } 2547 2548 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2549 /* Implausibly large symbol table: give up rather than ploughing 2550 * on with the number of symbols calculation overflowing 2551 */ 2552 goto give_up; 2553 } 2554 nsyms = segsz / sizeof(struct elf_sym); 2555 for (i = 0; i < nsyms; ) { 2556 bswap_sym(syms + i); 2557 /* Throw away entries which we do not need. */ 2558 if (syms[i].st_shndx == SHN_UNDEF 2559 || syms[i].st_shndx >= SHN_LORESERVE 2560 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2561 if (i < --nsyms) { 2562 syms[i] = syms[nsyms]; 2563 } 2564 } else { 2565 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2566 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2567 syms[i].st_value &= ~(target_ulong)1; 2568 #endif 2569 syms[i].st_value += load_bias; 2570 i++; 2571 } 2572 } 2573 2574 /* No "useful" symbol. */ 2575 if (nsyms == 0) { 2576 goto give_up; 2577 } 2578 2579 /* Attempt to free the storage associated with the local symbols 2580 that we threw away. Whether or not this has any effect on the 2581 memory allocation depends on the malloc implementation and how 2582 many symbols we managed to discard. */ 2583 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2584 if (new_syms == NULL) { 2585 goto give_up; 2586 } 2587 syms = new_syms; 2588 2589 qsort(syms, nsyms, sizeof(*syms), symcmp); 2590 2591 s->disas_num_syms = nsyms; 2592 #if ELF_CLASS == ELFCLASS32 2593 s->disas_symtab.elf32 = syms; 2594 #else 2595 s->disas_symtab.elf64 = syms; 2596 #endif 2597 s->lookup_symbol = lookup_symbolxx; 2598 s->next = syminfos; 2599 syminfos = s; 2600 2601 return; 2602 2603 give_up: 2604 g_free(s); 2605 g_free(strings); 2606 g_free(syms); 2607 } 2608 2609 uint32_t get_elf_eflags(int fd) 2610 { 2611 struct elfhdr ehdr; 2612 off_t offset; 2613 int ret; 2614 2615 /* Read ELF header */ 2616 offset = lseek(fd, 0, SEEK_SET); 2617 if (offset == (off_t) -1) { 2618 return 0; 2619 } 2620 ret = read(fd, &ehdr, sizeof(ehdr)); 2621 if (ret < sizeof(ehdr)) { 2622 return 0; 2623 } 2624 offset = lseek(fd, offset, SEEK_SET); 2625 if (offset == (off_t) -1) { 2626 return 0; 2627 } 2628 2629 /* Check ELF signature */ 2630 if (!elf_check_ident(&ehdr)) { 2631 return 0; 2632 } 2633 2634 /* check header */ 2635 bswap_ehdr(&ehdr); 2636 if (!elf_check_ehdr(&ehdr)) { 2637 return 0; 2638 } 2639 2640 /* return architecture id */ 2641 return ehdr.e_flags; 2642 } 2643 2644 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2645 { 2646 struct image_info interp_info; 2647 struct elfhdr elf_ex; 2648 char *elf_interpreter = NULL; 2649 char *scratch; 2650 2651 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2652 2653 load_elf_image(bprm->filename, bprm->fd, info, 2654 &elf_interpreter, bprm->buf); 2655 2656 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2657 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2658 when we load the interpreter. */ 2659 elf_ex = *(struct elfhdr *)bprm->buf; 2660 2661 /* Do this so that we can load the interpreter, if need be. We will 2662 change some of these later */ 2663 bprm->p = setup_arg_pages(bprm, info); 2664 2665 scratch = g_new0(char, TARGET_PAGE_SIZE); 2666 if (STACK_GROWS_DOWN) { 2667 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2668 bprm->p, info->stack_limit); 2669 info->file_string = bprm->p; 2670 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2671 bprm->p, info->stack_limit); 2672 info->env_strings = bprm->p; 2673 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2674 bprm->p, info->stack_limit); 2675 info->arg_strings = bprm->p; 2676 } else { 2677 info->arg_strings = bprm->p; 2678 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2679 bprm->p, info->stack_limit); 2680 info->env_strings = bprm->p; 2681 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2682 bprm->p, info->stack_limit); 2683 info->file_string = bprm->p; 2684 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2685 bprm->p, info->stack_limit); 2686 } 2687 2688 g_free(scratch); 2689 2690 if (!bprm->p) { 2691 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2692 exit(-1); 2693 } 2694 2695 if (elf_interpreter) { 2696 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2697 2698 /* If the program interpreter is one of these two, then assume 2699 an iBCS2 image. Otherwise assume a native linux image. */ 2700 2701 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2702 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2703 info->personality = PER_SVR4; 2704 2705 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2706 and some applications "depend" upon this behavior. Since 2707 we do not have the power to recompile these, we emulate 2708 the SVr4 behavior. Sigh. */ 2709 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2710 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2711 } 2712 #ifdef TARGET_MIPS 2713 info->interp_fp_abi = interp_info.fp_abi; 2714 #endif 2715 } 2716 2717 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2718 info, (elf_interpreter ? &interp_info : NULL)); 2719 info->start_stack = bprm->p; 2720 2721 /* If we have an interpreter, set that as the program's entry point. 2722 Copy the load_bias as well, to help PPC64 interpret the entry 2723 point as a function descriptor. Do this after creating elf tables 2724 so that we copy the original program entry point into the AUXV. */ 2725 if (elf_interpreter) { 2726 info->load_bias = interp_info.load_bias; 2727 info->entry = interp_info.entry; 2728 free(elf_interpreter); 2729 } 2730 2731 #ifdef USE_ELF_CORE_DUMP 2732 bprm->core_dump = &elf_core_dump; 2733 #endif 2734 2735 return 0; 2736 } 2737 2738 #ifdef USE_ELF_CORE_DUMP 2739 /* 2740 * Definitions to generate Intel SVR4-like core files. 2741 * These mostly have the same names as the SVR4 types with "target_elf_" 2742 * tacked on the front to prevent clashes with linux definitions, 2743 * and the typedef forms have been avoided. This is mostly like 2744 * the SVR4 structure, but more Linuxy, with things that Linux does 2745 * not support and which gdb doesn't really use excluded. 2746 * 2747 * Fields we don't dump (their contents is zero) in linux-user qemu 2748 * are marked with XXX. 2749 * 2750 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2751 * 2752 * Porting ELF coredump for target is (quite) simple process. First you 2753 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2754 * the target resides): 2755 * 2756 * #define USE_ELF_CORE_DUMP 2757 * 2758 * Next you define type of register set used for dumping. ELF specification 2759 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2760 * 2761 * typedef <target_regtype> target_elf_greg_t; 2762 * #define ELF_NREG <number of registers> 2763 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2764 * 2765 * Last step is to implement target specific function that copies registers 2766 * from given cpu into just specified register set. Prototype is: 2767 * 2768 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2769 * const CPUArchState *env); 2770 * 2771 * Parameters: 2772 * regs - copy register values into here (allocated and zeroed by caller) 2773 * env - copy registers from here 2774 * 2775 * Example for ARM target is provided in this file. 2776 */ 2777 2778 /* An ELF note in memory */ 2779 struct memelfnote { 2780 const char *name; 2781 size_t namesz; 2782 size_t namesz_rounded; 2783 int type; 2784 size_t datasz; 2785 size_t datasz_rounded; 2786 void *data; 2787 size_t notesz; 2788 }; 2789 2790 struct target_elf_siginfo { 2791 abi_int si_signo; /* signal number */ 2792 abi_int si_code; /* extra code */ 2793 abi_int si_errno; /* errno */ 2794 }; 2795 2796 struct target_elf_prstatus { 2797 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2798 abi_short pr_cursig; /* Current signal */ 2799 abi_ulong pr_sigpend; /* XXX */ 2800 abi_ulong pr_sighold; /* XXX */ 2801 target_pid_t pr_pid; 2802 target_pid_t pr_ppid; 2803 target_pid_t pr_pgrp; 2804 target_pid_t pr_sid; 2805 struct target_timeval pr_utime; /* XXX User time */ 2806 struct target_timeval pr_stime; /* XXX System time */ 2807 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2808 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2809 target_elf_gregset_t pr_reg; /* GP registers */ 2810 abi_int pr_fpvalid; /* XXX */ 2811 }; 2812 2813 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2814 2815 struct target_elf_prpsinfo { 2816 char pr_state; /* numeric process state */ 2817 char pr_sname; /* char for pr_state */ 2818 char pr_zomb; /* zombie */ 2819 char pr_nice; /* nice val */ 2820 abi_ulong pr_flag; /* flags */ 2821 target_uid_t pr_uid; 2822 target_gid_t pr_gid; 2823 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2824 /* Lots missing */ 2825 char pr_fname[16]; /* filename of executable */ 2826 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2827 }; 2828 2829 /* Here is the structure in which status of each thread is captured. */ 2830 struct elf_thread_status { 2831 QTAILQ_ENTRY(elf_thread_status) ets_link; 2832 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2833 #if 0 2834 elf_fpregset_t fpu; /* NT_PRFPREG */ 2835 struct task_struct *thread; 2836 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2837 #endif 2838 struct memelfnote notes[1]; 2839 int num_notes; 2840 }; 2841 2842 struct elf_note_info { 2843 struct memelfnote *notes; 2844 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2845 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2846 2847 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2848 #if 0 2849 /* 2850 * Current version of ELF coredump doesn't support 2851 * dumping fp regs etc. 2852 */ 2853 elf_fpregset_t *fpu; 2854 elf_fpxregset_t *xfpu; 2855 int thread_status_size; 2856 #endif 2857 int notes_size; 2858 int numnote; 2859 }; 2860 2861 struct vm_area_struct { 2862 target_ulong vma_start; /* start vaddr of memory region */ 2863 target_ulong vma_end; /* end vaddr of memory region */ 2864 abi_ulong vma_flags; /* protection etc. flags for the region */ 2865 QTAILQ_ENTRY(vm_area_struct) vma_link; 2866 }; 2867 2868 struct mm_struct { 2869 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2870 int mm_count; /* number of mappings */ 2871 }; 2872 2873 static struct mm_struct *vma_init(void); 2874 static void vma_delete(struct mm_struct *); 2875 static int vma_add_mapping(struct mm_struct *, target_ulong, 2876 target_ulong, abi_ulong); 2877 static int vma_get_mapping_count(const struct mm_struct *); 2878 static struct vm_area_struct *vma_first(const struct mm_struct *); 2879 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2880 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2881 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2882 unsigned long flags); 2883 2884 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2885 static void fill_note(struct memelfnote *, const char *, int, 2886 unsigned int, void *); 2887 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2888 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2889 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2890 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2891 static size_t note_size(const struct memelfnote *); 2892 static void free_note_info(struct elf_note_info *); 2893 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2894 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2895 static int core_dump_filename(const TaskState *, char *, size_t); 2896 2897 static int dump_write(int, const void *, size_t); 2898 static int write_note(struct memelfnote *, int); 2899 static int write_note_info(struct elf_note_info *, int); 2900 2901 #ifdef BSWAP_NEEDED 2902 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2903 { 2904 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2905 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2906 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2907 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2908 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2909 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2910 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2911 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2912 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2913 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2914 /* cpu times are not filled, so we skip them */ 2915 /* regs should be in correct format already */ 2916 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2917 } 2918 2919 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2920 { 2921 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2922 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2923 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2924 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2925 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2926 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2927 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2928 } 2929 2930 static void bswap_note(struct elf_note *en) 2931 { 2932 bswap32s(&en->n_namesz); 2933 bswap32s(&en->n_descsz); 2934 bswap32s(&en->n_type); 2935 } 2936 #else 2937 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2938 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2939 static inline void bswap_note(struct elf_note *en) { } 2940 #endif /* BSWAP_NEEDED */ 2941 2942 /* 2943 * Minimal support for linux memory regions. These are needed 2944 * when we are finding out what memory exactly belongs to 2945 * emulated process. No locks needed here, as long as 2946 * thread that received the signal is stopped. 2947 */ 2948 2949 static struct mm_struct *vma_init(void) 2950 { 2951 struct mm_struct *mm; 2952 2953 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2954 return (NULL); 2955 2956 mm->mm_count = 0; 2957 QTAILQ_INIT(&mm->mm_mmap); 2958 2959 return (mm); 2960 } 2961 2962 static void vma_delete(struct mm_struct *mm) 2963 { 2964 struct vm_area_struct *vma; 2965 2966 while ((vma = vma_first(mm)) != NULL) { 2967 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2968 g_free(vma); 2969 } 2970 g_free(mm); 2971 } 2972 2973 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2974 target_ulong end, abi_ulong flags) 2975 { 2976 struct vm_area_struct *vma; 2977 2978 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2979 return (-1); 2980 2981 vma->vma_start = start; 2982 vma->vma_end = end; 2983 vma->vma_flags = flags; 2984 2985 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2986 mm->mm_count++; 2987 2988 return (0); 2989 } 2990 2991 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2992 { 2993 return (QTAILQ_FIRST(&mm->mm_mmap)); 2994 } 2995 2996 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2997 { 2998 return (QTAILQ_NEXT(vma, vma_link)); 2999 } 3000 3001 static int vma_get_mapping_count(const struct mm_struct *mm) 3002 { 3003 return (mm->mm_count); 3004 } 3005 3006 /* 3007 * Calculate file (dump) size of given memory region. 3008 */ 3009 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3010 { 3011 /* if we cannot even read the first page, skip it */ 3012 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3013 return (0); 3014 3015 /* 3016 * Usually we don't dump executable pages as they contain 3017 * non-writable code that debugger can read directly from 3018 * target library etc. However, thread stacks are marked 3019 * also executable so we read in first page of given region 3020 * and check whether it contains elf header. If there is 3021 * no elf header, we dump it. 3022 */ 3023 if (vma->vma_flags & PROT_EXEC) { 3024 char page[TARGET_PAGE_SIZE]; 3025 3026 copy_from_user(page, vma->vma_start, sizeof (page)); 3027 if ((page[EI_MAG0] == ELFMAG0) && 3028 (page[EI_MAG1] == ELFMAG1) && 3029 (page[EI_MAG2] == ELFMAG2) && 3030 (page[EI_MAG3] == ELFMAG3)) { 3031 /* 3032 * Mappings are possibly from ELF binary. Don't dump 3033 * them. 3034 */ 3035 return (0); 3036 } 3037 } 3038 3039 return (vma->vma_end - vma->vma_start); 3040 } 3041 3042 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3043 unsigned long flags) 3044 { 3045 struct mm_struct *mm = (struct mm_struct *)priv; 3046 3047 vma_add_mapping(mm, start, end, flags); 3048 return (0); 3049 } 3050 3051 static void fill_note(struct memelfnote *note, const char *name, int type, 3052 unsigned int sz, void *data) 3053 { 3054 unsigned int namesz; 3055 3056 namesz = strlen(name) + 1; 3057 note->name = name; 3058 note->namesz = namesz; 3059 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3060 note->type = type; 3061 note->datasz = sz; 3062 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3063 3064 note->data = data; 3065 3066 /* 3067 * We calculate rounded up note size here as specified by 3068 * ELF document. 3069 */ 3070 note->notesz = sizeof (struct elf_note) + 3071 note->namesz_rounded + note->datasz_rounded; 3072 } 3073 3074 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3075 uint32_t flags) 3076 { 3077 (void) memset(elf, 0, sizeof(*elf)); 3078 3079 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3080 elf->e_ident[EI_CLASS] = ELF_CLASS; 3081 elf->e_ident[EI_DATA] = ELF_DATA; 3082 elf->e_ident[EI_VERSION] = EV_CURRENT; 3083 elf->e_ident[EI_OSABI] = ELF_OSABI; 3084 3085 elf->e_type = ET_CORE; 3086 elf->e_machine = machine; 3087 elf->e_version = EV_CURRENT; 3088 elf->e_phoff = sizeof(struct elfhdr); 3089 elf->e_flags = flags; 3090 elf->e_ehsize = sizeof(struct elfhdr); 3091 elf->e_phentsize = sizeof(struct elf_phdr); 3092 elf->e_phnum = segs; 3093 3094 bswap_ehdr(elf); 3095 } 3096 3097 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3098 { 3099 phdr->p_type = PT_NOTE; 3100 phdr->p_offset = offset; 3101 phdr->p_vaddr = 0; 3102 phdr->p_paddr = 0; 3103 phdr->p_filesz = sz; 3104 phdr->p_memsz = 0; 3105 phdr->p_flags = 0; 3106 phdr->p_align = 0; 3107 3108 bswap_phdr(phdr, 1); 3109 } 3110 3111 static size_t note_size(const struct memelfnote *note) 3112 { 3113 return (note->notesz); 3114 } 3115 3116 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3117 const TaskState *ts, int signr) 3118 { 3119 (void) memset(prstatus, 0, sizeof (*prstatus)); 3120 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3121 prstatus->pr_pid = ts->ts_tid; 3122 prstatus->pr_ppid = getppid(); 3123 prstatus->pr_pgrp = getpgrp(); 3124 prstatus->pr_sid = getsid(0); 3125 3126 bswap_prstatus(prstatus); 3127 } 3128 3129 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3130 { 3131 char *base_filename; 3132 unsigned int i, len; 3133 3134 (void) memset(psinfo, 0, sizeof (*psinfo)); 3135 3136 len = ts->info->arg_end - ts->info->arg_start; 3137 if (len >= ELF_PRARGSZ) 3138 len = ELF_PRARGSZ - 1; 3139 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3140 return -EFAULT; 3141 for (i = 0; i < len; i++) 3142 if (psinfo->pr_psargs[i] == 0) 3143 psinfo->pr_psargs[i] = ' '; 3144 psinfo->pr_psargs[len] = 0; 3145 3146 psinfo->pr_pid = getpid(); 3147 psinfo->pr_ppid = getppid(); 3148 psinfo->pr_pgrp = getpgrp(); 3149 psinfo->pr_sid = getsid(0); 3150 psinfo->pr_uid = getuid(); 3151 psinfo->pr_gid = getgid(); 3152 3153 base_filename = g_path_get_basename(ts->bprm->filename); 3154 /* 3155 * Using strncpy here is fine: at max-length, 3156 * this field is not NUL-terminated. 3157 */ 3158 (void) strncpy(psinfo->pr_fname, base_filename, 3159 sizeof(psinfo->pr_fname)); 3160 3161 g_free(base_filename); 3162 bswap_psinfo(psinfo); 3163 return (0); 3164 } 3165 3166 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3167 { 3168 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3169 elf_addr_t orig_auxv = auxv; 3170 void *ptr; 3171 int len = ts->info->auxv_len; 3172 3173 /* 3174 * Auxiliary vector is stored in target process stack. It contains 3175 * {type, value} pairs that we need to dump into note. This is not 3176 * strictly necessary but we do it here for sake of completeness. 3177 */ 3178 3179 /* read in whole auxv vector and copy it to memelfnote */ 3180 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3181 if (ptr != NULL) { 3182 fill_note(note, "CORE", NT_AUXV, len, ptr); 3183 unlock_user(ptr, auxv, len); 3184 } 3185 } 3186 3187 /* 3188 * Constructs name of coredump file. We have following convention 3189 * for the name: 3190 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3191 * 3192 * Returns 0 in case of success, -1 otherwise (errno is set). 3193 */ 3194 static int core_dump_filename(const TaskState *ts, char *buf, 3195 size_t bufsize) 3196 { 3197 char timestamp[64]; 3198 char *base_filename = NULL; 3199 struct timeval tv; 3200 struct tm tm; 3201 3202 assert(bufsize >= PATH_MAX); 3203 3204 if (gettimeofday(&tv, NULL) < 0) { 3205 (void) fprintf(stderr, "unable to get current timestamp: %s", 3206 strerror(errno)); 3207 return (-1); 3208 } 3209 3210 base_filename = g_path_get_basename(ts->bprm->filename); 3211 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3212 localtime_r(&tv.tv_sec, &tm)); 3213 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3214 base_filename, timestamp, (int)getpid()); 3215 g_free(base_filename); 3216 3217 return (0); 3218 } 3219 3220 static int dump_write(int fd, const void *ptr, size_t size) 3221 { 3222 const char *bufp = (const char *)ptr; 3223 ssize_t bytes_written, bytes_left; 3224 struct rlimit dumpsize; 3225 off_t pos; 3226 3227 bytes_written = 0; 3228 getrlimit(RLIMIT_CORE, &dumpsize); 3229 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3230 if (errno == ESPIPE) { /* not a seekable stream */ 3231 bytes_left = size; 3232 } else { 3233 return pos; 3234 } 3235 } else { 3236 if (dumpsize.rlim_cur <= pos) { 3237 return -1; 3238 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3239 bytes_left = size; 3240 } else { 3241 size_t limit_left=dumpsize.rlim_cur - pos; 3242 bytes_left = limit_left >= size ? size : limit_left ; 3243 } 3244 } 3245 3246 /* 3247 * In normal conditions, single write(2) should do but 3248 * in case of socket etc. this mechanism is more portable. 3249 */ 3250 do { 3251 bytes_written = write(fd, bufp, bytes_left); 3252 if (bytes_written < 0) { 3253 if (errno == EINTR) 3254 continue; 3255 return (-1); 3256 } else if (bytes_written == 0) { /* eof */ 3257 return (-1); 3258 } 3259 bufp += bytes_written; 3260 bytes_left -= bytes_written; 3261 } while (bytes_left > 0); 3262 3263 return (0); 3264 } 3265 3266 static int write_note(struct memelfnote *men, int fd) 3267 { 3268 struct elf_note en; 3269 3270 en.n_namesz = men->namesz; 3271 en.n_type = men->type; 3272 en.n_descsz = men->datasz; 3273 3274 bswap_note(&en); 3275 3276 if (dump_write(fd, &en, sizeof(en)) != 0) 3277 return (-1); 3278 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3279 return (-1); 3280 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3281 return (-1); 3282 3283 return (0); 3284 } 3285 3286 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3287 { 3288 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3289 TaskState *ts = (TaskState *)cpu->opaque; 3290 struct elf_thread_status *ets; 3291 3292 ets = g_malloc0(sizeof (*ets)); 3293 ets->num_notes = 1; /* only prstatus is dumped */ 3294 fill_prstatus(&ets->prstatus, ts, 0); 3295 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3296 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3297 &ets->prstatus); 3298 3299 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3300 3301 info->notes_size += note_size(&ets->notes[0]); 3302 } 3303 3304 static void init_note_info(struct elf_note_info *info) 3305 { 3306 /* Initialize the elf_note_info structure so that it is at 3307 * least safe to call free_note_info() on it. Must be 3308 * called before calling fill_note_info(). 3309 */ 3310 memset(info, 0, sizeof (*info)); 3311 QTAILQ_INIT(&info->thread_list); 3312 } 3313 3314 static int fill_note_info(struct elf_note_info *info, 3315 long signr, const CPUArchState *env) 3316 { 3317 #define NUMNOTES 3 3318 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3319 TaskState *ts = (TaskState *)cpu->opaque; 3320 int i; 3321 3322 info->notes = g_new0(struct memelfnote, NUMNOTES); 3323 if (info->notes == NULL) 3324 return (-ENOMEM); 3325 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3326 if (info->prstatus == NULL) 3327 return (-ENOMEM); 3328 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3329 if (info->prstatus == NULL) 3330 return (-ENOMEM); 3331 3332 /* 3333 * First fill in status (and registers) of current thread 3334 * including process info & aux vector. 3335 */ 3336 fill_prstatus(info->prstatus, ts, signr); 3337 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3338 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3339 sizeof (*info->prstatus), info->prstatus); 3340 fill_psinfo(info->psinfo, ts); 3341 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3342 sizeof (*info->psinfo), info->psinfo); 3343 fill_auxv_note(&info->notes[2], ts); 3344 info->numnote = 3; 3345 3346 info->notes_size = 0; 3347 for (i = 0; i < info->numnote; i++) 3348 info->notes_size += note_size(&info->notes[i]); 3349 3350 /* read and fill status of all threads */ 3351 cpu_list_lock(); 3352 CPU_FOREACH(cpu) { 3353 if (cpu == thread_cpu) { 3354 continue; 3355 } 3356 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3357 } 3358 cpu_list_unlock(); 3359 3360 return (0); 3361 } 3362 3363 static void free_note_info(struct elf_note_info *info) 3364 { 3365 struct elf_thread_status *ets; 3366 3367 while (!QTAILQ_EMPTY(&info->thread_list)) { 3368 ets = QTAILQ_FIRST(&info->thread_list); 3369 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3370 g_free(ets); 3371 } 3372 3373 g_free(info->prstatus); 3374 g_free(info->psinfo); 3375 g_free(info->notes); 3376 } 3377 3378 static int write_note_info(struct elf_note_info *info, int fd) 3379 { 3380 struct elf_thread_status *ets; 3381 int i, error = 0; 3382 3383 /* write prstatus, psinfo and auxv for current thread */ 3384 for (i = 0; i < info->numnote; i++) 3385 if ((error = write_note(&info->notes[i], fd)) != 0) 3386 return (error); 3387 3388 /* write prstatus for each thread */ 3389 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3390 if ((error = write_note(&ets->notes[0], fd)) != 0) 3391 return (error); 3392 } 3393 3394 return (0); 3395 } 3396 3397 /* 3398 * Write out ELF coredump. 3399 * 3400 * See documentation of ELF object file format in: 3401 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3402 * 3403 * Coredump format in linux is following: 3404 * 3405 * 0 +----------------------+ \ 3406 * | ELF header | ET_CORE | 3407 * +----------------------+ | 3408 * | ELF program headers | |--- headers 3409 * | - NOTE section | | 3410 * | - PT_LOAD sections | | 3411 * +----------------------+ / 3412 * | NOTEs: | 3413 * | - NT_PRSTATUS | 3414 * | - NT_PRSINFO | 3415 * | - NT_AUXV | 3416 * +----------------------+ <-- aligned to target page 3417 * | Process memory dump | 3418 * : : 3419 * . . 3420 * : : 3421 * | | 3422 * +----------------------+ 3423 * 3424 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3425 * NT_PRSINFO -> struct elf_prpsinfo 3426 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3427 * 3428 * Format follows System V format as close as possible. Current 3429 * version limitations are as follows: 3430 * - no floating point registers are dumped 3431 * 3432 * Function returns 0 in case of success, negative errno otherwise. 3433 * 3434 * TODO: make this work also during runtime: it should be 3435 * possible to force coredump from running process and then 3436 * continue processing. For example qemu could set up SIGUSR2 3437 * handler (provided that target process haven't registered 3438 * handler for that) that does the dump when signal is received. 3439 */ 3440 static int elf_core_dump(int signr, const CPUArchState *env) 3441 { 3442 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3443 const TaskState *ts = (const TaskState *)cpu->opaque; 3444 struct vm_area_struct *vma = NULL; 3445 char corefile[PATH_MAX]; 3446 struct elf_note_info info; 3447 struct elfhdr elf; 3448 struct elf_phdr phdr; 3449 struct rlimit dumpsize; 3450 struct mm_struct *mm = NULL; 3451 off_t offset = 0, data_offset = 0; 3452 int segs = 0; 3453 int fd = -1; 3454 3455 init_note_info(&info); 3456 3457 errno = 0; 3458 getrlimit(RLIMIT_CORE, &dumpsize); 3459 if (dumpsize.rlim_cur == 0) 3460 return 0; 3461 3462 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3463 return (-errno); 3464 3465 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3466 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3467 return (-errno); 3468 3469 /* 3470 * Walk through target process memory mappings and 3471 * set up structure containing this information. After 3472 * this point vma_xxx functions can be used. 3473 */ 3474 if ((mm = vma_init()) == NULL) 3475 goto out; 3476 3477 walk_memory_regions(mm, vma_walker); 3478 segs = vma_get_mapping_count(mm); 3479 3480 /* 3481 * Construct valid coredump ELF header. We also 3482 * add one more segment for notes. 3483 */ 3484 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3485 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3486 goto out; 3487 3488 /* fill in the in-memory version of notes */ 3489 if (fill_note_info(&info, signr, env) < 0) 3490 goto out; 3491 3492 offset += sizeof (elf); /* elf header */ 3493 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3494 3495 /* write out notes program header */ 3496 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3497 3498 offset += info.notes_size; 3499 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3500 goto out; 3501 3502 /* 3503 * ELF specification wants data to start at page boundary so 3504 * we align it here. 3505 */ 3506 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3507 3508 /* 3509 * Write program headers for memory regions mapped in 3510 * the target process. 3511 */ 3512 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3513 (void) memset(&phdr, 0, sizeof (phdr)); 3514 3515 phdr.p_type = PT_LOAD; 3516 phdr.p_offset = offset; 3517 phdr.p_vaddr = vma->vma_start; 3518 phdr.p_paddr = 0; 3519 phdr.p_filesz = vma_dump_size(vma); 3520 offset += phdr.p_filesz; 3521 phdr.p_memsz = vma->vma_end - vma->vma_start; 3522 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3523 if (vma->vma_flags & PROT_WRITE) 3524 phdr.p_flags |= PF_W; 3525 if (vma->vma_flags & PROT_EXEC) 3526 phdr.p_flags |= PF_X; 3527 phdr.p_align = ELF_EXEC_PAGESIZE; 3528 3529 bswap_phdr(&phdr, 1); 3530 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3531 goto out; 3532 } 3533 } 3534 3535 /* 3536 * Next we write notes just after program headers. No 3537 * alignment needed here. 3538 */ 3539 if (write_note_info(&info, fd) < 0) 3540 goto out; 3541 3542 /* align data to page boundary */ 3543 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3544 goto out; 3545 3546 /* 3547 * Finally we can dump process memory into corefile as well. 3548 */ 3549 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3550 abi_ulong addr; 3551 abi_ulong end; 3552 3553 end = vma->vma_start + vma_dump_size(vma); 3554 3555 for (addr = vma->vma_start; addr < end; 3556 addr += TARGET_PAGE_SIZE) { 3557 char page[TARGET_PAGE_SIZE]; 3558 int error; 3559 3560 /* 3561 * Read in page from target process memory and 3562 * write it to coredump file. 3563 */ 3564 error = copy_from_user(page, addr, sizeof (page)); 3565 if (error != 0) { 3566 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3567 addr); 3568 errno = -error; 3569 goto out; 3570 } 3571 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3572 goto out; 3573 } 3574 } 3575 3576 out: 3577 free_note_info(&info); 3578 if (mm != NULL) 3579 vma_delete(mm); 3580 (void) close(fd); 3581 3582 if (errno != 0) 3583 return (-errno); 3584 return (0); 3585 } 3586 #endif /* USE_ELF_CORE_DUMP */ 3587 3588 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3589 { 3590 init_thread(regs, infop); 3591 } 3592