1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include <sys/time.h> 3 #include <sys/param.h> 4 5 #include <stdio.h> 6 #include <sys/types.h> 7 #include <fcntl.h> 8 #include <errno.h> 9 #include <unistd.h> 10 #include <sys/mman.h> 11 #include <sys/resource.h> 12 #include <stdlib.h> 13 #include <string.h> 14 #include <time.h> 15 16 #include "qemu.h" 17 #include "disas/disas.h" 18 19 #ifdef _ARCH_PPC64 20 #undef ARCH_DLINFO 21 #undef ELF_PLATFORM 22 #undef ELF_HWCAP 23 #undef ELF_HWCAP2 24 #undef ELF_CLASS 25 #undef ELF_DATA 26 #undef ELF_ARCH 27 #endif 28 29 #define ELF_OSABI ELFOSABI_SYSV 30 31 /* from personality.h */ 32 33 /* 34 * Flags for bug emulation. 35 * 36 * These occupy the top three bytes. 37 */ 38 enum { 39 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 40 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 41 descriptors (signal handling) */ 42 MMAP_PAGE_ZERO = 0x0100000, 43 ADDR_COMPAT_LAYOUT = 0x0200000, 44 READ_IMPLIES_EXEC = 0x0400000, 45 ADDR_LIMIT_32BIT = 0x0800000, 46 SHORT_INODE = 0x1000000, 47 WHOLE_SECONDS = 0x2000000, 48 STICKY_TIMEOUTS = 0x4000000, 49 ADDR_LIMIT_3GB = 0x8000000, 50 }; 51 52 /* 53 * Personality types. 54 * 55 * These go in the low byte. Avoid using the top bit, it will 56 * conflict with error returns. 57 */ 58 enum { 59 PER_LINUX = 0x0000, 60 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 61 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 62 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 63 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 65 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 66 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 67 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 68 PER_BSD = 0x0006, 69 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 70 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_LINUX32 = 0x0008, 72 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 73 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 74 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 75 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 76 PER_RISCOS = 0x000c, 77 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 78 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 79 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 80 PER_HPUX = 0x0010, 81 PER_MASK = 0x00ff, 82 }; 83 84 /* 85 * Return the base personality without flags. 86 */ 87 #define personality(pers) (pers & PER_MASK) 88 89 /* this flag is uneffective under linux too, should be deleted */ 90 #ifndef MAP_DENYWRITE 91 #define MAP_DENYWRITE 0 92 #endif 93 94 /* should probably go in elf.h */ 95 #ifndef ELIBBAD 96 #define ELIBBAD 80 97 #endif 98 99 #ifdef TARGET_WORDS_BIGENDIAN 100 #define ELF_DATA ELFDATA2MSB 101 #else 102 #define ELF_DATA ELFDATA2LSB 103 #endif 104 105 #ifdef TARGET_ABI_MIPSN32 106 typedef abi_ullong target_elf_greg_t; 107 #define tswapreg(ptr) tswap64(ptr) 108 #else 109 typedef abi_ulong target_elf_greg_t; 110 #define tswapreg(ptr) tswapal(ptr) 111 #endif 112 113 #ifdef USE_UID16 114 typedef abi_ushort target_uid_t; 115 typedef abi_ushort target_gid_t; 116 #else 117 typedef abi_uint target_uid_t; 118 typedef abi_uint target_gid_t; 119 #endif 120 typedef abi_int target_pid_t; 121 122 #ifdef TARGET_I386 123 124 #define ELF_PLATFORM get_elf_platform() 125 126 static const char *get_elf_platform(void) 127 { 128 static char elf_platform[] = "i386"; 129 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 130 if (family > 6) 131 family = 6; 132 if (family >= 3) 133 elf_platform[1] = '0' + family; 134 return elf_platform; 135 } 136 137 #define ELF_HWCAP get_elf_hwcap() 138 139 static uint32_t get_elf_hwcap(void) 140 { 141 X86CPU *cpu = X86_CPU(thread_cpu); 142 143 return cpu->env.features[FEAT_1_EDX]; 144 } 145 146 #ifdef TARGET_X86_64 147 #define ELF_START_MMAP 0x2aaaaab000ULL 148 149 #define ELF_CLASS ELFCLASS64 150 #define ELF_ARCH EM_X86_64 151 152 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 153 { 154 regs->rax = 0; 155 regs->rsp = infop->start_stack; 156 regs->rip = infop->entry; 157 } 158 159 #define ELF_NREG 27 160 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 161 162 /* 163 * Note that ELF_NREG should be 29 as there should be place for 164 * TRAPNO and ERR "registers" as well but linux doesn't dump 165 * those. 166 * 167 * See linux kernel: arch/x86/include/asm/elf.h 168 */ 169 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 170 { 171 (*regs)[0] = env->regs[15]; 172 (*regs)[1] = env->regs[14]; 173 (*regs)[2] = env->regs[13]; 174 (*regs)[3] = env->regs[12]; 175 (*regs)[4] = env->regs[R_EBP]; 176 (*regs)[5] = env->regs[R_EBX]; 177 (*regs)[6] = env->regs[11]; 178 (*regs)[7] = env->regs[10]; 179 (*regs)[8] = env->regs[9]; 180 (*regs)[9] = env->regs[8]; 181 (*regs)[10] = env->regs[R_EAX]; 182 (*regs)[11] = env->regs[R_ECX]; 183 (*regs)[12] = env->regs[R_EDX]; 184 (*regs)[13] = env->regs[R_ESI]; 185 (*regs)[14] = env->regs[R_EDI]; 186 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 187 (*regs)[16] = env->eip; 188 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 189 (*regs)[18] = env->eflags; 190 (*regs)[19] = env->regs[R_ESP]; 191 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 192 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 193 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 194 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 195 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 196 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 197 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 198 } 199 200 #else 201 202 #define ELF_START_MMAP 0x80000000 203 204 /* 205 * This is used to ensure we don't load something for the wrong architecture. 206 */ 207 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 208 209 /* 210 * These are used to set parameters in the core dumps. 211 */ 212 #define ELF_CLASS ELFCLASS32 213 #define ELF_ARCH EM_386 214 215 static inline void init_thread(struct target_pt_regs *regs, 216 struct image_info *infop) 217 { 218 regs->esp = infop->start_stack; 219 regs->eip = infop->entry; 220 221 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 222 starts %edx contains a pointer to a function which might be 223 registered using `atexit'. This provides a mean for the 224 dynamic linker to call DT_FINI functions for shared libraries 225 that have been loaded before the code runs. 226 227 A value of 0 tells we have no such handler. */ 228 regs->edx = 0; 229 } 230 231 #define ELF_NREG 17 232 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 233 234 /* 235 * Note that ELF_NREG should be 19 as there should be place for 236 * TRAPNO and ERR "registers" as well but linux doesn't dump 237 * those. 238 * 239 * See linux kernel: arch/x86/include/asm/elf.h 240 */ 241 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 242 { 243 (*regs)[0] = env->regs[R_EBX]; 244 (*regs)[1] = env->regs[R_ECX]; 245 (*regs)[2] = env->regs[R_EDX]; 246 (*regs)[3] = env->regs[R_ESI]; 247 (*regs)[4] = env->regs[R_EDI]; 248 (*regs)[5] = env->regs[R_EBP]; 249 (*regs)[6] = env->regs[R_EAX]; 250 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 251 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 252 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 253 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 254 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 255 (*regs)[12] = env->eip; 256 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 257 (*regs)[14] = env->eflags; 258 (*regs)[15] = env->regs[R_ESP]; 259 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 260 } 261 #endif 262 263 #define USE_ELF_CORE_DUMP 264 #define ELF_EXEC_PAGESIZE 4096 265 266 #endif 267 268 #ifdef TARGET_ARM 269 270 #ifndef TARGET_AARCH64 271 /* 32 bit ARM definitions */ 272 273 #define ELF_START_MMAP 0x80000000 274 275 #define ELF_ARCH EM_ARM 276 #define ELF_CLASS ELFCLASS32 277 278 static inline void init_thread(struct target_pt_regs *regs, 279 struct image_info *infop) 280 { 281 abi_long stack = infop->start_stack; 282 memset(regs, 0, sizeof(*regs)); 283 284 regs->ARM_cpsr = 0x10; 285 if (infop->entry & 1) 286 regs->ARM_cpsr |= CPSR_T; 287 regs->ARM_pc = infop->entry & 0xfffffffe; 288 regs->ARM_sp = infop->start_stack; 289 /* FIXME - what to for failure of get_user()? */ 290 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 291 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 292 /* XXX: it seems that r0 is zeroed after ! */ 293 regs->ARM_r0 = 0; 294 /* For uClinux PIC binaries. */ 295 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 296 regs->ARM_r10 = infop->start_data; 297 } 298 299 #define ELF_NREG 18 300 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 301 302 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 303 { 304 (*regs)[0] = tswapreg(env->regs[0]); 305 (*regs)[1] = tswapreg(env->regs[1]); 306 (*regs)[2] = tswapreg(env->regs[2]); 307 (*regs)[3] = tswapreg(env->regs[3]); 308 (*regs)[4] = tswapreg(env->regs[4]); 309 (*regs)[5] = tswapreg(env->regs[5]); 310 (*regs)[6] = tswapreg(env->regs[6]); 311 (*regs)[7] = tswapreg(env->regs[7]); 312 (*regs)[8] = tswapreg(env->regs[8]); 313 (*regs)[9] = tswapreg(env->regs[9]); 314 (*regs)[10] = tswapreg(env->regs[10]); 315 (*regs)[11] = tswapreg(env->regs[11]); 316 (*regs)[12] = tswapreg(env->regs[12]); 317 (*regs)[13] = tswapreg(env->regs[13]); 318 (*regs)[14] = tswapreg(env->regs[14]); 319 (*regs)[15] = tswapreg(env->regs[15]); 320 321 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 322 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 323 } 324 325 #define USE_ELF_CORE_DUMP 326 #define ELF_EXEC_PAGESIZE 4096 327 328 enum 329 { 330 ARM_HWCAP_ARM_SWP = 1 << 0, 331 ARM_HWCAP_ARM_HALF = 1 << 1, 332 ARM_HWCAP_ARM_THUMB = 1 << 2, 333 ARM_HWCAP_ARM_26BIT = 1 << 3, 334 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 335 ARM_HWCAP_ARM_FPA = 1 << 5, 336 ARM_HWCAP_ARM_VFP = 1 << 6, 337 ARM_HWCAP_ARM_EDSP = 1 << 7, 338 ARM_HWCAP_ARM_JAVA = 1 << 8, 339 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 340 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 341 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 342 ARM_HWCAP_ARM_NEON = 1 << 12, 343 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 344 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 345 ARM_HWCAP_ARM_TLS = 1 << 15, 346 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 347 ARM_HWCAP_ARM_IDIVA = 1 << 17, 348 ARM_HWCAP_ARM_IDIVT = 1 << 18, 349 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 350 ARM_HWCAP_ARM_LPAE = 1 << 20, 351 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 352 }; 353 354 enum { 355 ARM_HWCAP2_ARM_AES = 1 << 0, 356 ARM_HWCAP2_ARM_PMULL = 1 << 1, 357 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 358 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 359 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 360 }; 361 362 /* The commpage only exists for 32 bit kernels */ 363 364 #define TARGET_HAS_VALIDATE_GUEST_SPACE 365 /* Return 1 if the proposed guest space is suitable for the guest. 366 * Return 0 if the proposed guest space isn't suitable, but another 367 * address space should be tried. 368 * Return -1 if there is no way the proposed guest space can be 369 * valid regardless of the base. 370 * The guest code may leave a page mapped and populate it if the 371 * address is suitable. 372 */ 373 static int validate_guest_space(unsigned long guest_base, 374 unsigned long guest_size) 375 { 376 unsigned long real_start, test_page_addr; 377 378 /* We need to check that we can force a fault on access to the 379 * commpage at 0xffff0fxx 380 */ 381 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 382 383 /* If the commpage lies within the already allocated guest space, 384 * then there is no way we can allocate it. 385 */ 386 if (test_page_addr >= guest_base 387 && test_page_addr <= (guest_base + guest_size)) { 388 return -1; 389 } 390 391 /* Note it needs to be writeable to let us initialise it */ 392 real_start = (unsigned long) 393 mmap((void *)test_page_addr, qemu_host_page_size, 394 PROT_READ | PROT_WRITE, 395 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 396 397 /* If we can't map it then try another address */ 398 if (real_start == -1ul) { 399 return 0; 400 } 401 402 if (real_start != test_page_addr) { 403 /* OS didn't put the page where we asked - unmap and reject */ 404 munmap((void *)real_start, qemu_host_page_size); 405 return 0; 406 } 407 408 /* Leave the page mapped 409 * Populate it (mmap should have left it all 0'd) 410 */ 411 412 /* Kernel helper versions */ 413 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 414 415 /* Now it's populated make it RO */ 416 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 417 perror("Protecting guest commpage"); 418 exit(-1); 419 } 420 421 return 1; /* All good */ 422 } 423 424 #define ELF_HWCAP get_elf_hwcap() 425 #define ELF_HWCAP2 get_elf_hwcap2() 426 427 static uint32_t get_elf_hwcap(void) 428 { 429 ARMCPU *cpu = ARM_CPU(thread_cpu); 430 uint32_t hwcaps = 0; 431 432 hwcaps |= ARM_HWCAP_ARM_SWP; 433 hwcaps |= ARM_HWCAP_ARM_HALF; 434 hwcaps |= ARM_HWCAP_ARM_THUMB; 435 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 436 437 /* probe for the extra features */ 438 #define GET_FEATURE(feat, hwcap) \ 439 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 440 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 441 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 442 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 443 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 444 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 445 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 446 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 447 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 448 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 449 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 450 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 451 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 452 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 453 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 454 * to our VFP_FP16 feature bit. 455 */ 456 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 457 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 458 459 return hwcaps; 460 } 461 462 static uint32_t get_elf_hwcap2(void) 463 { 464 ARMCPU *cpu = ARM_CPU(thread_cpu); 465 uint32_t hwcaps = 0; 466 467 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 468 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 469 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 470 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 471 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 472 return hwcaps; 473 } 474 475 #undef GET_FEATURE 476 477 #else 478 /* 64 bit ARM definitions */ 479 #define ELF_START_MMAP 0x80000000 480 481 #define ELF_ARCH EM_AARCH64 482 #define ELF_CLASS ELFCLASS64 483 #define ELF_PLATFORM "aarch64" 484 485 static inline void init_thread(struct target_pt_regs *regs, 486 struct image_info *infop) 487 { 488 abi_long stack = infop->start_stack; 489 memset(regs, 0, sizeof(*regs)); 490 491 regs->pc = infop->entry & ~0x3ULL; 492 regs->sp = stack; 493 } 494 495 #define ELF_NREG 34 496 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 497 498 static void elf_core_copy_regs(target_elf_gregset_t *regs, 499 const CPUARMState *env) 500 { 501 int i; 502 503 for (i = 0; i < 32; i++) { 504 (*regs)[i] = tswapreg(env->xregs[i]); 505 } 506 (*regs)[32] = tswapreg(env->pc); 507 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 508 } 509 510 #define USE_ELF_CORE_DUMP 511 #define ELF_EXEC_PAGESIZE 4096 512 513 enum { 514 ARM_HWCAP_A64_FP = 1 << 0, 515 ARM_HWCAP_A64_ASIMD = 1 << 1, 516 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 517 ARM_HWCAP_A64_AES = 1 << 3, 518 ARM_HWCAP_A64_PMULL = 1 << 4, 519 ARM_HWCAP_A64_SHA1 = 1 << 5, 520 ARM_HWCAP_A64_SHA2 = 1 << 6, 521 ARM_HWCAP_A64_CRC32 = 1 << 7, 522 }; 523 524 #define ELF_HWCAP get_elf_hwcap() 525 526 static uint32_t get_elf_hwcap(void) 527 { 528 ARMCPU *cpu = ARM_CPU(thread_cpu); 529 uint32_t hwcaps = 0; 530 531 hwcaps |= ARM_HWCAP_A64_FP; 532 hwcaps |= ARM_HWCAP_A64_ASIMD; 533 534 /* probe for the extra features */ 535 #define GET_FEATURE(feat, hwcap) \ 536 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 537 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 538 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 539 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 540 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 541 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 542 #undef GET_FEATURE 543 544 return hwcaps; 545 } 546 547 #endif /* not TARGET_AARCH64 */ 548 #endif /* TARGET_ARM */ 549 550 #ifdef TARGET_UNICORE32 551 552 #define ELF_START_MMAP 0x80000000 553 554 #define ELF_CLASS ELFCLASS32 555 #define ELF_DATA ELFDATA2LSB 556 #define ELF_ARCH EM_UNICORE32 557 558 static inline void init_thread(struct target_pt_regs *regs, 559 struct image_info *infop) 560 { 561 abi_long stack = infop->start_stack; 562 memset(regs, 0, sizeof(*regs)); 563 regs->UC32_REG_asr = 0x10; 564 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 565 regs->UC32_REG_sp = infop->start_stack; 566 /* FIXME - what to for failure of get_user()? */ 567 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 568 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 569 /* XXX: it seems that r0 is zeroed after ! */ 570 regs->UC32_REG_00 = 0; 571 } 572 573 #define ELF_NREG 34 574 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 575 576 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 577 { 578 (*regs)[0] = env->regs[0]; 579 (*regs)[1] = env->regs[1]; 580 (*regs)[2] = env->regs[2]; 581 (*regs)[3] = env->regs[3]; 582 (*regs)[4] = env->regs[4]; 583 (*regs)[5] = env->regs[5]; 584 (*regs)[6] = env->regs[6]; 585 (*regs)[7] = env->regs[7]; 586 (*regs)[8] = env->regs[8]; 587 (*regs)[9] = env->regs[9]; 588 (*regs)[10] = env->regs[10]; 589 (*regs)[11] = env->regs[11]; 590 (*regs)[12] = env->regs[12]; 591 (*regs)[13] = env->regs[13]; 592 (*regs)[14] = env->regs[14]; 593 (*regs)[15] = env->regs[15]; 594 (*regs)[16] = env->regs[16]; 595 (*regs)[17] = env->regs[17]; 596 (*regs)[18] = env->regs[18]; 597 (*regs)[19] = env->regs[19]; 598 (*regs)[20] = env->regs[20]; 599 (*regs)[21] = env->regs[21]; 600 (*regs)[22] = env->regs[22]; 601 (*regs)[23] = env->regs[23]; 602 (*regs)[24] = env->regs[24]; 603 (*regs)[25] = env->regs[25]; 604 (*regs)[26] = env->regs[26]; 605 (*regs)[27] = env->regs[27]; 606 (*regs)[28] = env->regs[28]; 607 (*regs)[29] = env->regs[29]; 608 (*regs)[30] = env->regs[30]; 609 (*regs)[31] = env->regs[31]; 610 611 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 612 (*regs)[33] = env->regs[0]; /* XXX */ 613 } 614 615 #define USE_ELF_CORE_DUMP 616 #define ELF_EXEC_PAGESIZE 4096 617 618 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 619 620 #endif 621 622 #ifdef TARGET_SPARC 623 #ifdef TARGET_SPARC64 624 625 #define ELF_START_MMAP 0x80000000 626 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 627 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 628 #ifndef TARGET_ABI32 629 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 630 #else 631 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 632 #endif 633 634 #define ELF_CLASS ELFCLASS64 635 #define ELF_ARCH EM_SPARCV9 636 637 #define STACK_BIAS 2047 638 639 static inline void init_thread(struct target_pt_regs *regs, 640 struct image_info *infop) 641 { 642 #ifndef TARGET_ABI32 643 regs->tstate = 0; 644 #endif 645 regs->pc = infop->entry; 646 regs->npc = regs->pc + 4; 647 regs->y = 0; 648 #ifdef TARGET_ABI32 649 regs->u_regs[14] = infop->start_stack - 16 * 4; 650 #else 651 if (personality(infop->personality) == PER_LINUX32) 652 regs->u_regs[14] = infop->start_stack - 16 * 4; 653 else 654 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 655 #endif 656 } 657 658 #else 659 #define ELF_START_MMAP 0x80000000 660 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 661 | HWCAP_SPARC_MULDIV) 662 663 #define ELF_CLASS ELFCLASS32 664 #define ELF_ARCH EM_SPARC 665 666 static inline void init_thread(struct target_pt_regs *regs, 667 struct image_info *infop) 668 { 669 regs->psr = 0; 670 regs->pc = infop->entry; 671 regs->npc = regs->pc + 4; 672 regs->y = 0; 673 regs->u_regs[14] = infop->start_stack - 16 * 4; 674 } 675 676 #endif 677 #endif 678 679 #ifdef TARGET_PPC 680 681 #define ELF_MACHINE PPC_ELF_MACHINE 682 #define ELF_START_MMAP 0x80000000 683 684 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 685 686 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 687 688 #define ELF_CLASS ELFCLASS64 689 690 #else 691 692 #define ELF_CLASS ELFCLASS32 693 694 #endif 695 696 #define ELF_ARCH EM_PPC 697 698 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 699 See arch/powerpc/include/asm/cputable.h. */ 700 enum { 701 QEMU_PPC_FEATURE_32 = 0x80000000, 702 QEMU_PPC_FEATURE_64 = 0x40000000, 703 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 704 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 705 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 706 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 707 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 708 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 709 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 710 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 711 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 712 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 713 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 714 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 715 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 716 QEMU_PPC_FEATURE_CELL = 0x00010000, 717 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 718 QEMU_PPC_FEATURE_SMT = 0x00004000, 719 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 720 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 721 QEMU_PPC_FEATURE_PA6T = 0x00000800, 722 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 723 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 724 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 725 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 726 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 727 728 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 729 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 730 731 /* Feature definitions in AT_HWCAP2. */ 732 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 733 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 734 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 735 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 736 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 737 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 738 }; 739 740 #define ELF_HWCAP get_elf_hwcap() 741 742 static uint32_t get_elf_hwcap(void) 743 { 744 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 745 uint32_t features = 0; 746 747 /* We don't have to be terribly complete here; the high points are 748 Altivec/FP/SPE support. Anything else is just a bonus. */ 749 #define GET_FEATURE(flag, feature) \ 750 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 751 #define GET_FEATURE2(flag, feature) \ 752 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 753 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 754 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 755 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 756 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 757 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 758 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 759 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 760 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 761 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 762 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 763 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 764 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 765 QEMU_PPC_FEATURE_ARCH_2_06); 766 #undef GET_FEATURE 767 #undef GET_FEATURE2 768 769 return features; 770 } 771 772 #define ELF_HWCAP2 get_elf_hwcap2() 773 774 static uint32_t get_elf_hwcap2(void) 775 { 776 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 777 uint32_t features = 0; 778 779 #define GET_FEATURE(flag, feature) \ 780 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 781 #define GET_FEATURE2(flag, feature) \ 782 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 783 784 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 785 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 786 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 787 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 788 789 #undef GET_FEATURE 790 #undef GET_FEATURE2 791 792 return features; 793 } 794 795 /* 796 * The requirements here are: 797 * - keep the final alignment of sp (sp & 0xf) 798 * - make sure the 32-bit value at the first 16 byte aligned position of 799 * AUXV is greater than 16 for glibc compatibility. 800 * AT_IGNOREPPC is used for that. 801 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 802 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 803 */ 804 #define DLINFO_ARCH_ITEMS 5 805 #define ARCH_DLINFO \ 806 do { \ 807 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 808 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 809 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 810 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 811 /* \ 812 * Now handle glibc compatibility. \ 813 */ \ 814 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 815 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 816 } while (0) 817 818 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 819 { 820 _regs->gpr[1] = infop->start_stack; 821 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 822 if (get_ppc64_abi(infop) < 2) { 823 uint64_t val; 824 get_user_u64(val, infop->entry + 8); 825 _regs->gpr[2] = val + infop->load_bias; 826 get_user_u64(val, infop->entry); 827 infop->entry = val + infop->load_bias; 828 } else { 829 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 830 } 831 #endif 832 _regs->nip = infop->entry; 833 } 834 835 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 836 #define ELF_NREG 48 837 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 838 839 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 840 { 841 int i; 842 target_ulong ccr = 0; 843 844 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 845 (*regs)[i] = tswapreg(env->gpr[i]); 846 } 847 848 (*regs)[32] = tswapreg(env->nip); 849 (*regs)[33] = tswapreg(env->msr); 850 (*regs)[35] = tswapreg(env->ctr); 851 (*regs)[36] = tswapreg(env->lr); 852 (*regs)[37] = tswapreg(env->xer); 853 854 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 855 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 856 } 857 (*regs)[38] = tswapreg(ccr); 858 } 859 860 #define USE_ELF_CORE_DUMP 861 #define ELF_EXEC_PAGESIZE 4096 862 863 #endif 864 865 #ifdef TARGET_MIPS 866 867 #define ELF_START_MMAP 0x80000000 868 869 #ifdef TARGET_MIPS64 870 #define ELF_CLASS ELFCLASS64 871 #else 872 #define ELF_CLASS ELFCLASS32 873 #endif 874 #define ELF_ARCH EM_MIPS 875 876 static inline void init_thread(struct target_pt_regs *regs, 877 struct image_info *infop) 878 { 879 regs->cp0_status = 2 << CP0St_KSU; 880 regs->cp0_epc = infop->entry; 881 regs->regs[29] = infop->start_stack; 882 } 883 884 /* See linux kernel: arch/mips/include/asm/elf.h. */ 885 #define ELF_NREG 45 886 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 887 888 /* See linux kernel: arch/mips/include/asm/reg.h. */ 889 enum { 890 #ifdef TARGET_MIPS64 891 TARGET_EF_R0 = 0, 892 #else 893 TARGET_EF_R0 = 6, 894 #endif 895 TARGET_EF_R26 = TARGET_EF_R0 + 26, 896 TARGET_EF_R27 = TARGET_EF_R0 + 27, 897 TARGET_EF_LO = TARGET_EF_R0 + 32, 898 TARGET_EF_HI = TARGET_EF_R0 + 33, 899 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 900 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 901 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 902 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 903 }; 904 905 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 906 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 907 { 908 int i; 909 910 for (i = 0; i < TARGET_EF_R0; i++) { 911 (*regs)[i] = 0; 912 } 913 (*regs)[TARGET_EF_R0] = 0; 914 915 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 916 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 917 } 918 919 (*regs)[TARGET_EF_R26] = 0; 920 (*regs)[TARGET_EF_R27] = 0; 921 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 922 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 923 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 924 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 925 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 926 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 927 } 928 929 #define USE_ELF_CORE_DUMP 930 #define ELF_EXEC_PAGESIZE 4096 931 932 #endif /* TARGET_MIPS */ 933 934 #ifdef TARGET_MICROBLAZE 935 936 #define ELF_START_MMAP 0x80000000 937 938 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 939 940 #define ELF_CLASS ELFCLASS32 941 #define ELF_ARCH EM_MICROBLAZE 942 943 static inline void init_thread(struct target_pt_regs *regs, 944 struct image_info *infop) 945 { 946 regs->pc = infop->entry; 947 regs->r1 = infop->start_stack; 948 949 } 950 951 #define ELF_EXEC_PAGESIZE 4096 952 953 #define USE_ELF_CORE_DUMP 954 #define ELF_NREG 38 955 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 956 957 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 958 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 959 { 960 int i, pos = 0; 961 962 for (i = 0; i < 32; i++) { 963 (*regs)[pos++] = tswapreg(env->regs[i]); 964 } 965 966 for (i = 0; i < 6; i++) { 967 (*regs)[pos++] = tswapreg(env->sregs[i]); 968 } 969 } 970 971 #endif /* TARGET_MICROBLAZE */ 972 973 #ifdef TARGET_OPENRISC 974 975 #define ELF_START_MMAP 0x08000000 976 977 #define ELF_ARCH EM_OPENRISC 978 #define ELF_CLASS ELFCLASS32 979 #define ELF_DATA ELFDATA2MSB 980 981 static inline void init_thread(struct target_pt_regs *regs, 982 struct image_info *infop) 983 { 984 regs->pc = infop->entry; 985 regs->gpr[1] = infop->start_stack; 986 } 987 988 #define USE_ELF_CORE_DUMP 989 #define ELF_EXEC_PAGESIZE 8192 990 991 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 992 #define ELF_NREG 34 /* gprs and pc, sr */ 993 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 994 995 static void elf_core_copy_regs(target_elf_gregset_t *regs, 996 const CPUOpenRISCState *env) 997 { 998 int i; 999 1000 for (i = 0; i < 32; i++) { 1001 (*regs)[i] = tswapreg(env->gpr[i]); 1002 } 1003 1004 (*regs)[32] = tswapreg(env->pc); 1005 (*regs)[33] = tswapreg(env->sr); 1006 } 1007 #define ELF_HWCAP 0 1008 #define ELF_PLATFORM NULL 1009 1010 #endif /* TARGET_OPENRISC */ 1011 1012 #ifdef TARGET_SH4 1013 1014 #define ELF_START_MMAP 0x80000000 1015 1016 #define ELF_CLASS ELFCLASS32 1017 #define ELF_ARCH EM_SH 1018 1019 static inline void init_thread(struct target_pt_regs *regs, 1020 struct image_info *infop) 1021 { 1022 /* Check other registers XXXXX */ 1023 regs->pc = infop->entry; 1024 regs->regs[15] = infop->start_stack; 1025 } 1026 1027 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1028 #define ELF_NREG 23 1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1030 1031 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1032 enum { 1033 TARGET_REG_PC = 16, 1034 TARGET_REG_PR = 17, 1035 TARGET_REG_SR = 18, 1036 TARGET_REG_GBR = 19, 1037 TARGET_REG_MACH = 20, 1038 TARGET_REG_MACL = 21, 1039 TARGET_REG_SYSCALL = 22 1040 }; 1041 1042 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1043 const CPUSH4State *env) 1044 { 1045 int i; 1046 1047 for (i = 0; i < 16; i++) { 1048 (*regs[i]) = tswapreg(env->gregs[i]); 1049 } 1050 1051 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1052 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1053 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1054 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1055 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1056 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1057 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1058 } 1059 1060 #define USE_ELF_CORE_DUMP 1061 #define ELF_EXEC_PAGESIZE 4096 1062 1063 enum { 1064 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1065 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1066 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1067 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1068 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1069 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1070 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1071 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1072 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1073 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1074 }; 1075 1076 #define ELF_HWCAP get_elf_hwcap() 1077 1078 static uint32_t get_elf_hwcap(void) 1079 { 1080 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1081 uint32_t hwcap = 0; 1082 1083 hwcap |= SH_CPU_HAS_FPU; 1084 1085 if (cpu->env.features & SH_FEATURE_SH4A) { 1086 hwcap |= SH_CPU_HAS_LLSC; 1087 } 1088 1089 return hwcap; 1090 } 1091 1092 #endif 1093 1094 #ifdef TARGET_CRIS 1095 1096 #define ELF_START_MMAP 0x80000000 1097 1098 #define ELF_CLASS ELFCLASS32 1099 #define ELF_ARCH EM_CRIS 1100 1101 static inline void init_thread(struct target_pt_regs *regs, 1102 struct image_info *infop) 1103 { 1104 regs->erp = infop->entry; 1105 } 1106 1107 #define ELF_EXEC_PAGESIZE 8192 1108 1109 #endif 1110 1111 #ifdef TARGET_M68K 1112 1113 #define ELF_START_MMAP 0x80000000 1114 1115 #define ELF_CLASS ELFCLASS32 1116 #define ELF_ARCH EM_68K 1117 1118 /* ??? Does this need to do anything? 1119 #define ELF_PLAT_INIT(_r) */ 1120 1121 static inline void init_thread(struct target_pt_regs *regs, 1122 struct image_info *infop) 1123 { 1124 regs->usp = infop->start_stack; 1125 regs->sr = 0; 1126 regs->pc = infop->entry; 1127 } 1128 1129 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1130 #define ELF_NREG 20 1131 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1132 1133 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1134 { 1135 (*regs)[0] = tswapreg(env->dregs[1]); 1136 (*regs)[1] = tswapreg(env->dregs[2]); 1137 (*regs)[2] = tswapreg(env->dregs[3]); 1138 (*regs)[3] = tswapreg(env->dregs[4]); 1139 (*regs)[4] = tswapreg(env->dregs[5]); 1140 (*regs)[5] = tswapreg(env->dregs[6]); 1141 (*regs)[6] = tswapreg(env->dregs[7]); 1142 (*regs)[7] = tswapreg(env->aregs[0]); 1143 (*regs)[8] = tswapreg(env->aregs[1]); 1144 (*regs)[9] = tswapreg(env->aregs[2]); 1145 (*regs)[10] = tswapreg(env->aregs[3]); 1146 (*regs)[11] = tswapreg(env->aregs[4]); 1147 (*regs)[12] = tswapreg(env->aregs[5]); 1148 (*regs)[13] = tswapreg(env->aregs[6]); 1149 (*regs)[14] = tswapreg(env->dregs[0]); 1150 (*regs)[15] = tswapreg(env->aregs[7]); 1151 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1152 (*regs)[17] = tswapreg(env->sr); 1153 (*regs)[18] = tswapreg(env->pc); 1154 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1155 } 1156 1157 #define USE_ELF_CORE_DUMP 1158 #define ELF_EXEC_PAGESIZE 8192 1159 1160 #endif 1161 1162 #ifdef TARGET_ALPHA 1163 1164 #define ELF_START_MMAP (0x30000000000ULL) 1165 1166 #define ELF_CLASS ELFCLASS64 1167 #define ELF_ARCH EM_ALPHA 1168 1169 static inline void init_thread(struct target_pt_regs *regs, 1170 struct image_info *infop) 1171 { 1172 regs->pc = infop->entry; 1173 regs->ps = 8; 1174 regs->usp = infop->start_stack; 1175 } 1176 1177 #define ELF_EXEC_PAGESIZE 8192 1178 1179 #endif /* TARGET_ALPHA */ 1180 1181 #ifdef TARGET_S390X 1182 1183 #define ELF_START_MMAP (0x20000000000ULL) 1184 1185 #define ELF_CLASS ELFCLASS64 1186 #define ELF_DATA ELFDATA2MSB 1187 #define ELF_ARCH EM_S390 1188 1189 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1190 { 1191 regs->psw.addr = infop->entry; 1192 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1193 regs->gprs[15] = infop->start_stack; 1194 } 1195 1196 #endif /* TARGET_S390X */ 1197 1198 #ifdef TARGET_TILEGX 1199 1200 /* 42 bits real used address, a half for user mode */ 1201 #define ELF_START_MMAP (0x00000020000000000ULL) 1202 1203 #define elf_check_arch(x) ((x) == EM_TILEGX) 1204 1205 #define ELF_CLASS ELFCLASS64 1206 #define ELF_DATA ELFDATA2LSB 1207 #define ELF_ARCH EM_TILEGX 1208 1209 static inline void init_thread(struct target_pt_regs *regs, 1210 struct image_info *infop) 1211 { 1212 regs->pc = infop->entry; 1213 regs->sp = infop->start_stack; 1214 1215 } 1216 1217 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1218 1219 #endif /* TARGET_TILEGX */ 1220 1221 #ifndef ELF_PLATFORM 1222 #define ELF_PLATFORM (NULL) 1223 #endif 1224 1225 #ifndef ELF_MACHINE 1226 #define ELF_MACHINE ELF_ARCH 1227 #endif 1228 1229 #ifndef elf_check_arch 1230 #define elf_check_arch(x) ((x) == ELF_ARCH) 1231 #endif 1232 1233 #ifndef ELF_HWCAP 1234 #define ELF_HWCAP 0 1235 #endif 1236 1237 #ifdef TARGET_ABI32 1238 #undef ELF_CLASS 1239 #define ELF_CLASS ELFCLASS32 1240 #undef bswaptls 1241 #define bswaptls(ptr) bswap32s(ptr) 1242 #endif 1243 1244 #include "elf.h" 1245 1246 struct exec 1247 { 1248 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1249 unsigned int a_text; /* length of text, in bytes */ 1250 unsigned int a_data; /* length of data, in bytes */ 1251 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1252 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1253 unsigned int a_entry; /* start address */ 1254 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1255 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1256 }; 1257 1258 1259 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1260 #define OMAGIC 0407 1261 #define NMAGIC 0410 1262 #define ZMAGIC 0413 1263 #define QMAGIC 0314 1264 1265 /* Necessary parameters */ 1266 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1267 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1268 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1269 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1270 1271 #define DLINFO_ITEMS 14 1272 1273 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1274 { 1275 memcpy(to, from, n); 1276 } 1277 1278 #ifdef BSWAP_NEEDED 1279 static void bswap_ehdr(struct elfhdr *ehdr) 1280 { 1281 bswap16s(&ehdr->e_type); /* Object file type */ 1282 bswap16s(&ehdr->e_machine); /* Architecture */ 1283 bswap32s(&ehdr->e_version); /* Object file version */ 1284 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1285 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1286 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1287 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1288 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1289 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1290 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1291 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1292 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1293 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1294 } 1295 1296 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1297 { 1298 int i; 1299 for (i = 0; i < phnum; ++i, ++phdr) { 1300 bswap32s(&phdr->p_type); /* Segment type */ 1301 bswap32s(&phdr->p_flags); /* Segment flags */ 1302 bswaptls(&phdr->p_offset); /* Segment file offset */ 1303 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1304 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1305 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1306 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1307 bswaptls(&phdr->p_align); /* Segment alignment */ 1308 } 1309 } 1310 1311 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1312 { 1313 int i; 1314 for (i = 0; i < shnum; ++i, ++shdr) { 1315 bswap32s(&shdr->sh_name); 1316 bswap32s(&shdr->sh_type); 1317 bswaptls(&shdr->sh_flags); 1318 bswaptls(&shdr->sh_addr); 1319 bswaptls(&shdr->sh_offset); 1320 bswaptls(&shdr->sh_size); 1321 bswap32s(&shdr->sh_link); 1322 bswap32s(&shdr->sh_info); 1323 bswaptls(&shdr->sh_addralign); 1324 bswaptls(&shdr->sh_entsize); 1325 } 1326 } 1327 1328 static void bswap_sym(struct elf_sym *sym) 1329 { 1330 bswap32s(&sym->st_name); 1331 bswaptls(&sym->st_value); 1332 bswaptls(&sym->st_size); 1333 bswap16s(&sym->st_shndx); 1334 } 1335 #else 1336 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1337 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1338 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1339 static inline void bswap_sym(struct elf_sym *sym) { } 1340 #endif 1341 1342 #ifdef USE_ELF_CORE_DUMP 1343 static int elf_core_dump(int, const CPUArchState *); 1344 #endif /* USE_ELF_CORE_DUMP */ 1345 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1346 1347 /* Verify the portions of EHDR within E_IDENT for the target. 1348 This can be performed before bswapping the entire header. */ 1349 static bool elf_check_ident(struct elfhdr *ehdr) 1350 { 1351 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1352 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1353 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1354 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1355 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1356 && ehdr->e_ident[EI_DATA] == ELF_DATA 1357 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1358 } 1359 1360 /* Verify the portions of EHDR outside of E_IDENT for the target. 1361 This has to wait until after bswapping the header. */ 1362 static bool elf_check_ehdr(struct elfhdr *ehdr) 1363 { 1364 return (elf_check_arch(ehdr->e_machine) 1365 && ehdr->e_ehsize == sizeof(struct elfhdr) 1366 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1367 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1368 } 1369 1370 /* 1371 * 'copy_elf_strings()' copies argument/envelope strings from user 1372 * memory to free pages in kernel mem. These are in a format ready 1373 * to be put directly into the top of new user memory. 1374 * 1375 */ 1376 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1377 abi_ulong p, abi_ulong stack_limit) 1378 { 1379 char *tmp; 1380 int len, offset; 1381 abi_ulong top = p; 1382 1383 if (!p) { 1384 return 0; /* bullet-proofing */ 1385 } 1386 1387 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1388 1389 while (argc-- > 0) { 1390 tmp = argv[argc]; 1391 if (!tmp) { 1392 fprintf(stderr, "VFS: argc is wrong"); 1393 exit(-1); 1394 } 1395 len = strlen(tmp) + 1; 1396 tmp += len; 1397 1398 if (len > (p - stack_limit)) { 1399 return 0; 1400 } 1401 while (len) { 1402 int bytes_to_copy = (len > offset) ? offset : len; 1403 tmp -= bytes_to_copy; 1404 p -= bytes_to_copy; 1405 offset -= bytes_to_copy; 1406 len -= bytes_to_copy; 1407 1408 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1409 1410 if (offset == 0) { 1411 memcpy_to_target(p, scratch, top - p); 1412 top = p; 1413 offset = TARGET_PAGE_SIZE; 1414 } 1415 } 1416 } 1417 if (offset) { 1418 memcpy_to_target(p, scratch + offset, top - p); 1419 } 1420 1421 return p; 1422 } 1423 1424 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1425 * argument/environment space. Newer kernels (>2.6.33) allow more, 1426 * dependent on stack size, but guarantee at least 32 pages for 1427 * backwards compatibility. 1428 */ 1429 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1430 1431 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1432 struct image_info *info) 1433 { 1434 abi_ulong size, error, guard; 1435 1436 size = guest_stack_size; 1437 if (size < STACK_LOWER_LIMIT) { 1438 size = STACK_LOWER_LIMIT; 1439 } 1440 guard = TARGET_PAGE_SIZE; 1441 if (guard < qemu_real_host_page_size) { 1442 guard = qemu_real_host_page_size; 1443 } 1444 1445 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1446 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1447 if (error == -1) { 1448 perror("mmap stack"); 1449 exit(-1); 1450 } 1451 1452 /* We reserve one extra page at the top of the stack as guard. */ 1453 target_mprotect(error, guard, PROT_NONE); 1454 1455 info->stack_limit = error + guard; 1456 1457 return info->stack_limit + size - sizeof(void *); 1458 } 1459 1460 /* Map and zero the bss. We need to explicitly zero any fractional pages 1461 after the data section (i.e. bss). */ 1462 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1463 { 1464 uintptr_t host_start, host_map_start, host_end; 1465 1466 last_bss = TARGET_PAGE_ALIGN(last_bss); 1467 1468 /* ??? There is confusion between qemu_real_host_page_size and 1469 qemu_host_page_size here and elsewhere in target_mmap, which 1470 may lead to the end of the data section mapping from the file 1471 not being mapped. At least there was an explicit test and 1472 comment for that here, suggesting that "the file size must 1473 be known". The comment probably pre-dates the introduction 1474 of the fstat system call in target_mmap which does in fact 1475 find out the size. What isn't clear is if the workaround 1476 here is still actually needed. For now, continue with it, 1477 but merge it with the "normal" mmap that would allocate the bss. */ 1478 1479 host_start = (uintptr_t) g2h(elf_bss); 1480 host_end = (uintptr_t) g2h(last_bss); 1481 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1482 1483 if (host_map_start < host_end) { 1484 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1485 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1486 if (p == MAP_FAILED) { 1487 perror("cannot mmap brk"); 1488 exit(-1); 1489 } 1490 } 1491 1492 /* Ensure that the bss page(s) are valid */ 1493 if ((page_get_flags(last_bss-1) & prot) != prot) { 1494 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1495 } 1496 1497 if (host_start < host_map_start) { 1498 memset((void *)host_start, 0, host_map_start - host_start); 1499 } 1500 } 1501 1502 #ifdef CONFIG_USE_FDPIC 1503 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1504 { 1505 uint16_t n; 1506 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1507 1508 /* elf32_fdpic_loadseg */ 1509 n = info->nsegs; 1510 while (n--) { 1511 sp -= 12; 1512 put_user_u32(loadsegs[n].addr, sp+0); 1513 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1514 put_user_u32(loadsegs[n].p_memsz, sp+8); 1515 } 1516 1517 /* elf32_fdpic_loadmap */ 1518 sp -= 4; 1519 put_user_u16(0, sp+0); /* version */ 1520 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1521 1522 info->personality = PER_LINUX_FDPIC; 1523 info->loadmap_addr = sp; 1524 1525 return sp; 1526 } 1527 #endif 1528 1529 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1530 struct elfhdr *exec, 1531 struct image_info *info, 1532 struct image_info *interp_info) 1533 { 1534 abi_ulong sp; 1535 abi_ulong sp_auxv; 1536 int size; 1537 int i; 1538 abi_ulong u_rand_bytes; 1539 uint8_t k_rand_bytes[16]; 1540 abi_ulong u_platform; 1541 const char *k_platform; 1542 const int n = sizeof(elf_addr_t); 1543 1544 sp = p; 1545 1546 #ifdef CONFIG_USE_FDPIC 1547 /* Needs to be before we load the env/argc/... */ 1548 if (elf_is_fdpic(exec)) { 1549 /* Need 4 byte alignment for these structs */ 1550 sp &= ~3; 1551 sp = loader_build_fdpic_loadmap(info, sp); 1552 info->other_info = interp_info; 1553 if (interp_info) { 1554 interp_info->other_info = info; 1555 sp = loader_build_fdpic_loadmap(interp_info, sp); 1556 } 1557 } 1558 #endif 1559 1560 u_platform = 0; 1561 k_platform = ELF_PLATFORM; 1562 if (k_platform) { 1563 size_t len = strlen(k_platform) + 1; 1564 sp -= (len + n - 1) & ~(n - 1); 1565 u_platform = sp; 1566 /* FIXME - check return value of memcpy_to_target() for failure */ 1567 memcpy_to_target(sp, k_platform, len); 1568 } 1569 1570 /* 1571 * Generate 16 random bytes for userspace PRNG seeding (not 1572 * cryptically secure but it's not the aim of QEMU). 1573 */ 1574 for (i = 0; i < 16; i++) { 1575 k_rand_bytes[i] = rand(); 1576 } 1577 sp -= 16; 1578 u_rand_bytes = sp; 1579 /* FIXME - check return value of memcpy_to_target() for failure */ 1580 memcpy_to_target(sp, k_rand_bytes, 16); 1581 1582 /* 1583 * Force 16 byte _final_ alignment here for generality. 1584 */ 1585 sp = sp &~ (abi_ulong)15; 1586 size = (DLINFO_ITEMS + 1) * 2; 1587 if (k_platform) 1588 size += 2; 1589 #ifdef DLINFO_ARCH_ITEMS 1590 size += DLINFO_ARCH_ITEMS * 2; 1591 #endif 1592 #ifdef ELF_HWCAP2 1593 size += 2; 1594 #endif 1595 size += envc + argc + 2; 1596 size += 1; /* argc itself */ 1597 size *= n; 1598 if (size & 15) 1599 sp -= 16 - (size & 15); 1600 1601 /* This is correct because Linux defines 1602 * elf_addr_t as Elf32_Off / Elf64_Off 1603 */ 1604 #define NEW_AUX_ENT(id, val) do { \ 1605 sp -= n; put_user_ual(val, sp); \ 1606 sp -= n; put_user_ual(id, sp); \ 1607 } while(0) 1608 1609 sp_auxv = sp; 1610 NEW_AUX_ENT (AT_NULL, 0); 1611 1612 /* There must be exactly DLINFO_ITEMS entries here. */ 1613 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1614 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1615 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1616 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1617 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1618 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1619 NEW_AUX_ENT(AT_ENTRY, info->entry); 1620 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1621 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1622 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1623 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1624 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1625 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1626 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1627 1628 #ifdef ELF_HWCAP2 1629 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1630 #endif 1631 1632 if (k_platform) 1633 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1634 #ifdef ARCH_DLINFO 1635 /* 1636 * ARCH_DLINFO must come last so platform specific code can enforce 1637 * special alignment requirements on the AUXV if necessary (eg. PPC). 1638 */ 1639 ARCH_DLINFO; 1640 #endif 1641 #undef NEW_AUX_ENT 1642 1643 info->saved_auxv = sp; 1644 info->auxv_len = sp_auxv - sp; 1645 1646 sp = loader_build_argptr(envc, argc, sp, p, 0); 1647 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1648 assert(sp_auxv - sp == size); 1649 return sp; 1650 } 1651 1652 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1653 /* If the guest doesn't have a validation function just agree */ 1654 static int validate_guest_space(unsigned long guest_base, 1655 unsigned long guest_size) 1656 { 1657 return 1; 1658 } 1659 #endif 1660 1661 unsigned long init_guest_space(unsigned long host_start, 1662 unsigned long host_size, 1663 unsigned long guest_start, 1664 bool fixed) 1665 { 1666 unsigned long current_start, real_start; 1667 int flags; 1668 1669 assert(host_start || host_size); 1670 1671 /* If just a starting address is given, then just verify that 1672 * address. */ 1673 if (host_start && !host_size) { 1674 if (validate_guest_space(host_start, host_size) == 1) { 1675 return host_start; 1676 } else { 1677 return (unsigned long)-1; 1678 } 1679 } 1680 1681 /* Setup the initial flags and start address. */ 1682 current_start = host_start & qemu_host_page_mask; 1683 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1684 if (fixed) { 1685 flags |= MAP_FIXED; 1686 } 1687 1688 /* Otherwise, a non-zero size region of memory needs to be mapped 1689 * and validated. */ 1690 while (1) { 1691 unsigned long real_size = host_size; 1692 1693 /* Do not use mmap_find_vma here because that is limited to the 1694 * guest address space. We are going to make the 1695 * guest address space fit whatever we're given. 1696 */ 1697 real_start = (unsigned long) 1698 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1699 if (real_start == (unsigned long)-1) { 1700 return (unsigned long)-1; 1701 } 1702 1703 /* Ensure the address is properly aligned. */ 1704 if (real_start & ~qemu_host_page_mask) { 1705 munmap((void *)real_start, host_size); 1706 real_size = host_size + qemu_host_page_size; 1707 real_start = (unsigned long) 1708 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1709 if (real_start == (unsigned long)-1) { 1710 return (unsigned long)-1; 1711 } 1712 real_start = HOST_PAGE_ALIGN(real_start); 1713 } 1714 1715 /* Check to see if the address is valid. */ 1716 if (!host_start || real_start == current_start) { 1717 int valid = validate_guest_space(real_start - guest_start, 1718 real_size); 1719 if (valid == 1) { 1720 break; 1721 } else if (valid == -1) { 1722 return (unsigned long)-1; 1723 } 1724 /* valid == 0, so try again. */ 1725 } 1726 1727 /* That address didn't work. Unmap and try a different one. 1728 * The address the host picked because is typically right at 1729 * the top of the host address space and leaves the guest with 1730 * no usable address space. Resort to a linear search. We 1731 * already compensated for mmap_min_addr, so this should not 1732 * happen often. Probably means we got unlucky and host 1733 * address space randomization put a shared library somewhere 1734 * inconvenient. 1735 */ 1736 munmap((void *)real_start, host_size); 1737 current_start += qemu_host_page_size; 1738 if (host_start == current_start) { 1739 /* Theoretically possible if host doesn't have any suitably 1740 * aligned areas. Normally the first mmap will fail. 1741 */ 1742 return (unsigned long)-1; 1743 } 1744 } 1745 1746 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1747 1748 return real_start; 1749 } 1750 1751 static void probe_guest_base(const char *image_name, 1752 abi_ulong loaddr, abi_ulong hiaddr) 1753 { 1754 /* Probe for a suitable guest base address, if the user has not set 1755 * it explicitly, and set guest_base appropriately. 1756 * In case of error we will print a suitable message and exit. 1757 */ 1758 const char *errmsg; 1759 if (!have_guest_base && !reserved_va) { 1760 unsigned long host_start, real_start, host_size; 1761 1762 /* Round addresses to page boundaries. */ 1763 loaddr &= qemu_host_page_mask; 1764 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1765 1766 if (loaddr < mmap_min_addr) { 1767 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1768 } else { 1769 host_start = loaddr; 1770 if (host_start != loaddr) { 1771 errmsg = "Address overflow loading ELF binary"; 1772 goto exit_errmsg; 1773 } 1774 } 1775 host_size = hiaddr - loaddr; 1776 1777 /* Setup the initial guest memory space with ranges gleaned from 1778 * the ELF image that is being loaded. 1779 */ 1780 real_start = init_guest_space(host_start, host_size, loaddr, false); 1781 if (real_start == (unsigned long)-1) { 1782 errmsg = "Unable to find space for application"; 1783 goto exit_errmsg; 1784 } 1785 guest_base = real_start - loaddr; 1786 1787 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1788 TARGET_ABI_FMT_lx " to 0x%lx\n", 1789 loaddr, real_start); 1790 } 1791 return; 1792 1793 exit_errmsg: 1794 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1795 exit(-1); 1796 } 1797 1798 1799 /* Load an ELF image into the address space. 1800 1801 IMAGE_NAME is the filename of the image, to use in error messages. 1802 IMAGE_FD is the open file descriptor for the image. 1803 1804 BPRM_BUF is a copy of the beginning of the file; this of course 1805 contains the elf file header at offset 0. It is assumed that this 1806 buffer is sufficiently aligned to present no problems to the host 1807 in accessing data at aligned offsets within the buffer. 1808 1809 On return: INFO values will be filled in, as necessary or available. */ 1810 1811 static void load_elf_image(const char *image_name, int image_fd, 1812 struct image_info *info, char **pinterp_name, 1813 char bprm_buf[BPRM_BUF_SIZE]) 1814 { 1815 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1816 struct elf_phdr *phdr; 1817 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1818 int i, retval; 1819 const char *errmsg; 1820 1821 /* First of all, some simple consistency checks */ 1822 errmsg = "Invalid ELF image for this architecture"; 1823 if (!elf_check_ident(ehdr)) { 1824 goto exit_errmsg; 1825 } 1826 bswap_ehdr(ehdr); 1827 if (!elf_check_ehdr(ehdr)) { 1828 goto exit_errmsg; 1829 } 1830 1831 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1832 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1833 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1834 } else { 1835 phdr = (struct elf_phdr *) alloca(i); 1836 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1837 if (retval != i) { 1838 goto exit_read; 1839 } 1840 } 1841 bswap_phdr(phdr, ehdr->e_phnum); 1842 1843 #ifdef CONFIG_USE_FDPIC 1844 info->nsegs = 0; 1845 info->pt_dynamic_addr = 0; 1846 #endif 1847 1848 /* Find the maximum size of the image and allocate an appropriate 1849 amount of memory to handle that. */ 1850 loaddr = -1, hiaddr = 0; 1851 for (i = 0; i < ehdr->e_phnum; ++i) { 1852 if (phdr[i].p_type == PT_LOAD) { 1853 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1854 if (a < loaddr) { 1855 loaddr = a; 1856 } 1857 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1858 if (a > hiaddr) { 1859 hiaddr = a; 1860 } 1861 #ifdef CONFIG_USE_FDPIC 1862 ++info->nsegs; 1863 #endif 1864 } 1865 } 1866 1867 load_addr = loaddr; 1868 if (ehdr->e_type == ET_DYN) { 1869 /* The image indicates that it can be loaded anywhere. Find a 1870 location that can hold the memory space required. If the 1871 image is pre-linked, LOADDR will be non-zero. Since we do 1872 not supply MAP_FIXED here we'll use that address if and 1873 only if it remains available. */ 1874 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1875 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1876 -1, 0); 1877 if (load_addr == -1) { 1878 goto exit_perror; 1879 } 1880 } else if (pinterp_name != NULL) { 1881 /* This is the main executable. Make sure that the low 1882 address does not conflict with MMAP_MIN_ADDR or the 1883 QEMU application itself. */ 1884 probe_guest_base(image_name, loaddr, hiaddr); 1885 } 1886 load_bias = load_addr - loaddr; 1887 1888 #ifdef CONFIG_USE_FDPIC 1889 { 1890 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1891 g_malloc(sizeof(*loadsegs) * info->nsegs); 1892 1893 for (i = 0; i < ehdr->e_phnum; ++i) { 1894 switch (phdr[i].p_type) { 1895 case PT_DYNAMIC: 1896 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1897 break; 1898 case PT_LOAD: 1899 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1900 loadsegs->p_vaddr = phdr[i].p_vaddr; 1901 loadsegs->p_memsz = phdr[i].p_memsz; 1902 ++loadsegs; 1903 break; 1904 } 1905 } 1906 } 1907 #endif 1908 1909 info->load_bias = load_bias; 1910 info->load_addr = load_addr; 1911 info->entry = ehdr->e_entry + load_bias; 1912 info->start_code = -1; 1913 info->end_code = 0; 1914 info->start_data = -1; 1915 info->end_data = 0; 1916 info->brk = 0; 1917 info->elf_flags = ehdr->e_flags; 1918 1919 for (i = 0; i < ehdr->e_phnum; i++) { 1920 struct elf_phdr *eppnt = phdr + i; 1921 if (eppnt->p_type == PT_LOAD) { 1922 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1923 int elf_prot = 0; 1924 1925 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1926 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1927 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1928 1929 vaddr = load_bias + eppnt->p_vaddr; 1930 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1931 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1932 1933 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1934 elf_prot, MAP_PRIVATE | MAP_FIXED, 1935 image_fd, eppnt->p_offset - vaddr_po); 1936 if (error == -1) { 1937 goto exit_perror; 1938 } 1939 1940 vaddr_ef = vaddr + eppnt->p_filesz; 1941 vaddr_em = vaddr + eppnt->p_memsz; 1942 1943 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1944 if (vaddr_ef < vaddr_em) { 1945 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1946 } 1947 1948 /* Find the full program boundaries. */ 1949 if (elf_prot & PROT_EXEC) { 1950 if (vaddr < info->start_code) { 1951 info->start_code = vaddr; 1952 } 1953 if (vaddr_ef > info->end_code) { 1954 info->end_code = vaddr_ef; 1955 } 1956 } 1957 if (elf_prot & PROT_WRITE) { 1958 if (vaddr < info->start_data) { 1959 info->start_data = vaddr; 1960 } 1961 if (vaddr_ef > info->end_data) { 1962 info->end_data = vaddr_ef; 1963 } 1964 if (vaddr_em > info->brk) { 1965 info->brk = vaddr_em; 1966 } 1967 } 1968 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1969 char *interp_name; 1970 1971 if (*pinterp_name) { 1972 errmsg = "Multiple PT_INTERP entries"; 1973 goto exit_errmsg; 1974 } 1975 interp_name = malloc(eppnt->p_filesz); 1976 if (!interp_name) { 1977 goto exit_perror; 1978 } 1979 1980 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1981 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1982 eppnt->p_filesz); 1983 } else { 1984 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1985 eppnt->p_offset); 1986 if (retval != eppnt->p_filesz) { 1987 goto exit_perror; 1988 } 1989 } 1990 if (interp_name[eppnt->p_filesz - 1] != 0) { 1991 errmsg = "Invalid PT_INTERP entry"; 1992 goto exit_errmsg; 1993 } 1994 *pinterp_name = interp_name; 1995 } 1996 } 1997 1998 if (info->end_data == 0) { 1999 info->start_data = info->end_code; 2000 info->end_data = info->end_code; 2001 info->brk = info->end_code; 2002 } 2003 2004 if (qemu_log_enabled()) { 2005 load_symbols(ehdr, image_fd, load_bias); 2006 } 2007 2008 close(image_fd); 2009 return; 2010 2011 exit_read: 2012 if (retval >= 0) { 2013 errmsg = "Incomplete read of file header"; 2014 goto exit_errmsg; 2015 } 2016 exit_perror: 2017 errmsg = strerror(errno); 2018 exit_errmsg: 2019 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2020 exit(-1); 2021 } 2022 2023 static void load_elf_interp(const char *filename, struct image_info *info, 2024 char bprm_buf[BPRM_BUF_SIZE]) 2025 { 2026 int fd, retval; 2027 2028 fd = open(path(filename), O_RDONLY); 2029 if (fd < 0) { 2030 goto exit_perror; 2031 } 2032 2033 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2034 if (retval < 0) { 2035 goto exit_perror; 2036 } 2037 if (retval < BPRM_BUF_SIZE) { 2038 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2039 } 2040 2041 load_elf_image(filename, fd, info, NULL, bprm_buf); 2042 return; 2043 2044 exit_perror: 2045 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2046 exit(-1); 2047 } 2048 2049 static int symfind(const void *s0, const void *s1) 2050 { 2051 target_ulong addr = *(target_ulong *)s0; 2052 struct elf_sym *sym = (struct elf_sym *)s1; 2053 int result = 0; 2054 if (addr < sym->st_value) { 2055 result = -1; 2056 } else if (addr >= sym->st_value + sym->st_size) { 2057 result = 1; 2058 } 2059 return result; 2060 } 2061 2062 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2063 { 2064 #if ELF_CLASS == ELFCLASS32 2065 struct elf_sym *syms = s->disas_symtab.elf32; 2066 #else 2067 struct elf_sym *syms = s->disas_symtab.elf64; 2068 #endif 2069 2070 // binary search 2071 struct elf_sym *sym; 2072 2073 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2074 if (sym != NULL) { 2075 return s->disas_strtab + sym->st_name; 2076 } 2077 2078 return ""; 2079 } 2080 2081 /* FIXME: This should use elf_ops.h */ 2082 static int symcmp(const void *s0, const void *s1) 2083 { 2084 struct elf_sym *sym0 = (struct elf_sym *)s0; 2085 struct elf_sym *sym1 = (struct elf_sym *)s1; 2086 return (sym0->st_value < sym1->st_value) 2087 ? -1 2088 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2089 } 2090 2091 /* Best attempt to load symbols from this ELF object. */ 2092 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2093 { 2094 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2095 struct elf_shdr *shdr; 2096 char *strings = NULL; 2097 struct syminfo *s = NULL; 2098 struct elf_sym *new_syms, *syms = NULL; 2099 2100 shnum = hdr->e_shnum; 2101 i = shnum * sizeof(struct elf_shdr); 2102 shdr = (struct elf_shdr *)alloca(i); 2103 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2104 return; 2105 } 2106 2107 bswap_shdr(shdr, shnum); 2108 for (i = 0; i < shnum; ++i) { 2109 if (shdr[i].sh_type == SHT_SYMTAB) { 2110 sym_idx = i; 2111 str_idx = shdr[i].sh_link; 2112 goto found; 2113 } 2114 } 2115 2116 /* There will be no symbol table if the file was stripped. */ 2117 return; 2118 2119 found: 2120 /* Now know where the strtab and symtab are. Snarf them. */ 2121 s = malloc(sizeof(*s)); 2122 if (!s) { 2123 goto give_up; 2124 } 2125 2126 i = shdr[str_idx].sh_size; 2127 s->disas_strtab = strings = malloc(i); 2128 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2129 goto give_up; 2130 } 2131 2132 i = shdr[sym_idx].sh_size; 2133 syms = malloc(i); 2134 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2135 goto give_up; 2136 } 2137 2138 nsyms = i / sizeof(struct elf_sym); 2139 for (i = 0; i < nsyms; ) { 2140 bswap_sym(syms + i); 2141 /* Throw away entries which we do not need. */ 2142 if (syms[i].st_shndx == SHN_UNDEF 2143 || syms[i].st_shndx >= SHN_LORESERVE 2144 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2145 if (i < --nsyms) { 2146 syms[i] = syms[nsyms]; 2147 } 2148 } else { 2149 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2150 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2151 syms[i].st_value &= ~(target_ulong)1; 2152 #endif 2153 syms[i].st_value += load_bias; 2154 i++; 2155 } 2156 } 2157 2158 /* No "useful" symbol. */ 2159 if (nsyms == 0) { 2160 goto give_up; 2161 } 2162 2163 /* Attempt to free the storage associated with the local symbols 2164 that we threw away. Whether or not this has any effect on the 2165 memory allocation depends on the malloc implementation and how 2166 many symbols we managed to discard. */ 2167 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2168 if (new_syms == NULL) { 2169 goto give_up; 2170 } 2171 syms = new_syms; 2172 2173 qsort(syms, nsyms, sizeof(*syms), symcmp); 2174 2175 s->disas_num_syms = nsyms; 2176 #if ELF_CLASS == ELFCLASS32 2177 s->disas_symtab.elf32 = syms; 2178 #else 2179 s->disas_symtab.elf64 = syms; 2180 #endif 2181 s->lookup_symbol = lookup_symbolxx; 2182 s->next = syminfos; 2183 syminfos = s; 2184 2185 return; 2186 2187 give_up: 2188 free(s); 2189 free(strings); 2190 free(syms); 2191 } 2192 2193 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2194 { 2195 struct image_info interp_info; 2196 struct elfhdr elf_ex; 2197 char *elf_interpreter = NULL; 2198 char *scratch; 2199 2200 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2201 2202 load_elf_image(bprm->filename, bprm->fd, info, 2203 &elf_interpreter, bprm->buf); 2204 2205 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2206 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2207 when we load the interpreter. */ 2208 elf_ex = *(struct elfhdr *)bprm->buf; 2209 2210 /* Do this so that we can load the interpreter, if need be. We will 2211 change some of these later */ 2212 bprm->p = setup_arg_pages(bprm, info); 2213 2214 scratch = g_new0(char, TARGET_PAGE_SIZE); 2215 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2216 bprm->p, info->stack_limit); 2217 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2218 bprm->p, info->stack_limit); 2219 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2220 bprm->p, info->stack_limit); 2221 g_free(scratch); 2222 2223 if (!bprm->p) { 2224 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2225 exit(-1); 2226 } 2227 2228 if (elf_interpreter) { 2229 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2230 2231 /* If the program interpreter is one of these two, then assume 2232 an iBCS2 image. Otherwise assume a native linux image. */ 2233 2234 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2235 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2236 info->personality = PER_SVR4; 2237 2238 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2239 and some applications "depend" upon this behavior. Since 2240 we do not have the power to recompile these, we emulate 2241 the SVr4 behavior. Sigh. */ 2242 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2243 MAP_FIXED | MAP_PRIVATE, -1, 0); 2244 } 2245 } 2246 2247 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2248 info, (elf_interpreter ? &interp_info : NULL)); 2249 info->start_stack = bprm->p; 2250 2251 /* If we have an interpreter, set that as the program's entry point. 2252 Copy the load_bias as well, to help PPC64 interpret the entry 2253 point as a function descriptor. Do this after creating elf tables 2254 so that we copy the original program entry point into the AUXV. */ 2255 if (elf_interpreter) { 2256 info->load_bias = interp_info.load_bias; 2257 info->entry = interp_info.entry; 2258 free(elf_interpreter); 2259 } 2260 2261 #ifdef USE_ELF_CORE_DUMP 2262 bprm->core_dump = &elf_core_dump; 2263 #endif 2264 2265 return 0; 2266 } 2267 2268 #ifdef USE_ELF_CORE_DUMP 2269 /* 2270 * Definitions to generate Intel SVR4-like core files. 2271 * These mostly have the same names as the SVR4 types with "target_elf_" 2272 * tacked on the front to prevent clashes with linux definitions, 2273 * and the typedef forms have been avoided. This is mostly like 2274 * the SVR4 structure, but more Linuxy, with things that Linux does 2275 * not support and which gdb doesn't really use excluded. 2276 * 2277 * Fields we don't dump (their contents is zero) in linux-user qemu 2278 * are marked with XXX. 2279 * 2280 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2281 * 2282 * Porting ELF coredump for target is (quite) simple process. First you 2283 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2284 * the target resides): 2285 * 2286 * #define USE_ELF_CORE_DUMP 2287 * 2288 * Next you define type of register set used for dumping. ELF specification 2289 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2290 * 2291 * typedef <target_regtype> target_elf_greg_t; 2292 * #define ELF_NREG <number of registers> 2293 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2294 * 2295 * Last step is to implement target specific function that copies registers 2296 * from given cpu into just specified register set. Prototype is: 2297 * 2298 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2299 * const CPUArchState *env); 2300 * 2301 * Parameters: 2302 * regs - copy register values into here (allocated and zeroed by caller) 2303 * env - copy registers from here 2304 * 2305 * Example for ARM target is provided in this file. 2306 */ 2307 2308 /* An ELF note in memory */ 2309 struct memelfnote { 2310 const char *name; 2311 size_t namesz; 2312 size_t namesz_rounded; 2313 int type; 2314 size_t datasz; 2315 size_t datasz_rounded; 2316 void *data; 2317 size_t notesz; 2318 }; 2319 2320 struct target_elf_siginfo { 2321 abi_int si_signo; /* signal number */ 2322 abi_int si_code; /* extra code */ 2323 abi_int si_errno; /* errno */ 2324 }; 2325 2326 struct target_elf_prstatus { 2327 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2328 abi_short pr_cursig; /* Current signal */ 2329 abi_ulong pr_sigpend; /* XXX */ 2330 abi_ulong pr_sighold; /* XXX */ 2331 target_pid_t pr_pid; 2332 target_pid_t pr_ppid; 2333 target_pid_t pr_pgrp; 2334 target_pid_t pr_sid; 2335 struct target_timeval pr_utime; /* XXX User time */ 2336 struct target_timeval pr_stime; /* XXX System time */ 2337 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2338 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2339 target_elf_gregset_t pr_reg; /* GP registers */ 2340 abi_int pr_fpvalid; /* XXX */ 2341 }; 2342 2343 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2344 2345 struct target_elf_prpsinfo { 2346 char pr_state; /* numeric process state */ 2347 char pr_sname; /* char for pr_state */ 2348 char pr_zomb; /* zombie */ 2349 char pr_nice; /* nice val */ 2350 abi_ulong pr_flag; /* flags */ 2351 target_uid_t pr_uid; 2352 target_gid_t pr_gid; 2353 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2354 /* Lots missing */ 2355 char pr_fname[16]; /* filename of executable */ 2356 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2357 }; 2358 2359 /* Here is the structure in which status of each thread is captured. */ 2360 struct elf_thread_status { 2361 QTAILQ_ENTRY(elf_thread_status) ets_link; 2362 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2363 #if 0 2364 elf_fpregset_t fpu; /* NT_PRFPREG */ 2365 struct task_struct *thread; 2366 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2367 #endif 2368 struct memelfnote notes[1]; 2369 int num_notes; 2370 }; 2371 2372 struct elf_note_info { 2373 struct memelfnote *notes; 2374 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2375 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2376 2377 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2378 #if 0 2379 /* 2380 * Current version of ELF coredump doesn't support 2381 * dumping fp regs etc. 2382 */ 2383 elf_fpregset_t *fpu; 2384 elf_fpxregset_t *xfpu; 2385 int thread_status_size; 2386 #endif 2387 int notes_size; 2388 int numnote; 2389 }; 2390 2391 struct vm_area_struct { 2392 target_ulong vma_start; /* start vaddr of memory region */ 2393 target_ulong vma_end; /* end vaddr of memory region */ 2394 abi_ulong vma_flags; /* protection etc. flags for the region */ 2395 QTAILQ_ENTRY(vm_area_struct) vma_link; 2396 }; 2397 2398 struct mm_struct { 2399 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2400 int mm_count; /* number of mappings */ 2401 }; 2402 2403 static struct mm_struct *vma_init(void); 2404 static void vma_delete(struct mm_struct *); 2405 static int vma_add_mapping(struct mm_struct *, target_ulong, 2406 target_ulong, abi_ulong); 2407 static int vma_get_mapping_count(const struct mm_struct *); 2408 static struct vm_area_struct *vma_first(const struct mm_struct *); 2409 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2410 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2411 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2412 unsigned long flags); 2413 2414 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2415 static void fill_note(struct memelfnote *, const char *, int, 2416 unsigned int, void *); 2417 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2418 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2419 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2420 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2421 static size_t note_size(const struct memelfnote *); 2422 static void free_note_info(struct elf_note_info *); 2423 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2424 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2425 static int core_dump_filename(const TaskState *, char *, size_t); 2426 2427 static int dump_write(int, const void *, size_t); 2428 static int write_note(struct memelfnote *, int); 2429 static int write_note_info(struct elf_note_info *, int); 2430 2431 #ifdef BSWAP_NEEDED 2432 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2433 { 2434 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2435 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2436 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2437 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2438 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2439 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2440 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2441 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2442 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2443 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2444 /* cpu times are not filled, so we skip them */ 2445 /* regs should be in correct format already */ 2446 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2447 } 2448 2449 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2450 { 2451 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2452 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2453 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2454 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2455 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2456 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2457 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2458 } 2459 2460 static void bswap_note(struct elf_note *en) 2461 { 2462 bswap32s(&en->n_namesz); 2463 bswap32s(&en->n_descsz); 2464 bswap32s(&en->n_type); 2465 } 2466 #else 2467 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2468 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2469 static inline void bswap_note(struct elf_note *en) { } 2470 #endif /* BSWAP_NEEDED */ 2471 2472 /* 2473 * Minimal support for linux memory regions. These are needed 2474 * when we are finding out what memory exactly belongs to 2475 * emulated process. No locks needed here, as long as 2476 * thread that received the signal is stopped. 2477 */ 2478 2479 static struct mm_struct *vma_init(void) 2480 { 2481 struct mm_struct *mm; 2482 2483 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2484 return (NULL); 2485 2486 mm->mm_count = 0; 2487 QTAILQ_INIT(&mm->mm_mmap); 2488 2489 return (mm); 2490 } 2491 2492 static void vma_delete(struct mm_struct *mm) 2493 { 2494 struct vm_area_struct *vma; 2495 2496 while ((vma = vma_first(mm)) != NULL) { 2497 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2498 g_free(vma); 2499 } 2500 g_free(mm); 2501 } 2502 2503 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2504 target_ulong end, abi_ulong flags) 2505 { 2506 struct vm_area_struct *vma; 2507 2508 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2509 return (-1); 2510 2511 vma->vma_start = start; 2512 vma->vma_end = end; 2513 vma->vma_flags = flags; 2514 2515 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2516 mm->mm_count++; 2517 2518 return (0); 2519 } 2520 2521 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2522 { 2523 return (QTAILQ_FIRST(&mm->mm_mmap)); 2524 } 2525 2526 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2527 { 2528 return (QTAILQ_NEXT(vma, vma_link)); 2529 } 2530 2531 static int vma_get_mapping_count(const struct mm_struct *mm) 2532 { 2533 return (mm->mm_count); 2534 } 2535 2536 /* 2537 * Calculate file (dump) size of given memory region. 2538 */ 2539 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2540 { 2541 /* if we cannot even read the first page, skip it */ 2542 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2543 return (0); 2544 2545 /* 2546 * Usually we don't dump executable pages as they contain 2547 * non-writable code that debugger can read directly from 2548 * target library etc. However, thread stacks are marked 2549 * also executable so we read in first page of given region 2550 * and check whether it contains elf header. If there is 2551 * no elf header, we dump it. 2552 */ 2553 if (vma->vma_flags & PROT_EXEC) { 2554 char page[TARGET_PAGE_SIZE]; 2555 2556 copy_from_user(page, vma->vma_start, sizeof (page)); 2557 if ((page[EI_MAG0] == ELFMAG0) && 2558 (page[EI_MAG1] == ELFMAG1) && 2559 (page[EI_MAG2] == ELFMAG2) && 2560 (page[EI_MAG3] == ELFMAG3)) { 2561 /* 2562 * Mappings are possibly from ELF binary. Don't dump 2563 * them. 2564 */ 2565 return (0); 2566 } 2567 } 2568 2569 return (vma->vma_end - vma->vma_start); 2570 } 2571 2572 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2573 unsigned long flags) 2574 { 2575 struct mm_struct *mm = (struct mm_struct *)priv; 2576 2577 vma_add_mapping(mm, start, end, flags); 2578 return (0); 2579 } 2580 2581 static void fill_note(struct memelfnote *note, const char *name, int type, 2582 unsigned int sz, void *data) 2583 { 2584 unsigned int namesz; 2585 2586 namesz = strlen(name) + 1; 2587 note->name = name; 2588 note->namesz = namesz; 2589 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2590 note->type = type; 2591 note->datasz = sz; 2592 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2593 2594 note->data = data; 2595 2596 /* 2597 * We calculate rounded up note size here as specified by 2598 * ELF document. 2599 */ 2600 note->notesz = sizeof (struct elf_note) + 2601 note->namesz_rounded + note->datasz_rounded; 2602 } 2603 2604 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2605 uint32_t flags) 2606 { 2607 (void) memset(elf, 0, sizeof(*elf)); 2608 2609 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2610 elf->e_ident[EI_CLASS] = ELF_CLASS; 2611 elf->e_ident[EI_DATA] = ELF_DATA; 2612 elf->e_ident[EI_VERSION] = EV_CURRENT; 2613 elf->e_ident[EI_OSABI] = ELF_OSABI; 2614 2615 elf->e_type = ET_CORE; 2616 elf->e_machine = machine; 2617 elf->e_version = EV_CURRENT; 2618 elf->e_phoff = sizeof(struct elfhdr); 2619 elf->e_flags = flags; 2620 elf->e_ehsize = sizeof(struct elfhdr); 2621 elf->e_phentsize = sizeof(struct elf_phdr); 2622 elf->e_phnum = segs; 2623 2624 bswap_ehdr(elf); 2625 } 2626 2627 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2628 { 2629 phdr->p_type = PT_NOTE; 2630 phdr->p_offset = offset; 2631 phdr->p_vaddr = 0; 2632 phdr->p_paddr = 0; 2633 phdr->p_filesz = sz; 2634 phdr->p_memsz = 0; 2635 phdr->p_flags = 0; 2636 phdr->p_align = 0; 2637 2638 bswap_phdr(phdr, 1); 2639 } 2640 2641 static size_t note_size(const struct memelfnote *note) 2642 { 2643 return (note->notesz); 2644 } 2645 2646 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2647 const TaskState *ts, int signr) 2648 { 2649 (void) memset(prstatus, 0, sizeof (*prstatus)); 2650 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2651 prstatus->pr_pid = ts->ts_tid; 2652 prstatus->pr_ppid = getppid(); 2653 prstatus->pr_pgrp = getpgrp(); 2654 prstatus->pr_sid = getsid(0); 2655 2656 bswap_prstatus(prstatus); 2657 } 2658 2659 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2660 { 2661 char *base_filename; 2662 unsigned int i, len; 2663 2664 (void) memset(psinfo, 0, sizeof (*psinfo)); 2665 2666 len = ts->info->arg_end - ts->info->arg_start; 2667 if (len >= ELF_PRARGSZ) 2668 len = ELF_PRARGSZ - 1; 2669 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2670 return -EFAULT; 2671 for (i = 0; i < len; i++) 2672 if (psinfo->pr_psargs[i] == 0) 2673 psinfo->pr_psargs[i] = ' '; 2674 psinfo->pr_psargs[len] = 0; 2675 2676 psinfo->pr_pid = getpid(); 2677 psinfo->pr_ppid = getppid(); 2678 psinfo->pr_pgrp = getpgrp(); 2679 psinfo->pr_sid = getsid(0); 2680 psinfo->pr_uid = getuid(); 2681 psinfo->pr_gid = getgid(); 2682 2683 base_filename = g_path_get_basename(ts->bprm->filename); 2684 /* 2685 * Using strncpy here is fine: at max-length, 2686 * this field is not NUL-terminated. 2687 */ 2688 (void) strncpy(psinfo->pr_fname, base_filename, 2689 sizeof(psinfo->pr_fname)); 2690 2691 g_free(base_filename); 2692 bswap_psinfo(psinfo); 2693 return (0); 2694 } 2695 2696 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2697 { 2698 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2699 elf_addr_t orig_auxv = auxv; 2700 void *ptr; 2701 int len = ts->info->auxv_len; 2702 2703 /* 2704 * Auxiliary vector is stored in target process stack. It contains 2705 * {type, value} pairs that we need to dump into note. This is not 2706 * strictly necessary but we do it here for sake of completeness. 2707 */ 2708 2709 /* read in whole auxv vector and copy it to memelfnote */ 2710 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2711 if (ptr != NULL) { 2712 fill_note(note, "CORE", NT_AUXV, len, ptr); 2713 unlock_user(ptr, auxv, len); 2714 } 2715 } 2716 2717 /* 2718 * Constructs name of coredump file. We have following convention 2719 * for the name: 2720 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2721 * 2722 * Returns 0 in case of success, -1 otherwise (errno is set). 2723 */ 2724 static int core_dump_filename(const TaskState *ts, char *buf, 2725 size_t bufsize) 2726 { 2727 char timestamp[64]; 2728 char *filename = NULL; 2729 char *base_filename = NULL; 2730 struct timeval tv; 2731 struct tm tm; 2732 2733 assert(bufsize >= PATH_MAX); 2734 2735 if (gettimeofday(&tv, NULL) < 0) { 2736 (void) fprintf(stderr, "unable to get current timestamp: %s", 2737 strerror(errno)); 2738 return (-1); 2739 } 2740 2741 filename = strdup(ts->bprm->filename); 2742 base_filename = strdup(basename(filename)); 2743 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2744 localtime_r(&tv.tv_sec, &tm)); 2745 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2746 base_filename, timestamp, (int)getpid()); 2747 free(base_filename); 2748 free(filename); 2749 2750 return (0); 2751 } 2752 2753 static int dump_write(int fd, const void *ptr, size_t size) 2754 { 2755 const char *bufp = (const char *)ptr; 2756 ssize_t bytes_written, bytes_left; 2757 struct rlimit dumpsize; 2758 off_t pos; 2759 2760 bytes_written = 0; 2761 getrlimit(RLIMIT_CORE, &dumpsize); 2762 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2763 if (errno == ESPIPE) { /* not a seekable stream */ 2764 bytes_left = size; 2765 } else { 2766 return pos; 2767 } 2768 } else { 2769 if (dumpsize.rlim_cur <= pos) { 2770 return -1; 2771 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2772 bytes_left = size; 2773 } else { 2774 size_t limit_left=dumpsize.rlim_cur - pos; 2775 bytes_left = limit_left >= size ? size : limit_left ; 2776 } 2777 } 2778 2779 /* 2780 * In normal conditions, single write(2) should do but 2781 * in case of socket etc. this mechanism is more portable. 2782 */ 2783 do { 2784 bytes_written = write(fd, bufp, bytes_left); 2785 if (bytes_written < 0) { 2786 if (errno == EINTR) 2787 continue; 2788 return (-1); 2789 } else if (bytes_written == 0) { /* eof */ 2790 return (-1); 2791 } 2792 bufp += bytes_written; 2793 bytes_left -= bytes_written; 2794 } while (bytes_left > 0); 2795 2796 return (0); 2797 } 2798 2799 static int write_note(struct memelfnote *men, int fd) 2800 { 2801 struct elf_note en; 2802 2803 en.n_namesz = men->namesz; 2804 en.n_type = men->type; 2805 en.n_descsz = men->datasz; 2806 2807 bswap_note(&en); 2808 2809 if (dump_write(fd, &en, sizeof(en)) != 0) 2810 return (-1); 2811 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2812 return (-1); 2813 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2814 return (-1); 2815 2816 return (0); 2817 } 2818 2819 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2820 { 2821 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2822 TaskState *ts = (TaskState *)cpu->opaque; 2823 struct elf_thread_status *ets; 2824 2825 ets = g_malloc0(sizeof (*ets)); 2826 ets->num_notes = 1; /* only prstatus is dumped */ 2827 fill_prstatus(&ets->prstatus, ts, 0); 2828 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2829 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2830 &ets->prstatus); 2831 2832 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2833 2834 info->notes_size += note_size(&ets->notes[0]); 2835 } 2836 2837 static void init_note_info(struct elf_note_info *info) 2838 { 2839 /* Initialize the elf_note_info structure so that it is at 2840 * least safe to call free_note_info() on it. Must be 2841 * called before calling fill_note_info(). 2842 */ 2843 memset(info, 0, sizeof (*info)); 2844 QTAILQ_INIT(&info->thread_list); 2845 } 2846 2847 static int fill_note_info(struct elf_note_info *info, 2848 long signr, const CPUArchState *env) 2849 { 2850 #define NUMNOTES 3 2851 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2852 TaskState *ts = (TaskState *)cpu->opaque; 2853 int i; 2854 2855 info->notes = g_new0(struct memelfnote, NUMNOTES); 2856 if (info->notes == NULL) 2857 return (-ENOMEM); 2858 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2859 if (info->prstatus == NULL) 2860 return (-ENOMEM); 2861 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2862 if (info->prstatus == NULL) 2863 return (-ENOMEM); 2864 2865 /* 2866 * First fill in status (and registers) of current thread 2867 * including process info & aux vector. 2868 */ 2869 fill_prstatus(info->prstatus, ts, signr); 2870 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2871 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2872 sizeof (*info->prstatus), info->prstatus); 2873 fill_psinfo(info->psinfo, ts); 2874 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2875 sizeof (*info->psinfo), info->psinfo); 2876 fill_auxv_note(&info->notes[2], ts); 2877 info->numnote = 3; 2878 2879 info->notes_size = 0; 2880 for (i = 0; i < info->numnote; i++) 2881 info->notes_size += note_size(&info->notes[i]); 2882 2883 /* read and fill status of all threads */ 2884 cpu_list_lock(); 2885 CPU_FOREACH(cpu) { 2886 if (cpu == thread_cpu) { 2887 continue; 2888 } 2889 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2890 } 2891 cpu_list_unlock(); 2892 2893 return (0); 2894 } 2895 2896 static void free_note_info(struct elf_note_info *info) 2897 { 2898 struct elf_thread_status *ets; 2899 2900 while (!QTAILQ_EMPTY(&info->thread_list)) { 2901 ets = QTAILQ_FIRST(&info->thread_list); 2902 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2903 g_free(ets); 2904 } 2905 2906 g_free(info->prstatus); 2907 g_free(info->psinfo); 2908 g_free(info->notes); 2909 } 2910 2911 static int write_note_info(struct elf_note_info *info, int fd) 2912 { 2913 struct elf_thread_status *ets; 2914 int i, error = 0; 2915 2916 /* write prstatus, psinfo and auxv for current thread */ 2917 for (i = 0; i < info->numnote; i++) 2918 if ((error = write_note(&info->notes[i], fd)) != 0) 2919 return (error); 2920 2921 /* write prstatus for each thread */ 2922 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2923 if ((error = write_note(&ets->notes[0], fd)) != 0) 2924 return (error); 2925 } 2926 2927 return (0); 2928 } 2929 2930 /* 2931 * Write out ELF coredump. 2932 * 2933 * See documentation of ELF object file format in: 2934 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2935 * 2936 * Coredump format in linux is following: 2937 * 2938 * 0 +----------------------+ \ 2939 * | ELF header | ET_CORE | 2940 * +----------------------+ | 2941 * | ELF program headers | |--- headers 2942 * | - NOTE section | | 2943 * | - PT_LOAD sections | | 2944 * +----------------------+ / 2945 * | NOTEs: | 2946 * | - NT_PRSTATUS | 2947 * | - NT_PRSINFO | 2948 * | - NT_AUXV | 2949 * +----------------------+ <-- aligned to target page 2950 * | Process memory dump | 2951 * : : 2952 * . . 2953 * : : 2954 * | | 2955 * +----------------------+ 2956 * 2957 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2958 * NT_PRSINFO -> struct elf_prpsinfo 2959 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2960 * 2961 * Format follows System V format as close as possible. Current 2962 * version limitations are as follows: 2963 * - no floating point registers are dumped 2964 * 2965 * Function returns 0 in case of success, negative errno otherwise. 2966 * 2967 * TODO: make this work also during runtime: it should be 2968 * possible to force coredump from running process and then 2969 * continue processing. For example qemu could set up SIGUSR2 2970 * handler (provided that target process haven't registered 2971 * handler for that) that does the dump when signal is received. 2972 */ 2973 static int elf_core_dump(int signr, const CPUArchState *env) 2974 { 2975 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2976 const TaskState *ts = (const TaskState *)cpu->opaque; 2977 struct vm_area_struct *vma = NULL; 2978 char corefile[PATH_MAX]; 2979 struct elf_note_info info; 2980 struct elfhdr elf; 2981 struct elf_phdr phdr; 2982 struct rlimit dumpsize; 2983 struct mm_struct *mm = NULL; 2984 off_t offset = 0, data_offset = 0; 2985 int segs = 0; 2986 int fd = -1; 2987 2988 init_note_info(&info); 2989 2990 errno = 0; 2991 getrlimit(RLIMIT_CORE, &dumpsize); 2992 if (dumpsize.rlim_cur == 0) 2993 return 0; 2994 2995 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2996 return (-errno); 2997 2998 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2999 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3000 return (-errno); 3001 3002 /* 3003 * Walk through target process memory mappings and 3004 * set up structure containing this information. After 3005 * this point vma_xxx functions can be used. 3006 */ 3007 if ((mm = vma_init()) == NULL) 3008 goto out; 3009 3010 walk_memory_regions(mm, vma_walker); 3011 segs = vma_get_mapping_count(mm); 3012 3013 /* 3014 * Construct valid coredump ELF header. We also 3015 * add one more segment for notes. 3016 */ 3017 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3018 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3019 goto out; 3020 3021 /* fill in the in-memory version of notes */ 3022 if (fill_note_info(&info, signr, env) < 0) 3023 goto out; 3024 3025 offset += sizeof (elf); /* elf header */ 3026 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3027 3028 /* write out notes program header */ 3029 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3030 3031 offset += info.notes_size; 3032 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3033 goto out; 3034 3035 /* 3036 * ELF specification wants data to start at page boundary so 3037 * we align it here. 3038 */ 3039 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3040 3041 /* 3042 * Write program headers for memory regions mapped in 3043 * the target process. 3044 */ 3045 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3046 (void) memset(&phdr, 0, sizeof (phdr)); 3047 3048 phdr.p_type = PT_LOAD; 3049 phdr.p_offset = offset; 3050 phdr.p_vaddr = vma->vma_start; 3051 phdr.p_paddr = 0; 3052 phdr.p_filesz = vma_dump_size(vma); 3053 offset += phdr.p_filesz; 3054 phdr.p_memsz = vma->vma_end - vma->vma_start; 3055 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3056 if (vma->vma_flags & PROT_WRITE) 3057 phdr.p_flags |= PF_W; 3058 if (vma->vma_flags & PROT_EXEC) 3059 phdr.p_flags |= PF_X; 3060 phdr.p_align = ELF_EXEC_PAGESIZE; 3061 3062 bswap_phdr(&phdr, 1); 3063 dump_write(fd, &phdr, sizeof (phdr)); 3064 } 3065 3066 /* 3067 * Next we write notes just after program headers. No 3068 * alignment needed here. 3069 */ 3070 if (write_note_info(&info, fd) < 0) 3071 goto out; 3072 3073 /* align data to page boundary */ 3074 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3075 goto out; 3076 3077 /* 3078 * Finally we can dump process memory into corefile as well. 3079 */ 3080 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3081 abi_ulong addr; 3082 abi_ulong end; 3083 3084 end = vma->vma_start + vma_dump_size(vma); 3085 3086 for (addr = vma->vma_start; addr < end; 3087 addr += TARGET_PAGE_SIZE) { 3088 char page[TARGET_PAGE_SIZE]; 3089 int error; 3090 3091 /* 3092 * Read in page from target process memory and 3093 * write it to coredump file. 3094 */ 3095 error = copy_from_user(page, addr, sizeof (page)); 3096 if (error != 0) { 3097 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3098 addr); 3099 errno = -error; 3100 goto out; 3101 } 3102 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3103 goto out; 3104 } 3105 } 3106 3107 out: 3108 free_note_info(&info); 3109 if (mm != NULL) 3110 vma_delete(mm); 3111 (void) close(fd); 3112 3113 if (errno != 0) 3114 return (-errno); 3115 return (0); 3116 } 3117 #endif /* USE_ELF_CORE_DUMP */ 3118 3119 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3120 { 3121 init_thread(regs, infop); 3122 } 3123