xref: /openbmc/qemu/linux-user/elfload.c (revision ac12b601)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/bitops.h"
11 #include "qemu/path.h"
12 #include "qemu/queue.h"
13 #include "qemu/guest-random.h"
14 #include "qemu/units.h"
15 #include "qemu/selfmap.h"
16 #include "qapi/error.h"
17 
18 #ifdef _ARCH_PPC64
19 #undef ARCH_DLINFO
20 #undef ELF_PLATFORM
21 #undef ELF_HWCAP
22 #undef ELF_HWCAP2
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
27 
28 #define ELF_OSABI   ELFOSABI_SYSV
29 
30 /* from personality.h */
31 
32 /*
33  * Flags for bug emulation.
34  *
35  * These occupy the top three bytes.
36  */
37 enum {
38     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
39     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
40                                            descriptors (signal handling) */
41     MMAP_PAGE_ZERO =    0x0100000,
42     ADDR_COMPAT_LAYOUT = 0x0200000,
43     READ_IMPLIES_EXEC = 0x0400000,
44     ADDR_LIMIT_32BIT =  0x0800000,
45     SHORT_INODE =       0x1000000,
46     WHOLE_SECONDS =     0x2000000,
47     STICKY_TIMEOUTS =   0x4000000,
48     ADDR_LIMIT_3GB =    0x8000000,
49 };
50 
51 /*
52  * Personality types.
53  *
54  * These go in the low byte.  Avoid using the top bit, it will
55  * conflict with error returns.
56  */
57 enum {
58     PER_LINUX =         0x0000,
59     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
60     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
61     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
67     PER_BSD =           0x0006,
68     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
69     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70     PER_LINUX32 =       0x0008,
71     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
72     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75     PER_RISCOS =        0x000c,
76     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
77     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
79     PER_HPUX =          0x0010,
80     PER_MASK =          0x00ff,
81 };
82 
83 /*
84  * Return the base personality without flags.
85  */
86 #define personality(pers)       (pers & PER_MASK)
87 
88 int info_is_fdpic(struct image_info *info)
89 {
90     return info->personality == PER_LINUX_FDPIC;
91 }
92 
93 /* this flag is uneffective under linux too, should be deleted */
94 #ifndef MAP_DENYWRITE
95 #define MAP_DENYWRITE 0
96 #endif
97 
98 /* should probably go in elf.h */
99 #ifndef ELIBBAD
100 #define ELIBBAD 80
101 #endif
102 
103 #ifdef TARGET_WORDS_BIGENDIAN
104 #define ELF_DATA        ELFDATA2MSB
105 #else
106 #define ELF_DATA        ELFDATA2LSB
107 #endif
108 
109 #ifdef TARGET_ABI_MIPSN32
110 typedef abi_ullong      target_elf_greg_t;
111 #define tswapreg(ptr)   tswap64(ptr)
112 #else
113 typedef abi_ulong       target_elf_greg_t;
114 #define tswapreg(ptr)   tswapal(ptr)
115 #endif
116 
117 #ifdef USE_UID16
118 typedef abi_ushort      target_uid_t;
119 typedef abi_ushort      target_gid_t;
120 #else
121 typedef abi_uint        target_uid_t;
122 typedef abi_uint        target_gid_t;
123 #endif
124 typedef abi_int         target_pid_t;
125 
126 #ifdef TARGET_I386
127 
128 #define ELF_PLATFORM get_elf_platform()
129 
130 static const char *get_elf_platform(void)
131 {
132     static char elf_platform[] = "i386";
133     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
134     if (family > 6)
135         family = 6;
136     if (family >= 3)
137         elf_platform[1] = '0' + family;
138     return elf_platform;
139 }
140 
141 #define ELF_HWCAP get_elf_hwcap()
142 
143 static uint32_t get_elf_hwcap(void)
144 {
145     X86CPU *cpu = X86_CPU(thread_cpu);
146 
147     return cpu->env.features[FEAT_1_EDX];
148 }
149 
150 #ifdef TARGET_X86_64
151 #define ELF_START_MMAP 0x2aaaaab000ULL
152 
153 #define ELF_CLASS      ELFCLASS64
154 #define ELF_ARCH       EM_X86_64
155 
156 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
157 {
158     regs->rax = 0;
159     regs->rsp = infop->start_stack;
160     regs->rip = infop->entry;
161 }
162 
163 #define ELF_NREG    27
164 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
165 
166 /*
167  * Note that ELF_NREG should be 29 as there should be place for
168  * TRAPNO and ERR "registers" as well but linux doesn't dump
169  * those.
170  *
171  * See linux kernel: arch/x86/include/asm/elf.h
172  */
173 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
174 {
175     (*regs)[0] = env->regs[15];
176     (*regs)[1] = env->regs[14];
177     (*regs)[2] = env->regs[13];
178     (*regs)[3] = env->regs[12];
179     (*regs)[4] = env->regs[R_EBP];
180     (*regs)[5] = env->regs[R_EBX];
181     (*regs)[6] = env->regs[11];
182     (*regs)[7] = env->regs[10];
183     (*regs)[8] = env->regs[9];
184     (*regs)[9] = env->regs[8];
185     (*regs)[10] = env->regs[R_EAX];
186     (*regs)[11] = env->regs[R_ECX];
187     (*regs)[12] = env->regs[R_EDX];
188     (*regs)[13] = env->regs[R_ESI];
189     (*regs)[14] = env->regs[R_EDI];
190     (*regs)[15] = env->regs[R_EAX]; /* XXX */
191     (*regs)[16] = env->eip;
192     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
193     (*regs)[18] = env->eflags;
194     (*regs)[19] = env->regs[R_ESP];
195     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
196     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
197     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
198     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
199     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
200     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
201     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
202 }
203 
204 #else
205 
206 #define ELF_START_MMAP 0x80000000
207 
208 /*
209  * This is used to ensure we don't load something for the wrong architecture.
210  */
211 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
212 
213 /*
214  * These are used to set parameters in the core dumps.
215  */
216 #define ELF_CLASS       ELFCLASS32
217 #define ELF_ARCH        EM_386
218 
219 static inline void init_thread(struct target_pt_regs *regs,
220                                struct image_info *infop)
221 {
222     regs->esp = infop->start_stack;
223     regs->eip = infop->entry;
224 
225     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
226        starts %edx contains a pointer to a function which might be
227        registered using `atexit'.  This provides a mean for the
228        dynamic linker to call DT_FINI functions for shared libraries
229        that have been loaded before the code runs.
230 
231        A value of 0 tells we have no such handler.  */
232     regs->edx = 0;
233 }
234 
235 #define ELF_NREG    17
236 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
237 
238 /*
239  * Note that ELF_NREG should be 19 as there should be place for
240  * TRAPNO and ERR "registers" as well but linux doesn't dump
241  * those.
242  *
243  * See linux kernel: arch/x86/include/asm/elf.h
244  */
245 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
246 {
247     (*regs)[0] = env->regs[R_EBX];
248     (*regs)[1] = env->regs[R_ECX];
249     (*regs)[2] = env->regs[R_EDX];
250     (*regs)[3] = env->regs[R_ESI];
251     (*regs)[4] = env->regs[R_EDI];
252     (*regs)[5] = env->regs[R_EBP];
253     (*regs)[6] = env->regs[R_EAX];
254     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
255     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
256     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
257     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
258     (*regs)[11] = env->regs[R_EAX]; /* XXX */
259     (*regs)[12] = env->eip;
260     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
261     (*regs)[14] = env->eflags;
262     (*regs)[15] = env->regs[R_ESP];
263     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
264 }
265 #endif
266 
267 #define USE_ELF_CORE_DUMP
268 #define ELF_EXEC_PAGESIZE       4096
269 
270 #endif
271 
272 #ifdef TARGET_ARM
273 
274 #ifndef TARGET_AARCH64
275 /* 32 bit ARM definitions */
276 
277 #define ELF_START_MMAP 0x80000000
278 
279 #define ELF_ARCH        EM_ARM
280 #define ELF_CLASS       ELFCLASS32
281 
282 static inline void init_thread(struct target_pt_regs *regs,
283                                struct image_info *infop)
284 {
285     abi_long stack = infop->start_stack;
286     memset(regs, 0, sizeof(*regs));
287 
288     regs->uregs[16] = ARM_CPU_MODE_USR;
289     if (infop->entry & 1) {
290         regs->uregs[16] |= CPSR_T;
291     }
292     regs->uregs[15] = infop->entry & 0xfffffffe;
293     regs->uregs[13] = infop->start_stack;
294     /* FIXME - what to for failure of get_user()? */
295     get_user_ual(regs->uregs[2], stack + 8); /* envp */
296     get_user_ual(regs->uregs[1], stack + 4); /* envp */
297     /* XXX: it seems that r0 is zeroed after ! */
298     regs->uregs[0] = 0;
299     /* For uClinux PIC binaries.  */
300     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
301     regs->uregs[10] = infop->start_data;
302 
303     /* Support ARM FDPIC.  */
304     if (info_is_fdpic(infop)) {
305         /* As described in the ABI document, r7 points to the loadmap info
306          * prepared by the kernel. If an interpreter is needed, r8 points
307          * to the interpreter loadmap and r9 points to the interpreter
308          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
309          * r9 points to the main program PT_DYNAMIC info.
310          */
311         regs->uregs[7] = infop->loadmap_addr;
312         if (infop->interpreter_loadmap_addr) {
313             /* Executable is dynamically loaded.  */
314             regs->uregs[8] = infop->interpreter_loadmap_addr;
315             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
316         } else {
317             regs->uregs[8] = 0;
318             regs->uregs[9] = infop->pt_dynamic_addr;
319         }
320     }
321 }
322 
323 #define ELF_NREG    18
324 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
325 
326 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
327 {
328     (*regs)[0] = tswapreg(env->regs[0]);
329     (*regs)[1] = tswapreg(env->regs[1]);
330     (*regs)[2] = tswapreg(env->regs[2]);
331     (*regs)[3] = tswapreg(env->regs[3]);
332     (*regs)[4] = tswapreg(env->regs[4]);
333     (*regs)[5] = tswapreg(env->regs[5]);
334     (*regs)[6] = tswapreg(env->regs[6]);
335     (*regs)[7] = tswapreg(env->regs[7]);
336     (*regs)[8] = tswapreg(env->regs[8]);
337     (*regs)[9] = tswapreg(env->regs[9]);
338     (*regs)[10] = tswapreg(env->regs[10]);
339     (*regs)[11] = tswapreg(env->regs[11]);
340     (*regs)[12] = tswapreg(env->regs[12]);
341     (*regs)[13] = tswapreg(env->regs[13]);
342     (*regs)[14] = tswapreg(env->regs[14]);
343     (*regs)[15] = tswapreg(env->regs[15]);
344 
345     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
346     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
347 }
348 
349 #define USE_ELF_CORE_DUMP
350 #define ELF_EXEC_PAGESIZE       4096
351 
352 enum
353 {
354     ARM_HWCAP_ARM_SWP       = 1 << 0,
355     ARM_HWCAP_ARM_HALF      = 1 << 1,
356     ARM_HWCAP_ARM_THUMB     = 1 << 2,
357     ARM_HWCAP_ARM_26BIT     = 1 << 3,
358     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
359     ARM_HWCAP_ARM_FPA       = 1 << 5,
360     ARM_HWCAP_ARM_VFP       = 1 << 6,
361     ARM_HWCAP_ARM_EDSP      = 1 << 7,
362     ARM_HWCAP_ARM_JAVA      = 1 << 8,
363     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
364     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
365     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
366     ARM_HWCAP_ARM_NEON      = 1 << 12,
367     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
368     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
369     ARM_HWCAP_ARM_TLS       = 1 << 15,
370     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
371     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
372     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
373     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
374     ARM_HWCAP_ARM_LPAE      = 1 << 20,
375     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
376 };
377 
378 enum {
379     ARM_HWCAP2_ARM_AES      = 1 << 0,
380     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
381     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
382     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
383     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
384 };
385 
386 /* The commpage only exists for 32 bit kernels */
387 
388 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
389 
390 static bool init_guest_commpage(void)
391 {
392     void *want = g2h_untagged(ARM_COMMPAGE & -qemu_host_page_size);
393     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
394                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
395 
396     if (addr == MAP_FAILED) {
397         perror("Allocating guest commpage");
398         exit(EXIT_FAILURE);
399     }
400     if (addr != want) {
401         return false;
402     }
403 
404     /* Set kernel helper versions; rest of page is 0.  */
405     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
406 
407     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
408         perror("Protecting guest commpage");
409         exit(EXIT_FAILURE);
410     }
411     return true;
412 }
413 
414 #define ELF_HWCAP get_elf_hwcap()
415 #define ELF_HWCAP2 get_elf_hwcap2()
416 
417 static uint32_t get_elf_hwcap(void)
418 {
419     ARMCPU *cpu = ARM_CPU(thread_cpu);
420     uint32_t hwcaps = 0;
421 
422     hwcaps |= ARM_HWCAP_ARM_SWP;
423     hwcaps |= ARM_HWCAP_ARM_HALF;
424     hwcaps |= ARM_HWCAP_ARM_THUMB;
425     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
426 
427     /* probe for the extra features */
428 #define GET_FEATURE(feat, hwcap) \
429     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
430 
431 #define GET_FEATURE_ID(feat, hwcap) \
432     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
433 
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
440     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
441     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
442     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
443     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
444 
445     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
446         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
447         hwcaps |= ARM_HWCAP_ARM_VFPv3;
448         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
449             hwcaps |= ARM_HWCAP_ARM_VFPD32;
450         } else {
451             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
452         }
453     }
454     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
455 
456     return hwcaps;
457 }
458 
459 static uint32_t get_elf_hwcap2(void)
460 {
461     ARMCPU *cpu = ARM_CPU(thread_cpu);
462     uint32_t hwcaps = 0;
463 
464     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
465     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
466     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
467     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
468     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
469     return hwcaps;
470 }
471 
472 #undef GET_FEATURE
473 #undef GET_FEATURE_ID
474 
475 #define ELF_PLATFORM get_elf_platform()
476 
477 static const char *get_elf_platform(void)
478 {
479     CPUARMState *env = thread_cpu->env_ptr;
480 
481 #ifdef TARGET_WORDS_BIGENDIAN
482 # define END  "b"
483 #else
484 # define END  "l"
485 #endif
486 
487     if (arm_feature(env, ARM_FEATURE_V8)) {
488         return "v8" END;
489     } else if (arm_feature(env, ARM_FEATURE_V7)) {
490         if (arm_feature(env, ARM_FEATURE_M)) {
491             return "v7m" END;
492         } else {
493             return "v7" END;
494         }
495     } else if (arm_feature(env, ARM_FEATURE_V6)) {
496         return "v6" END;
497     } else if (arm_feature(env, ARM_FEATURE_V5)) {
498         return "v5" END;
499     } else {
500         return "v4" END;
501     }
502 
503 #undef END
504 }
505 
506 #else
507 /* 64 bit ARM definitions */
508 #define ELF_START_MMAP 0x80000000
509 
510 #define ELF_ARCH        EM_AARCH64
511 #define ELF_CLASS       ELFCLASS64
512 #ifdef TARGET_WORDS_BIGENDIAN
513 # define ELF_PLATFORM    "aarch64_be"
514 #else
515 # define ELF_PLATFORM    "aarch64"
516 #endif
517 
518 static inline void init_thread(struct target_pt_regs *regs,
519                                struct image_info *infop)
520 {
521     abi_long stack = infop->start_stack;
522     memset(regs, 0, sizeof(*regs));
523 
524     regs->pc = infop->entry & ~0x3ULL;
525     regs->sp = stack;
526 }
527 
528 #define ELF_NREG    34
529 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
530 
531 static void elf_core_copy_regs(target_elf_gregset_t *regs,
532                                const CPUARMState *env)
533 {
534     int i;
535 
536     for (i = 0; i < 32; i++) {
537         (*regs)[i] = tswapreg(env->xregs[i]);
538     }
539     (*regs)[32] = tswapreg(env->pc);
540     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
541 }
542 
543 #define USE_ELF_CORE_DUMP
544 #define ELF_EXEC_PAGESIZE       4096
545 
546 enum {
547     ARM_HWCAP_A64_FP            = 1 << 0,
548     ARM_HWCAP_A64_ASIMD         = 1 << 1,
549     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
550     ARM_HWCAP_A64_AES           = 1 << 3,
551     ARM_HWCAP_A64_PMULL         = 1 << 4,
552     ARM_HWCAP_A64_SHA1          = 1 << 5,
553     ARM_HWCAP_A64_SHA2          = 1 << 6,
554     ARM_HWCAP_A64_CRC32         = 1 << 7,
555     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
556     ARM_HWCAP_A64_FPHP          = 1 << 9,
557     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
558     ARM_HWCAP_A64_CPUID         = 1 << 11,
559     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
560     ARM_HWCAP_A64_JSCVT         = 1 << 13,
561     ARM_HWCAP_A64_FCMA          = 1 << 14,
562     ARM_HWCAP_A64_LRCPC         = 1 << 15,
563     ARM_HWCAP_A64_DCPOP         = 1 << 16,
564     ARM_HWCAP_A64_SHA3          = 1 << 17,
565     ARM_HWCAP_A64_SM3           = 1 << 18,
566     ARM_HWCAP_A64_SM4           = 1 << 19,
567     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
568     ARM_HWCAP_A64_SHA512        = 1 << 21,
569     ARM_HWCAP_A64_SVE           = 1 << 22,
570     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
571     ARM_HWCAP_A64_DIT           = 1 << 24,
572     ARM_HWCAP_A64_USCAT         = 1 << 25,
573     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
574     ARM_HWCAP_A64_FLAGM         = 1 << 27,
575     ARM_HWCAP_A64_SSBS          = 1 << 28,
576     ARM_HWCAP_A64_SB            = 1 << 29,
577     ARM_HWCAP_A64_PACA          = 1 << 30,
578     ARM_HWCAP_A64_PACG          = 1UL << 31,
579 
580     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
581     ARM_HWCAP2_A64_SVE2         = 1 << 1,
582     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
583     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
584     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
585     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
586     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
587     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
588     ARM_HWCAP2_A64_FRINT        = 1 << 8,
589     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
590     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
591     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
592     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
593     ARM_HWCAP2_A64_I8MM         = 1 << 13,
594     ARM_HWCAP2_A64_BF16         = 1 << 14,
595     ARM_HWCAP2_A64_DGH          = 1 << 15,
596     ARM_HWCAP2_A64_RNG          = 1 << 16,
597     ARM_HWCAP2_A64_BTI          = 1 << 17,
598     ARM_HWCAP2_A64_MTE          = 1 << 18,
599 };
600 
601 #define ELF_HWCAP   get_elf_hwcap()
602 #define ELF_HWCAP2  get_elf_hwcap2()
603 
604 #define GET_FEATURE_ID(feat, hwcap) \
605     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
606 
607 static uint32_t get_elf_hwcap(void)
608 {
609     ARMCPU *cpu = ARM_CPU(thread_cpu);
610     uint32_t hwcaps = 0;
611 
612     hwcaps |= ARM_HWCAP_A64_FP;
613     hwcaps |= ARM_HWCAP_A64_ASIMD;
614     hwcaps |= ARM_HWCAP_A64_CPUID;
615 
616     /* probe for the extra features */
617 
618     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
619     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
620     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
621     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
622     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
623     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
624     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
625     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
626     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
627     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
628     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
629     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
630     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
631     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
632     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
633     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
634     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
635     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
636     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
637     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
638     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
639     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
640     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
641 
642     return hwcaps;
643 }
644 
645 static uint32_t get_elf_hwcap2(void)
646 {
647     ARMCPU *cpu = ARM_CPU(thread_cpu);
648     uint32_t hwcaps = 0;
649 
650     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
651     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
652     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
653     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
654     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
655     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
656 
657     return hwcaps;
658 }
659 
660 #undef GET_FEATURE_ID
661 
662 #endif /* not TARGET_AARCH64 */
663 #endif /* TARGET_ARM */
664 
665 #ifdef TARGET_SPARC
666 #ifdef TARGET_SPARC64
667 
668 #define ELF_START_MMAP 0x80000000
669 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
670                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
671 #ifndef TARGET_ABI32
672 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
673 #else
674 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
675 #endif
676 
677 #define ELF_CLASS   ELFCLASS64
678 #define ELF_ARCH    EM_SPARCV9
679 
680 #define STACK_BIAS              2047
681 
682 static inline void init_thread(struct target_pt_regs *regs,
683                                struct image_info *infop)
684 {
685 #ifndef TARGET_ABI32
686     regs->tstate = 0;
687 #endif
688     regs->pc = infop->entry;
689     regs->npc = regs->pc + 4;
690     regs->y = 0;
691 #ifdef TARGET_ABI32
692     regs->u_regs[14] = infop->start_stack - 16 * 4;
693 #else
694     if (personality(infop->personality) == PER_LINUX32)
695         regs->u_regs[14] = infop->start_stack - 16 * 4;
696     else
697         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
698 #endif
699 }
700 
701 #else
702 #define ELF_START_MMAP 0x80000000
703 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
704                     | HWCAP_SPARC_MULDIV)
705 
706 #define ELF_CLASS   ELFCLASS32
707 #define ELF_ARCH    EM_SPARC
708 
709 static inline void init_thread(struct target_pt_regs *regs,
710                                struct image_info *infop)
711 {
712     regs->psr = 0;
713     regs->pc = infop->entry;
714     regs->npc = regs->pc + 4;
715     regs->y = 0;
716     regs->u_regs[14] = infop->start_stack - 16 * 4;
717 }
718 
719 #endif
720 #endif
721 
722 #ifdef TARGET_PPC
723 
724 #define ELF_MACHINE    PPC_ELF_MACHINE
725 #define ELF_START_MMAP 0x80000000
726 
727 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
728 
729 #define elf_check_arch(x) ( (x) == EM_PPC64 )
730 
731 #define ELF_CLASS       ELFCLASS64
732 
733 #else
734 
735 #define ELF_CLASS       ELFCLASS32
736 
737 #endif
738 
739 #define ELF_ARCH        EM_PPC
740 
741 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
742    See arch/powerpc/include/asm/cputable.h.  */
743 enum {
744     QEMU_PPC_FEATURE_32 = 0x80000000,
745     QEMU_PPC_FEATURE_64 = 0x40000000,
746     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
747     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
748     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
749     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
750     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
751     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
752     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
753     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
754     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
755     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
756     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
757     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
758     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
759     QEMU_PPC_FEATURE_CELL = 0x00010000,
760     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
761     QEMU_PPC_FEATURE_SMT = 0x00004000,
762     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
763     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
764     QEMU_PPC_FEATURE_PA6T = 0x00000800,
765     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
766     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
767     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
768     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
769     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
770 
771     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
772     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
773 
774     /* Feature definitions in AT_HWCAP2.  */
775     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
776     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
777     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
778     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
779     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
780     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
781     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
782     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
783     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
784     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
785     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
786     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
787     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
788 };
789 
790 #define ELF_HWCAP get_elf_hwcap()
791 
792 static uint32_t get_elf_hwcap(void)
793 {
794     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
795     uint32_t features = 0;
796 
797     /* We don't have to be terribly complete here; the high points are
798        Altivec/FP/SPE support.  Anything else is just a bonus.  */
799 #define GET_FEATURE(flag, feature)                                      \
800     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
801 #define GET_FEATURE2(flags, feature) \
802     do { \
803         if ((cpu->env.insns_flags2 & flags) == flags) { \
804             features |= feature; \
805         } \
806     } while (0)
807     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
808     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
809     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
810     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
811     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
812     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
813     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
814     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
815     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
816     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
817     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
818                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
819                   QEMU_PPC_FEATURE_ARCH_2_06);
820 #undef GET_FEATURE
821 #undef GET_FEATURE2
822 
823     return features;
824 }
825 
826 #define ELF_HWCAP2 get_elf_hwcap2()
827 
828 static uint32_t get_elf_hwcap2(void)
829 {
830     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
831     uint32_t features = 0;
832 
833 #define GET_FEATURE(flag, feature)                                      \
834     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
835 #define GET_FEATURE2(flag, feature)                                      \
836     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
837 
838     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
839     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
840     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
841                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
842                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
843     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
844                  QEMU_PPC_FEATURE2_DARN);
845 
846 #undef GET_FEATURE
847 #undef GET_FEATURE2
848 
849     return features;
850 }
851 
852 /*
853  * The requirements here are:
854  * - keep the final alignment of sp (sp & 0xf)
855  * - make sure the 32-bit value at the first 16 byte aligned position of
856  *   AUXV is greater than 16 for glibc compatibility.
857  *   AT_IGNOREPPC is used for that.
858  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
859  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
860  */
861 #define DLINFO_ARCH_ITEMS       5
862 #define ARCH_DLINFO                                     \
863     do {                                                \
864         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
865         /*                                              \
866          * Handle glibc compatibility: these magic entries must \
867          * be at the lowest addresses in the final auxv.        \
868          */                                             \
869         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
870         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
871         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
872         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
873         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
874     } while (0)
875 
876 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
877 {
878     _regs->gpr[1] = infop->start_stack;
879 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
880     if (get_ppc64_abi(infop) < 2) {
881         uint64_t val;
882         get_user_u64(val, infop->entry + 8);
883         _regs->gpr[2] = val + infop->load_bias;
884         get_user_u64(val, infop->entry);
885         infop->entry = val + infop->load_bias;
886     } else {
887         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
888     }
889 #endif
890     _regs->nip = infop->entry;
891 }
892 
893 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
894 #define ELF_NREG 48
895 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
896 
897 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
898 {
899     int i;
900     target_ulong ccr = 0;
901 
902     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
903         (*regs)[i] = tswapreg(env->gpr[i]);
904     }
905 
906     (*regs)[32] = tswapreg(env->nip);
907     (*regs)[33] = tswapreg(env->msr);
908     (*regs)[35] = tswapreg(env->ctr);
909     (*regs)[36] = tswapreg(env->lr);
910     (*regs)[37] = tswapreg(env->xer);
911 
912     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
913         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
914     }
915     (*regs)[38] = tswapreg(ccr);
916 }
917 
918 #define USE_ELF_CORE_DUMP
919 #define ELF_EXEC_PAGESIZE       4096
920 
921 #endif
922 
923 #ifdef TARGET_MIPS
924 
925 #define ELF_START_MMAP 0x80000000
926 
927 #ifdef TARGET_MIPS64
928 #define ELF_CLASS   ELFCLASS64
929 #else
930 #define ELF_CLASS   ELFCLASS32
931 #endif
932 #define ELF_ARCH    EM_MIPS
933 
934 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
935 
936 #ifdef TARGET_ABI_MIPSN32
937 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
938 #else
939 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
940 #endif
941 
942 static inline void init_thread(struct target_pt_regs *regs,
943                                struct image_info *infop)
944 {
945     regs->cp0_status = 2 << CP0St_KSU;
946     regs->cp0_epc = infop->entry;
947     regs->regs[29] = infop->start_stack;
948 }
949 
950 /* See linux kernel: arch/mips/include/asm/elf.h.  */
951 #define ELF_NREG 45
952 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
953 
954 /* See linux kernel: arch/mips/include/asm/reg.h.  */
955 enum {
956 #ifdef TARGET_MIPS64
957     TARGET_EF_R0 = 0,
958 #else
959     TARGET_EF_R0 = 6,
960 #endif
961     TARGET_EF_R26 = TARGET_EF_R0 + 26,
962     TARGET_EF_R27 = TARGET_EF_R0 + 27,
963     TARGET_EF_LO = TARGET_EF_R0 + 32,
964     TARGET_EF_HI = TARGET_EF_R0 + 33,
965     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
966     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
967     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
968     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
969 };
970 
971 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
972 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
973 {
974     int i;
975 
976     for (i = 0; i < TARGET_EF_R0; i++) {
977         (*regs)[i] = 0;
978     }
979     (*regs)[TARGET_EF_R0] = 0;
980 
981     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
982         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
983     }
984 
985     (*regs)[TARGET_EF_R26] = 0;
986     (*regs)[TARGET_EF_R27] = 0;
987     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
988     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
989     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
990     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
991     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
992     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
993 }
994 
995 #define USE_ELF_CORE_DUMP
996 #define ELF_EXEC_PAGESIZE        4096
997 
998 /* See arch/mips/include/uapi/asm/hwcap.h.  */
999 enum {
1000     HWCAP_MIPS_R6           = (1 << 0),
1001     HWCAP_MIPS_MSA          = (1 << 1),
1002     HWCAP_MIPS_CRC32        = (1 << 2),
1003     HWCAP_MIPS_MIPS16       = (1 << 3),
1004     HWCAP_MIPS_MDMX         = (1 << 4),
1005     HWCAP_MIPS_MIPS3D       = (1 << 5),
1006     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1007     HWCAP_MIPS_DSP          = (1 << 7),
1008     HWCAP_MIPS_DSP2         = (1 << 8),
1009     HWCAP_MIPS_DSP3         = (1 << 9),
1010     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1011     HWCAP_LOONGSON_MMI      = (1 << 11),
1012     HWCAP_LOONGSON_EXT      = (1 << 12),
1013     HWCAP_LOONGSON_EXT2     = (1 << 13),
1014     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1015 };
1016 
1017 #define ELF_HWCAP get_elf_hwcap()
1018 
1019 #define GET_FEATURE_INSN(_flag, _hwcap) \
1020     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1021 
1022 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1023     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1024 
1025 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1026     do { \
1027         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1028             hwcaps |= _hwcap; \
1029         } \
1030     } while (0)
1031 
1032 static uint32_t get_elf_hwcap(void)
1033 {
1034     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1035     uint32_t hwcaps = 0;
1036 
1037     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1038                         2, HWCAP_MIPS_R6);
1039     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1040     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1041     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1042 
1043     return hwcaps;
1044 }
1045 
1046 #undef GET_FEATURE_REG_EQU
1047 #undef GET_FEATURE_REG_SET
1048 #undef GET_FEATURE_INSN
1049 
1050 #endif /* TARGET_MIPS */
1051 
1052 #ifdef TARGET_MICROBLAZE
1053 
1054 #define ELF_START_MMAP 0x80000000
1055 
1056 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1057 
1058 #define ELF_CLASS   ELFCLASS32
1059 #define ELF_ARCH    EM_MICROBLAZE
1060 
1061 static inline void init_thread(struct target_pt_regs *regs,
1062                                struct image_info *infop)
1063 {
1064     regs->pc = infop->entry;
1065     regs->r1 = infop->start_stack;
1066 
1067 }
1068 
1069 #define ELF_EXEC_PAGESIZE        4096
1070 
1071 #define USE_ELF_CORE_DUMP
1072 #define ELF_NREG 38
1073 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1074 
1075 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1076 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1077 {
1078     int i, pos = 0;
1079 
1080     for (i = 0; i < 32; i++) {
1081         (*regs)[pos++] = tswapreg(env->regs[i]);
1082     }
1083 
1084     (*regs)[pos++] = tswapreg(env->pc);
1085     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1086     (*regs)[pos++] = 0;
1087     (*regs)[pos++] = tswapreg(env->ear);
1088     (*regs)[pos++] = 0;
1089     (*regs)[pos++] = tswapreg(env->esr);
1090 }
1091 
1092 #endif /* TARGET_MICROBLAZE */
1093 
1094 #ifdef TARGET_NIOS2
1095 
1096 #define ELF_START_MMAP 0x80000000
1097 
1098 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1099 
1100 #define ELF_CLASS   ELFCLASS32
1101 #define ELF_ARCH    EM_ALTERA_NIOS2
1102 
1103 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1104 {
1105     regs->ea = infop->entry;
1106     regs->sp = infop->start_stack;
1107     regs->estatus = 0x3;
1108 }
1109 
1110 #define ELF_EXEC_PAGESIZE        4096
1111 
1112 #define USE_ELF_CORE_DUMP
1113 #define ELF_NREG 49
1114 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1115 
1116 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1117 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1118                                const CPUNios2State *env)
1119 {
1120     int i;
1121 
1122     (*regs)[0] = -1;
1123     for (i = 1; i < 8; i++)    /* r0-r7 */
1124         (*regs)[i] = tswapreg(env->regs[i + 7]);
1125 
1126     for (i = 8; i < 16; i++)   /* r8-r15 */
1127         (*regs)[i] = tswapreg(env->regs[i - 8]);
1128 
1129     for (i = 16; i < 24; i++)  /* r16-r23 */
1130         (*regs)[i] = tswapreg(env->regs[i + 7]);
1131     (*regs)[24] = -1;    /* R_ET */
1132     (*regs)[25] = -1;    /* R_BT */
1133     (*regs)[26] = tswapreg(env->regs[R_GP]);
1134     (*regs)[27] = tswapreg(env->regs[R_SP]);
1135     (*regs)[28] = tswapreg(env->regs[R_FP]);
1136     (*regs)[29] = tswapreg(env->regs[R_EA]);
1137     (*regs)[30] = -1;    /* R_SSTATUS */
1138     (*regs)[31] = tswapreg(env->regs[R_RA]);
1139 
1140     (*regs)[32] = tswapreg(env->regs[R_PC]);
1141 
1142     (*regs)[33] = -1; /* R_STATUS */
1143     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1144 
1145     for (i = 35; i < 49; i++)    /* ... */
1146         (*regs)[i] = -1;
1147 }
1148 
1149 #endif /* TARGET_NIOS2 */
1150 
1151 #ifdef TARGET_OPENRISC
1152 
1153 #define ELF_START_MMAP 0x08000000
1154 
1155 #define ELF_ARCH EM_OPENRISC
1156 #define ELF_CLASS ELFCLASS32
1157 #define ELF_DATA  ELFDATA2MSB
1158 
1159 static inline void init_thread(struct target_pt_regs *regs,
1160                                struct image_info *infop)
1161 {
1162     regs->pc = infop->entry;
1163     regs->gpr[1] = infop->start_stack;
1164 }
1165 
1166 #define USE_ELF_CORE_DUMP
1167 #define ELF_EXEC_PAGESIZE 8192
1168 
1169 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1170 #define ELF_NREG 34 /* gprs and pc, sr */
1171 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1172 
1173 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1174                                const CPUOpenRISCState *env)
1175 {
1176     int i;
1177 
1178     for (i = 0; i < 32; i++) {
1179         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1180     }
1181     (*regs)[32] = tswapreg(env->pc);
1182     (*regs)[33] = tswapreg(cpu_get_sr(env));
1183 }
1184 #define ELF_HWCAP 0
1185 #define ELF_PLATFORM NULL
1186 
1187 #endif /* TARGET_OPENRISC */
1188 
1189 #ifdef TARGET_SH4
1190 
1191 #define ELF_START_MMAP 0x80000000
1192 
1193 #define ELF_CLASS ELFCLASS32
1194 #define ELF_ARCH  EM_SH
1195 
1196 static inline void init_thread(struct target_pt_regs *regs,
1197                                struct image_info *infop)
1198 {
1199     /* Check other registers XXXXX */
1200     regs->pc = infop->entry;
1201     regs->regs[15] = infop->start_stack;
1202 }
1203 
1204 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1205 #define ELF_NREG 23
1206 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1207 
1208 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1209 enum {
1210     TARGET_REG_PC = 16,
1211     TARGET_REG_PR = 17,
1212     TARGET_REG_SR = 18,
1213     TARGET_REG_GBR = 19,
1214     TARGET_REG_MACH = 20,
1215     TARGET_REG_MACL = 21,
1216     TARGET_REG_SYSCALL = 22
1217 };
1218 
1219 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1220                                       const CPUSH4State *env)
1221 {
1222     int i;
1223 
1224     for (i = 0; i < 16; i++) {
1225         (*regs)[i] = tswapreg(env->gregs[i]);
1226     }
1227 
1228     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1229     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1230     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1231     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1232     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1233     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1234     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1235 }
1236 
1237 #define USE_ELF_CORE_DUMP
1238 #define ELF_EXEC_PAGESIZE        4096
1239 
1240 enum {
1241     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1242     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1243     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1244     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1245     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1246     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1247     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1248     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1249     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1250     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1251 };
1252 
1253 #define ELF_HWCAP get_elf_hwcap()
1254 
1255 static uint32_t get_elf_hwcap(void)
1256 {
1257     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1258     uint32_t hwcap = 0;
1259 
1260     hwcap |= SH_CPU_HAS_FPU;
1261 
1262     if (cpu->env.features & SH_FEATURE_SH4A) {
1263         hwcap |= SH_CPU_HAS_LLSC;
1264     }
1265 
1266     return hwcap;
1267 }
1268 
1269 #endif
1270 
1271 #ifdef TARGET_CRIS
1272 
1273 #define ELF_START_MMAP 0x80000000
1274 
1275 #define ELF_CLASS ELFCLASS32
1276 #define ELF_ARCH  EM_CRIS
1277 
1278 static inline void init_thread(struct target_pt_regs *regs,
1279                                struct image_info *infop)
1280 {
1281     regs->erp = infop->entry;
1282 }
1283 
1284 #define ELF_EXEC_PAGESIZE        8192
1285 
1286 #endif
1287 
1288 #ifdef TARGET_M68K
1289 
1290 #define ELF_START_MMAP 0x80000000
1291 
1292 #define ELF_CLASS       ELFCLASS32
1293 #define ELF_ARCH        EM_68K
1294 
1295 /* ??? Does this need to do anything?
1296    #define ELF_PLAT_INIT(_r) */
1297 
1298 static inline void init_thread(struct target_pt_regs *regs,
1299                                struct image_info *infop)
1300 {
1301     regs->usp = infop->start_stack;
1302     regs->sr = 0;
1303     regs->pc = infop->entry;
1304 }
1305 
1306 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1307 #define ELF_NREG 20
1308 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1309 
1310 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1311 {
1312     (*regs)[0] = tswapreg(env->dregs[1]);
1313     (*regs)[1] = tswapreg(env->dregs[2]);
1314     (*regs)[2] = tswapreg(env->dregs[3]);
1315     (*regs)[3] = tswapreg(env->dregs[4]);
1316     (*regs)[4] = tswapreg(env->dregs[5]);
1317     (*regs)[5] = tswapreg(env->dregs[6]);
1318     (*regs)[6] = tswapreg(env->dregs[7]);
1319     (*regs)[7] = tswapreg(env->aregs[0]);
1320     (*regs)[8] = tswapreg(env->aregs[1]);
1321     (*regs)[9] = tswapreg(env->aregs[2]);
1322     (*regs)[10] = tswapreg(env->aregs[3]);
1323     (*regs)[11] = tswapreg(env->aregs[4]);
1324     (*regs)[12] = tswapreg(env->aregs[5]);
1325     (*regs)[13] = tswapreg(env->aregs[6]);
1326     (*regs)[14] = tswapreg(env->dregs[0]);
1327     (*regs)[15] = tswapreg(env->aregs[7]);
1328     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1329     (*regs)[17] = tswapreg(env->sr);
1330     (*regs)[18] = tswapreg(env->pc);
1331     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1332 }
1333 
1334 #define USE_ELF_CORE_DUMP
1335 #define ELF_EXEC_PAGESIZE       8192
1336 
1337 #endif
1338 
1339 #ifdef TARGET_ALPHA
1340 
1341 #define ELF_START_MMAP (0x30000000000ULL)
1342 
1343 #define ELF_CLASS      ELFCLASS64
1344 #define ELF_ARCH       EM_ALPHA
1345 
1346 static inline void init_thread(struct target_pt_regs *regs,
1347                                struct image_info *infop)
1348 {
1349     regs->pc = infop->entry;
1350     regs->ps = 8;
1351     regs->usp = infop->start_stack;
1352 }
1353 
1354 #define ELF_EXEC_PAGESIZE        8192
1355 
1356 #endif /* TARGET_ALPHA */
1357 
1358 #ifdef TARGET_S390X
1359 
1360 #define ELF_START_MMAP (0x20000000000ULL)
1361 
1362 #define ELF_CLASS	ELFCLASS64
1363 #define ELF_DATA	ELFDATA2MSB
1364 #define ELF_ARCH	EM_S390
1365 
1366 #include "elf.h"
1367 
1368 #define ELF_HWCAP get_elf_hwcap()
1369 
1370 #define GET_FEATURE(_feat, _hwcap) \
1371     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1372 
1373 static uint32_t get_elf_hwcap(void)
1374 {
1375     /*
1376      * Let's assume we always have esan3 and zarch.
1377      * 31-bit processes can use 64-bit registers (high gprs).
1378      */
1379     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1380 
1381     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1382     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1383     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1384     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1385     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1386         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1387         hwcap |= HWCAP_S390_ETF3EH;
1388     }
1389     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1390 
1391     return hwcap;
1392 }
1393 
1394 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1395 {
1396     regs->psw.addr = infop->entry;
1397     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1398     regs->gprs[15] = infop->start_stack;
1399 }
1400 
1401 #endif /* TARGET_S390X */
1402 
1403 #ifdef TARGET_RISCV
1404 
1405 #define ELF_START_MMAP 0x80000000
1406 #define ELF_ARCH  EM_RISCV
1407 
1408 #ifdef TARGET_RISCV32
1409 #define ELF_CLASS ELFCLASS32
1410 #else
1411 #define ELF_CLASS ELFCLASS64
1412 #endif
1413 
1414 static inline void init_thread(struct target_pt_regs *regs,
1415                                struct image_info *infop)
1416 {
1417     regs->sepc = infop->entry;
1418     regs->sp = infop->start_stack;
1419 }
1420 
1421 #define ELF_EXEC_PAGESIZE 4096
1422 
1423 #endif /* TARGET_RISCV */
1424 
1425 #ifdef TARGET_HPPA
1426 
1427 #define ELF_START_MMAP  0x80000000
1428 #define ELF_CLASS       ELFCLASS32
1429 #define ELF_ARCH        EM_PARISC
1430 #define ELF_PLATFORM    "PARISC"
1431 #define STACK_GROWS_DOWN 0
1432 #define STACK_ALIGNMENT  64
1433 
1434 static inline void init_thread(struct target_pt_regs *regs,
1435                                struct image_info *infop)
1436 {
1437     regs->iaoq[0] = infop->entry;
1438     regs->iaoq[1] = infop->entry + 4;
1439     regs->gr[23] = 0;
1440     regs->gr[24] = infop->arg_start;
1441     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1442     /* The top-of-stack contains a linkage buffer.  */
1443     regs->gr[30] = infop->start_stack + 64;
1444     regs->gr[31] = infop->entry;
1445 }
1446 
1447 #endif /* TARGET_HPPA */
1448 
1449 #ifdef TARGET_XTENSA
1450 
1451 #define ELF_START_MMAP 0x20000000
1452 
1453 #define ELF_CLASS       ELFCLASS32
1454 #define ELF_ARCH        EM_XTENSA
1455 
1456 static inline void init_thread(struct target_pt_regs *regs,
1457                                struct image_info *infop)
1458 {
1459     regs->windowbase = 0;
1460     regs->windowstart = 1;
1461     regs->areg[1] = infop->start_stack;
1462     regs->pc = infop->entry;
1463 }
1464 
1465 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1466 #define ELF_NREG 128
1467 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1468 
1469 enum {
1470     TARGET_REG_PC,
1471     TARGET_REG_PS,
1472     TARGET_REG_LBEG,
1473     TARGET_REG_LEND,
1474     TARGET_REG_LCOUNT,
1475     TARGET_REG_SAR,
1476     TARGET_REG_WINDOWSTART,
1477     TARGET_REG_WINDOWBASE,
1478     TARGET_REG_THREADPTR,
1479     TARGET_REG_AR0 = 64,
1480 };
1481 
1482 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1483                                const CPUXtensaState *env)
1484 {
1485     unsigned i;
1486 
1487     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1488     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1489     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1490     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1491     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1492     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1493     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1494     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1495     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1496     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1497     for (i = 0; i < env->config->nareg; ++i) {
1498         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1499     }
1500 }
1501 
1502 #define USE_ELF_CORE_DUMP
1503 #define ELF_EXEC_PAGESIZE       4096
1504 
1505 #endif /* TARGET_XTENSA */
1506 
1507 #ifdef TARGET_HEXAGON
1508 
1509 #define ELF_START_MMAP 0x20000000
1510 
1511 #define ELF_CLASS       ELFCLASS32
1512 #define ELF_ARCH        EM_HEXAGON
1513 
1514 static inline void init_thread(struct target_pt_regs *regs,
1515                                struct image_info *infop)
1516 {
1517     regs->sepc = infop->entry;
1518     regs->sp = infop->start_stack;
1519 }
1520 
1521 #endif /* TARGET_HEXAGON */
1522 
1523 #ifndef ELF_PLATFORM
1524 #define ELF_PLATFORM (NULL)
1525 #endif
1526 
1527 #ifndef ELF_MACHINE
1528 #define ELF_MACHINE ELF_ARCH
1529 #endif
1530 
1531 #ifndef elf_check_arch
1532 #define elf_check_arch(x) ((x) == ELF_ARCH)
1533 #endif
1534 
1535 #ifndef elf_check_abi
1536 #define elf_check_abi(x) (1)
1537 #endif
1538 
1539 #ifndef ELF_HWCAP
1540 #define ELF_HWCAP 0
1541 #endif
1542 
1543 #ifndef STACK_GROWS_DOWN
1544 #define STACK_GROWS_DOWN 1
1545 #endif
1546 
1547 #ifndef STACK_ALIGNMENT
1548 #define STACK_ALIGNMENT 16
1549 #endif
1550 
1551 #ifdef TARGET_ABI32
1552 #undef ELF_CLASS
1553 #define ELF_CLASS ELFCLASS32
1554 #undef bswaptls
1555 #define bswaptls(ptr) bswap32s(ptr)
1556 #endif
1557 
1558 #include "elf.h"
1559 
1560 /* We must delay the following stanzas until after "elf.h". */
1561 #if defined(TARGET_AARCH64)
1562 
1563 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1564                                     const uint32_t *data,
1565                                     struct image_info *info,
1566                                     Error **errp)
1567 {
1568     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
1569         if (pr_datasz != sizeof(uint32_t)) {
1570             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
1571             return false;
1572         }
1573         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
1574         info->note_flags = *data;
1575     }
1576     return true;
1577 }
1578 #define ARCH_USE_GNU_PROPERTY 1
1579 
1580 #else
1581 
1582 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
1583                                     const uint32_t *data,
1584                                     struct image_info *info,
1585                                     Error **errp)
1586 {
1587     g_assert_not_reached();
1588 }
1589 #define ARCH_USE_GNU_PROPERTY 0
1590 
1591 #endif
1592 
1593 struct exec
1594 {
1595     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1596     unsigned int a_text;   /* length of text, in bytes */
1597     unsigned int a_data;   /* length of data, in bytes */
1598     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1599     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1600     unsigned int a_entry;  /* start address */
1601     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1602     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1603 };
1604 
1605 
1606 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1607 #define OMAGIC 0407
1608 #define NMAGIC 0410
1609 #define ZMAGIC 0413
1610 #define QMAGIC 0314
1611 
1612 /* Necessary parameters */
1613 #define TARGET_ELF_EXEC_PAGESIZE \
1614         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1615          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1616 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1617 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1618                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1619 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1620 
1621 #define DLINFO_ITEMS 16
1622 
1623 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1624 {
1625     memcpy(to, from, n);
1626 }
1627 
1628 #ifdef BSWAP_NEEDED
1629 static void bswap_ehdr(struct elfhdr *ehdr)
1630 {
1631     bswap16s(&ehdr->e_type);            /* Object file type */
1632     bswap16s(&ehdr->e_machine);         /* Architecture */
1633     bswap32s(&ehdr->e_version);         /* Object file version */
1634     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1635     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1636     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1637     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1638     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1639     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1640     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1641     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1642     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1643     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1644 }
1645 
1646 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1647 {
1648     int i;
1649     for (i = 0; i < phnum; ++i, ++phdr) {
1650         bswap32s(&phdr->p_type);        /* Segment type */
1651         bswap32s(&phdr->p_flags);       /* Segment flags */
1652         bswaptls(&phdr->p_offset);      /* Segment file offset */
1653         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1654         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1655         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1656         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1657         bswaptls(&phdr->p_align);       /* Segment alignment */
1658     }
1659 }
1660 
1661 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1662 {
1663     int i;
1664     for (i = 0; i < shnum; ++i, ++shdr) {
1665         bswap32s(&shdr->sh_name);
1666         bswap32s(&shdr->sh_type);
1667         bswaptls(&shdr->sh_flags);
1668         bswaptls(&shdr->sh_addr);
1669         bswaptls(&shdr->sh_offset);
1670         bswaptls(&shdr->sh_size);
1671         bswap32s(&shdr->sh_link);
1672         bswap32s(&shdr->sh_info);
1673         bswaptls(&shdr->sh_addralign);
1674         bswaptls(&shdr->sh_entsize);
1675     }
1676 }
1677 
1678 static void bswap_sym(struct elf_sym *sym)
1679 {
1680     bswap32s(&sym->st_name);
1681     bswaptls(&sym->st_value);
1682     bswaptls(&sym->st_size);
1683     bswap16s(&sym->st_shndx);
1684 }
1685 
1686 #ifdef TARGET_MIPS
1687 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1688 {
1689     bswap16s(&abiflags->version);
1690     bswap32s(&abiflags->ases);
1691     bswap32s(&abiflags->isa_ext);
1692     bswap32s(&abiflags->flags1);
1693     bswap32s(&abiflags->flags2);
1694 }
1695 #endif
1696 #else
1697 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1698 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1699 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1700 static inline void bswap_sym(struct elf_sym *sym) { }
1701 #ifdef TARGET_MIPS
1702 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1703 #endif
1704 #endif
1705 
1706 #ifdef USE_ELF_CORE_DUMP
1707 static int elf_core_dump(int, const CPUArchState *);
1708 #endif /* USE_ELF_CORE_DUMP */
1709 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1710 
1711 /* Verify the portions of EHDR within E_IDENT for the target.
1712    This can be performed before bswapping the entire header.  */
1713 static bool elf_check_ident(struct elfhdr *ehdr)
1714 {
1715     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1716             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1717             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1718             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1719             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1720             && ehdr->e_ident[EI_DATA] == ELF_DATA
1721             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1722 }
1723 
1724 /* Verify the portions of EHDR outside of E_IDENT for the target.
1725    This has to wait until after bswapping the header.  */
1726 static bool elf_check_ehdr(struct elfhdr *ehdr)
1727 {
1728     return (elf_check_arch(ehdr->e_machine)
1729             && elf_check_abi(ehdr->e_flags)
1730             && ehdr->e_ehsize == sizeof(struct elfhdr)
1731             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1732             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1733 }
1734 
1735 /*
1736  * 'copy_elf_strings()' copies argument/envelope strings from user
1737  * memory to free pages in kernel mem. These are in a format ready
1738  * to be put directly into the top of new user memory.
1739  *
1740  */
1741 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1742                                   abi_ulong p, abi_ulong stack_limit)
1743 {
1744     char *tmp;
1745     int len, i;
1746     abi_ulong top = p;
1747 
1748     if (!p) {
1749         return 0;       /* bullet-proofing */
1750     }
1751 
1752     if (STACK_GROWS_DOWN) {
1753         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1754         for (i = argc - 1; i >= 0; --i) {
1755             tmp = argv[i];
1756             if (!tmp) {
1757                 fprintf(stderr, "VFS: argc is wrong");
1758                 exit(-1);
1759             }
1760             len = strlen(tmp) + 1;
1761             tmp += len;
1762 
1763             if (len > (p - stack_limit)) {
1764                 return 0;
1765             }
1766             while (len) {
1767                 int bytes_to_copy = (len > offset) ? offset : len;
1768                 tmp -= bytes_to_copy;
1769                 p -= bytes_to_copy;
1770                 offset -= bytes_to_copy;
1771                 len -= bytes_to_copy;
1772 
1773                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1774 
1775                 if (offset == 0) {
1776                     memcpy_to_target(p, scratch, top - p);
1777                     top = p;
1778                     offset = TARGET_PAGE_SIZE;
1779                 }
1780             }
1781         }
1782         if (p != top) {
1783             memcpy_to_target(p, scratch + offset, top - p);
1784         }
1785     } else {
1786         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1787         for (i = 0; i < argc; ++i) {
1788             tmp = argv[i];
1789             if (!tmp) {
1790                 fprintf(stderr, "VFS: argc is wrong");
1791                 exit(-1);
1792             }
1793             len = strlen(tmp) + 1;
1794             if (len > (stack_limit - p)) {
1795                 return 0;
1796             }
1797             while (len) {
1798                 int bytes_to_copy = (len > remaining) ? remaining : len;
1799 
1800                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1801 
1802                 tmp += bytes_to_copy;
1803                 remaining -= bytes_to_copy;
1804                 p += bytes_to_copy;
1805                 len -= bytes_to_copy;
1806 
1807                 if (remaining == 0) {
1808                     memcpy_to_target(top, scratch, p - top);
1809                     top = p;
1810                     remaining = TARGET_PAGE_SIZE;
1811                 }
1812             }
1813         }
1814         if (p != top) {
1815             memcpy_to_target(top, scratch, p - top);
1816         }
1817     }
1818 
1819     return p;
1820 }
1821 
1822 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1823  * argument/environment space. Newer kernels (>2.6.33) allow more,
1824  * dependent on stack size, but guarantee at least 32 pages for
1825  * backwards compatibility.
1826  */
1827 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1828 
1829 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1830                                  struct image_info *info)
1831 {
1832     abi_ulong size, error, guard;
1833 
1834     size = guest_stack_size;
1835     if (size < STACK_LOWER_LIMIT) {
1836         size = STACK_LOWER_LIMIT;
1837     }
1838     guard = TARGET_PAGE_SIZE;
1839     if (guard < qemu_real_host_page_size) {
1840         guard = qemu_real_host_page_size;
1841     }
1842 
1843     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1844                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1845     if (error == -1) {
1846         perror("mmap stack");
1847         exit(-1);
1848     }
1849 
1850     /* We reserve one extra page at the top of the stack as guard.  */
1851     if (STACK_GROWS_DOWN) {
1852         target_mprotect(error, guard, PROT_NONE);
1853         info->stack_limit = error + guard;
1854         return info->stack_limit + size - sizeof(void *);
1855     } else {
1856         target_mprotect(error + size, guard, PROT_NONE);
1857         info->stack_limit = error + size;
1858         return error;
1859     }
1860 }
1861 
1862 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1863    after the data section (i.e. bss).  */
1864 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1865 {
1866     uintptr_t host_start, host_map_start, host_end;
1867 
1868     last_bss = TARGET_PAGE_ALIGN(last_bss);
1869 
1870     /* ??? There is confusion between qemu_real_host_page_size and
1871        qemu_host_page_size here and elsewhere in target_mmap, which
1872        may lead to the end of the data section mapping from the file
1873        not being mapped.  At least there was an explicit test and
1874        comment for that here, suggesting that "the file size must
1875        be known".  The comment probably pre-dates the introduction
1876        of the fstat system call in target_mmap which does in fact
1877        find out the size.  What isn't clear is if the workaround
1878        here is still actually needed.  For now, continue with it,
1879        but merge it with the "normal" mmap that would allocate the bss.  */
1880 
1881     host_start = (uintptr_t) g2h_untagged(elf_bss);
1882     host_end = (uintptr_t) g2h_untagged(last_bss);
1883     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1884 
1885     if (host_map_start < host_end) {
1886         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1887                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1888         if (p == MAP_FAILED) {
1889             perror("cannot mmap brk");
1890             exit(-1);
1891         }
1892     }
1893 
1894     /* Ensure that the bss page(s) are valid */
1895     if ((page_get_flags(last_bss-1) & prot) != prot) {
1896         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1897     }
1898 
1899     if (host_start < host_map_start) {
1900         memset((void *)host_start, 0, host_map_start - host_start);
1901     }
1902 }
1903 
1904 #ifdef TARGET_ARM
1905 static int elf_is_fdpic(struct elfhdr *exec)
1906 {
1907     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1908 }
1909 #else
1910 /* Default implementation, always false.  */
1911 static int elf_is_fdpic(struct elfhdr *exec)
1912 {
1913     return 0;
1914 }
1915 #endif
1916 
1917 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1918 {
1919     uint16_t n;
1920     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1921 
1922     /* elf32_fdpic_loadseg */
1923     n = info->nsegs;
1924     while (n--) {
1925         sp -= 12;
1926         put_user_u32(loadsegs[n].addr, sp+0);
1927         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1928         put_user_u32(loadsegs[n].p_memsz, sp+8);
1929     }
1930 
1931     /* elf32_fdpic_loadmap */
1932     sp -= 4;
1933     put_user_u16(0, sp+0); /* version */
1934     put_user_u16(info->nsegs, sp+2); /* nsegs */
1935 
1936     info->personality = PER_LINUX_FDPIC;
1937     info->loadmap_addr = sp;
1938 
1939     return sp;
1940 }
1941 
1942 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1943                                    struct elfhdr *exec,
1944                                    struct image_info *info,
1945                                    struct image_info *interp_info)
1946 {
1947     abi_ulong sp;
1948     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1949     int size;
1950     int i;
1951     abi_ulong u_rand_bytes;
1952     uint8_t k_rand_bytes[16];
1953     abi_ulong u_platform;
1954     const char *k_platform;
1955     const int n = sizeof(elf_addr_t);
1956 
1957     sp = p;
1958 
1959     /* Needs to be before we load the env/argc/... */
1960     if (elf_is_fdpic(exec)) {
1961         /* Need 4 byte alignment for these structs */
1962         sp &= ~3;
1963         sp = loader_build_fdpic_loadmap(info, sp);
1964         info->other_info = interp_info;
1965         if (interp_info) {
1966             interp_info->other_info = info;
1967             sp = loader_build_fdpic_loadmap(interp_info, sp);
1968             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1969             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1970         } else {
1971             info->interpreter_loadmap_addr = 0;
1972             info->interpreter_pt_dynamic_addr = 0;
1973         }
1974     }
1975 
1976     u_platform = 0;
1977     k_platform = ELF_PLATFORM;
1978     if (k_platform) {
1979         size_t len = strlen(k_platform) + 1;
1980         if (STACK_GROWS_DOWN) {
1981             sp -= (len + n - 1) & ~(n - 1);
1982             u_platform = sp;
1983             /* FIXME - check return value of memcpy_to_target() for failure */
1984             memcpy_to_target(sp, k_platform, len);
1985         } else {
1986             memcpy_to_target(sp, k_platform, len);
1987             u_platform = sp;
1988             sp += len + 1;
1989         }
1990     }
1991 
1992     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1993      * the argv and envp pointers.
1994      */
1995     if (STACK_GROWS_DOWN) {
1996         sp = QEMU_ALIGN_DOWN(sp, 16);
1997     } else {
1998         sp = QEMU_ALIGN_UP(sp, 16);
1999     }
2000 
2001     /*
2002      * Generate 16 random bytes for userspace PRNG seeding.
2003      */
2004     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2005     if (STACK_GROWS_DOWN) {
2006         sp -= 16;
2007         u_rand_bytes = sp;
2008         /* FIXME - check return value of memcpy_to_target() for failure */
2009         memcpy_to_target(sp, k_rand_bytes, 16);
2010     } else {
2011         memcpy_to_target(sp, k_rand_bytes, 16);
2012         u_rand_bytes = sp;
2013         sp += 16;
2014     }
2015 
2016     size = (DLINFO_ITEMS + 1) * 2;
2017     if (k_platform)
2018         size += 2;
2019 #ifdef DLINFO_ARCH_ITEMS
2020     size += DLINFO_ARCH_ITEMS * 2;
2021 #endif
2022 #ifdef ELF_HWCAP2
2023     size += 2;
2024 #endif
2025     info->auxv_len = size * n;
2026 
2027     size += envc + argc + 2;
2028     size += 1;  /* argc itself */
2029     size *= n;
2030 
2031     /* Allocate space and finalize stack alignment for entry now.  */
2032     if (STACK_GROWS_DOWN) {
2033         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2034         sp = u_argc;
2035     } else {
2036         u_argc = sp;
2037         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2038     }
2039 
2040     u_argv = u_argc + n;
2041     u_envp = u_argv + (argc + 1) * n;
2042     u_auxv = u_envp + (envc + 1) * n;
2043     info->saved_auxv = u_auxv;
2044     info->arg_start = u_argv;
2045     info->arg_end = u_argv + argc * n;
2046 
2047     /* This is correct because Linux defines
2048      * elf_addr_t as Elf32_Off / Elf64_Off
2049      */
2050 #define NEW_AUX_ENT(id, val) do {               \
2051         put_user_ual(id, u_auxv);  u_auxv += n; \
2052         put_user_ual(val, u_auxv); u_auxv += n; \
2053     } while(0)
2054 
2055 #ifdef ARCH_DLINFO
2056     /*
2057      * ARCH_DLINFO must come first so platform specific code can enforce
2058      * special alignment requirements on the AUXV if necessary (eg. PPC).
2059      */
2060     ARCH_DLINFO;
2061 #endif
2062     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2063      * on info->auxv_len will trigger.
2064      */
2065     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2066     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2067     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2068     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2069         /* Target doesn't support host page size alignment */
2070         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2071     } else {
2072         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2073                                                qemu_host_page_size)));
2074     }
2075     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2076     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2077     NEW_AUX_ENT(AT_ENTRY, info->entry);
2078     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2079     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2080     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2081     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2082     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2083     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2084     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2085     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2086     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2087 
2088 #ifdef ELF_HWCAP2
2089     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2090 #endif
2091 
2092     if (u_platform) {
2093         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2094     }
2095     NEW_AUX_ENT (AT_NULL, 0);
2096 #undef NEW_AUX_ENT
2097 
2098     /* Check that our initial calculation of the auxv length matches how much
2099      * we actually put into it.
2100      */
2101     assert(info->auxv_len == u_auxv - info->saved_auxv);
2102 
2103     put_user_ual(argc, u_argc);
2104 
2105     p = info->arg_strings;
2106     for (i = 0; i < argc; ++i) {
2107         put_user_ual(p, u_argv);
2108         u_argv += n;
2109         p += target_strlen(p) + 1;
2110     }
2111     put_user_ual(0, u_argv);
2112 
2113     p = info->env_strings;
2114     for (i = 0; i < envc; ++i) {
2115         put_user_ual(p, u_envp);
2116         u_envp += n;
2117         p += target_strlen(p) + 1;
2118     }
2119     put_user_ual(0, u_envp);
2120 
2121     return sp;
2122 }
2123 
2124 #ifndef ARM_COMMPAGE
2125 #define ARM_COMMPAGE 0
2126 #define init_guest_commpage() true
2127 #endif
2128 
2129 static void pgb_fail_in_use(const char *image_name)
2130 {
2131     error_report("%s: requires virtual address space that is in use "
2132                  "(omit the -B option or choose a different value)",
2133                  image_name);
2134     exit(EXIT_FAILURE);
2135 }
2136 
2137 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2138                                 abi_ulong guest_hiaddr, long align)
2139 {
2140     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2141     void *addr, *test;
2142 
2143     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2144         fprintf(stderr, "Requested guest base %p does not satisfy "
2145                 "host minimum alignment (0x%lx)\n",
2146                 (void *)guest_base, align);
2147         exit(EXIT_FAILURE);
2148     }
2149 
2150     /* Sanity check the guest binary. */
2151     if (reserved_va) {
2152         if (guest_hiaddr > reserved_va) {
2153             error_report("%s: requires more than reserved virtual "
2154                          "address space (0x%" PRIx64 " > 0x%lx)",
2155                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2156             exit(EXIT_FAILURE);
2157         }
2158     } else {
2159 #if HOST_LONG_BITS < TARGET_ABI_BITS
2160         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2161             error_report("%s: requires more virtual address space "
2162                          "than the host can provide (0x%" PRIx64 ")",
2163                          image_name, (uint64_t)guest_hiaddr - guest_base);
2164             exit(EXIT_FAILURE);
2165         }
2166 #endif
2167     }
2168 
2169     /*
2170      * Expand the allocation to the entire reserved_va.
2171      * Exclude the mmap_min_addr hole.
2172      */
2173     if (reserved_va) {
2174         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2175                         : mmap_min_addr - guest_base);
2176         guest_hiaddr = reserved_va;
2177     }
2178 
2179     /* Reserve the address space for the binary, or reserved_va. */
2180     test = g2h_untagged(guest_loaddr);
2181     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2182     if (test != addr) {
2183         pgb_fail_in_use(image_name);
2184     }
2185 }
2186 
2187 /**
2188  * pgd_find_hole_fallback: potential mmap address
2189  * @guest_size: size of available space
2190  * @brk: location of break
2191  * @align: memory alignment
2192  *
2193  * This is a fallback method for finding a hole in the host address
2194  * space if we don't have the benefit of being able to access
2195  * /proc/self/map. It can potentially take a very long time as we can
2196  * only dumbly iterate up the host address space seeing if the
2197  * allocation would work.
2198  */
2199 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk,
2200                                         long align, uintptr_t offset)
2201 {
2202     uintptr_t base;
2203 
2204     /* Start (aligned) at the bottom and work our way up */
2205     base = ROUND_UP(mmap_min_addr, align);
2206 
2207     while (true) {
2208         uintptr_t align_start, end;
2209         align_start = ROUND_UP(base, align);
2210         end = align_start + guest_size + offset;
2211 
2212         /* if brk is anywhere in the range give ourselves some room to grow. */
2213         if (align_start <= brk && brk < end) {
2214             base = brk + (16 * MiB);
2215             continue;
2216         } else if (align_start + guest_size < align_start) {
2217             /* we have run out of space */
2218             return -1;
2219         } else {
2220             int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE |
2221                 MAP_FIXED_NOREPLACE;
2222             void * mmap_start = mmap((void *) align_start, guest_size,
2223                                      PROT_NONE, flags, -1, 0);
2224             if (mmap_start != MAP_FAILED) {
2225                 munmap(mmap_start, guest_size);
2226                 if (mmap_start == (void *) align_start) {
2227                     return (uintptr_t) mmap_start + offset;
2228                 }
2229             }
2230             base += qemu_host_page_size;
2231         }
2232     }
2233 }
2234 
2235 /* Return value for guest_base, or -1 if no hole found. */
2236 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2237                                long align, uintptr_t offset)
2238 {
2239     GSList *maps, *iter;
2240     uintptr_t this_start, this_end, next_start, brk;
2241     intptr_t ret = -1;
2242 
2243     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2244 
2245     maps = read_self_maps();
2246 
2247     /* Read brk after we've read the maps, which will malloc. */
2248     brk = (uintptr_t)sbrk(0);
2249 
2250     if (!maps) {
2251         ret = pgd_find_hole_fallback(guest_size, brk, align, offset);
2252         return ret == -1 ? -1 : ret - guest_loaddr;
2253     }
2254 
2255     /* The first hole is before the first map entry. */
2256     this_start = mmap_min_addr;
2257 
2258     for (iter = maps; iter;
2259          this_start = next_start, iter = g_slist_next(iter)) {
2260         uintptr_t align_start, hole_size;
2261 
2262         this_end = ((MapInfo *)iter->data)->start;
2263         next_start = ((MapInfo *)iter->data)->end;
2264         align_start = ROUND_UP(this_start + offset, align);
2265 
2266         /* Skip holes that are too small. */
2267         if (align_start >= this_end) {
2268             continue;
2269         }
2270         hole_size = this_end - align_start;
2271         if (hole_size < guest_size) {
2272             continue;
2273         }
2274 
2275         /* If this hole contains brk, give ourselves some room to grow. */
2276         if (this_start <= brk && brk < this_end) {
2277             hole_size -= guest_size;
2278             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2279                 align_start += 1 * GiB;
2280             } else if (hole_size >= 16 * MiB) {
2281                 align_start += 16 * MiB;
2282             } else {
2283                 align_start = (this_end - guest_size) & -align;
2284                 if (align_start < this_start) {
2285                     continue;
2286                 }
2287             }
2288         }
2289 
2290         /* Record the lowest successful match. */
2291         if (ret < 0) {
2292             ret = align_start - guest_loaddr;
2293         }
2294         /* If this hole contains the identity map, select it. */
2295         if (align_start <= guest_loaddr &&
2296             guest_loaddr + guest_size <= this_end) {
2297             ret = 0;
2298         }
2299         /* If this hole ends above the identity map, stop looking. */
2300         if (this_end >= guest_loaddr) {
2301             break;
2302         }
2303     }
2304     free_self_maps(maps);
2305 
2306     return ret;
2307 }
2308 
2309 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2310                        abi_ulong orig_hiaddr, long align)
2311 {
2312     uintptr_t loaddr = orig_loaddr;
2313     uintptr_t hiaddr = orig_hiaddr;
2314     uintptr_t offset = 0;
2315     uintptr_t addr;
2316 
2317     if (hiaddr != orig_hiaddr) {
2318         error_report("%s: requires virtual address space that the "
2319                      "host cannot provide (0x%" PRIx64 ")",
2320                      image_name, (uint64_t)orig_hiaddr);
2321         exit(EXIT_FAILURE);
2322     }
2323 
2324     loaddr &= -align;
2325     if (ARM_COMMPAGE) {
2326         /*
2327          * Extend the allocation to include the commpage.
2328          * For a 64-bit host, this is just 4GiB; for a 32-bit host we
2329          * need to ensure there is space bellow the guest_base so we
2330          * can map the commpage in the place needed when the address
2331          * arithmetic wraps around.
2332          */
2333         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2334             hiaddr = (uintptr_t) 4 << 30;
2335         } else {
2336             offset = -(ARM_COMMPAGE & -align);
2337         }
2338     }
2339 
2340     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset);
2341     if (addr == -1) {
2342         /*
2343          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2344          * that can satisfy both.  But as the normal arm32 link base address
2345          * is ~32k, and we extend down to include the commpage, making the
2346          * overhead only ~96k, this is unlikely.
2347          */
2348         error_report("%s: Unable to allocate %#zx bytes of "
2349                      "virtual address space", image_name,
2350                      (size_t)(hiaddr - loaddr));
2351         exit(EXIT_FAILURE);
2352     }
2353 
2354     guest_base = addr;
2355 }
2356 
2357 static void pgb_dynamic(const char *image_name, long align)
2358 {
2359     /*
2360      * The executable is dynamic and does not require a fixed address.
2361      * All we need is a commpage that satisfies align.
2362      * If we do not need a commpage, leave guest_base == 0.
2363      */
2364     if (ARM_COMMPAGE) {
2365         uintptr_t addr, commpage;
2366 
2367         /* 64-bit hosts should have used reserved_va. */
2368         assert(sizeof(uintptr_t) == 4);
2369 
2370         /*
2371          * By putting the commpage at the first hole, that puts guest_base
2372          * just above that, and maximises the positive guest addresses.
2373          */
2374         commpage = ARM_COMMPAGE & -align;
2375         addr = pgb_find_hole(commpage, -commpage, align, 0);
2376         assert(addr != -1);
2377         guest_base = addr;
2378     }
2379 }
2380 
2381 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2382                             abi_ulong guest_hiaddr, long align)
2383 {
2384     int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2385     void *addr, *test;
2386 
2387     if (guest_hiaddr > reserved_va) {
2388         error_report("%s: requires more than reserved virtual "
2389                      "address space (0x%" PRIx64 " > 0x%lx)",
2390                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2391         exit(EXIT_FAILURE);
2392     }
2393 
2394     /* Widen the "image" to the entire reserved address space. */
2395     pgb_static(image_name, 0, reserved_va, align);
2396 
2397     /* osdep.h defines this as 0 if it's missing */
2398     flags |= MAP_FIXED_NOREPLACE;
2399 
2400     /* Reserve the memory on the host. */
2401     assert(guest_base != 0);
2402     test = g2h_untagged(0);
2403     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2404     if (addr == MAP_FAILED || addr != test) {
2405         error_report("Unable to reserve 0x%lx bytes of virtual address "
2406                      "space at %p (%s) for use as guest address space (check your"
2407                      "virtual memory ulimit setting, min_mmap_addr or reserve less "
2408                      "using -R option)", reserved_va, test, strerror(errno));
2409         exit(EXIT_FAILURE);
2410     }
2411 }
2412 
2413 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2414                       abi_ulong guest_hiaddr)
2415 {
2416     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2417     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2418 
2419     if (have_guest_base) {
2420         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2421     } else if (reserved_va) {
2422         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2423     } else if (guest_loaddr) {
2424         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2425     } else {
2426         pgb_dynamic(image_name, align);
2427     }
2428 
2429     /* Reserve and initialize the commpage. */
2430     if (!init_guest_commpage()) {
2431         /*
2432          * With have_guest_base, the user has selected the address and
2433          * we are trying to work with that.  Otherwise, we have selected
2434          * free space and init_guest_commpage must succeeded.
2435          */
2436         assert(have_guest_base);
2437         pgb_fail_in_use(image_name);
2438     }
2439 
2440     assert(QEMU_IS_ALIGNED(guest_base, align));
2441     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2442                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2443 }
2444 
2445 enum {
2446     /* The string "GNU\0" as a magic number. */
2447     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2448     NOTE_DATA_SZ = 1 * KiB,
2449     NOTE_NAME_SZ = 4,
2450     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2451 };
2452 
2453 /*
2454  * Process a single gnu_property entry.
2455  * Return false for error.
2456  */
2457 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2458                                struct image_info *info, bool have_prev_type,
2459                                uint32_t *prev_type, Error **errp)
2460 {
2461     uint32_t pr_type, pr_datasz, step;
2462 
2463     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2464         goto error_data;
2465     }
2466     datasz -= *off;
2467     data += *off / sizeof(uint32_t);
2468 
2469     if (datasz < 2 * sizeof(uint32_t)) {
2470         goto error_data;
2471     }
2472     pr_type = data[0];
2473     pr_datasz = data[1];
2474     data += 2;
2475     datasz -= 2 * sizeof(uint32_t);
2476     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2477     if (step > datasz) {
2478         goto error_data;
2479     }
2480 
2481     /* Properties are supposed to be unique and sorted on pr_type. */
2482     if (have_prev_type && pr_type <= *prev_type) {
2483         if (pr_type == *prev_type) {
2484             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2485         } else {
2486             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2487         }
2488         return false;
2489     }
2490     *prev_type = pr_type;
2491 
2492     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
2493         return false;
2494     }
2495 
2496     *off += 2 * sizeof(uint32_t) + step;
2497     return true;
2498 
2499  error_data:
2500     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
2501     return false;
2502 }
2503 
2504 /* Process NT_GNU_PROPERTY_TYPE_0. */
2505 static bool parse_elf_properties(int image_fd,
2506                                  struct image_info *info,
2507                                  const struct elf_phdr *phdr,
2508                                  char bprm_buf[BPRM_BUF_SIZE],
2509                                  Error **errp)
2510 {
2511     union {
2512         struct elf_note nhdr;
2513         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
2514     } note;
2515 
2516     int n, off, datasz;
2517     bool have_prev_type;
2518     uint32_t prev_type;
2519 
2520     /* Unless the arch requires properties, ignore them. */
2521     if (!ARCH_USE_GNU_PROPERTY) {
2522         return true;
2523     }
2524 
2525     /* If the properties are crazy large, that's too bad. */
2526     n = phdr->p_filesz;
2527     if (n > sizeof(note)) {
2528         error_setg(errp, "PT_GNU_PROPERTY too large");
2529         return false;
2530     }
2531     if (n < sizeof(note.nhdr)) {
2532         error_setg(errp, "PT_GNU_PROPERTY too small");
2533         return false;
2534     }
2535 
2536     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
2537         memcpy(&note, bprm_buf + phdr->p_offset, n);
2538     } else {
2539         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
2540         if (len != n) {
2541             error_setg_errno(errp, errno, "Error reading file header");
2542             return false;
2543         }
2544     }
2545 
2546     /*
2547      * The contents of a valid PT_GNU_PROPERTY is a sequence
2548      * of uint32_t -- swap them all now.
2549      */
2550 #ifdef BSWAP_NEEDED
2551     for (int i = 0; i < n / 4; i++) {
2552         bswap32s(note.data + i);
2553     }
2554 #endif
2555 
2556     /*
2557      * Note that nhdr is 3 words, and that the "name" described by namesz
2558      * immediately follows nhdr and is thus at the 4th word.  Further, all
2559      * of the inputs to the kernel's round_up are multiples of 4.
2560      */
2561     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
2562         note.nhdr.n_namesz != NOTE_NAME_SZ ||
2563         note.data[3] != GNU0_MAGIC) {
2564         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
2565         return false;
2566     }
2567     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
2568 
2569     datasz = note.nhdr.n_descsz + off;
2570     if (datasz > n) {
2571         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
2572         return false;
2573     }
2574 
2575     have_prev_type = false;
2576     prev_type = 0;
2577     while (1) {
2578         if (off == datasz) {
2579             return true;  /* end, exit ok */
2580         }
2581         if (!parse_elf_property(note.data, &off, datasz, info,
2582                                 have_prev_type, &prev_type, errp)) {
2583             return false;
2584         }
2585         have_prev_type = true;
2586     }
2587 }
2588 
2589 /* Load an ELF image into the address space.
2590 
2591    IMAGE_NAME is the filename of the image, to use in error messages.
2592    IMAGE_FD is the open file descriptor for the image.
2593 
2594    BPRM_BUF is a copy of the beginning of the file; this of course
2595    contains the elf file header at offset 0.  It is assumed that this
2596    buffer is sufficiently aligned to present no problems to the host
2597    in accessing data at aligned offsets within the buffer.
2598 
2599    On return: INFO values will be filled in, as necessary or available.  */
2600 
2601 static void load_elf_image(const char *image_name, int image_fd,
2602                            struct image_info *info, char **pinterp_name,
2603                            char bprm_buf[BPRM_BUF_SIZE])
2604 {
2605     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2606     struct elf_phdr *phdr;
2607     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2608     int i, retval, prot_exec;
2609     Error *err = NULL;
2610 
2611     /* First of all, some simple consistency checks */
2612     if (!elf_check_ident(ehdr)) {
2613         error_setg(&err, "Invalid ELF image for this architecture");
2614         goto exit_errmsg;
2615     }
2616     bswap_ehdr(ehdr);
2617     if (!elf_check_ehdr(ehdr)) {
2618         error_setg(&err, "Invalid ELF image for this architecture");
2619         goto exit_errmsg;
2620     }
2621 
2622     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2623     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2624         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2625     } else {
2626         phdr = (struct elf_phdr *) alloca(i);
2627         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2628         if (retval != i) {
2629             goto exit_read;
2630         }
2631     }
2632     bswap_phdr(phdr, ehdr->e_phnum);
2633 
2634     info->nsegs = 0;
2635     info->pt_dynamic_addr = 0;
2636 
2637     mmap_lock();
2638 
2639     /*
2640      * Find the maximum size of the image and allocate an appropriate
2641      * amount of memory to handle that.  Locate the interpreter, if any.
2642      */
2643     loaddr = -1, hiaddr = 0;
2644     info->alignment = 0;
2645     for (i = 0; i < ehdr->e_phnum; ++i) {
2646         struct elf_phdr *eppnt = phdr + i;
2647         if (eppnt->p_type == PT_LOAD) {
2648             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
2649             if (a < loaddr) {
2650                 loaddr = a;
2651             }
2652             a = eppnt->p_vaddr + eppnt->p_memsz;
2653             if (a > hiaddr) {
2654                 hiaddr = a;
2655             }
2656             ++info->nsegs;
2657             info->alignment |= eppnt->p_align;
2658         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2659             g_autofree char *interp_name = NULL;
2660 
2661             if (*pinterp_name) {
2662                 error_setg(&err, "Multiple PT_INTERP entries");
2663                 goto exit_errmsg;
2664             }
2665 
2666             interp_name = g_malloc(eppnt->p_filesz);
2667 
2668             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2669                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2670                        eppnt->p_filesz);
2671             } else {
2672                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2673                                eppnt->p_offset);
2674                 if (retval != eppnt->p_filesz) {
2675                     goto exit_read;
2676                 }
2677             }
2678             if (interp_name[eppnt->p_filesz - 1] != 0) {
2679                 error_setg(&err, "Invalid PT_INTERP entry");
2680                 goto exit_errmsg;
2681             }
2682             *pinterp_name = g_steal_pointer(&interp_name);
2683         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
2684             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
2685                 goto exit_errmsg;
2686             }
2687         }
2688     }
2689 
2690     if (pinterp_name != NULL) {
2691         /*
2692          * This is the main executable.
2693          *
2694          * Reserve extra space for brk.
2695          * We hold on to this space while placing the interpreter
2696          * and the stack, lest they be placed immediately after
2697          * the data segment and block allocation from the brk.
2698          *
2699          * 16MB is chosen as "large enough" without being so large
2700          * as to allow the result to not fit with a 32-bit guest on
2701          * a 32-bit host.
2702          */
2703         info->reserve_brk = 16 * MiB;
2704         hiaddr += info->reserve_brk;
2705 
2706         if (ehdr->e_type == ET_EXEC) {
2707             /*
2708              * Make sure that the low address does not conflict with
2709              * MMAP_MIN_ADDR or the QEMU application itself.
2710              */
2711             probe_guest_base(image_name, loaddr, hiaddr);
2712         } else {
2713             /*
2714              * The binary is dynamic, but we still need to
2715              * select guest_base.  In this case we pass a size.
2716              */
2717             probe_guest_base(image_name, 0, hiaddr - loaddr);
2718         }
2719     }
2720 
2721     /*
2722      * Reserve address space for all of this.
2723      *
2724      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2725      * exactly the address range that is required.
2726      *
2727      * Otherwise this is ET_DYN, and we are searching for a location
2728      * that can hold the memory space required.  If the image is
2729      * pre-linked, LOADDR will be non-zero, and the kernel should
2730      * honor that address if it happens to be free.
2731      *
2732      * In both cases, we will overwrite pages in this range with mappings
2733      * from the executable.
2734      */
2735     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2736                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2737                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2738                             -1, 0);
2739     if (load_addr == -1) {
2740         goto exit_mmap;
2741     }
2742     load_bias = load_addr - loaddr;
2743 
2744     if (elf_is_fdpic(ehdr)) {
2745         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2746             g_malloc(sizeof(*loadsegs) * info->nsegs);
2747 
2748         for (i = 0; i < ehdr->e_phnum; ++i) {
2749             switch (phdr[i].p_type) {
2750             case PT_DYNAMIC:
2751                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2752                 break;
2753             case PT_LOAD:
2754                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2755                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2756                 loadsegs->p_memsz = phdr[i].p_memsz;
2757                 ++loadsegs;
2758                 break;
2759             }
2760         }
2761     }
2762 
2763     info->load_bias = load_bias;
2764     info->code_offset = load_bias;
2765     info->data_offset = load_bias;
2766     info->load_addr = load_addr;
2767     info->entry = ehdr->e_entry + load_bias;
2768     info->start_code = -1;
2769     info->end_code = 0;
2770     info->start_data = -1;
2771     info->end_data = 0;
2772     info->brk = 0;
2773     info->elf_flags = ehdr->e_flags;
2774 
2775     prot_exec = PROT_EXEC;
2776 #ifdef TARGET_AARCH64
2777     /*
2778      * If the BTI feature is present, this indicates that the executable
2779      * pages of the startup binary should be mapped with PROT_BTI, so that
2780      * branch targets are enforced.
2781      *
2782      * The startup binary is either the interpreter or the static executable.
2783      * The interpreter is responsible for all pages of a dynamic executable.
2784      *
2785      * Elf notes are backward compatible to older cpus.
2786      * Do not enable BTI unless it is supported.
2787      */
2788     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
2789         && (pinterp_name == NULL || *pinterp_name == 0)
2790         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
2791         prot_exec |= TARGET_PROT_BTI;
2792     }
2793 #endif
2794 
2795     for (i = 0; i < ehdr->e_phnum; i++) {
2796         struct elf_phdr *eppnt = phdr + i;
2797         if (eppnt->p_type == PT_LOAD) {
2798             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2799             int elf_prot = 0;
2800 
2801             if (eppnt->p_flags & PF_R) {
2802                 elf_prot |= PROT_READ;
2803             }
2804             if (eppnt->p_flags & PF_W) {
2805                 elf_prot |= PROT_WRITE;
2806             }
2807             if (eppnt->p_flags & PF_X) {
2808                 elf_prot |= prot_exec;
2809             }
2810 
2811             vaddr = load_bias + eppnt->p_vaddr;
2812             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2813             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2814 
2815             vaddr_ef = vaddr + eppnt->p_filesz;
2816             vaddr_em = vaddr + eppnt->p_memsz;
2817 
2818             /*
2819              * Some segments may be completely empty, with a non-zero p_memsz
2820              * but no backing file segment.
2821              */
2822             if (eppnt->p_filesz != 0) {
2823                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2824                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2825                                     MAP_PRIVATE | MAP_FIXED,
2826                                     image_fd, eppnt->p_offset - vaddr_po);
2827 
2828                 if (error == -1) {
2829                     goto exit_mmap;
2830                 }
2831 
2832                 /*
2833                  * If the load segment requests extra zeros (e.g. bss), map it.
2834                  */
2835                 if (eppnt->p_filesz < eppnt->p_memsz) {
2836                     zero_bss(vaddr_ef, vaddr_em, elf_prot);
2837                 }
2838             } else if (eppnt->p_memsz != 0) {
2839                 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po);
2840                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2841                                     MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS,
2842                                     -1, 0);
2843 
2844                 if (error == -1) {
2845                     goto exit_mmap;
2846                 }
2847             }
2848 
2849             /* Find the full program boundaries.  */
2850             if (elf_prot & PROT_EXEC) {
2851                 if (vaddr < info->start_code) {
2852                     info->start_code = vaddr;
2853                 }
2854                 if (vaddr_ef > info->end_code) {
2855                     info->end_code = vaddr_ef;
2856                 }
2857             }
2858             if (elf_prot & PROT_WRITE) {
2859                 if (vaddr < info->start_data) {
2860                     info->start_data = vaddr;
2861                 }
2862                 if (vaddr_ef > info->end_data) {
2863                     info->end_data = vaddr_ef;
2864                 }
2865             }
2866             if (vaddr_em > info->brk) {
2867                 info->brk = vaddr_em;
2868             }
2869 #ifdef TARGET_MIPS
2870         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2871             Mips_elf_abiflags_v0 abiflags;
2872             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2873                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
2874                 goto exit_errmsg;
2875             }
2876             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2877                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2878                        sizeof(Mips_elf_abiflags_v0));
2879             } else {
2880                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2881                                eppnt->p_offset);
2882                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2883                     goto exit_read;
2884                 }
2885             }
2886             bswap_mips_abiflags(&abiflags);
2887             info->fp_abi = abiflags.fp_abi;
2888 #endif
2889         }
2890     }
2891 
2892     if (info->end_data == 0) {
2893         info->start_data = info->end_code;
2894         info->end_data = info->end_code;
2895     }
2896 
2897     if (qemu_log_enabled()) {
2898         load_symbols(ehdr, image_fd, load_bias);
2899     }
2900 
2901     mmap_unlock();
2902 
2903     close(image_fd);
2904     return;
2905 
2906  exit_read:
2907     if (retval >= 0) {
2908         error_setg(&err, "Incomplete read of file header");
2909     } else {
2910         error_setg_errno(&err, errno, "Error reading file header");
2911     }
2912     goto exit_errmsg;
2913  exit_mmap:
2914     error_setg_errno(&err, errno, "Error mapping file");
2915     goto exit_errmsg;
2916  exit_errmsg:
2917     error_reportf_err(err, "%s: ", image_name);
2918     exit(-1);
2919 }
2920 
2921 static void load_elf_interp(const char *filename, struct image_info *info,
2922                             char bprm_buf[BPRM_BUF_SIZE])
2923 {
2924     int fd, retval;
2925     Error *err = NULL;
2926 
2927     fd = open(path(filename), O_RDONLY);
2928     if (fd < 0) {
2929         error_setg_file_open(&err, errno, filename);
2930         error_report_err(err);
2931         exit(-1);
2932     }
2933 
2934     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2935     if (retval < 0) {
2936         error_setg_errno(&err, errno, "Error reading file header");
2937         error_reportf_err(err, "%s: ", filename);
2938         exit(-1);
2939     }
2940 
2941     if (retval < BPRM_BUF_SIZE) {
2942         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2943     }
2944 
2945     load_elf_image(filename, fd, info, NULL, bprm_buf);
2946 }
2947 
2948 static int symfind(const void *s0, const void *s1)
2949 {
2950     target_ulong addr = *(target_ulong *)s0;
2951     struct elf_sym *sym = (struct elf_sym *)s1;
2952     int result = 0;
2953     if (addr < sym->st_value) {
2954         result = -1;
2955     } else if (addr >= sym->st_value + sym->st_size) {
2956         result = 1;
2957     }
2958     return result;
2959 }
2960 
2961 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2962 {
2963 #if ELF_CLASS == ELFCLASS32
2964     struct elf_sym *syms = s->disas_symtab.elf32;
2965 #else
2966     struct elf_sym *syms = s->disas_symtab.elf64;
2967 #endif
2968 
2969     // binary search
2970     struct elf_sym *sym;
2971 
2972     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2973     if (sym != NULL) {
2974         return s->disas_strtab + sym->st_name;
2975     }
2976 
2977     return "";
2978 }
2979 
2980 /* FIXME: This should use elf_ops.h  */
2981 static int symcmp(const void *s0, const void *s1)
2982 {
2983     struct elf_sym *sym0 = (struct elf_sym *)s0;
2984     struct elf_sym *sym1 = (struct elf_sym *)s1;
2985     return (sym0->st_value < sym1->st_value)
2986         ? -1
2987         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2988 }
2989 
2990 /* Best attempt to load symbols from this ELF object. */
2991 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2992 {
2993     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2994     uint64_t segsz;
2995     struct elf_shdr *shdr;
2996     char *strings = NULL;
2997     struct syminfo *s = NULL;
2998     struct elf_sym *new_syms, *syms = NULL;
2999 
3000     shnum = hdr->e_shnum;
3001     i = shnum * sizeof(struct elf_shdr);
3002     shdr = (struct elf_shdr *)alloca(i);
3003     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3004         return;
3005     }
3006 
3007     bswap_shdr(shdr, shnum);
3008     for (i = 0; i < shnum; ++i) {
3009         if (shdr[i].sh_type == SHT_SYMTAB) {
3010             sym_idx = i;
3011             str_idx = shdr[i].sh_link;
3012             goto found;
3013         }
3014     }
3015 
3016     /* There will be no symbol table if the file was stripped.  */
3017     return;
3018 
3019  found:
3020     /* Now know where the strtab and symtab are.  Snarf them.  */
3021     s = g_try_new(struct syminfo, 1);
3022     if (!s) {
3023         goto give_up;
3024     }
3025 
3026     segsz = shdr[str_idx].sh_size;
3027     s->disas_strtab = strings = g_try_malloc(segsz);
3028     if (!strings ||
3029         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3030         goto give_up;
3031     }
3032 
3033     segsz = shdr[sym_idx].sh_size;
3034     syms = g_try_malloc(segsz);
3035     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3036         goto give_up;
3037     }
3038 
3039     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3040         /* Implausibly large symbol table: give up rather than ploughing
3041          * on with the number of symbols calculation overflowing
3042          */
3043         goto give_up;
3044     }
3045     nsyms = segsz / sizeof(struct elf_sym);
3046     for (i = 0; i < nsyms; ) {
3047         bswap_sym(syms + i);
3048         /* Throw away entries which we do not need.  */
3049         if (syms[i].st_shndx == SHN_UNDEF
3050             || syms[i].st_shndx >= SHN_LORESERVE
3051             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3052             if (i < --nsyms) {
3053                 syms[i] = syms[nsyms];
3054             }
3055         } else {
3056 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3057             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3058             syms[i].st_value &= ~(target_ulong)1;
3059 #endif
3060             syms[i].st_value += load_bias;
3061             i++;
3062         }
3063     }
3064 
3065     /* No "useful" symbol.  */
3066     if (nsyms == 0) {
3067         goto give_up;
3068     }
3069 
3070     /* Attempt to free the storage associated with the local symbols
3071        that we threw away.  Whether or not this has any effect on the
3072        memory allocation depends on the malloc implementation and how
3073        many symbols we managed to discard.  */
3074     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3075     if (new_syms == NULL) {
3076         goto give_up;
3077     }
3078     syms = new_syms;
3079 
3080     qsort(syms, nsyms, sizeof(*syms), symcmp);
3081 
3082     s->disas_num_syms = nsyms;
3083 #if ELF_CLASS == ELFCLASS32
3084     s->disas_symtab.elf32 = syms;
3085 #else
3086     s->disas_symtab.elf64 = syms;
3087 #endif
3088     s->lookup_symbol = lookup_symbolxx;
3089     s->next = syminfos;
3090     syminfos = s;
3091 
3092     return;
3093 
3094 give_up:
3095     g_free(s);
3096     g_free(strings);
3097     g_free(syms);
3098 }
3099 
3100 uint32_t get_elf_eflags(int fd)
3101 {
3102     struct elfhdr ehdr;
3103     off_t offset;
3104     int ret;
3105 
3106     /* Read ELF header */
3107     offset = lseek(fd, 0, SEEK_SET);
3108     if (offset == (off_t) -1) {
3109         return 0;
3110     }
3111     ret = read(fd, &ehdr, sizeof(ehdr));
3112     if (ret < sizeof(ehdr)) {
3113         return 0;
3114     }
3115     offset = lseek(fd, offset, SEEK_SET);
3116     if (offset == (off_t) -1) {
3117         return 0;
3118     }
3119 
3120     /* Check ELF signature */
3121     if (!elf_check_ident(&ehdr)) {
3122         return 0;
3123     }
3124 
3125     /* check header */
3126     bswap_ehdr(&ehdr);
3127     if (!elf_check_ehdr(&ehdr)) {
3128         return 0;
3129     }
3130 
3131     /* return architecture id */
3132     return ehdr.e_flags;
3133 }
3134 
3135 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3136 {
3137     struct image_info interp_info;
3138     struct elfhdr elf_ex;
3139     char *elf_interpreter = NULL;
3140     char *scratch;
3141 
3142     memset(&interp_info, 0, sizeof(interp_info));
3143 #ifdef TARGET_MIPS
3144     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3145 #endif
3146 
3147     info->start_mmap = (abi_ulong)ELF_START_MMAP;
3148 
3149     load_elf_image(bprm->filename, bprm->fd, info,
3150                    &elf_interpreter, bprm->buf);
3151 
3152     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3153        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3154        when we load the interpreter.  */
3155     elf_ex = *(struct elfhdr *)bprm->buf;
3156 
3157     /* Do this so that we can load the interpreter, if need be.  We will
3158        change some of these later */
3159     bprm->p = setup_arg_pages(bprm, info);
3160 
3161     scratch = g_new0(char, TARGET_PAGE_SIZE);
3162     if (STACK_GROWS_DOWN) {
3163         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3164                                    bprm->p, info->stack_limit);
3165         info->file_string = bprm->p;
3166         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3167                                    bprm->p, info->stack_limit);
3168         info->env_strings = bprm->p;
3169         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3170                                    bprm->p, info->stack_limit);
3171         info->arg_strings = bprm->p;
3172     } else {
3173         info->arg_strings = bprm->p;
3174         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3175                                    bprm->p, info->stack_limit);
3176         info->env_strings = bprm->p;
3177         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3178                                    bprm->p, info->stack_limit);
3179         info->file_string = bprm->p;
3180         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3181                                    bprm->p, info->stack_limit);
3182     }
3183 
3184     g_free(scratch);
3185 
3186     if (!bprm->p) {
3187         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3188         exit(-1);
3189     }
3190 
3191     if (elf_interpreter) {
3192         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3193 
3194         /* If the program interpreter is one of these two, then assume
3195            an iBCS2 image.  Otherwise assume a native linux image.  */
3196 
3197         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3198             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3199             info->personality = PER_SVR4;
3200 
3201             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3202                and some applications "depend" upon this behavior.  Since
3203                we do not have the power to recompile these, we emulate
3204                the SVr4 behavior.  Sigh.  */
3205             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3206                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3207         }
3208 #ifdef TARGET_MIPS
3209         info->interp_fp_abi = interp_info.fp_abi;
3210 #endif
3211     }
3212 
3213     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3214                                 info, (elf_interpreter ? &interp_info : NULL));
3215     info->start_stack = bprm->p;
3216 
3217     /* If we have an interpreter, set that as the program's entry point.
3218        Copy the load_bias as well, to help PPC64 interpret the entry
3219        point as a function descriptor.  Do this after creating elf tables
3220        so that we copy the original program entry point into the AUXV.  */
3221     if (elf_interpreter) {
3222         info->load_bias = interp_info.load_bias;
3223         info->entry = interp_info.entry;
3224         g_free(elf_interpreter);
3225     }
3226 
3227 #ifdef USE_ELF_CORE_DUMP
3228     bprm->core_dump = &elf_core_dump;
3229 #endif
3230 
3231     /*
3232      * If we reserved extra space for brk, release it now.
3233      * The implementation of do_brk in syscalls.c expects to be able
3234      * to mmap pages in this space.
3235      */
3236     if (info->reserve_brk) {
3237         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
3238         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
3239         target_munmap(start_brk, end_brk - start_brk);
3240     }
3241 
3242     return 0;
3243 }
3244 
3245 #ifdef USE_ELF_CORE_DUMP
3246 /*
3247  * Definitions to generate Intel SVR4-like core files.
3248  * These mostly have the same names as the SVR4 types with "target_elf_"
3249  * tacked on the front to prevent clashes with linux definitions,
3250  * and the typedef forms have been avoided.  This is mostly like
3251  * the SVR4 structure, but more Linuxy, with things that Linux does
3252  * not support and which gdb doesn't really use excluded.
3253  *
3254  * Fields we don't dump (their contents is zero) in linux-user qemu
3255  * are marked with XXX.
3256  *
3257  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3258  *
3259  * Porting ELF coredump for target is (quite) simple process.  First you
3260  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3261  * the target resides):
3262  *
3263  * #define USE_ELF_CORE_DUMP
3264  *
3265  * Next you define type of register set used for dumping.  ELF specification
3266  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3267  *
3268  * typedef <target_regtype> target_elf_greg_t;
3269  * #define ELF_NREG <number of registers>
3270  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3271  *
3272  * Last step is to implement target specific function that copies registers
3273  * from given cpu into just specified register set.  Prototype is:
3274  *
3275  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3276  *                                const CPUArchState *env);
3277  *
3278  * Parameters:
3279  *     regs - copy register values into here (allocated and zeroed by caller)
3280  *     env - copy registers from here
3281  *
3282  * Example for ARM target is provided in this file.
3283  */
3284 
3285 /* An ELF note in memory */
3286 struct memelfnote {
3287     const char *name;
3288     size_t     namesz;
3289     size_t     namesz_rounded;
3290     int        type;
3291     size_t     datasz;
3292     size_t     datasz_rounded;
3293     void       *data;
3294     size_t     notesz;
3295 };
3296 
3297 struct target_elf_siginfo {
3298     abi_int    si_signo; /* signal number */
3299     abi_int    si_code;  /* extra code */
3300     abi_int    si_errno; /* errno */
3301 };
3302 
3303 struct target_elf_prstatus {
3304     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3305     abi_short          pr_cursig;    /* Current signal */
3306     abi_ulong          pr_sigpend;   /* XXX */
3307     abi_ulong          pr_sighold;   /* XXX */
3308     target_pid_t       pr_pid;
3309     target_pid_t       pr_ppid;
3310     target_pid_t       pr_pgrp;
3311     target_pid_t       pr_sid;
3312     struct target_timeval pr_utime;  /* XXX User time */
3313     struct target_timeval pr_stime;  /* XXX System time */
3314     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3315     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3316     target_elf_gregset_t      pr_reg;       /* GP registers */
3317     abi_int            pr_fpvalid;   /* XXX */
3318 };
3319 
3320 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3321 
3322 struct target_elf_prpsinfo {
3323     char         pr_state;       /* numeric process state */
3324     char         pr_sname;       /* char for pr_state */
3325     char         pr_zomb;        /* zombie */
3326     char         pr_nice;        /* nice val */
3327     abi_ulong    pr_flag;        /* flags */
3328     target_uid_t pr_uid;
3329     target_gid_t pr_gid;
3330     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3331     /* Lots missing */
3332     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3333     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3334 };
3335 
3336 /* Here is the structure in which status of each thread is captured. */
3337 struct elf_thread_status {
3338     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3339     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3340 #if 0
3341     elf_fpregset_t fpu;             /* NT_PRFPREG */
3342     struct task_struct *thread;
3343     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3344 #endif
3345     struct memelfnote notes[1];
3346     int num_notes;
3347 };
3348 
3349 struct elf_note_info {
3350     struct memelfnote   *notes;
3351     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3352     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3353 
3354     QTAILQ_HEAD(, elf_thread_status) thread_list;
3355 #if 0
3356     /*
3357      * Current version of ELF coredump doesn't support
3358      * dumping fp regs etc.
3359      */
3360     elf_fpregset_t *fpu;
3361     elf_fpxregset_t *xfpu;
3362     int thread_status_size;
3363 #endif
3364     int notes_size;
3365     int numnote;
3366 };
3367 
3368 struct vm_area_struct {
3369     target_ulong   vma_start;  /* start vaddr of memory region */
3370     target_ulong   vma_end;    /* end vaddr of memory region */
3371     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3372     QTAILQ_ENTRY(vm_area_struct) vma_link;
3373 };
3374 
3375 struct mm_struct {
3376     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3377     int mm_count;           /* number of mappings */
3378 };
3379 
3380 static struct mm_struct *vma_init(void);
3381 static void vma_delete(struct mm_struct *);
3382 static int vma_add_mapping(struct mm_struct *, target_ulong,
3383                            target_ulong, abi_ulong);
3384 static int vma_get_mapping_count(const struct mm_struct *);
3385 static struct vm_area_struct *vma_first(const struct mm_struct *);
3386 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3387 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3388 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3389                       unsigned long flags);
3390 
3391 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3392 static void fill_note(struct memelfnote *, const char *, int,
3393                       unsigned int, void *);
3394 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3395 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3396 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3397 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3398 static size_t note_size(const struct memelfnote *);
3399 static void free_note_info(struct elf_note_info *);
3400 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3401 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3402 static int core_dump_filename(const TaskState *, char *, size_t);
3403 
3404 static int dump_write(int, const void *, size_t);
3405 static int write_note(struct memelfnote *, int);
3406 static int write_note_info(struct elf_note_info *, int);
3407 
3408 #ifdef BSWAP_NEEDED
3409 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3410 {
3411     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3412     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3413     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3414     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3415     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3416     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3417     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3418     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3419     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3420     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3421     /* cpu times are not filled, so we skip them */
3422     /* regs should be in correct format already */
3423     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3424 }
3425 
3426 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3427 {
3428     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3429     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3430     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3431     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3432     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3433     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3434     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3435 }
3436 
3437 static void bswap_note(struct elf_note *en)
3438 {
3439     bswap32s(&en->n_namesz);
3440     bswap32s(&en->n_descsz);
3441     bswap32s(&en->n_type);
3442 }
3443 #else
3444 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3445 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3446 static inline void bswap_note(struct elf_note *en) { }
3447 #endif /* BSWAP_NEEDED */
3448 
3449 /*
3450  * Minimal support for linux memory regions.  These are needed
3451  * when we are finding out what memory exactly belongs to
3452  * emulated process.  No locks needed here, as long as
3453  * thread that received the signal is stopped.
3454  */
3455 
3456 static struct mm_struct *vma_init(void)
3457 {
3458     struct mm_struct *mm;
3459 
3460     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3461         return (NULL);
3462 
3463     mm->mm_count = 0;
3464     QTAILQ_INIT(&mm->mm_mmap);
3465 
3466     return (mm);
3467 }
3468 
3469 static void vma_delete(struct mm_struct *mm)
3470 {
3471     struct vm_area_struct *vma;
3472 
3473     while ((vma = vma_first(mm)) != NULL) {
3474         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3475         g_free(vma);
3476     }
3477     g_free(mm);
3478 }
3479 
3480 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3481                            target_ulong end, abi_ulong flags)
3482 {
3483     struct vm_area_struct *vma;
3484 
3485     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3486         return (-1);
3487 
3488     vma->vma_start = start;
3489     vma->vma_end = end;
3490     vma->vma_flags = flags;
3491 
3492     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3493     mm->mm_count++;
3494 
3495     return (0);
3496 }
3497 
3498 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3499 {
3500     return (QTAILQ_FIRST(&mm->mm_mmap));
3501 }
3502 
3503 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3504 {
3505     return (QTAILQ_NEXT(vma, vma_link));
3506 }
3507 
3508 static int vma_get_mapping_count(const struct mm_struct *mm)
3509 {
3510     return (mm->mm_count);
3511 }
3512 
3513 /*
3514  * Calculate file (dump) size of given memory region.
3515  */
3516 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3517 {
3518     /* if we cannot even read the first page, skip it */
3519     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3520         return (0);
3521 
3522     /*
3523      * Usually we don't dump executable pages as they contain
3524      * non-writable code that debugger can read directly from
3525      * target library etc.  However, thread stacks are marked
3526      * also executable so we read in first page of given region
3527      * and check whether it contains elf header.  If there is
3528      * no elf header, we dump it.
3529      */
3530     if (vma->vma_flags & PROT_EXEC) {
3531         char page[TARGET_PAGE_SIZE];
3532 
3533         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
3534             return 0;
3535         }
3536         if ((page[EI_MAG0] == ELFMAG0) &&
3537             (page[EI_MAG1] == ELFMAG1) &&
3538             (page[EI_MAG2] == ELFMAG2) &&
3539             (page[EI_MAG3] == ELFMAG3)) {
3540             /*
3541              * Mappings are possibly from ELF binary.  Don't dump
3542              * them.
3543              */
3544             return (0);
3545         }
3546     }
3547 
3548     return (vma->vma_end - vma->vma_start);
3549 }
3550 
3551 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3552                       unsigned long flags)
3553 {
3554     struct mm_struct *mm = (struct mm_struct *)priv;
3555 
3556     vma_add_mapping(mm, start, end, flags);
3557     return (0);
3558 }
3559 
3560 static void fill_note(struct memelfnote *note, const char *name, int type,
3561                       unsigned int sz, void *data)
3562 {
3563     unsigned int namesz;
3564 
3565     namesz = strlen(name) + 1;
3566     note->name = name;
3567     note->namesz = namesz;
3568     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3569     note->type = type;
3570     note->datasz = sz;
3571     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3572 
3573     note->data = data;
3574 
3575     /*
3576      * We calculate rounded up note size here as specified by
3577      * ELF document.
3578      */
3579     note->notesz = sizeof (struct elf_note) +
3580         note->namesz_rounded + note->datasz_rounded;
3581 }
3582 
3583 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3584                             uint32_t flags)
3585 {
3586     (void) memset(elf, 0, sizeof(*elf));
3587 
3588     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3589     elf->e_ident[EI_CLASS] = ELF_CLASS;
3590     elf->e_ident[EI_DATA] = ELF_DATA;
3591     elf->e_ident[EI_VERSION] = EV_CURRENT;
3592     elf->e_ident[EI_OSABI] = ELF_OSABI;
3593 
3594     elf->e_type = ET_CORE;
3595     elf->e_machine = machine;
3596     elf->e_version = EV_CURRENT;
3597     elf->e_phoff = sizeof(struct elfhdr);
3598     elf->e_flags = flags;
3599     elf->e_ehsize = sizeof(struct elfhdr);
3600     elf->e_phentsize = sizeof(struct elf_phdr);
3601     elf->e_phnum = segs;
3602 
3603     bswap_ehdr(elf);
3604 }
3605 
3606 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3607 {
3608     phdr->p_type = PT_NOTE;
3609     phdr->p_offset = offset;
3610     phdr->p_vaddr = 0;
3611     phdr->p_paddr = 0;
3612     phdr->p_filesz = sz;
3613     phdr->p_memsz = 0;
3614     phdr->p_flags = 0;
3615     phdr->p_align = 0;
3616 
3617     bswap_phdr(phdr, 1);
3618 }
3619 
3620 static size_t note_size(const struct memelfnote *note)
3621 {
3622     return (note->notesz);
3623 }
3624 
3625 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3626                           const TaskState *ts, int signr)
3627 {
3628     (void) memset(prstatus, 0, sizeof (*prstatus));
3629     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3630     prstatus->pr_pid = ts->ts_tid;
3631     prstatus->pr_ppid = getppid();
3632     prstatus->pr_pgrp = getpgrp();
3633     prstatus->pr_sid = getsid(0);
3634 
3635     bswap_prstatus(prstatus);
3636 }
3637 
3638 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3639 {
3640     char *base_filename;
3641     unsigned int i, len;
3642 
3643     (void) memset(psinfo, 0, sizeof (*psinfo));
3644 
3645     len = ts->info->arg_end - ts->info->arg_start;
3646     if (len >= ELF_PRARGSZ)
3647         len = ELF_PRARGSZ - 1;
3648     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3649         return -EFAULT;
3650     for (i = 0; i < len; i++)
3651         if (psinfo->pr_psargs[i] == 0)
3652             psinfo->pr_psargs[i] = ' ';
3653     psinfo->pr_psargs[len] = 0;
3654 
3655     psinfo->pr_pid = getpid();
3656     psinfo->pr_ppid = getppid();
3657     psinfo->pr_pgrp = getpgrp();
3658     psinfo->pr_sid = getsid(0);
3659     psinfo->pr_uid = getuid();
3660     psinfo->pr_gid = getgid();
3661 
3662     base_filename = g_path_get_basename(ts->bprm->filename);
3663     /*
3664      * Using strncpy here is fine: at max-length,
3665      * this field is not NUL-terminated.
3666      */
3667     (void) strncpy(psinfo->pr_fname, base_filename,
3668                    sizeof(psinfo->pr_fname));
3669 
3670     g_free(base_filename);
3671     bswap_psinfo(psinfo);
3672     return (0);
3673 }
3674 
3675 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3676 {
3677     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3678     elf_addr_t orig_auxv = auxv;
3679     void *ptr;
3680     int len = ts->info->auxv_len;
3681 
3682     /*
3683      * Auxiliary vector is stored in target process stack.  It contains
3684      * {type, value} pairs that we need to dump into note.  This is not
3685      * strictly necessary but we do it here for sake of completeness.
3686      */
3687 
3688     /* read in whole auxv vector and copy it to memelfnote */
3689     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3690     if (ptr != NULL) {
3691         fill_note(note, "CORE", NT_AUXV, len, ptr);
3692         unlock_user(ptr, auxv, len);
3693     }
3694 }
3695 
3696 /*
3697  * Constructs name of coredump file.  We have following convention
3698  * for the name:
3699  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3700  *
3701  * Returns 0 in case of success, -1 otherwise (errno is set).
3702  */
3703 static int core_dump_filename(const TaskState *ts, char *buf,
3704                               size_t bufsize)
3705 {
3706     char timestamp[64];
3707     char *base_filename = NULL;
3708     struct timeval tv;
3709     struct tm tm;
3710 
3711     assert(bufsize >= PATH_MAX);
3712 
3713     if (gettimeofday(&tv, NULL) < 0) {
3714         (void) fprintf(stderr, "unable to get current timestamp: %s",
3715                        strerror(errno));
3716         return (-1);
3717     }
3718 
3719     base_filename = g_path_get_basename(ts->bprm->filename);
3720     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3721                     localtime_r(&tv.tv_sec, &tm));
3722     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3723                     base_filename, timestamp, (int)getpid());
3724     g_free(base_filename);
3725 
3726     return (0);
3727 }
3728 
3729 static int dump_write(int fd, const void *ptr, size_t size)
3730 {
3731     const char *bufp = (const char *)ptr;
3732     ssize_t bytes_written, bytes_left;
3733     struct rlimit dumpsize;
3734     off_t pos;
3735 
3736     bytes_written = 0;
3737     getrlimit(RLIMIT_CORE, &dumpsize);
3738     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3739         if (errno == ESPIPE) { /* not a seekable stream */
3740             bytes_left = size;
3741         } else {
3742             return pos;
3743         }
3744     } else {
3745         if (dumpsize.rlim_cur <= pos) {
3746             return -1;
3747         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3748             bytes_left = size;
3749         } else {
3750             size_t limit_left=dumpsize.rlim_cur - pos;
3751             bytes_left = limit_left >= size ? size : limit_left ;
3752         }
3753     }
3754 
3755     /*
3756      * In normal conditions, single write(2) should do but
3757      * in case of socket etc. this mechanism is more portable.
3758      */
3759     do {
3760         bytes_written = write(fd, bufp, bytes_left);
3761         if (bytes_written < 0) {
3762             if (errno == EINTR)
3763                 continue;
3764             return (-1);
3765         } else if (bytes_written == 0) { /* eof */
3766             return (-1);
3767         }
3768         bufp += bytes_written;
3769         bytes_left -= bytes_written;
3770     } while (bytes_left > 0);
3771 
3772     return (0);
3773 }
3774 
3775 static int write_note(struct memelfnote *men, int fd)
3776 {
3777     struct elf_note en;
3778 
3779     en.n_namesz = men->namesz;
3780     en.n_type = men->type;
3781     en.n_descsz = men->datasz;
3782 
3783     bswap_note(&en);
3784 
3785     if (dump_write(fd, &en, sizeof(en)) != 0)
3786         return (-1);
3787     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3788         return (-1);
3789     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3790         return (-1);
3791 
3792     return (0);
3793 }
3794 
3795 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3796 {
3797     CPUState *cpu = env_cpu((CPUArchState *)env);
3798     TaskState *ts = (TaskState *)cpu->opaque;
3799     struct elf_thread_status *ets;
3800 
3801     ets = g_malloc0(sizeof (*ets));
3802     ets->num_notes = 1; /* only prstatus is dumped */
3803     fill_prstatus(&ets->prstatus, ts, 0);
3804     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3805     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3806               &ets->prstatus);
3807 
3808     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3809 
3810     info->notes_size += note_size(&ets->notes[0]);
3811 }
3812 
3813 static void init_note_info(struct elf_note_info *info)
3814 {
3815     /* Initialize the elf_note_info structure so that it is at
3816      * least safe to call free_note_info() on it. Must be
3817      * called before calling fill_note_info().
3818      */
3819     memset(info, 0, sizeof (*info));
3820     QTAILQ_INIT(&info->thread_list);
3821 }
3822 
3823 static int fill_note_info(struct elf_note_info *info,
3824                           long signr, const CPUArchState *env)
3825 {
3826 #define NUMNOTES 3
3827     CPUState *cpu = env_cpu((CPUArchState *)env);
3828     TaskState *ts = (TaskState *)cpu->opaque;
3829     int i;
3830 
3831     info->notes = g_new0(struct memelfnote, NUMNOTES);
3832     if (info->notes == NULL)
3833         return (-ENOMEM);
3834     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3835     if (info->prstatus == NULL)
3836         return (-ENOMEM);
3837     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3838     if (info->prstatus == NULL)
3839         return (-ENOMEM);
3840 
3841     /*
3842      * First fill in status (and registers) of current thread
3843      * including process info & aux vector.
3844      */
3845     fill_prstatus(info->prstatus, ts, signr);
3846     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3847     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3848               sizeof (*info->prstatus), info->prstatus);
3849     fill_psinfo(info->psinfo, ts);
3850     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3851               sizeof (*info->psinfo), info->psinfo);
3852     fill_auxv_note(&info->notes[2], ts);
3853     info->numnote = 3;
3854 
3855     info->notes_size = 0;
3856     for (i = 0; i < info->numnote; i++)
3857         info->notes_size += note_size(&info->notes[i]);
3858 
3859     /* read and fill status of all threads */
3860     cpu_list_lock();
3861     CPU_FOREACH(cpu) {
3862         if (cpu == thread_cpu) {
3863             continue;
3864         }
3865         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3866     }
3867     cpu_list_unlock();
3868 
3869     return (0);
3870 }
3871 
3872 static void free_note_info(struct elf_note_info *info)
3873 {
3874     struct elf_thread_status *ets;
3875 
3876     while (!QTAILQ_EMPTY(&info->thread_list)) {
3877         ets = QTAILQ_FIRST(&info->thread_list);
3878         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3879         g_free(ets);
3880     }
3881 
3882     g_free(info->prstatus);
3883     g_free(info->psinfo);
3884     g_free(info->notes);
3885 }
3886 
3887 static int write_note_info(struct elf_note_info *info, int fd)
3888 {
3889     struct elf_thread_status *ets;
3890     int i, error = 0;
3891 
3892     /* write prstatus, psinfo and auxv for current thread */
3893     for (i = 0; i < info->numnote; i++)
3894         if ((error = write_note(&info->notes[i], fd)) != 0)
3895             return (error);
3896 
3897     /* write prstatus for each thread */
3898     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3899         if ((error = write_note(&ets->notes[0], fd)) != 0)
3900             return (error);
3901     }
3902 
3903     return (0);
3904 }
3905 
3906 /*
3907  * Write out ELF coredump.
3908  *
3909  * See documentation of ELF object file format in:
3910  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3911  *
3912  * Coredump format in linux is following:
3913  *
3914  * 0   +----------------------+         \
3915  *     | ELF header           | ET_CORE  |
3916  *     +----------------------+          |
3917  *     | ELF program headers  |          |--- headers
3918  *     | - NOTE section       |          |
3919  *     | - PT_LOAD sections   |          |
3920  *     +----------------------+         /
3921  *     | NOTEs:               |
3922  *     | - NT_PRSTATUS        |
3923  *     | - NT_PRSINFO         |
3924  *     | - NT_AUXV            |
3925  *     +----------------------+ <-- aligned to target page
3926  *     | Process memory dump  |
3927  *     :                      :
3928  *     .                      .
3929  *     :                      :
3930  *     |                      |
3931  *     +----------------------+
3932  *
3933  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3934  * NT_PRSINFO  -> struct elf_prpsinfo
3935  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3936  *
3937  * Format follows System V format as close as possible.  Current
3938  * version limitations are as follows:
3939  *     - no floating point registers are dumped
3940  *
3941  * Function returns 0 in case of success, negative errno otherwise.
3942  *
3943  * TODO: make this work also during runtime: it should be
3944  * possible to force coredump from running process and then
3945  * continue processing.  For example qemu could set up SIGUSR2
3946  * handler (provided that target process haven't registered
3947  * handler for that) that does the dump when signal is received.
3948  */
3949 static int elf_core_dump(int signr, const CPUArchState *env)
3950 {
3951     const CPUState *cpu = env_cpu((CPUArchState *)env);
3952     const TaskState *ts = (const TaskState *)cpu->opaque;
3953     struct vm_area_struct *vma = NULL;
3954     char corefile[PATH_MAX];
3955     struct elf_note_info info;
3956     struct elfhdr elf;
3957     struct elf_phdr phdr;
3958     struct rlimit dumpsize;
3959     struct mm_struct *mm = NULL;
3960     off_t offset = 0, data_offset = 0;
3961     int segs = 0;
3962     int fd = -1;
3963 
3964     init_note_info(&info);
3965 
3966     errno = 0;
3967     getrlimit(RLIMIT_CORE, &dumpsize);
3968     if (dumpsize.rlim_cur == 0)
3969         return 0;
3970 
3971     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3972         return (-errno);
3973 
3974     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3975                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3976         return (-errno);
3977 
3978     /*
3979      * Walk through target process memory mappings and
3980      * set up structure containing this information.  After
3981      * this point vma_xxx functions can be used.
3982      */
3983     if ((mm = vma_init()) == NULL)
3984         goto out;
3985 
3986     walk_memory_regions(mm, vma_walker);
3987     segs = vma_get_mapping_count(mm);
3988 
3989     /*
3990      * Construct valid coredump ELF header.  We also
3991      * add one more segment for notes.
3992      */
3993     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3994     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3995         goto out;
3996 
3997     /* fill in the in-memory version of notes */
3998     if (fill_note_info(&info, signr, env) < 0)
3999         goto out;
4000 
4001     offset += sizeof (elf);                             /* elf header */
4002     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4003 
4004     /* write out notes program header */
4005     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4006 
4007     offset += info.notes_size;
4008     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4009         goto out;
4010 
4011     /*
4012      * ELF specification wants data to start at page boundary so
4013      * we align it here.
4014      */
4015     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4016 
4017     /*
4018      * Write program headers for memory regions mapped in
4019      * the target process.
4020      */
4021     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4022         (void) memset(&phdr, 0, sizeof (phdr));
4023 
4024         phdr.p_type = PT_LOAD;
4025         phdr.p_offset = offset;
4026         phdr.p_vaddr = vma->vma_start;
4027         phdr.p_paddr = 0;
4028         phdr.p_filesz = vma_dump_size(vma);
4029         offset += phdr.p_filesz;
4030         phdr.p_memsz = vma->vma_end - vma->vma_start;
4031         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4032         if (vma->vma_flags & PROT_WRITE)
4033             phdr.p_flags |= PF_W;
4034         if (vma->vma_flags & PROT_EXEC)
4035             phdr.p_flags |= PF_X;
4036         phdr.p_align = ELF_EXEC_PAGESIZE;
4037 
4038         bswap_phdr(&phdr, 1);
4039         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4040             goto out;
4041         }
4042     }
4043 
4044     /*
4045      * Next we write notes just after program headers.  No
4046      * alignment needed here.
4047      */
4048     if (write_note_info(&info, fd) < 0)
4049         goto out;
4050 
4051     /* align data to page boundary */
4052     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4053         goto out;
4054 
4055     /*
4056      * Finally we can dump process memory into corefile as well.
4057      */
4058     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4059         abi_ulong addr;
4060         abi_ulong end;
4061 
4062         end = vma->vma_start + vma_dump_size(vma);
4063 
4064         for (addr = vma->vma_start; addr < end;
4065              addr += TARGET_PAGE_SIZE) {
4066             char page[TARGET_PAGE_SIZE];
4067             int error;
4068 
4069             /*
4070              *  Read in page from target process memory and
4071              *  write it to coredump file.
4072              */
4073             error = copy_from_user(page, addr, sizeof (page));
4074             if (error != 0) {
4075                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4076                                addr);
4077                 errno = -error;
4078                 goto out;
4079             }
4080             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4081                 goto out;
4082         }
4083     }
4084 
4085  out:
4086     free_note_info(&info);
4087     if (mm != NULL)
4088         vma_delete(mm);
4089     (void) close(fd);
4090 
4091     if (errno != 0)
4092         return (-errno);
4093     return (0);
4094 }
4095 #endif /* USE_ELF_CORE_DUMP */
4096 
4097 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4098 {
4099     init_thread(regs, infop);
4100 }
4101