xref: /openbmc/qemu/linux-user/elfload.c (revision a78b1299)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 /* this flag is uneffective under linux too, should be deleted */
82 #ifndef MAP_DENYWRITE
83 #define MAP_DENYWRITE 0
84 #endif
85 
86 /* should probably go in elf.h */
87 #ifndef ELIBBAD
88 #define ELIBBAD 80
89 #endif
90 
91 #ifdef TARGET_WORDS_BIGENDIAN
92 #define ELF_DATA        ELFDATA2MSB
93 #else
94 #define ELF_DATA        ELFDATA2LSB
95 #endif
96 
97 #ifdef TARGET_ABI_MIPSN32
98 typedef abi_ullong      target_elf_greg_t;
99 #define tswapreg(ptr)   tswap64(ptr)
100 #else
101 typedef abi_ulong       target_elf_greg_t;
102 #define tswapreg(ptr)   tswapal(ptr)
103 #endif
104 
105 #ifdef USE_UID16
106 typedef abi_ushort      target_uid_t;
107 typedef abi_ushort      target_gid_t;
108 #else
109 typedef abi_uint        target_uid_t;
110 typedef abi_uint        target_gid_t;
111 #endif
112 typedef abi_int         target_pid_t;
113 
114 #ifdef TARGET_I386
115 
116 #define ELF_PLATFORM get_elf_platform()
117 
118 static const char *get_elf_platform(void)
119 {
120     static char elf_platform[] = "i386";
121     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
122     if (family > 6)
123         family = 6;
124     if (family >= 3)
125         elf_platform[1] = '0' + family;
126     return elf_platform;
127 }
128 
129 #define ELF_HWCAP get_elf_hwcap()
130 
131 static uint32_t get_elf_hwcap(void)
132 {
133     X86CPU *cpu = X86_CPU(thread_cpu);
134 
135     return cpu->env.features[FEAT_1_EDX];
136 }
137 
138 #ifdef TARGET_X86_64
139 #define ELF_START_MMAP 0x2aaaaab000ULL
140 
141 #define ELF_CLASS      ELFCLASS64
142 #define ELF_ARCH       EM_X86_64
143 
144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 {
146     regs->rax = 0;
147     regs->rsp = infop->start_stack;
148     regs->rip = infop->entry;
149 }
150 
151 #define ELF_NREG    27
152 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
153 
154 /*
155  * Note that ELF_NREG should be 29 as there should be place for
156  * TRAPNO and ERR "registers" as well but linux doesn't dump
157  * those.
158  *
159  * See linux kernel: arch/x86/include/asm/elf.h
160  */
161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
162 {
163     (*regs)[0] = env->regs[15];
164     (*regs)[1] = env->regs[14];
165     (*regs)[2] = env->regs[13];
166     (*regs)[3] = env->regs[12];
167     (*regs)[4] = env->regs[R_EBP];
168     (*regs)[5] = env->regs[R_EBX];
169     (*regs)[6] = env->regs[11];
170     (*regs)[7] = env->regs[10];
171     (*regs)[8] = env->regs[9];
172     (*regs)[9] = env->regs[8];
173     (*regs)[10] = env->regs[R_EAX];
174     (*regs)[11] = env->regs[R_ECX];
175     (*regs)[12] = env->regs[R_EDX];
176     (*regs)[13] = env->regs[R_ESI];
177     (*regs)[14] = env->regs[R_EDI];
178     (*regs)[15] = env->regs[R_EAX]; /* XXX */
179     (*regs)[16] = env->eip;
180     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
181     (*regs)[18] = env->eflags;
182     (*regs)[19] = env->regs[R_ESP];
183     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
184     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
185     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
186     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
187     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
188     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
189     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
190 }
191 
192 #else
193 
194 #define ELF_START_MMAP 0x80000000
195 
196 /*
197  * This is used to ensure we don't load something for the wrong architecture.
198  */
199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
200 
201 /*
202  * These are used to set parameters in the core dumps.
203  */
204 #define ELF_CLASS       ELFCLASS32
205 #define ELF_ARCH        EM_386
206 
207 static inline void init_thread(struct target_pt_regs *regs,
208                                struct image_info *infop)
209 {
210     regs->esp = infop->start_stack;
211     regs->eip = infop->entry;
212 
213     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
214        starts %edx contains a pointer to a function which might be
215        registered using `atexit'.  This provides a mean for the
216        dynamic linker to call DT_FINI functions for shared libraries
217        that have been loaded before the code runs.
218 
219        A value of 0 tells we have no such handler.  */
220     regs->edx = 0;
221 }
222 
223 #define ELF_NREG    17
224 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
225 
226 /*
227  * Note that ELF_NREG should be 19 as there should be place for
228  * TRAPNO and ERR "registers" as well but linux doesn't dump
229  * those.
230  *
231  * See linux kernel: arch/x86/include/asm/elf.h
232  */
233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
234 {
235     (*regs)[0] = env->regs[R_EBX];
236     (*regs)[1] = env->regs[R_ECX];
237     (*regs)[2] = env->regs[R_EDX];
238     (*regs)[3] = env->regs[R_ESI];
239     (*regs)[4] = env->regs[R_EDI];
240     (*regs)[5] = env->regs[R_EBP];
241     (*regs)[6] = env->regs[R_EAX];
242     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
243     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
244     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
245     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
246     (*regs)[11] = env->regs[R_EAX]; /* XXX */
247     (*regs)[12] = env->eip;
248     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
249     (*regs)[14] = env->eflags;
250     (*regs)[15] = env->regs[R_ESP];
251     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 }
253 #endif
254 
255 #define USE_ELF_CORE_DUMP
256 #define ELF_EXEC_PAGESIZE       4096
257 
258 #endif
259 
260 #ifdef TARGET_ARM
261 
262 #ifndef TARGET_AARCH64
263 /* 32 bit ARM definitions */
264 
265 #define ELF_START_MMAP 0x80000000
266 
267 #define ELF_ARCH        EM_ARM
268 #define ELF_CLASS       ELFCLASS32
269 
270 static inline void init_thread(struct target_pt_regs *regs,
271                                struct image_info *infop)
272 {
273     abi_long stack = infop->start_stack;
274     memset(regs, 0, sizeof(*regs));
275 
276     regs->uregs[16] = ARM_CPU_MODE_USR;
277     if (infop->entry & 1) {
278         regs->uregs[16] |= CPSR_T;
279     }
280     regs->uregs[15] = infop->entry & 0xfffffffe;
281     regs->uregs[13] = infop->start_stack;
282     /* FIXME - what to for failure of get_user()? */
283     get_user_ual(regs->uregs[2], stack + 8); /* envp */
284     get_user_ual(regs->uregs[1], stack + 4); /* envp */
285     /* XXX: it seems that r0 is zeroed after ! */
286     regs->uregs[0] = 0;
287     /* For uClinux PIC binaries.  */
288     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
289     regs->uregs[10] = infop->start_data;
290 }
291 
292 #define ELF_NREG    18
293 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
294 
295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
296 {
297     (*regs)[0] = tswapreg(env->regs[0]);
298     (*regs)[1] = tswapreg(env->regs[1]);
299     (*regs)[2] = tswapreg(env->regs[2]);
300     (*regs)[3] = tswapreg(env->regs[3]);
301     (*regs)[4] = tswapreg(env->regs[4]);
302     (*regs)[5] = tswapreg(env->regs[5]);
303     (*regs)[6] = tswapreg(env->regs[6]);
304     (*regs)[7] = tswapreg(env->regs[7]);
305     (*regs)[8] = tswapreg(env->regs[8]);
306     (*regs)[9] = tswapreg(env->regs[9]);
307     (*regs)[10] = tswapreg(env->regs[10]);
308     (*regs)[11] = tswapreg(env->regs[11]);
309     (*regs)[12] = tswapreg(env->regs[12]);
310     (*regs)[13] = tswapreg(env->regs[13]);
311     (*regs)[14] = tswapreg(env->regs[14]);
312     (*regs)[15] = tswapreg(env->regs[15]);
313 
314     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
315     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
316 }
317 
318 #define USE_ELF_CORE_DUMP
319 #define ELF_EXEC_PAGESIZE       4096
320 
321 enum
322 {
323     ARM_HWCAP_ARM_SWP       = 1 << 0,
324     ARM_HWCAP_ARM_HALF      = 1 << 1,
325     ARM_HWCAP_ARM_THUMB     = 1 << 2,
326     ARM_HWCAP_ARM_26BIT     = 1 << 3,
327     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
328     ARM_HWCAP_ARM_FPA       = 1 << 5,
329     ARM_HWCAP_ARM_VFP       = 1 << 6,
330     ARM_HWCAP_ARM_EDSP      = 1 << 7,
331     ARM_HWCAP_ARM_JAVA      = 1 << 8,
332     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
333     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
334     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
335     ARM_HWCAP_ARM_NEON      = 1 << 12,
336     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
337     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
338     ARM_HWCAP_ARM_TLS       = 1 << 15,
339     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
340     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
341     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
342     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
343     ARM_HWCAP_ARM_LPAE      = 1 << 20,
344     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
345 };
346 
347 enum {
348     ARM_HWCAP2_ARM_AES      = 1 << 0,
349     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
350     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
351     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
352     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
353 };
354 
355 /* The commpage only exists for 32 bit kernels */
356 
357 #define TARGET_HAS_VALIDATE_GUEST_SPACE
358 /* Return 1 if the proposed guest space is suitable for the guest.
359  * Return 0 if the proposed guest space isn't suitable, but another
360  * address space should be tried.
361  * Return -1 if there is no way the proposed guest space can be
362  * valid regardless of the base.
363  * The guest code may leave a page mapped and populate it if the
364  * address is suitable.
365  */
366 static int validate_guest_space(unsigned long guest_base,
367                                 unsigned long guest_size)
368 {
369     unsigned long real_start, test_page_addr;
370 
371     /* We need to check that we can force a fault on access to the
372      * commpage at 0xffff0fxx
373      */
374     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
375 
376     /* If the commpage lies within the already allocated guest space,
377      * then there is no way we can allocate it.
378      */
379     if (test_page_addr >= guest_base
380         && test_page_addr < (guest_base + guest_size)) {
381         return -1;
382     }
383 
384     /* Note it needs to be writeable to let us initialise it */
385     real_start = (unsigned long)
386                  mmap((void *)test_page_addr, qemu_host_page_size,
387                      PROT_READ | PROT_WRITE,
388                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
389 
390     /* If we can't map it then try another address */
391     if (real_start == -1ul) {
392         return 0;
393     }
394 
395     if (real_start != test_page_addr) {
396         /* OS didn't put the page where we asked - unmap and reject */
397         munmap((void *)real_start, qemu_host_page_size);
398         return 0;
399     }
400 
401     /* Leave the page mapped
402      * Populate it (mmap should have left it all 0'd)
403      */
404 
405     /* Kernel helper versions */
406     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
407 
408     /* Now it's populated make it RO */
409     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
410         perror("Protecting guest commpage");
411         exit(-1);
412     }
413 
414     return 1; /* All good */
415 }
416 
417 #define ELF_HWCAP get_elf_hwcap()
418 #define ELF_HWCAP2 get_elf_hwcap2()
419 
420 static uint32_t get_elf_hwcap(void)
421 {
422     ARMCPU *cpu = ARM_CPU(thread_cpu);
423     uint32_t hwcaps = 0;
424 
425     hwcaps |= ARM_HWCAP_ARM_SWP;
426     hwcaps |= ARM_HWCAP_ARM_HALF;
427     hwcaps |= ARM_HWCAP_ARM_THUMB;
428     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
429 
430     /* probe for the extra features */
431 #define GET_FEATURE(feat, hwcap) \
432     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
433     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
434     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
435     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
436     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
437     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
438     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
439     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
440     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
441     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
442     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
443     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
444     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
445      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
446      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
447      * to our VFP_FP16 feature bit.
448      */
449     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
450     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
451 
452     return hwcaps;
453 }
454 
455 static uint32_t get_elf_hwcap2(void)
456 {
457     ARMCPU *cpu = ARM_CPU(thread_cpu);
458     uint32_t hwcaps = 0;
459 
460     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
461     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
462     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
463     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
464     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
465     return hwcaps;
466 }
467 
468 #undef GET_FEATURE
469 
470 #else
471 /* 64 bit ARM definitions */
472 #define ELF_START_MMAP 0x80000000
473 
474 #define ELF_ARCH        EM_AARCH64
475 #define ELF_CLASS       ELFCLASS64
476 #define ELF_PLATFORM    "aarch64"
477 
478 static inline void init_thread(struct target_pt_regs *regs,
479                                struct image_info *infop)
480 {
481     abi_long stack = infop->start_stack;
482     memset(regs, 0, sizeof(*regs));
483 
484     regs->pc = infop->entry & ~0x3ULL;
485     regs->sp = stack;
486 }
487 
488 #define ELF_NREG    34
489 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
490 
491 static void elf_core_copy_regs(target_elf_gregset_t *regs,
492                                const CPUARMState *env)
493 {
494     int i;
495 
496     for (i = 0; i < 32; i++) {
497         (*regs)[i] = tswapreg(env->xregs[i]);
498     }
499     (*regs)[32] = tswapreg(env->pc);
500     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
501 }
502 
503 #define USE_ELF_CORE_DUMP
504 #define ELF_EXEC_PAGESIZE       4096
505 
506 enum {
507     ARM_HWCAP_A64_FP            = 1 << 0,
508     ARM_HWCAP_A64_ASIMD         = 1 << 1,
509     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
510     ARM_HWCAP_A64_AES           = 1 << 3,
511     ARM_HWCAP_A64_PMULL         = 1 << 4,
512     ARM_HWCAP_A64_SHA1          = 1 << 5,
513     ARM_HWCAP_A64_SHA2          = 1 << 6,
514     ARM_HWCAP_A64_CRC32         = 1 << 7,
515 };
516 
517 #define ELF_HWCAP get_elf_hwcap()
518 
519 static uint32_t get_elf_hwcap(void)
520 {
521     ARMCPU *cpu = ARM_CPU(thread_cpu);
522     uint32_t hwcaps = 0;
523 
524     hwcaps |= ARM_HWCAP_A64_FP;
525     hwcaps |= ARM_HWCAP_A64_ASIMD;
526 
527     /* probe for the extra features */
528 #define GET_FEATURE(feat, hwcap) \
529     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
530     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
531     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
532     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
533     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
534     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
535 #undef GET_FEATURE
536 
537     return hwcaps;
538 }
539 
540 #endif /* not TARGET_AARCH64 */
541 #endif /* TARGET_ARM */
542 
543 #ifdef TARGET_UNICORE32
544 
545 #define ELF_START_MMAP          0x80000000
546 
547 #define ELF_CLASS               ELFCLASS32
548 #define ELF_DATA                ELFDATA2LSB
549 #define ELF_ARCH                EM_UNICORE32
550 
551 static inline void init_thread(struct target_pt_regs *regs,
552         struct image_info *infop)
553 {
554     abi_long stack = infop->start_stack;
555     memset(regs, 0, sizeof(*regs));
556     regs->UC32_REG_asr = 0x10;
557     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
558     regs->UC32_REG_sp = infop->start_stack;
559     /* FIXME - what to for failure of get_user()? */
560     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
561     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
562     /* XXX: it seems that r0 is zeroed after ! */
563     regs->UC32_REG_00 = 0;
564 }
565 
566 #define ELF_NREG    34
567 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
568 
569 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
570 {
571     (*regs)[0] = env->regs[0];
572     (*regs)[1] = env->regs[1];
573     (*regs)[2] = env->regs[2];
574     (*regs)[3] = env->regs[3];
575     (*regs)[4] = env->regs[4];
576     (*regs)[5] = env->regs[5];
577     (*regs)[6] = env->regs[6];
578     (*regs)[7] = env->regs[7];
579     (*regs)[8] = env->regs[8];
580     (*regs)[9] = env->regs[9];
581     (*regs)[10] = env->regs[10];
582     (*regs)[11] = env->regs[11];
583     (*regs)[12] = env->regs[12];
584     (*regs)[13] = env->regs[13];
585     (*regs)[14] = env->regs[14];
586     (*regs)[15] = env->regs[15];
587     (*regs)[16] = env->regs[16];
588     (*regs)[17] = env->regs[17];
589     (*regs)[18] = env->regs[18];
590     (*regs)[19] = env->regs[19];
591     (*regs)[20] = env->regs[20];
592     (*regs)[21] = env->regs[21];
593     (*regs)[22] = env->regs[22];
594     (*regs)[23] = env->regs[23];
595     (*regs)[24] = env->regs[24];
596     (*regs)[25] = env->regs[25];
597     (*regs)[26] = env->regs[26];
598     (*regs)[27] = env->regs[27];
599     (*regs)[28] = env->regs[28];
600     (*regs)[29] = env->regs[29];
601     (*regs)[30] = env->regs[30];
602     (*regs)[31] = env->regs[31];
603 
604     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
605     (*regs)[33] = env->regs[0]; /* XXX */
606 }
607 
608 #define USE_ELF_CORE_DUMP
609 #define ELF_EXEC_PAGESIZE               4096
610 
611 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
612 
613 #endif
614 
615 #ifdef TARGET_SPARC
616 #ifdef TARGET_SPARC64
617 
618 #define ELF_START_MMAP 0x80000000
619 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
620                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
621 #ifndef TARGET_ABI32
622 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
623 #else
624 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
625 #endif
626 
627 #define ELF_CLASS   ELFCLASS64
628 #define ELF_ARCH    EM_SPARCV9
629 
630 #define STACK_BIAS              2047
631 
632 static inline void init_thread(struct target_pt_regs *regs,
633                                struct image_info *infop)
634 {
635 #ifndef TARGET_ABI32
636     regs->tstate = 0;
637 #endif
638     regs->pc = infop->entry;
639     regs->npc = regs->pc + 4;
640     regs->y = 0;
641 #ifdef TARGET_ABI32
642     regs->u_regs[14] = infop->start_stack - 16 * 4;
643 #else
644     if (personality(infop->personality) == PER_LINUX32)
645         regs->u_regs[14] = infop->start_stack - 16 * 4;
646     else
647         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
648 #endif
649 }
650 
651 #else
652 #define ELF_START_MMAP 0x80000000
653 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
654                     | HWCAP_SPARC_MULDIV)
655 
656 #define ELF_CLASS   ELFCLASS32
657 #define ELF_ARCH    EM_SPARC
658 
659 static inline void init_thread(struct target_pt_regs *regs,
660                                struct image_info *infop)
661 {
662     regs->psr = 0;
663     regs->pc = infop->entry;
664     regs->npc = regs->pc + 4;
665     regs->y = 0;
666     regs->u_regs[14] = infop->start_stack - 16 * 4;
667 }
668 
669 #endif
670 #endif
671 
672 #ifdef TARGET_PPC
673 
674 #define ELF_MACHINE    PPC_ELF_MACHINE
675 #define ELF_START_MMAP 0x80000000
676 
677 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
678 
679 #define elf_check_arch(x) ( (x) == EM_PPC64 )
680 
681 #define ELF_CLASS       ELFCLASS64
682 
683 #else
684 
685 #define ELF_CLASS       ELFCLASS32
686 
687 #endif
688 
689 #define ELF_ARCH        EM_PPC
690 
691 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
692    See arch/powerpc/include/asm/cputable.h.  */
693 enum {
694     QEMU_PPC_FEATURE_32 = 0x80000000,
695     QEMU_PPC_FEATURE_64 = 0x40000000,
696     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
697     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
698     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
699     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
700     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
701     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
702     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
703     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
704     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
705     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
706     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
707     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
708     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
709     QEMU_PPC_FEATURE_CELL = 0x00010000,
710     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
711     QEMU_PPC_FEATURE_SMT = 0x00004000,
712     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
713     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
714     QEMU_PPC_FEATURE_PA6T = 0x00000800,
715     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
716     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
717     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
718     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
719     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
720 
721     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
722     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
723 
724     /* Feature definitions in AT_HWCAP2.  */
725     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
726     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
727     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
728     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
729     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
730     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
731 };
732 
733 #define ELF_HWCAP get_elf_hwcap()
734 
735 static uint32_t get_elf_hwcap(void)
736 {
737     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
738     uint32_t features = 0;
739 
740     /* We don't have to be terribly complete here; the high points are
741        Altivec/FP/SPE support.  Anything else is just a bonus.  */
742 #define GET_FEATURE(flag, feature)                                      \
743     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
744 #define GET_FEATURE2(flags, feature) \
745     do { \
746         if ((cpu->env.insns_flags2 & flags) == flags) { \
747             features |= feature; \
748         } \
749     } while (0)
750     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
751     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
752     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
753     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
754     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
755     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
756     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
757     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
758     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
759     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
760     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
761                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
762                   QEMU_PPC_FEATURE_ARCH_2_06);
763 #undef GET_FEATURE
764 #undef GET_FEATURE2
765 
766     return features;
767 }
768 
769 #define ELF_HWCAP2 get_elf_hwcap2()
770 
771 static uint32_t get_elf_hwcap2(void)
772 {
773     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
774     uint32_t features = 0;
775 
776 #define GET_FEATURE(flag, feature)                                      \
777     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
778 #define GET_FEATURE2(flag, feature)                                      \
779     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
780 
781     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
782     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
783     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
784                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
785 
786 #undef GET_FEATURE
787 #undef GET_FEATURE2
788 
789     return features;
790 }
791 
792 /*
793  * The requirements here are:
794  * - keep the final alignment of sp (sp & 0xf)
795  * - make sure the 32-bit value at the first 16 byte aligned position of
796  *   AUXV is greater than 16 for glibc compatibility.
797  *   AT_IGNOREPPC is used for that.
798  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
799  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
800  */
801 #define DLINFO_ARCH_ITEMS       5
802 #define ARCH_DLINFO                                     \
803     do {                                                \
804         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
805         /*                                              \
806          * Handle glibc compatibility: these magic entries must \
807          * be at the lowest addresses in the final auxv.        \
808          */                                             \
809         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
810         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
811         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
812         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
813         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
814     } while (0)
815 
816 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
817 {
818     _regs->gpr[1] = infop->start_stack;
819 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
820     if (get_ppc64_abi(infop) < 2) {
821         uint64_t val;
822         get_user_u64(val, infop->entry + 8);
823         _regs->gpr[2] = val + infop->load_bias;
824         get_user_u64(val, infop->entry);
825         infop->entry = val + infop->load_bias;
826     } else {
827         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
828     }
829 #endif
830     _regs->nip = infop->entry;
831 }
832 
833 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
834 #define ELF_NREG 48
835 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
836 
837 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
838 {
839     int i;
840     target_ulong ccr = 0;
841 
842     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
843         (*regs)[i] = tswapreg(env->gpr[i]);
844     }
845 
846     (*regs)[32] = tswapreg(env->nip);
847     (*regs)[33] = tswapreg(env->msr);
848     (*regs)[35] = tswapreg(env->ctr);
849     (*regs)[36] = tswapreg(env->lr);
850     (*regs)[37] = tswapreg(env->xer);
851 
852     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
853         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
854     }
855     (*regs)[38] = tswapreg(ccr);
856 }
857 
858 #define USE_ELF_CORE_DUMP
859 #define ELF_EXEC_PAGESIZE       4096
860 
861 #endif
862 
863 #ifdef TARGET_MIPS
864 
865 #define ELF_START_MMAP 0x80000000
866 
867 #ifdef TARGET_MIPS64
868 #define ELF_CLASS   ELFCLASS64
869 #else
870 #define ELF_CLASS   ELFCLASS32
871 #endif
872 #define ELF_ARCH    EM_MIPS
873 
874 static inline void init_thread(struct target_pt_regs *regs,
875                                struct image_info *infop)
876 {
877     regs->cp0_status = 2 << CP0St_KSU;
878     regs->cp0_epc = infop->entry;
879     regs->regs[29] = infop->start_stack;
880 }
881 
882 /* See linux kernel: arch/mips/include/asm/elf.h.  */
883 #define ELF_NREG 45
884 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
885 
886 /* See linux kernel: arch/mips/include/asm/reg.h.  */
887 enum {
888 #ifdef TARGET_MIPS64
889     TARGET_EF_R0 = 0,
890 #else
891     TARGET_EF_R0 = 6,
892 #endif
893     TARGET_EF_R26 = TARGET_EF_R0 + 26,
894     TARGET_EF_R27 = TARGET_EF_R0 + 27,
895     TARGET_EF_LO = TARGET_EF_R0 + 32,
896     TARGET_EF_HI = TARGET_EF_R0 + 33,
897     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
898     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
899     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
900     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
901 };
902 
903 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
904 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
905 {
906     int i;
907 
908     for (i = 0; i < TARGET_EF_R0; i++) {
909         (*regs)[i] = 0;
910     }
911     (*regs)[TARGET_EF_R0] = 0;
912 
913     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
914         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
915     }
916 
917     (*regs)[TARGET_EF_R26] = 0;
918     (*regs)[TARGET_EF_R27] = 0;
919     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
920     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
921     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
922     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
923     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
924     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
925 }
926 
927 #define USE_ELF_CORE_DUMP
928 #define ELF_EXEC_PAGESIZE        4096
929 
930 #endif /* TARGET_MIPS */
931 
932 #ifdef TARGET_MICROBLAZE
933 
934 #define ELF_START_MMAP 0x80000000
935 
936 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
937 
938 #define ELF_CLASS   ELFCLASS32
939 #define ELF_ARCH    EM_MICROBLAZE
940 
941 static inline void init_thread(struct target_pt_regs *regs,
942                                struct image_info *infop)
943 {
944     regs->pc = infop->entry;
945     regs->r1 = infop->start_stack;
946 
947 }
948 
949 #define ELF_EXEC_PAGESIZE        4096
950 
951 #define USE_ELF_CORE_DUMP
952 #define ELF_NREG 38
953 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
954 
955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
957 {
958     int i, pos = 0;
959 
960     for (i = 0; i < 32; i++) {
961         (*regs)[pos++] = tswapreg(env->regs[i]);
962     }
963 
964     for (i = 0; i < 6; i++) {
965         (*regs)[pos++] = tswapreg(env->sregs[i]);
966     }
967 }
968 
969 #endif /* TARGET_MICROBLAZE */
970 
971 #ifdef TARGET_NIOS2
972 
973 #define ELF_START_MMAP 0x80000000
974 
975 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
976 
977 #define ELF_CLASS   ELFCLASS32
978 #define ELF_ARCH    EM_ALTERA_NIOS2
979 
980 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
981 {
982     regs->ea = infop->entry;
983     regs->sp = infop->start_stack;
984     regs->estatus = 0x3;
985 }
986 
987 #define ELF_EXEC_PAGESIZE        4096
988 
989 #define USE_ELF_CORE_DUMP
990 #define ELF_NREG 49
991 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
992 
993 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
994 static void elf_core_copy_regs(target_elf_gregset_t *regs,
995                                const CPUNios2State *env)
996 {
997     int i;
998 
999     (*regs)[0] = -1;
1000     for (i = 1; i < 8; i++)    /* r0-r7 */
1001         (*regs)[i] = tswapreg(env->regs[i + 7]);
1002 
1003     for (i = 8; i < 16; i++)   /* r8-r15 */
1004         (*regs)[i] = tswapreg(env->regs[i - 8]);
1005 
1006     for (i = 16; i < 24; i++)  /* r16-r23 */
1007         (*regs)[i] = tswapreg(env->regs[i + 7]);
1008     (*regs)[24] = -1;    /* R_ET */
1009     (*regs)[25] = -1;    /* R_BT */
1010     (*regs)[26] = tswapreg(env->regs[R_GP]);
1011     (*regs)[27] = tswapreg(env->regs[R_SP]);
1012     (*regs)[28] = tswapreg(env->regs[R_FP]);
1013     (*regs)[29] = tswapreg(env->regs[R_EA]);
1014     (*regs)[30] = -1;    /* R_SSTATUS */
1015     (*regs)[31] = tswapreg(env->regs[R_RA]);
1016 
1017     (*regs)[32] = tswapreg(env->regs[R_PC]);
1018 
1019     (*regs)[33] = -1; /* R_STATUS */
1020     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1021 
1022     for (i = 35; i < 49; i++)    /* ... */
1023         (*regs)[i] = -1;
1024 }
1025 
1026 #endif /* TARGET_NIOS2 */
1027 
1028 #ifdef TARGET_OPENRISC
1029 
1030 #define ELF_START_MMAP 0x08000000
1031 
1032 #define ELF_ARCH EM_OPENRISC
1033 #define ELF_CLASS ELFCLASS32
1034 #define ELF_DATA  ELFDATA2MSB
1035 
1036 static inline void init_thread(struct target_pt_regs *regs,
1037                                struct image_info *infop)
1038 {
1039     regs->pc = infop->entry;
1040     regs->gpr[1] = infop->start_stack;
1041 }
1042 
1043 #define USE_ELF_CORE_DUMP
1044 #define ELF_EXEC_PAGESIZE 8192
1045 
1046 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1047 #define ELF_NREG 34 /* gprs and pc, sr */
1048 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1049 
1050 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1051                                const CPUOpenRISCState *env)
1052 {
1053     int i;
1054 
1055     for (i = 0; i < 32; i++) {
1056         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1057     }
1058     (*regs)[32] = tswapreg(env->pc);
1059     (*regs)[33] = tswapreg(cpu_get_sr(env));
1060 }
1061 #define ELF_HWCAP 0
1062 #define ELF_PLATFORM NULL
1063 
1064 #endif /* TARGET_OPENRISC */
1065 
1066 #ifdef TARGET_SH4
1067 
1068 #define ELF_START_MMAP 0x80000000
1069 
1070 #define ELF_CLASS ELFCLASS32
1071 #define ELF_ARCH  EM_SH
1072 
1073 static inline void init_thread(struct target_pt_regs *regs,
1074                                struct image_info *infop)
1075 {
1076     /* Check other registers XXXXX */
1077     regs->pc = infop->entry;
1078     regs->regs[15] = infop->start_stack;
1079 }
1080 
1081 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1082 #define ELF_NREG 23
1083 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1084 
1085 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1086 enum {
1087     TARGET_REG_PC = 16,
1088     TARGET_REG_PR = 17,
1089     TARGET_REG_SR = 18,
1090     TARGET_REG_GBR = 19,
1091     TARGET_REG_MACH = 20,
1092     TARGET_REG_MACL = 21,
1093     TARGET_REG_SYSCALL = 22
1094 };
1095 
1096 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1097                                       const CPUSH4State *env)
1098 {
1099     int i;
1100 
1101     for (i = 0; i < 16; i++) {
1102         (*regs)[i] = tswapreg(env->gregs[i]);
1103     }
1104 
1105     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1106     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1107     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1108     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1109     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1110     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1111     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1112 }
1113 
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE        4096
1116 
1117 enum {
1118     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1119     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1120     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1121     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1122     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1123     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1124     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1125     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1126     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1127     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1128 };
1129 
1130 #define ELF_HWCAP get_elf_hwcap()
1131 
1132 static uint32_t get_elf_hwcap(void)
1133 {
1134     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1135     uint32_t hwcap = 0;
1136 
1137     hwcap |= SH_CPU_HAS_FPU;
1138 
1139     if (cpu->env.features & SH_FEATURE_SH4A) {
1140         hwcap |= SH_CPU_HAS_LLSC;
1141     }
1142 
1143     return hwcap;
1144 }
1145 
1146 #endif
1147 
1148 #ifdef TARGET_CRIS
1149 
1150 #define ELF_START_MMAP 0x80000000
1151 
1152 #define ELF_CLASS ELFCLASS32
1153 #define ELF_ARCH  EM_CRIS
1154 
1155 static inline void init_thread(struct target_pt_regs *regs,
1156                                struct image_info *infop)
1157 {
1158     regs->erp = infop->entry;
1159 }
1160 
1161 #define ELF_EXEC_PAGESIZE        8192
1162 
1163 #endif
1164 
1165 #ifdef TARGET_M68K
1166 
1167 #define ELF_START_MMAP 0x80000000
1168 
1169 #define ELF_CLASS       ELFCLASS32
1170 #define ELF_ARCH        EM_68K
1171 
1172 /* ??? Does this need to do anything?
1173    #define ELF_PLAT_INIT(_r) */
1174 
1175 static inline void init_thread(struct target_pt_regs *regs,
1176                                struct image_info *infop)
1177 {
1178     regs->usp = infop->start_stack;
1179     regs->sr = 0;
1180     regs->pc = infop->entry;
1181 }
1182 
1183 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1184 #define ELF_NREG 20
1185 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1186 
1187 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1188 {
1189     (*regs)[0] = tswapreg(env->dregs[1]);
1190     (*regs)[1] = tswapreg(env->dregs[2]);
1191     (*regs)[2] = tswapreg(env->dregs[3]);
1192     (*regs)[3] = tswapreg(env->dregs[4]);
1193     (*regs)[4] = tswapreg(env->dregs[5]);
1194     (*regs)[5] = tswapreg(env->dregs[6]);
1195     (*regs)[6] = tswapreg(env->dregs[7]);
1196     (*regs)[7] = tswapreg(env->aregs[0]);
1197     (*regs)[8] = tswapreg(env->aregs[1]);
1198     (*regs)[9] = tswapreg(env->aregs[2]);
1199     (*regs)[10] = tswapreg(env->aregs[3]);
1200     (*regs)[11] = tswapreg(env->aregs[4]);
1201     (*regs)[12] = tswapreg(env->aregs[5]);
1202     (*regs)[13] = tswapreg(env->aregs[6]);
1203     (*regs)[14] = tswapreg(env->dregs[0]);
1204     (*regs)[15] = tswapreg(env->aregs[7]);
1205     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1206     (*regs)[17] = tswapreg(env->sr);
1207     (*regs)[18] = tswapreg(env->pc);
1208     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1209 }
1210 
1211 #define USE_ELF_CORE_DUMP
1212 #define ELF_EXEC_PAGESIZE       8192
1213 
1214 #endif
1215 
1216 #ifdef TARGET_ALPHA
1217 
1218 #define ELF_START_MMAP (0x30000000000ULL)
1219 
1220 #define ELF_CLASS      ELFCLASS64
1221 #define ELF_ARCH       EM_ALPHA
1222 
1223 static inline void init_thread(struct target_pt_regs *regs,
1224                                struct image_info *infop)
1225 {
1226     regs->pc = infop->entry;
1227     regs->ps = 8;
1228     regs->usp = infop->start_stack;
1229 }
1230 
1231 #define ELF_EXEC_PAGESIZE        8192
1232 
1233 #endif /* TARGET_ALPHA */
1234 
1235 #ifdef TARGET_S390X
1236 
1237 #define ELF_START_MMAP (0x20000000000ULL)
1238 
1239 #define ELF_CLASS	ELFCLASS64
1240 #define ELF_DATA	ELFDATA2MSB
1241 #define ELF_ARCH	EM_S390
1242 
1243 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1244 {
1245     regs->psw.addr = infop->entry;
1246     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1247     regs->gprs[15] = infop->start_stack;
1248 }
1249 
1250 #endif /* TARGET_S390X */
1251 
1252 #ifdef TARGET_TILEGX
1253 
1254 /* 42 bits real used address, a half for user mode */
1255 #define ELF_START_MMAP (0x00000020000000000ULL)
1256 
1257 #define elf_check_arch(x) ((x) == EM_TILEGX)
1258 
1259 #define ELF_CLASS   ELFCLASS64
1260 #define ELF_DATA    ELFDATA2LSB
1261 #define ELF_ARCH    EM_TILEGX
1262 
1263 static inline void init_thread(struct target_pt_regs *regs,
1264                                struct image_info *infop)
1265 {
1266     regs->pc = infop->entry;
1267     regs->sp = infop->start_stack;
1268 
1269 }
1270 
1271 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1272 
1273 #endif /* TARGET_TILEGX */
1274 
1275 #ifdef TARGET_HPPA
1276 
1277 #define ELF_START_MMAP  0x80000000
1278 #define ELF_CLASS       ELFCLASS32
1279 #define ELF_ARCH        EM_PARISC
1280 #define ELF_PLATFORM    "PARISC"
1281 #define STACK_GROWS_DOWN 0
1282 #define STACK_ALIGNMENT  64
1283 
1284 static inline void init_thread(struct target_pt_regs *regs,
1285                                struct image_info *infop)
1286 {
1287     regs->iaoq[0] = infop->entry;
1288     regs->iaoq[1] = infop->entry + 4;
1289     regs->gr[23] = 0;
1290     regs->gr[24] = infop->arg_start;
1291     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1292     /* The top-of-stack contains a linkage buffer.  */
1293     regs->gr[30] = infop->start_stack + 64;
1294     regs->gr[31] = infop->entry;
1295 }
1296 
1297 #endif /* TARGET_HPPA */
1298 
1299 #ifndef ELF_PLATFORM
1300 #define ELF_PLATFORM (NULL)
1301 #endif
1302 
1303 #ifndef ELF_MACHINE
1304 #define ELF_MACHINE ELF_ARCH
1305 #endif
1306 
1307 #ifndef elf_check_arch
1308 #define elf_check_arch(x) ((x) == ELF_ARCH)
1309 #endif
1310 
1311 #ifndef ELF_HWCAP
1312 #define ELF_HWCAP 0
1313 #endif
1314 
1315 #ifndef STACK_GROWS_DOWN
1316 #define STACK_GROWS_DOWN 1
1317 #endif
1318 
1319 #ifndef STACK_ALIGNMENT
1320 #define STACK_ALIGNMENT 16
1321 #endif
1322 
1323 #ifdef TARGET_ABI32
1324 #undef ELF_CLASS
1325 #define ELF_CLASS ELFCLASS32
1326 #undef bswaptls
1327 #define bswaptls(ptr) bswap32s(ptr)
1328 #endif
1329 
1330 #include "elf.h"
1331 
1332 struct exec
1333 {
1334     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1335     unsigned int a_text;   /* length of text, in bytes */
1336     unsigned int a_data;   /* length of data, in bytes */
1337     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1338     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1339     unsigned int a_entry;  /* start address */
1340     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1341     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1342 };
1343 
1344 
1345 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1346 #define OMAGIC 0407
1347 #define NMAGIC 0410
1348 #define ZMAGIC 0413
1349 #define QMAGIC 0314
1350 
1351 /* Necessary parameters */
1352 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1353 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1354                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1355 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1356 
1357 #define DLINFO_ITEMS 15
1358 
1359 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1360 {
1361     memcpy(to, from, n);
1362 }
1363 
1364 #ifdef BSWAP_NEEDED
1365 static void bswap_ehdr(struct elfhdr *ehdr)
1366 {
1367     bswap16s(&ehdr->e_type);            /* Object file type */
1368     bswap16s(&ehdr->e_machine);         /* Architecture */
1369     bswap32s(&ehdr->e_version);         /* Object file version */
1370     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1371     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1372     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1373     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1374     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1375     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1376     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1377     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1378     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1379     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1380 }
1381 
1382 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1383 {
1384     int i;
1385     for (i = 0; i < phnum; ++i, ++phdr) {
1386         bswap32s(&phdr->p_type);        /* Segment type */
1387         bswap32s(&phdr->p_flags);       /* Segment flags */
1388         bswaptls(&phdr->p_offset);      /* Segment file offset */
1389         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1390         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1391         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1392         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1393         bswaptls(&phdr->p_align);       /* Segment alignment */
1394     }
1395 }
1396 
1397 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1398 {
1399     int i;
1400     for (i = 0; i < shnum; ++i, ++shdr) {
1401         bswap32s(&shdr->sh_name);
1402         bswap32s(&shdr->sh_type);
1403         bswaptls(&shdr->sh_flags);
1404         bswaptls(&shdr->sh_addr);
1405         bswaptls(&shdr->sh_offset);
1406         bswaptls(&shdr->sh_size);
1407         bswap32s(&shdr->sh_link);
1408         bswap32s(&shdr->sh_info);
1409         bswaptls(&shdr->sh_addralign);
1410         bswaptls(&shdr->sh_entsize);
1411     }
1412 }
1413 
1414 static void bswap_sym(struct elf_sym *sym)
1415 {
1416     bswap32s(&sym->st_name);
1417     bswaptls(&sym->st_value);
1418     bswaptls(&sym->st_size);
1419     bswap16s(&sym->st_shndx);
1420 }
1421 #else
1422 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1423 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1424 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1425 static inline void bswap_sym(struct elf_sym *sym) { }
1426 #endif
1427 
1428 #ifdef USE_ELF_CORE_DUMP
1429 static int elf_core_dump(int, const CPUArchState *);
1430 #endif /* USE_ELF_CORE_DUMP */
1431 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1432 
1433 /* Verify the portions of EHDR within E_IDENT for the target.
1434    This can be performed before bswapping the entire header.  */
1435 static bool elf_check_ident(struct elfhdr *ehdr)
1436 {
1437     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1438             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1439             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1440             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1441             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1442             && ehdr->e_ident[EI_DATA] == ELF_DATA
1443             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1444 }
1445 
1446 /* Verify the portions of EHDR outside of E_IDENT for the target.
1447    This has to wait until after bswapping the header.  */
1448 static bool elf_check_ehdr(struct elfhdr *ehdr)
1449 {
1450     return (elf_check_arch(ehdr->e_machine)
1451             && ehdr->e_ehsize == sizeof(struct elfhdr)
1452             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1453             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1454 }
1455 
1456 /*
1457  * 'copy_elf_strings()' copies argument/envelope strings from user
1458  * memory to free pages in kernel mem. These are in a format ready
1459  * to be put directly into the top of new user memory.
1460  *
1461  */
1462 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1463                                   abi_ulong p, abi_ulong stack_limit)
1464 {
1465     char *tmp;
1466     int len, i;
1467     abi_ulong top = p;
1468 
1469     if (!p) {
1470         return 0;       /* bullet-proofing */
1471     }
1472 
1473     if (STACK_GROWS_DOWN) {
1474         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1475         for (i = argc - 1; i >= 0; --i) {
1476             tmp = argv[i];
1477             if (!tmp) {
1478                 fprintf(stderr, "VFS: argc is wrong");
1479                 exit(-1);
1480             }
1481             len = strlen(tmp) + 1;
1482             tmp += len;
1483 
1484             if (len > (p - stack_limit)) {
1485                 return 0;
1486             }
1487             while (len) {
1488                 int bytes_to_copy = (len > offset) ? offset : len;
1489                 tmp -= bytes_to_copy;
1490                 p -= bytes_to_copy;
1491                 offset -= bytes_to_copy;
1492                 len -= bytes_to_copy;
1493 
1494                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1495 
1496                 if (offset == 0) {
1497                     memcpy_to_target(p, scratch, top - p);
1498                     top = p;
1499                     offset = TARGET_PAGE_SIZE;
1500                 }
1501             }
1502         }
1503         if (p != top) {
1504             memcpy_to_target(p, scratch + offset, top - p);
1505         }
1506     } else {
1507         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1508         for (i = 0; i < argc; ++i) {
1509             tmp = argv[i];
1510             if (!tmp) {
1511                 fprintf(stderr, "VFS: argc is wrong");
1512                 exit(-1);
1513             }
1514             len = strlen(tmp) + 1;
1515             if (len > (stack_limit - p)) {
1516                 return 0;
1517             }
1518             while (len) {
1519                 int bytes_to_copy = (len > remaining) ? remaining : len;
1520 
1521                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1522 
1523                 tmp += bytes_to_copy;
1524                 remaining -= bytes_to_copy;
1525                 p += bytes_to_copy;
1526                 len -= bytes_to_copy;
1527 
1528                 if (remaining == 0) {
1529                     memcpy_to_target(top, scratch, p - top);
1530                     top = p;
1531                     remaining = TARGET_PAGE_SIZE;
1532                 }
1533             }
1534         }
1535         if (p != top) {
1536             memcpy_to_target(top, scratch, p - top);
1537         }
1538     }
1539 
1540     return p;
1541 }
1542 
1543 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1544  * argument/environment space. Newer kernels (>2.6.33) allow more,
1545  * dependent on stack size, but guarantee at least 32 pages for
1546  * backwards compatibility.
1547  */
1548 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1549 
1550 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1551                                  struct image_info *info)
1552 {
1553     abi_ulong size, error, guard;
1554 
1555     size = guest_stack_size;
1556     if (size < STACK_LOWER_LIMIT) {
1557         size = STACK_LOWER_LIMIT;
1558     }
1559     guard = TARGET_PAGE_SIZE;
1560     if (guard < qemu_real_host_page_size) {
1561         guard = qemu_real_host_page_size;
1562     }
1563 
1564     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1565                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1566     if (error == -1) {
1567         perror("mmap stack");
1568         exit(-1);
1569     }
1570 
1571     /* We reserve one extra page at the top of the stack as guard.  */
1572     if (STACK_GROWS_DOWN) {
1573         target_mprotect(error, guard, PROT_NONE);
1574         info->stack_limit = error + guard;
1575         return info->stack_limit + size - sizeof(void *);
1576     } else {
1577         target_mprotect(error + size, guard, PROT_NONE);
1578         info->stack_limit = error + size;
1579         return error;
1580     }
1581 }
1582 
1583 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1584    after the data section (i.e. bss).  */
1585 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1586 {
1587     uintptr_t host_start, host_map_start, host_end;
1588 
1589     last_bss = TARGET_PAGE_ALIGN(last_bss);
1590 
1591     /* ??? There is confusion between qemu_real_host_page_size and
1592        qemu_host_page_size here and elsewhere in target_mmap, which
1593        may lead to the end of the data section mapping from the file
1594        not being mapped.  At least there was an explicit test and
1595        comment for that here, suggesting that "the file size must
1596        be known".  The comment probably pre-dates the introduction
1597        of the fstat system call in target_mmap which does in fact
1598        find out the size.  What isn't clear is if the workaround
1599        here is still actually needed.  For now, continue with it,
1600        but merge it with the "normal" mmap that would allocate the bss.  */
1601 
1602     host_start = (uintptr_t) g2h(elf_bss);
1603     host_end = (uintptr_t) g2h(last_bss);
1604     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1605 
1606     if (host_map_start < host_end) {
1607         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1608                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1609         if (p == MAP_FAILED) {
1610             perror("cannot mmap brk");
1611             exit(-1);
1612         }
1613     }
1614 
1615     /* Ensure that the bss page(s) are valid */
1616     if ((page_get_flags(last_bss-1) & prot) != prot) {
1617         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1618     }
1619 
1620     if (host_start < host_map_start) {
1621         memset((void *)host_start, 0, host_map_start - host_start);
1622     }
1623 }
1624 
1625 #ifdef CONFIG_USE_FDPIC
1626 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1627 {
1628     uint16_t n;
1629     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1630 
1631     /* elf32_fdpic_loadseg */
1632     n = info->nsegs;
1633     while (n--) {
1634         sp -= 12;
1635         put_user_u32(loadsegs[n].addr, sp+0);
1636         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1637         put_user_u32(loadsegs[n].p_memsz, sp+8);
1638     }
1639 
1640     /* elf32_fdpic_loadmap */
1641     sp -= 4;
1642     put_user_u16(0, sp+0); /* version */
1643     put_user_u16(info->nsegs, sp+2); /* nsegs */
1644 
1645     info->personality = PER_LINUX_FDPIC;
1646     info->loadmap_addr = sp;
1647 
1648     return sp;
1649 }
1650 #endif
1651 
1652 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1653                                    struct elfhdr *exec,
1654                                    struct image_info *info,
1655                                    struct image_info *interp_info)
1656 {
1657     abi_ulong sp;
1658     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1659     int size;
1660     int i;
1661     abi_ulong u_rand_bytes;
1662     uint8_t k_rand_bytes[16];
1663     abi_ulong u_platform;
1664     const char *k_platform;
1665     const int n = sizeof(elf_addr_t);
1666 
1667     sp = p;
1668 
1669 #ifdef CONFIG_USE_FDPIC
1670     /* Needs to be before we load the env/argc/... */
1671     if (elf_is_fdpic(exec)) {
1672         /* Need 4 byte alignment for these structs */
1673         sp &= ~3;
1674         sp = loader_build_fdpic_loadmap(info, sp);
1675         info->other_info = interp_info;
1676         if (interp_info) {
1677             interp_info->other_info = info;
1678             sp = loader_build_fdpic_loadmap(interp_info, sp);
1679         }
1680     }
1681 #endif
1682 
1683     u_platform = 0;
1684     k_platform = ELF_PLATFORM;
1685     if (k_platform) {
1686         size_t len = strlen(k_platform) + 1;
1687         if (STACK_GROWS_DOWN) {
1688             sp -= (len + n - 1) & ~(n - 1);
1689             u_platform = sp;
1690             /* FIXME - check return value of memcpy_to_target() for failure */
1691             memcpy_to_target(sp, k_platform, len);
1692         } else {
1693             memcpy_to_target(sp, k_platform, len);
1694             u_platform = sp;
1695             sp += len + 1;
1696         }
1697     }
1698 
1699     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1700      * the argv and envp pointers.
1701      */
1702     if (STACK_GROWS_DOWN) {
1703         sp = QEMU_ALIGN_DOWN(sp, 16);
1704     } else {
1705         sp = QEMU_ALIGN_UP(sp, 16);
1706     }
1707 
1708     /*
1709      * Generate 16 random bytes for userspace PRNG seeding (not
1710      * cryptically secure but it's not the aim of QEMU).
1711      */
1712     for (i = 0; i < 16; i++) {
1713         k_rand_bytes[i] = rand();
1714     }
1715     if (STACK_GROWS_DOWN) {
1716         sp -= 16;
1717         u_rand_bytes = sp;
1718         /* FIXME - check return value of memcpy_to_target() for failure */
1719         memcpy_to_target(sp, k_rand_bytes, 16);
1720     } else {
1721         memcpy_to_target(sp, k_rand_bytes, 16);
1722         u_rand_bytes = sp;
1723         sp += 16;
1724     }
1725 
1726     size = (DLINFO_ITEMS + 1) * 2;
1727     if (k_platform)
1728         size += 2;
1729 #ifdef DLINFO_ARCH_ITEMS
1730     size += DLINFO_ARCH_ITEMS * 2;
1731 #endif
1732 #ifdef ELF_HWCAP2
1733     size += 2;
1734 #endif
1735     info->auxv_len = size * n;
1736 
1737     size += envc + argc + 2;
1738     size += 1;  /* argc itself */
1739     size *= n;
1740 
1741     /* Allocate space and finalize stack alignment for entry now.  */
1742     if (STACK_GROWS_DOWN) {
1743         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1744         sp = u_argc;
1745     } else {
1746         u_argc = sp;
1747         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1748     }
1749 
1750     u_argv = u_argc + n;
1751     u_envp = u_argv + (argc + 1) * n;
1752     u_auxv = u_envp + (envc + 1) * n;
1753     info->saved_auxv = u_auxv;
1754     info->arg_start = u_argv;
1755     info->arg_end = u_argv + argc * n;
1756 
1757     /* This is correct because Linux defines
1758      * elf_addr_t as Elf32_Off / Elf64_Off
1759      */
1760 #define NEW_AUX_ENT(id, val) do {               \
1761         put_user_ual(id, u_auxv);  u_auxv += n; \
1762         put_user_ual(val, u_auxv); u_auxv += n; \
1763     } while(0)
1764 
1765 #ifdef ARCH_DLINFO
1766     /*
1767      * ARCH_DLINFO must come first so platform specific code can enforce
1768      * special alignment requirements on the AUXV if necessary (eg. PPC).
1769      */
1770     ARCH_DLINFO;
1771 #endif
1772     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1773      * on info->auxv_len will trigger.
1774      */
1775     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1776     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1777     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1778     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1779     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1780     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1781     NEW_AUX_ENT(AT_ENTRY, info->entry);
1782     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1783     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1784     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1785     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1786     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1787     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1788     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1789     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1790 
1791 #ifdef ELF_HWCAP2
1792     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1793 #endif
1794 
1795     if (u_platform) {
1796         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1797     }
1798     NEW_AUX_ENT (AT_NULL, 0);
1799 #undef NEW_AUX_ENT
1800 
1801     /* Check that our initial calculation of the auxv length matches how much
1802      * we actually put into it.
1803      */
1804     assert(info->auxv_len == u_auxv - info->saved_auxv);
1805 
1806     put_user_ual(argc, u_argc);
1807 
1808     p = info->arg_strings;
1809     for (i = 0; i < argc; ++i) {
1810         put_user_ual(p, u_argv);
1811         u_argv += n;
1812         p += target_strlen(p) + 1;
1813     }
1814     put_user_ual(0, u_argv);
1815 
1816     p = info->env_strings;
1817     for (i = 0; i < envc; ++i) {
1818         put_user_ual(p, u_envp);
1819         u_envp += n;
1820         p += target_strlen(p) + 1;
1821     }
1822     put_user_ual(0, u_envp);
1823 
1824     return sp;
1825 }
1826 
1827 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1828 /* If the guest doesn't have a validation function just agree */
1829 static int validate_guest_space(unsigned long guest_base,
1830                                 unsigned long guest_size)
1831 {
1832     return 1;
1833 }
1834 #endif
1835 
1836 unsigned long init_guest_space(unsigned long host_start,
1837                                unsigned long host_size,
1838                                unsigned long guest_start,
1839                                bool fixed)
1840 {
1841     unsigned long current_start, real_start;
1842     int flags;
1843 
1844     assert(host_start || host_size);
1845 
1846     /* If just a starting address is given, then just verify that
1847      * address.  */
1848     if (host_start && !host_size) {
1849         if (validate_guest_space(host_start, host_size) == 1) {
1850             return host_start;
1851         } else {
1852             return (unsigned long)-1;
1853         }
1854     }
1855 
1856     /* Setup the initial flags and start address.  */
1857     current_start = host_start & qemu_host_page_mask;
1858     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1859     if (fixed) {
1860         flags |= MAP_FIXED;
1861     }
1862 
1863     /* Otherwise, a non-zero size region of memory needs to be mapped
1864      * and validated.  */
1865     while (1) {
1866         unsigned long real_size = host_size;
1867 
1868         /* Do not use mmap_find_vma here because that is limited to the
1869          * guest address space.  We are going to make the
1870          * guest address space fit whatever we're given.
1871          */
1872         real_start = (unsigned long)
1873             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1874         if (real_start == (unsigned long)-1) {
1875             return (unsigned long)-1;
1876         }
1877 
1878         /* Ensure the address is properly aligned.  */
1879         if (real_start & ~qemu_host_page_mask) {
1880             munmap((void *)real_start, host_size);
1881             real_size = host_size + qemu_host_page_size;
1882             real_start = (unsigned long)
1883                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1884             if (real_start == (unsigned long)-1) {
1885                 return (unsigned long)-1;
1886             }
1887             real_start = HOST_PAGE_ALIGN(real_start);
1888         }
1889 
1890         /* Check to see if the address is valid.  */
1891         if (!host_start || real_start == current_start) {
1892             int valid = validate_guest_space(real_start - guest_start,
1893                                              real_size);
1894             if (valid == 1) {
1895                 break;
1896             } else if (valid == -1) {
1897                 return (unsigned long)-1;
1898             }
1899             /* valid == 0, so try again. */
1900         }
1901 
1902         /* That address didn't work.  Unmap and try a different one.
1903          * The address the host picked because is typically right at
1904          * the top of the host address space and leaves the guest with
1905          * no usable address space.  Resort to a linear search.  We
1906          * already compensated for mmap_min_addr, so this should not
1907          * happen often.  Probably means we got unlucky and host
1908          * address space randomization put a shared library somewhere
1909          * inconvenient.
1910          */
1911         munmap((void *)real_start, host_size);
1912         current_start += qemu_host_page_size;
1913         if (host_start == current_start) {
1914             /* Theoretically possible if host doesn't have any suitably
1915              * aligned areas.  Normally the first mmap will fail.
1916              */
1917             return (unsigned long)-1;
1918         }
1919     }
1920 
1921     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1922 
1923     return real_start;
1924 }
1925 
1926 static void probe_guest_base(const char *image_name,
1927                              abi_ulong loaddr, abi_ulong hiaddr)
1928 {
1929     /* Probe for a suitable guest base address, if the user has not set
1930      * it explicitly, and set guest_base appropriately.
1931      * In case of error we will print a suitable message and exit.
1932      */
1933     const char *errmsg;
1934     if (!have_guest_base && !reserved_va) {
1935         unsigned long host_start, real_start, host_size;
1936 
1937         /* Round addresses to page boundaries.  */
1938         loaddr &= qemu_host_page_mask;
1939         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1940 
1941         if (loaddr < mmap_min_addr) {
1942             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1943         } else {
1944             host_start = loaddr;
1945             if (host_start != loaddr) {
1946                 errmsg = "Address overflow loading ELF binary";
1947                 goto exit_errmsg;
1948             }
1949         }
1950         host_size = hiaddr - loaddr;
1951 
1952         /* Setup the initial guest memory space with ranges gleaned from
1953          * the ELF image that is being loaded.
1954          */
1955         real_start = init_guest_space(host_start, host_size, loaddr, false);
1956         if (real_start == (unsigned long)-1) {
1957             errmsg = "Unable to find space for application";
1958             goto exit_errmsg;
1959         }
1960         guest_base = real_start - loaddr;
1961 
1962         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1963                       TARGET_ABI_FMT_lx " to 0x%lx\n",
1964                       loaddr, real_start);
1965     }
1966     return;
1967 
1968 exit_errmsg:
1969     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1970     exit(-1);
1971 }
1972 
1973 
1974 /* Load an ELF image into the address space.
1975 
1976    IMAGE_NAME is the filename of the image, to use in error messages.
1977    IMAGE_FD is the open file descriptor for the image.
1978 
1979    BPRM_BUF is a copy of the beginning of the file; this of course
1980    contains the elf file header at offset 0.  It is assumed that this
1981    buffer is sufficiently aligned to present no problems to the host
1982    in accessing data at aligned offsets within the buffer.
1983 
1984    On return: INFO values will be filled in, as necessary or available.  */
1985 
1986 static void load_elf_image(const char *image_name, int image_fd,
1987                            struct image_info *info, char **pinterp_name,
1988                            char bprm_buf[BPRM_BUF_SIZE])
1989 {
1990     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1991     struct elf_phdr *phdr;
1992     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1993     int i, retval;
1994     const char *errmsg;
1995 
1996     /* First of all, some simple consistency checks */
1997     errmsg = "Invalid ELF image for this architecture";
1998     if (!elf_check_ident(ehdr)) {
1999         goto exit_errmsg;
2000     }
2001     bswap_ehdr(ehdr);
2002     if (!elf_check_ehdr(ehdr)) {
2003         goto exit_errmsg;
2004     }
2005 
2006     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2007     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2008         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2009     } else {
2010         phdr = (struct elf_phdr *) alloca(i);
2011         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2012         if (retval != i) {
2013             goto exit_read;
2014         }
2015     }
2016     bswap_phdr(phdr, ehdr->e_phnum);
2017 
2018 #ifdef CONFIG_USE_FDPIC
2019     info->nsegs = 0;
2020     info->pt_dynamic_addr = 0;
2021 #endif
2022 
2023     mmap_lock();
2024 
2025     /* Find the maximum size of the image and allocate an appropriate
2026        amount of memory to handle that.  */
2027     loaddr = -1, hiaddr = 0;
2028     for (i = 0; i < ehdr->e_phnum; ++i) {
2029         if (phdr[i].p_type == PT_LOAD) {
2030             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2031             if (a < loaddr) {
2032                 loaddr = a;
2033             }
2034             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2035             if (a > hiaddr) {
2036                 hiaddr = a;
2037             }
2038 #ifdef CONFIG_USE_FDPIC
2039             ++info->nsegs;
2040 #endif
2041         }
2042     }
2043 
2044     load_addr = loaddr;
2045     if (ehdr->e_type == ET_DYN) {
2046         /* The image indicates that it can be loaded anywhere.  Find a
2047            location that can hold the memory space required.  If the
2048            image is pre-linked, LOADDR will be non-zero.  Since we do
2049            not supply MAP_FIXED here we'll use that address if and
2050            only if it remains available.  */
2051         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2052                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2053                                 -1, 0);
2054         if (load_addr == -1) {
2055             goto exit_perror;
2056         }
2057     } else if (pinterp_name != NULL) {
2058         /* This is the main executable.  Make sure that the low
2059            address does not conflict with MMAP_MIN_ADDR or the
2060            QEMU application itself.  */
2061         probe_guest_base(image_name, loaddr, hiaddr);
2062     }
2063     load_bias = load_addr - loaddr;
2064 
2065 #ifdef CONFIG_USE_FDPIC
2066     {
2067         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2068             g_malloc(sizeof(*loadsegs) * info->nsegs);
2069 
2070         for (i = 0; i < ehdr->e_phnum; ++i) {
2071             switch (phdr[i].p_type) {
2072             case PT_DYNAMIC:
2073                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2074                 break;
2075             case PT_LOAD:
2076                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2077                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2078                 loadsegs->p_memsz = phdr[i].p_memsz;
2079                 ++loadsegs;
2080                 break;
2081             }
2082         }
2083     }
2084 #endif
2085 
2086     info->load_bias = load_bias;
2087     info->load_addr = load_addr;
2088     info->entry = ehdr->e_entry + load_bias;
2089     info->start_code = -1;
2090     info->end_code = 0;
2091     info->start_data = -1;
2092     info->end_data = 0;
2093     info->brk = 0;
2094     info->elf_flags = ehdr->e_flags;
2095 
2096     for (i = 0; i < ehdr->e_phnum; i++) {
2097         struct elf_phdr *eppnt = phdr + i;
2098         if (eppnt->p_type == PT_LOAD) {
2099             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2100             int elf_prot = 0;
2101 
2102             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2103             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2104             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2105 
2106             vaddr = load_bias + eppnt->p_vaddr;
2107             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2108             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2109 
2110             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2111                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2112                                 image_fd, eppnt->p_offset - vaddr_po);
2113             if (error == -1) {
2114                 goto exit_perror;
2115             }
2116 
2117             vaddr_ef = vaddr + eppnt->p_filesz;
2118             vaddr_em = vaddr + eppnt->p_memsz;
2119 
2120             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2121             if (vaddr_ef < vaddr_em) {
2122                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2123             }
2124 
2125             /* Find the full program boundaries.  */
2126             if (elf_prot & PROT_EXEC) {
2127                 if (vaddr < info->start_code) {
2128                     info->start_code = vaddr;
2129                 }
2130                 if (vaddr_ef > info->end_code) {
2131                     info->end_code = vaddr_ef;
2132                 }
2133             }
2134             if (elf_prot & PROT_WRITE) {
2135                 if (vaddr < info->start_data) {
2136                     info->start_data = vaddr;
2137                 }
2138                 if (vaddr_ef > info->end_data) {
2139                     info->end_data = vaddr_ef;
2140                 }
2141                 if (vaddr_em > info->brk) {
2142                     info->brk = vaddr_em;
2143                 }
2144             }
2145         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2146             char *interp_name;
2147 
2148             if (*pinterp_name) {
2149                 errmsg = "Multiple PT_INTERP entries";
2150                 goto exit_errmsg;
2151             }
2152             interp_name = malloc(eppnt->p_filesz);
2153             if (!interp_name) {
2154                 goto exit_perror;
2155             }
2156 
2157             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2158                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2159                        eppnt->p_filesz);
2160             } else {
2161                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2162                                eppnt->p_offset);
2163                 if (retval != eppnt->p_filesz) {
2164                     goto exit_perror;
2165                 }
2166             }
2167             if (interp_name[eppnt->p_filesz - 1] != 0) {
2168                 errmsg = "Invalid PT_INTERP entry";
2169                 goto exit_errmsg;
2170             }
2171             *pinterp_name = interp_name;
2172         }
2173     }
2174 
2175     if (info->end_data == 0) {
2176         info->start_data = info->end_code;
2177         info->end_data = info->end_code;
2178         info->brk = info->end_code;
2179     }
2180 
2181     if (qemu_log_enabled()) {
2182         load_symbols(ehdr, image_fd, load_bias);
2183     }
2184 
2185     mmap_unlock();
2186 
2187     close(image_fd);
2188     return;
2189 
2190  exit_read:
2191     if (retval >= 0) {
2192         errmsg = "Incomplete read of file header";
2193         goto exit_errmsg;
2194     }
2195  exit_perror:
2196     errmsg = strerror(errno);
2197  exit_errmsg:
2198     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2199     exit(-1);
2200 }
2201 
2202 static void load_elf_interp(const char *filename, struct image_info *info,
2203                             char bprm_buf[BPRM_BUF_SIZE])
2204 {
2205     int fd, retval;
2206 
2207     fd = open(path(filename), O_RDONLY);
2208     if (fd < 0) {
2209         goto exit_perror;
2210     }
2211 
2212     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2213     if (retval < 0) {
2214         goto exit_perror;
2215     }
2216     if (retval < BPRM_BUF_SIZE) {
2217         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2218     }
2219 
2220     load_elf_image(filename, fd, info, NULL, bprm_buf);
2221     return;
2222 
2223  exit_perror:
2224     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2225     exit(-1);
2226 }
2227 
2228 static int symfind(const void *s0, const void *s1)
2229 {
2230     target_ulong addr = *(target_ulong *)s0;
2231     struct elf_sym *sym = (struct elf_sym *)s1;
2232     int result = 0;
2233     if (addr < sym->st_value) {
2234         result = -1;
2235     } else if (addr >= sym->st_value + sym->st_size) {
2236         result = 1;
2237     }
2238     return result;
2239 }
2240 
2241 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2242 {
2243 #if ELF_CLASS == ELFCLASS32
2244     struct elf_sym *syms = s->disas_symtab.elf32;
2245 #else
2246     struct elf_sym *syms = s->disas_symtab.elf64;
2247 #endif
2248 
2249     // binary search
2250     struct elf_sym *sym;
2251 
2252     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2253     if (sym != NULL) {
2254         return s->disas_strtab + sym->st_name;
2255     }
2256 
2257     return "";
2258 }
2259 
2260 /* FIXME: This should use elf_ops.h  */
2261 static int symcmp(const void *s0, const void *s1)
2262 {
2263     struct elf_sym *sym0 = (struct elf_sym *)s0;
2264     struct elf_sym *sym1 = (struct elf_sym *)s1;
2265     return (sym0->st_value < sym1->st_value)
2266         ? -1
2267         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2268 }
2269 
2270 /* Best attempt to load symbols from this ELF object. */
2271 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2272 {
2273     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2274     uint64_t segsz;
2275     struct elf_shdr *shdr;
2276     char *strings = NULL;
2277     struct syminfo *s = NULL;
2278     struct elf_sym *new_syms, *syms = NULL;
2279 
2280     shnum = hdr->e_shnum;
2281     i = shnum * sizeof(struct elf_shdr);
2282     shdr = (struct elf_shdr *)alloca(i);
2283     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2284         return;
2285     }
2286 
2287     bswap_shdr(shdr, shnum);
2288     for (i = 0; i < shnum; ++i) {
2289         if (shdr[i].sh_type == SHT_SYMTAB) {
2290             sym_idx = i;
2291             str_idx = shdr[i].sh_link;
2292             goto found;
2293         }
2294     }
2295 
2296     /* There will be no symbol table if the file was stripped.  */
2297     return;
2298 
2299  found:
2300     /* Now know where the strtab and symtab are.  Snarf them.  */
2301     s = g_try_new(struct syminfo, 1);
2302     if (!s) {
2303         goto give_up;
2304     }
2305 
2306     segsz = shdr[str_idx].sh_size;
2307     s->disas_strtab = strings = g_try_malloc(segsz);
2308     if (!strings ||
2309         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2310         goto give_up;
2311     }
2312 
2313     segsz = shdr[sym_idx].sh_size;
2314     syms = g_try_malloc(segsz);
2315     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2316         goto give_up;
2317     }
2318 
2319     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2320         /* Implausibly large symbol table: give up rather than ploughing
2321          * on with the number of symbols calculation overflowing
2322          */
2323         goto give_up;
2324     }
2325     nsyms = segsz / sizeof(struct elf_sym);
2326     for (i = 0; i < nsyms; ) {
2327         bswap_sym(syms + i);
2328         /* Throw away entries which we do not need.  */
2329         if (syms[i].st_shndx == SHN_UNDEF
2330             || syms[i].st_shndx >= SHN_LORESERVE
2331             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2332             if (i < --nsyms) {
2333                 syms[i] = syms[nsyms];
2334             }
2335         } else {
2336 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2337             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2338             syms[i].st_value &= ~(target_ulong)1;
2339 #endif
2340             syms[i].st_value += load_bias;
2341             i++;
2342         }
2343     }
2344 
2345     /* No "useful" symbol.  */
2346     if (nsyms == 0) {
2347         goto give_up;
2348     }
2349 
2350     /* Attempt to free the storage associated with the local symbols
2351        that we threw away.  Whether or not this has any effect on the
2352        memory allocation depends on the malloc implementation and how
2353        many symbols we managed to discard.  */
2354     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2355     if (new_syms == NULL) {
2356         goto give_up;
2357     }
2358     syms = new_syms;
2359 
2360     qsort(syms, nsyms, sizeof(*syms), symcmp);
2361 
2362     s->disas_num_syms = nsyms;
2363 #if ELF_CLASS == ELFCLASS32
2364     s->disas_symtab.elf32 = syms;
2365 #else
2366     s->disas_symtab.elf64 = syms;
2367 #endif
2368     s->lookup_symbol = lookup_symbolxx;
2369     s->next = syminfos;
2370     syminfos = s;
2371 
2372     return;
2373 
2374 give_up:
2375     g_free(s);
2376     g_free(strings);
2377     g_free(syms);
2378 }
2379 
2380 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2381 {
2382     struct image_info interp_info;
2383     struct elfhdr elf_ex;
2384     char *elf_interpreter = NULL;
2385     char *scratch;
2386 
2387     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2388 
2389     load_elf_image(bprm->filename, bprm->fd, info,
2390                    &elf_interpreter, bprm->buf);
2391 
2392     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2393        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2394        when we load the interpreter.  */
2395     elf_ex = *(struct elfhdr *)bprm->buf;
2396 
2397     /* Do this so that we can load the interpreter, if need be.  We will
2398        change some of these later */
2399     bprm->p = setup_arg_pages(bprm, info);
2400 
2401     scratch = g_new0(char, TARGET_PAGE_SIZE);
2402     if (STACK_GROWS_DOWN) {
2403         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2404                                    bprm->p, info->stack_limit);
2405         info->file_string = bprm->p;
2406         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2407                                    bprm->p, info->stack_limit);
2408         info->env_strings = bprm->p;
2409         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2410                                    bprm->p, info->stack_limit);
2411         info->arg_strings = bprm->p;
2412     } else {
2413         info->arg_strings = bprm->p;
2414         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2415                                    bprm->p, info->stack_limit);
2416         info->env_strings = bprm->p;
2417         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2418                                    bprm->p, info->stack_limit);
2419         info->file_string = bprm->p;
2420         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2421                                    bprm->p, info->stack_limit);
2422     }
2423 
2424     g_free(scratch);
2425 
2426     if (!bprm->p) {
2427         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2428         exit(-1);
2429     }
2430 
2431     if (elf_interpreter) {
2432         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2433 
2434         /* If the program interpreter is one of these two, then assume
2435            an iBCS2 image.  Otherwise assume a native linux image.  */
2436 
2437         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2438             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2439             info->personality = PER_SVR4;
2440 
2441             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2442                and some applications "depend" upon this behavior.  Since
2443                we do not have the power to recompile these, we emulate
2444                the SVr4 behavior.  Sigh.  */
2445             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2446                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2447         }
2448     }
2449 
2450     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2451                                 info, (elf_interpreter ? &interp_info : NULL));
2452     info->start_stack = bprm->p;
2453 
2454     /* If we have an interpreter, set that as the program's entry point.
2455        Copy the load_bias as well, to help PPC64 interpret the entry
2456        point as a function descriptor.  Do this after creating elf tables
2457        so that we copy the original program entry point into the AUXV.  */
2458     if (elf_interpreter) {
2459         info->load_bias = interp_info.load_bias;
2460         info->entry = interp_info.entry;
2461         free(elf_interpreter);
2462     }
2463 
2464 #ifdef USE_ELF_CORE_DUMP
2465     bprm->core_dump = &elf_core_dump;
2466 #endif
2467 
2468     return 0;
2469 }
2470 
2471 #ifdef USE_ELF_CORE_DUMP
2472 /*
2473  * Definitions to generate Intel SVR4-like core files.
2474  * These mostly have the same names as the SVR4 types with "target_elf_"
2475  * tacked on the front to prevent clashes with linux definitions,
2476  * and the typedef forms have been avoided.  This is mostly like
2477  * the SVR4 structure, but more Linuxy, with things that Linux does
2478  * not support and which gdb doesn't really use excluded.
2479  *
2480  * Fields we don't dump (their contents is zero) in linux-user qemu
2481  * are marked with XXX.
2482  *
2483  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2484  *
2485  * Porting ELF coredump for target is (quite) simple process.  First you
2486  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2487  * the target resides):
2488  *
2489  * #define USE_ELF_CORE_DUMP
2490  *
2491  * Next you define type of register set used for dumping.  ELF specification
2492  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2493  *
2494  * typedef <target_regtype> target_elf_greg_t;
2495  * #define ELF_NREG <number of registers>
2496  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2497  *
2498  * Last step is to implement target specific function that copies registers
2499  * from given cpu into just specified register set.  Prototype is:
2500  *
2501  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2502  *                                const CPUArchState *env);
2503  *
2504  * Parameters:
2505  *     regs - copy register values into here (allocated and zeroed by caller)
2506  *     env - copy registers from here
2507  *
2508  * Example for ARM target is provided in this file.
2509  */
2510 
2511 /* An ELF note in memory */
2512 struct memelfnote {
2513     const char *name;
2514     size_t     namesz;
2515     size_t     namesz_rounded;
2516     int        type;
2517     size_t     datasz;
2518     size_t     datasz_rounded;
2519     void       *data;
2520     size_t     notesz;
2521 };
2522 
2523 struct target_elf_siginfo {
2524     abi_int    si_signo; /* signal number */
2525     abi_int    si_code;  /* extra code */
2526     abi_int    si_errno; /* errno */
2527 };
2528 
2529 struct target_elf_prstatus {
2530     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2531     abi_short          pr_cursig;    /* Current signal */
2532     abi_ulong          pr_sigpend;   /* XXX */
2533     abi_ulong          pr_sighold;   /* XXX */
2534     target_pid_t       pr_pid;
2535     target_pid_t       pr_ppid;
2536     target_pid_t       pr_pgrp;
2537     target_pid_t       pr_sid;
2538     struct target_timeval pr_utime;  /* XXX User time */
2539     struct target_timeval pr_stime;  /* XXX System time */
2540     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2541     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2542     target_elf_gregset_t      pr_reg;       /* GP registers */
2543     abi_int            pr_fpvalid;   /* XXX */
2544 };
2545 
2546 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2547 
2548 struct target_elf_prpsinfo {
2549     char         pr_state;       /* numeric process state */
2550     char         pr_sname;       /* char for pr_state */
2551     char         pr_zomb;        /* zombie */
2552     char         pr_nice;        /* nice val */
2553     abi_ulong    pr_flag;        /* flags */
2554     target_uid_t pr_uid;
2555     target_gid_t pr_gid;
2556     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2557     /* Lots missing */
2558     char    pr_fname[16];           /* filename of executable */
2559     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2560 };
2561 
2562 /* Here is the structure in which status of each thread is captured. */
2563 struct elf_thread_status {
2564     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2565     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2566 #if 0
2567     elf_fpregset_t fpu;             /* NT_PRFPREG */
2568     struct task_struct *thread;
2569     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2570 #endif
2571     struct memelfnote notes[1];
2572     int num_notes;
2573 };
2574 
2575 struct elf_note_info {
2576     struct memelfnote   *notes;
2577     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2578     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2579 
2580     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2581 #if 0
2582     /*
2583      * Current version of ELF coredump doesn't support
2584      * dumping fp regs etc.
2585      */
2586     elf_fpregset_t *fpu;
2587     elf_fpxregset_t *xfpu;
2588     int thread_status_size;
2589 #endif
2590     int notes_size;
2591     int numnote;
2592 };
2593 
2594 struct vm_area_struct {
2595     target_ulong   vma_start;  /* start vaddr of memory region */
2596     target_ulong   vma_end;    /* end vaddr of memory region */
2597     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2598     QTAILQ_ENTRY(vm_area_struct) vma_link;
2599 };
2600 
2601 struct mm_struct {
2602     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2603     int mm_count;           /* number of mappings */
2604 };
2605 
2606 static struct mm_struct *vma_init(void);
2607 static void vma_delete(struct mm_struct *);
2608 static int vma_add_mapping(struct mm_struct *, target_ulong,
2609                            target_ulong, abi_ulong);
2610 static int vma_get_mapping_count(const struct mm_struct *);
2611 static struct vm_area_struct *vma_first(const struct mm_struct *);
2612 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2613 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2614 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2615                       unsigned long flags);
2616 
2617 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2618 static void fill_note(struct memelfnote *, const char *, int,
2619                       unsigned int, void *);
2620 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2621 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2622 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2623 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2624 static size_t note_size(const struct memelfnote *);
2625 static void free_note_info(struct elf_note_info *);
2626 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2627 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2628 static int core_dump_filename(const TaskState *, char *, size_t);
2629 
2630 static int dump_write(int, const void *, size_t);
2631 static int write_note(struct memelfnote *, int);
2632 static int write_note_info(struct elf_note_info *, int);
2633 
2634 #ifdef BSWAP_NEEDED
2635 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2636 {
2637     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2638     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2639     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2640     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2641     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2642     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2643     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2644     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2645     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2646     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2647     /* cpu times are not filled, so we skip them */
2648     /* regs should be in correct format already */
2649     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2650 }
2651 
2652 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2653 {
2654     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2655     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2656     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2657     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2658     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2659     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2660     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2661 }
2662 
2663 static void bswap_note(struct elf_note *en)
2664 {
2665     bswap32s(&en->n_namesz);
2666     bswap32s(&en->n_descsz);
2667     bswap32s(&en->n_type);
2668 }
2669 #else
2670 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2671 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2672 static inline void bswap_note(struct elf_note *en) { }
2673 #endif /* BSWAP_NEEDED */
2674 
2675 /*
2676  * Minimal support for linux memory regions.  These are needed
2677  * when we are finding out what memory exactly belongs to
2678  * emulated process.  No locks needed here, as long as
2679  * thread that received the signal is stopped.
2680  */
2681 
2682 static struct mm_struct *vma_init(void)
2683 {
2684     struct mm_struct *mm;
2685 
2686     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2687         return (NULL);
2688 
2689     mm->mm_count = 0;
2690     QTAILQ_INIT(&mm->mm_mmap);
2691 
2692     return (mm);
2693 }
2694 
2695 static void vma_delete(struct mm_struct *mm)
2696 {
2697     struct vm_area_struct *vma;
2698 
2699     while ((vma = vma_first(mm)) != NULL) {
2700         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2701         g_free(vma);
2702     }
2703     g_free(mm);
2704 }
2705 
2706 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2707                            target_ulong end, abi_ulong flags)
2708 {
2709     struct vm_area_struct *vma;
2710 
2711     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2712         return (-1);
2713 
2714     vma->vma_start = start;
2715     vma->vma_end = end;
2716     vma->vma_flags = flags;
2717 
2718     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2719     mm->mm_count++;
2720 
2721     return (0);
2722 }
2723 
2724 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2725 {
2726     return (QTAILQ_FIRST(&mm->mm_mmap));
2727 }
2728 
2729 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2730 {
2731     return (QTAILQ_NEXT(vma, vma_link));
2732 }
2733 
2734 static int vma_get_mapping_count(const struct mm_struct *mm)
2735 {
2736     return (mm->mm_count);
2737 }
2738 
2739 /*
2740  * Calculate file (dump) size of given memory region.
2741  */
2742 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2743 {
2744     /* if we cannot even read the first page, skip it */
2745     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2746         return (0);
2747 
2748     /*
2749      * Usually we don't dump executable pages as they contain
2750      * non-writable code that debugger can read directly from
2751      * target library etc.  However, thread stacks are marked
2752      * also executable so we read in first page of given region
2753      * and check whether it contains elf header.  If there is
2754      * no elf header, we dump it.
2755      */
2756     if (vma->vma_flags & PROT_EXEC) {
2757         char page[TARGET_PAGE_SIZE];
2758 
2759         copy_from_user(page, vma->vma_start, sizeof (page));
2760         if ((page[EI_MAG0] == ELFMAG0) &&
2761             (page[EI_MAG1] == ELFMAG1) &&
2762             (page[EI_MAG2] == ELFMAG2) &&
2763             (page[EI_MAG3] == ELFMAG3)) {
2764             /*
2765              * Mappings are possibly from ELF binary.  Don't dump
2766              * them.
2767              */
2768             return (0);
2769         }
2770     }
2771 
2772     return (vma->vma_end - vma->vma_start);
2773 }
2774 
2775 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2776                       unsigned long flags)
2777 {
2778     struct mm_struct *mm = (struct mm_struct *)priv;
2779 
2780     vma_add_mapping(mm, start, end, flags);
2781     return (0);
2782 }
2783 
2784 static void fill_note(struct memelfnote *note, const char *name, int type,
2785                       unsigned int sz, void *data)
2786 {
2787     unsigned int namesz;
2788 
2789     namesz = strlen(name) + 1;
2790     note->name = name;
2791     note->namesz = namesz;
2792     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2793     note->type = type;
2794     note->datasz = sz;
2795     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2796 
2797     note->data = data;
2798 
2799     /*
2800      * We calculate rounded up note size here as specified by
2801      * ELF document.
2802      */
2803     note->notesz = sizeof (struct elf_note) +
2804         note->namesz_rounded + note->datasz_rounded;
2805 }
2806 
2807 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2808                             uint32_t flags)
2809 {
2810     (void) memset(elf, 0, sizeof(*elf));
2811 
2812     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2813     elf->e_ident[EI_CLASS] = ELF_CLASS;
2814     elf->e_ident[EI_DATA] = ELF_DATA;
2815     elf->e_ident[EI_VERSION] = EV_CURRENT;
2816     elf->e_ident[EI_OSABI] = ELF_OSABI;
2817 
2818     elf->e_type = ET_CORE;
2819     elf->e_machine = machine;
2820     elf->e_version = EV_CURRENT;
2821     elf->e_phoff = sizeof(struct elfhdr);
2822     elf->e_flags = flags;
2823     elf->e_ehsize = sizeof(struct elfhdr);
2824     elf->e_phentsize = sizeof(struct elf_phdr);
2825     elf->e_phnum = segs;
2826 
2827     bswap_ehdr(elf);
2828 }
2829 
2830 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2831 {
2832     phdr->p_type = PT_NOTE;
2833     phdr->p_offset = offset;
2834     phdr->p_vaddr = 0;
2835     phdr->p_paddr = 0;
2836     phdr->p_filesz = sz;
2837     phdr->p_memsz = 0;
2838     phdr->p_flags = 0;
2839     phdr->p_align = 0;
2840 
2841     bswap_phdr(phdr, 1);
2842 }
2843 
2844 static size_t note_size(const struct memelfnote *note)
2845 {
2846     return (note->notesz);
2847 }
2848 
2849 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2850                           const TaskState *ts, int signr)
2851 {
2852     (void) memset(prstatus, 0, sizeof (*prstatus));
2853     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2854     prstatus->pr_pid = ts->ts_tid;
2855     prstatus->pr_ppid = getppid();
2856     prstatus->pr_pgrp = getpgrp();
2857     prstatus->pr_sid = getsid(0);
2858 
2859     bswap_prstatus(prstatus);
2860 }
2861 
2862 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2863 {
2864     char *base_filename;
2865     unsigned int i, len;
2866 
2867     (void) memset(psinfo, 0, sizeof (*psinfo));
2868 
2869     len = ts->info->arg_end - ts->info->arg_start;
2870     if (len >= ELF_PRARGSZ)
2871         len = ELF_PRARGSZ - 1;
2872     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2873         return -EFAULT;
2874     for (i = 0; i < len; i++)
2875         if (psinfo->pr_psargs[i] == 0)
2876             psinfo->pr_psargs[i] = ' ';
2877     psinfo->pr_psargs[len] = 0;
2878 
2879     psinfo->pr_pid = getpid();
2880     psinfo->pr_ppid = getppid();
2881     psinfo->pr_pgrp = getpgrp();
2882     psinfo->pr_sid = getsid(0);
2883     psinfo->pr_uid = getuid();
2884     psinfo->pr_gid = getgid();
2885 
2886     base_filename = g_path_get_basename(ts->bprm->filename);
2887     /*
2888      * Using strncpy here is fine: at max-length,
2889      * this field is not NUL-terminated.
2890      */
2891     (void) strncpy(psinfo->pr_fname, base_filename,
2892                    sizeof(psinfo->pr_fname));
2893 
2894     g_free(base_filename);
2895     bswap_psinfo(psinfo);
2896     return (0);
2897 }
2898 
2899 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2900 {
2901     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2902     elf_addr_t orig_auxv = auxv;
2903     void *ptr;
2904     int len = ts->info->auxv_len;
2905 
2906     /*
2907      * Auxiliary vector is stored in target process stack.  It contains
2908      * {type, value} pairs that we need to dump into note.  This is not
2909      * strictly necessary but we do it here for sake of completeness.
2910      */
2911 
2912     /* read in whole auxv vector and copy it to memelfnote */
2913     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2914     if (ptr != NULL) {
2915         fill_note(note, "CORE", NT_AUXV, len, ptr);
2916         unlock_user(ptr, auxv, len);
2917     }
2918 }
2919 
2920 /*
2921  * Constructs name of coredump file.  We have following convention
2922  * for the name:
2923  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2924  *
2925  * Returns 0 in case of success, -1 otherwise (errno is set).
2926  */
2927 static int core_dump_filename(const TaskState *ts, char *buf,
2928                               size_t bufsize)
2929 {
2930     char timestamp[64];
2931     char *base_filename = NULL;
2932     struct timeval tv;
2933     struct tm tm;
2934 
2935     assert(bufsize >= PATH_MAX);
2936 
2937     if (gettimeofday(&tv, NULL) < 0) {
2938         (void) fprintf(stderr, "unable to get current timestamp: %s",
2939                        strerror(errno));
2940         return (-1);
2941     }
2942 
2943     base_filename = g_path_get_basename(ts->bprm->filename);
2944     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2945                     localtime_r(&tv.tv_sec, &tm));
2946     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2947                     base_filename, timestamp, (int)getpid());
2948     g_free(base_filename);
2949 
2950     return (0);
2951 }
2952 
2953 static int dump_write(int fd, const void *ptr, size_t size)
2954 {
2955     const char *bufp = (const char *)ptr;
2956     ssize_t bytes_written, bytes_left;
2957     struct rlimit dumpsize;
2958     off_t pos;
2959 
2960     bytes_written = 0;
2961     getrlimit(RLIMIT_CORE, &dumpsize);
2962     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2963         if (errno == ESPIPE) { /* not a seekable stream */
2964             bytes_left = size;
2965         } else {
2966             return pos;
2967         }
2968     } else {
2969         if (dumpsize.rlim_cur <= pos) {
2970             return -1;
2971         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2972             bytes_left = size;
2973         } else {
2974             size_t limit_left=dumpsize.rlim_cur - pos;
2975             bytes_left = limit_left >= size ? size : limit_left ;
2976         }
2977     }
2978 
2979     /*
2980      * In normal conditions, single write(2) should do but
2981      * in case of socket etc. this mechanism is more portable.
2982      */
2983     do {
2984         bytes_written = write(fd, bufp, bytes_left);
2985         if (bytes_written < 0) {
2986             if (errno == EINTR)
2987                 continue;
2988             return (-1);
2989         } else if (bytes_written == 0) { /* eof */
2990             return (-1);
2991         }
2992         bufp += bytes_written;
2993         bytes_left -= bytes_written;
2994     } while (bytes_left > 0);
2995 
2996     return (0);
2997 }
2998 
2999 static int write_note(struct memelfnote *men, int fd)
3000 {
3001     struct elf_note en;
3002 
3003     en.n_namesz = men->namesz;
3004     en.n_type = men->type;
3005     en.n_descsz = men->datasz;
3006 
3007     bswap_note(&en);
3008 
3009     if (dump_write(fd, &en, sizeof(en)) != 0)
3010         return (-1);
3011     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3012         return (-1);
3013     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3014         return (-1);
3015 
3016     return (0);
3017 }
3018 
3019 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3020 {
3021     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3022     TaskState *ts = (TaskState *)cpu->opaque;
3023     struct elf_thread_status *ets;
3024 
3025     ets = g_malloc0(sizeof (*ets));
3026     ets->num_notes = 1; /* only prstatus is dumped */
3027     fill_prstatus(&ets->prstatus, ts, 0);
3028     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3029     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3030               &ets->prstatus);
3031 
3032     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3033 
3034     info->notes_size += note_size(&ets->notes[0]);
3035 }
3036 
3037 static void init_note_info(struct elf_note_info *info)
3038 {
3039     /* Initialize the elf_note_info structure so that it is at
3040      * least safe to call free_note_info() on it. Must be
3041      * called before calling fill_note_info().
3042      */
3043     memset(info, 0, sizeof (*info));
3044     QTAILQ_INIT(&info->thread_list);
3045 }
3046 
3047 static int fill_note_info(struct elf_note_info *info,
3048                           long signr, const CPUArchState *env)
3049 {
3050 #define NUMNOTES 3
3051     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3052     TaskState *ts = (TaskState *)cpu->opaque;
3053     int i;
3054 
3055     info->notes = g_new0(struct memelfnote, NUMNOTES);
3056     if (info->notes == NULL)
3057         return (-ENOMEM);
3058     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3059     if (info->prstatus == NULL)
3060         return (-ENOMEM);
3061     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3062     if (info->prstatus == NULL)
3063         return (-ENOMEM);
3064 
3065     /*
3066      * First fill in status (and registers) of current thread
3067      * including process info & aux vector.
3068      */
3069     fill_prstatus(info->prstatus, ts, signr);
3070     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3071     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3072               sizeof (*info->prstatus), info->prstatus);
3073     fill_psinfo(info->psinfo, ts);
3074     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3075               sizeof (*info->psinfo), info->psinfo);
3076     fill_auxv_note(&info->notes[2], ts);
3077     info->numnote = 3;
3078 
3079     info->notes_size = 0;
3080     for (i = 0; i < info->numnote; i++)
3081         info->notes_size += note_size(&info->notes[i]);
3082 
3083     /* read and fill status of all threads */
3084     cpu_list_lock();
3085     CPU_FOREACH(cpu) {
3086         if (cpu == thread_cpu) {
3087             continue;
3088         }
3089         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3090     }
3091     cpu_list_unlock();
3092 
3093     return (0);
3094 }
3095 
3096 static void free_note_info(struct elf_note_info *info)
3097 {
3098     struct elf_thread_status *ets;
3099 
3100     while (!QTAILQ_EMPTY(&info->thread_list)) {
3101         ets = QTAILQ_FIRST(&info->thread_list);
3102         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3103         g_free(ets);
3104     }
3105 
3106     g_free(info->prstatus);
3107     g_free(info->psinfo);
3108     g_free(info->notes);
3109 }
3110 
3111 static int write_note_info(struct elf_note_info *info, int fd)
3112 {
3113     struct elf_thread_status *ets;
3114     int i, error = 0;
3115 
3116     /* write prstatus, psinfo and auxv for current thread */
3117     for (i = 0; i < info->numnote; i++)
3118         if ((error = write_note(&info->notes[i], fd)) != 0)
3119             return (error);
3120 
3121     /* write prstatus for each thread */
3122     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3123         if ((error = write_note(&ets->notes[0], fd)) != 0)
3124             return (error);
3125     }
3126 
3127     return (0);
3128 }
3129 
3130 /*
3131  * Write out ELF coredump.
3132  *
3133  * See documentation of ELF object file format in:
3134  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3135  *
3136  * Coredump format in linux is following:
3137  *
3138  * 0   +----------------------+         \
3139  *     | ELF header           | ET_CORE  |
3140  *     +----------------------+          |
3141  *     | ELF program headers  |          |--- headers
3142  *     | - NOTE section       |          |
3143  *     | - PT_LOAD sections   |          |
3144  *     +----------------------+         /
3145  *     | NOTEs:               |
3146  *     | - NT_PRSTATUS        |
3147  *     | - NT_PRSINFO         |
3148  *     | - NT_AUXV            |
3149  *     +----------------------+ <-- aligned to target page
3150  *     | Process memory dump  |
3151  *     :                      :
3152  *     .                      .
3153  *     :                      :
3154  *     |                      |
3155  *     +----------------------+
3156  *
3157  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3158  * NT_PRSINFO  -> struct elf_prpsinfo
3159  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3160  *
3161  * Format follows System V format as close as possible.  Current
3162  * version limitations are as follows:
3163  *     - no floating point registers are dumped
3164  *
3165  * Function returns 0 in case of success, negative errno otherwise.
3166  *
3167  * TODO: make this work also during runtime: it should be
3168  * possible to force coredump from running process and then
3169  * continue processing.  For example qemu could set up SIGUSR2
3170  * handler (provided that target process haven't registered
3171  * handler for that) that does the dump when signal is received.
3172  */
3173 static int elf_core_dump(int signr, const CPUArchState *env)
3174 {
3175     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3176     const TaskState *ts = (const TaskState *)cpu->opaque;
3177     struct vm_area_struct *vma = NULL;
3178     char corefile[PATH_MAX];
3179     struct elf_note_info info;
3180     struct elfhdr elf;
3181     struct elf_phdr phdr;
3182     struct rlimit dumpsize;
3183     struct mm_struct *mm = NULL;
3184     off_t offset = 0, data_offset = 0;
3185     int segs = 0;
3186     int fd = -1;
3187 
3188     init_note_info(&info);
3189 
3190     errno = 0;
3191     getrlimit(RLIMIT_CORE, &dumpsize);
3192     if (dumpsize.rlim_cur == 0)
3193         return 0;
3194 
3195     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3196         return (-errno);
3197 
3198     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3199                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3200         return (-errno);
3201 
3202     /*
3203      * Walk through target process memory mappings and
3204      * set up structure containing this information.  After
3205      * this point vma_xxx functions can be used.
3206      */
3207     if ((mm = vma_init()) == NULL)
3208         goto out;
3209 
3210     walk_memory_regions(mm, vma_walker);
3211     segs = vma_get_mapping_count(mm);
3212 
3213     /*
3214      * Construct valid coredump ELF header.  We also
3215      * add one more segment for notes.
3216      */
3217     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3218     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3219         goto out;
3220 
3221     /* fill in the in-memory version of notes */
3222     if (fill_note_info(&info, signr, env) < 0)
3223         goto out;
3224 
3225     offset += sizeof (elf);                             /* elf header */
3226     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3227 
3228     /* write out notes program header */
3229     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3230 
3231     offset += info.notes_size;
3232     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3233         goto out;
3234 
3235     /*
3236      * ELF specification wants data to start at page boundary so
3237      * we align it here.
3238      */
3239     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3240 
3241     /*
3242      * Write program headers for memory regions mapped in
3243      * the target process.
3244      */
3245     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3246         (void) memset(&phdr, 0, sizeof (phdr));
3247 
3248         phdr.p_type = PT_LOAD;
3249         phdr.p_offset = offset;
3250         phdr.p_vaddr = vma->vma_start;
3251         phdr.p_paddr = 0;
3252         phdr.p_filesz = vma_dump_size(vma);
3253         offset += phdr.p_filesz;
3254         phdr.p_memsz = vma->vma_end - vma->vma_start;
3255         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3256         if (vma->vma_flags & PROT_WRITE)
3257             phdr.p_flags |= PF_W;
3258         if (vma->vma_flags & PROT_EXEC)
3259             phdr.p_flags |= PF_X;
3260         phdr.p_align = ELF_EXEC_PAGESIZE;
3261 
3262         bswap_phdr(&phdr, 1);
3263         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3264             goto out;
3265         }
3266     }
3267 
3268     /*
3269      * Next we write notes just after program headers.  No
3270      * alignment needed here.
3271      */
3272     if (write_note_info(&info, fd) < 0)
3273         goto out;
3274 
3275     /* align data to page boundary */
3276     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3277         goto out;
3278 
3279     /*
3280      * Finally we can dump process memory into corefile as well.
3281      */
3282     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3283         abi_ulong addr;
3284         abi_ulong end;
3285 
3286         end = vma->vma_start + vma_dump_size(vma);
3287 
3288         for (addr = vma->vma_start; addr < end;
3289              addr += TARGET_PAGE_SIZE) {
3290             char page[TARGET_PAGE_SIZE];
3291             int error;
3292 
3293             /*
3294              *  Read in page from target process memory and
3295              *  write it to coredump file.
3296              */
3297             error = copy_from_user(page, addr, sizeof (page));
3298             if (error != 0) {
3299                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3300                                addr);
3301                 errno = -error;
3302                 goto out;
3303             }
3304             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3305                 goto out;
3306         }
3307     }
3308 
3309  out:
3310     free_note_info(&info);
3311     if (mm != NULL)
3312         vma_delete(mm);
3313     (void) close(fd);
3314 
3315     if (errno != 0)
3316         return (-errno);
3317     return (0);
3318 }
3319 #endif /* USE_ELF_CORE_DUMP */
3320 
3321 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3322 {
3323     init_thread(regs, infop);
3324 }
3325