xref: /openbmc/qemu/linux-user/elfload.c (revision a8aa8af9)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/prctl.h>
6 #include <sys/resource.h>
7 #include <sys/shm.h>
8 
9 #include "qemu.h"
10 #include "user/tswap-target.h"
11 #include "user/guest-base.h"
12 #include "user-internals.h"
13 #include "signal-common.h"
14 #include "loader.h"
15 #include "user-mmap.h"
16 #include "disas/disas.h"
17 #include "qemu/bitops.h"
18 #include "qemu/path.h"
19 #include "qemu/queue.h"
20 #include "qemu/guest-random.h"
21 #include "qemu/units.h"
22 #include "qemu/selfmap.h"
23 #include "qemu/lockable.h"
24 #include "qapi/error.h"
25 #include "qemu/error-report.h"
26 #include "target_signal.h"
27 #include "tcg/debuginfo.h"
28 
29 #ifdef TARGET_ARM
30 #include "target/arm/cpu-features.h"
31 #endif
32 
33 #ifdef _ARCH_PPC64
34 #undef ARCH_DLINFO
35 #undef ELF_PLATFORM
36 #undef ELF_HWCAP
37 #undef ELF_HWCAP2
38 #undef ELF_CLASS
39 #undef ELF_DATA
40 #undef ELF_ARCH
41 #endif
42 
43 #ifndef TARGET_ARCH_HAS_SIGTRAMP_PAGE
44 #define TARGET_ARCH_HAS_SIGTRAMP_PAGE 0
45 #endif
46 
47 typedef struct {
48     const uint8_t *image;
49     const uint32_t *relocs;
50     unsigned image_size;
51     unsigned reloc_count;
52     unsigned sigreturn_ofs;
53     unsigned rt_sigreturn_ofs;
54 } VdsoImageInfo;
55 
56 #define ELF_OSABI   ELFOSABI_SYSV
57 
58 /* from personality.h */
59 
60 /*
61  * Flags for bug emulation.
62  *
63  * These occupy the top three bytes.
64  */
65 enum {
66     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
67     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
68                                            descriptors (signal handling) */
69     MMAP_PAGE_ZERO =    0x0100000,
70     ADDR_COMPAT_LAYOUT = 0x0200000,
71     READ_IMPLIES_EXEC = 0x0400000,
72     ADDR_LIMIT_32BIT =  0x0800000,
73     SHORT_INODE =       0x1000000,
74     WHOLE_SECONDS =     0x2000000,
75     STICKY_TIMEOUTS =   0x4000000,
76     ADDR_LIMIT_3GB =    0x8000000,
77 };
78 
79 /*
80  * Personality types.
81  *
82  * These go in the low byte.  Avoid using the top bit, it will
83  * conflict with error returns.
84  */
85 enum {
86     PER_LINUX =         0x0000,
87     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
88     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
89     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
90     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
91     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
92     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
93     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
94     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
95     PER_BSD =           0x0006,
96     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
97     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
98     PER_LINUX32 =       0x0008,
99     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
100     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
101     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
102     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
103     PER_RISCOS =        0x000c,
104     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
105     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
106     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
107     PER_HPUX =          0x0010,
108     PER_MASK =          0x00ff,
109 };
110 
111 /*
112  * Return the base personality without flags.
113  */
114 #define personality(pers)       (pers & PER_MASK)
115 
116 int info_is_fdpic(struct image_info *info)
117 {
118     return info->personality == PER_LINUX_FDPIC;
119 }
120 
121 /* this flag is uneffective under linux too, should be deleted */
122 #ifndef MAP_DENYWRITE
123 #define MAP_DENYWRITE 0
124 #endif
125 
126 /* should probably go in elf.h */
127 #ifndef ELIBBAD
128 #define ELIBBAD 80
129 #endif
130 
131 #if TARGET_BIG_ENDIAN
132 #define ELF_DATA        ELFDATA2MSB
133 #else
134 #define ELF_DATA        ELFDATA2LSB
135 #endif
136 
137 #ifdef TARGET_ABI_MIPSN32
138 typedef abi_ullong      target_elf_greg_t;
139 #define tswapreg(ptr)   tswap64(ptr)
140 #else
141 typedef abi_ulong       target_elf_greg_t;
142 #define tswapreg(ptr)   tswapal(ptr)
143 #endif
144 
145 #ifdef USE_UID16
146 typedef abi_ushort      target_uid_t;
147 typedef abi_ushort      target_gid_t;
148 #else
149 typedef abi_uint        target_uid_t;
150 typedef abi_uint        target_gid_t;
151 #endif
152 typedef abi_int         target_pid_t;
153 
154 #ifdef TARGET_I386
155 
156 #define ELF_HWCAP get_elf_hwcap()
157 
158 static uint32_t get_elf_hwcap(void)
159 {
160     X86CPU *cpu = X86_CPU(thread_cpu);
161 
162     return cpu->env.features[FEAT_1_EDX];
163 }
164 
165 #ifdef TARGET_X86_64
166 #define ELF_CLASS      ELFCLASS64
167 #define ELF_ARCH       EM_X86_64
168 
169 #define ELF_PLATFORM   "x86_64"
170 
171 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
172 {
173     regs->rax = 0;
174     regs->rsp = infop->start_stack;
175     regs->rip = infop->entry;
176 }
177 
178 #define ELF_NREG    27
179 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
180 
181 /*
182  * Note that ELF_NREG should be 29 as there should be place for
183  * TRAPNO and ERR "registers" as well but linux doesn't dump
184  * those.
185  *
186  * See linux kernel: arch/x86/include/asm/elf.h
187  */
188 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
189 {
190     (*regs)[0] = tswapreg(env->regs[15]);
191     (*regs)[1] = tswapreg(env->regs[14]);
192     (*regs)[2] = tswapreg(env->regs[13]);
193     (*regs)[3] = tswapreg(env->regs[12]);
194     (*regs)[4] = tswapreg(env->regs[R_EBP]);
195     (*regs)[5] = tswapreg(env->regs[R_EBX]);
196     (*regs)[6] = tswapreg(env->regs[11]);
197     (*regs)[7] = tswapreg(env->regs[10]);
198     (*regs)[8] = tswapreg(env->regs[9]);
199     (*regs)[9] = tswapreg(env->regs[8]);
200     (*regs)[10] = tswapreg(env->regs[R_EAX]);
201     (*regs)[11] = tswapreg(env->regs[R_ECX]);
202     (*regs)[12] = tswapreg(env->regs[R_EDX]);
203     (*regs)[13] = tswapreg(env->regs[R_ESI]);
204     (*regs)[14] = tswapreg(env->regs[R_EDI]);
205     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
206     (*regs)[16] = tswapreg(env->eip);
207     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
208     (*regs)[18] = tswapreg(env->eflags);
209     (*regs)[19] = tswapreg(env->regs[R_ESP]);
210     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
211     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
212     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
213     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
214     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
215     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
216     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
217 }
218 
219 #if ULONG_MAX > UINT32_MAX
220 #define INIT_GUEST_COMMPAGE
221 static bool init_guest_commpage(void)
222 {
223     /*
224      * The vsyscall page is at a high negative address aka kernel space,
225      * which means that we cannot actually allocate it with target_mmap.
226      * We still should be able to use page_set_flags, unless the user
227      * has specified -R reserved_va, which would trigger an assert().
228      */
229     if (reserved_va != 0 &&
230         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
231         error_report("Cannot allocate vsyscall page");
232         exit(EXIT_FAILURE);
233     }
234     page_set_flags(TARGET_VSYSCALL_PAGE,
235                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
236                    PAGE_EXEC | PAGE_VALID);
237     return true;
238 }
239 #endif
240 #else
241 
242 /*
243  * This is used to ensure we don't load something for the wrong architecture.
244  */
245 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
246 
247 /*
248  * These are used to set parameters in the core dumps.
249  */
250 #define ELF_CLASS       ELFCLASS32
251 #define ELF_ARCH        EM_386
252 
253 #define ELF_PLATFORM get_elf_platform()
254 #define EXSTACK_DEFAULT true
255 
256 static const char *get_elf_platform(void)
257 {
258     static char elf_platform[] = "i386";
259     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
260     if (family > 6) {
261         family = 6;
262     }
263     if (family >= 3) {
264         elf_platform[1] = '0' + family;
265     }
266     return elf_platform;
267 }
268 
269 static inline void init_thread(struct target_pt_regs *regs,
270                                struct image_info *infop)
271 {
272     regs->esp = infop->start_stack;
273     regs->eip = infop->entry;
274 
275     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
276        starts %edx contains a pointer to a function which might be
277        registered using `atexit'.  This provides a mean for the
278        dynamic linker to call DT_FINI functions for shared libraries
279        that have been loaded before the code runs.
280 
281        A value of 0 tells we have no such handler.  */
282     regs->edx = 0;
283 }
284 
285 #define ELF_NREG    17
286 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
287 
288 /*
289  * Note that ELF_NREG should be 19 as there should be place for
290  * TRAPNO and ERR "registers" as well but linux doesn't dump
291  * those.
292  *
293  * See linux kernel: arch/x86/include/asm/elf.h
294  */
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
296 {
297     (*regs)[0] = tswapreg(env->regs[R_EBX]);
298     (*regs)[1] = tswapreg(env->regs[R_ECX]);
299     (*regs)[2] = tswapreg(env->regs[R_EDX]);
300     (*regs)[3] = tswapreg(env->regs[R_ESI]);
301     (*regs)[4] = tswapreg(env->regs[R_EDI]);
302     (*regs)[5] = tswapreg(env->regs[R_EBP]);
303     (*regs)[6] = tswapreg(env->regs[R_EAX]);
304     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
305     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
306     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
307     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
308     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
309     (*regs)[12] = tswapreg(env->eip);
310     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
311     (*regs)[14] = tswapreg(env->eflags);
312     (*regs)[15] = tswapreg(env->regs[R_ESP]);
313     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
314 }
315 
316 /*
317  * i386 is the only target which supplies AT_SYSINFO for the vdso.
318  * All others only supply AT_SYSINFO_EHDR.
319  */
320 #define DLINFO_ARCH_ITEMS (vdso_info != NULL)
321 #define ARCH_DLINFO                                     \
322     do {                                                \
323         if (vdso_info) {                                \
324             NEW_AUX_ENT(AT_SYSINFO, vdso_info->entry);  \
325         }                                               \
326     } while (0)
327 
328 #endif /* TARGET_X86_64 */
329 
330 #define VDSO_HEADER "vdso.c.inc"
331 
332 #define USE_ELF_CORE_DUMP
333 #define ELF_EXEC_PAGESIZE       4096
334 
335 #endif /* TARGET_I386 */
336 
337 #ifdef TARGET_ARM
338 
339 #ifndef TARGET_AARCH64
340 /* 32 bit ARM definitions */
341 
342 #define ELF_ARCH        EM_ARM
343 #define ELF_CLASS       ELFCLASS32
344 #define EXSTACK_DEFAULT true
345 
346 static inline void init_thread(struct target_pt_regs *regs,
347                                struct image_info *infop)
348 {
349     abi_long stack = infop->start_stack;
350     memset(regs, 0, sizeof(*regs));
351 
352     regs->uregs[16] = ARM_CPU_MODE_USR;
353     if (infop->entry & 1) {
354         regs->uregs[16] |= CPSR_T;
355     }
356     regs->uregs[15] = infop->entry & 0xfffffffe;
357     regs->uregs[13] = infop->start_stack;
358     /* FIXME - what to for failure of get_user()? */
359     get_user_ual(regs->uregs[2], stack + 8); /* envp */
360     get_user_ual(regs->uregs[1], stack + 4); /* envp */
361     /* XXX: it seems that r0 is zeroed after ! */
362     regs->uregs[0] = 0;
363     /* For uClinux PIC binaries.  */
364     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
365     regs->uregs[10] = infop->start_data;
366 
367     /* Support ARM FDPIC.  */
368     if (info_is_fdpic(infop)) {
369         /* As described in the ABI document, r7 points to the loadmap info
370          * prepared by the kernel. If an interpreter is needed, r8 points
371          * to the interpreter loadmap and r9 points to the interpreter
372          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
373          * r9 points to the main program PT_DYNAMIC info.
374          */
375         regs->uregs[7] = infop->loadmap_addr;
376         if (infop->interpreter_loadmap_addr) {
377             /* Executable is dynamically loaded.  */
378             regs->uregs[8] = infop->interpreter_loadmap_addr;
379             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
380         } else {
381             regs->uregs[8] = 0;
382             regs->uregs[9] = infop->pt_dynamic_addr;
383         }
384     }
385 }
386 
387 #define ELF_NREG    18
388 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
389 
390 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
391 {
392     (*regs)[0] = tswapreg(env->regs[0]);
393     (*regs)[1] = tswapreg(env->regs[1]);
394     (*regs)[2] = tswapreg(env->regs[2]);
395     (*regs)[3] = tswapreg(env->regs[3]);
396     (*regs)[4] = tswapreg(env->regs[4]);
397     (*regs)[5] = tswapreg(env->regs[5]);
398     (*regs)[6] = tswapreg(env->regs[6]);
399     (*regs)[7] = tswapreg(env->regs[7]);
400     (*regs)[8] = tswapreg(env->regs[8]);
401     (*regs)[9] = tswapreg(env->regs[9]);
402     (*regs)[10] = tswapreg(env->regs[10]);
403     (*regs)[11] = tswapreg(env->regs[11]);
404     (*regs)[12] = tswapreg(env->regs[12]);
405     (*regs)[13] = tswapreg(env->regs[13]);
406     (*regs)[14] = tswapreg(env->regs[14]);
407     (*regs)[15] = tswapreg(env->regs[15]);
408 
409     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
410     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
411 }
412 
413 #define USE_ELF_CORE_DUMP
414 #define ELF_EXEC_PAGESIZE       4096
415 
416 enum
417 {
418     ARM_HWCAP_ARM_SWP       = 1 << 0,
419     ARM_HWCAP_ARM_HALF      = 1 << 1,
420     ARM_HWCAP_ARM_THUMB     = 1 << 2,
421     ARM_HWCAP_ARM_26BIT     = 1 << 3,
422     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
423     ARM_HWCAP_ARM_FPA       = 1 << 5,
424     ARM_HWCAP_ARM_VFP       = 1 << 6,
425     ARM_HWCAP_ARM_EDSP      = 1 << 7,
426     ARM_HWCAP_ARM_JAVA      = 1 << 8,
427     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
428     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
429     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
430     ARM_HWCAP_ARM_NEON      = 1 << 12,
431     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
432     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
433     ARM_HWCAP_ARM_TLS       = 1 << 15,
434     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
435     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
436     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
437     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
438     ARM_HWCAP_ARM_LPAE      = 1 << 20,
439     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
440     ARM_HWCAP_ARM_FPHP      = 1 << 22,
441     ARM_HWCAP_ARM_ASIMDHP   = 1 << 23,
442     ARM_HWCAP_ARM_ASIMDDP   = 1 << 24,
443     ARM_HWCAP_ARM_ASIMDFHM  = 1 << 25,
444     ARM_HWCAP_ARM_ASIMDBF16 = 1 << 26,
445     ARM_HWCAP_ARM_I8MM      = 1 << 27,
446 };
447 
448 enum {
449     ARM_HWCAP2_ARM_AES      = 1 << 0,
450     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
451     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
452     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
453     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
454     ARM_HWCAP2_ARM_SB       = 1 << 5,
455     ARM_HWCAP2_ARM_SSBS     = 1 << 6,
456 };
457 
458 /* The commpage only exists for 32 bit kernels */
459 
460 #define HI_COMMPAGE (intptr_t)0xffff0f00u
461 
462 static bool init_guest_commpage(void)
463 {
464     ARMCPU *cpu = ARM_CPU(thread_cpu);
465     int host_page_size = qemu_real_host_page_size();
466     abi_ptr commpage;
467     void *want;
468     void *addr;
469 
470     /*
471      * M-profile allocates maximum of 2GB address space, so can never
472      * allocate the commpage.  Skip it.
473      */
474     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
475         return true;
476     }
477 
478     commpage = HI_COMMPAGE & -host_page_size;
479     want = g2h_untagged(commpage);
480     addr = mmap(want, host_page_size, PROT_READ | PROT_WRITE,
481                 MAP_ANONYMOUS | MAP_PRIVATE |
482                 (commpage < reserved_va ? MAP_FIXED : MAP_FIXED_NOREPLACE),
483                 -1, 0);
484 
485     if (addr == MAP_FAILED) {
486         perror("Allocating guest commpage");
487         exit(EXIT_FAILURE);
488     }
489     if (addr != want) {
490         return false;
491     }
492 
493     /* Set kernel helper versions; rest of page is 0.  */
494     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
495 
496     if (mprotect(addr, host_page_size, PROT_READ)) {
497         perror("Protecting guest commpage");
498         exit(EXIT_FAILURE);
499     }
500 
501     page_set_flags(commpage, commpage | (host_page_size - 1),
502                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
503     return true;
504 }
505 
506 #define ELF_HWCAP get_elf_hwcap()
507 #define ELF_HWCAP2 get_elf_hwcap2()
508 
509 uint32_t get_elf_hwcap(void)
510 {
511     ARMCPU *cpu = ARM_CPU(thread_cpu);
512     uint32_t hwcaps = 0;
513 
514     hwcaps |= ARM_HWCAP_ARM_SWP;
515     hwcaps |= ARM_HWCAP_ARM_HALF;
516     hwcaps |= ARM_HWCAP_ARM_THUMB;
517     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
518 
519     /* probe for the extra features */
520 #define GET_FEATURE(feat, hwcap) \
521     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
522 
523 #define GET_FEATURE_ID(feat, hwcap) \
524     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
525 
526     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
527     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
528     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
529     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
530     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
531     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
532     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
533     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
534     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
535     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
536 
537     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
538         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
539         hwcaps |= ARM_HWCAP_ARM_VFPv3;
540         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
541             hwcaps |= ARM_HWCAP_ARM_VFPD32;
542         } else {
543             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
544         }
545     }
546     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
547     /*
548      * MVFR1.FPHP and .SIMDHP must be in sync, and QEMU uses the same
549      * isar_feature function for both. The kernel reports them as two hwcaps.
550      */
551     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_FPHP);
552     GET_FEATURE_ID(aa32_fp16_arith, ARM_HWCAP_ARM_ASIMDHP);
553     GET_FEATURE_ID(aa32_dp, ARM_HWCAP_ARM_ASIMDDP);
554     GET_FEATURE_ID(aa32_fhm, ARM_HWCAP_ARM_ASIMDFHM);
555     GET_FEATURE_ID(aa32_bf16, ARM_HWCAP_ARM_ASIMDBF16);
556     GET_FEATURE_ID(aa32_i8mm, ARM_HWCAP_ARM_I8MM);
557 
558     return hwcaps;
559 }
560 
561 uint64_t get_elf_hwcap2(void)
562 {
563     ARMCPU *cpu = ARM_CPU(thread_cpu);
564     uint64_t hwcaps = 0;
565 
566     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
567     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
568     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
569     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
570     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
571     GET_FEATURE_ID(aa32_sb, ARM_HWCAP2_ARM_SB);
572     GET_FEATURE_ID(aa32_ssbs, ARM_HWCAP2_ARM_SSBS);
573     return hwcaps;
574 }
575 
576 const char *elf_hwcap_str(uint32_t bit)
577 {
578     static const char *hwcap_str[] = {
579     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
580     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
581     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
582     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
583     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
584     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
585     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
586     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
587     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
588     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
589     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
590     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
591     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
592     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
593     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
594     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
595     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
596     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
597     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
598     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
599     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
600     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
601     [__builtin_ctz(ARM_HWCAP_ARM_FPHP     )] = "fphp",
602     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDHP  )] = "asimdhp",
603     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDDP  )] = "asimddp",
604     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDFHM )] = "asimdfhm",
605     [__builtin_ctz(ARM_HWCAP_ARM_ASIMDBF16)] = "asimdbf16",
606     [__builtin_ctz(ARM_HWCAP_ARM_I8MM     )] = "i8mm",
607     };
608 
609     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
610 }
611 
612 const char *elf_hwcap2_str(uint32_t bit)
613 {
614     static const char *hwcap_str[] = {
615     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
616     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
617     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
618     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
619     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
620     [__builtin_ctz(ARM_HWCAP2_ARM_SB   )] = "sb",
621     [__builtin_ctz(ARM_HWCAP2_ARM_SSBS )] = "ssbs",
622     };
623 
624     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
625 }
626 
627 #undef GET_FEATURE
628 #undef GET_FEATURE_ID
629 
630 #define ELF_PLATFORM get_elf_platform()
631 
632 static const char *get_elf_platform(void)
633 {
634     CPUARMState *env = cpu_env(thread_cpu);
635 
636 #if TARGET_BIG_ENDIAN
637 # define END  "b"
638 #else
639 # define END  "l"
640 #endif
641 
642     if (arm_feature(env, ARM_FEATURE_V8)) {
643         return "v8" END;
644     } else if (arm_feature(env, ARM_FEATURE_V7)) {
645         if (arm_feature(env, ARM_FEATURE_M)) {
646             return "v7m" END;
647         } else {
648             return "v7" END;
649         }
650     } else if (arm_feature(env, ARM_FEATURE_V6)) {
651         return "v6" END;
652     } else if (arm_feature(env, ARM_FEATURE_V5)) {
653         return "v5" END;
654     } else {
655         return "v4" END;
656     }
657 
658 #undef END
659 }
660 
661 #else
662 /* 64 bit ARM definitions */
663 
664 #define ELF_ARCH        EM_AARCH64
665 #define ELF_CLASS       ELFCLASS64
666 #if TARGET_BIG_ENDIAN
667 # define ELF_PLATFORM    "aarch64_be"
668 #else
669 # define ELF_PLATFORM    "aarch64"
670 #endif
671 
672 static inline void init_thread(struct target_pt_regs *regs,
673                                struct image_info *infop)
674 {
675     abi_long stack = infop->start_stack;
676     memset(regs, 0, sizeof(*regs));
677 
678     regs->pc = infop->entry & ~0x3ULL;
679     regs->sp = stack;
680 }
681 
682 #define ELF_NREG    34
683 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
684 
685 static void elf_core_copy_regs(target_elf_gregset_t *regs,
686                                const CPUARMState *env)
687 {
688     int i;
689 
690     for (i = 0; i < 32; i++) {
691         (*regs)[i] = tswapreg(env->xregs[i]);
692     }
693     (*regs)[32] = tswapreg(env->pc);
694     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
695 }
696 
697 #define USE_ELF_CORE_DUMP
698 #define ELF_EXEC_PAGESIZE       4096
699 
700 enum {
701     ARM_HWCAP_A64_FP            = 1 << 0,
702     ARM_HWCAP_A64_ASIMD         = 1 << 1,
703     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
704     ARM_HWCAP_A64_AES           = 1 << 3,
705     ARM_HWCAP_A64_PMULL         = 1 << 4,
706     ARM_HWCAP_A64_SHA1          = 1 << 5,
707     ARM_HWCAP_A64_SHA2          = 1 << 6,
708     ARM_HWCAP_A64_CRC32         = 1 << 7,
709     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
710     ARM_HWCAP_A64_FPHP          = 1 << 9,
711     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
712     ARM_HWCAP_A64_CPUID         = 1 << 11,
713     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
714     ARM_HWCAP_A64_JSCVT         = 1 << 13,
715     ARM_HWCAP_A64_FCMA          = 1 << 14,
716     ARM_HWCAP_A64_LRCPC         = 1 << 15,
717     ARM_HWCAP_A64_DCPOP         = 1 << 16,
718     ARM_HWCAP_A64_SHA3          = 1 << 17,
719     ARM_HWCAP_A64_SM3           = 1 << 18,
720     ARM_HWCAP_A64_SM4           = 1 << 19,
721     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
722     ARM_HWCAP_A64_SHA512        = 1 << 21,
723     ARM_HWCAP_A64_SVE           = 1 << 22,
724     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
725     ARM_HWCAP_A64_DIT           = 1 << 24,
726     ARM_HWCAP_A64_USCAT         = 1 << 25,
727     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
728     ARM_HWCAP_A64_FLAGM         = 1 << 27,
729     ARM_HWCAP_A64_SSBS          = 1 << 28,
730     ARM_HWCAP_A64_SB            = 1 << 29,
731     ARM_HWCAP_A64_PACA          = 1 << 30,
732     ARM_HWCAP_A64_PACG          = 1UL << 31,
733 
734     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
735     ARM_HWCAP2_A64_SVE2         = 1 << 1,
736     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
737     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
738     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
739     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
740     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
741     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
742     ARM_HWCAP2_A64_FRINT        = 1 << 8,
743     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
744     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
745     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
746     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
747     ARM_HWCAP2_A64_I8MM         = 1 << 13,
748     ARM_HWCAP2_A64_BF16         = 1 << 14,
749     ARM_HWCAP2_A64_DGH          = 1 << 15,
750     ARM_HWCAP2_A64_RNG          = 1 << 16,
751     ARM_HWCAP2_A64_BTI          = 1 << 17,
752     ARM_HWCAP2_A64_MTE          = 1 << 18,
753     ARM_HWCAP2_A64_ECV          = 1 << 19,
754     ARM_HWCAP2_A64_AFP          = 1 << 20,
755     ARM_HWCAP2_A64_RPRES        = 1 << 21,
756     ARM_HWCAP2_A64_MTE3         = 1 << 22,
757     ARM_HWCAP2_A64_SME          = 1 << 23,
758     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
759     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
760     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
761     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
762     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
763     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
764     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
765     ARM_HWCAP2_A64_WFXT         = 1ULL << 31,
766     ARM_HWCAP2_A64_EBF16        = 1ULL << 32,
767     ARM_HWCAP2_A64_SVE_EBF16    = 1ULL << 33,
768     ARM_HWCAP2_A64_CSSC         = 1ULL << 34,
769     ARM_HWCAP2_A64_RPRFM        = 1ULL << 35,
770     ARM_HWCAP2_A64_SVE2P1       = 1ULL << 36,
771     ARM_HWCAP2_A64_SME2         = 1ULL << 37,
772     ARM_HWCAP2_A64_SME2P1       = 1ULL << 38,
773     ARM_HWCAP2_A64_SME_I16I32   = 1ULL << 39,
774     ARM_HWCAP2_A64_SME_BI32I32  = 1ULL << 40,
775     ARM_HWCAP2_A64_SME_B16B16   = 1ULL << 41,
776     ARM_HWCAP2_A64_SME_F16F16   = 1ULL << 42,
777     ARM_HWCAP2_A64_MOPS         = 1ULL << 43,
778     ARM_HWCAP2_A64_HBC          = 1ULL << 44,
779 };
780 
781 #define ELF_HWCAP   get_elf_hwcap()
782 #define ELF_HWCAP2  get_elf_hwcap2()
783 
784 #define GET_FEATURE_ID(feat, hwcap) \
785     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
786 
787 uint32_t get_elf_hwcap(void)
788 {
789     ARMCPU *cpu = ARM_CPU(thread_cpu);
790     uint32_t hwcaps = 0;
791 
792     hwcaps |= ARM_HWCAP_A64_FP;
793     hwcaps |= ARM_HWCAP_A64_ASIMD;
794     hwcaps |= ARM_HWCAP_A64_CPUID;
795 
796     /* probe for the extra features */
797 
798     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
799     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
800     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
801     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
802     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
803     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
804     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
805     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
806     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
807     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
808     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
809     GET_FEATURE_ID(aa64_lse2, ARM_HWCAP_A64_USCAT);
810     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
811     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
812     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
813     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
814     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
815     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
816     GET_FEATURE_ID(aa64_dit, ARM_HWCAP_A64_DIT);
817     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
818     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
819     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
820     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
821     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
822     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
823 
824     return hwcaps;
825 }
826 
827 uint64_t get_elf_hwcap2(void)
828 {
829     ARMCPU *cpu = ARM_CPU(thread_cpu);
830     uint64_t hwcaps = 0;
831 
832     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
833     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
834     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
835     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
836     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
837     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
838     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
839     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
840     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
841     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
842     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
843     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
844     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
845     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
846     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
847     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
848     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
849     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
850     GET_FEATURE_ID(aa64_mte3, ARM_HWCAP2_A64_MTE3);
851     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
852                               ARM_HWCAP2_A64_SME_F32F32 |
853                               ARM_HWCAP2_A64_SME_B16F32 |
854                               ARM_HWCAP2_A64_SME_F16F32 |
855                               ARM_HWCAP2_A64_SME_I8I32));
856     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
857     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
858     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
859     GET_FEATURE_ID(aa64_hbc, ARM_HWCAP2_A64_HBC);
860     GET_FEATURE_ID(aa64_mops, ARM_HWCAP2_A64_MOPS);
861 
862     return hwcaps;
863 }
864 
865 const char *elf_hwcap_str(uint32_t bit)
866 {
867     static const char *hwcap_str[] = {
868     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
869     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
870     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
871     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
872     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
873     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
874     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
875     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
876     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
877     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
878     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
879     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
880     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
881     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
882     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
883     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
884     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
885     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
886     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
887     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
888     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
889     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
890     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
891     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
892     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
893     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
894     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
895     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
896     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
897     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
898     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
899     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
900     };
901 
902     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
903 }
904 
905 const char *elf_hwcap2_str(uint32_t bit)
906 {
907     static const char *hwcap_str[] = {
908     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
909     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
910     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
911     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
912     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
913     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
914     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
915     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
916     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
917     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
918     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
919     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
920     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
921     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
922     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
923     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
924     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
925     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
926     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
927     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
928     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
929     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
930     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
931     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
932     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "smei16i64",
933     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "smef64f64",
934     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "smei8i32",
935     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "smef16f32",
936     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "smeb16f32",
937     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "smef32f32",
938     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "smefa64",
939     [__builtin_ctz(ARM_HWCAP2_A64_WFXT         )] = "wfxt",
940     [__builtin_ctzll(ARM_HWCAP2_A64_EBF16      )] = "ebf16",
941     [__builtin_ctzll(ARM_HWCAP2_A64_SVE_EBF16  )] = "sveebf16",
942     [__builtin_ctzll(ARM_HWCAP2_A64_CSSC       )] = "cssc",
943     [__builtin_ctzll(ARM_HWCAP2_A64_RPRFM      )] = "rprfm",
944     [__builtin_ctzll(ARM_HWCAP2_A64_SVE2P1     )] = "sve2p1",
945     [__builtin_ctzll(ARM_HWCAP2_A64_SME2       )] = "sme2",
946     [__builtin_ctzll(ARM_HWCAP2_A64_SME2P1     )] = "sme2p1",
947     [__builtin_ctzll(ARM_HWCAP2_A64_SME_I16I32 )] = "smei16i32",
948     [__builtin_ctzll(ARM_HWCAP2_A64_SME_BI32I32)] = "smebi32i32",
949     [__builtin_ctzll(ARM_HWCAP2_A64_SME_B16B16 )] = "smeb16b16",
950     [__builtin_ctzll(ARM_HWCAP2_A64_SME_F16F16 )] = "smef16f16",
951     [__builtin_ctzll(ARM_HWCAP2_A64_MOPS       )] = "mops",
952     [__builtin_ctzll(ARM_HWCAP2_A64_HBC        )] = "hbc",
953     };
954 
955     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
956 }
957 
958 #undef GET_FEATURE_ID
959 
960 #endif /* not TARGET_AARCH64 */
961 
962 #if TARGET_BIG_ENDIAN
963 # define VDSO_HEADER  "vdso-be.c.inc"
964 #else
965 # define VDSO_HEADER  "vdso-le.c.inc"
966 #endif
967 
968 #endif /* TARGET_ARM */
969 
970 #ifdef TARGET_SPARC
971 #ifdef TARGET_SPARC64
972 
973 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
974                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
975 #ifndef TARGET_ABI32
976 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
977 #else
978 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
979 #endif
980 
981 #define ELF_CLASS   ELFCLASS64
982 #define ELF_ARCH    EM_SPARCV9
983 #else
984 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
985                     | HWCAP_SPARC_MULDIV)
986 #define ELF_CLASS   ELFCLASS32
987 #define ELF_ARCH    EM_SPARC
988 #endif /* TARGET_SPARC64 */
989 
990 static inline void init_thread(struct target_pt_regs *regs,
991                                struct image_info *infop)
992 {
993     /* Note that target_cpu_copy_regs does not read psr/tstate. */
994     regs->pc = infop->entry;
995     regs->npc = regs->pc + 4;
996     regs->y = 0;
997     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
998                         - TARGET_STACK_BIAS);
999 }
1000 #endif /* TARGET_SPARC */
1001 
1002 #ifdef TARGET_PPC
1003 
1004 #define ELF_MACHINE    PPC_ELF_MACHINE
1005 
1006 #if defined(TARGET_PPC64)
1007 
1008 #define elf_check_arch(x) ( (x) == EM_PPC64 )
1009 
1010 #define ELF_CLASS       ELFCLASS64
1011 
1012 #else
1013 
1014 #define ELF_CLASS       ELFCLASS32
1015 #define EXSTACK_DEFAULT true
1016 
1017 #endif
1018 
1019 #define ELF_ARCH        EM_PPC
1020 
1021 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
1022    See arch/powerpc/include/asm/cputable.h.  */
1023 enum {
1024     QEMU_PPC_FEATURE_32 = 0x80000000,
1025     QEMU_PPC_FEATURE_64 = 0x40000000,
1026     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
1027     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
1028     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
1029     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
1030     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
1031     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
1032     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
1033     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
1034     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
1035     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
1036     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
1037     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
1038     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
1039     QEMU_PPC_FEATURE_CELL = 0x00010000,
1040     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
1041     QEMU_PPC_FEATURE_SMT = 0x00004000,
1042     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
1043     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
1044     QEMU_PPC_FEATURE_PA6T = 0x00000800,
1045     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
1046     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
1047     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
1048     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
1049     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
1050 
1051     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
1052     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
1053 
1054     /* Feature definitions in AT_HWCAP2.  */
1055     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
1056     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
1057     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
1058     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
1059     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
1060     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
1061     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
1062     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
1063     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
1064     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
1065     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
1066     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
1067     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
1068     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
1069     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
1070 };
1071 
1072 #define ELF_HWCAP get_elf_hwcap()
1073 
1074 static uint32_t get_elf_hwcap(void)
1075 {
1076     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1077     uint32_t features = 0;
1078 
1079     /* We don't have to be terribly complete here; the high points are
1080        Altivec/FP/SPE support.  Anything else is just a bonus.  */
1081 #define GET_FEATURE(flag, feature)                                      \
1082     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1083 #define GET_FEATURE2(flags, feature) \
1084     do { \
1085         if ((cpu->env.insns_flags2 & flags) == flags) { \
1086             features |= feature; \
1087         } \
1088     } while (0)
1089     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
1090     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
1091     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
1092     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
1093     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
1094     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
1095     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
1096     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
1097     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
1098     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
1099     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
1100                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
1101                   QEMU_PPC_FEATURE_ARCH_2_06);
1102 #undef GET_FEATURE
1103 #undef GET_FEATURE2
1104 
1105     return features;
1106 }
1107 
1108 #define ELF_HWCAP2 get_elf_hwcap2()
1109 
1110 static uint32_t get_elf_hwcap2(void)
1111 {
1112     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1113     uint32_t features = 0;
1114 
1115 #define GET_FEATURE(flag, feature)                                      \
1116     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1117 #define GET_FEATURE2(flag, feature)                                      \
1118     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1119 
1120     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1121     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1122     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1123                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1124                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1125     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1126                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1127     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1128                  QEMU_PPC_FEATURE2_MMA);
1129 
1130 #undef GET_FEATURE
1131 #undef GET_FEATURE2
1132 
1133     return features;
1134 }
1135 
1136 /*
1137  * The requirements here are:
1138  * - keep the final alignment of sp (sp & 0xf)
1139  * - make sure the 32-bit value at the first 16 byte aligned position of
1140  *   AUXV is greater than 16 for glibc compatibility.
1141  *   AT_IGNOREPPC is used for that.
1142  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1143  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1144  */
1145 #define DLINFO_ARCH_ITEMS       5
1146 #define ARCH_DLINFO                                     \
1147     do {                                                \
1148         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1149         /*                                              \
1150          * Handle glibc compatibility: these magic entries must \
1151          * be at the lowest addresses in the final auxv.        \
1152          */                                             \
1153         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1154         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1155         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1156         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1157         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1158     } while (0)
1159 
1160 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1161 {
1162     _regs->gpr[1] = infop->start_stack;
1163 #if defined(TARGET_PPC64)
1164     if (get_ppc64_abi(infop) < 2) {
1165         uint64_t val;
1166         get_user_u64(val, infop->entry + 8);
1167         _regs->gpr[2] = val + infop->load_bias;
1168         get_user_u64(val, infop->entry);
1169         infop->entry = val + infop->load_bias;
1170     } else {
1171         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1172     }
1173 #endif
1174     _regs->nip = infop->entry;
1175 }
1176 
1177 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1178 #define ELF_NREG 48
1179 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1180 
1181 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1182 {
1183     int i;
1184     target_ulong ccr = 0;
1185 
1186     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1187         (*regs)[i] = tswapreg(env->gpr[i]);
1188     }
1189 
1190     (*regs)[32] = tswapreg(env->nip);
1191     (*regs)[33] = tswapreg(env->msr);
1192     (*regs)[35] = tswapreg(env->ctr);
1193     (*regs)[36] = tswapreg(env->lr);
1194     (*regs)[37] = tswapreg(cpu_read_xer(env));
1195 
1196     ccr = ppc_get_cr(env);
1197     (*regs)[38] = tswapreg(ccr);
1198 }
1199 
1200 #define USE_ELF_CORE_DUMP
1201 #define ELF_EXEC_PAGESIZE       4096
1202 
1203 #ifndef TARGET_PPC64
1204 # define VDSO_HEADER  "vdso-32.c.inc"
1205 #elif TARGET_BIG_ENDIAN
1206 # define VDSO_HEADER  "vdso-64.c.inc"
1207 #else
1208 # define VDSO_HEADER  "vdso-64le.c.inc"
1209 #endif
1210 
1211 #endif
1212 
1213 #ifdef TARGET_LOONGARCH64
1214 
1215 #define ELF_CLASS   ELFCLASS64
1216 #define ELF_ARCH    EM_LOONGARCH
1217 #define EXSTACK_DEFAULT true
1218 
1219 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1220 
1221 #define VDSO_HEADER "vdso.c.inc"
1222 
1223 static inline void init_thread(struct target_pt_regs *regs,
1224                                struct image_info *infop)
1225 {
1226     /*Set crmd PG,DA = 1,0 */
1227     regs->csr.crmd = 2 << 3;
1228     regs->csr.era = infop->entry;
1229     regs->regs[3] = infop->start_stack;
1230 }
1231 
1232 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1233 #define ELF_NREG 45
1234 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1235 
1236 enum {
1237     TARGET_EF_R0 = 0,
1238     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1239     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1240 };
1241 
1242 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1243                                const CPULoongArchState *env)
1244 {
1245     int i;
1246 
1247     (*regs)[TARGET_EF_R0] = 0;
1248 
1249     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1250         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1251     }
1252 
1253     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1254     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1255 }
1256 
1257 #define USE_ELF_CORE_DUMP
1258 #define ELF_EXEC_PAGESIZE        4096
1259 
1260 #define ELF_HWCAP get_elf_hwcap()
1261 
1262 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1263 enum {
1264     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1265     HWCAP_LOONGARCH_LAM      = (1 << 1),
1266     HWCAP_LOONGARCH_UAL      = (1 << 2),
1267     HWCAP_LOONGARCH_FPU      = (1 << 3),
1268     HWCAP_LOONGARCH_LSX      = (1 << 4),
1269     HWCAP_LOONGARCH_LASX     = (1 << 5),
1270     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1271     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1272     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1273     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1274     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1275     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1276     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1277 };
1278 
1279 static uint32_t get_elf_hwcap(void)
1280 {
1281     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1282     uint32_t hwcaps = 0;
1283 
1284     hwcaps |= HWCAP_LOONGARCH_CRC32;
1285 
1286     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1287         hwcaps |= HWCAP_LOONGARCH_UAL;
1288     }
1289 
1290     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1291         hwcaps |= HWCAP_LOONGARCH_FPU;
1292     }
1293 
1294     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1295         hwcaps |= HWCAP_LOONGARCH_LAM;
1296     }
1297 
1298     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LSX)) {
1299         hwcaps |= HWCAP_LOONGARCH_LSX;
1300     }
1301 
1302     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LASX)) {
1303         hwcaps |= HWCAP_LOONGARCH_LASX;
1304     }
1305 
1306     return hwcaps;
1307 }
1308 
1309 #define ELF_PLATFORM "loongarch"
1310 
1311 #endif /* TARGET_LOONGARCH64 */
1312 
1313 #ifdef TARGET_MIPS
1314 
1315 #ifdef TARGET_MIPS64
1316 #define ELF_CLASS   ELFCLASS64
1317 #else
1318 #define ELF_CLASS   ELFCLASS32
1319 #endif
1320 #define ELF_ARCH    EM_MIPS
1321 #define EXSTACK_DEFAULT true
1322 
1323 #ifdef TARGET_ABI_MIPSN32
1324 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1325 #else
1326 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1327 #endif
1328 
1329 #define ELF_BASE_PLATFORM get_elf_base_platform()
1330 
1331 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1332     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1333     { return _base_platform; } } while (0)
1334 
1335 static const char *get_elf_base_platform(void)
1336 {
1337     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1338 
1339     /* 64 bit ISAs goes first */
1340     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1341     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1342     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1343     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1344     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1345     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1346     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1347 
1348     /* 32 bit ISAs */
1349     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1350     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1351     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1352     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1353     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1354 
1355     /* Fallback */
1356     return "mips";
1357 }
1358 #undef MATCH_PLATFORM_INSN
1359 
1360 static inline void init_thread(struct target_pt_regs *regs,
1361                                struct image_info *infop)
1362 {
1363     regs->cp0_status = 2 << CP0St_KSU;
1364     regs->cp0_epc = infop->entry;
1365     regs->regs[29] = infop->start_stack;
1366 }
1367 
1368 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1369 #define ELF_NREG 45
1370 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1371 
1372 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1373 enum {
1374 #ifdef TARGET_MIPS64
1375     TARGET_EF_R0 = 0,
1376 #else
1377     TARGET_EF_R0 = 6,
1378 #endif
1379     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1380     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1381     TARGET_EF_LO = TARGET_EF_R0 + 32,
1382     TARGET_EF_HI = TARGET_EF_R0 + 33,
1383     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1384     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1385     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1386     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1387 };
1388 
1389 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1390 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1391 {
1392     int i;
1393 
1394     for (i = 0; i < TARGET_EF_R0; i++) {
1395         (*regs)[i] = 0;
1396     }
1397     (*regs)[TARGET_EF_R0] = 0;
1398 
1399     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1400         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1401     }
1402 
1403     (*regs)[TARGET_EF_R26] = 0;
1404     (*regs)[TARGET_EF_R27] = 0;
1405     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1406     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1407     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1408     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1409     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1410     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1411 }
1412 
1413 #define USE_ELF_CORE_DUMP
1414 #define ELF_EXEC_PAGESIZE        4096
1415 
1416 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1417 enum {
1418     HWCAP_MIPS_R6           = (1 << 0),
1419     HWCAP_MIPS_MSA          = (1 << 1),
1420     HWCAP_MIPS_CRC32        = (1 << 2),
1421     HWCAP_MIPS_MIPS16       = (1 << 3),
1422     HWCAP_MIPS_MDMX         = (1 << 4),
1423     HWCAP_MIPS_MIPS3D       = (1 << 5),
1424     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1425     HWCAP_MIPS_DSP          = (1 << 7),
1426     HWCAP_MIPS_DSP2         = (1 << 8),
1427     HWCAP_MIPS_DSP3         = (1 << 9),
1428     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1429     HWCAP_LOONGSON_MMI      = (1 << 11),
1430     HWCAP_LOONGSON_EXT      = (1 << 12),
1431     HWCAP_LOONGSON_EXT2     = (1 << 13),
1432     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1433 };
1434 
1435 #define ELF_HWCAP get_elf_hwcap()
1436 
1437 #define GET_FEATURE_INSN(_flag, _hwcap) \
1438     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1439 
1440 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1441     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1442 
1443 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1444     do { \
1445         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1446             hwcaps |= _hwcap; \
1447         } \
1448     } while (0)
1449 
1450 static uint32_t get_elf_hwcap(void)
1451 {
1452     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1453     uint32_t hwcaps = 0;
1454 
1455     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1456                         2, HWCAP_MIPS_R6);
1457     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1458     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1459     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1460 
1461     return hwcaps;
1462 }
1463 
1464 #undef GET_FEATURE_REG_EQU
1465 #undef GET_FEATURE_REG_SET
1466 #undef GET_FEATURE_INSN
1467 
1468 #endif /* TARGET_MIPS */
1469 
1470 #ifdef TARGET_MICROBLAZE
1471 
1472 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1473 
1474 #define ELF_CLASS   ELFCLASS32
1475 #define ELF_ARCH    EM_MICROBLAZE
1476 
1477 static inline void init_thread(struct target_pt_regs *regs,
1478                                struct image_info *infop)
1479 {
1480     regs->pc = infop->entry;
1481     regs->r1 = infop->start_stack;
1482 
1483 }
1484 
1485 #define ELF_EXEC_PAGESIZE        4096
1486 
1487 #define USE_ELF_CORE_DUMP
1488 #define ELF_NREG 38
1489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1490 
1491 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1492 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1493 {
1494     int i, pos = 0;
1495 
1496     for (i = 0; i < 32; i++) {
1497         (*regs)[pos++] = tswapreg(env->regs[i]);
1498     }
1499 
1500     (*regs)[pos++] = tswapreg(env->pc);
1501     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1502     (*regs)[pos++] = 0;
1503     (*regs)[pos++] = tswapreg(env->ear);
1504     (*regs)[pos++] = 0;
1505     (*regs)[pos++] = tswapreg(env->esr);
1506 }
1507 
1508 #endif /* TARGET_MICROBLAZE */
1509 
1510 #ifdef TARGET_OPENRISC
1511 
1512 #define ELF_ARCH EM_OPENRISC
1513 #define ELF_CLASS ELFCLASS32
1514 #define ELF_DATA  ELFDATA2MSB
1515 
1516 static inline void init_thread(struct target_pt_regs *regs,
1517                                struct image_info *infop)
1518 {
1519     regs->pc = infop->entry;
1520     regs->gpr[1] = infop->start_stack;
1521 }
1522 
1523 #define USE_ELF_CORE_DUMP
1524 #define ELF_EXEC_PAGESIZE 8192
1525 
1526 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1527 #define ELF_NREG 34 /* gprs and pc, sr */
1528 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1529 
1530 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1531                                const CPUOpenRISCState *env)
1532 {
1533     int i;
1534 
1535     for (i = 0; i < 32; i++) {
1536         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1537     }
1538     (*regs)[32] = tswapreg(env->pc);
1539     (*regs)[33] = tswapreg(cpu_get_sr(env));
1540 }
1541 #define ELF_HWCAP 0
1542 #define ELF_PLATFORM NULL
1543 
1544 #endif /* TARGET_OPENRISC */
1545 
1546 #ifdef TARGET_SH4
1547 
1548 #define ELF_CLASS ELFCLASS32
1549 #define ELF_ARCH  EM_SH
1550 
1551 static inline void init_thread(struct target_pt_regs *regs,
1552                                struct image_info *infop)
1553 {
1554     /* Check other registers XXXXX */
1555     regs->pc = infop->entry;
1556     regs->regs[15] = infop->start_stack;
1557 }
1558 
1559 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1560 #define ELF_NREG 23
1561 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1562 
1563 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1564 enum {
1565     TARGET_REG_PC = 16,
1566     TARGET_REG_PR = 17,
1567     TARGET_REG_SR = 18,
1568     TARGET_REG_GBR = 19,
1569     TARGET_REG_MACH = 20,
1570     TARGET_REG_MACL = 21,
1571     TARGET_REG_SYSCALL = 22
1572 };
1573 
1574 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1575                                       const CPUSH4State *env)
1576 {
1577     int i;
1578 
1579     for (i = 0; i < 16; i++) {
1580         (*regs)[i] = tswapreg(env->gregs[i]);
1581     }
1582 
1583     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1584     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1585     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1586     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1587     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1588     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1589     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1590 }
1591 
1592 #define USE_ELF_CORE_DUMP
1593 #define ELF_EXEC_PAGESIZE        4096
1594 
1595 enum {
1596     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1597     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1598     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1599     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1600     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1601     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1602     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1603     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1604     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1605     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1606 };
1607 
1608 #define ELF_HWCAP get_elf_hwcap()
1609 
1610 static uint32_t get_elf_hwcap(void)
1611 {
1612     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1613     uint32_t hwcap = 0;
1614 
1615     hwcap |= SH_CPU_HAS_FPU;
1616 
1617     if (cpu->env.features & SH_FEATURE_SH4A) {
1618         hwcap |= SH_CPU_HAS_LLSC;
1619     }
1620 
1621     return hwcap;
1622 }
1623 
1624 #endif
1625 
1626 #ifdef TARGET_CRIS
1627 
1628 #define ELF_CLASS ELFCLASS32
1629 #define ELF_ARCH  EM_CRIS
1630 
1631 static inline void init_thread(struct target_pt_regs *regs,
1632                                struct image_info *infop)
1633 {
1634     regs->erp = infop->entry;
1635 }
1636 
1637 #define ELF_EXEC_PAGESIZE        8192
1638 
1639 #endif
1640 
1641 #ifdef TARGET_M68K
1642 
1643 #define ELF_CLASS       ELFCLASS32
1644 #define ELF_ARCH        EM_68K
1645 
1646 /* ??? Does this need to do anything?
1647    #define ELF_PLAT_INIT(_r) */
1648 
1649 static inline void init_thread(struct target_pt_regs *regs,
1650                                struct image_info *infop)
1651 {
1652     regs->usp = infop->start_stack;
1653     regs->sr = 0;
1654     regs->pc = infop->entry;
1655 }
1656 
1657 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1658 #define ELF_NREG 20
1659 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1660 
1661 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1662 {
1663     (*regs)[0] = tswapreg(env->dregs[1]);
1664     (*regs)[1] = tswapreg(env->dregs[2]);
1665     (*regs)[2] = tswapreg(env->dregs[3]);
1666     (*regs)[3] = tswapreg(env->dregs[4]);
1667     (*regs)[4] = tswapreg(env->dregs[5]);
1668     (*regs)[5] = tswapreg(env->dregs[6]);
1669     (*regs)[6] = tswapreg(env->dregs[7]);
1670     (*regs)[7] = tswapreg(env->aregs[0]);
1671     (*regs)[8] = tswapreg(env->aregs[1]);
1672     (*regs)[9] = tswapreg(env->aregs[2]);
1673     (*regs)[10] = tswapreg(env->aregs[3]);
1674     (*regs)[11] = tswapreg(env->aregs[4]);
1675     (*regs)[12] = tswapreg(env->aregs[5]);
1676     (*regs)[13] = tswapreg(env->aregs[6]);
1677     (*regs)[14] = tswapreg(env->dregs[0]);
1678     (*regs)[15] = tswapreg(env->aregs[7]);
1679     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1680     (*regs)[17] = tswapreg(env->sr);
1681     (*regs)[18] = tswapreg(env->pc);
1682     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1683 }
1684 
1685 #define USE_ELF_CORE_DUMP
1686 #define ELF_EXEC_PAGESIZE       8192
1687 
1688 #endif
1689 
1690 #ifdef TARGET_ALPHA
1691 
1692 #define ELF_CLASS      ELFCLASS64
1693 #define ELF_ARCH       EM_ALPHA
1694 
1695 static inline void init_thread(struct target_pt_regs *regs,
1696                                struct image_info *infop)
1697 {
1698     regs->pc = infop->entry;
1699     regs->ps = 8;
1700     regs->usp = infop->start_stack;
1701 }
1702 
1703 #define ELF_EXEC_PAGESIZE        8192
1704 
1705 #endif /* TARGET_ALPHA */
1706 
1707 #ifdef TARGET_S390X
1708 
1709 #define ELF_CLASS	ELFCLASS64
1710 #define ELF_DATA	ELFDATA2MSB
1711 #define ELF_ARCH	EM_S390
1712 
1713 #include "elf.h"
1714 
1715 #define ELF_HWCAP get_elf_hwcap()
1716 
1717 #define GET_FEATURE(_feat, _hwcap) \
1718     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1719 
1720 uint32_t get_elf_hwcap(void)
1721 {
1722     /*
1723      * Let's assume we always have esan3 and zarch.
1724      * 31-bit processes can use 64-bit registers (high gprs).
1725      */
1726     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1727 
1728     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1729     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1730     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1731     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1732     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1733         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1734         hwcap |= HWCAP_S390_ETF3EH;
1735     }
1736     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1737     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1738     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1739 
1740     return hwcap;
1741 }
1742 
1743 const char *elf_hwcap_str(uint32_t bit)
1744 {
1745     static const char *hwcap_str[] = {
1746         [HWCAP_S390_NR_ESAN3]     = "esan3",
1747         [HWCAP_S390_NR_ZARCH]     = "zarch",
1748         [HWCAP_S390_NR_STFLE]     = "stfle",
1749         [HWCAP_S390_NR_MSA]       = "msa",
1750         [HWCAP_S390_NR_LDISP]     = "ldisp",
1751         [HWCAP_S390_NR_EIMM]      = "eimm",
1752         [HWCAP_S390_NR_DFP]       = "dfp",
1753         [HWCAP_S390_NR_HPAGE]     = "edat",
1754         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1755         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1756         [HWCAP_S390_NR_TE]        = "te",
1757         [HWCAP_S390_NR_VXRS]      = "vx",
1758         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1759         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1760         [HWCAP_S390_NR_GS]        = "gs",
1761         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1762         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1763         [HWCAP_S390_NR_SORT]      = "sort",
1764         [HWCAP_S390_NR_DFLT]      = "dflt",
1765         [HWCAP_S390_NR_NNPA]      = "nnpa",
1766         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1767         [HWCAP_S390_NR_SIE]       = "sie",
1768     };
1769 
1770     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1771 }
1772 
1773 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1774 {
1775     regs->psw.addr = infop->entry;
1776     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1777                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1778                      PSW_MASK_32;
1779     regs->gprs[15] = infop->start_stack;
1780 }
1781 
1782 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1783 #define ELF_NREG 27
1784 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1785 
1786 enum {
1787     TARGET_REG_PSWM = 0,
1788     TARGET_REG_PSWA = 1,
1789     TARGET_REG_GPRS = 2,
1790     TARGET_REG_ARS = 18,
1791     TARGET_REG_ORIG_R2 = 26,
1792 };
1793 
1794 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1795                                const CPUS390XState *env)
1796 {
1797     int i;
1798     uint32_t *aregs;
1799 
1800     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1801     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1802     for (i = 0; i < 16; i++) {
1803         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1804     }
1805     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1806     for (i = 0; i < 16; i++) {
1807         aregs[i] = tswap32(env->aregs[i]);
1808     }
1809     (*regs)[TARGET_REG_ORIG_R2] = 0;
1810 }
1811 
1812 #define USE_ELF_CORE_DUMP
1813 #define ELF_EXEC_PAGESIZE 4096
1814 
1815 #define VDSO_HEADER "vdso.c.inc"
1816 
1817 #endif /* TARGET_S390X */
1818 
1819 #ifdef TARGET_RISCV
1820 
1821 #define ELF_ARCH  EM_RISCV
1822 
1823 #ifdef TARGET_RISCV32
1824 #define ELF_CLASS ELFCLASS32
1825 #define VDSO_HEADER "vdso-32.c.inc"
1826 #else
1827 #define ELF_CLASS ELFCLASS64
1828 #define VDSO_HEADER "vdso-64.c.inc"
1829 #endif
1830 
1831 #define ELF_HWCAP get_elf_hwcap()
1832 
1833 static uint32_t get_elf_hwcap(void)
1834 {
1835 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1836     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1837     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1838                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1839                     | MISA_BIT('V');
1840 
1841     return cpu->env.misa_ext & mask;
1842 #undef MISA_BIT
1843 }
1844 
1845 static inline void init_thread(struct target_pt_regs *regs,
1846                                struct image_info *infop)
1847 {
1848     regs->sepc = infop->entry;
1849     regs->sp = infop->start_stack;
1850 }
1851 
1852 #define ELF_EXEC_PAGESIZE 4096
1853 
1854 #endif /* TARGET_RISCV */
1855 
1856 #ifdef TARGET_HPPA
1857 
1858 #define ELF_CLASS       ELFCLASS32
1859 #define ELF_ARCH        EM_PARISC
1860 #define ELF_PLATFORM    "PARISC"
1861 #define STACK_GROWS_DOWN 0
1862 #define STACK_ALIGNMENT  64
1863 
1864 #define VDSO_HEADER "vdso.c.inc"
1865 
1866 static inline void init_thread(struct target_pt_regs *regs,
1867                                struct image_info *infop)
1868 {
1869     regs->iaoq[0] = infop->entry;
1870     regs->iaoq[1] = infop->entry + 4;
1871     regs->gr[23] = 0;
1872     regs->gr[24] = infop->argv;
1873     regs->gr[25] = infop->argc;
1874     /* The top-of-stack contains a linkage buffer.  */
1875     regs->gr[30] = infop->start_stack + 64;
1876     regs->gr[31] = infop->entry;
1877 }
1878 
1879 #define LO_COMMPAGE  0
1880 
1881 static bool init_guest_commpage(void)
1882 {
1883     /* If reserved_va, then we have already mapped 0 page on the host. */
1884     if (!reserved_va) {
1885         void *want, *addr;
1886 
1887         want = g2h_untagged(LO_COMMPAGE);
1888         addr = mmap(want, TARGET_PAGE_SIZE, PROT_NONE,
1889                     MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED_NOREPLACE, -1, 0);
1890         if (addr == MAP_FAILED) {
1891             perror("Allocating guest commpage");
1892             exit(EXIT_FAILURE);
1893         }
1894         if (addr != want) {
1895             return false;
1896         }
1897     }
1898 
1899     /*
1900      * On Linux, page zero is normally marked execute only + gateway.
1901      * Normal read or write is supposed to fail (thus PROT_NONE above),
1902      * but specific offsets have kernel code mapped to raise permissions
1903      * and implement syscalls.  Here, simply mark the page executable.
1904      * Special case the entry points during translation (see do_page_zero).
1905      */
1906     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1907                    PAGE_EXEC | PAGE_VALID);
1908     return true;
1909 }
1910 
1911 #endif /* TARGET_HPPA */
1912 
1913 #ifdef TARGET_XTENSA
1914 
1915 #define ELF_CLASS       ELFCLASS32
1916 #define ELF_ARCH        EM_XTENSA
1917 
1918 static inline void init_thread(struct target_pt_regs *regs,
1919                                struct image_info *infop)
1920 {
1921     regs->windowbase = 0;
1922     regs->windowstart = 1;
1923     regs->areg[1] = infop->start_stack;
1924     regs->pc = infop->entry;
1925     if (info_is_fdpic(infop)) {
1926         regs->areg[4] = infop->loadmap_addr;
1927         regs->areg[5] = infop->interpreter_loadmap_addr;
1928         if (infop->interpreter_loadmap_addr) {
1929             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1930         } else {
1931             regs->areg[6] = infop->pt_dynamic_addr;
1932         }
1933     }
1934 }
1935 
1936 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1937 #define ELF_NREG 128
1938 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1939 
1940 enum {
1941     TARGET_REG_PC,
1942     TARGET_REG_PS,
1943     TARGET_REG_LBEG,
1944     TARGET_REG_LEND,
1945     TARGET_REG_LCOUNT,
1946     TARGET_REG_SAR,
1947     TARGET_REG_WINDOWSTART,
1948     TARGET_REG_WINDOWBASE,
1949     TARGET_REG_THREADPTR,
1950     TARGET_REG_AR0 = 64,
1951 };
1952 
1953 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1954                                const CPUXtensaState *env)
1955 {
1956     unsigned i;
1957 
1958     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1959     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1960     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1961     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1962     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1963     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1964     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1965     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1966     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1967     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1968     for (i = 0; i < env->config->nareg; ++i) {
1969         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1970     }
1971 }
1972 
1973 #define USE_ELF_CORE_DUMP
1974 #define ELF_EXEC_PAGESIZE       4096
1975 
1976 #endif /* TARGET_XTENSA */
1977 
1978 #ifdef TARGET_HEXAGON
1979 
1980 #define ELF_CLASS       ELFCLASS32
1981 #define ELF_ARCH        EM_HEXAGON
1982 
1983 static inline void init_thread(struct target_pt_regs *regs,
1984                                struct image_info *infop)
1985 {
1986     regs->sepc = infop->entry;
1987     regs->sp = infop->start_stack;
1988 }
1989 
1990 #endif /* TARGET_HEXAGON */
1991 
1992 #ifndef ELF_BASE_PLATFORM
1993 #define ELF_BASE_PLATFORM (NULL)
1994 #endif
1995 
1996 #ifndef ELF_PLATFORM
1997 #define ELF_PLATFORM (NULL)
1998 #endif
1999 
2000 #ifndef ELF_MACHINE
2001 #define ELF_MACHINE ELF_ARCH
2002 #endif
2003 
2004 #ifndef elf_check_arch
2005 #define elf_check_arch(x) ((x) == ELF_ARCH)
2006 #endif
2007 
2008 #ifndef elf_check_abi
2009 #define elf_check_abi(x) (1)
2010 #endif
2011 
2012 #ifndef ELF_HWCAP
2013 #define ELF_HWCAP 0
2014 #endif
2015 
2016 #ifndef STACK_GROWS_DOWN
2017 #define STACK_GROWS_DOWN 1
2018 #endif
2019 
2020 #ifndef STACK_ALIGNMENT
2021 #define STACK_ALIGNMENT 16
2022 #endif
2023 
2024 #ifdef TARGET_ABI32
2025 #undef ELF_CLASS
2026 #define ELF_CLASS ELFCLASS32
2027 #undef bswaptls
2028 #define bswaptls(ptr) bswap32s(ptr)
2029 #endif
2030 
2031 #ifndef EXSTACK_DEFAULT
2032 #define EXSTACK_DEFAULT false
2033 #endif
2034 
2035 #include "elf.h"
2036 
2037 /* We must delay the following stanzas until after "elf.h". */
2038 #if defined(TARGET_AARCH64)
2039 
2040 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2041                                     const uint32_t *data,
2042                                     struct image_info *info,
2043                                     Error **errp)
2044 {
2045     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2046         if (pr_datasz != sizeof(uint32_t)) {
2047             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2048             return false;
2049         }
2050         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2051         info->note_flags = *data;
2052     }
2053     return true;
2054 }
2055 #define ARCH_USE_GNU_PROPERTY 1
2056 
2057 #else
2058 
2059 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2060                                     const uint32_t *data,
2061                                     struct image_info *info,
2062                                     Error **errp)
2063 {
2064     g_assert_not_reached();
2065 }
2066 #define ARCH_USE_GNU_PROPERTY 0
2067 
2068 #endif
2069 
2070 struct exec
2071 {
2072     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2073     unsigned int a_text;   /* length of text, in bytes */
2074     unsigned int a_data;   /* length of data, in bytes */
2075     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2076     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2077     unsigned int a_entry;  /* start address */
2078     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2079     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2080 };
2081 
2082 
2083 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2084 #define OMAGIC 0407
2085 #define NMAGIC 0410
2086 #define ZMAGIC 0413
2087 #define QMAGIC 0314
2088 
2089 #define DLINFO_ITEMS 16
2090 
2091 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2092 {
2093     memcpy(to, from, n);
2094 }
2095 
2096 #ifdef BSWAP_NEEDED
2097 static void bswap_ehdr(struct elfhdr *ehdr)
2098 {
2099     bswap16s(&ehdr->e_type);            /* Object file type */
2100     bswap16s(&ehdr->e_machine);         /* Architecture */
2101     bswap32s(&ehdr->e_version);         /* Object file version */
2102     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2103     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2104     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2105     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2106     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2107     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2108     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2109     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2110     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2111     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2112 }
2113 
2114 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2115 {
2116     int i;
2117     for (i = 0; i < phnum; ++i, ++phdr) {
2118         bswap32s(&phdr->p_type);        /* Segment type */
2119         bswap32s(&phdr->p_flags);       /* Segment flags */
2120         bswaptls(&phdr->p_offset);      /* Segment file offset */
2121         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2122         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2123         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2124         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2125         bswaptls(&phdr->p_align);       /* Segment alignment */
2126     }
2127 }
2128 
2129 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2130 {
2131     int i;
2132     for (i = 0; i < shnum; ++i, ++shdr) {
2133         bswap32s(&shdr->sh_name);
2134         bswap32s(&shdr->sh_type);
2135         bswaptls(&shdr->sh_flags);
2136         bswaptls(&shdr->sh_addr);
2137         bswaptls(&shdr->sh_offset);
2138         bswaptls(&shdr->sh_size);
2139         bswap32s(&shdr->sh_link);
2140         bswap32s(&shdr->sh_info);
2141         bswaptls(&shdr->sh_addralign);
2142         bswaptls(&shdr->sh_entsize);
2143     }
2144 }
2145 
2146 static void bswap_sym(struct elf_sym *sym)
2147 {
2148     bswap32s(&sym->st_name);
2149     bswaptls(&sym->st_value);
2150     bswaptls(&sym->st_size);
2151     bswap16s(&sym->st_shndx);
2152 }
2153 
2154 #ifdef TARGET_MIPS
2155 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2156 {
2157     bswap16s(&abiflags->version);
2158     bswap32s(&abiflags->ases);
2159     bswap32s(&abiflags->isa_ext);
2160     bswap32s(&abiflags->flags1);
2161     bswap32s(&abiflags->flags2);
2162 }
2163 #endif
2164 #else
2165 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2166 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2167 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2168 static inline void bswap_sym(struct elf_sym *sym) { }
2169 #ifdef TARGET_MIPS
2170 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2171 #endif
2172 #endif
2173 
2174 #ifdef USE_ELF_CORE_DUMP
2175 static int elf_core_dump(int, const CPUArchState *);
2176 #endif /* USE_ELF_CORE_DUMP */
2177 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
2178                          abi_ulong load_bias);
2179 
2180 /* Verify the portions of EHDR within E_IDENT for the target.
2181    This can be performed before bswapping the entire header.  */
2182 static bool elf_check_ident(struct elfhdr *ehdr)
2183 {
2184     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2185             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2186             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2187             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2188             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2189             && ehdr->e_ident[EI_DATA] == ELF_DATA
2190             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2191 }
2192 
2193 /* Verify the portions of EHDR outside of E_IDENT for the target.
2194    This has to wait until after bswapping the header.  */
2195 static bool elf_check_ehdr(struct elfhdr *ehdr)
2196 {
2197     return (elf_check_arch(ehdr->e_machine)
2198             && elf_check_abi(ehdr->e_flags)
2199             && ehdr->e_ehsize == sizeof(struct elfhdr)
2200             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2201             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2202 }
2203 
2204 /*
2205  * 'copy_elf_strings()' copies argument/envelope strings from user
2206  * memory to free pages in kernel mem. These are in a format ready
2207  * to be put directly into the top of new user memory.
2208  *
2209  */
2210 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2211                                   abi_ulong p, abi_ulong stack_limit)
2212 {
2213     char *tmp;
2214     int len, i;
2215     abi_ulong top = p;
2216 
2217     if (!p) {
2218         return 0;       /* bullet-proofing */
2219     }
2220 
2221     if (STACK_GROWS_DOWN) {
2222         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2223         for (i = argc - 1; i >= 0; --i) {
2224             tmp = argv[i];
2225             if (!tmp) {
2226                 fprintf(stderr, "VFS: argc is wrong");
2227                 exit(-1);
2228             }
2229             len = strlen(tmp) + 1;
2230             tmp += len;
2231 
2232             if (len > (p - stack_limit)) {
2233                 return 0;
2234             }
2235             while (len) {
2236                 int bytes_to_copy = (len > offset) ? offset : len;
2237                 tmp -= bytes_to_copy;
2238                 p -= bytes_to_copy;
2239                 offset -= bytes_to_copy;
2240                 len -= bytes_to_copy;
2241 
2242                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2243 
2244                 if (offset == 0) {
2245                     memcpy_to_target(p, scratch, top - p);
2246                     top = p;
2247                     offset = TARGET_PAGE_SIZE;
2248                 }
2249             }
2250         }
2251         if (p != top) {
2252             memcpy_to_target(p, scratch + offset, top - p);
2253         }
2254     } else {
2255         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2256         for (i = 0; i < argc; ++i) {
2257             tmp = argv[i];
2258             if (!tmp) {
2259                 fprintf(stderr, "VFS: argc is wrong");
2260                 exit(-1);
2261             }
2262             len = strlen(tmp) + 1;
2263             if (len > (stack_limit - p)) {
2264                 return 0;
2265             }
2266             while (len) {
2267                 int bytes_to_copy = (len > remaining) ? remaining : len;
2268 
2269                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2270 
2271                 tmp += bytes_to_copy;
2272                 remaining -= bytes_to_copy;
2273                 p += bytes_to_copy;
2274                 len -= bytes_to_copy;
2275 
2276                 if (remaining == 0) {
2277                     memcpy_to_target(top, scratch, p - top);
2278                     top = p;
2279                     remaining = TARGET_PAGE_SIZE;
2280                 }
2281             }
2282         }
2283         if (p != top) {
2284             memcpy_to_target(top, scratch, p - top);
2285         }
2286     }
2287 
2288     return p;
2289 }
2290 
2291 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2292  * argument/environment space. Newer kernels (>2.6.33) allow more,
2293  * dependent on stack size, but guarantee at least 32 pages for
2294  * backwards compatibility.
2295  */
2296 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2297 
2298 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2299                                  struct image_info *info)
2300 {
2301     abi_ulong size, error, guard;
2302     int prot;
2303 
2304     size = guest_stack_size;
2305     if (size < STACK_LOWER_LIMIT) {
2306         size = STACK_LOWER_LIMIT;
2307     }
2308 
2309     if (STACK_GROWS_DOWN) {
2310         guard = TARGET_PAGE_SIZE;
2311         if (guard < qemu_real_host_page_size()) {
2312             guard = qemu_real_host_page_size();
2313         }
2314     } else {
2315         /* no guard page for hppa target where stack grows upwards. */
2316         guard = 0;
2317     }
2318 
2319     prot = PROT_READ | PROT_WRITE;
2320     if (info->exec_stack) {
2321         prot |= PROT_EXEC;
2322     }
2323     error = target_mmap(0, size + guard, prot,
2324                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2325     if (error == -1) {
2326         perror("mmap stack");
2327         exit(-1);
2328     }
2329 
2330     /* We reserve one extra page at the top of the stack as guard.  */
2331     if (STACK_GROWS_DOWN) {
2332         target_mprotect(error, guard, PROT_NONE);
2333         info->stack_limit = error + guard;
2334         return info->stack_limit + size - sizeof(void *);
2335     } else {
2336         info->stack_limit = error + size;
2337         return error;
2338     }
2339 }
2340 
2341 /**
2342  * zero_bss:
2343  *
2344  * Map and zero the bss.  We need to explicitly zero any fractional pages
2345  * after the data section (i.e. bss).  Return false on mapping failure.
2346  */
2347 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss,
2348                      int prot, Error **errp)
2349 {
2350     abi_ulong align_bss;
2351 
2352     /* We only expect writable bss; the code segment shouldn't need this. */
2353     if (!(prot & PROT_WRITE)) {
2354         error_setg(errp, "PT_LOAD with non-writable bss");
2355         return false;
2356     }
2357 
2358     align_bss = TARGET_PAGE_ALIGN(start_bss);
2359     end_bss = TARGET_PAGE_ALIGN(end_bss);
2360 
2361     if (start_bss < align_bss) {
2362         int flags = page_get_flags(start_bss);
2363 
2364         if (!(flags & PAGE_BITS)) {
2365             /*
2366              * The whole address space of the executable was reserved
2367              * at the start, therefore all pages will be VALID.
2368              * But assuming there are no PROT_NONE PT_LOAD segments,
2369              * a PROT_NONE page means no data all bss, and we can
2370              * simply extend the new anon mapping back to the start
2371              * of the page of bss.
2372              */
2373             align_bss -= TARGET_PAGE_SIZE;
2374         } else {
2375             /*
2376              * The start of the bss shares a page with something.
2377              * The only thing that we expect is the data section,
2378              * which would already be marked writable.
2379              * Overlapping the RX code segment seems malformed.
2380              */
2381             if (!(flags & PAGE_WRITE)) {
2382                 error_setg(errp, "PT_LOAD with bss overlapping "
2383                            "non-writable page");
2384                 return false;
2385             }
2386 
2387             /* The page is already mapped and writable. */
2388             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2389         }
2390     }
2391 
2392     if (align_bss < end_bss &&
2393         target_mmap(align_bss, end_bss - align_bss, prot,
2394                     MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) == -1) {
2395         error_setg_errno(errp, errno, "Error mapping bss");
2396         return false;
2397     }
2398     return true;
2399 }
2400 
2401 #if defined(TARGET_ARM)
2402 static int elf_is_fdpic(struct elfhdr *exec)
2403 {
2404     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2405 }
2406 #elif defined(TARGET_XTENSA)
2407 static int elf_is_fdpic(struct elfhdr *exec)
2408 {
2409     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2410 }
2411 #else
2412 /* Default implementation, always false.  */
2413 static int elf_is_fdpic(struct elfhdr *exec)
2414 {
2415     return 0;
2416 }
2417 #endif
2418 
2419 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2420 {
2421     uint16_t n;
2422     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2423 
2424     /* elf32_fdpic_loadseg */
2425     n = info->nsegs;
2426     while (n--) {
2427         sp -= 12;
2428         put_user_u32(loadsegs[n].addr, sp+0);
2429         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2430         put_user_u32(loadsegs[n].p_memsz, sp+8);
2431     }
2432 
2433     /* elf32_fdpic_loadmap */
2434     sp -= 4;
2435     put_user_u16(0, sp+0); /* version */
2436     put_user_u16(info->nsegs, sp+2); /* nsegs */
2437 
2438     info->personality = PER_LINUX_FDPIC;
2439     info->loadmap_addr = sp;
2440 
2441     return sp;
2442 }
2443 
2444 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2445                                    struct elfhdr *exec,
2446                                    struct image_info *info,
2447                                    struct image_info *interp_info,
2448                                    struct image_info *vdso_info)
2449 {
2450     abi_ulong sp;
2451     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2452     int size;
2453     int i;
2454     abi_ulong u_rand_bytes;
2455     uint8_t k_rand_bytes[16];
2456     abi_ulong u_platform, u_base_platform;
2457     const char *k_platform, *k_base_platform;
2458     const int n = sizeof(elf_addr_t);
2459 
2460     sp = p;
2461 
2462     /* Needs to be before we load the env/argc/... */
2463     if (elf_is_fdpic(exec)) {
2464         /* Need 4 byte alignment for these structs */
2465         sp &= ~3;
2466         sp = loader_build_fdpic_loadmap(info, sp);
2467         info->other_info = interp_info;
2468         if (interp_info) {
2469             interp_info->other_info = info;
2470             sp = loader_build_fdpic_loadmap(interp_info, sp);
2471             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2472             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2473         } else {
2474             info->interpreter_loadmap_addr = 0;
2475             info->interpreter_pt_dynamic_addr = 0;
2476         }
2477     }
2478 
2479     u_base_platform = 0;
2480     k_base_platform = ELF_BASE_PLATFORM;
2481     if (k_base_platform) {
2482         size_t len = strlen(k_base_platform) + 1;
2483         if (STACK_GROWS_DOWN) {
2484             sp -= (len + n - 1) & ~(n - 1);
2485             u_base_platform = sp;
2486             /* FIXME - check return value of memcpy_to_target() for failure */
2487             memcpy_to_target(sp, k_base_platform, len);
2488         } else {
2489             memcpy_to_target(sp, k_base_platform, len);
2490             u_base_platform = sp;
2491             sp += len + 1;
2492         }
2493     }
2494 
2495     u_platform = 0;
2496     k_platform = ELF_PLATFORM;
2497     if (k_platform) {
2498         size_t len = strlen(k_platform) + 1;
2499         if (STACK_GROWS_DOWN) {
2500             sp -= (len + n - 1) & ~(n - 1);
2501             u_platform = sp;
2502             /* FIXME - check return value of memcpy_to_target() for failure */
2503             memcpy_to_target(sp, k_platform, len);
2504         } else {
2505             memcpy_to_target(sp, k_platform, len);
2506             u_platform = sp;
2507             sp += len + 1;
2508         }
2509     }
2510 
2511     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2512      * the argv and envp pointers.
2513      */
2514     if (STACK_GROWS_DOWN) {
2515         sp = QEMU_ALIGN_DOWN(sp, 16);
2516     } else {
2517         sp = QEMU_ALIGN_UP(sp, 16);
2518     }
2519 
2520     /*
2521      * Generate 16 random bytes for userspace PRNG seeding.
2522      */
2523     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2524     if (STACK_GROWS_DOWN) {
2525         sp -= 16;
2526         u_rand_bytes = sp;
2527         /* FIXME - check return value of memcpy_to_target() for failure */
2528         memcpy_to_target(sp, k_rand_bytes, 16);
2529     } else {
2530         memcpy_to_target(sp, k_rand_bytes, 16);
2531         u_rand_bytes = sp;
2532         sp += 16;
2533     }
2534 
2535     size = (DLINFO_ITEMS + 1) * 2;
2536     if (k_base_platform) {
2537         size += 2;
2538     }
2539     if (k_platform) {
2540         size += 2;
2541     }
2542     if (vdso_info) {
2543         size += 2;
2544     }
2545 #ifdef DLINFO_ARCH_ITEMS
2546     size += DLINFO_ARCH_ITEMS * 2;
2547 #endif
2548 #ifdef ELF_HWCAP2
2549     size += 2;
2550 #endif
2551     info->auxv_len = size * n;
2552 
2553     size += envc + argc + 2;
2554     size += 1;  /* argc itself */
2555     size *= n;
2556 
2557     /* Allocate space and finalize stack alignment for entry now.  */
2558     if (STACK_GROWS_DOWN) {
2559         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2560         sp = u_argc;
2561     } else {
2562         u_argc = sp;
2563         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2564     }
2565 
2566     u_argv = u_argc + n;
2567     u_envp = u_argv + (argc + 1) * n;
2568     u_auxv = u_envp + (envc + 1) * n;
2569     info->saved_auxv = u_auxv;
2570     info->argc = argc;
2571     info->envc = envc;
2572     info->argv = u_argv;
2573     info->envp = u_envp;
2574 
2575     /* This is correct because Linux defines
2576      * elf_addr_t as Elf32_Off / Elf64_Off
2577      */
2578 #define NEW_AUX_ENT(id, val) do {               \
2579         put_user_ual(id, u_auxv);  u_auxv += n; \
2580         put_user_ual(val, u_auxv); u_auxv += n; \
2581     } while(0)
2582 
2583 #ifdef ARCH_DLINFO
2584     /*
2585      * ARCH_DLINFO must come first so platform specific code can enforce
2586      * special alignment requirements on the AUXV if necessary (eg. PPC).
2587      */
2588     ARCH_DLINFO;
2589 #endif
2590     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2591      * on info->auxv_len will trigger.
2592      */
2593     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2594     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2595     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2596     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2597     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2598     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2599     NEW_AUX_ENT(AT_ENTRY, info->entry);
2600     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2601     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2602     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2603     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2604     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2605     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2606     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2607     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2608     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2609 
2610 #ifdef ELF_HWCAP2
2611     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2612 #endif
2613 
2614     if (u_base_platform) {
2615         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2616     }
2617     if (u_platform) {
2618         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2619     }
2620     if (vdso_info) {
2621         NEW_AUX_ENT(AT_SYSINFO_EHDR, vdso_info->load_addr);
2622     }
2623     NEW_AUX_ENT (AT_NULL, 0);
2624 #undef NEW_AUX_ENT
2625 
2626     /* Check that our initial calculation of the auxv length matches how much
2627      * we actually put into it.
2628      */
2629     assert(info->auxv_len == u_auxv - info->saved_auxv);
2630 
2631     put_user_ual(argc, u_argc);
2632 
2633     p = info->arg_strings;
2634     for (i = 0; i < argc; ++i) {
2635         put_user_ual(p, u_argv);
2636         u_argv += n;
2637         p += target_strlen(p) + 1;
2638     }
2639     put_user_ual(0, u_argv);
2640 
2641     p = info->env_strings;
2642     for (i = 0; i < envc; ++i) {
2643         put_user_ual(p, u_envp);
2644         u_envp += n;
2645         p += target_strlen(p) + 1;
2646     }
2647     put_user_ual(0, u_envp);
2648 
2649     return sp;
2650 }
2651 
2652 #if defined(HI_COMMPAGE)
2653 #define LO_COMMPAGE -1
2654 #elif defined(LO_COMMPAGE)
2655 #define HI_COMMPAGE 0
2656 #else
2657 #define HI_COMMPAGE 0
2658 #define LO_COMMPAGE -1
2659 #ifndef INIT_GUEST_COMMPAGE
2660 #define init_guest_commpage() true
2661 #endif
2662 #endif
2663 
2664 /**
2665  * pgb_try_mmap:
2666  * @addr: host start address
2667  * @addr_last: host last address
2668  * @keep: do not unmap the probe region
2669  *
2670  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2671  * return 0 if it is not available to map, and -1 on mmap error.
2672  * If @keep, the region is left mapped on success, otherwise unmapped.
2673  */
2674 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2675 {
2676     size_t size = addr_last - addr + 1;
2677     void *p = mmap((void *)addr, size, PROT_NONE,
2678                    MAP_ANONYMOUS | MAP_PRIVATE |
2679                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2680     int ret;
2681 
2682     if (p == MAP_FAILED) {
2683         return errno == EEXIST ? 0 : -1;
2684     }
2685     ret = p == (void *)addr;
2686     if (!keep || !ret) {
2687         munmap(p, size);
2688     }
2689     return ret;
2690 }
2691 
2692 /**
2693  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2694  * @addr: host address
2695  * @addr_last: host last address
2696  * @brk: host brk
2697  *
2698  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2699  */
2700 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2701                                  uintptr_t brk, bool keep)
2702 {
2703     uintptr_t brk_last = brk + 16 * MiB - 1;
2704 
2705     /* Do not map anything close to the host brk. */
2706     if (addr <= brk_last && brk <= addr_last) {
2707         return 0;
2708     }
2709     return pgb_try_mmap(addr, addr_last, keep);
2710 }
2711 
2712 /**
2713  * pgb_try_mmap_set:
2714  * @ga: set of guest addrs
2715  * @base: guest_base
2716  * @brk: host brk
2717  *
2718  * Return true if all @ga can be mapped by the host at @base.
2719  * On success, retain the mapping at index 0 for reserved_va.
2720  */
2721 
2722 typedef struct PGBAddrs {
2723     uintptr_t bounds[3][2]; /* start/last pairs */
2724     int nbounds;
2725 } PGBAddrs;
2726 
2727 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2728 {
2729     for (int i = ga->nbounds - 1; i >= 0; --i) {
2730         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2731                                   ga->bounds[i][1] + base,
2732                                   brk, i == 0 && reserved_va) <= 0) {
2733             return false;
2734         }
2735     }
2736     return true;
2737 }
2738 
2739 /**
2740  * pgb_addr_set:
2741  * @ga: output set of guest addrs
2742  * @guest_loaddr: guest image low address
2743  * @guest_loaddr: guest image high address
2744  * @identity: create for identity mapping
2745  *
2746  * Fill in @ga with the image, COMMPAGE and NULL page.
2747  */
2748 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2749                          abi_ulong guest_hiaddr, bool try_identity)
2750 {
2751     int n;
2752 
2753     /*
2754      * With a low commpage, or a guest mapped very low,
2755      * we may not be able to use the identity map.
2756      */
2757     if (try_identity) {
2758         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2759             return false;
2760         }
2761         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2762             return false;
2763         }
2764     }
2765 
2766     memset(ga, 0, sizeof(*ga));
2767     n = 0;
2768 
2769     if (reserved_va) {
2770         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2771         ga->bounds[n][1] = reserved_va;
2772         n++;
2773         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2774     } else {
2775         /* Add any LO_COMMPAGE or NULL page. */
2776         if (LO_COMMPAGE != -1) {
2777             ga->bounds[n][0] = 0;
2778             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2779             n++;
2780         } else if (!try_identity) {
2781             ga->bounds[n][0] = 0;
2782             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2783             n++;
2784         }
2785 
2786         /* Add the guest image for ET_EXEC. */
2787         if (guest_loaddr) {
2788             ga->bounds[n][0] = guest_loaddr;
2789             ga->bounds[n][1] = guest_hiaddr;
2790             n++;
2791         }
2792     }
2793 
2794     /*
2795      * Temporarily disable
2796      *   "comparison is always false due to limited range of data type"
2797      * due to comparison between unsigned and (possible) 0.
2798      */
2799 #pragma GCC diagnostic push
2800 #pragma GCC diagnostic ignored "-Wtype-limits"
2801 
2802     /* Add any HI_COMMPAGE not covered by reserved_va. */
2803     if (reserved_va < HI_COMMPAGE) {
2804         ga->bounds[n][0] = HI_COMMPAGE & qemu_real_host_page_mask();
2805         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2806         n++;
2807     }
2808 
2809 #pragma GCC diagnostic pop
2810 
2811     ga->nbounds = n;
2812     return true;
2813 }
2814 
2815 static void pgb_fail_in_use(const char *image_name)
2816 {
2817     error_report("%s: requires virtual address space that is in use "
2818                  "(omit the -B option or choose a different value)",
2819                  image_name);
2820     exit(EXIT_FAILURE);
2821 }
2822 
2823 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2824                       uintptr_t guest_hiaddr, uintptr_t align)
2825 {
2826     PGBAddrs ga;
2827     uintptr_t brk = (uintptr_t)sbrk(0);
2828 
2829     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2830         fprintf(stderr, "Requested guest base %p does not satisfy "
2831                 "host minimum alignment (0x%" PRIxPTR ")\n",
2832                 (void *)guest_base, align);
2833         exit(EXIT_FAILURE);
2834     }
2835 
2836     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2837         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2838         pgb_fail_in_use(image_name);
2839     }
2840 }
2841 
2842 /**
2843  * pgb_find_fallback:
2844  *
2845  * This is a fallback method for finding holes in the host address space
2846  * if we don't have the benefit of being able to access /proc/self/map.
2847  * It can potentially take a very long time as we can only dumbly iterate
2848  * up the host address space seeing if the allocation would work.
2849  */
2850 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2851                                    uintptr_t brk)
2852 {
2853     /* TODO: come up with a better estimate of how much to skip. */
2854     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2855 
2856     for (uintptr_t base = skip; ; base += skip) {
2857         base = ROUND_UP(base, align);
2858         if (pgb_try_mmap_set(ga, base, brk)) {
2859             return base;
2860         }
2861         if (base >= -skip) {
2862             return -1;
2863         }
2864     }
2865 }
2866 
2867 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2868                                IntervalTreeRoot *root)
2869 {
2870     for (int i = ga->nbounds - 1; i >= 0; --i) {
2871         uintptr_t s = base + ga->bounds[i][0];
2872         uintptr_t l = base + ga->bounds[i][1];
2873         IntervalTreeNode *n;
2874 
2875         if (l < s) {
2876             /* Wraparound. Skip to advance S to mmap_min_addr. */
2877             return mmap_min_addr - s;
2878         }
2879 
2880         n = interval_tree_iter_first(root, s, l);
2881         if (n != NULL) {
2882             /* Conflict.  Skip to advance S to LAST + 1. */
2883             return n->last - s + 1;
2884         }
2885     }
2886     return 0;  /* success */
2887 }
2888 
2889 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2890                                 uintptr_t align, uintptr_t brk)
2891 {
2892     uintptr_t last = mmap_min_addr;
2893     uintptr_t base, skip;
2894 
2895     while (true) {
2896         base = ROUND_UP(last, align);
2897         if (base < last) {
2898             return -1;
2899         }
2900 
2901         skip = pgb_try_itree(ga, base, root);
2902         if (skip == 0) {
2903             break;
2904         }
2905 
2906         last = base + skip;
2907         if (last < base) {
2908             return -1;
2909         }
2910     }
2911 
2912     /*
2913      * We've chosen 'base' based on holes in the interval tree,
2914      * but we don't yet know if it is a valid host address.
2915      * Because it is the first matching hole, if the host addresses
2916      * are invalid we know there are no further matches.
2917      */
2918     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2919 }
2920 
2921 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2922                         uintptr_t guest_hiaddr, uintptr_t align)
2923 {
2924     IntervalTreeRoot *root;
2925     uintptr_t brk, ret;
2926     PGBAddrs ga;
2927 
2928     /* Try the identity map first. */
2929     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2930         brk = (uintptr_t)sbrk(0);
2931         if (pgb_try_mmap_set(&ga, 0, brk)) {
2932             guest_base = 0;
2933             return;
2934         }
2935     }
2936 
2937     /*
2938      * Rebuild the address set for non-identity map.
2939      * This differs in the mapping of the guest NULL page.
2940      */
2941     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2942 
2943     root = read_self_maps();
2944 
2945     /* Read brk after we've read the maps, which will malloc. */
2946     brk = (uintptr_t)sbrk(0);
2947 
2948     if (!root) {
2949         ret = pgb_find_fallback(&ga, align, brk);
2950     } else {
2951         /*
2952          * Reserve the area close to the host brk.
2953          * This will be freed with the rest of the tree.
2954          */
2955         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2956         b->start = brk;
2957         b->last = brk + 16 * MiB - 1;
2958         interval_tree_insert(b, root);
2959 
2960         ret = pgb_find_itree(&ga, root, align, brk);
2961         free_self_maps(root);
2962     }
2963 
2964     if (ret == -1) {
2965         int w = TARGET_LONG_BITS / 4;
2966 
2967         error_report("%s: Unable to find a guest_base to satisfy all "
2968                      "guest address mapping requirements", image_name);
2969 
2970         for (int i = 0; i < ga.nbounds; ++i) {
2971             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2972                          w, (uint64_t)ga.bounds[i][0],
2973                          w, (uint64_t)ga.bounds[i][1]);
2974         }
2975         exit(EXIT_FAILURE);
2976     }
2977     guest_base = ret;
2978 }
2979 
2980 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2981                       abi_ulong guest_hiaddr)
2982 {
2983     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2984     uintptr_t align = MAX(SHMLBA, TARGET_PAGE_SIZE);
2985 
2986     /* Sanity check the guest binary. */
2987     if (reserved_va) {
2988         if (guest_hiaddr > reserved_va) {
2989             error_report("%s: requires more than reserved virtual "
2990                          "address space (0x%" PRIx64 " > 0x%lx)",
2991                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2992             exit(EXIT_FAILURE);
2993         }
2994     } else {
2995         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2996             error_report("%s: requires more virtual address space "
2997                          "than the host can provide (0x%" PRIx64 ")",
2998                          image_name, (uint64_t)guest_hiaddr + 1);
2999             exit(EXIT_FAILURE);
3000         }
3001     }
3002 
3003     if (have_guest_base) {
3004         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
3005     } else {
3006         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
3007     }
3008 
3009     /* Reserve and initialize the commpage. */
3010     if (!init_guest_commpage()) {
3011         /* We have already probed for the commpage being free. */
3012         g_assert_not_reached();
3013     }
3014 
3015     assert(QEMU_IS_ALIGNED(guest_base, align));
3016     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
3017                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
3018 }
3019 
3020 enum {
3021     /* The string "GNU\0" as a magic number. */
3022     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
3023     NOTE_DATA_SZ = 1 * KiB,
3024     NOTE_NAME_SZ = 4,
3025     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
3026 };
3027 
3028 /*
3029  * Process a single gnu_property entry.
3030  * Return false for error.
3031  */
3032 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
3033                                struct image_info *info, bool have_prev_type,
3034                                uint32_t *prev_type, Error **errp)
3035 {
3036     uint32_t pr_type, pr_datasz, step;
3037 
3038     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
3039         goto error_data;
3040     }
3041     datasz -= *off;
3042     data += *off / sizeof(uint32_t);
3043 
3044     if (datasz < 2 * sizeof(uint32_t)) {
3045         goto error_data;
3046     }
3047     pr_type = data[0];
3048     pr_datasz = data[1];
3049     data += 2;
3050     datasz -= 2 * sizeof(uint32_t);
3051     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
3052     if (step > datasz) {
3053         goto error_data;
3054     }
3055 
3056     /* Properties are supposed to be unique and sorted on pr_type. */
3057     if (have_prev_type && pr_type <= *prev_type) {
3058         if (pr_type == *prev_type) {
3059             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
3060         } else {
3061             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
3062         }
3063         return false;
3064     }
3065     *prev_type = pr_type;
3066 
3067     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3068         return false;
3069     }
3070 
3071     *off += 2 * sizeof(uint32_t) + step;
3072     return true;
3073 
3074  error_data:
3075     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3076     return false;
3077 }
3078 
3079 /* Process NT_GNU_PROPERTY_TYPE_0. */
3080 static bool parse_elf_properties(const ImageSource *src,
3081                                  struct image_info *info,
3082                                  const struct elf_phdr *phdr,
3083                                  Error **errp)
3084 {
3085     union {
3086         struct elf_note nhdr;
3087         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3088     } note;
3089 
3090     int n, off, datasz;
3091     bool have_prev_type;
3092     uint32_t prev_type;
3093 
3094     /* Unless the arch requires properties, ignore them. */
3095     if (!ARCH_USE_GNU_PROPERTY) {
3096         return true;
3097     }
3098 
3099     /* If the properties are crazy large, that's too bad. */
3100     n = phdr->p_filesz;
3101     if (n > sizeof(note)) {
3102         error_setg(errp, "PT_GNU_PROPERTY too large");
3103         return false;
3104     }
3105     if (n < sizeof(note.nhdr)) {
3106         error_setg(errp, "PT_GNU_PROPERTY too small");
3107         return false;
3108     }
3109 
3110     if (!imgsrc_read(&note, phdr->p_offset, n, src, errp)) {
3111         return false;
3112     }
3113 
3114     /*
3115      * The contents of a valid PT_GNU_PROPERTY is a sequence
3116      * of uint32_t -- swap them all now.
3117      */
3118 #ifdef BSWAP_NEEDED
3119     for (int i = 0; i < n / 4; i++) {
3120         bswap32s(note.data + i);
3121     }
3122 #endif
3123 
3124     /*
3125      * Note that nhdr is 3 words, and that the "name" described by namesz
3126      * immediately follows nhdr and is thus at the 4th word.  Further, all
3127      * of the inputs to the kernel's round_up are multiples of 4.
3128      */
3129     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3130         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3131         note.data[3] != GNU0_MAGIC) {
3132         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3133         return false;
3134     }
3135     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3136 
3137     datasz = note.nhdr.n_descsz + off;
3138     if (datasz > n) {
3139         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3140         return false;
3141     }
3142 
3143     have_prev_type = false;
3144     prev_type = 0;
3145     while (1) {
3146         if (off == datasz) {
3147             return true;  /* end, exit ok */
3148         }
3149         if (!parse_elf_property(note.data, &off, datasz, info,
3150                                 have_prev_type, &prev_type, errp)) {
3151             return false;
3152         }
3153         have_prev_type = true;
3154     }
3155 }
3156 
3157 /**
3158  * load_elf_image: Load an ELF image into the address space.
3159  * @image_name: the filename of the image, to use in error messages.
3160  * @src: the ImageSource from which to read.
3161  * @info: info collected from the loaded image.
3162  * @ehdr: the ELF header, not yet bswapped.
3163  * @pinterp_name: record any PT_INTERP string found.
3164  *
3165  * On return: @info values will be filled in, as necessary or available.
3166  */
3167 
3168 static void load_elf_image(const char *image_name, const ImageSource *src,
3169                            struct image_info *info, struct elfhdr *ehdr,
3170                            char **pinterp_name)
3171 {
3172     g_autofree struct elf_phdr *phdr = NULL;
3173     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3174     int i, prot_exec;
3175     Error *err = NULL;
3176 
3177     /*
3178      * First of all, some simple consistency checks.
3179      * Note that we rely on the bswapped ehdr staying in bprm_buf,
3180      * for later use by load_elf_binary and create_elf_tables.
3181      */
3182     if (!imgsrc_read(ehdr, 0, sizeof(*ehdr), src, &err)) {
3183         goto exit_errmsg;
3184     }
3185     if (!elf_check_ident(ehdr)) {
3186         error_setg(&err, "Invalid ELF image for this architecture");
3187         goto exit_errmsg;
3188     }
3189     bswap_ehdr(ehdr);
3190     if (!elf_check_ehdr(ehdr)) {
3191         error_setg(&err, "Invalid ELF image for this architecture");
3192         goto exit_errmsg;
3193     }
3194 
3195     phdr = imgsrc_read_alloc(ehdr->e_phoff,
3196                              ehdr->e_phnum * sizeof(struct elf_phdr),
3197                              src, &err);
3198     if (phdr == NULL) {
3199         goto exit_errmsg;
3200     }
3201     bswap_phdr(phdr, ehdr->e_phnum);
3202 
3203     info->nsegs = 0;
3204     info->pt_dynamic_addr = 0;
3205 
3206     mmap_lock();
3207 
3208     /*
3209      * Find the maximum size of the image and allocate an appropriate
3210      * amount of memory to handle that.  Locate the interpreter, if any.
3211      */
3212     loaddr = -1, hiaddr = 0;
3213     info->alignment = 0;
3214     info->exec_stack = EXSTACK_DEFAULT;
3215     for (i = 0; i < ehdr->e_phnum; ++i) {
3216         struct elf_phdr *eppnt = phdr + i;
3217         if (eppnt->p_type == PT_LOAD) {
3218             abi_ulong a = eppnt->p_vaddr & TARGET_PAGE_MASK;
3219             if (a < loaddr) {
3220                 loaddr = a;
3221             }
3222             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3223             if (a > hiaddr) {
3224                 hiaddr = a;
3225             }
3226             ++info->nsegs;
3227             info->alignment |= eppnt->p_align;
3228         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3229             g_autofree char *interp_name = NULL;
3230 
3231             if (*pinterp_name) {
3232                 error_setg(&err, "Multiple PT_INTERP entries");
3233                 goto exit_errmsg;
3234             }
3235 
3236             interp_name = imgsrc_read_alloc(eppnt->p_offset, eppnt->p_filesz,
3237                                             src, &err);
3238             if (interp_name == NULL) {
3239                 goto exit_errmsg;
3240             }
3241             if (interp_name[eppnt->p_filesz - 1] != 0) {
3242                 error_setg(&err, "Invalid PT_INTERP entry");
3243                 goto exit_errmsg;
3244             }
3245             *pinterp_name = g_steal_pointer(&interp_name);
3246         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3247             if (!parse_elf_properties(src, info, eppnt, &err)) {
3248                 goto exit_errmsg;
3249             }
3250         } else if (eppnt->p_type == PT_GNU_STACK) {
3251             info->exec_stack = eppnt->p_flags & PF_X;
3252         }
3253     }
3254 
3255     load_addr = loaddr;
3256 
3257     if (pinterp_name != NULL) {
3258         if (ehdr->e_type == ET_EXEC) {
3259             /*
3260              * Make sure that the low address does not conflict with
3261              * MMAP_MIN_ADDR or the QEMU application itself.
3262              */
3263             probe_guest_base(image_name, loaddr, hiaddr);
3264         } else {
3265             abi_ulong align;
3266 
3267             /*
3268              * The binary is dynamic, but we still need to
3269              * select guest_base.  In this case we pass a size.
3270              */
3271             probe_guest_base(image_name, 0, hiaddr - loaddr);
3272 
3273             /*
3274              * Avoid collision with the loader by providing a different
3275              * default load address.
3276              */
3277             load_addr += elf_et_dyn_base;
3278 
3279             /*
3280              * TODO: Better support for mmap alignment is desirable.
3281              * Since we do not have complete control over the guest
3282              * address space, we prefer the kernel to choose some address
3283              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3284              * But without MAP_FIXED we cannot guarantee alignment,
3285              * only suggest it.
3286              */
3287             align = pow2ceil(info->alignment);
3288             if (align) {
3289                 load_addr &= -align;
3290             }
3291         }
3292     }
3293 
3294     /*
3295      * Reserve address space for all of this.
3296      *
3297      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3298      * exactly the address range that is required.  Without reserved_va,
3299      * the guest address space is not isolated.  We have attempted to avoid
3300      * conflict with the host program itself via probe_guest_base, but using
3301      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3302      *
3303      * Otherwise this is ET_DYN, and we are searching for a location
3304      * that can hold the memory space required.  If the image is
3305      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3306      * honor that address if it happens to be free.
3307      *
3308      * In both cases, we will overwrite pages in this range with mappings
3309      * from the executable.
3310      */
3311     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3312                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3313                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3314                             -1, 0);
3315     if (load_addr == -1) {
3316         goto exit_mmap;
3317     }
3318     load_bias = load_addr - loaddr;
3319 
3320     if (elf_is_fdpic(ehdr)) {
3321         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3322             g_malloc(sizeof(*loadsegs) * info->nsegs);
3323 
3324         for (i = 0; i < ehdr->e_phnum; ++i) {
3325             switch (phdr[i].p_type) {
3326             case PT_DYNAMIC:
3327                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3328                 break;
3329             case PT_LOAD:
3330                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3331                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3332                 loadsegs->p_memsz = phdr[i].p_memsz;
3333                 ++loadsegs;
3334                 break;
3335             }
3336         }
3337     }
3338 
3339     info->load_bias = load_bias;
3340     info->code_offset = load_bias;
3341     info->data_offset = load_bias;
3342     info->load_addr = load_addr;
3343     info->entry = ehdr->e_entry + load_bias;
3344     info->start_code = -1;
3345     info->end_code = 0;
3346     info->start_data = -1;
3347     info->end_data = 0;
3348     /* Usual start for brk is after all sections of the main executable. */
3349     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3350     info->elf_flags = ehdr->e_flags;
3351 
3352     prot_exec = PROT_EXEC;
3353 #ifdef TARGET_AARCH64
3354     /*
3355      * If the BTI feature is present, this indicates that the executable
3356      * pages of the startup binary should be mapped with PROT_BTI, so that
3357      * branch targets are enforced.
3358      *
3359      * The startup binary is either the interpreter or the static executable.
3360      * The interpreter is responsible for all pages of a dynamic executable.
3361      *
3362      * Elf notes are backward compatible to older cpus.
3363      * Do not enable BTI unless it is supported.
3364      */
3365     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3366         && (pinterp_name == NULL || *pinterp_name == 0)
3367         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3368         prot_exec |= TARGET_PROT_BTI;
3369     }
3370 #endif
3371 
3372     for (i = 0; i < ehdr->e_phnum; i++) {
3373         struct elf_phdr *eppnt = phdr + i;
3374         if (eppnt->p_type == PT_LOAD) {
3375             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3376             int elf_prot = 0;
3377 
3378             if (eppnt->p_flags & PF_R) {
3379                 elf_prot |= PROT_READ;
3380             }
3381             if (eppnt->p_flags & PF_W) {
3382                 elf_prot |= PROT_WRITE;
3383             }
3384             if (eppnt->p_flags & PF_X) {
3385                 elf_prot |= prot_exec;
3386             }
3387 
3388             vaddr = load_bias + eppnt->p_vaddr;
3389             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3390             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3391 
3392             vaddr_ef = vaddr + eppnt->p_filesz;
3393             vaddr_em = vaddr + eppnt->p_memsz;
3394 
3395             /*
3396              * Some segments may be completely empty, with a non-zero p_memsz
3397              * but no backing file segment.
3398              */
3399             if (eppnt->p_filesz != 0) {
3400                 error = imgsrc_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3401                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3402                                     src, eppnt->p_offset - vaddr_po);
3403                 if (error == -1) {
3404                     goto exit_mmap;
3405                 }
3406             }
3407 
3408             /* If the load segment requests extra zeros (e.g. bss), map it. */
3409             if (vaddr_ef < vaddr_em &&
3410                 !zero_bss(vaddr_ef, vaddr_em, elf_prot, &err)) {
3411                 goto exit_errmsg;
3412             }
3413 
3414             /* Find the full program boundaries.  */
3415             if (elf_prot & PROT_EXEC) {
3416                 if (vaddr < info->start_code) {
3417                     info->start_code = vaddr;
3418                 }
3419                 if (vaddr_ef > info->end_code) {
3420                     info->end_code = vaddr_ef;
3421                 }
3422             }
3423             if (elf_prot & PROT_WRITE) {
3424                 if (vaddr < info->start_data) {
3425                     info->start_data = vaddr;
3426                 }
3427                 if (vaddr_ef > info->end_data) {
3428                     info->end_data = vaddr_ef;
3429                 }
3430             }
3431 #ifdef TARGET_MIPS
3432         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3433             Mips_elf_abiflags_v0 abiflags;
3434 
3435             if (!imgsrc_read(&abiflags, eppnt->p_offset, sizeof(abiflags),
3436                              src, &err)) {
3437                 goto exit_errmsg;
3438             }
3439             bswap_mips_abiflags(&abiflags);
3440             info->fp_abi = abiflags.fp_abi;
3441 #endif
3442         }
3443     }
3444 
3445     if (info->end_data == 0) {
3446         info->start_data = info->end_code;
3447         info->end_data = info->end_code;
3448     }
3449 
3450     if (qemu_log_enabled()) {
3451         load_symbols(ehdr, src, load_bias);
3452     }
3453 
3454     debuginfo_report_elf(image_name, src->fd, load_bias);
3455 
3456     mmap_unlock();
3457 
3458     close(src->fd);
3459     return;
3460 
3461  exit_mmap:
3462     error_setg_errno(&err, errno, "Error mapping file");
3463     goto exit_errmsg;
3464  exit_errmsg:
3465     error_reportf_err(err, "%s: ", image_name);
3466     exit(-1);
3467 }
3468 
3469 static void load_elf_interp(const char *filename, struct image_info *info,
3470                             char bprm_buf[BPRM_BUF_SIZE])
3471 {
3472     struct elfhdr ehdr;
3473     ImageSource src;
3474     int fd, retval;
3475     Error *err = NULL;
3476 
3477     fd = open(path(filename), O_RDONLY);
3478     if (fd < 0) {
3479         error_setg_file_open(&err, errno, filename);
3480         error_report_err(err);
3481         exit(-1);
3482     }
3483 
3484     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3485     if (retval < 0) {
3486         error_setg_errno(&err, errno, "Error reading file header");
3487         error_reportf_err(err, "%s: ", filename);
3488         exit(-1);
3489     }
3490 
3491     src.fd = fd;
3492     src.cache = bprm_buf;
3493     src.cache_size = retval;
3494 
3495     load_elf_image(filename, &src, info, &ehdr, NULL);
3496 }
3497 
3498 #ifdef VDSO_HEADER
3499 #include VDSO_HEADER
3500 #define  vdso_image_info()  &vdso_image_info
3501 #else
3502 #define  vdso_image_info()  NULL
3503 #endif
3504 
3505 static void load_elf_vdso(struct image_info *info, const VdsoImageInfo *vdso)
3506 {
3507     ImageSource src;
3508     struct elfhdr ehdr;
3509     abi_ulong load_bias, load_addr;
3510 
3511     src.fd = -1;
3512     src.cache = vdso->image;
3513     src.cache_size = vdso->image_size;
3514 
3515     load_elf_image("<internal-vdso>", &src, info, &ehdr, NULL);
3516     load_addr = info->load_addr;
3517     load_bias = info->load_bias;
3518 
3519     /*
3520      * We need to relocate the VDSO image.  The one built into the kernel
3521      * is built for a fixed address.  The one built for QEMU is not, since
3522      * that requires close control of the guest address space.
3523      * We pre-processed the image to locate all of the addresses that need
3524      * to be updated.
3525      */
3526     for (unsigned i = 0, n = vdso->reloc_count; i < n; i++) {
3527         abi_ulong *addr = g2h_untagged(load_addr + vdso->relocs[i]);
3528         *addr = tswapal(tswapal(*addr) + load_bias);
3529     }
3530 
3531     /* Install signal trampolines, if present. */
3532     if (vdso->sigreturn_ofs) {
3533         default_sigreturn = load_addr + vdso->sigreturn_ofs;
3534     }
3535     if (vdso->rt_sigreturn_ofs) {
3536         default_rt_sigreturn = load_addr + vdso->rt_sigreturn_ofs;
3537     }
3538 
3539     /* Remove write from VDSO segment. */
3540     target_mprotect(info->start_data, info->end_data - info->start_data,
3541                     PROT_READ | PROT_EXEC);
3542 }
3543 
3544 static int symfind(const void *s0, const void *s1)
3545 {
3546     struct elf_sym *sym = (struct elf_sym *)s1;
3547     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3548     int result = 0;
3549 
3550     if (addr < sym->st_value) {
3551         result = -1;
3552     } else if (addr >= sym->st_value + sym->st_size) {
3553         result = 1;
3554     }
3555     return result;
3556 }
3557 
3558 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3559 {
3560 #if ELF_CLASS == ELFCLASS32
3561     struct elf_sym *syms = s->disas_symtab.elf32;
3562 #else
3563     struct elf_sym *syms = s->disas_symtab.elf64;
3564 #endif
3565 
3566     // binary search
3567     struct elf_sym *sym;
3568 
3569     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3570     if (sym != NULL) {
3571         return s->disas_strtab + sym->st_name;
3572     }
3573 
3574     return "";
3575 }
3576 
3577 /* FIXME: This should use elf_ops.h.inc  */
3578 static int symcmp(const void *s0, const void *s1)
3579 {
3580     struct elf_sym *sym0 = (struct elf_sym *)s0;
3581     struct elf_sym *sym1 = (struct elf_sym *)s1;
3582     return (sym0->st_value < sym1->st_value)
3583         ? -1
3584         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3585 }
3586 
3587 /* Best attempt to load symbols from this ELF object. */
3588 static void load_symbols(struct elfhdr *hdr, const ImageSource *src,
3589                          abi_ulong load_bias)
3590 {
3591     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3592     g_autofree struct elf_shdr *shdr = NULL;
3593     char *strings = NULL;
3594     struct elf_sym *syms = NULL;
3595     struct elf_sym *new_syms;
3596     uint64_t segsz;
3597 
3598     shnum = hdr->e_shnum;
3599     shdr = imgsrc_read_alloc(hdr->e_shoff, shnum * sizeof(struct elf_shdr),
3600                              src, NULL);
3601     if (shdr == NULL) {
3602         return;
3603     }
3604 
3605     bswap_shdr(shdr, shnum);
3606     for (i = 0; i < shnum; ++i) {
3607         if (shdr[i].sh_type == SHT_SYMTAB) {
3608             sym_idx = i;
3609             str_idx = shdr[i].sh_link;
3610             goto found;
3611         }
3612     }
3613 
3614     /* There will be no symbol table if the file was stripped.  */
3615     return;
3616 
3617  found:
3618     /* Now know where the strtab and symtab are.  Snarf them.  */
3619 
3620     segsz = shdr[str_idx].sh_size;
3621     strings = g_try_malloc(segsz);
3622     if (!strings) {
3623         goto give_up;
3624     }
3625     if (!imgsrc_read(strings, shdr[str_idx].sh_offset, segsz, src, NULL)) {
3626         goto give_up;
3627     }
3628 
3629     segsz = shdr[sym_idx].sh_size;
3630     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3631         /*
3632          * Implausibly large symbol table: give up rather than ploughing
3633          * on with the number of symbols calculation overflowing.
3634          */
3635         goto give_up;
3636     }
3637     nsyms = segsz / sizeof(struct elf_sym);
3638     syms = g_try_malloc(segsz);
3639     if (!syms) {
3640         goto give_up;
3641     }
3642     if (!imgsrc_read(syms, shdr[sym_idx].sh_offset, segsz, src, NULL)) {
3643         goto give_up;
3644     }
3645 
3646     for (i = 0; i < nsyms; ) {
3647         bswap_sym(syms + i);
3648         /* Throw away entries which we do not need.  */
3649         if (syms[i].st_shndx == SHN_UNDEF
3650             || syms[i].st_shndx >= SHN_LORESERVE
3651             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3652             if (i < --nsyms) {
3653                 syms[i] = syms[nsyms];
3654             }
3655         } else {
3656 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3657             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3658             syms[i].st_value &= ~(target_ulong)1;
3659 #endif
3660             syms[i].st_value += load_bias;
3661             i++;
3662         }
3663     }
3664 
3665     /* No "useful" symbol.  */
3666     if (nsyms == 0) {
3667         goto give_up;
3668     }
3669 
3670     /*
3671      * Attempt to free the storage associated with the local symbols
3672      * that we threw away.  Whether or not this has any effect on the
3673      * memory allocation depends on the malloc implementation and how
3674      * many symbols we managed to discard.
3675      */
3676     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3677     if (new_syms == NULL) {
3678         goto give_up;
3679     }
3680     syms = new_syms;
3681 
3682     qsort(syms, nsyms, sizeof(*syms), symcmp);
3683 
3684     {
3685         struct syminfo *s = g_new(struct syminfo, 1);
3686 
3687         s->disas_strtab = strings;
3688         s->disas_num_syms = nsyms;
3689 #if ELF_CLASS == ELFCLASS32
3690         s->disas_symtab.elf32 = syms;
3691 #else
3692         s->disas_symtab.elf64 = syms;
3693 #endif
3694         s->lookup_symbol = lookup_symbolxx;
3695         s->next = syminfos;
3696         syminfos = s;
3697     }
3698     return;
3699 
3700  give_up:
3701     g_free(strings);
3702     g_free(syms);
3703 }
3704 
3705 uint32_t get_elf_eflags(int fd)
3706 {
3707     struct elfhdr ehdr;
3708     off_t offset;
3709     int ret;
3710 
3711     /* Read ELF header */
3712     offset = lseek(fd, 0, SEEK_SET);
3713     if (offset == (off_t) -1) {
3714         return 0;
3715     }
3716     ret = read(fd, &ehdr, sizeof(ehdr));
3717     if (ret < sizeof(ehdr)) {
3718         return 0;
3719     }
3720     offset = lseek(fd, offset, SEEK_SET);
3721     if (offset == (off_t) -1) {
3722         return 0;
3723     }
3724 
3725     /* Check ELF signature */
3726     if (!elf_check_ident(&ehdr)) {
3727         return 0;
3728     }
3729 
3730     /* check header */
3731     bswap_ehdr(&ehdr);
3732     if (!elf_check_ehdr(&ehdr)) {
3733         return 0;
3734     }
3735 
3736     /* return architecture id */
3737     return ehdr.e_flags;
3738 }
3739 
3740 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3741 {
3742     /*
3743      * We need a copy of the elf header for passing to create_elf_tables.
3744      * We will have overwritten the original when we re-use bprm->buf
3745      * while loading the interpreter.  Allocate the storage for this now
3746      * and let elf_load_image do any swapping that may be required.
3747      */
3748     struct elfhdr ehdr;
3749     struct image_info interp_info, vdso_info;
3750     char *elf_interpreter = NULL;
3751     char *scratch;
3752 
3753     memset(&interp_info, 0, sizeof(interp_info));
3754 #ifdef TARGET_MIPS
3755     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3756 #endif
3757 
3758     load_elf_image(bprm->filename, &bprm->src, info, &ehdr, &elf_interpreter);
3759 
3760     /* Do this so that we can load the interpreter, if need be.  We will
3761        change some of these later */
3762     bprm->p = setup_arg_pages(bprm, info);
3763 
3764     scratch = g_new0(char, TARGET_PAGE_SIZE);
3765     if (STACK_GROWS_DOWN) {
3766         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3767                                    bprm->p, info->stack_limit);
3768         info->file_string = bprm->p;
3769         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3770                                    bprm->p, info->stack_limit);
3771         info->env_strings = bprm->p;
3772         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3773                                    bprm->p, info->stack_limit);
3774         info->arg_strings = bprm->p;
3775     } else {
3776         info->arg_strings = bprm->p;
3777         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3778                                    bprm->p, info->stack_limit);
3779         info->env_strings = bprm->p;
3780         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3781                                    bprm->p, info->stack_limit);
3782         info->file_string = bprm->p;
3783         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3784                                    bprm->p, info->stack_limit);
3785     }
3786 
3787     g_free(scratch);
3788 
3789     if (!bprm->p) {
3790         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3791         exit(-1);
3792     }
3793 
3794     if (elf_interpreter) {
3795         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3796 
3797         /*
3798          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3799          * with the mappings the interpreter can be loaded above but
3800          * near the main executable, which can leave very little room
3801          * for the heap.
3802          * If the current brk has less than 16MB, use the end of the
3803          * interpreter.
3804          */
3805         if (interp_info.brk > info->brk &&
3806             interp_info.load_bias - info->brk < 16 * MiB)  {
3807             info->brk = interp_info.brk;
3808         }
3809 
3810         /* If the program interpreter is one of these two, then assume
3811            an iBCS2 image.  Otherwise assume a native linux image.  */
3812 
3813         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3814             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3815             info->personality = PER_SVR4;
3816 
3817             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3818                and some applications "depend" upon this behavior.  Since
3819                we do not have the power to recompile these, we emulate
3820                the SVr4 behavior.  Sigh.  */
3821             target_mmap(0, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC,
3822                         MAP_FIXED_NOREPLACE | MAP_PRIVATE | MAP_ANONYMOUS,
3823                         -1, 0);
3824         }
3825 #ifdef TARGET_MIPS
3826         info->interp_fp_abi = interp_info.fp_abi;
3827 #endif
3828     }
3829 
3830     /*
3831      * Load a vdso if available, which will amongst other things contain the
3832      * signal trampolines.  Otherwise, allocate a separate page for them.
3833      */
3834     const VdsoImageInfo *vdso = vdso_image_info();
3835     if (vdso) {
3836         load_elf_vdso(&vdso_info, vdso);
3837         info->vdso = vdso_info.load_bias;
3838     } else if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3839         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3840                                           PROT_READ | PROT_WRITE,
3841                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3842         if (tramp_page == -1) {
3843             return -errno;
3844         }
3845 
3846         setup_sigtramp(tramp_page);
3847         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3848     }
3849 
3850     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &ehdr, info,
3851                                 elf_interpreter ? &interp_info : NULL,
3852                                 vdso ? &vdso_info : NULL);
3853     info->start_stack = bprm->p;
3854 
3855     /* If we have an interpreter, set that as the program's entry point.
3856        Copy the load_bias as well, to help PPC64 interpret the entry
3857        point as a function descriptor.  Do this after creating elf tables
3858        so that we copy the original program entry point into the AUXV.  */
3859     if (elf_interpreter) {
3860         info->load_bias = interp_info.load_bias;
3861         info->entry = interp_info.entry;
3862         g_free(elf_interpreter);
3863     }
3864 
3865 #ifdef USE_ELF_CORE_DUMP
3866     bprm->core_dump = &elf_core_dump;
3867 #endif
3868 
3869     return 0;
3870 }
3871 
3872 #ifdef USE_ELF_CORE_DUMP
3873 #include "exec/translate-all.h"
3874 
3875 /*
3876  * Definitions to generate Intel SVR4-like core files.
3877  * These mostly have the same names as the SVR4 types with "target_elf_"
3878  * tacked on the front to prevent clashes with linux definitions,
3879  * and the typedef forms have been avoided.  This is mostly like
3880  * the SVR4 structure, but more Linuxy, with things that Linux does
3881  * not support and which gdb doesn't really use excluded.
3882  *
3883  * Fields we don't dump (their contents is zero) in linux-user qemu
3884  * are marked with XXX.
3885  *
3886  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3887  *
3888  * Porting ELF coredump for target is (quite) simple process.  First you
3889  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3890  * the target resides):
3891  *
3892  * #define USE_ELF_CORE_DUMP
3893  *
3894  * Next you define type of register set used for dumping.  ELF specification
3895  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3896  *
3897  * typedef <target_regtype> target_elf_greg_t;
3898  * #define ELF_NREG <number of registers>
3899  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3900  *
3901  * Last step is to implement target specific function that copies registers
3902  * from given cpu into just specified register set.  Prototype is:
3903  *
3904  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3905  *                                const CPUArchState *env);
3906  *
3907  * Parameters:
3908  *     regs - copy register values into here (allocated and zeroed by caller)
3909  *     env - copy registers from here
3910  *
3911  * Example for ARM target is provided in this file.
3912  */
3913 
3914 struct target_elf_siginfo {
3915     abi_int    si_signo; /* signal number */
3916     abi_int    si_code;  /* extra code */
3917     abi_int    si_errno; /* errno */
3918 };
3919 
3920 struct target_elf_prstatus {
3921     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3922     abi_short          pr_cursig;    /* Current signal */
3923     abi_ulong          pr_sigpend;   /* XXX */
3924     abi_ulong          pr_sighold;   /* XXX */
3925     target_pid_t       pr_pid;
3926     target_pid_t       pr_ppid;
3927     target_pid_t       pr_pgrp;
3928     target_pid_t       pr_sid;
3929     struct target_timeval pr_utime;  /* XXX User time */
3930     struct target_timeval pr_stime;  /* XXX System time */
3931     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3932     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3933     target_elf_gregset_t      pr_reg;       /* GP registers */
3934     abi_int            pr_fpvalid;   /* XXX */
3935 };
3936 
3937 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3938 
3939 struct target_elf_prpsinfo {
3940     char         pr_state;       /* numeric process state */
3941     char         pr_sname;       /* char for pr_state */
3942     char         pr_zomb;        /* zombie */
3943     char         pr_nice;        /* nice val */
3944     abi_ulong    pr_flag;        /* flags */
3945     target_uid_t pr_uid;
3946     target_gid_t pr_gid;
3947     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3948     /* Lots missing */
3949     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3950     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3951 };
3952 
3953 #ifdef BSWAP_NEEDED
3954 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3955 {
3956     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3957     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3958     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3959     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3960     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3961     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3962     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3963     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3964     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3965     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3966     /* cpu times are not filled, so we skip them */
3967     /* regs should be in correct format already */
3968     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3969 }
3970 
3971 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3972 {
3973     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3974     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3975     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3976     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3977     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3978     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3979     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3980 }
3981 
3982 static void bswap_note(struct elf_note *en)
3983 {
3984     bswap32s(&en->n_namesz);
3985     bswap32s(&en->n_descsz);
3986     bswap32s(&en->n_type);
3987 }
3988 #else
3989 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3990 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3991 static inline void bswap_note(struct elf_note *en) { }
3992 #endif /* BSWAP_NEEDED */
3993 
3994 /*
3995  * Calculate file (dump) size of given memory region.
3996  */
3997 static size_t vma_dump_size(target_ulong start, target_ulong end,
3998                             unsigned long flags)
3999 {
4000     /* The area must be readable. */
4001     if (!(flags & PAGE_READ)) {
4002         return 0;
4003     }
4004 
4005     /*
4006      * Usually we don't dump executable pages as they contain
4007      * non-writable code that debugger can read directly from
4008      * target library etc. If there is no elf header, we dump it.
4009      */
4010     if (!(flags & PAGE_WRITE_ORG) &&
4011         (flags & PAGE_EXEC) &&
4012         memcmp(g2h_untagged(start), ELFMAG, SELFMAG) == 0) {
4013         return 0;
4014     }
4015 
4016     return end - start;
4017 }
4018 
4019 static size_t size_note(const char *name, size_t datasz)
4020 {
4021     size_t namesz = strlen(name) + 1;
4022 
4023     namesz = ROUND_UP(namesz, 4);
4024     datasz = ROUND_UP(datasz, 4);
4025 
4026     return sizeof(struct elf_note) + namesz + datasz;
4027 }
4028 
4029 static void *fill_note(void **pptr, int type, const char *name, size_t datasz)
4030 {
4031     void *ptr = *pptr;
4032     struct elf_note *n = ptr;
4033     size_t namesz = strlen(name) + 1;
4034 
4035     n->n_namesz = namesz;
4036     n->n_descsz = datasz;
4037     n->n_type = type;
4038     bswap_note(n);
4039 
4040     ptr += sizeof(*n);
4041     memcpy(ptr, name, namesz);
4042 
4043     namesz = ROUND_UP(namesz, 4);
4044     datasz = ROUND_UP(datasz, 4);
4045 
4046     *pptr = ptr + namesz + datasz;
4047     return ptr + namesz;
4048 }
4049 
4050 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4051                             uint32_t flags)
4052 {
4053     memcpy(elf->e_ident, ELFMAG, SELFMAG);
4054 
4055     elf->e_ident[EI_CLASS] = ELF_CLASS;
4056     elf->e_ident[EI_DATA] = ELF_DATA;
4057     elf->e_ident[EI_VERSION] = EV_CURRENT;
4058     elf->e_ident[EI_OSABI] = ELF_OSABI;
4059 
4060     elf->e_type = ET_CORE;
4061     elf->e_machine = machine;
4062     elf->e_version = EV_CURRENT;
4063     elf->e_phoff = sizeof(struct elfhdr);
4064     elf->e_flags = flags;
4065     elf->e_ehsize = sizeof(struct elfhdr);
4066     elf->e_phentsize = sizeof(struct elf_phdr);
4067     elf->e_phnum = segs;
4068 
4069     bswap_ehdr(elf);
4070 }
4071 
4072 static void fill_elf_note_phdr(struct elf_phdr *phdr, size_t sz, off_t offset)
4073 {
4074     phdr->p_type = PT_NOTE;
4075     phdr->p_offset = offset;
4076     phdr->p_filesz = sz;
4077 
4078     bswap_phdr(phdr, 1);
4079 }
4080 
4081 static void fill_prstatus_note(void *data, const TaskState *ts,
4082                                CPUState *cpu, int signr)
4083 {
4084     /*
4085      * Because note memory is only aligned to 4, and target_elf_prstatus
4086      * may well have higher alignment requirements, fill locally and
4087      * memcpy to the destination afterward.
4088      */
4089     struct target_elf_prstatus prstatus = {
4090         .pr_info.si_signo = signr,
4091         .pr_cursig = signr,
4092         .pr_pid = ts->ts_tid,
4093         .pr_ppid = getppid(),
4094         .pr_pgrp = getpgrp(),
4095         .pr_sid = getsid(0),
4096     };
4097 
4098     elf_core_copy_regs(&prstatus.pr_reg, cpu_env(cpu));
4099     bswap_prstatus(&prstatus);
4100     memcpy(data, &prstatus, sizeof(prstatus));
4101 }
4102 
4103 static void fill_prpsinfo_note(void *data, const TaskState *ts)
4104 {
4105     /*
4106      * Because note memory is only aligned to 4, and target_elf_prpsinfo
4107      * may well have higher alignment requirements, fill locally and
4108      * memcpy to the destination afterward.
4109      */
4110     struct target_elf_prpsinfo psinfo = {
4111         .pr_pid = getpid(),
4112         .pr_ppid = getppid(),
4113         .pr_pgrp = getpgrp(),
4114         .pr_sid = getsid(0),
4115         .pr_uid = getuid(),
4116         .pr_gid = getgid(),
4117     };
4118     char *base_filename;
4119     size_t len;
4120 
4121     len = ts->info->env_strings - ts->info->arg_strings;
4122     len = MIN(len, ELF_PRARGSZ);
4123     memcpy(&psinfo.pr_psargs, g2h_untagged(ts->info->arg_strings), len);
4124     for (size_t i = 0; i < len; i++) {
4125         if (psinfo.pr_psargs[i] == 0) {
4126             psinfo.pr_psargs[i] = ' ';
4127         }
4128     }
4129 
4130     base_filename = g_path_get_basename(ts->bprm->filename);
4131     /*
4132      * Using strncpy here is fine: at max-length,
4133      * this field is not NUL-terminated.
4134      */
4135     strncpy(psinfo.pr_fname, base_filename, sizeof(psinfo.pr_fname));
4136     g_free(base_filename);
4137 
4138     bswap_psinfo(&psinfo);
4139     memcpy(data, &psinfo, sizeof(psinfo));
4140 }
4141 
4142 static void fill_auxv_note(void *data, const TaskState *ts)
4143 {
4144     memcpy(data, g2h_untagged(ts->info->saved_auxv), ts->info->auxv_len);
4145 }
4146 
4147 /*
4148  * Constructs name of coredump file.  We have following convention
4149  * for the name:
4150  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4151  *
4152  * Returns the filename
4153  */
4154 static char *core_dump_filename(const TaskState *ts)
4155 {
4156     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4157     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4158     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4159 
4160     return g_strdup_printf("qemu_%s_%s_%d.core",
4161                            base_filename, nowstr, (int)getpid());
4162 }
4163 
4164 static int dump_write(int fd, const void *ptr, size_t size)
4165 {
4166     const char *bufp = (const char *)ptr;
4167     ssize_t bytes_written, bytes_left;
4168 
4169     bytes_written = 0;
4170     bytes_left = size;
4171 
4172     /*
4173      * In normal conditions, single write(2) should do but
4174      * in case of socket etc. this mechanism is more portable.
4175      */
4176     do {
4177         bytes_written = write(fd, bufp, bytes_left);
4178         if (bytes_written < 0) {
4179             if (errno == EINTR)
4180                 continue;
4181             return (-1);
4182         } else if (bytes_written == 0) { /* eof */
4183             return (-1);
4184         }
4185         bufp += bytes_written;
4186         bytes_left -= bytes_written;
4187     } while (bytes_left > 0);
4188 
4189     return (0);
4190 }
4191 
4192 static int wmr_page_unprotect_regions(void *opaque, target_ulong start,
4193                                       target_ulong end, unsigned long flags)
4194 {
4195     if ((flags & (PAGE_WRITE | PAGE_WRITE_ORG)) == PAGE_WRITE_ORG) {
4196         size_t step = MAX(TARGET_PAGE_SIZE, qemu_real_host_page_size());
4197 
4198         while (1) {
4199             page_unprotect(start, 0);
4200             if (end - start <= step) {
4201                 break;
4202             }
4203             start += step;
4204         }
4205     }
4206     return 0;
4207 }
4208 
4209 typedef struct {
4210     unsigned count;
4211     size_t size;
4212 } CountAndSizeRegions;
4213 
4214 static int wmr_count_and_size_regions(void *opaque, target_ulong start,
4215                                       target_ulong end, unsigned long flags)
4216 {
4217     CountAndSizeRegions *css = opaque;
4218 
4219     css->count++;
4220     css->size += vma_dump_size(start, end, flags);
4221     return 0;
4222 }
4223 
4224 typedef struct {
4225     struct elf_phdr *phdr;
4226     off_t offset;
4227 } FillRegionPhdr;
4228 
4229 static int wmr_fill_region_phdr(void *opaque, target_ulong start,
4230                                 target_ulong end, unsigned long flags)
4231 {
4232     FillRegionPhdr *d = opaque;
4233     struct elf_phdr *phdr = d->phdr;
4234 
4235     phdr->p_type = PT_LOAD;
4236     phdr->p_vaddr = start;
4237     phdr->p_paddr = 0;
4238     phdr->p_filesz = vma_dump_size(start, end, flags);
4239     phdr->p_offset = d->offset;
4240     d->offset += phdr->p_filesz;
4241     phdr->p_memsz = end - start;
4242     phdr->p_flags = (flags & PAGE_READ ? PF_R : 0)
4243                   | (flags & PAGE_WRITE_ORG ? PF_W : 0)
4244                   | (flags & PAGE_EXEC ? PF_X : 0);
4245     phdr->p_align = ELF_EXEC_PAGESIZE;
4246 
4247     bswap_phdr(phdr, 1);
4248     d->phdr = phdr + 1;
4249     return 0;
4250 }
4251 
4252 static int wmr_write_region(void *opaque, target_ulong start,
4253                             target_ulong end, unsigned long flags)
4254 {
4255     int fd = *(int *)opaque;
4256     size_t size = vma_dump_size(start, end, flags);
4257 
4258     if (!size) {
4259         return 0;
4260     }
4261     return dump_write(fd, g2h_untagged(start), size);
4262 }
4263 
4264 /*
4265  * Write out ELF coredump.
4266  *
4267  * See documentation of ELF object file format in:
4268  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4269  *
4270  * Coredump format in linux is following:
4271  *
4272  * 0   +----------------------+         \
4273  *     | ELF header           | ET_CORE  |
4274  *     +----------------------+          |
4275  *     | ELF program headers  |          |--- headers
4276  *     | - NOTE section       |          |
4277  *     | - PT_LOAD sections   |          |
4278  *     +----------------------+         /
4279  *     | NOTEs:               |
4280  *     | - NT_PRSTATUS        |
4281  *     | - NT_PRSINFO         |
4282  *     | - NT_AUXV            |
4283  *     +----------------------+ <-- aligned to target page
4284  *     | Process memory dump  |
4285  *     :                      :
4286  *     .                      .
4287  *     :                      :
4288  *     |                      |
4289  *     +----------------------+
4290  *
4291  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4292  * NT_PRSINFO  -> struct elf_prpsinfo
4293  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4294  *
4295  * Format follows System V format as close as possible.  Current
4296  * version limitations are as follows:
4297  *     - no floating point registers are dumped
4298  *
4299  * Function returns 0 in case of success, negative errno otherwise.
4300  *
4301  * TODO: make this work also during runtime: it should be
4302  * possible to force coredump from running process and then
4303  * continue processing.  For example qemu could set up SIGUSR2
4304  * handler (provided that target process haven't registered
4305  * handler for that) that does the dump when signal is received.
4306  */
4307 static int elf_core_dump(int signr, const CPUArchState *env)
4308 {
4309     const CPUState *cpu = env_cpu((CPUArchState *)env);
4310     const TaskState *ts = (const TaskState *)get_task_state((CPUState *)cpu);
4311     struct rlimit dumpsize;
4312     CountAndSizeRegions css;
4313     off_t offset, note_offset, data_offset;
4314     size_t note_size;
4315     int cpus, ret;
4316     int fd = -1;
4317     CPUState *cpu_iter;
4318 
4319     if (prctl(PR_GET_DUMPABLE) == 0) {
4320         return 0;
4321     }
4322 
4323     if (getrlimit(RLIMIT_CORE, &dumpsize) < 0 || dumpsize.rlim_cur == 0) {
4324         return 0;
4325     }
4326 
4327     cpu_list_lock();
4328     mmap_lock();
4329 
4330     /* By unprotecting, we merge vmas that might be split. */
4331     walk_memory_regions(NULL, wmr_page_unprotect_regions);
4332 
4333     /*
4334      * Walk through target process memory mappings and
4335      * set up structure containing this information.
4336      */
4337     memset(&css, 0, sizeof(css));
4338     walk_memory_regions(&css, wmr_count_and_size_regions);
4339 
4340     cpus = 0;
4341     CPU_FOREACH(cpu_iter) {
4342         cpus++;
4343     }
4344 
4345     offset = sizeof(struct elfhdr);
4346     offset += (css.count + 1) * sizeof(struct elf_phdr);
4347     note_offset = offset;
4348 
4349     offset += size_note("CORE", ts->info->auxv_len);
4350     offset += size_note("CORE", sizeof(struct target_elf_prpsinfo));
4351     offset += size_note("CORE", sizeof(struct target_elf_prstatus)) * cpus;
4352     note_size = offset - note_offset;
4353     data_offset = ROUND_UP(offset, ELF_EXEC_PAGESIZE);
4354 
4355     /* Do not dump if the corefile size exceeds the limit. */
4356     if (dumpsize.rlim_cur != RLIM_INFINITY
4357         && dumpsize.rlim_cur < data_offset + css.size) {
4358         errno = 0;
4359         goto out;
4360     }
4361 
4362     {
4363         g_autofree char *corefile = core_dump_filename(ts);
4364         fd = open(corefile, O_WRONLY | O_CREAT | O_TRUNC,
4365                   S_IRUSR | S_IWUSR | S_IRGRP | S_IROTH);
4366     }
4367     if (fd < 0) {
4368         goto out;
4369     }
4370 
4371     /*
4372      * There is a fair amount of alignment padding within the notes
4373      * as well as preceeding the process memory.  Allocate a zeroed
4374      * block to hold it all.  Write all of the headers directly into
4375      * this buffer and then write it out as a block.
4376      */
4377     {
4378         g_autofree void *header = g_malloc0(data_offset);
4379         FillRegionPhdr frp;
4380         void *hptr, *dptr;
4381 
4382         /* Create elf file header. */
4383         hptr = header;
4384         fill_elf_header(hptr, css.count + 1, ELF_MACHINE, 0);
4385         hptr += sizeof(struct elfhdr);
4386 
4387         /* Create elf program headers. */
4388         fill_elf_note_phdr(hptr, note_size, note_offset);
4389         hptr += sizeof(struct elf_phdr);
4390 
4391         frp.phdr = hptr;
4392         frp.offset = data_offset;
4393         walk_memory_regions(&frp, wmr_fill_region_phdr);
4394         hptr = frp.phdr;
4395 
4396         /* Create the notes. */
4397         dptr = fill_note(&hptr, NT_AUXV, "CORE", ts->info->auxv_len);
4398         fill_auxv_note(dptr, ts);
4399 
4400         dptr = fill_note(&hptr, NT_PRPSINFO, "CORE",
4401                          sizeof(struct target_elf_prpsinfo));
4402         fill_prpsinfo_note(dptr, ts);
4403 
4404         CPU_FOREACH(cpu_iter) {
4405             dptr = fill_note(&hptr, NT_PRSTATUS, "CORE",
4406                              sizeof(struct target_elf_prstatus));
4407             fill_prstatus_note(dptr, ts, cpu_iter,
4408                                cpu_iter == cpu ? signr : 0);
4409         }
4410 
4411         if (dump_write(fd, header, data_offset) < 0) {
4412             goto out;
4413         }
4414     }
4415 
4416     /*
4417      * Finally write process memory into the corefile as well.
4418      */
4419     if (walk_memory_regions(&fd, wmr_write_region) < 0) {
4420         goto out;
4421     }
4422     errno = 0;
4423 
4424  out:
4425     ret = -errno;
4426     mmap_unlock();
4427     cpu_list_unlock();
4428     if (fd >= 0) {
4429         close(fd);
4430     }
4431     return ret;
4432 }
4433 #endif /* USE_ELF_CORE_DUMP */
4434 
4435 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4436 {
4437     init_thread(regs, infop);
4438 }
4439