1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr < (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 }; 516 517 #define ELF_HWCAP get_elf_hwcap() 518 519 static uint32_t get_elf_hwcap(void) 520 { 521 ARMCPU *cpu = ARM_CPU(thread_cpu); 522 uint32_t hwcaps = 0; 523 524 hwcaps |= ARM_HWCAP_A64_FP; 525 hwcaps |= ARM_HWCAP_A64_ASIMD; 526 527 /* probe for the extra features */ 528 #define GET_FEATURE(feat, hwcap) \ 529 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 530 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 531 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 532 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 533 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 534 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 535 #undef GET_FEATURE 536 537 return hwcaps; 538 } 539 540 #endif /* not TARGET_AARCH64 */ 541 #endif /* TARGET_ARM */ 542 543 #ifdef TARGET_UNICORE32 544 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_CLASS ELFCLASS32 548 #define ELF_DATA ELFDATA2LSB 549 #define ELF_ARCH EM_UNICORE32 550 551 static inline void init_thread(struct target_pt_regs *regs, 552 struct image_info *infop) 553 { 554 abi_long stack = infop->start_stack; 555 memset(regs, 0, sizeof(*regs)); 556 regs->UC32_REG_asr = 0x10; 557 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 558 regs->UC32_REG_sp = infop->start_stack; 559 /* FIXME - what to for failure of get_user()? */ 560 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 561 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 562 /* XXX: it seems that r0 is zeroed after ! */ 563 regs->UC32_REG_00 = 0; 564 } 565 566 #define ELF_NREG 34 567 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 568 569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 570 { 571 (*regs)[0] = env->regs[0]; 572 (*regs)[1] = env->regs[1]; 573 (*regs)[2] = env->regs[2]; 574 (*regs)[3] = env->regs[3]; 575 (*regs)[4] = env->regs[4]; 576 (*regs)[5] = env->regs[5]; 577 (*regs)[6] = env->regs[6]; 578 (*regs)[7] = env->regs[7]; 579 (*regs)[8] = env->regs[8]; 580 (*regs)[9] = env->regs[9]; 581 (*regs)[10] = env->regs[10]; 582 (*regs)[11] = env->regs[11]; 583 (*regs)[12] = env->regs[12]; 584 (*regs)[13] = env->regs[13]; 585 (*regs)[14] = env->regs[14]; 586 (*regs)[15] = env->regs[15]; 587 (*regs)[16] = env->regs[16]; 588 (*regs)[17] = env->regs[17]; 589 (*regs)[18] = env->regs[18]; 590 (*regs)[19] = env->regs[19]; 591 (*regs)[20] = env->regs[20]; 592 (*regs)[21] = env->regs[21]; 593 (*regs)[22] = env->regs[22]; 594 (*regs)[23] = env->regs[23]; 595 (*regs)[24] = env->regs[24]; 596 (*regs)[25] = env->regs[25]; 597 (*regs)[26] = env->regs[26]; 598 (*regs)[27] = env->regs[27]; 599 (*regs)[28] = env->regs[28]; 600 (*regs)[29] = env->regs[29]; 601 (*regs)[30] = env->regs[30]; 602 (*regs)[31] = env->regs[31]; 603 604 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 605 (*regs)[33] = env->regs[0]; /* XXX */ 606 } 607 608 #define USE_ELF_CORE_DUMP 609 #define ELF_EXEC_PAGESIZE 4096 610 611 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 612 613 #endif 614 615 #ifdef TARGET_SPARC 616 #ifdef TARGET_SPARC64 617 618 #define ELF_START_MMAP 0x80000000 619 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 620 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 621 #ifndef TARGET_ABI32 622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 623 #else 624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 625 #endif 626 627 #define ELF_CLASS ELFCLASS64 628 #define ELF_ARCH EM_SPARCV9 629 630 #define STACK_BIAS 2047 631 632 static inline void init_thread(struct target_pt_regs *regs, 633 struct image_info *infop) 634 { 635 #ifndef TARGET_ABI32 636 regs->tstate = 0; 637 #endif 638 regs->pc = infop->entry; 639 regs->npc = regs->pc + 4; 640 regs->y = 0; 641 #ifdef TARGET_ABI32 642 regs->u_regs[14] = infop->start_stack - 16 * 4; 643 #else 644 if (personality(infop->personality) == PER_LINUX32) 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 else 647 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 648 #endif 649 } 650 651 #else 652 #define ELF_START_MMAP 0x80000000 653 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 654 | HWCAP_SPARC_MULDIV) 655 656 #define ELF_CLASS ELFCLASS32 657 #define ELF_ARCH EM_SPARC 658 659 static inline void init_thread(struct target_pt_regs *regs, 660 struct image_info *infop) 661 { 662 regs->psr = 0; 663 regs->pc = infop->entry; 664 regs->npc = regs->pc + 4; 665 regs->y = 0; 666 regs->u_regs[14] = infop->start_stack - 16 * 4; 667 } 668 669 #endif 670 #endif 671 672 #ifdef TARGET_PPC 673 674 #define ELF_MACHINE PPC_ELF_MACHINE 675 #define ELF_START_MMAP 0x80000000 676 677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 678 679 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 680 681 #define ELF_CLASS ELFCLASS64 682 683 #else 684 685 #define ELF_CLASS ELFCLASS32 686 687 #endif 688 689 #define ELF_ARCH EM_PPC 690 691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 692 See arch/powerpc/include/asm/cputable.h. */ 693 enum { 694 QEMU_PPC_FEATURE_32 = 0x80000000, 695 QEMU_PPC_FEATURE_64 = 0x40000000, 696 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 697 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 698 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 699 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 700 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 701 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 702 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 703 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 704 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 705 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 706 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 707 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 708 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 709 QEMU_PPC_FEATURE_CELL = 0x00010000, 710 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 711 QEMU_PPC_FEATURE_SMT = 0x00004000, 712 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 713 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 714 QEMU_PPC_FEATURE_PA6T = 0x00000800, 715 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 716 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 717 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 718 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 719 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 720 721 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 722 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 723 724 /* Feature definitions in AT_HWCAP2. */ 725 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 726 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 727 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 728 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 729 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 730 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 731 }; 732 733 #define ELF_HWCAP get_elf_hwcap() 734 735 static uint32_t get_elf_hwcap(void) 736 { 737 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 738 uint32_t features = 0; 739 740 /* We don't have to be terribly complete here; the high points are 741 Altivec/FP/SPE support. Anything else is just a bonus. */ 742 #define GET_FEATURE(flag, feature) \ 743 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 744 #define GET_FEATURE2(flags, feature) \ 745 do { \ 746 if ((cpu->env.insns_flags2 & flags) == flags) { \ 747 features |= feature; \ 748 } \ 749 } while (0) 750 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 751 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 752 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 753 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 754 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 755 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 756 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 757 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 758 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 759 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 760 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 761 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 762 QEMU_PPC_FEATURE_ARCH_2_06); 763 #undef GET_FEATURE 764 #undef GET_FEATURE2 765 766 return features; 767 } 768 769 #define ELF_HWCAP2 get_elf_hwcap2() 770 771 static uint32_t get_elf_hwcap2(void) 772 { 773 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 774 uint32_t features = 0; 775 776 #define GET_FEATURE(flag, feature) \ 777 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 778 #define GET_FEATURE2(flag, feature) \ 779 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 780 781 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 782 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 783 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 784 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 785 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 /* 793 * The requirements here are: 794 * - keep the final alignment of sp (sp & 0xf) 795 * - make sure the 32-bit value at the first 16 byte aligned position of 796 * AUXV is greater than 16 for glibc compatibility. 797 * AT_IGNOREPPC is used for that. 798 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 799 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 800 */ 801 #define DLINFO_ARCH_ITEMS 5 802 #define ARCH_DLINFO \ 803 do { \ 804 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 805 /* \ 806 * Handle glibc compatibility: these magic entries must \ 807 * be at the lowest addresses in the final auxv. \ 808 */ \ 809 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 810 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 811 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 812 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 813 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 814 } while (0) 815 816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 817 { 818 _regs->gpr[1] = infop->start_stack; 819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 820 if (get_ppc64_abi(infop) < 2) { 821 uint64_t val; 822 get_user_u64(val, infop->entry + 8); 823 _regs->gpr[2] = val + infop->load_bias; 824 get_user_u64(val, infop->entry); 825 infop->entry = val + infop->load_bias; 826 } else { 827 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 828 } 829 #endif 830 _regs->nip = infop->entry; 831 } 832 833 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 834 #define ELF_NREG 48 835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 836 837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 838 { 839 int i; 840 target_ulong ccr = 0; 841 842 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 843 (*regs)[i] = tswapreg(env->gpr[i]); 844 } 845 846 (*regs)[32] = tswapreg(env->nip); 847 (*regs)[33] = tswapreg(env->msr); 848 (*regs)[35] = tswapreg(env->ctr); 849 (*regs)[36] = tswapreg(env->lr); 850 (*regs)[37] = tswapreg(env->xer); 851 852 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 853 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 854 } 855 (*regs)[38] = tswapreg(ccr); 856 } 857 858 #define USE_ELF_CORE_DUMP 859 #define ELF_EXEC_PAGESIZE 4096 860 861 #endif 862 863 #ifdef TARGET_MIPS 864 865 #define ELF_START_MMAP 0x80000000 866 867 #ifdef TARGET_MIPS64 868 #define ELF_CLASS ELFCLASS64 869 #else 870 #define ELF_CLASS ELFCLASS32 871 #endif 872 #define ELF_ARCH EM_MIPS 873 874 static inline void init_thread(struct target_pt_regs *regs, 875 struct image_info *infop) 876 { 877 regs->cp0_status = 2 << CP0St_KSU; 878 regs->cp0_epc = infop->entry; 879 regs->regs[29] = infop->start_stack; 880 } 881 882 /* See linux kernel: arch/mips/include/asm/elf.h. */ 883 #define ELF_NREG 45 884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 885 886 /* See linux kernel: arch/mips/include/asm/reg.h. */ 887 enum { 888 #ifdef TARGET_MIPS64 889 TARGET_EF_R0 = 0, 890 #else 891 TARGET_EF_R0 = 6, 892 #endif 893 TARGET_EF_R26 = TARGET_EF_R0 + 26, 894 TARGET_EF_R27 = TARGET_EF_R0 + 27, 895 TARGET_EF_LO = TARGET_EF_R0 + 32, 896 TARGET_EF_HI = TARGET_EF_R0 + 33, 897 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 898 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 899 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 900 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 901 }; 902 903 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 904 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 905 { 906 int i; 907 908 for (i = 0; i < TARGET_EF_R0; i++) { 909 (*regs)[i] = 0; 910 } 911 (*regs)[TARGET_EF_R0] = 0; 912 913 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 914 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 915 } 916 917 (*regs)[TARGET_EF_R26] = 0; 918 (*regs)[TARGET_EF_R27] = 0; 919 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 920 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 921 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 922 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 923 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 924 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 925 } 926 927 #define USE_ELF_CORE_DUMP 928 #define ELF_EXEC_PAGESIZE 4096 929 930 #endif /* TARGET_MIPS */ 931 932 #ifdef TARGET_MICROBLAZE 933 934 #define ELF_START_MMAP 0x80000000 935 936 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 937 938 #define ELF_CLASS ELFCLASS32 939 #define ELF_ARCH EM_MICROBLAZE 940 941 static inline void init_thread(struct target_pt_regs *regs, 942 struct image_info *infop) 943 { 944 regs->pc = infop->entry; 945 regs->r1 = infop->start_stack; 946 947 } 948 949 #define ELF_EXEC_PAGESIZE 4096 950 951 #define USE_ELF_CORE_DUMP 952 #define ELF_NREG 38 953 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 954 955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 957 { 958 int i, pos = 0; 959 960 for (i = 0; i < 32; i++) { 961 (*regs)[pos++] = tswapreg(env->regs[i]); 962 } 963 964 for (i = 0; i < 6; i++) { 965 (*regs)[pos++] = tswapreg(env->sregs[i]); 966 } 967 } 968 969 #endif /* TARGET_MICROBLAZE */ 970 971 #ifdef TARGET_NIOS2 972 973 #define ELF_START_MMAP 0x80000000 974 975 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 976 977 #define ELF_CLASS ELFCLASS32 978 #define ELF_ARCH EM_ALTERA_NIOS2 979 980 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 981 { 982 regs->ea = infop->entry; 983 regs->sp = infop->start_stack; 984 regs->estatus = 0x3; 985 } 986 987 #define ELF_EXEC_PAGESIZE 4096 988 989 #define USE_ELF_CORE_DUMP 990 #define ELF_NREG 49 991 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 992 993 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 994 static void elf_core_copy_regs(target_elf_gregset_t *regs, 995 const CPUNios2State *env) 996 { 997 int i; 998 999 (*regs)[0] = -1; 1000 for (i = 1; i < 8; i++) /* r0-r7 */ 1001 (*regs)[i] = tswapreg(env->regs[i + 7]); 1002 1003 for (i = 8; i < 16; i++) /* r8-r15 */ 1004 (*regs)[i] = tswapreg(env->regs[i - 8]); 1005 1006 for (i = 16; i < 24; i++) /* r16-r23 */ 1007 (*regs)[i] = tswapreg(env->regs[i + 7]); 1008 (*regs)[24] = -1; /* R_ET */ 1009 (*regs)[25] = -1; /* R_BT */ 1010 (*regs)[26] = tswapreg(env->regs[R_GP]); 1011 (*regs)[27] = tswapreg(env->regs[R_SP]); 1012 (*regs)[28] = tswapreg(env->regs[R_FP]); 1013 (*regs)[29] = tswapreg(env->regs[R_EA]); 1014 (*regs)[30] = -1; /* R_SSTATUS */ 1015 (*regs)[31] = tswapreg(env->regs[R_RA]); 1016 1017 (*regs)[32] = tswapreg(env->regs[R_PC]); 1018 1019 (*regs)[33] = -1; /* R_STATUS */ 1020 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1021 1022 for (i = 35; i < 49; i++) /* ... */ 1023 (*regs)[i] = -1; 1024 } 1025 1026 #endif /* TARGET_NIOS2 */ 1027 1028 #ifdef TARGET_OPENRISC 1029 1030 #define ELF_START_MMAP 0x08000000 1031 1032 #define ELF_ARCH EM_OPENRISC 1033 #define ELF_CLASS ELFCLASS32 1034 #define ELF_DATA ELFDATA2MSB 1035 1036 static inline void init_thread(struct target_pt_regs *regs, 1037 struct image_info *infop) 1038 { 1039 regs->pc = infop->entry; 1040 regs->gpr[1] = infop->start_stack; 1041 } 1042 1043 #define USE_ELF_CORE_DUMP 1044 #define ELF_EXEC_PAGESIZE 8192 1045 1046 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1047 #define ELF_NREG 34 /* gprs and pc, sr */ 1048 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1049 1050 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1051 const CPUOpenRISCState *env) 1052 { 1053 int i; 1054 1055 for (i = 0; i < 32; i++) { 1056 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1057 } 1058 (*regs)[32] = tswapreg(env->pc); 1059 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1060 } 1061 #define ELF_HWCAP 0 1062 #define ELF_PLATFORM NULL 1063 1064 #endif /* TARGET_OPENRISC */ 1065 1066 #ifdef TARGET_SH4 1067 1068 #define ELF_START_MMAP 0x80000000 1069 1070 #define ELF_CLASS ELFCLASS32 1071 #define ELF_ARCH EM_SH 1072 1073 static inline void init_thread(struct target_pt_regs *regs, 1074 struct image_info *infop) 1075 { 1076 /* Check other registers XXXXX */ 1077 regs->pc = infop->entry; 1078 regs->regs[15] = infop->start_stack; 1079 } 1080 1081 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1082 #define ELF_NREG 23 1083 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1084 1085 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1086 enum { 1087 TARGET_REG_PC = 16, 1088 TARGET_REG_PR = 17, 1089 TARGET_REG_SR = 18, 1090 TARGET_REG_GBR = 19, 1091 TARGET_REG_MACH = 20, 1092 TARGET_REG_MACL = 21, 1093 TARGET_REG_SYSCALL = 22 1094 }; 1095 1096 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1097 const CPUSH4State *env) 1098 { 1099 int i; 1100 1101 for (i = 0; i < 16; i++) { 1102 (*regs)[i] = tswapreg(env->gregs[i]); 1103 } 1104 1105 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1106 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1107 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1108 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1109 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1110 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1111 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1112 } 1113 1114 #define USE_ELF_CORE_DUMP 1115 #define ELF_EXEC_PAGESIZE 4096 1116 1117 enum { 1118 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1119 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1120 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1121 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1122 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1123 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1124 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1125 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1126 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1127 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1128 }; 1129 1130 #define ELF_HWCAP get_elf_hwcap() 1131 1132 static uint32_t get_elf_hwcap(void) 1133 { 1134 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1135 uint32_t hwcap = 0; 1136 1137 hwcap |= SH_CPU_HAS_FPU; 1138 1139 if (cpu->env.features & SH_FEATURE_SH4A) { 1140 hwcap |= SH_CPU_HAS_LLSC; 1141 } 1142 1143 return hwcap; 1144 } 1145 1146 #endif 1147 1148 #ifdef TARGET_CRIS 1149 1150 #define ELF_START_MMAP 0x80000000 1151 1152 #define ELF_CLASS ELFCLASS32 1153 #define ELF_ARCH EM_CRIS 1154 1155 static inline void init_thread(struct target_pt_regs *regs, 1156 struct image_info *infop) 1157 { 1158 regs->erp = infop->entry; 1159 } 1160 1161 #define ELF_EXEC_PAGESIZE 8192 1162 1163 #endif 1164 1165 #ifdef TARGET_M68K 1166 1167 #define ELF_START_MMAP 0x80000000 1168 1169 #define ELF_CLASS ELFCLASS32 1170 #define ELF_ARCH EM_68K 1171 1172 /* ??? Does this need to do anything? 1173 #define ELF_PLAT_INIT(_r) */ 1174 1175 static inline void init_thread(struct target_pt_regs *regs, 1176 struct image_info *infop) 1177 { 1178 regs->usp = infop->start_stack; 1179 regs->sr = 0; 1180 regs->pc = infop->entry; 1181 } 1182 1183 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1184 #define ELF_NREG 20 1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1186 1187 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1188 { 1189 (*regs)[0] = tswapreg(env->dregs[1]); 1190 (*regs)[1] = tswapreg(env->dregs[2]); 1191 (*regs)[2] = tswapreg(env->dregs[3]); 1192 (*regs)[3] = tswapreg(env->dregs[4]); 1193 (*regs)[4] = tswapreg(env->dregs[5]); 1194 (*regs)[5] = tswapreg(env->dregs[6]); 1195 (*regs)[6] = tswapreg(env->dregs[7]); 1196 (*regs)[7] = tswapreg(env->aregs[0]); 1197 (*regs)[8] = tswapreg(env->aregs[1]); 1198 (*regs)[9] = tswapreg(env->aregs[2]); 1199 (*regs)[10] = tswapreg(env->aregs[3]); 1200 (*regs)[11] = tswapreg(env->aregs[4]); 1201 (*regs)[12] = tswapreg(env->aregs[5]); 1202 (*regs)[13] = tswapreg(env->aregs[6]); 1203 (*regs)[14] = tswapreg(env->dregs[0]); 1204 (*regs)[15] = tswapreg(env->aregs[7]); 1205 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1206 (*regs)[17] = tswapreg(env->sr); 1207 (*regs)[18] = tswapreg(env->pc); 1208 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1209 } 1210 1211 #define USE_ELF_CORE_DUMP 1212 #define ELF_EXEC_PAGESIZE 8192 1213 1214 #endif 1215 1216 #ifdef TARGET_ALPHA 1217 1218 #define ELF_START_MMAP (0x30000000000ULL) 1219 1220 #define ELF_CLASS ELFCLASS64 1221 #define ELF_ARCH EM_ALPHA 1222 1223 static inline void init_thread(struct target_pt_regs *regs, 1224 struct image_info *infop) 1225 { 1226 regs->pc = infop->entry; 1227 regs->ps = 8; 1228 regs->usp = infop->start_stack; 1229 } 1230 1231 #define ELF_EXEC_PAGESIZE 8192 1232 1233 #endif /* TARGET_ALPHA */ 1234 1235 #ifdef TARGET_S390X 1236 1237 #define ELF_START_MMAP (0x20000000000ULL) 1238 1239 #define ELF_CLASS ELFCLASS64 1240 #define ELF_DATA ELFDATA2MSB 1241 #define ELF_ARCH EM_S390 1242 1243 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1244 { 1245 regs->psw.addr = infop->entry; 1246 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1247 regs->gprs[15] = infop->start_stack; 1248 } 1249 1250 #endif /* TARGET_S390X */ 1251 1252 #ifdef TARGET_TILEGX 1253 1254 /* 42 bits real used address, a half for user mode */ 1255 #define ELF_START_MMAP (0x00000020000000000ULL) 1256 1257 #define elf_check_arch(x) ((x) == EM_TILEGX) 1258 1259 #define ELF_CLASS ELFCLASS64 1260 #define ELF_DATA ELFDATA2LSB 1261 #define ELF_ARCH EM_TILEGX 1262 1263 static inline void init_thread(struct target_pt_regs *regs, 1264 struct image_info *infop) 1265 { 1266 regs->pc = infop->entry; 1267 regs->sp = infop->start_stack; 1268 1269 } 1270 1271 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1272 1273 #endif /* TARGET_TILEGX */ 1274 1275 #ifdef TARGET_HPPA 1276 1277 #define ELF_START_MMAP 0x80000000 1278 #define ELF_CLASS ELFCLASS32 1279 #define ELF_ARCH EM_PARISC 1280 #define ELF_PLATFORM "PARISC" 1281 #define STACK_GROWS_DOWN 0 1282 #define STACK_ALIGNMENT 64 1283 1284 static inline void init_thread(struct target_pt_regs *regs, 1285 struct image_info *infop) 1286 { 1287 regs->iaoq[0] = infop->entry; 1288 regs->iaoq[1] = infop->entry + 4; 1289 regs->gr[23] = 0; 1290 regs->gr[24] = infop->arg_start; 1291 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1292 /* The top-of-stack contains a linkage buffer. */ 1293 regs->gr[30] = infop->start_stack + 64; 1294 regs->gr[31] = infop->entry; 1295 } 1296 1297 #endif /* TARGET_HPPA */ 1298 1299 #ifndef ELF_PLATFORM 1300 #define ELF_PLATFORM (NULL) 1301 #endif 1302 1303 #ifndef ELF_MACHINE 1304 #define ELF_MACHINE ELF_ARCH 1305 #endif 1306 1307 #ifndef elf_check_arch 1308 #define elf_check_arch(x) ((x) == ELF_ARCH) 1309 #endif 1310 1311 #ifndef ELF_HWCAP 1312 #define ELF_HWCAP 0 1313 #endif 1314 1315 #ifndef STACK_GROWS_DOWN 1316 #define STACK_GROWS_DOWN 1 1317 #endif 1318 1319 #ifndef STACK_ALIGNMENT 1320 #define STACK_ALIGNMENT 16 1321 #endif 1322 1323 #ifdef TARGET_ABI32 1324 #undef ELF_CLASS 1325 #define ELF_CLASS ELFCLASS32 1326 #undef bswaptls 1327 #define bswaptls(ptr) bswap32s(ptr) 1328 #endif 1329 1330 #include "elf.h" 1331 1332 struct exec 1333 { 1334 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1335 unsigned int a_text; /* length of text, in bytes */ 1336 unsigned int a_data; /* length of data, in bytes */ 1337 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1338 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1339 unsigned int a_entry; /* start address */ 1340 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1341 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1342 }; 1343 1344 1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1346 #define OMAGIC 0407 1347 #define NMAGIC 0410 1348 #define ZMAGIC 0413 1349 #define QMAGIC 0314 1350 1351 /* Necessary parameters */ 1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1354 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1356 1357 #define DLINFO_ITEMS 15 1358 1359 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1360 { 1361 memcpy(to, from, n); 1362 } 1363 1364 #ifdef BSWAP_NEEDED 1365 static void bswap_ehdr(struct elfhdr *ehdr) 1366 { 1367 bswap16s(&ehdr->e_type); /* Object file type */ 1368 bswap16s(&ehdr->e_machine); /* Architecture */ 1369 bswap32s(&ehdr->e_version); /* Object file version */ 1370 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1371 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1372 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1373 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1374 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1375 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1376 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1377 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1378 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1379 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1380 } 1381 1382 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1383 { 1384 int i; 1385 for (i = 0; i < phnum; ++i, ++phdr) { 1386 bswap32s(&phdr->p_type); /* Segment type */ 1387 bswap32s(&phdr->p_flags); /* Segment flags */ 1388 bswaptls(&phdr->p_offset); /* Segment file offset */ 1389 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1390 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1391 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1392 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1393 bswaptls(&phdr->p_align); /* Segment alignment */ 1394 } 1395 } 1396 1397 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1398 { 1399 int i; 1400 for (i = 0; i < shnum; ++i, ++shdr) { 1401 bswap32s(&shdr->sh_name); 1402 bswap32s(&shdr->sh_type); 1403 bswaptls(&shdr->sh_flags); 1404 bswaptls(&shdr->sh_addr); 1405 bswaptls(&shdr->sh_offset); 1406 bswaptls(&shdr->sh_size); 1407 bswap32s(&shdr->sh_link); 1408 bswap32s(&shdr->sh_info); 1409 bswaptls(&shdr->sh_addralign); 1410 bswaptls(&shdr->sh_entsize); 1411 } 1412 } 1413 1414 static void bswap_sym(struct elf_sym *sym) 1415 { 1416 bswap32s(&sym->st_name); 1417 bswaptls(&sym->st_value); 1418 bswaptls(&sym->st_size); 1419 bswap16s(&sym->st_shndx); 1420 } 1421 #else 1422 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1423 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1424 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1425 static inline void bswap_sym(struct elf_sym *sym) { } 1426 #endif 1427 1428 #ifdef USE_ELF_CORE_DUMP 1429 static int elf_core_dump(int, const CPUArchState *); 1430 #endif /* USE_ELF_CORE_DUMP */ 1431 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1432 1433 /* Verify the portions of EHDR within E_IDENT for the target. 1434 This can be performed before bswapping the entire header. */ 1435 static bool elf_check_ident(struct elfhdr *ehdr) 1436 { 1437 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1438 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1439 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1440 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1441 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1442 && ehdr->e_ident[EI_DATA] == ELF_DATA 1443 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1444 } 1445 1446 /* Verify the portions of EHDR outside of E_IDENT for the target. 1447 This has to wait until after bswapping the header. */ 1448 static bool elf_check_ehdr(struct elfhdr *ehdr) 1449 { 1450 return (elf_check_arch(ehdr->e_machine) 1451 && ehdr->e_ehsize == sizeof(struct elfhdr) 1452 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1453 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1454 } 1455 1456 /* 1457 * 'copy_elf_strings()' copies argument/envelope strings from user 1458 * memory to free pages in kernel mem. These are in a format ready 1459 * to be put directly into the top of new user memory. 1460 * 1461 */ 1462 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1463 abi_ulong p, abi_ulong stack_limit) 1464 { 1465 char *tmp; 1466 int len, i; 1467 abi_ulong top = p; 1468 1469 if (!p) { 1470 return 0; /* bullet-proofing */ 1471 } 1472 1473 if (STACK_GROWS_DOWN) { 1474 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1475 for (i = argc - 1; i >= 0; --i) { 1476 tmp = argv[i]; 1477 if (!tmp) { 1478 fprintf(stderr, "VFS: argc is wrong"); 1479 exit(-1); 1480 } 1481 len = strlen(tmp) + 1; 1482 tmp += len; 1483 1484 if (len > (p - stack_limit)) { 1485 return 0; 1486 } 1487 while (len) { 1488 int bytes_to_copy = (len > offset) ? offset : len; 1489 tmp -= bytes_to_copy; 1490 p -= bytes_to_copy; 1491 offset -= bytes_to_copy; 1492 len -= bytes_to_copy; 1493 1494 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1495 1496 if (offset == 0) { 1497 memcpy_to_target(p, scratch, top - p); 1498 top = p; 1499 offset = TARGET_PAGE_SIZE; 1500 } 1501 } 1502 } 1503 if (p != top) { 1504 memcpy_to_target(p, scratch + offset, top - p); 1505 } 1506 } else { 1507 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1508 for (i = 0; i < argc; ++i) { 1509 tmp = argv[i]; 1510 if (!tmp) { 1511 fprintf(stderr, "VFS: argc is wrong"); 1512 exit(-1); 1513 } 1514 len = strlen(tmp) + 1; 1515 if (len > (stack_limit - p)) { 1516 return 0; 1517 } 1518 while (len) { 1519 int bytes_to_copy = (len > remaining) ? remaining : len; 1520 1521 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1522 1523 tmp += bytes_to_copy; 1524 remaining -= bytes_to_copy; 1525 p += bytes_to_copy; 1526 len -= bytes_to_copy; 1527 1528 if (remaining == 0) { 1529 memcpy_to_target(top, scratch, p - top); 1530 top = p; 1531 remaining = TARGET_PAGE_SIZE; 1532 } 1533 } 1534 } 1535 if (p != top) { 1536 memcpy_to_target(top, scratch, p - top); 1537 } 1538 } 1539 1540 return p; 1541 } 1542 1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1544 * argument/environment space. Newer kernels (>2.6.33) allow more, 1545 * dependent on stack size, but guarantee at least 32 pages for 1546 * backwards compatibility. 1547 */ 1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1549 1550 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1551 struct image_info *info) 1552 { 1553 abi_ulong size, error, guard; 1554 1555 size = guest_stack_size; 1556 if (size < STACK_LOWER_LIMIT) { 1557 size = STACK_LOWER_LIMIT; 1558 } 1559 guard = TARGET_PAGE_SIZE; 1560 if (guard < qemu_real_host_page_size) { 1561 guard = qemu_real_host_page_size; 1562 } 1563 1564 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1565 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1566 if (error == -1) { 1567 perror("mmap stack"); 1568 exit(-1); 1569 } 1570 1571 /* We reserve one extra page at the top of the stack as guard. */ 1572 if (STACK_GROWS_DOWN) { 1573 target_mprotect(error, guard, PROT_NONE); 1574 info->stack_limit = error + guard; 1575 return info->stack_limit + size - sizeof(void *); 1576 } else { 1577 target_mprotect(error + size, guard, PROT_NONE); 1578 info->stack_limit = error + size; 1579 return error; 1580 } 1581 } 1582 1583 /* Map and zero the bss. We need to explicitly zero any fractional pages 1584 after the data section (i.e. bss). */ 1585 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1586 { 1587 uintptr_t host_start, host_map_start, host_end; 1588 1589 last_bss = TARGET_PAGE_ALIGN(last_bss); 1590 1591 /* ??? There is confusion between qemu_real_host_page_size and 1592 qemu_host_page_size here and elsewhere in target_mmap, which 1593 may lead to the end of the data section mapping from the file 1594 not being mapped. At least there was an explicit test and 1595 comment for that here, suggesting that "the file size must 1596 be known". The comment probably pre-dates the introduction 1597 of the fstat system call in target_mmap which does in fact 1598 find out the size. What isn't clear is if the workaround 1599 here is still actually needed. For now, continue with it, 1600 but merge it with the "normal" mmap that would allocate the bss. */ 1601 1602 host_start = (uintptr_t) g2h(elf_bss); 1603 host_end = (uintptr_t) g2h(last_bss); 1604 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1605 1606 if (host_map_start < host_end) { 1607 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1608 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1609 if (p == MAP_FAILED) { 1610 perror("cannot mmap brk"); 1611 exit(-1); 1612 } 1613 } 1614 1615 /* Ensure that the bss page(s) are valid */ 1616 if ((page_get_flags(last_bss-1) & prot) != prot) { 1617 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1618 } 1619 1620 if (host_start < host_map_start) { 1621 memset((void *)host_start, 0, host_map_start - host_start); 1622 } 1623 } 1624 1625 #ifdef CONFIG_USE_FDPIC 1626 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1627 { 1628 uint16_t n; 1629 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1630 1631 /* elf32_fdpic_loadseg */ 1632 n = info->nsegs; 1633 while (n--) { 1634 sp -= 12; 1635 put_user_u32(loadsegs[n].addr, sp+0); 1636 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1637 put_user_u32(loadsegs[n].p_memsz, sp+8); 1638 } 1639 1640 /* elf32_fdpic_loadmap */ 1641 sp -= 4; 1642 put_user_u16(0, sp+0); /* version */ 1643 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1644 1645 info->personality = PER_LINUX_FDPIC; 1646 info->loadmap_addr = sp; 1647 1648 return sp; 1649 } 1650 #endif 1651 1652 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1653 struct elfhdr *exec, 1654 struct image_info *info, 1655 struct image_info *interp_info) 1656 { 1657 abi_ulong sp; 1658 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1659 int size; 1660 int i; 1661 abi_ulong u_rand_bytes; 1662 uint8_t k_rand_bytes[16]; 1663 abi_ulong u_platform; 1664 const char *k_platform; 1665 const int n = sizeof(elf_addr_t); 1666 1667 sp = p; 1668 1669 #ifdef CONFIG_USE_FDPIC 1670 /* Needs to be before we load the env/argc/... */ 1671 if (elf_is_fdpic(exec)) { 1672 /* Need 4 byte alignment for these structs */ 1673 sp &= ~3; 1674 sp = loader_build_fdpic_loadmap(info, sp); 1675 info->other_info = interp_info; 1676 if (interp_info) { 1677 interp_info->other_info = info; 1678 sp = loader_build_fdpic_loadmap(interp_info, sp); 1679 } 1680 } 1681 #endif 1682 1683 u_platform = 0; 1684 k_platform = ELF_PLATFORM; 1685 if (k_platform) { 1686 size_t len = strlen(k_platform) + 1; 1687 if (STACK_GROWS_DOWN) { 1688 sp -= (len + n - 1) & ~(n - 1); 1689 u_platform = sp; 1690 /* FIXME - check return value of memcpy_to_target() for failure */ 1691 memcpy_to_target(sp, k_platform, len); 1692 } else { 1693 memcpy_to_target(sp, k_platform, len); 1694 u_platform = sp; 1695 sp += len + 1; 1696 } 1697 } 1698 1699 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1700 * the argv and envp pointers. 1701 */ 1702 if (STACK_GROWS_DOWN) { 1703 sp = QEMU_ALIGN_DOWN(sp, 16); 1704 } else { 1705 sp = QEMU_ALIGN_UP(sp, 16); 1706 } 1707 1708 /* 1709 * Generate 16 random bytes for userspace PRNG seeding (not 1710 * cryptically secure but it's not the aim of QEMU). 1711 */ 1712 for (i = 0; i < 16; i++) { 1713 k_rand_bytes[i] = rand(); 1714 } 1715 if (STACK_GROWS_DOWN) { 1716 sp -= 16; 1717 u_rand_bytes = sp; 1718 /* FIXME - check return value of memcpy_to_target() for failure */ 1719 memcpy_to_target(sp, k_rand_bytes, 16); 1720 } else { 1721 memcpy_to_target(sp, k_rand_bytes, 16); 1722 u_rand_bytes = sp; 1723 sp += 16; 1724 } 1725 1726 size = (DLINFO_ITEMS + 1) * 2; 1727 if (k_platform) 1728 size += 2; 1729 #ifdef DLINFO_ARCH_ITEMS 1730 size += DLINFO_ARCH_ITEMS * 2; 1731 #endif 1732 #ifdef ELF_HWCAP2 1733 size += 2; 1734 #endif 1735 info->auxv_len = size * n; 1736 1737 size += envc + argc + 2; 1738 size += 1; /* argc itself */ 1739 size *= n; 1740 1741 /* Allocate space and finalize stack alignment for entry now. */ 1742 if (STACK_GROWS_DOWN) { 1743 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1744 sp = u_argc; 1745 } else { 1746 u_argc = sp; 1747 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1748 } 1749 1750 u_argv = u_argc + n; 1751 u_envp = u_argv + (argc + 1) * n; 1752 u_auxv = u_envp + (envc + 1) * n; 1753 info->saved_auxv = u_auxv; 1754 info->arg_start = u_argv; 1755 info->arg_end = u_argv + argc * n; 1756 1757 /* This is correct because Linux defines 1758 * elf_addr_t as Elf32_Off / Elf64_Off 1759 */ 1760 #define NEW_AUX_ENT(id, val) do { \ 1761 put_user_ual(id, u_auxv); u_auxv += n; \ 1762 put_user_ual(val, u_auxv); u_auxv += n; \ 1763 } while(0) 1764 1765 #ifdef ARCH_DLINFO 1766 /* 1767 * ARCH_DLINFO must come first so platform specific code can enforce 1768 * special alignment requirements on the AUXV if necessary (eg. PPC). 1769 */ 1770 ARCH_DLINFO; 1771 #endif 1772 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1773 * on info->auxv_len will trigger. 1774 */ 1775 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1776 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1777 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1778 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1779 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1780 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1781 NEW_AUX_ENT(AT_ENTRY, info->entry); 1782 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1783 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1784 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1785 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1786 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1787 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1788 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1789 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1790 1791 #ifdef ELF_HWCAP2 1792 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1793 #endif 1794 1795 if (u_platform) { 1796 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1797 } 1798 NEW_AUX_ENT (AT_NULL, 0); 1799 #undef NEW_AUX_ENT 1800 1801 /* Check that our initial calculation of the auxv length matches how much 1802 * we actually put into it. 1803 */ 1804 assert(info->auxv_len == u_auxv - info->saved_auxv); 1805 1806 put_user_ual(argc, u_argc); 1807 1808 p = info->arg_strings; 1809 for (i = 0; i < argc; ++i) { 1810 put_user_ual(p, u_argv); 1811 u_argv += n; 1812 p += target_strlen(p) + 1; 1813 } 1814 put_user_ual(0, u_argv); 1815 1816 p = info->env_strings; 1817 for (i = 0; i < envc; ++i) { 1818 put_user_ual(p, u_envp); 1819 u_envp += n; 1820 p += target_strlen(p) + 1; 1821 } 1822 put_user_ual(0, u_envp); 1823 1824 return sp; 1825 } 1826 1827 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1828 /* If the guest doesn't have a validation function just agree */ 1829 static int validate_guest_space(unsigned long guest_base, 1830 unsigned long guest_size) 1831 { 1832 return 1; 1833 } 1834 #endif 1835 1836 unsigned long init_guest_space(unsigned long host_start, 1837 unsigned long host_size, 1838 unsigned long guest_start, 1839 bool fixed) 1840 { 1841 unsigned long current_start, real_start; 1842 int flags; 1843 1844 assert(host_start || host_size); 1845 1846 /* If just a starting address is given, then just verify that 1847 * address. */ 1848 if (host_start && !host_size) { 1849 if (validate_guest_space(host_start, host_size) == 1) { 1850 return host_start; 1851 } else { 1852 return (unsigned long)-1; 1853 } 1854 } 1855 1856 /* Setup the initial flags and start address. */ 1857 current_start = host_start & qemu_host_page_mask; 1858 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1859 if (fixed) { 1860 flags |= MAP_FIXED; 1861 } 1862 1863 /* Otherwise, a non-zero size region of memory needs to be mapped 1864 * and validated. */ 1865 while (1) { 1866 unsigned long real_size = host_size; 1867 1868 /* Do not use mmap_find_vma here because that is limited to the 1869 * guest address space. We are going to make the 1870 * guest address space fit whatever we're given. 1871 */ 1872 real_start = (unsigned long) 1873 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1874 if (real_start == (unsigned long)-1) { 1875 return (unsigned long)-1; 1876 } 1877 1878 /* Ensure the address is properly aligned. */ 1879 if (real_start & ~qemu_host_page_mask) { 1880 munmap((void *)real_start, host_size); 1881 real_size = host_size + qemu_host_page_size; 1882 real_start = (unsigned long) 1883 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1884 if (real_start == (unsigned long)-1) { 1885 return (unsigned long)-1; 1886 } 1887 real_start = HOST_PAGE_ALIGN(real_start); 1888 } 1889 1890 /* Check to see if the address is valid. */ 1891 if (!host_start || real_start == current_start) { 1892 int valid = validate_guest_space(real_start - guest_start, 1893 real_size); 1894 if (valid == 1) { 1895 break; 1896 } else if (valid == -1) { 1897 return (unsigned long)-1; 1898 } 1899 /* valid == 0, so try again. */ 1900 } 1901 1902 /* That address didn't work. Unmap and try a different one. 1903 * The address the host picked because is typically right at 1904 * the top of the host address space and leaves the guest with 1905 * no usable address space. Resort to a linear search. We 1906 * already compensated for mmap_min_addr, so this should not 1907 * happen often. Probably means we got unlucky and host 1908 * address space randomization put a shared library somewhere 1909 * inconvenient. 1910 */ 1911 munmap((void *)real_start, host_size); 1912 current_start += qemu_host_page_size; 1913 if (host_start == current_start) { 1914 /* Theoretically possible if host doesn't have any suitably 1915 * aligned areas. Normally the first mmap will fail. 1916 */ 1917 return (unsigned long)-1; 1918 } 1919 } 1920 1921 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1922 1923 return real_start; 1924 } 1925 1926 static void probe_guest_base(const char *image_name, 1927 abi_ulong loaddr, abi_ulong hiaddr) 1928 { 1929 /* Probe for a suitable guest base address, if the user has not set 1930 * it explicitly, and set guest_base appropriately. 1931 * In case of error we will print a suitable message and exit. 1932 */ 1933 const char *errmsg; 1934 if (!have_guest_base && !reserved_va) { 1935 unsigned long host_start, real_start, host_size; 1936 1937 /* Round addresses to page boundaries. */ 1938 loaddr &= qemu_host_page_mask; 1939 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1940 1941 if (loaddr < mmap_min_addr) { 1942 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1943 } else { 1944 host_start = loaddr; 1945 if (host_start != loaddr) { 1946 errmsg = "Address overflow loading ELF binary"; 1947 goto exit_errmsg; 1948 } 1949 } 1950 host_size = hiaddr - loaddr; 1951 1952 /* Setup the initial guest memory space with ranges gleaned from 1953 * the ELF image that is being loaded. 1954 */ 1955 real_start = init_guest_space(host_start, host_size, loaddr, false); 1956 if (real_start == (unsigned long)-1) { 1957 errmsg = "Unable to find space for application"; 1958 goto exit_errmsg; 1959 } 1960 guest_base = real_start - loaddr; 1961 1962 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1963 TARGET_ABI_FMT_lx " to 0x%lx\n", 1964 loaddr, real_start); 1965 } 1966 return; 1967 1968 exit_errmsg: 1969 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1970 exit(-1); 1971 } 1972 1973 1974 /* Load an ELF image into the address space. 1975 1976 IMAGE_NAME is the filename of the image, to use in error messages. 1977 IMAGE_FD is the open file descriptor for the image. 1978 1979 BPRM_BUF is a copy of the beginning of the file; this of course 1980 contains the elf file header at offset 0. It is assumed that this 1981 buffer is sufficiently aligned to present no problems to the host 1982 in accessing data at aligned offsets within the buffer. 1983 1984 On return: INFO values will be filled in, as necessary or available. */ 1985 1986 static void load_elf_image(const char *image_name, int image_fd, 1987 struct image_info *info, char **pinterp_name, 1988 char bprm_buf[BPRM_BUF_SIZE]) 1989 { 1990 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1991 struct elf_phdr *phdr; 1992 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1993 int i, retval; 1994 const char *errmsg; 1995 1996 /* First of all, some simple consistency checks */ 1997 errmsg = "Invalid ELF image for this architecture"; 1998 if (!elf_check_ident(ehdr)) { 1999 goto exit_errmsg; 2000 } 2001 bswap_ehdr(ehdr); 2002 if (!elf_check_ehdr(ehdr)) { 2003 goto exit_errmsg; 2004 } 2005 2006 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2007 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2008 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2009 } else { 2010 phdr = (struct elf_phdr *) alloca(i); 2011 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2012 if (retval != i) { 2013 goto exit_read; 2014 } 2015 } 2016 bswap_phdr(phdr, ehdr->e_phnum); 2017 2018 #ifdef CONFIG_USE_FDPIC 2019 info->nsegs = 0; 2020 info->pt_dynamic_addr = 0; 2021 #endif 2022 2023 mmap_lock(); 2024 2025 /* Find the maximum size of the image and allocate an appropriate 2026 amount of memory to handle that. */ 2027 loaddr = -1, hiaddr = 0; 2028 for (i = 0; i < ehdr->e_phnum; ++i) { 2029 if (phdr[i].p_type == PT_LOAD) { 2030 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2031 if (a < loaddr) { 2032 loaddr = a; 2033 } 2034 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2035 if (a > hiaddr) { 2036 hiaddr = a; 2037 } 2038 #ifdef CONFIG_USE_FDPIC 2039 ++info->nsegs; 2040 #endif 2041 } 2042 } 2043 2044 load_addr = loaddr; 2045 if (ehdr->e_type == ET_DYN) { 2046 /* The image indicates that it can be loaded anywhere. Find a 2047 location that can hold the memory space required. If the 2048 image is pre-linked, LOADDR will be non-zero. Since we do 2049 not supply MAP_FIXED here we'll use that address if and 2050 only if it remains available. */ 2051 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2052 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2053 -1, 0); 2054 if (load_addr == -1) { 2055 goto exit_perror; 2056 } 2057 } else if (pinterp_name != NULL) { 2058 /* This is the main executable. Make sure that the low 2059 address does not conflict with MMAP_MIN_ADDR or the 2060 QEMU application itself. */ 2061 probe_guest_base(image_name, loaddr, hiaddr); 2062 } 2063 load_bias = load_addr - loaddr; 2064 2065 #ifdef CONFIG_USE_FDPIC 2066 { 2067 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2068 g_malloc(sizeof(*loadsegs) * info->nsegs); 2069 2070 for (i = 0; i < ehdr->e_phnum; ++i) { 2071 switch (phdr[i].p_type) { 2072 case PT_DYNAMIC: 2073 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2074 break; 2075 case PT_LOAD: 2076 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2077 loadsegs->p_vaddr = phdr[i].p_vaddr; 2078 loadsegs->p_memsz = phdr[i].p_memsz; 2079 ++loadsegs; 2080 break; 2081 } 2082 } 2083 } 2084 #endif 2085 2086 info->load_bias = load_bias; 2087 info->load_addr = load_addr; 2088 info->entry = ehdr->e_entry + load_bias; 2089 info->start_code = -1; 2090 info->end_code = 0; 2091 info->start_data = -1; 2092 info->end_data = 0; 2093 info->brk = 0; 2094 info->elf_flags = ehdr->e_flags; 2095 2096 for (i = 0; i < ehdr->e_phnum; i++) { 2097 struct elf_phdr *eppnt = phdr + i; 2098 if (eppnt->p_type == PT_LOAD) { 2099 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2100 int elf_prot = 0; 2101 2102 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2103 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2104 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2105 2106 vaddr = load_bias + eppnt->p_vaddr; 2107 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2108 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2109 2110 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2111 elf_prot, MAP_PRIVATE | MAP_FIXED, 2112 image_fd, eppnt->p_offset - vaddr_po); 2113 if (error == -1) { 2114 goto exit_perror; 2115 } 2116 2117 vaddr_ef = vaddr + eppnt->p_filesz; 2118 vaddr_em = vaddr + eppnt->p_memsz; 2119 2120 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2121 if (vaddr_ef < vaddr_em) { 2122 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2123 } 2124 2125 /* Find the full program boundaries. */ 2126 if (elf_prot & PROT_EXEC) { 2127 if (vaddr < info->start_code) { 2128 info->start_code = vaddr; 2129 } 2130 if (vaddr_ef > info->end_code) { 2131 info->end_code = vaddr_ef; 2132 } 2133 } 2134 if (elf_prot & PROT_WRITE) { 2135 if (vaddr < info->start_data) { 2136 info->start_data = vaddr; 2137 } 2138 if (vaddr_ef > info->end_data) { 2139 info->end_data = vaddr_ef; 2140 } 2141 if (vaddr_em > info->brk) { 2142 info->brk = vaddr_em; 2143 } 2144 } 2145 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2146 char *interp_name; 2147 2148 if (*pinterp_name) { 2149 errmsg = "Multiple PT_INTERP entries"; 2150 goto exit_errmsg; 2151 } 2152 interp_name = malloc(eppnt->p_filesz); 2153 if (!interp_name) { 2154 goto exit_perror; 2155 } 2156 2157 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2158 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2159 eppnt->p_filesz); 2160 } else { 2161 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2162 eppnt->p_offset); 2163 if (retval != eppnt->p_filesz) { 2164 goto exit_perror; 2165 } 2166 } 2167 if (interp_name[eppnt->p_filesz - 1] != 0) { 2168 errmsg = "Invalid PT_INTERP entry"; 2169 goto exit_errmsg; 2170 } 2171 *pinterp_name = interp_name; 2172 } 2173 } 2174 2175 if (info->end_data == 0) { 2176 info->start_data = info->end_code; 2177 info->end_data = info->end_code; 2178 info->brk = info->end_code; 2179 } 2180 2181 if (qemu_log_enabled()) { 2182 load_symbols(ehdr, image_fd, load_bias); 2183 } 2184 2185 mmap_unlock(); 2186 2187 close(image_fd); 2188 return; 2189 2190 exit_read: 2191 if (retval >= 0) { 2192 errmsg = "Incomplete read of file header"; 2193 goto exit_errmsg; 2194 } 2195 exit_perror: 2196 errmsg = strerror(errno); 2197 exit_errmsg: 2198 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2199 exit(-1); 2200 } 2201 2202 static void load_elf_interp(const char *filename, struct image_info *info, 2203 char bprm_buf[BPRM_BUF_SIZE]) 2204 { 2205 int fd, retval; 2206 2207 fd = open(path(filename), O_RDONLY); 2208 if (fd < 0) { 2209 goto exit_perror; 2210 } 2211 2212 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2213 if (retval < 0) { 2214 goto exit_perror; 2215 } 2216 if (retval < BPRM_BUF_SIZE) { 2217 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2218 } 2219 2220 load_elf_image(filename, fd, info, NULL, bprm_buf); 2221 return; 2222 2223 exit_perror: 2224 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2225 exit(-1); 2226 } 2227 2228 static int symfind(const void *s0, const void *s1) 2229 { 2230 target_ulong addr = *(target_ulong *)s0; 2231 struct elf_sym *sym = (struct elf_sym *)s1; 2232 int result = 0; 2233 if (addr < sym->st_value) { 2234 result = -1; 2235 } else if (addr >= sym->st_value + sym->st_size) { 2236 result = 1; 2237 } 2238 return result; 2239 } 2240 2241 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2242 { 2243 #if ELF_CLASS == ELFCLASS32 2244 struct elf_sym *syms = s->disas_symtab.elf32; 2245 #else 2246 struct elf_sym *syms = s->disas_symtab.elf64; 2247 #endif 2248 2249 // binary search 2250 struct elf_sym *sym; 2251 2252 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2253 if (sym != NULL) { 2254 return s->disas_strtab + sym->st_name; 2255 } 2256 2257 return ""; 2258 } 2259 2260 /* FIXME: This should use elf_ops.h */ 2261 static int symcmp(const void *s0, const void *s1) 2262 { 2263 struct elf_sym *sym0 = (struct elf_sym *)s0; 2264 struct elf_sym *sym1 = (struct elf_sym *)s1; 2265 return (sym0->st_value < sym1->st_value) 2266 ? -1 2267 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2268 } 2269 2270 /* Best attempt to load symbols from this ELF object. */ 2271 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2272 { 2273 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2274 uint64_t segsz; 2275 struct elf_shdr *shdr; 2276 char *strings = NULL; 2277 struct syminfo *s = NULL; 2278 struct elf_sym *new_syms, *syms = NULL; 2279 2280 shnum = hdr->e_shnum; 2281 i = shnum * sizeof(struct elf_shdr); 2282 shdr = (struct elf_shdr *)alloca(i); 2283 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2284 return; 2285 } 2286 2287 bswap_shdr(shdr, shnum); 2288 for (i = 0; i < shnum; ++i) { 2289 if (shdr[i].sh_type == SHT_SYMTAB) { 2290 sym_idx = i; 2291 str_idx = shdr[i].sh_link; 2292 goto found; 2293 } 2294 } 2295 2296 /* There will be no symbol table if the file was stripped. */ 2297 return; 2298 2299 found: 2300 /* Now know where the strtab and symtab are. Snarf them. */ 2301 s = g_try_new(struct syminfo, 1); 2302 if (!s) { 2303 goto give_up; 2304 } 2305 2306 segsz = shdr[str_idx].sh_size; 2307 s->disas_strtab = strings = g_try_malloc(segsz); 2308 if (!strings || 2309 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2310 goto give_up; 2311 } 2312 2313 segsz = shdr[sym_idx].sh_size; 2314 syms = g_try_malloc(segsz); 2315 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2316 goto give_up; 2317 } 2318 2319 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2320 /* Implausibly large symbol table: give up rather than ploughing 2321 * on with the number of symbols calculation overflowing 2322 */ 2323 goto give_up; 2324 } 2325 nsyms = segsz / sizeof(struct elf_sym); 2326 for (i = 0; i < nsyms; ) { 2327 bswap_sym(syms + i); 2328 /* Throw away entries which we do not need. */ 2329 if (syms[i].st_shndx == SHN_UNDEF 2330 || syms[i].st_shndx >= SHN_LORESERVE 2331 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2332 if (i < --nsyms) { 2333 syms[i] = syms[nsyms]; 2334 } 2335 } else { 2336 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2337 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2338 syms[i].st_value &= ~(target_ulong)1; 2339 #endif 2340 syms[i].st_value += load_bias; 2341 i++; 2342 } 2343 } 2344 2345 /* No "useful" symbol. */ 2346 if (nsyms == 0) { 2347 goto give_up; 2348 } 2349 2350 /* Attempt to free the storage associated with the local symbols 2351 that we threw away. Whether or not this has any effect on the 2352 memory allocation depends on the malloc implementation and how 2353 many symbols we managed to discard. */ 2354 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2355 if (new_syms == NULL) { 2356 goto give_up; 2357 } 2358 syms = new_syms; 2359 2360 qsort(syms, nsyms, sizeof(*syms), symcmp); 2361 2362 s->disas_num_syms = nsyms; 2363 #if ELF_CLASS == ELFCLASS32 2364 s->disas_symtab.elf32 = syms; 2365 #else 2366 s->disas_symtab.elf64 = syms; 2367 #endif 2368 s->lookup_symbol = lookup_symbolxx; 2369 s->next = syminfos; 2370 syminfos = s; 2371 2372 return; 2373 2374 give_up: 2375 g_free(s); 2376 g_free(strings); 2377 g_free(syms); 2378 } 2379 2380 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2381 { 2382 struct image_info interp_info; 2383 struct elfhdr elf_ex; 2384 char *elf_interpreter = NULL; 2385 char *scratch; 2386 2387 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2388 2389 load_elf_image(bprm->filename, bprm->fd, info, 2390 &elf_interpreter, bprm->buf); 2391 2392 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2393 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2394 when we load the interpreter. */ 2395 elf_ex = *(struct elfhdr *)bprm->buf; 2396 2397 /* Do this so that we can load the interpreter, if need be. We will 2398 change some of these later */ 2399 bprm->p = setup_arg_pages(bprm, info); 2400 2401 scratch = g_new0(char, TARGET_PAGE_SIZE); 2402 if (STACK_GROWS_DOWN) { 2403 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2404 bprm->p, info->stack_limit); 2405 info->file_string = bprm->p; 2406 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2407 bprm->p, info->stack_limit); 2408 info->env_strings = bprm->p; 2409 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2410 bprm->p, info->stack_limit); 2411 info->arg_strings = bprm->p; 2412 } else { 2413 info->arg_strings = bprm->p; 2414 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2415 bprm->p, info->stack_limit); 2416 info->env_strings = bprm->p; 2417 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2418 bprm->p, info->stack_limit); 2419 info->file_string = bprm->p; 2420 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2421 bprm->p, info->stack_limit); 2422 } 2423 2424 g_free(scratch); 2425 2426 if (!bprm->p) { 2427 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2428 exit(-1); 2429 } 2430 2431 if (elf_interpreter) { 2432 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2433 2434 /* If the program interpreter is one of these two, then assume 2435 an iBCS2 image. Otherwise assume a native linux image. */ 2436 2437 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2438 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2439 info->personality = PER_SVR4; 2440 2441 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2442 and some applications "depend" upon this behavior. Since 2443 we do not have the power to recompile these, we emulate 2444 the SVr4 behavior. Sigh. */ 2445 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2446 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2447 } 2448 } 2449 2450 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2451 info, (elf_interpreter ? &interp_info : NULL)); 2452 info->start_stack = bprm->p; 2453 2454 /* If we have an interpreter, set that as the program's entry point. 2455 Copy the load_bias as well, to help PPC64 interpret the entry 2456 point as a function descriptor. Do this after creating elf tables 2457 so that we copy the original program entry point into the AUXV. */ 2458 if (elf_interpreter) { 2459 info->load_bias = interp_info.load_bias; 2460 info->entry = interp_info.entry; 2461 free(elf_interpreter); 2462 } 2463 2464 #ifdef USE_ELF_CORE_DUMP 2465 bprm->core_dump = &elf_core_dump; 2466 #endif 2467 2468 return 0; 2469 } 2470 2471 #ifdef USE_ELF_CORE_DUMP 2472 /* 2473 * Definitions to generate Intel SVR4-like core files. 2474 * These mostly have the same names as the SVR4 types with "target_elf_" 2475 * tacked on the front to prevent clashes with linux definitions, 2476 * and the typedef forms have been avoided. This is mostly like 2477 * the SVR4 structure, but more Linuxy, with things that Linux does 2478 * not support and which gdb doesn't really use excluded. 2479 * 2480 * Fields we don't dump (their contents is zero) in linux-user qemu 2481 * are marked with XXX. 2482 * 2483 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2484 * 2485 * Porting ELF coredump for target is (quite) simple process. First you 2486 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2487 * the target resides): 2488 * 2489 * #define USE_ELF_CORE_DUMP 2490 * 2491 * Next you define type of register set used for dumping. ELF specification 2492 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2493 * 2494 * typedef <target_regtype> target_elf_greg_t; 2495 * #define ELF_NREG <number of registers> 2496 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2497 * 2498 * Last step is to implement target specific function that copies registers 2499 * from given cpu into just specified register set. Prototype is: 2500 * 2501 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2502 * const CPUArchState *env); 2503 * 2504 * Parameters: 2505 * regs - copy register values into here (allocated and zeroed by caller) 2506 * env - copy registers from here 2507 * 2508 * Example for ARM target is provided in this file. 2509 */ 2510 2511 /* An ELF note in memory */ 2512 struct memelfnote { 2513 const char *name; 2514 size_t namesz; 2515 size_t namesz_rounded; 2516 int type; 2517 size_t datasz; 2518 size_t datasz_rounded; 2519 void *data; 2520 size_t notesz; 2521 }; 2522 2523 struct target_elf_siginfo { 2524 abi_int si_signo; /* signal number */ 2525 abi_int si_code; /* extra code */ 2526 abi_int si_errno; /* errno */ 2527 }; 2528 2529 struct target_elf_prstatus { 2530 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2531 abi_short pr_cursig; /* Current signal */ 2532 abi_ulong pr_sigpend; /* XXX */ 2533 abi_ulong pr_sighold; /* XXX */ 2534 target_pid_t pr_pid; 2535 target_pid_t pr_ppid; 2536 target_pid_t pr_pgrp; 2537 target_pid_t pr_sid; 2538 struct target_timeval pr_utime; /* XXX User time */ 2539 struct target_timeval pr_stime; /* XXX System time */ 2540 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2541 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2542 target_elf_gregset_t pr_reg; /* GP registers */ 2543 abi_int pr_fpvalid; /* XXX */ 2544 }; 2545 2546 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2547 2548 struct target_elf_prpsinfo { 2549 char pr_state; /* numeric process state */ 2550 char pr_sname; /* char for pr_state */ 2551 char pr_zomb; /* zombie */ 2552 char pr_nice; /* nice val */ 2553 abi_ulong pr_flag; /* flags */ 2554 target_uid_t pr_uid; 2555 target_gid_t pr_gid; 2556 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2557 /* Lots missing */ 2558 char pr_fname[16]; /* filename of executable */ 2559 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2560 }; 2561 2562 /* Here is the structure in which status of each thread is captured. */ 2563 struct elf_thread_status { 2564 QTAILQ_ENTRY(elf_thread_status) ets_link; 2565 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2566 #if 0 2567 elf_fpregset_t fpu; /* NT_PRFPREG */ 2568 struct task_struct *thread; 2569 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2570 #endif 2571 struct memelfnote notes[1]; 2572 int num_notes; 2573 }; 2574 2575 struct elf_note_info { 2576 struct memelfnote *notes; 2577 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2578 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2579 2580 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2581 #if 0 2582 /* 2583 * Current version of ELF coredump doesn't support 2584 * dumping fp regs etc. 2585 */ 2586 elf_fpregset_t *fpu; 2587 elf_fpxregset_t *xfpu; 2588 int thread_status_size; 2589 #endif 2590 int notes_size; 2591 int numnote; 2592 }; 2593 2594 struct vm_area_struct { 2595 target_ulong vma_start; /* start vaddr of memory region */ 2596 target_ulong vma_end; /* end vaddr of memory region */ 2597 abi_ulong vma_flags; /* protection etc. flags for the region */ 2598 QTAILQ_ENTRY(vm_area_struct) vma_link; 2599 }; 2600 2601 struct mm_struct { 2602 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2603 int mm_count; /* number of mappings */ 2604 }; 2605 2606 static struct mm_struct *vma_init(void); 2607 static void vma_delete(struct mm_struct *); 2608 static int vma_add_mapping(struct mm_struct *, target_ulong, 2609 target_ulong, abi_ulong); 2610 static int vma_get_mapping_count(const struct mm_struct *); 2611 static struct vm_area_struct *vma_first(const struct mm_struct *); 2612 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2613 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2614 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2615 unsigned long flags); 2616 2617 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2618 static void fill_note(struct memelfnote *, const char *, int, 2619 unsigned int, void *); 2620 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2621 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2622 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2623 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2624 static size_t note_size(const struct memelfnote *); 2625 static void free_note_info(struct elf_note_info *); 2626 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2627 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2628 static int core_dump_filename(const TaskState *, char *, size_t); 2629 2630 static int dump_write(int, const void *, size_t); 2631 static int write_note(struct memelfnote *, int); 2632 static int write_note_info(struct elf_note_info *, int); 2633 2634 #ifdef BSWAP_NEEDED 2635 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2636 { 2637 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2638 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2639 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2640 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2641 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2642 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2643 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2644 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2645 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2646 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2647 /* cpu times are not filled, so we skip them */ 2648 /* regs should be in correct format already */ 2649 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2650 } 2651 2652 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2653 { 2654 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2655 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2656 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2657 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2658 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2659 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2660 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2661 } 2662 2663 static void bswap_note(struct elf_note *en) 2664 { 2665 bswap32s(&en->n_namesz); 2666 bswap32s(&en->n_descsz); 2667 bswap32s(&en->n_type); 2668 } 2669 #else 2670 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2671 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2672 static inline void bswap_note(struct elf_note *en) { } 2673 #endif /* BSWAP_NEEDED */ 2674 2675 /* 2676 * Minimal support for linux memory regions. These are needed 2677 * when we are finding out what memory exactly belongs to 2678 * emulated process. No locks needed here, as long as 2679 * thread that received the signal is stopped. 2680 */ 2681 2682 static struct mm_struct *vma_init(void) 2683 { 2684 struct mm_struct *mm; 2685 2686 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2687 return (NULL); 2688 2689 mm->mm_count = 0; 2690 QTAILQ_INIT(&mm->mm_mmap); 2691 2692 return (mm); 2693 } 2694 2695 static void vma_delete(struct mm_struct *mm) 2696 { 2697 struct vm_area_struct *vma; 2698 2699 while ((vma = vma_first(mm)) != NULL) { 2700 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2701 g_free(vma); 2702 } 2703 g_free(mm); 2704 } 2705 2706 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2707 target_ulong end, abi_ulong flags) 2708 { 2709 struct vm_area_struct *vma; 2710 2711 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2712 return (-1); 2713 2714 vma->vma_start = start; 2715 vma->vma_end = end; 2716 vma->vma_flags = flags; 2717 2718 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2719 mm->mm_count++; 2720 2721 return (0); 2722 } 2723 2724 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2725 { 2726 return (QTAILQ_FIRST(&mm->mm_mmap)); 2727 } 2728 2729 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2730 { 2731 return (QTAILQ_NEXT(vma, vma_link)); 2732 } 2733 2734 static int vma_get_mapping_count(const struct mm_struct *mm) 2735 { 2736 return (mm->mm_count); 2737 } 2738 2739 /* 2740 * Calculate file (dump) size of given memory region. 2741 */ 2742 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2743 { 2744 /* if we cannot even read the first page, skip it */ 2745 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2746 return (0); 2747 2748 /* 2749 * Usually we don't dump executable pages as they contain 2750 * non-writable code that debugger can read directly from 2751 * target library etc. However, thread stacks are marked 2752 * also executable so we read in first page of given region 2753 * and check whether it contains elf header. If there is 2754 * no elf header, we dump it. 2755 */ 2756 if (vma->vma_flags & PROT_EXEC) { 2757 char page[TARGET_PAGE_SIZE]; 2758 2759 copy_from_user(page, vma->vma_start, sizeof (page)); 2760 if ((page[EI_MAG0] == ELFMAG0) && 2761 (page[EI_MAG1] == ELFMAG1) && 2762 (page[EI_MAG2] == ELFMAG2) && 2763 (page[EI_MAG3] == ELFMAG3)) { 2764 /* 2765 * Mappings are possibly from ELF binary. Don't dump 2766 * them. 2767 */ 2768 return (0); 2769 } 2770 } 2771 2772 return (vma->vma_end - vma->vma_start); 2773 } 2774 2775 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2776 unsigned long flags) 2777 { 2778 struct mm_struct *mm = (struct mm_struct *)priv; 2779 2780 vma_add_mapping(mm, start, end, flags); 2781 return (0); 2782 } 2783 2784 static void fill_note(struct memelfnote *note, const char *name, int type, 2785 unsigned int sz, void *data) 2786 { 2787 unsigned int namesz; 2788 2789 namesz = strlen(name) + 1; 2790 note->name = name; 2791 note->namesz = namesz; 2792 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2793 note->type = type; 2794 note->datasz = sz; 2795 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2796 2797 note->data = data; 2798 2799 /* 2800 * We calculate rounded up note size here as specified by 2801 * ELF document. 2802 */ 2803 note->notesz = sizeof (struct elf_note) + 2804 note->namesz_rounded + note->datasz_rounded; 2805 } 2806 2807 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2808 uint32_t flags) 2809 { 2810 (void) memset(elf, 0, sizeof(*elf)); 2811 2812 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2813 elf->e_ident[EI_CLASS] = ELF_CLASS; 2814 elf->e_ident[EI_DATA] = ELF_DATA; 2815 elf->e_ident[EI_VERSION] = EV_CURRENT; 2816 elf->e_ident[EI_OSABI] = ELF_OSABI; 2817 2818 elf->e_type = ET_CORE; 2819 elf->e_machine = machine; 2820 elf->e_version = EV_CURRENT; 2821 elf->e_phoff = sizeof(struct elfhdr); 2822 elf->e_flags = flags; 2823 elf->e_ehsize = sizeof(struct elfhdr); 2824 elf->e_phentsize = sizeof(struct elf_phdr); 2825 elf->e_phnum = segs; 2826 2827 bswap_ehdr(elf); 2828 } 2829 2830 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2831 { 2832 phdr->p_type = PT_NOTE; 2833 phdr->p_offset = offset; 2834 phdr->p_vaddr = 0; 2835 phdr->p_paddr = 0; 2836 phdr->p_filesz = sz; 2837 phdr->p_memsz = 0; 2838 phdr->p_flags = 0; 2839 phdr->p_align = 0; 2840 2841 bswap_phdr(phdr, 1); 2842 } 2843 2844 static size_t note_size(const struct memelfnote *note) 2845 { 2846 return (note->notesz); 2847 } 2848 2849 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2850 const TaskState *ts, int signr) 2851 { 2852 (void) memset(prstatus, 0, sizeof (*prstatus)); 2853 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2854 prstatus->pr_pid = ts->ts_tid; 2855 prstatus->pr_ppid = getppid(); 2856 prstatus->pr_pgrp = getpgrp(); 2857 prstatus->pr_sid = getsid(0); 2858 2859 bswap_prstatus(prstatus); 2860 } 2861 2862 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2863 { 2864 char *base_filename; 2865 unsigned int i, len; 2866 2867 (void) memset(psinfo, 0, sizeof (*psinfo)); 2868 2869 len = ts->info->arg_end - ts->info->arg_start; 2870 if (len >= ELF_PRARGSZ) 2871 len = ELF_PRARGSZ - 1; 2872 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2873 return -EFAULT; 2874 for (i = 0; i < len; i++) 2875 if (psinfo->pr_psargs[i] == 0) 2876 psinfo->pr_psargs[i] = ' '; 2877 psinfo->pr_psargs[len] = 0; 2878 2879 psinfo->pr_pid = getpid(); 2880 psinfo->pr_ppid = getppid(); 2881 psinfo->pr_pgrp = getpgrp(); 2882 psinfo->pr_sid = getsid(0); 2883 psinfo->pr_uid = getuid(); 2884 psinfo->pr_gid = getgid(); 2885 2886 base_filename = g_path_get_basename(ts->bprm->filename); 2887 /* 2888 * Using strncpy here is fine: at max-length, 2889 * this field is not NUL-terminated. 2890 */ 2891 (void) strncpy(psinfo->pr_fname, base_filename, 2892 sizeof(psinfo->pr_fname)); 2893 2894 g_free(base_filename); 2895 bswap_psinfo(psinfo); 2896 return (0); 2897 } 2898 2899 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2900 { 2901 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2902 elf_addr_t orig_auxv = auxv; 2903 void *ptr; 2904 int len = ts->info->auxv_len; 2905 2906 /* 2907 * Auxiliary vector is stored in target process stack. It contains 2908 * {type, value} pairs that we need to dump into note. This is not 2909 * strictly necessary but we do it here for sake of completeness. 2910 */ 2911 2912 /* read in whole auxv vector and copy it to memelfnote */ 2913 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2914 if (ptr != NULL) { 2915 fill_note(note, "CORE", NT_AUXV, len, ptr); 2916 unlock_user(ptr, auxv, len); 2917 } 2918 } 2919 2920 /* 2921 * Constructs name of coredump file. We have following convention 2922 * for the name: 2923 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2924 * 2925 * Returns 0 in case of success, -1 otherwise (errno is set). 2926 */ 2927 static int core_dump_filename(const TaskState *ts, char *buf, 2928 size_t bufsize) 2929 { 2930 char timestamp[64]; 2931 char *base_filename = NULL; 2932 struct timeval tv; 2933 struct tm tm; 2934 2935 assert(bufsize >= PATH_MAX); 2936 2937 if (gettimeofday(&tv, NULL) < 0) { 2938 (void) fprintf(stderr, "unable to get current timestamp: %s", 2939 strerror(errno)); 2940 return (-1); 2941 } 2942 2943 base_filename = g_path_get_basename(ts->bprm->filename); 2944 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2945 localtime_r(&tv.tv_sec, &tm)); 2946 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2947 base_filename, timestamp, (int)getpid()); 2948 g_free(base_filename); 2949 2950 return (0); 2951 } 2952 2953 static int dump_write(int fd, const void *ptr, size_t size) 2954 { 2955 const char *bufp = (const char *)ptr; 2956 ssize_t bytes_written, bytes_left; 2957 struct rlimit dumpsize; 2958 off_t pos; 2959 2960 bytes_written = 0; 2961 getrlimit(RLIMIT_CORE, &dumpsize); 2962 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2963 if (errno == ESPIPE) { /* not a seekable stream */ 2964 bytes_left = size; 2965 } else { 2966 return pos; 2967 } 2968 } else { 2969 if (dumpsize.rlim_cur <= pos) { 2970 return -1; 2971 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2972 bytes_left = size; 2973 } else { 2974 size_t limit_left=dumpsize.rlim_cur - pos; 2975 bytes_left = limit_left >= size ? size : limit_left ; 2976 } 2977 } 2978 2979 /* 2980 * In normal conditions, single write(2) should do but 2981 * in case of socket etc. this mechanism is more portable. 2982 */ 2983 do { 2984 bytes_written = write(fd, bufp, bytes_left); 2985 if (bytes_written < 0) { 2986 if (errno == EINTR) 2987 continue; 2988 return (-1); 2989 } else if (bytes_written == 0) { /* eof */ 2990 return (-1); 2991 } 2992 bufp += bytes_written; 2993 bytes_left -= bytes_written; 2994 } while (bytes_left > 0); 2995 2996 return (0); 2997 } 2998 2999 static int write_note(struct memelfnote *men, int fd) 3000 { 3001 struct elf_note en; 3002 3003 en.n_namesz = men->namesz; 3004 en.n_type = men->type; 3005 en.n_descsz = men->datasz; 3006 3007 bswap_note(&en); 3008 3009 if (dump_write(fd, &en, sizeof(en)) != 0) 3010 return (-1); 3011 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3012 return (-1); 3013 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3014 return (-1); 3015 3016 return (0); 3017 } 3018 3019 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3020 { 3021 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3022 TaskState *ts = (TaskState *)cpu->opaque; 3023 struct elf_thread_status *ets; 3024 3025 ets = g_malloc0(sizeof (*ets)); 3026 ets->num_notes = 1; /* only prstatus is dumped */ 3027 fill_prstatus(&ets->prstatus, ts, 0); 3028 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3029 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3030 &ets->prstatus); 3031 3032 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3033 3034 info->notes_size += note_size(&ets->notes[0]); 3035 } 3036 3037 static void init_note_info(struct elf_note_info *info) 3038 { 3039 /* Initialize the elf_note_info structure so that it is at 3040 * least safe to call free_note_info() on it. Must be 3041 * called before calling fill_note_info(). 3042 */ 3043 memset(info, 0, sizeof (*info)); 3044 QTAILQ_INIT(&info->thread_list); 3045 } 3046 3047 static int fill_note_info(struct elf_note_info *info, 3048 long signr, const CPUArchState *env) 3049 { 3050 #define NUMNOTES 3 3051 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3052 TaskState *ts = (TaskState *)cpu->opaque; 3053 int i; 3054 3055 info->notes = g_new0(struct memelfnote, NUMNOTES); 3056 if (info->notes == NULL) 3057 return (-ENOMEM); 3058 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3059 if (info->prstatus == NULL) 3060 return (-ENOMEM); 3061 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3062 if (info->prstatus == NULL) 3063 return (-ENOMEM); 3064 3065 /* 3066 * First fill in status (and registers) of current thread 3067 * including process info & aux vector. 3068 */ 3069 fill_prstatus(info->prstatus, ts, signr); 3070 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3071 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3072 sizeof (*info->prstatus), info->prstatus); 3073 fill_psinfo(info->psinfo, ts); 3074 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3075 sizeof (*info->psinfo), info->psinfo); 3076 fill_auxv_note(&info->notes[2], ts); 3077 info->numnote = 3; 3078 3079 info->notes_size = 0; 3080 for (i = 0; i < info->numnote; i++) 3081 info->notes_size += note_size(&info->notes[i]); 3082 3083 /* read and fill status of all threads */ 3084 cpu_list_lock(); 3085 CPU_FOREACH(cpu) { 3086 if (cpu == thread_cpu) { 3087 continue; 3088 } 3089 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3090 } 3091 cpu_list_unlock(); 3092 3093 return (0); 3094 } 3095 3096 static void free_note_info(struct elf_note_info *info) 3097 { 3098 struct elf_thread_status *ets; 3099 3100 while (!QTAILQ_EMPTY(&info->thread_list)) { 3101 ets = QTAILQ_FIRST(&info->thread_list); 3102 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3103 g_free(ets); 3104 } 3105 3106 g_free(info->prstatus); 3107 g_free(info->psinfo); 3108 g_free(info->notes); 3109 } 3110 3111 static int write_note_info(struct elf_note_info *info, int fd) 3112 { 3113 struct elf_thread_status *ets; 3114 int i, error = 0; 3115 3116 /* write prstatus, psinfo and auxv for current thread */ 3117 for (i = 0; i < info->numnote; i++) 3118 if ((error = write_note(&info->notes[i], fd)) != 0) 3119 return (error); 3120 3121 /* write prstatus for each thread */ 3122 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3123 if ((error = write_note(&ets->notes[0], fd)) != 0) 3124 return (error); 3125 } 3126 3127 return (0); 3128 } 3129 3130 /* 3131 * Write out ELF coredump. 3132 * 3133 * See documentation of ELF object file format in: 3134 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3135 * 3136 * Coredump format in linux is following: 3137 * 3138 * 0 +----------------------+ \ 3139 * | ELF header | ET_CORE | 3140 * +----------------------+ | 3141 * | ELF program headers | |--- headers 3142 * | - NOTE section | | 3143 * | - PT_LOAD sections | | 3144 * +----------------------+ / 3145 * | NOTEs: | 3146 * | - NT_PRSTATUS | 3147 * | - NT_PRSINFO | 3148 * | - NT_AUXV | 3149 * +----------------------+ <-- aligned to target page 3150 * | Process memory dump | 3151 * : : 3152 * . . 3153 * : : 3154 * | | 3155 * +----------------------+ 3156 * 3157 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3158 * NT_PRSINFO -> struct elf_prpsinfo 3159 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3160 * 3161 * Format follows System V format as close as possible. Current 3162 * version limitations are as follows: 3163 * - no floating point registers are dumped 3164 * 3165 * Function returns 0 in case of success, negative errno otherwise. 3166 * 3167 * TODO: make this work also during runtime: it should be 3168 * possible to force coredump from running process and then 3169 * continue processing. For example qemu could set up SIGUSR2 3170 * handler (provided that target process haven't registered 3171 * handler for that) that does the dump when signal is received. 3172 */ 3173 static int elf_core_dump(int signr, const CPUArchState *env) 3174 { 3175 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3176 const TaskState *ts = (const TaskState *)cpu->opaque; 3177 struct vm_area_struct *vma = NULL; 3178 char corefile[PATH_MAX]; 3179 struct elf_note_info info; 3180 struct elfhdr elf; 3181 struct elf_phdr phdr; 3182 struct rlimit dumpsize; 3183 struct mm_struct *mm = NULL; 3184 off_t offset = 0, data_offset = 0; 3185 int segs = 0; 3186 int fd = -1; 3187 3188 init_note_info(&info); 3189 3190 errno = 0; 3191 getrlimit(RLIMIT_CORE, &dumpsize); 3192 if (dumpsize.rlim_cur == 0) 3193 return 0; 3194 3195 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3196 return (-errno); 3197 3198 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3199 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3200 return (-errno); 3201 3202 /* 3203 * Walk through target process memory mappings and 3204 * set up structure containing this information. After 3205 * this point vma_xxx functions can be used. 3206 */ 3207 if ((mm = vma_init()) == NULL) 3208 goto out; 3209 3210 walk_memory_regions(mm, vma_walker); 3211 segs = vma_get_mapping_count(mm); 3212 3213 /* 3214 * Construct valid coredump ELF header. We also 3215 * add one more segment for notes. 3216 */ 3217 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3218 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3219 goto out; 3220 3221 /* fill in the in-memory version of notes */ 3222 if (fill_note_info(&info, signr, env) < 0) 3223 goto out; 3224 3225 offset += sizeof (elf); /* elf header */ 3226 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3227 3228 /* write out notes program header */ 3229 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3230 3231 offset += info.notes_size; 3232 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3233 goto out; 3234 3235 /* 3236 * ELF specification wants data to start at page boundary so 3237 * we align it here. 3238 */ 3239 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3240 3241 /* 3242 * Write program headers for memory regions mapped in 3243 * the target process. 3244 */ 3245 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3246 (void) memset(&phdr, 0, sizeof (phdr)); 3247 3248 phdr.p_type = PT_LOAD; 3249 phdr.p_offset = offset; 3250 phdr.p_vaddr = vma->vma_start; 3251 phdr.p_paddr = 0; 3252 phdr.p_filesz = vma_dump_size(vma); 3253 offset += phdr.p_filesz; 3254 phdr.p_memsz = vma->vma_end - vma->vma_start; 3255 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3256 if (vma->vma_flags & PROT_WRITE) 3257 phdr.p_flags |= PF_W; 3258 if (vma->vma_flags & PROT_EXEC) 3259 phdr.p_flags |= PF_X; 3260 phdr.p_align = ELF_EXEC_PAGESIZE; 3261 3262 bswap_phdr(&phdr, 1); 3263 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3264 goto out; 3265 } 3266 } 3267 3268 /* 3269 * Next we write notes just after program headers. No 3270 * alignment needed here. 3271 */ 3272 if (write_note_info(&info, fd) < 0) 3273 goto out; 3274 3275 /* align data to page boundary */ 3276 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3277 goto out; 3278 3279 /* 3280 * Finally we can dump process memory into corefile as well. 3281 */ 3282 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3283 abi_ulong addr; 3284 abi_ulong end; 3285 3286 end = vma->vma_start + vma_dump_size(vma); 3287 3288 for (addr = vma->vma_start; addr < end; 3289 addr += TARGET_PAGE_SIZE) { 3290 char page[TARGET_PAGE_SIZE]; 3291 int error; 3292 3293 /* 3294 * Read in page from target process memory and 3295 * write it to coredump file. 3296 */ 3297 error = copy_from_user(page, addr, sizeof (page)); 3298 if (error != 0) { 3299 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3300 addr); 3301 errno = -error; 3302 goto out; 3303 } 3304 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3305 goto out; 3306 } 3307 } 3308 3309 out: 3310 free_note_info(&info); 3311 if (mm != NULL) 3312 vma_delete(mm); 3313 (void) close(fd); 3314 3315 if (errno != 0) 3316 return (-errno); 3317 return (0); 3318 } 3319 #endif /* USE_ELF_CORE_DUMP */ 3320 3321 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3322 { 3323 init_thread(regs, infop); 3324 } 3325