1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 23 #ifdef _ARCH_PPC64 24 #undef ARCH_DLINFO 25 #undef ELF_PLATFORM 26 #undef ELF_HWCAP 27 #undef ELF_HWCAP2 28 #undef ELF_CLASS 29 #undef ELF_DATA 30 #undef ELF_ARCH 31 #endif 32 33 #define ELF_OSABI ELFOSABI_SYSV 34 35 /* from personality.h */ 36 37 /* 38 * Flags for bug emulation. 39 * 40 * These occupy the top three bytes. 41 */ 42 enum { 43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 45 descriptors (signal handling) */ 46 MMAP_PAGE_ZERO = 0x0100000, 47 ADDR_COMPAT_LAYOUT = 0x0200000, 48 READ_IMPLIES_EXEC = 0x0400000, 49 ADDR_LIMIT_32BIT = 0x0800000, 50 SHORT_INODE = 0x1000000, 51 WHOLE_SECONDS = 0x2000000, 52 STICKY_TIMEOUTS = 0x4000000, 53 ADDR_LIMIT_3GB = 0x8000000, 54 }; 55 56 /* 57 * Personality types. 58 * 59 * These go in the low byte. Avoid using the top bit, it will 60 * conflict with error returns. 61 */ 62 enum { 63 PER_LINUX = 0x0000, 64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 72 PER_BSD = 0x0006, 73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 75 PER_LINUX32 = 0x0008, 76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 80 PER_RISCOS = 0x000c, 81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 83 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 84 PER_HPUX = 0x0010, 85 PER_MASK = 0x00ff, 86 }; 87 88 /* 89 * Return the base personality without flags. 90 */ 91 #define personality(pers) (pers & PER_MASK) 92 93 int info_is_fdpic(struct image_info *info) 94 { 95 return info->personality == PER_LINUX_FDPIC; 96 } 97 98 /* this flag is uneffective under linux too, should be deleted */ 99 #ifndef MAP_DENYWRITE 100 #define MAP_DENYWRITE 0 101 #endif 102 103 /* should probably go in elf.h */ 104 #ifndef ELIBBAD 105 #define ELIBBAD 80 106 #endif 107 108 #if TARGET_BIG_ENDIAN 109 #define ELF_DATA ELFDATA2MSB 110 #else 111 #define ELF_DATA ELFDATA2LSB 112 #endif 113 114 #ifdef TARGET_ABI_MIPSN32 115 typedef abi_ullong target_elf_greg_t; 116 #define tswapreg(ptr) tswap64(ptr) 117 #else 118 typedef abi_ulong target_elf_greg_t; 119 #define tswapreg(ptr) tswapal(ptr) 120 #endif 121 122 #ifdef USE_UID16 123 typedef abi_ushort target_uid_t; 124 typedef abi_ushort target_gid_t; 125 #else 126 typedef abi_uint target_uid_t; 127 typedef abi_uint target_gid_t; 128 #endif 129 typedef abi_int target_pid_t; 130 131 #ifdef TARGET_I386 132 133 #define ELF_HWCAP get_elf_hwcap() 134 135 static uint32_t get_elf_hwcap(void) 136 { 137 X86CPU *cpu = X86_CPU(thread_cpu); 138 139 return cpu->env.features[FEAT_1_EDX]; 140 } 141 142 #ifdef TARGET_X86_64 143 #define ELF_START_MMAP 0x2aaaaab000ULL 144 145 #define ELF_CLASS ELFCLASS64 146 #define ELF_ARCH EM_X86_64 147 148 #define ELF_PLATFORM "x86_64" 149 150 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 151 { 152 regs->rax = 0; 153 regs->rsp = infop->start_stack; 154 regs->rip = infop->entry; 155 } 156 157 #define ELF_NREG 27 158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 159 160 /* 161 * Note that ELF_NREG should be 29 as there should be place for 162 * TRAPNO and ERR "registers" as well but linux doesn't dump 163 * those. 164 * 165 * See linux kernel: arch/x86/include/asm/elf.h 166 */ 167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 168 { 169 (*regs)[0] = tswapreg(env->regs[15]); 170 (*regs)[1] = tswapreg(env->regs[14]); 171 (*regs)[2] = tswapreg(env->regs[13]); 172 (*regs)[3] = tswapreg(env->regs[12]); 173 (*regs)[4] = tswapreg(env->regs[R_EBP]); 174 (*regs)[5] = tswapreg(env->regs[R_EBX]); 175 (*regs)[6] = tswapreg(env->regs[11]); 176 (*regs)[7] = tswapreg(env->regs[10]); 177 (*regs)[8] = tswapreg(env->regs[9]); 178 (*regs)[9] = tswapreg(env->regs[8]); 179 (*regs)[10] = tswapreg(env->regs[R_EAX]); 180 (*regs)[11] = tswapreg(env->regs[R_ECX]); 181 (*regs)[12] = tswapreg(env->regs[R_EDX]); 182 (*regs)[13] = tswapreg(env->regs[R_ESI]); 183 (*regs)[14] = tswapreg(env->regs[R_EDI]); 184 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 185 (*regs)[16] = tswapreg(env->eip); 186 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 187 (*regs)[18] = tswapreg(env->eflags); 188 (*regs)[19] = tswapreg(env->regs[R_ESP]); 189 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 190 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 191 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 192 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 193 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 194 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 195 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 196 } 197 198 #else 199 200 #define ELF_START_MMAP 0x80000000 201 202 /* 203 * This is used to ensure we don't load something for the wrong architecture. 204 */ 205 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 206 207 /* 208 * These are used to set parameters in the core dumps. 209 */ 210 #define ELF_CLASS ELFCLASS32 211 #define ELF_ARCH EM_386 212 213 #define ELF_PLATFORM get_elf_platform() 214 215 static const char *get_elf_platform(void) 216 { 217 static char elf_platform[] = "i386"; 218 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 219 if (family > 6) { 220 family = 6; 221 } 222 if (family >= 3) { 223 elf_platform[1] = '0' + family; 224 } 225 return elf_platform; 226 } 227 228 static inline void init_thread(struct target_pt_regs *regs, 229 struct image_info *infop) 230 { 231 regs->esp = infop->start_stack; 232 regs->eip = infop->entry; 233 234 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 235 starts %edx contains a pointer to a function which might be 236 registered using `atexit'. This provides a mean for the 237 dynamic linker to call DT_FINI functions for shared libraries 238 that have been loaded before the code runs. 239 240 A value of 0 tells we have no such handler. */ 241 regs->edx = 0; 242 } 243 244 #define ELF_NREG 17 245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 246 247 /* 248 * Note that ELF_NREG should be 19 as there should be place for 249 * TRAPNO and ERR "registers" as well but linux doesn't dump 250 * those. 251 * 252 * See linux kernel: arch/x86/include/asm/elf.h 253 */ 254 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 255 { 256 (*regs)[0] = tswapreg(env->regs[R_EBX]); 257 (*regs)[1] = tswapreg(env->regs[R_ECX]); 258 (*regs)[2] = tswapreg(env->regs[R_EDX]); 259 (*regs)[3] = tswapreg(env->regs[R_ESI]); 260 (*regs)[4] = tswapreg(env->regs[R_EDI]); 261 (*regs)[5] = tswapreg(env->regs[R_EBP]); 262 (*regs)[6] = tswapreg(env->regs[R_EAX]); 263 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 264 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 265 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 266 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 267 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 268 (*regs)[12] = tswapreg(env->eip); 269 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 270 (*regs)[14] = tswapreg(env->eflags); 271 (*regs)[15] = tswapreg(env->regs[R_ESP]); 272 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 273 } 274 #endif 275 276 #define USE_ELF_CORE_DUMP 277 #define ELF_EXEC_PAGESIZE 4096 278 279 #endif 280 281 #ifdef TARGET_ARM 282 283 #ifndef TARGET_AARCH64 284 /* 32 bit ARM definitions */ 285 286 #define ELF_START_MMAP 0x80000000 287 288 #define ELF_ARCH EM_ARM 289 #define ELF_CLASS ELFCLASS32 290 291 static inline void init_thread(struct target_pt_regs *regs, 292 struct image_info *infop) 293 { 294 abi_long stack = infop->start_stack; 295 memset(regs, 0, sizeof(*regs)); 296 297 regs->uregs[16] = ARM_CPU_MODE_USR; 298 if (infop->entry & 1) { 299 regs->uregs[16] |= CPSR_T; 300 } 301 regs->uregs[15] = infop->entry & 0xfffffffe; 302 regs->uregs[13] = infop->start_stack; 303 /* FIXME - what to for failure of get_user()? */ 304 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 305 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 306 /* XXX: it seems that r0 is zeroed after ! */ 307 regs->uregs[0] = 0; 308 /* For uClinux PIC binaries. */ 309 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 310 regs->uregs[10] = infop->start_data; 311 312 /* Support ARM FDPIC. */ 313 if (info_is_fdpic(infop)) { 314 /* As described in the ABI document, r7 points to the loadmap info 315 * prepared by the kernel. If an interpreter is needed, r8 points 316 * to the interpreter loadmap and r9 points to the interpreter 317 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 318 * r9 points to the main program PT_DYNAMIC info. 319 */ 320 regs->uregs[7] = infop->loadmap_addr; 321 if (infop->interpreter_loadmap_addr) { 322 /* Executable is dynamically loaded. */ 323 regs->uregs[8] = infop->interpreter_loadmap_addr; 324 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 325 } else { 326 regs->uregs[8] = 0; 327 regs->uregs[9] = infop->pt_dynamic_addr; 328 } 329 } 330 } 331 332 #define ELF_NREG 18 333 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 334 335 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 336 { 337 (*regs)[0] = tswapreg(env->regs[0]); 338 (*regs)[1] = tswapreg(env->regs[1]); 339 (*regs)[2] = tswapreg(env->regs[2]); 340 (*regs)[3] = tswapreg(env->regs[3]); 341 (*regs)[4] = tswapreg(env->regs[4]); 342 (*regs)[5] = tswapreg(env->regs[5]); 343 (*regs)[6] = tswapreg(env->regs[6]); 344 (*regs)[7] = tswapreg(env->regs[7]); 345 (*regs)[8] = tswapreg(env->regs[8]); 346 (*regs)[9] = tswapreg(env->regs[9]); 347 (*regs)[10] = tswapreg(env->regs[10]); 348 (*regs)[11] = tswapreg(env->regs[11]); 349 (*regs)[12] = tswapreg(env->regs[12]); 350 (*regs)[13] = tswapreg(env->regs[13]); 351 (*regs)[14] = tswapreg(env->regs[14]); 352 (*regs)[15] = tswapreg(env->regs[15]); 353 354 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 355 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 356 } 357 358 #define USE_ELF_CORE_DUMP 359 #define ELF_EXEC_PAGESIZE 4096 360 361 enum 362 { 363 ARM_HWCAP_ARM_SWP = 1 << 0, 364 ARM_HWCAP_ARM_HALF = 1 << 1, 365 ARM_HWCAP_ARM_THUMB = 1 << 2, 366 ARM_HWCAP_ARM_26BIT = 1 << 3, 367 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 368 ARM_HWCAP_ARM_FPA = 1 << 5, 369 ARM_HWCAP_ARM_VFP = 1 << 6, 370 ARM_HWCAP_ARM_EDSP = 1 << 7, 371 ARM_HWCAP_ARM_JAVA = 1 << 8, 372 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 373 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 374 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 375 ARM_HWCAP_ARM_NEON = 1 << 12, 376 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 377 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 378 ARM_HWCAP_ARM_TLS = 1 << 15, 379 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 380 ARM_HWCAP_ARM_IDIVA = 1 << 17, 381 ARM_HWCAP_ARM_IDIVT = 1 << 18, 382 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 383 ARM_HWCAP_ARM_LPAE = 1 << 20, 384 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 385 }; 386 387 enum { 388 ARM_HWCAP2_ARM_AES = 1 << 0, 389 ARM_HWCAP2_ARM_PMULL = 1 << 1, 390 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 391 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 392 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 393 }; 394 395 /* The commpage only exists for 32 bit kernels */ 396 397 #define HI_COMMPAGE (intptr_t)0xffff0f00u 398 399 static bool init_guest_commpage(void) 400 { 401 void *want = g2h_untagged(HI_COMMPAGE & -qemu_host_page_size); 402 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 403 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 404 405 if (addr == MAP_FAILED) { 406 perror("Allocating guest commpage"); 407 exit(EXIT_FAILURE); 408 } 409 if (addr != want) { 410 return false; 411 } 412 413 /* Set kernel helper versions; rest of page is 0. */ 414 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 415 416 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 417 perror("Protecting guest commpage"); 418 exit(EXIT_FAILURE); 419 } 420 return true; 421 } 422 423 #define ELF_HWCAP get_elf_hwcap() 424 #define ELF_HWCAP2 get_elf_hwcap2() 425 426 static uint32_t get_elf_hwcap(void) 427 { 428 ARMCPU *cpu = ARM_CPU(thread_cpu); 429 uint32_t hwcaps = 0; 430 431 hwcaps |= ARM_HWCAP_ARM_SWP; 432 hwcaps |= ARM_HWCAP_ARM_HALF; 433 hwcaps |= ARM_HWCAP_ARM_THUMB; 434 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 435 436 /* probe for the extra features */ 437 #define GET_FEATURE(feat, hwcap) \ 438 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 439 440 #define GET_FEATURE_ID(feat, hwcap) \ 441 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 442 443 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 444 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 445 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 446 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 447 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 448 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 449 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 450 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 451 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 452 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 453 454 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 455 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 456 hwcaps |= ARM_HWCAP_ARM_VFPv3; 457 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 458 hwcaps |= ARM_HWCAP_ARM_VFPD32; 459 } else { 460 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 461 } 462 } 463 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 464 465 return hwcaps; 466 } 467 468 static uint32_t get_elf_hwcap2(void) 469 { 470 ARMCPU *cpu = ARM_CPU(thread_cpu); 471 uint32_t hwcaps = 0; 472 473 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 474 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 475 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 476 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 477 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 478 return hwcaps; 479 } 480 481 #undef GET_FEATURE 482 #undef GET_FEATURE_ID 483 484 #define ELF_PLATFORM get_elf_platform() 485 486 static const char *get_elf_platform(void) 487 { 488 CPUARMState *env = thread_cpu->env_ptr; 489 490 #if TARGET_BIG_ENDIAN 491 # define END "b" 492 #else 493 # define END "l" 494 #endif 495 496 if (arm_feature(env, ARM_FEATURE_V8)) { 497 return "v8" END; 498 } else if (arm_feature(env, ARM_FEATURE_V7)) { 499 if (arm_feature(env, ARM_FEATURE_M)) { 500 return "v7m" END; 501 } else { 502 return "v7" END; 503 } 504 } else if (arm_feature(env, ARM_FEATURE_V6)) { 505 return "v6" END; 506 } else if (arm_feature(env, ARM_FEATURE_V5)) { 507 return "v5" END; 508 } else { 509 return "v4" END; 510 } 511 512 #undef END 513 } 514 515 #else 516 /* 64 bit ARM definitions */ 517 #define ELF_START_MMAP 0x80000000 518 519 #define ELF_ARCH EM_AARCH64 520 #define ELF_CLASS ELFCLASS64 521 #if TARGET_BIG_ENDIAN 522 # define ELF_PLATFORM "aarch64_be" 523 #else 524 # define ELF_PLATFORM "aarch64" 525 #endif 526 527 static inline void init_thread(struct target_pt_regs *regs, 528 struct image_info *infop) 529 { 530 abi_long stack = infop->start_stack; 531 memset(regs, 0, sizeof(*regs)); 532 533 regs->pc = infop->entry & ~0x3ULL; 534 regs->sp = stack; 535 } 536 537 #define ELF_NREG 34 538 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 539 540 static void elf_core_copy_regs(target_elf_gregset_t *regs, 541 const CPUARMState *env) 542 { 543 int i; 544 545 for (i = 0; i < 32; i++) { 546 (*regs)[i] = tswapreg(env->xregs[i]); 547 } 548 (*regs)[32] = tswapreg(env->pc); 549 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 550 } 551 552 #define USE_ELF_CORE_DUMP 553 #define ELF_EXEC_PAGESIZE 4096 554 555 enum { 556 ARM_HWCAP_A64_FP = 1 << 0, 557 ARM_HWCAP_A64_ASIMD = 1 << 1, 558 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 559 ARM_HWCAP_A64_AES = 1 << 3, 560 ARM_HWCAP_A64_PMULL = 1 << 4, 561 ARM_HWCAP_A64_SHA1 = 1 << 5, 562 ARM_HWCAP_A64_SHA2 = 1 << 6, 563 ARM_HWCAP_A64_CRC32 = 1 << 7, 564 ARM_HWCAP_A64_ATOMICS = 1 << 8, 565 ARM_HWCAP_A64_FPHP = 1 << 9, 566 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 567 ARM_HWCAP_A64_CPUID = 1 << 11, 568 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 569 ARM_HWCAP_A64_JSCVT = 1 << 13, 570 ARM_HWCAP_A64_FCMA = 1 << 14, 571 ARM_HWCAP_A64_LRCPC = 1 << 15, 572 ARM_HWCAP_A64_DCPOP = 1 << 16, 573 ARM_HWCAP_A64_SHA3 = 1 << 17, 574 ARM_HWCAP_A64_SM3 = 1 << 18, 575 ARM_HWCAP_A64_SM4 = 1 << 19, 576 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 577 ARM_HWCAP_A64_SHA512 = 1 << 21, 578 ARM_HWCAP_A64_SVE = 1 << 22, 579 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 580 ARM_HWCAP_A64_DIT = 1 << 24, 581 ARM_HWCAP_A64_USCAT = 1 << 25, 582 ARM_HWCAP_A64_ILRCPC = 1 << 26, 583 ARM_HWCAP_A64_FLAGM = 1 << 27, 584 ARM_HWCAP_A64_SSBS = 1 << 28, 585 ARM_HWCAP_A64_SB = 1 << 29, 586 ARM_HWCAP_A64_PACA = 1 << 30, 587 ARM_HWCAP_A64_PACG = 1UL << 31, 588 589 ARM_HWCAP2_A64_DCPODP = 1 << 0, 590 ARM_HWCAP2_A64_SVE2 = 1 << 1, 591 ARM_HWCAP2_A64_SVEAES = 1 << 2, 592 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 593 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 594 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 595 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 596 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 597 ARM_HWCAP2_A64_FRINT = 1 << 8, 598 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 599 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 600 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 601 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 602 ARM_HWCAP2_A64_I8MM = 1 << 13, 603 ARM_HWCAP2_A64_BF16 = 1 << 14, 604 ARM_HWCAP2_A64_DGH = 1 << 15, 605 ARM_HWCAP2_A64_RNG = 1 << 16, 606 ARM_HWCAP2_A64_BTI = 1 << 17, 607 ARM_HWCAP2_A64_MTE = 1 << 18, 608 }; 609 610 #define ELF_HWCAP get_elf_hwcap() 611 #define ELF_HWCAP2 get_elf_hwcap2() 612 613 #define GET_FEATURE_ID(feat, hwcap) \ 614 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 615 616 static uint32_t get_elf_hwcap(void) 617 { 618 ARMCPU *cpu = ARM_CPU(thread_cpu); 619 uint32_t hwcaps = 0; 620 621 hwcaps |= ARM_HWCAP_A64_FP; 622 hwcaps |= ARM_HWCAP_A64_ASIMD; 623 hwcaps |= ARM_HWCAP_A64_CPUID; 624 625 /* probe for the extra features */ 626 627 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 628 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 629 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 630 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 631 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 632 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 633 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 634 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 635 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 636 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 637 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 638 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 639 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 640 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 641 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 642 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 643 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 644 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 645 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 646 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 647 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 648 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 649 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 650 651 return hwcaps; 652 } 653 654 static uint32_t get_elf_hwcap2(void) 655 { 656 ARMCPU *cpu = ARM_CPU(thread_cpu); 657 uint32_t hwcaps = 0; 658 659 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 660 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 661 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 662 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 663 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 664 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 665 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 666 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 667 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 668 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 669 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 670 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 671 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 672 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 673 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 674 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 675 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 676 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 677 678 return hwcaps; 679 } 680 681 #undef GET_FEATURE_ID 682 683 #endif /* not TARGET_AARCH64 */ 684 #endif /* TARGET_ARM */ 685 686 #ifdef TARGET_SPARC 687 #ifdef TARGET_SPARC64 688 689 #define ELF_START_MMAP 0x80000000 690 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 691 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 692 #ifndef TARGET_ABI32 693 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 694 #else 695 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 696 #endif 697 698 #define ELF_CLASS ELFCLASS64 699 #define ELF_ARCH EM_SPARCV9 700 #else 701 #define ELF_START_MMAP 0x80000000 702 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 703 | HWCAP_SPARC_MULDIV) 704 #define ELF_CLASS ELFCLASS32 705 #define ELF_ARCH EM_SPARC 706 #endif /* TARGET_SPARC64 */ 707 708 static inline void init_thread(struct target_pt_regs *regs, 709 struct image_info *infop) 710 { 711 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 712 regs->pc = infop->entry; 713 regs->npc = regs->pc + 4; 714 regs->y = 0; 715 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 716 - TARGET_STACK_BIAS); 717 } 718 #endif /* TARGET_SPARC */ 719 720 #ifdef TARGET_PPC 721 722 #define ELF_MACHINE PPC_ELF_MACHINE 723 #define ELF_START_MMAP 0x80000000 724 725 #if defined(TARGET_PPC64) 726 727 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 728 729 #define ELF_CLASS ELFCLASS64 730 731 #else 732 733 #define ELF_CLASS ELFCLASS32 734 735 #endif 736 737 #define ELF_ARCH EM_PPC 738 739 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 740 See arch/powerpc/include/asm/cputable.h. */ 741 enum { 742 QEMU_PPC_FEATURE_32 = 0x80000000, 743 QEMU_PPC_FEATURE_64 = 0x40000000, 744 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 745 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 746 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 747 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 748 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 749 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 750 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 751 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 752 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 753 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 754 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 755 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 756 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 757 QEMU_PPC_FEATURE_CELL = 0x00010000, 758 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 759 QEMU_PPC_FEATURE_SMT = 0x00004000, 760 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 761 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 762 QEMU_PPC_FEATURE_PA6T = 0x00000800, 763 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 764 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 765 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 766 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 767 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 768 769 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 770 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 771 772 /* Feature definitions in AT_HWCAP2. */ 773 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 774 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 775 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 776 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 777 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 778 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 779 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 780 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 781 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 782 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 783 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 784 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 785 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 786 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 787 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 788 }; 789 790 #define ELF_HWCAP get_elf_hwcap() 791 792 static uint32_t get_elf_hwcap(void) 793 { 794 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 795 uint32_t features = 0; 796 797 /* We don't have to be terribly complete here; the high points are 798 Altivec/FP/SPE support. Anything else is just a bonus. */ 799 #define GET_FEATURE(flag, feature) \ 800 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 801 #define GET_FEATURE2(flags, feature) \ 802 do { \ 803 if ((cpu->env.insns_flags2 & flags) == flags) { \ 804 features |= feature; \ 805 } \ 806 } while (0) 807 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 808 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 809 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 810 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 811 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 812 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 813 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 814 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 815 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 816 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 817 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 818 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 819 QEMU_PPC_FEATURE_ARCH_2_06); 820 #undef GET_FEATURE 821 #undef GET_FEATURE2 822 823 return features; 824 } 825 826 #define ELF_HWCAP2 get_elf_hwcap2() 827 828 static uint32_t get_elf_hwcap2(void) 829 { 830 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 831 uint32_t features = 0; 832 833 #define GET_FEATURE(flag, feature) \ 834 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 835 #define GET_FEATURE2(flag, feature) \ 836 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 837 838 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 839 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 840 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 841 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 842 QEMU_PPC_FEATURE2_VEC_CRYPTO); 843 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 844 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 845 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 846 QEMU_PPC_FEATURE2_MMA); 847 848 #undef GET_FEATURE 849 #undef GET_FEATURE2 850 851 return features; 852 } 853 854 /* 855 * The requirements here are: 856 * - keep the final alignment of sp (sp & 0xf) 857 * - make sure the 32-bit value at the first 16 byte aligned position of 858 * AUXV is greater than 16 for glibc compatibility. 859 * AT_IGNOREPPC is used for that. 860 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 861 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 862 */ 863 #define DLINFO_ARCH_ITEMS 5 864 #define ARCH_DLINFO \ 865 do { \ 866 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 867 /* \ 868 * Handle glibc compatibility: these magic entries must \ 869 * be at the lowest addresses in the final auxv. \ 870 */ \ 871 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 872 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 873 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 874 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 875 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 876 } while (0) 877 878 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 879 { 880 _regs->gpr[1] = infop->start_stack; 881 #if defined(TARGET_PPC64) 882 if (get_ppc64_abi(infop) < 2) { 883 uint64_t val; 884 get_user_u64(val, infop->entry + 8); 885 _regs->gpr[2] = val + infop->load_bias; 886 get_user_u64(val, infop->entry); 887 infop->entry = val + infop->load_bias; 888 } else { 889 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 890 } 891 #endif 892 _regs->nip = infop->entry; 893 } 894 895 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 896 #define ELF_NREG 48 897 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 898 899 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 900 { 901 int i; 902 target_ulong ccr = 0; 903 904 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 905 (*regs)[i] = tswapreg(env->gpr[i]); 906 } 907 908 (*regs)[32] = tswapreg(env->nip); 909 (*regs)[33] = tswapreg(env->msr); 910 (*regs)[35] = tswapreg(env->ctr); 911 (*regs)[36] = tswapreg(env->lr); 912 (*regs)[37] = tswapreg(cpu_read_xer(env)); 913 914 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 915 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 916 } 917 (*regs)[38] = tswapreg(ccr); 918 } 919 920 #define USE_ELF_CORE_DUMP 921 #define ELF_EXEC_PAGESIZE 4096 922 923 #endif 924 925 #ifdef TARGET_LOONGARCH64 926 927 #define ELF_START_MMAP 0x80000000 928 929 #define ELF_CLASS ELFCLASS64 930 #define ELF_ARCH EM_LOONGARCH 931 932 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 933 934 static inline void init_thread(struct target_pt_regs *regs, 935 struct image_info *infop) 936 { 937 /*Set crmd PG,DA = 1,0 */ 938 regs->csr.crmd = 2 << 3; 939 regs->csr.era = infop->entry; 940 regs->regs[3] = infop->start_stack; 941 } 942 943 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 944 #define ELF_NREG 45 945 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 946 947 enum { 948 TARGET_EF_R0 = 0, 949 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 950 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 951 }; 952 953 static void elf_core_copy_regs(target_elf_gregset_t *regs, 954 const CPULoongArchState *env) 955 { 956 int i; 957 958 (*regs)[TARGET_EF_R0] = 0; 959 960 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 961 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 962 } 963 964 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 965 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 966 } 967 968 #define USE_ELF_CORE_DUMP 969 #define ELF_EXEC_PAGESIZE 4096 970 971 #define ELF_HWCAP get_elf_hwcap() 972 973 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 974 enum { 975 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 976 HWCAP_LOONGARCH_LAM = (1 << 1), 977 HWCAP_LOONGARCH_UAL = (1 << 2), 978 HWCAP_LOONGARCH_FPU = (1 << 3), 979 HWCAP_LOONGARCH_LSX = (1 << 4), 980 HWCAP_LOONGARCH_LASX = (1 << 5), 981 HWCAP_LOONGARCH_CRC32 = (1 << 6), 982 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 983 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 984 HWCAP_LOONGARCH_LVZ = (1 << 9), 985 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 986 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 987 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 988 }; 989 990 static uint32_t get_elf_hwcap(void) 991 { 992 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 993 uint32_t hwcaps = 0; 994 995 hwcaps |= HWCAP_LOONGARCH_CRC32; 996 997 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 998 hwcaps |= HWCAP_LOONGARCH_UAL; 999 } 1000 1001 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1002 hwcaps |= HWCAP_LOONGARCH_FPU; 1003 } 1004 1005 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1006 hwcaps |= HWCAP_LOONGARCH_LAM; 1007 } 1008 1009 return hwcaps; 1010 } 1011 1012 #define ELF_PLATFORM "loongarch" 1013 1014 #endif /* TARGET_LOONGARCH64 */ 1015 1016 #ifdef TARGET_MIPS 1017 1018 #define ELF_START_MMAP 0x80000000 1019 1020 #ifdef TARGET_MIPS64 1021 #define ELF_CLASS ELFCLASS64 1022 #else 1023 #define ELF_CLASS ELFCLASS32 1024 #endif 1025 #define ELF_ARCH EM_MIPS 1026 1027 #ifdef TARGET_ABI_MIPSN32 1028 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1029 #else 1030 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1031 #endif 1032 1033 static inline void init_thread(struct target_pt_regs *regs, 1034 struct image_info *infop) 1035 { 1036 regs->cp0_status = 2 << CP0St_KSU; 1037 regs->cp0_epc = infop->entry; 1038 regs->regs[29] = infop->start_stack; 1039 } 1040 1041 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1042 #define ELF_NREG 45 1043 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1044 1045 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1046 enum { 1047 #ifdef TARGET_MIPS64 1048 TARGET_EF_R0 = 0, 1049 #else 1050 TARGET_EF_R0 = 6, 1051 #endif 1052 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1053 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1054 TARGET_EF_LO = TARGET_EF_R0 + 32, 1055 TARGET_EF_HI = TARGET_EF_R0 + 33, 1056 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1057 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1058 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1059 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1060 }; 1061 1062 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1063 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1064 { 1065 int i; 1066 1067 for (i = 0; i < TARGET_EF_R0; i++) { 1068 (*regs)[i] = 0; 1069 } 1070 (*regs)[TARGET_EF_R0] = 0; 1071 1072 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1073 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1074 } 1075 1076 (*regs)[TARGET_EF_R26] = 0; 1077 (*regs)[TARGET_EF_R27] = 0; 1078 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1079 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1080 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1081 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1082 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1083 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1084 } 1085 1086 #define USE_ELF_CORE_DUMP 1087 #define ELF_EXEC_PAGESIZE 4096 1088 1089 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1090 enum { 1091 HWCAP_MIPS_R6 = (1 << 0), 1092 HWCAP_MIPS_MSA = (1 << 1), 1093 HWCAP_MIPS_CRC32 = (1 << 2), 1094 HWCAP_MIPS_MIPS16 = (1 << 3), 1095 HWCAP_MIPS_MDMX = (1 << 4), 1096 HWCAP_MIPS_MIPS3D = (1 << 5), 1097 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1098 HWCAP_MIPS_DSP = (1 << 7), 1099 HWCAP_MIPS_DSP2 = (1 << 8), 1100 HWCAP_MIPS_DSP3 = (1 << 9), 1101 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1102 HWCAP_LOONGSON_MMI = (1 << 11), 1103 HWCAP_LOONGSON_EXT = (1 << 12), 1104 HWCAP_LOONGSON_EXT2 = (1 << 13), 1105 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1106 }; 1107 1108 #define ELF_HWCAP get_elf_hwcap() 1109 1110 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1111 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1112 1113 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1114 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1115 1116 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1117 do { \ 1118 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1119 hwcaps |= _hwcap; \ 1120 } \ 1121 } while (0) 1122 1123 static uint32_t get_elf_hwcap(void) 1124 { 1125 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1126 uint32_t hwcaps = 0; 1127 1128 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1129 2, HWCAP_MIPS_R6); 1130 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1131 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1132 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1133 1134 return hwcaps; 1135 } 1136 1137 #undef GET_FEATURE_REG_EQU 1138 #undef GET_FEATURE_REG_SET 1139 #undef GET_FEATURE_INSN 1140 1141 #endif /* TARGET_MIPS */ 1142 1143 #ifdef TARGET_MICROBLAZE 1144 1145 #define ELF_START_MMAP 0x80000000 1146 1147 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1148 1149 #define ELF_CLASS ELFCLASS32 1150 #define ELF_ARCH EM_MICROBLAZE 1151 1152 static inline void init_thread(struct target_pt_regs *regs, 1153 struct image_info *infop) 1154 { 1155 regs->pc = infop->entry; 1156 regs->r1 = infop->start_stack; 1157 1158 } 1159 1160 #define ELF_EXEC_PAGESIZE 4096 1161 1162 #define USE_ELF_CORE_DUMP 1163 #define ELF_NREG 38 1164 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1165 1166 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1168 { 1169 int i, pos = 0; 1170 1171 for (i = 0; i < 32; i++) { 1172 (*regs)[pos++] = tswapreg(env->regs[i]); 1173 } 1174 1175 (*regs)[pos++] = tswapreg(env->pc); 1176 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1177 (*regs)[pos++] = 0; 1178 (*regs)[pos++] = tswapreg(env->ear); 1179 (*regs)[pos++] = 0; 1180 (*regs)[pos++] = tswapreg(env->esr); 1181 } 1182 1183 #endif /* TARGET_MICROBLAZE */ 1184 1185 #ifdef TARGET_NIOS2 1186 1187 #define ELF_START_MMAP 0x80000000 1188 1189 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1190 1191 #define ELF_CLASS ELFCLASS32 1192 #define ELF_ARCH EM_ALTERA_NIOS2 1193 1194 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1195 { 1196 regs->ea = infop->entry; 1197 regs->sp = infop->start_stack; 1198 } 1199 1200 #define LO_COMMPAGE TARGET_PAGE_SIZE 1201 1202 static bool init_guest_commpage(void) 1203 { 1204 static const uint8_t kuser_page[4 + 2 * 64] = { 1205 /* __kuser_helper_version */ 1206 [0x00] = 0x02, 0x00, 0x00, 0x00, 1207 1208 /* __kuser_cmpxchg */ 1209 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1210 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1211 1212 /* __kuser_sigtramp */ 1213 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1214 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1215 }; 1216 1217 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1218 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1219 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1220 1221 if (addr == MAP_FAILED) { 1222 perror("Allocating guest commpage"); 1223 exit(EXIT_FAILURE); 1224 } 1225 if (addr != want) { 1226 return false; 1227 } 1228 1229 memcpy(addr, kuser_page, sizeof(kuser_page)); 1230 1231 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1232 perror("Protecting guest commpage"); 1233 exit(EXIT_FAILURE); 1234 } 1235 1236 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1237 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1238 return true; 1239 } 1240 1241 #define ELF_EXEC_PAGESIZE 4096 1242 1243 #define USE_ELF_CORE_DUMP 1244 #define ELF_NREG 49 1245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1246 1247 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1248 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1249 const CPUNios2State *env) 1250 { 1251 int i; 1252 1253 (*regs)[0] = -1; 1254 for (i = 1; i < 8; i++) /* r0-r7 */ 1255 (*regs)[i] = tswapreg(env->regs[i + 7]); 1256 1257 for (i = 8; i < 16; i++) /* r8-r15 */ 1258 (*regs)[i] = tswapreg(env->regs[i - 8]); 1259 1260 for (i = 16; i < 24; i++) /* r16-r23 */ 1261 (*regs)[i] = tswapreg(env->regs[i + 7]); 1262 (*regs)[24] = -1; /* R_ET */ 1263 (*regs)[25] = -1; /* R_BT */ 1264 (*regs)[26] = tswapreg(env->regs[R_GP]); 1265 (*regs)[27] = tswapreg(env->regs[R_SP]); 1266 (*regs)[28] = tswapreg(env->regs[R_FP]); 1267 (*regs)[29] = tswapreg(env->regs[R_EA]); 1268 (*regs)[30] = -1; /* R_SSTATUS */ 1269 (*regs)[31] = tswapreg(env->regs[R_RA]); 1270 1271 (*regs)[32] = tswapreg(env->pc); 1272 1273 (*regs)[33] = -1; /* R_STATUS */ 1274 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1275 1276 for (i = 35; i < 49; i++) /* ... */ 1277 (*regs)[i] = -1; 1278 } 1279 1280 #endif /* TARGET_NIOS2 */ 1281 1282 #ifdef TARGET_OPENRISC 1283 1284 #define ELF_START_MMAP 0x08000000 1285 1286 #define ELF_ARCH EM_OPENRISC 1287 #define ELF_CLASS ELFCLASS32 1288 #define ELF_DATA ELFDATA2MSB 1289 1290 static inline void init_thread(struct target_pt_regs *regs, 1291 struct image_info *infop) 1292 { 1293 regs->pc = infop->entry; 1294 regs->gpr[1] = infop->start_stack; 1295 } 1296 1297 #define USE_ELF_CORE_DUMP 1298 #define ELF_EXEC_PAGESIZE 8192 1299 1300 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1301 #define ELF_NREG 34 /* gprs and pc, sr */ 1302 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1303 1304 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1305 const CPUOpenRISCState *env) 1306 { 1307 int i; 1308 1309 for (i = 0; i < 32; i++) { 1310 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1311 } 1312 (*regs)[32] = tswapreg(env->pc); 1313 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1314 } 1315 #define ELF_HWCAP 0 1316 #define ELF_PLATFORM NULL 1317 1318 #endif /* TARGET_OPENRISC */ 1319 1320 #ifdef TARGET_SH4 1321 1322 #define ELF_START_MMAP 0x80000000 1323 1324 #define ELF_CLASS ELFCLASS32 1325 #define ELF_ARCH EM_SH 1326 1327 static inline void init_thread(struct target_pt_regs *regs, 1328 struct image_info *infop) 1329 { 1330 /* Check other registers XXXXX */ 1331 regs->pc = infop->entry; 1332 regs->regs[15] = infop->start_stack; 1333 } 1334 1335 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1336 #define ELF_NREG 23 1337 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1338 1339 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1340 enum { 1341 TARGET_REG_PC = 16, 1342 TARGET_REG_PR = 17, 1343 TARGET_REG_SR = 18, 1344 TARGET_REG_GBR = 19, 1345 TARGET_REG_MACH = 20, 1346 TARGET_REG_MACL = 21, 1347 TARGET_REG_SYSCALL = 22 1348 }; 1349 1350 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1351 const CPUSH4State *env) 1352 { 1353 int i; 1354 1355 for (i = 0; i < 16; i++) { 1356 (*regs)[i] = tswapreg(env->gregs[i]); 1357 } 1358 1359 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1360 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1361 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1362 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1363 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1364 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1365 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1366 } 1367 1368 #define USE_ELF_CORE_DUMP 1369 #define ELF_EXEC_PAGESIZE 4096 1370 1371 enum { 1372 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1373 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1374 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1375 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1376 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1377 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1378 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1379 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1380 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1381 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1382 }; 1383 1384 #define ELF_HWCAP get_elf_hwcap() 1385 1386 static uint32_t get_elf_hwcap(void) 1387 { 1388 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1389 uint32_t hwcap = 0; 1390 1391 hwcap |= SH_CPU_HAS_FPU; 1392 1393 if (cpu->env.features & SH_FEATURE_SH4A) { 1394 hwcap |= SH_CPU_HAS_LLSC; 1395 } 1396 1397 return hwcap; 1398 } 1399 1400 #endif 1401 1402 #ifdef TARGET_CRIS 1403 1404 #define ELF_START_MMAP 0x80000000 1405 1406 #define ELF_CLASS ELFCLASS32 1407 #define ELF_ARCH EM_CRIS 1408 1409 static inline void init_thread(struct target_pt_regs *regs, 1410 struct image_info *infop) 1411 { 1412 regs->erp = infop->entry; 1413 } 1414 1415 #define ELF_EXEC_PAGESIZE 8192 1416 1417 #endif 1418 1419 #ifdef TARGET_M68K 1420 1421 #define ELF_START_MMAP 0x80000000 1422 1423 #define ELF_CLASS ELFCLASS32 1424 #define ELF_ARCH EM_68K 1425 1426 /* ??? Does this need to do anything? 1427 #define ELF_PLAT_INIT(_r) */ 1428 1429 static inline void init_thread(struct target_pt_regs *regs, 1430 struct image_info *infop) 1431 { 1432 regs->usp = infop->start_stack; 1433 regs->sr = 0; 1434 regs->pc = infop->entry; 1435 } 1436 1437 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1438 #define ELF_NREG 20 1439 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1440 1441 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1442 { 1443 (*regs)[0] = tswapreg(env->dregs[1]); 1444 (*regs)[1] = tswapreg(env->dregs[2]); 1445 (*regs)[2] = tswapreg(env->dregs[3]); 1446 (*regs)[3] = tswapreg(env->dregs[4]); 1447 (*regs)[4] = tswapreg(env->dregs[5]); 1448 (*regs)[5] = tswapreg(env->dregs[6]); 1449 (*regs)[6] = tswapreg(env->dregs[7]); 1450 (*regs)[7] = tswapreg(env->aregs[0]); 1451 (*regs)[8] = tswapreg(env->aregs[1]); 1452 (*regs)[9] = tswapreg(env->aregs[2]); 1453 (*regs)[10] = tswapreg(env->aregs[3]); 1454 (*regs)[11] = tswapreg(env->aregs[4]); 1455 (*regs)[12] = tswapreg(env->aregs[5]); 1456 (*regs)[13] = tswapreg(env->aregs[6]); 1457 (*regs)[14] = tswapreg(env->dregs[0]); 1458 (*regs)[15] = tswapreg(env->aregs[7]); 1459 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1460 (*regs)[17] = tswapreg(env->sr); 1461 (*regs)[18] = tswapreg(env->pc); 1462 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1463 } 1464 1465 #define USE_ELF_CORE_DUMP 1466 #define ELF_EXEC_PAGESIZE 8192 1467 1468 #endif 1469 1470 #ifdef TARGET_ALPHA 1471 1472 #define ELF_START_MMAP (0x30000000000ULL) 1473 1474 #define ELF_CLASS ELFCLASS64 1475 #define ELF_ARCH EM_ALPHA 1476 1477 static inline void init_thread(struct target_pt_regs *regs, 1478 struct image_info *infop) 1479 { 1480 regs->pc = infop->entry; 1481 regs->ps = 8; 1482 regs->usp = infop->start_stack; 1483 } 1484 1485 #define ELF_EXEC_PAGESIZE 8192 1486 1487 #endif /* TARGET_ALPHA */ 1488 1489 #ifdef TARGET_S390X 1490 1491 #define ELF_START_MMAP (0x20000000000ULL) 1492 1493 #define ELF_CLASS ELFCLASS64 1494 #define ELF_DATA ELFDATA2MSB 1495 #define ELF_ARCH EM_S390 1496 1497 #include "elf.h" 1498 1499 #define ELF_HWCAP get_elf_hwcap() 1500 1501 #define GET_FEATURE(_feat, _hwcap) \ 1502 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1503 1504 static uint32_t get_elf_hwcap(void) 1505 { 1506 /* 1507 * Let's assume we always have esan3 and zarch. 1508 * 31-bit processes can use 64-bit registers (high gprs). 1509 */ 1510 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1511 1512 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1513 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1514 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1515 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1516 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1517 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1518 hwcap |= HWCAP_S390_ETF3EH; 1519 } 1520 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1521 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1522 1523 return hwcap; 1524 } 1525 1526 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1527 { 1528 regs->psw.addr = infop->entry; 1529 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1530 regs->gprs[15] = infop->start_stack; 1531 } 1532 1533 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1534 #define ELF_NREG 27 1535 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1536 1537 enum { 1538 TARGET_REG_PSWM = 0, 1539 TARGET_REG_PSWA = 1, 1540 TARGET_REG_GPRS = 2, 1541 TARGET_REG_ARS = 18, 1542 TARGET_REG_ORIG_R2 = 26, 1543 }; 1544 1545 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1546 const CPUS390XState *env) 1547 { 1548 int i; 1549 uint32_t *aregs; 1550 1551 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1552 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1553 for (i = 0; i < 16; i++) { 1554 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1555 } 1556 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1557 for (i = 0; i < 16; i++) { 1558 aregs[i] = tswap32(env->aregs[i]); 1559 } 1560 (*regs)[TARGET_REG_ORIG_R2] = 0; 1561 } 1562 1563 #define USE_ELF_CORE_DUMP 1564 #define ELF_EXEC_PAGESIZE 4096 1565 1566 #endif /* TARGET_S390X */ 1567 1568 #ifdef TARGET_RISCV 1569 1570 #define ELF_START_MMAP 0x80000000 1571 #define ELF_ARCH EM_RISCV 1572 1573 #ifdef TARGET_RISCV32 1574 #define ELF_CLASS ELFCLASS32 1575 #else 1576 #define ELF_CLASS ELFCLASS64 1577 #endif 1578 1579 #define ELF_HWCAP get_elf_hwcap() 1580 1581 static uint32_t get_elf_hwcap(void) 1582 { 1583 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1584 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1585 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1586 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1587 1588 return cpu->env.misa_ext & mask; 1589 #undef MISA_BIT 1590 } 1591 1592 static inline void init_thread(struct target_pt_regs *regs, 1593 struct image_info *infop) 1594 { 1595 regs->sepc = infop->entry; 1596 regs->sp = infop->start_stack; 1597 } 1598 1599 #define ELF_EXEC_PAGESIZE 4096 1600 1601 #endif /* TARGET_RISCV */ 1602 1603 #ifdef TARGET_HPPA 1604 1605 #define ELF_START_MMAP 0x80000000 1606 #define ELF_CLASS ELFCLASS32 1607 #define ELF_ARCH EM_PARISC 1608 #define ELF_PLATFORM "PARISC" 1609 #define STACK_GROWS_DOWN 0 1610 #define STACK_ALIGNMENT 64 1611 1612 static inline void init_thread(struct target_pt_regs *regs, 1613 struct image_info *infop) 1614 { 1615 regs->iaoq[0] = infop->entry; 1616 regs->iaoq[1] = infop->entry + 4; 1617 regs->gr[23] = 0; 1618 regs->gr[24] = infop->argv; 1619 regs->gr[25] = infop->argc; 1620 /* The top-of-stack contains a linkage buffer. */ 1621 regs->gr[30] = infop->start_stack + 64; 1622 regs->gr[31] = infop->entry; 1623 } 1624 1625 #endif /* TARGET_HPPA */ 1626 1627 #ifdef TARGET_XTENSA 1628 1629 #define ELF_START_MMAP 0x20000000 1630 1631 #define ELF_CLASS ELFCLASS32 1632 #define ELF_ARCH EM_XTENSA 1633 1634 static inline void init_thread(struct target_pt_regs *regs, 1635 struct image_info *infop) 1636 { 1637 regs->windowbase = 0; 1638 regs->windowstart = 1; 1639 regs->areg[1] = infop->start_stack; 1640 regs->pc = infop->entry; 1641 } 1642 1643 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1644 #define ELF_NREG 128 1645 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1646 1647 enum { 1648 TARGET_REG_PC, 1649 TARGET_REG_PS, 1650 TARGET_REG_LBEG, 1651 TARGET_REG_LEND, 1652 TARGET_REG_LCOUNT, 1653 TARGET_REG_SAR, 1654 TARGET_REG_WINDOWSTART, 1655 TARGET_REG_WINDOWBASE, 1656 TARGET_REG_THREADPTR, 1657 TARGET_REG_AR0 = 64, 1658 }; 1659 1660 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1661 const CPUXtensaState *env) 1662 { 1663 unsigned i; 1664 1665 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1666 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1667 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1668 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1669 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1670 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1671 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1672 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1673 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1674 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1675 for (i = 0; i < env->config->nareg; ++i) { 1676 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1677 } 1678 } 1679 1680 #define USE_ELF_CORE_DUMP 1681 #define ELF_EXEC_PAGESIZE 4096 1682 1683 #endif /* TARGET_XTENSA */ 1684 1685 #ifdef TARGET_HEXAGON 1686 1687 #define ELF_START_MMAP 0x20000000 1688 1689 #define ELF_CLASS ELFCLASS32 1690 #define ELF_ARCH EM_HEXAGON 1691 1692 static inline void init_thread(struct target_pt_regs *regs, 1693 struct image_info *infop) 1694 { 1695 regs->sepc = infop->entry; 1696 regs->sp = infop->start_stack; 1697 } 1698 1699 #endif /* TARGET_HEXAGON */ 1700 1701 #ifndef ELF_PLATFORM 1702 #define ELF_PLATFORM (NULL) 1703 #endif 1704 1705 #ifndef ELF_MACHINE 1706 #define ELF_MACHINE ELF_ARCH 1707 #endif 1708 1709 #ifndef elf_check_arch 1710 #define elf_check_arch(x) ((x) == ELF_ARCH) 1711 #endif 1712 1713 #ifndef elf_check_abi 1714 #define elf_check_abi(x) (1) 1715 #endif 1716 1717 #ifndef ELF_HWCAP 1718 #define ELF_HWCAP 0 1719 #endif 1720 1721 #ifndef STACK_GROWS_DOWN 1722 #define STACK_GROWS_DOWN 1 1723 #endif 1724 1725 #ifndef STACK_ALIGNMENT 1726 #define STACK_ALIGNMENT 16 1727 #endif 1728 1729 #ifdef TARGET_ABI32 1730 #undef ELF_CLASS 1731 #define ELF_CLASS ELFCLASS32 1732 #undef bswaptls 1733 #define bswaptls(ptr) bswap32s(ptr) 1734 #endif 1735 1736 #include "elf.h" 1737 1738 /* We must delay the following stanzas until after "elf.h". */ 1739 #if defined(TARGET_AARCH64) 1740 1741 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1742 const uint32_t *data, 1743 struct image_info *info, 1744 Error **errp) 1745 { 1746 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1747 if (pr_datasz != sizeof(uint32_t)) { 1748 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1749 return false; 1750 } 1751 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1752 info->note_flags = *data; 1753 } 1754 return true; 1755 } 1756 #define ARCH_USE_GNU_PROPERTY 1 1757 1758 #else 1759 1760 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1761 const uint32_t *data, 1762 struct image_info *info, 1763 Error **errp) 1764 { 1765 g_assert_not_reached(); 1766 } 1767 #define ARCH_USE_GNU_PROPERTY 0 1768 1769 #endif 1770 1771 struct exec 1772 { 1773 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1774 unsigned int a_text; /* length of text, in bytes */ 1775 unsigned int a_data; /* length of data, in bytes */ 1776 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1777 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1778 unsigned int a_entry; /* start address */ 1779 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1780 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1781 }; 1782 1783 1784 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1785 #define OMAGIC 0407 1786 #define NMAGIC 0410 1787 #define ZMAGIC 0413 1788 #define QMAGIC 0314 1789 1790 /* Necessary parameters */ 1791 #define TARGET_ELF_EXEC_PAGESIZE \ 1792 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1793 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1794 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1795 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1796 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1797 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1798 1799 #define DLINFO_ITEMS 16 1800 1801 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1802 { 1803 memcpy(to, from, n); 1804 } 1805 1806 #ifdef BSWAP_NEEDED 1807 static void bswap_ehdr(struct elfhdr *ehdr) 1808 { 1809 bswap16s(&ehdr->e_type); /* Object file type */ 1810 bswap16s(&ehdr->e_machine); /* Architecture */ 1811 bswap32s(&ehdr->e_version); /* Object file version */ 1812 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1813 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1814 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1815 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1816 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1817 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1818 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1819 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1820 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1821 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1822 } 1823 1824 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1825 { 1826 int i; 1827 for (i = 0; i < phnum; ++i, ++phdr) { 1828 bswap32s(&phdr->p_type); /* Segment type */ 1829 bswap32s(&phdr->p_flags); /* Segment flags */ 1830 bswaptls(&phdr->p_offset); /* Segment file offset */ 1831 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1832 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1833 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1834 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1835 bswaptls(&phdr->p_align); /* Segment alignment */ 1836 } 1837 } 1838 1839 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1840 { 1841 int i; 1842 for (i = 0; i < shnum; ++i, ++shdr) { 1843 bswap32s(&shdr->sh_name); 1844 bswap32s(&shdr->sh_type); 1845 bswaptls(&shdr->sh_flags); 1846 bswaptls(&shdr->sh_addr); 1847 bswaptls(&shdr->sh_offset); 1848 bswaptls(&shdr->sh_size); 1849 bswap32s(&shdr->sh_link); 1850 bswap32s(&shdr->sh_info); 1851 bswaptls(&shdr->sh_addralign); 1852 bswaptls(&shdr->sh_entsize); 1853 } 1854 } 1855 1856 static void bswap_sym(struct elf_sym *sym) 1857 { 1858 bswap32s(&sym->st_name); 1859 bswaptls(&sym->st_value); 1860 bswaptls(&sym->st_size); 1861 bswap16s(&sym->st_shndx); 1862 } 1863 1864 #ifdef TARGET_MIPS 1865 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1866 { 1867 bswap16s(&abiflags->version); 1868 bswap32s(&abiflags->ases); 1869 bswap32s(&abiflags->isa_ext); 1870 bswap32s(&abiflags->flags1); 1871 bswap32s(&abiflags->flags2); 1872 } 1873 #endif 1874 #else 1875 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1876 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1877 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1878 static inline void bswap_sym(struct elf_sym *sym) { } 1879 #ifdef TARGET_MIPS 1880 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1881 #endif 1882 #endif 1883 1884 #ifdef USE_ELF_CORE_DUMP 1885 static int elf_core_dump(int, const CPUArchState *); 1886 #endif /* USE_ELF_CORE_DUMP */ 1887 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1888 1889 /* Verify the portions of EHDR within E_IDENT for the target. 1890 This can be performed before bswapping the entire header. */ 1891 static bool elf_check_ident(struct elfhdr *ehdr) 1892 { 1893 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1894 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1895 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1896 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1897 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1898 && ehdr->e_ident[EI_DATA] == ELF_DATA 1899 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1900 } 1901 1902 /* Verify the portions of EHDR outside of E_IDENT for the target. 1903 This has to wait until after bswapping the header. */ 1904 static bool elf_check_ehdr(struct elfhdr *ehdr) 1905 { 1906 return (elf_check_arch(ehdr->e_machine) 1907 && elf_check_abi(ehdr->e_flags) 1908 && ehdr->e_ehsize == sizeof(struct elfhdr) 1909 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1910 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1911 } 1912 1913 /* 1914 * 'copy_elf_strings()' copies argument/envelope strings from user 1915 * memory to free pages in kernel mem. These are in a format ready 1916 * to be put directly into the top of new user memory. 1917 * 1918 */ 1919 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1920 abi_ulong p, abi_ulong stack_limit) 1921 { 1922 char *tmp; 1923 int len, i; 1924 abi_ulong top = p; 1925 1926 if (!p) { 1927 return 0; /* bullet-proofing */ 1928 } 1929 1930 if (STACK_GROWS_DOWN) { 1931 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1932 for (i = argc - 1; i >= 0; --i) { 1933 tmp = argv[i]; 1934 if (!tmp) { 1935 fprintf(stderr, "VFS: argc is wrong"); 1936 exit(-1); 1937 } 1938 len = strlen(tmp) + 1; 1939 tmp += len; 1940 1941 if (len > (p - stack_limit)) { 1942 return 0; 1943 } 1944 while (len) { 1945 int bytes_to_copy = (len > offset) ? offset : len; 1946 tmp -= bytes_to_copy; 1947 p -= bytes_to_copy; 1948 offset -= bytes_to_copy; 1949 len -= bytes_to_copy; 1950 1951 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1952 1953 if (offset == 0) { 1954 memcpy_to_target(p, scratch, top - p); 1955 top = p; 1956 offset = TARGET_PAGE_SIZE; 1957 } 1958 } 1959 } 1960 if (p != top) { 1961 memcpy_to_target(p, scratch + offset, top - p); 1962 } 1963 } else { 1964 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1965 for (i = 0; i < argc; ++i) { 1966 tmp = argv[i]; 1967 if (!tmp) { 1968 fprintf(stderr, "VFS: argc is wrong"); 1969 exit(-1); 1970 } 1971 len = strlen(tmp) + 1; 1972 if (len > (stack_limit - p)) { 1973 return 0; 1974 } 1975 while (len) { 1976 int bytes_to_copy = (len > remaining) ? remaining : len; 1977 1978 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1979 1980 tmp += bytes_to_copy; 1981 remaining -= bytes_to_copy; 1982 p += bytes_to_copy; 1983 len -= bytes_to_copy; 1984 1985 if (remaining == 0) { 1986 memcpy_to_target(top, scratch, p - top); 1987 top = p; 1988 remaining = TARGET_PAGE_SIZE; 1989 } 1990 } 1991 } 1992 if (p != top) { 1993 memcpy_to_target(top, scratch, p - top); 1994 } 1995 } 1996 1997 return p; 1998 } 1999 2000 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2001 * argument/environment space. Newer kernels (>2.6.33) allow more, 2002 * dependent on stack size, but guarantee at least 32 pages for 2003 * backwards compatibility. 2004 */ 2005 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2006 2007 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2008 struct image_info *info) 2009 { 2010 abi_ulong size, error, guard; 2011 2012 size = guest_stack_size; 2013 if (size < STACK_LOWER_LIMIT) { 2014 size = STACK_LOWER_LIMIT; 2015 } 2016 guard = TARGET_PAGE_SIZE; 2017 if (guard < qemu_real_host_page_size()) { 2018 guard = qemu_real_host_page_size(); 2019 } 2020 2021 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 2022 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2023 if (error == -1) { 2024 perror("mmap stack"); 2025 exit(-1); 2026 } 2027 2028 /* We reserve one extra page at the top of the stack as guard. */ 2029 if (STACK_GROWS_DOWN) { 2030 target_mprotect(error, guard, PROT_NONE); 2031 info->stack_limit = error + guard; 2032 return info->stack_limit + size - sizeof(void *); 2033 } else { 2034 target_mprotect(error + size, guard, PROT_NONE); 2035 info->stack_limit = error + size; 2036 return error; 2037 } 2038 } 2039 2040 /* Map and zero the bss. We need to explicitly zero any fractional pages 2041 after the data section (i.e. bss). */ 2042 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2043 { 2044 uintptr_t host_start, host_map_start, host_end; 2045 2046 last_bss = TARGET_PAGE_ALIGN(last_bss); 2047 2048 /* ??? There is confusion between qemu_real_host_page_size and 2049 qemu_host_page_size here and elsewhere in target_mmap, which 2050 may lead to the end of the data section mapping from the file 2051 not being mapped. At least there was an explicit test and 2052 comment for that here, suggesting that "the file size must 2053 be known". The comment probably pre-dates the introduction 2054 of the fstat system call in target_mmap which does in fact 2055 find out the size. What isn't clear is if the workaround 2056 here is still actually needed. For now, continue with it, 2057 but merge it with the "normal" mmap that would allocate the bss. */ 2058 2059 host_start = (uintptr_t) g2h_untagged(elf_bss); 2060 host_end = (uintptr_t) g2h_untagged(last_bss); 2061 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2062 2063 if (host_map_start < host_end) { 2064 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2065 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2066 if (p == MAP_FAILED) { 2067 perror("cannot mmap brk"); 2068 exit(-1); 2069 } 2070 } 2071 2072 /* Ensure that the bss page(s) are valid */ 2073 if ((page_get_flags(last_bss-1) & prot) != prot) { 2074 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2075 } 2076 2077 if (host_start < host_map_start) { 2078 memset((void *)host_start, 0, host_map_start - host_start); 2079 } 2080 } 2081 2082 #ifdef TARGET_ARM 2083 static int elf_is_fdpic(struct elfhdr *exec) 2084 { 2085 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2086 } 2087 #else 2088 /* Default implementation, always false. */ 2089 static int elf_is_fdpic(struct elfhdr *exec) 2090 { 2091 return 0; 2092 } 2093 #endif 2094 2095 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2096 { 2097 uint16_t n; 2098 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2099 2100 /* elf32_fdpic_loadseg */ 2101 n = info->nsegs; 2102 while (n--) { 2103 sp -= 12; 2104 put_user_u32(loadsegs[n].addr, sp+0); 2105 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2106 put_user_u32(loadsegs[n].p_memsz, sp+8); 2107 } 2108 2109 /* elf32_fdpic_loadmap */ 2110 sp -= 4; 2111 put_user_u16(0, sp+0); /* version */ 2112 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2113 2114 info->personality = PER_LINUX_FDPIC; 2115 info->loadmap_addr = sp; 2116 2117 return sp; 2118 } 2119 2120 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2121 struct elfhdr *exec, 2122 struct image_info *info, 2123 struct image_info *interp_info) 2124 { 2125 abi_ulong sp; 2126 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2127 int size; 2128 int i; 2129 abi_ulong u_rand_bytes; 2130 uint8_t k_rand_bytes[16]; 2131 abi_ulong u_platform; 2132 const char *k_platform; 2133 const int n = sizeof(elf_addr_t); 2134 2135 sp = p; 2136 2137 /* Needs to be before we load the env/argc/... */ 2138 if (elf_is_fdpic(exec)) { 2139 /* Need 4 byte alignment for these structs */ 2140 sp &= ~3; 2141 sp = loader_build_fdpic_loadmap(info, sp); 2142 info->other_info = interp_info; 2143 if (interp_info) { 2144 interp_info->other_info = info; 2145 sp = loader_build_fdpic_loadmap(interp_info, sp); 2146 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2147 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2148 } else { 2149 info->interpreter_loadmap_addr = 0; 2150 info->interpreter_pt_dynamic_addr = 0; 2151 } 2152 } 2153 2154 u_platform = 0; 2155 k_platform = ELF_PLATFORM; 2156 if (k_platform) { 2157 size_t len = strlen(k_platform) + 1; 2158 if (STACK_GROWS_DOWN) { 2159 sp -= (len + n - 1) & ~(n - 1); 2160 u_platform = sp; 2161 /* FIXME - check return value of memcpy_to_target() for failure */ 2162 memcpy_to_target(sp, k_platform, len); 2163 } else { 2164 memcpy_to_target(sp, k_platform, len); 2165 u_platform = sp; 2166 sp += len + 1; 2167 } 2168 } 2169 2170 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2171 * the argv and envp pointers. 2172 */ 2173 if (STACK_GROWS_DOWN) { 2174 sp = QEMU_ALIGN_DOWN(sp, 16); 2175 } else { 2176 sp = QEMU_ALIGN_UP(sp, 16); 2177 } 2178 2179 /* 2180 * Generate 16 random bytes for userspace PRNG seeding. 2181 */ 2182 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2183 if (STACK_GROWS_DOWN) { 2184 sp -= 16; 2185 u_rand_bytes = sp; 2186 /* FIXME - check return value of memcpy_to_target() for failure */ 2187 memcpy_to_target(sp, k_rand_bytes, 16); 2188 } else { 2189 memcpy_to_target(sp, k_rand_bytes, 16); 2190 u_rand_bytes = sp; 2191 sp += 16; 2192 } 2193 2194 size = (DLINFO_ITEMS + 1) * 2; 2195 if (k_platform) 2196 size += 2; 2197 #ifdef DLINFO_ARCH_ITEMS 2198 size += DLINFO_ARCH_ITEMS * 2; 2199 #endif 2200 #ifdef ELF_HWCAP2 2201 size += 2; 2202 #endif 2203 info->auxv_len = size * n; 2204 2205 size += envc + argc + 2; 2206 size += 1; /* argc itself */ 2207 size *= n; 2208 2209 /* Allocate space and finalize stack alignment for entry now. */ 2210 if (STACK_GROWS_DOWN) { 2211 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2212 sp = u_argc; 2213 } else { 2214 u_argc = sp; 2215 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2216 } 2217 2218 u_argv = u_argc + n; 2219 u_envp = u_argv + (argc + 1) * n; 2220 u_auxv = u_envp + (envc + 1) * n; 2221 info->saved_auxv = u_auxv; 2222 info->argc = argc; 2223 info->envc = envc; 2224 info->argv = u_argv; 2225 info->envp = u_envp; 2226 2227 /* This is correct because Linux defines 2228 * elf_addr_t as Elf32_Off / Elf64_Off 2229 */ 2230 #define NEW_AUX_ENT(id, val) do { \ 2231 put_user_ual(id, u_auxv); u_auxv += n; \ 2232 put_user_ual(val, u_auxv); u_auxv += n; \ 2233 } while(0) 2234 2235 #ifdef ARCH_DLINFO 2236 /* 2237 * ARCH_DLINFO must come first so platform specific code can enforce 2238 * special alignment requirements on the AUXV if necessary (eg. PPC). 2239 */ 2240 ARCH_DLINFO; 2241 #endif 2242 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2243 * on info->auxv_len will trigger. 2244 */ 2245 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2246 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2247 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2248 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2249 /* Target doesn't support host page size alignment */ 2250 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2251 } else { 2252 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2253 qemu_host_page_size))); 2254 } 2255 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2256 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2257 NEW_AUX_ENT(AT_ENTRY, info->entry); 2258 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2259 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2260 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2261 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2262 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2263 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2264 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2265 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2266 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2267 2268 #ifdef ELF_HWCAP2 2269 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2270 #endif 2271 2272 if (u_platform) { 2273 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2274 } 2275 NEW_AUX_ENT (AT_NULL, 0); 2276 #undef NEW_AUX_ENT 2277 2278 /* Check that our initial calculation of the auxv length matches how much 2279 * we actually put into it. 2280 */ 2281 assert(info->auxv_len == u_auxv - info->saved_auxv); 2282 2283 put_user_ual(argc, u_argc); 2284 2285 p = info->arg_strings; 2286 for (i = 0; i < argc; ++i) { 2287 put_user_ual(p, u_argv); 2288 u_argv += n; 2289 p += target_strlen(p) + 1; 2290 } 2291 put_user_ual(0, u_argv); 2292 2293 p = info->env_strings; 2294 for (i = 0; i < envc; ++i) { 2295 put_user_ual(p, u_envp); 2296 u_envp += n; 2297 p += target_strlen(p) + 1; 2298 } 2299 put_user_ual(0, u_envp); 2300 2301 return sp; 2302 } 2303 2304 #if defined(HI_COMMPAGE) 2305 #define LO_COMMPAGE 0 2306 #elif defined(LO_COMMPAGE) 2307 #define HI_COMMPAGE 0 2308 #else 2309 #define HI_COMMPAGE 0 2310 #define LO_COMMPAGE 0 2311 #define init_guest_commpage() true 2312 #endif 2313 2314 static void pgb_fail_in_use(const char *image_name) 2315 { 2316 error_report("%s: requires virtual address space that is in use " 2317 "(omit the -B option or choose a different value)", 2318 image_name); 2319 exit(EXIT_FAILURE); 2320 } 2321 2322 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2323 abi_ulong guest_hiaddr, long align) 2324 { 2325 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2326 void *addr, *test; 2327 2328 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2329 fprintf(stderr, "Requested guest base %p does not satisfy " 2330 "host minimum alignment (0x%lx)\n", 2331 (void *)guest_base, align); 2332 exit(EXIT_FAILURE); 2333 } 2334 2335 /* Sanity check the guest binary. */ 2336 if (reserved_va) { 2337 if (guest_hiaddr > reserved_va) { 2338 error_report("%s: requires more than reserved virtual " 2339 "address space (0x%" PRIx64 " > 0x%lx)", 2340 image_name, (uint64_t)guest_hiaddr, reserved_va); 2341 exit(EXIT_FAILURE); 2342 } 2343 } else { 2344 #if HOST_LONG_BITS < TARGET_ABI_BITS 2345 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2346 error_report("%s: requires more virtual address space " 2347 "than the host can provide (0x%" PRIx64 ")", 2348 image_name, (uint64_t)guest_hiaddr - guest_base); 2349 exit(EXIT_FAILURE); 2350 } 2351 #endif 2352 } 2353 2354 /* 2355 * Expand the allocation to the entire reserved_va. 2356 * Exclude the mmap_min_addr hole. 2357 */ 2358 if (reserved_va) { 2359 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2360 : mmap_min_addr - guest_base); 2361 guest_hiaddr = reserved_va; 2362 } 2363 2364 /* Reserve the address space for the binary, or reserved_va. */ 2365 test = g2h_untagged(guest_loaddr); 2366 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2367 if (test != addr) { 2368 pgb_fail_in_use(image_name); 2369 } 2370 qemu_log_mask(CPU_LOG_PAGE, 2371 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2372 __func__, addr, guest_hiaddr - guest_loaddr); 2373 } 2374 2375 /** 2376 * pgd_find_hole_fallback: potential mmap address 2377 * @guest_size: size of available space 2378 * @brk: location of break 2379 * @align: memory alignment 2380 * 2381 * This is a fallback method for finding a hole in the host address 2382 * space if we don't have the benefit of being able to access 2383 * /proc/self/map. It can potentially take a very long time as we can 2384 * only dumbly iterate up the host address space seeing if the 2385 * allocation would work. 2386 */ 2387 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2388 long align, uintptr_t offset) 2389 { 2390 uintptr_t base; 2391 2392 /* Start (aligned) at the bottom and work our way up */ 2393 base = ROUND_UP(mmap_min_addr, align); 2394 2395 while (true) { 2396 uintptr_t align_start, end; 2397 align_start = ROUND_UP(base, align); 2398 end = align_start + guest_size + offset; 2399 2400 /* if brk is anywhere in the range give ourselves some room to grow. */ 2401 if (align_start <= brk && brk < end) { 2402 base = brk + (16 * MiB); 2403 continue; 2404 } else if (align_start + guest_size < align_start) { 2405 /* we have run out of space */ 2406 return -1; 2407 } else { 2408 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2409 MAP_FIXED_NOREPLACE; 2410 void * mmap_start = mmap((void *) align_start, guest_size, 2411 PROT_NONE, flags, -1, 0); 2412 if (mmap_start != MAP_FAILED) { 2413 munmap(mmap_start, guest_size); 2414 if (mmap_start == (void *) align_start) { 2415 qemu_log_mask(CPU_LOG_PAGE, 2416 "%s: base @ %p for %" PRIdPTR" bytes\n", 2417 __func__, mmap_start + offset, guest_size); 2418 return (uintptr_t) mmap_start + offset; 2419 } 2420 } 2421 base += qemu_host_page_size; 2422 } 2423 } 2424 } 2425 2426 /* Return value for guest_base, or -1 if no hole found. */ 2427 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2428 long align, uintptr_t offset) 2429 { 2430 GSList *maps, *iter; 2431 uintptr_t this_start, this_end, next_start, brk; 2432 intptr_t ret = -1; 2433 2434 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2435 2436 maps = read_self_maps(); 2437 2438 /* Read brk after we've read the maps, which will malloc. */ 2439 brk = (uintptr_t)sbrk(0); 2440 2441 if (!maps) { 2442 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2443 } 2444 2445 /* The first hole is before the first map entry. */ 2446 this_start = mmap_min_addr; 2447 2448 for (iter = maps; iter; 2449 this_start = next_start, iter = g_slist_next(iter)) { 2450 uintptr_t align_start, hole_size; 2451 2452 this_end = ((MapInfo *)iter->data)->start; 2453 next_start = ((MapInfo *)iter->data)->end; 2454 align_start = ROUND_UP(this_start + offset, align); 2455 2456 /* Skip holes that are too small. */ 2457 if (align_start >= this_end) { 2458 continue; 2459 } 2460 hole_size = this_end - align_start; 2461 if (hole_size < guest_size) { 2462 continue; 2463 } 2464 2465 /* If this hole contains brk, give ourselves some room to grow. */ 2466 if (this_start <= brk && brk < this_end) { 2467 hole_size -= guest_size; 2468 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2469 align_start += 1 * GiB; 2470 } else if (hole_size >= 16 * MiB) { 2471 align_start += 16 * MiB; 2472 } else { 2473 align_start = (this_end - guest_size) & -align; 2474 if (align_start < this_start) { 2475 continue; 2476 } 2477 } 2478 } 2479 2480 /* Record the lowest successful match. */ 2481 if (ret < 0) { 2482 ret = align_start; 2483 } 2484 /* If this hole contains the identity map, select it. */ 2485 if (align_start <= guest_loaddr && 2486 guest_loaddr + guest_size <= this_end) { 2487 ret = 0; 2488 } 2489 /* If this hole ends above the identity map, stop looking. */ 2490 if (this_end >= guest_loaddr) { 2491 break; 2492 } 2493 } 2494 free_self_maps(maps); 2495 2496 if (ret != -1) { 2497 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2498 " for %" PRIuPTR " bytes\n", 2499 __func__, ret, guest_size); 2500 } 2501 2502 return ret; 2503 } 2504 2505 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2506 abi_ulong orig_hiaddr, long align) 2507 { 2508 uintptr_t loaddr = orig_loaddr; 2509 uintptr_t hiaddr = orig_hiaddr; 2510 uintptr_t offset = 0; 2511 uintptr_t addr; 2512 2513 if (hiaddr != orig_hiaddr) { 2514 error_report("%s: requires virtual address space that the " 2515 "host cannot provide (0x%" PRIx64 ")", 2516 image_name, (uint64_t)orig_hiaddr); 2517 exit(EXIT_FAILURE); 2518 } 2519 2520 loaddr &= -align; 2521 if (HI_COMMPAGE) { 2522 /* 2523 * Extend the allocation to include the commpage. 2524 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2525 * need to ensure there is space bellow the guest_base so we 2526 * can map the commpage in the place needed when the address 2527 * arithmetic wraps around. 2528 */ 2529 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2530 hiaddr = (uintptr_t) 4 << 30; 2531 } else { 2532 offset = -(HI_COMMPAGE & -align); 2533 } 2534 } else if (LO_COMMPAGE != 0) { 2535 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2536 } 2537 2538 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2539 if (addr == -1) { 2540 /* 2541 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2542 * that can satisfy both. But as the normal arm32 link base address 2543 * is ~32k, and we extend down to include the commpage, making the 2544 * overhead only ~96k, this is unlikely. 2545 */ 2546 error_report("%s: Unable to allocate %#zx bytes of " 2547 "virtual address space", image_name, 2548 (size_t)(hiaddr - loaddr)); 2549 exit(EXIT_FAILURE); 2550 } 2551 2552 guest_base = addr; 2553 2554 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2555 __func__, addr, hiaddr - loaddr); 2556 } 2557 2558 static void pgb_dynamic(const char *image_name, long align) 2559 { 2560 /* 2561 * The executable is dynamic and does not require a fixed address. 2562 * All we need is a commpage that satisfies align. 2563 * If we do not need a commpage, leave guest_base == 0. 2564 */ 2565 if (HI_COMMPAGE) { 2566 uintptr_t addr, commpage; 2567 2568 /* 64-bit hosts should have used reserved_va. */ 2569 assert(sizeof(uintptr_t) == 4); 2570 2571 /* 2572 * By putting the commpage at the first hole, that puts guest_base 2573 * just above that, and maximises the positive guest addresses. 2574 */ 2575 commpage = HI_COMMPAGE & -align; 2576 addr = pgb_find_hole(commpage, -commpage, align, 0); 2577 assert(addr != -1); 2578 guest_base = addr; 2579 } 2580 } 2581 2582 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2583 abi_ulong guest_hiaddr, long align) 2584 { 2585 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2586 void *addr, *test; 2587 2588 if (guest_hiaddr > reserved_va) { 2589 error_report("%s: requires more than reserved virtual " 2590 "address space (0x%" PRIx64 " > 0x%lx)", 2591 image_name, (uint64_t)guest_hiaddr, reserved_va); 2592 exit(EXIT_FAILURE); 2593 } 2594 2595 /* Widen the "image" to the entire reserved address space. */ 2596 pgb_static(image_name, 0, reserved_va, align); 2597 2598 /* osdep.h defines this as 0 if it's missing */ 2599 flags |= MAP_FIXED_NOREPLACE; 2600 2601 /* Reserve the memory on the host. */ 2602 assert(guest_base != 0); 2603 test = g2h_untagged(0); 2604 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2605 if (addr == MAP_FAILED || addr != test) { 2606 error_report("Unable to reserve 0x%lx bytes of virtual address " 2607 "space at %p (%s) for use as guest address space (check your " 2608 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2609 "using -R option)", reserved_va, test, strerror(errno)); 2610 exit(EXIT_FAILURE); 2611 } 2612 2613 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2614 __func__, addr, reserved_va); 2615 } 2616 2617 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2618 abi_ulong guest_hiaddr) 2619 { 2620 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2621 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2622 2623 if (have_guest_base) { 2624 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2625 } else if (reserved_va) { 2626 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2627 } else if (guest_loaddr) { 2628 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2629 } else { 2630 pgb_dynamic(image_name, align); 2631 } 2632 2633 /* Reserve and initialize the commpage. */ 2634 if (!init_guest_commpage()) { 2635 /* 2636 * With have_guest_base, the user has selected the address and 2637 * we are trying to work with that. Otherwise, we have selected 2638 * free space and init_guest_commpage must succeeded. 2639 */ 2640 assert(have_guest_base); 2641 pgb_fail_in_use(image_name); 2642 } 2643 2644 assert(QEMU_IS_ALIGNED(guest_base, align)); 2645 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2646 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2647 } 2648 2649 enum { 2650 /* The string "GNU\0" as a magic number. */ 2651 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2652 NOTE_DATA_SZ = 1 * KiB, 2653 NOTE_NAME_SZ = 4, 2654 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2655 }; 2656 2657 /* 2658 * Process a single gnu_property entry. 2659 * Return false for error. 2660 */ 2661 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2662 struct image_info *info, bool have_prev_type, 2663 uint32_t *prev_type, Error **errp) 2664 { 2665 uint32_t pr_type, pr_datasz, step; 2666 2667 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2668 goto error_data; 2669 } 2670 datasz -= *off; 2671 data += *off / sizeof(uint32_t); 2672 2673 if (datasz < 2 * sizeof(uint32_t)) { 2674 goto error_data; 2675 } 2676 pr_type = data[0]; 2677 pr_datasz = data[1]; 2678 data += 2; 2679 datasz -= 2 * sizeof(uint32_t); 2680 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2681 if (step > datasz) { 2682 goto error_data; 2683 } 2684 2685 /* Properties are supposed to be unique and sorted on pr_type. */ 2686 if (have_prev_type && pr_type <= *prev_type) { 2687 if (pr_type == *prev_type) { 2688 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2689 } else { 2690 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2691 } 2692 return false; 2693 } 2694 *prev_type = pr_type; 2695 2696 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2697 return false; 2698 } 2699 2700 *off += 2 * sizeof(uint32_t) + step; 2701 return true; 2702 2703 error_data: 2704 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2705 return false; 2706 } 2707 2708 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2709 static bool parse_elf_properties(int image_fd, 2710 struct image_info *info, 2711 const struct elf_phdr *phdr, 2712 char bprm_buf[BPRM_BUF_SIZE], 2713 Error **errp) 2714 { 2715 union { 2716 struct elf_note nhdr; 2717 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2718 } note; 2719 2720 int n, off, datasz; 2721 bool have_prev_type; 2722 uint32_t prev_type; 2723 2724 /* Unless the arch requires properties, ignore them. */ 2725 if (!ARCH_USE_GNU_PROPERTY) { 2726 return true; 2727 } 2728 2729 /* If the properties are crazy large, that's too bad. */ 2730 n = phdr->p_filesz; 2731 if (n > sizeof(note)) { 2732 error_setg(errp, "PT_GNU_PROPERTY too large"); 2733 return false; 2734 } 2735 if (n < sizeof(note.nhdr)) { 2736 error_setg(errp, "PT_GNU_PROPERTY too small"); 2737 return false; 2738 } 2739 2740 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2741 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2742 } else { 2743 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2744 if (len != n) { 2745 error_setg_errno(errp, errno, "Error reading file header"); 2746 return false; 2747 } 2748 } 2749 2750 /* 2751 * The contents of a valid PT_GNU_PROPERTY is a sequence 2752 * of uint32_t -- swap them all now. 2753 */ 2754 #ifdef BSWAP_NEEDED 2755 for (int i = 0; i < n / 4; i++) { 2756 bswap32s(note.data + i); 2757 } 2758 #endif 2759 2760 /* 2761 * Note that nhdr is 3 words, and that the "name" described by namesz 2762 * immediately follows nhdr and is thus at the 4th word. Further, all 2763 * of the inputs to the kernel's round_up are multiples of 4. 2764 */ 2765 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2766 note.nhdr.n_namesz != NOTE_NAME_SZ || 2767 note.data[3] != GNU0_MAGIC) { 2768 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2769 return false; 2770 } 2771 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2772 2773 datasz = note.nhdr.n_descsz + off; 2774 if (datasz > n) { 2775 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2776 return false; 2777 } 2778 2779 have_prev_type = false; 2780 prev_type = 0; 2781 while (1) { 2782 if (off == datasz) { 2783 return true; /* end, exit ok */ 2784 } 2785 if (!parse_elf_property(note.data, &off, datasz, info, 2786 have_prev_type, &prev_type, errp)) { 2787 return false; 2788 } 2789 have_prev_type = true; 2790 } 2791 } 2792 2793 /* Load an ELF image into the address space. 2794 2795 IMAGE_NAME is the filename of the image, to use in error messages. 2796 IMAGE_FD is the open file descriptor for the image. 2797 2798 BPRM_BUF is a copy of the beginning of the file; this of course 2799 contains the elf file header at offset 0. It is assumed that this 2800 buffer is sufficiently aligned to present no problems to the host 2801 in accessing data at aligned offsets within the buffer. 2802 2803 On return: INFO values will be filled in, as necessary or available. */ 2804 2805 static void load_elf_image(const char *image_name, int image_fd, 2806 struct image_info *info, char **pinterp_name, 2807 char bprm_buf[BPRM_BUF_SIZE]) 2808 { 2809 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2810 struct elf_phdr *phdr; 2811 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2812 int i, retval, prot_exec; 2813 Error *err = NULL; 2814 2815 /* First of all, some simple consistency checks */ 2816 if (!elf_check_ident(ehdr)) { 2817 error_setg(&err, "Invalid ELF image for this architecture"); 2818 goto exit_errmsg; 2819 } 2820 bswap_ehdr(ehdr); 2821 if (!elf_check_ehdr(ehdr)) { 2822 error_setg(&err, "Invalid ELF image for this architecture"); 2823 goto exit_errmsg; 2824 } 2825 2826 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2827 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2828 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2829 } else { 2830 phdr = (struct elf_phdr *) alloca(i); 2831 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2832 if (retval != i) { 2833 goto exit_read; 2834 } 2835 } 2836 bswap_phdr(phdr, ehdr->e_phnum); 2837 2838 info->nsegs = 0; 2839 info->pt_dynamic_addr = 0; 2840 2841 mmap_lock(); 2842 2843 /* 2844 * Find the maximum size of the image and allocate an appropriate 2845 * amount of memory to handle that. Locate the interpreter, if any. 2846 */ 2847 loaddr = -1, hiaddr = 0; 2848 info->alignment = 0; 2849 for (i = 0; i < ehdr->e_phnum; ++i) { 2850 struct elf_phdr *eppnt = phdr + i; 2851 if (eppnt->p_type == PT_LOAD) { 2852 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2853 if (a < loaddr) { 2854 loaddr = a; 2855 } 2856 a = eppnt->p_vaddr + eppnt->p_memsz; 2857 if (a > hiaddr) { 2858 hiaddr = a; 2859 } 2860 ++info->nsegs; 2861 info->alignment |= eppnt->p_align; 2862 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2863 g_autofree char *interp_name = NULL; 2864 2865 if (*pinterp_name) { 2866 error_setg(&err, "Multiple PT_INTERP entries"); 2867 goto exit_errmsg; 2868 } 2869 2870 interp_name = g_malloc(eppnt->p_filesz); 2871 2872 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2873 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2874 eppnt->p_filesz); 2875 } else { 2876 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2877 eppnt->p_offset); 2878 if (retval != eppnt->p_filesz) { 2879 goto exit_read; 2880 } 2881 } 2882 if (interp_name[eppnt->p_filesz - 1] != 0) { 2883 error_setg(&err, "Invalid PT_INTERP entry"); 2884 goto exit_errmsg; 2885 } 2886 *pinterp_name = g_steal_pointer(&interp_name); 2887 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2888 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2889 goto exit_errmsg; 2890 } 2891 } 2892 } 2893 2894 if (pinterp_name != NULL) { 2895 /* 2896 * This is the main executable. 2897 * 2898 * Reserve extra space for brk. 2899 * We hold on to this space while placing the interpreter 2900 * and the stack, lest they be placed immediately after 2901 * the data segment and block allocation from the brk. 2902 * 2903 * 16MB is chosen as "large enough" without being so large as 2904 * to allow the result to not fit with a 32-bit guest on a 2905 * 32-bit host. However some 64 bit guests (e.g. s390x) 2906 * attempt to place their heap further ahead and currently 2907 * nothing stops them smashing into QEMUs address space. 2908 */ 2909 #if TARGET_LONG_BITS == 64 2910 info->reserve_brk = 32 * MiB; 2911 #else 2912 info->reserve_brk = 16 * MiB; 2913 #endif 2914 hiaddr += info->reserve_brk; 2915 2916 if (ehdr->e_type == ET_EXEC) { 2917 /* 2918 * Make sure that the low address does not conflict with 2919 * MMAP_MIN_ADDR or the QEMU application itself. 2920 */ 2921 probe_guest_base(image_name, loaddr, hiaddr); 2922 } else { 2923 /* 2924 * The binary is dynamic, but we still need to 2925 * select guest_base. In this case we pass a size. 2926 */ 2927 probe_guest_base(image_name, 0, hiaddr - loaddr); 2928 } 2929 } 2930 2931 /* 2932 * Reserve address space for all of this. 2933 * 2934 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 2935 * exactly the address range that is required. 2936 * 2937 * Otherwise this is ET_DYN, and we are searching for a location 2938 * that can hold the memory space required. If the image is 2939 * pre-linked, LOADDR will be non-zero, and the kernel should 2940 * honor that address if it happens to be free. 2941 * 2942 * In both cases, we will overwrite pages in this range with mappings 2943 * from the executable. 2944 */ 2945 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2946 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 2947 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 2948 -1, 0); 2949 if (load_addr == -1) { 2950 goto exit_mmap; 2951 } 2952 load_bias = load_addr - loaddr; 2953 2954 if (elf_is_fdpic(ehdr)) { 2955 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2956 g_malloc(sizeof(*loadsegs) * info->nsegs); 2957 2958 for (i = 0; i < ehdr->e_phnum; ++i) { 2959 switch (phdr[i].p_type) { 2960 case PT_DYNAMIC: 2961 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2962 break; 2963 case PT_LOAD: 2964 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2965 loadsegs->p_vaddr = phdr[i].p_vaddr; 2966 loadsegs->p_memsz = phdr[i].p_memsz; 2967 ++loadsegs; 2968 break; 2969 } 2970 } 2971 } 2972 2973 info->load_bias = load_bias; 2974 info->code_offset = load_bias; 2975 info->data_offset = load_bias; 2976 info->load_addr = load_addr; 2977 info->entry = ehdr->e_entry + load_bias; 2978 info->start_code = -1; 2979 info->end_code = 0; 2980 info->start_data = -1; 2981 info->end_data = 0; 2982 info->brk = 0; 2983 info->elf_flags = ehdr->e_flags; 2984 2985 prot_exec = PROT_EXEC; 2986 #ifdef TARGET_AARCH64 2987 /* 2988 * If the BTI feature is present, this indicates that the executable 2989 * pages of the startup binary should be mapped with PROT_BTI, so that 2990 * branch targets are enforced. 2991 * 2992 * The startup binary is either the interpreter or the static executable. 2993 * The interpreter is responsible for all pages of a dynamic executable. 2994 * 2995 * Elf notes are backward compatible to older cpus. 2996 * Do not enable BTI unless it is supported. 2997 */ 2998 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 2999 && (pinterp_name == NULL || *pinterp_name == 0) 3000 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3001 prot_exec |= TARGET_PROT_BTI; 3002 } 3003 #endif 3004 3005 for (i = 0; i < ehdr->e_phnum; i++) { 3006 struct elf_phdr *eppnt = phdr + i; 3007 if (eppnt->p_type == PT_LOAD) { 3008 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3009 int elf_prot = 0; 3010 3011 if (eppnt->p_flags & PF_R) { 3012 elf_prot |= PROT_READ; 3013 } 3014 if (eppnt->p_flags & PF_W) { 3015 elf_prot |= PROT_WRITE; 3016 } 3017 if (eppnt->p_flags & PF_X) { 3018 elf_prot |= prot_exec; 3019 } 3020 3021 vaddr = load_bias + eppnt->p_vaddr; 3022 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3023 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3024 3025 vaddr_ef = vaddr + eppnt->p_filesz; 3026 vaddr_em = vaddr + eppnt->p_memsz; 3027 3028 /* 3029 * Some segments may be completely empty, with a non-zero p_memsz 3030 * but no backing file segment. 3031 */ 3032 if (eppnt->p_filesz != 0) { 3033 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3034 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3035 MAP_PRIVATE | MAP_FIXED, 3036 image_fd, eppnt->p_offset - vaddr_po); 3037 3038 if (error == -1) { 3039 goto exit_mmap; 3040 } 3041 3042 /* 3043 * If the load segment requests extra zeros (e.g. bss), map it. 3044 */ 3045 if (eppnt->p_filesz < eppnt->p_memsz) { 3046 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3047 } 3048 } else if (eppnt->p_memsz != 0) { 3049 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3050 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3051 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3052 -1, 0); 3053 3054 if (error == -1) { 3055 goto exit_mmap; 3056 } 3057 } 3058 3059 /* Find the full program boundaries. */ 3060 if (elf_prot & PROT_EXEC) { 3061 if (vaddr < info->start_code) { 3062 info->start_code = vaddr; 3063 } 3064 if (vaddr_ef > info->end_code) { 3065 info->end_code = vaddr_ef; 3066 } 3067 } 3068 if (elf_prot & PROT_WRITE) { 3069 if (vaddr < info->start_data) { 3070 info->start_data = vaddr; 3071 } 3072 if (vaddr_ef > info->end_data) { 3073 info->end_data = vaddr_ef; 3074 } 3075 } 3076 if (vaddr_em > info->brk) { 3077 info->brk = vaddr_em; 3078 } 3079 #ifdef TARGET_MIPS 3080 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3081 Mips_elf_abiflags_v0 abiflags; 3082 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3083 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3084 goto exit_errmsg; 3085 } 3086 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3087 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3088 sizeof(Mips_elf_abiflags_v0)); 3089 } else { 3090 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3091 eppnt->p_offset); 3092 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3093 goto exit_read; 3094 } 3095 } 3096 bswap_mips_abiflags(&abiflags); 3097 info->fp_abi = abiflags.fp_abi; 3098 #endif 3099 } 3100 } 3101 3102 if (info->end_data == 0) { 3103 info->start_data = info->end_code; 3104 info->end_data = info->end_code; 3105 } 3106 3107 if (qemu_log_enabled()) { 3108 load_symbols(ehdr, image_fd, load_bias); 3109 } 3110 3111 mmap_unlock(); 3112 3113 close(image_fd); 3114 return; 3115 3116 exit_read: 3117 if (retval >= 0) { 3118 error_setg(&err, "Incomplete read of file header"); 3119 } else { 3120 error_setg_errno(&err, errno, "Error reading file header"); 3121 } 3122 goto exit_errmsg; 3123 exit_mmap: 3124 error_setg_errno(&err, errno, "Error mapping file"); 3125 goto exit_errmsg; 3126 exit_errmsg: 3127 error_reportf_err(err, "%s: ", image_name); 3128 exit(-1); 3129 } 3130 3131 static void load_elf_interp(const char *filename, struct image_info *info, 3132 char bprm_buf[BPRM_BUF_SIZE]) 3133 { 3134 int fd, retval; 3135 Error *err = NULL; 3136 3137 fd = open(path(filename), O_RDONLY); 3138 if (fd < 0) { 3139 error_setg_file_open(&err, errno, filename); 3140 error_report_err(err); 3141 exit(-1); 3142 } 3143 3144 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3145 if (retval < 0) { 3146 error_setg_errno(&err, errno, "Error reading file header"); 3147 error_reportf_err(err, "%s: ", filename); 3148 exit(-1); 3149 } 3150 3151 if (retval < BPRM_BUF_SIZE) { 3152 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3153 } 3154 3155 load_elf_image(filename, fd, info, NULL, bprm_buf); 3156 } 3157 3158 static int symfind(const void *s0, const void *s1) 3159 { 3160 target_ulong addr = *(target_ulong *)s0; 3161 struct elf_sym *sym = (struct elf_sym *)s1; 3162 int result = 0; 3163 if (addr < sym->st_value) { 3164 result = -1; 3165 } else if (addr >= sym->st_value + sym->st_size) { 3166 result = 1; 3167 } 3168 return result; 3169 } 3170 3171 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3172 { 3173 #if ELF_CLASS == ELFCLASS32 3174 struct elf_sym *syms = s->disas_symtab.elf32; 3175 #else 3176 struct elf_sym *syms = s->disas_symtab.elf64; 3177 #endif 3178 3179 // binary search 3180 struct elf_sym *sym; 3181 3182 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3183 if (sym != NULL) { 3184 return s->disas_strtab + sym->st_name; 3185 } 3186 3187 return ""; 3188 } 3189 3190 /* FIXME: This should use elf_ops.h */ 3191 static int symcmp(const void *s0, const void *s1) 3192 { 3193 struct elf_sym *sym0 = (struct elf_sym *)s0; 3194 struct elf_sym *sym1 = (struct elf_sym *)s1; 3195 return (sym0->st_value < sym1->st_value) 3196 ? -1 3197 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3198 } 3199 3200 /* Best attempt to load symbols from this ELF object. */ 3201 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3202 { 3203 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3204 uint64_t segsz; 3205 struct elf_shdr *shdr; 3206 char *strings = NULL; 3207 struct syminfo *s = NULL; 3208 struct elf_sym *new_syms, *syms = NULL; 3209 3210 shnum = hdr->e_shnum; 3211 i = shnum * sizeof(struct elf_shdr); 3212 shdr = (struct elf_shdr *)alloca(i); 3213 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3214 return; 3215 } 3216 3217 bswap_shdr(shdr, shnum); 3218 for (i = 0; i < shnum; ++i) { 3219 if (shdr[i].sh_type == SHT_SYMTAB) { 3220 sym_idx = i; 3221 str_idx = shdr[i].sh_link; 3222 goto found; 3223 } 3224 } 3225 3226 /* There will be no symbol table if the file was stripped. */ 3227 return; 3228 3229 found: 3230 /* Now know where the strtab and symtab are. Snarf them. */ 3231 s = g_try_new(struct syminfo, 1); 3232 if (!s) { 3233 goto give_up; 3234 } 3235 3236 segsz = shdr[str_idx].sh_size; 3237 s->disas_strtab = strings = g_try_malloc(segsz); 3238 if (!strings || 3239 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3240 goto give_up; 3241 } 3242 3243 segsz = shdr[sym_idx].sh_size; 3244 syms = g_try_malloc(segsz); 3245 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3246 goto give_up; 3247 } 3248 3249 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3250 /* Implausibly large symbol table: give up rather than ploughing 3251 * on with the number of symbols calculation overflowing 3252 */ 3253 goto give_up; 3254 } 3255 nsyms = segsz / sizeof(struct elf_sym); 3256 for (i = 0; i < nsyms; ) { 3257 bswap_sym(syms + i); 3258 /* Throw away entries which we do not need. */ 3259 if (syms[i].st_shndx == SHN_UNDEF 3260 || syms[i].st_shndx >= SHN_LORESERVE 3261 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3262 if (i < --nsyms) { 3263 syms[i] = syms[nsyms]; 3264 } 3265 } else { 3266 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3267 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3268 syms[i].st_value &= ~(target_ulong)1; 3269 #endif 3270 syms[i].st_value += load_bias; 3271 i++; 3272 } 3273 } 3274 3275 /* No "useful" symbol. */ 3276 if (nsyms == 0) { 3277 goto give_up; 3278 } 3279 3280 /* Attempt to free the storage associated with the local symbols 3281 that we threw away. Whether or not this has any effect on the 3282 memory allocation depends on the malloc implementation and how 3283 many symbols we managed to discard. */ 3284 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3285 if (new_syms == NULL) { 3286 goto give_up; 3287 } 3288 syms = new_syms; 3289 3290 qsort(syms, nsyms, sizeof(*syms), symcmp); 3291 3292 s->disas_num_syms = nsyms; 3293 #if ELF_CLASS == ELFCLASS32 3294 s->disas_symtab.elf32 = syms; 3295 #else 3296 s->disas_symtab.elf64 = syms; 3297 #endif 3298 s->lookup_symbol = lookup_symbolxx; 3299 s->next = syminfos; 3300 syminfos = s; 3301 3302 return; 3303 3304 give_up: 3305 g_free(s); 3306 g_free(strings); 3307 g_free(syms); 3308 } 3309 3310 uint32_t get_elf_eflags(int fd) 3311 { 3312 struct elfhdr ehdr; 3313 off_t offset; 3314 int ret; 3315 3316 /* Read ELF header */ 3317 offset = lseek(fd, 0, SEEK_SET); 3318 if (offset == (off_t) -1) { 3319 return 0; 3320 } 3321 ret = read(fd, &ehdr, sizeof(ehdr)); 3322 if (ret < sizeof(ehdr)) { 3323 return 0; 3324 } 3325 offset = lseek(fd, offset, SEEK_SET); 3326 if (offset == (off_t) -1) { 3327 return 0; 3328 } 3329 3330 /* Check ELF signature */ 3331 if (!elf_check_ident(&ehdr)) { 3332 return 0; 3333 } 3334 3335 /* check header */ 3336 bswap_ehdr(&ehdr); 3337 if (!elf_check_ehdr(&ehdr)) { 3338 return 0; 3339 } 3340 3341 /* return architecture id */ 3342 return ehdr.e_flags; 3343 } 3344 3345 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3346 { 3347 struct image_info interp_info; 3348 struct elfhdr elf_ex; 3349 char *elf_interpreter = NULL; 3350 char *scratch; 3351 3352 memset(&interp_info, 0, sizeof(interp_info)); 3353 #ifdef TARGET_MIPS 3354 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3355 #endif 3356 3357 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3358 3359 load_elf_image(bprm->filename, bprm->fd, info, 3360 &elf_interpreter, bprm->buf); 3361 3362 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3363 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3364 when we load the interpreter. */ 3365 elf_ex = *(struct elfhdr *)bprm->buf; 3366 3367 /* Do this so that we can load the interpreter, if need be. We will 3368 change some of these later */ 3369 bprm->p = setup_arg_pages(bprm, info); 3370 3371 scratch = g_new0(char, TARGET_PAGE_SIZE); 3372 if (STACK_GROWS_DOWN) { 3373 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3374 bprm->p, info->stack_limit); 3375 info->file_string = bprm->p; 3376 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3377 bprm->p, info->stack_limit); 3378 info->env_strings = bprm->p; 3379 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3380 bprm->p, info->stack_limit); 3381 info->arg_strings = bprm->p; 3382 } else { 3383 info->arg_strings = bprm->p; 3384 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3385 bprm->p, info->stack_limit); 3386 info->env_strings = bprm->p; 3387 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3388 bprm->p, info->stack_limit); 3389 info->file_string = bprm->p; 3390 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3391 bprm->p, info->stack_limit); 3392 } 3393 3394 g_free(scratch); 3395 3396 if (!bprm->p) { 3397 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3398 exit(-1); 3399 } 3400 3401 if (elf_interpreter) { 3402 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3403 3404 /* If the program interpreter is one of these two, then assume 3405 an iBCS2 image. Otherwise assume a native linux image. */ 3406 3407 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3408 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3409 info->personality = PER_SVR4; 3410 3411 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3412 and some applications "depend" upon this behavior. Since 3413 we do not have the power to recompile these, we emulate 3414 the SVr4 behavior. Sigh. */ 3415 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3416 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3417 } 3418 #ifdef TARGET_MIPS 3419 info->interp_fp_abi = interp_info.fp_abi; 3420 #endif 3421 } 3422 3423 /* 3424 * TODO: load a vdso, which would also contain the signal trampolines. 3425 * Otherwise, allocate a private page to hold them. 3426 */ 3427 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3428 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3429 PROT_READ | PROT_WRITE, 3430 MAP_PRIVATE | MAP_ANON, -1, 0); 3431 if (tramp_page == -1) { 3432 return -errno; 3433 } 3434 3435 setup_sigtramp(tramp_page); 3436 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3437 } 3438 3439 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3440 info, (elf_interpreter ? &interp_info : NULL)); 3441 info->start_stack = bprm->p; 3442 3443 /* If we have an interpreter, set that as the program's entry point. 3444 Copy the load_bias as well, to help PPC64 interpret the entry 3445 point as a function descriptor. Do this after creating elf tables 3446 so that we copy the original program entry point into the AUXV. */ 3447 if (elf_interpreter) { 3448 info->load_bias = interp_info.load_bias; 3449 info->entry = interp_info.entry; 3450 g_free(elf_interpreter); 3451 } 3452 3453 #ifdef USE_ELF_CORE_DUMP 3454 bprm->core_dump = &elf_core_dump; 3455 #endif 3456 3457 /* 3458 * If we reserved extra space for brk, release it now. 3459 * The implementation of do_brk in syscalls.c expects to be able 3460 * to mmap pages in this space. 3461 */ 3462 if (info->reserve_brk) { 3463 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3464 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3465 target_munmap(start_brk, end_brk - start_brk); 3466 } 3467 3468 return 0; 3469 } 3470 3471 #ifdef USE_ELF_CORE_DUMP 3472 /* 3473 * Definitions to generate Intel SVR4-like core files. 3474 * These mostly have the same names as the SVR4 types with "target_elf_" 3475 * tacked on the front to prevent clashes with linux definitions, 3476 * and the typedef forms have been avoided. This is mostly like 3477 * the SVR4 structure, but more Linuxy, with things that Linux does 3478 * not support and which gdb doesn't really use excluded. 3479 * 3480 * Fields we don't dump (their contents is zero) in linux-user qemu 3481 * are marked with XXX. 3482 * 3483 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3484 * 3485 * Porting ELF coredump for target is (quite) simple process. First you 3486 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3487 * the target resides): 3488 * 3489 * #define USE_ELF_CORE_DUMP 3490 * 3491 * Next you define type of register set used for dumping. ELF specification 3492 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3493 * 3494 * typedef <target_regtype> target_elf_greg_t; 3495 * #define ELF_NREG <number of registers> 3496 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3497 * 3498 * Last step is to implement target specific function that copies registers 3499 * from given cpu into just specified register set. Prototype is: 3500 * 3501 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3502 * const CPUArchState *env); 3503 * 3504 * Parameters: 3505 * regs - copy register values into here (allocated and zeroed by caller) 3506 * env - copy registers from here 3507 * 3508 * Example for ARM target is provided in this file. 3509 */ 3510 3511 /* An ELF note in memory */ 3512 struct memelfnote { 3513 const char *name; 3514 size_t namesz; 3515 size_t namesz_rounded; 3516 int type; 3517 size_t datasz; 3518 size_t datasz_rounded; 3519 void *data; 3520 size_t notesz; 3521 }; 3522 3523 struct target_elf_siginfo { 3524 abi_int si_signo; /* signal number */ 3525 abi_int si_code; /* extra code */ 3526 abi_int si_errno; /* errno */ 3527 }; 3528 3529 struct target_elf_prstatus { 3530 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3531 abi_short pr_cursig; /* Current signal */ 3532 abi_ulong pr_sigpend; /* XXX */ 3533 abi_ulong pr_sighold; /* XXX */ 3534 target_pid_t pr_pid; 3535 target_pid_t pr_ppid; 3536 target_pid_t pr_pgrp; 3537 target_pid_t pr_sid; 3538 struct target_timeval pr_utime; /* XXX User time */ 3539 struct target_timeval pr_stime; /* XXX System time */ 3540 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3541 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3542 target_elf_gregset_t pr_reg; /* GP registers */ 3543 abi_int pr_fpvalid; /* XXX */ 3544 }; 3545 3546 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3547 3548 struct target_elf_prpsinfo { 3549 char pr_state; /* numeric process state */ 3550 char pr_sname; /* char for pr_state */ 3551 char pr_zomb; /* zombie */ 3552 char pr_nice; /* nice val */ 3553 abi_ulong pr_flag; /* flags */ 3554 target_uid_t pr_uid; 3555 target_gid_t pr_gid; 3556 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3557 /* Lots missing */ 3558 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3559 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3560 }; 3561 3562 /* Here is the structure in which status of each thread is captured. */ 3563 struct elf_thread_status { 3564 QTAILQ_ENTRY(elf_thread_status) ets_link; 3565 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3566 #if 0 3567 elf_fpregset_t fpu; /* NT_PRFPREG */ 3568 struct task_struct *thread; 3569 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3570 #endif 3571 struct memelfnote notes[1]; 3572 int num_notes; 3573 }; 3574 3575 struct elf_note_info { 3576 struct memelfnote *notes; 3577 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3578 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3579 3580 QTAILQ_HEAD(, elf_thread_status) thread_list; 3581 #if 0 3582 /* 3583 * Current version of ELF coredump doesn't support 3584 * dumping fp regs etc. 3585 */ 3586 elf_fpregset_t *fpu; 3587 elf_fpxregset_t *xfpu; 3588 int thread_status_size; 3589 #endif 3590 int notes_size; 3591 int numnote; 3592 }; 3593 3594 struct vm_area_struct { 3595 target_ulong vma_start; /* start vaddr of memory region */ 3596 target_ulong vma_end; /* end vaddr of memory region */ 3597 abi_ulong vma_flags; /* protection etc. flags for the region */ 3598 QTAILQ_ENTRY(vm_area_struct) vma_link; 3599 }; 3600 3601 struct mm_struct { 3602 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3603 int mm_count; /* number of mappings */ 3604 }; 3605 3606 static struct mm_struct *vma_init(void); 3607 static void vma_delete(struct mm_struct *); 3608 static int vma_add_mapping(struct mm_struct *, target_ulong, 3609 target_ulong, abi_ulong); 3610 static int vma_get_mapping_count(const struct mm_struct *); 3611 static struct vm_area_struct *vma_first(const struct mm_struct *); 3612 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3613 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3614 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3615 unsigned long flags); 3616 3617 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3618 static void fill_note(struct memelfnote *, const char *, int, 3619 unsigned int, void *); 3620 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3621 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3622 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3623 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3624 static size_t note_size(const struct memelfnote *); 3625 static void free_note_info(struct elf_note_info *); 3626 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3627 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3628 3629 static int dump_write(int, const void *, size_t); 3630 static int write_note(struct memelfnote *, int); 3631 static int write_note_info(struct elf_note_info *, int); 3632 3633 #ifdef BSWAP_NEEDED 3634 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3635 { 3636 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3637 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3638 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3639 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3640 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3641 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3642 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3643 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3644 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3645 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3646 /* cpu times are not filled, so we skip them */ 3647 /* regs should be in correct format already */ 3648 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3649 } 3650 3651 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3652 { 3653 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3654 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3655 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3656 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3657 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3658 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3659 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3660 } 3661 3662 static void bswap_note(struct elf_note *en) 3663 { 3664 bswap32s(&en->n_namesz); 3665 bswap32s(&en->n_descsz); 3666 bswap32s(&en->n_type); 3667 } 3668 #else 3669 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3670 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3671 static inline void bswap_note(struct elf_note *en) { } 3672 #endif /* BSWAP_NEEDED */ 3673 3674 /* 3675 * Minimal support for linux memory regions. These are needed 3676 * when we are finding out what memory exactly belongs to 3677 * emulated process. No locks needed here, as long as 3678 * thread that received the signal is stopped. 3679 */ 3680 3681 static struct mm_struct *vma_init(void) 3682 { 3683 struct mm_struct *mm; 3684 3685 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3686 return (NULL); 3687 3688 mm->mm_count = 0; 3689 QTAILQ_INIT(&mm->mm_mmap); 3690 3691 return (mm); 3692 } 3693 3694 static void vma_delete(struct mm_struct *mm) 3695 { 3696 struct vm_area_struct *vma; 3697 3698 while ((vma = vma_first(mm)) != NULL) { 3699 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3700 g_free(vma); 3701 } 3702 g_free(mm); 3703 } 3704 3705 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3706 target_ulong end, abi_ulong flags) 3707 { 3708 struct vm_area_struct *vma; 3709 3710 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3711 return (-1); 3712 3713 vma->vma_start = start; 3714 vma->vma_end = end; 3715 vma->vma_flags = flags; 3716 3717 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3718 mm->mm_count++; 3719 3720 return (0); 3721 } 3722 3723 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3724 { 3725 return (QTAILQ_FIRST(&mm->mm_mmap)); 3726 } 3727 3728 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3729 { 3730 return (QTAILQ_NEXT(vma, vma_link)); 3731 } 3732 3733 static int vma_get_mapping_count(const struct mm_struct *mm) 3734 { 3735 return (mm->mm_count); 3736 } 3737 3738 /* 3739 * Calculate file (dump) size of given memory region. 3740 */ 3741 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3742 { 3743 /* if we cannot even read the first page, skip it */ 3744 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3745 return (0); 3746 3747 /* 3748 * Usually we don't dump executable pages as they contain 3749 * non-writable code that debugger can read directly from 3750 * target library etc. However, thread stacks are marked 3751 * also executable so we read in first page of given region 3752 * and check whether it contains elf header. If there is 3753 * no elf header, we dump it. 3754 */ 3755 if (vma->vma_flags & PROT_EXEC) { 3756 char page[TARGET_PAGE_SIZE]; 3757 3758 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3759 return 0; 3760 } 3761 if ((page[EI_MAG0] == ELFMAG0) && 3762 (page[EI_MAG1] == ELFMAG1) && 3763 (page[EI_MAG2] == ELFMAG2) && 3764 (page[EI_MAG3] == ELFMAG3)) { 3765 /* 3766 * Mappings are possibly from ELF binary. Don't dump 3767 * them. 3768 */ 3769 return (0); 3770 } 3771 } 3772 3773 return (vma->vma_end - vma->vma_start); 3774 } 3775 3776 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3777 unsigned long flags) 3778 { 3779 struct mm_struct *mm = (struct mm_struct *)priv; 3780 3781 vma_add_mapping(mm, start, end, flags); 3782 return (0); 3783 } 3784 3785 static void fill_note(struct memelfnote *note, const char *name, int type, 3786 unsigned int sz, void *data) 3787 { 3788 unsigned int namesz; 3789 3790 namesz = strlen(name) + 1; 3791 note->name = name; 3792 note->namesz = namesz; 3793 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3794 note->type = type; 3795 note->datasz = sz; 3796 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3797 3798 note->data = data; 3799 3800 /* 3801 * We calculate rounded up note size here as specified by 3802 * ELF document. 3803 */ 3804 note->notesz = sizeof (struct elf_note) + 3805 note->namesz_rounded + note->datasz_rounded; 3806 } 3807 3808 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3809 uint32_t flags) 3810 { 3811 (void) memset(elf, 0, sizeof(*elf)); 3812 3813 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3814 elf->e_ident[EI_CLASS] = ELF_CLASS; 3815 elf->e_ident[EI_DATA] = ELF_DATA; 3816 elf->e_ident[EI_VERSION] = EV_CURRENT; 3817 elf->e_ident[EI_OSABI] = ELF_OSABI; 3818 3819 elf->e_type = ET_CORE; 3820 elf->e_machine = machine; 3821 elf->e_version = EV_CURRENT; 3822 elf->e_phoff = sizeof(struct elfhdr); 3823 elf->e_flags = flags; 3824 elf->e_ehsize = sizeof(struct elfhdr); 3825 elf->e_phentsize = sizeof(struct elf_phdr); 3826 elf->e_phnum = segs; 3827 3828 bswap_ehdr(elf); 3829 } 3830 3831 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3832 { 3833 phdr->p_type = PT_NOTE; 3834 phdr->p_offset = offset; 3835 phdr->p_vaddr = 0; 3836 phdr->p_paddr = 0; 3837 phdr->p_filesz = sz; 3838 phdr->p_memsz = 0; 3839 phdr->p_flags = 0; 3840 phdr->p_align = 0; 3841 3842 bswap_phdr(phdr, 1); 3843 } 3844 3845 static size_t note_size(const struct memelfnote *note) 3846 { 3847 return (note->notesz); 3848 } 3849 3850 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3851 const TaskState *ts, int signr) 3852 { 3853 (void) memset(prstatus, 0, sizeof (*prstatus)); 3854 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3855 prstatus->pr_pid = ts->ts_tid; 3856 prstatus->pr_ppid = getppid(); 3857 prstatus->pr_pgrp = getpgrp(); 3858 prstatus->pr_sid = getsid(0); 3859 3860 bswap_prstatus(prstatus); 3861 } 3862 3863 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3864 { 3865 char *base_filename; 3866 unsigned int i, len; 3867 3868 (void) memset(psinfo, 0, sizeof (*psinfo)); 3869 3870 len = ts->info->env_strings - ts->info->arg_strings; 3871 if (len >= ELF_PRARGSZ) 3872 len = ELF_PRARGSZ - 1; 3873 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3874 return -EFAULT; 3875 } 3876 for (i = 0; i < len; i++) 3877 if (psinfo->pr_psargs[i] == 0) 3878 psinfo->pr_psargs[i] = ' '; 3879 psinfo->pr_psargs[len] = 0; 3880 3881 psinfo->pr_pid = getpid(); 3882 psinfo->pr_ppid = getppid(); 3883 psinfo->pr_pgrp = getpgrp(); 3884 psinfo->pr_sid = getsid(0); 3885 psinfo->pr_uid = getuid(); 3886 psinfo->pr_gid = getgid(); 3887 3888 base_filename = g_path_get_basename(ts->bprm->filename); 3889 /* 3890 * Using strncpy here is fine: at max-length, 3891 * this field is not NUL-terminated. 3892 */ 3893 (void) strncpy(psinfo->pr_fname, base_filename, 3894 sizeof(psinfo->pr_fname)); 3895 3896 g_free(base_filename); 3897 bswap_psinfo(psinfo); 3898 return (0); 3899 } 3900 3901 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3902 { 3903 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3904 elf_addr_t orig_auxv = auxv; 3905 void *ptr; 3906 int len = ts->info->auxv_len; 3907 3908 /* 3909 * Auxiliary vector is stored in target process stack. It contains 3910 * {type, value} pairs that we need to dump into note. This is not 3911 * strictly necessary but we do it here for sake of completeness. 3912 */ 3913 3914 /* read in whole auxv vector and copy it to memelfnote */ 3915 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3916 if (ptr != NULL) { 3917 fill_note(note, "CORE", NT_AUXV, len, ptr); 3918 unlock_user(ptr, auxv, len); 3919 } 3920 } 3921 3922 /* 3923 * Constructs name of coredump file. We have following convention 3924 * for the name: 3925 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3926 * 3927 * Returns the filename 3928 */ 3929 static char *core_dump_filename(const TaskState *ts) 3930 { 3931 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 3932 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 3933 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 3934 3935 return g_strdup_printf("qemu_%s_%s_%d.core", 3936 base_filename, nowstr, (int)getpid()); 3937 } 3938 3939 static int dump_write(int fd, const void *ptr, size_t size) 3940 { 3941 const char *bufp = (const char *)ptr; 3942 ssize_t bytes_written, bytes_left; 3943 struct rlimit dumpsize; 3944 off_t pos; 3945 3946 bytes_written = 0; 3947 getrlimit(RLIMIT_CORE, &dumpsize); 3948 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3949 if (errno == ESPIPE) { /* not a seekable stream */ 3950 bytes_left = size; 3951 } else { 3952 return pos; 3953 } 3954 } else { 3955 if (dumpsize.rlim_cur <= pos) { 3956 return -1; 3957 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3958 bytes_left = size; 3959 } else { 3960 size_t limit_left=dumpsize.rlim_cur - pos; 3961 bytes_left = limit_left >= size ? size : limit_left ; 3962 } 3963 } 3964 3965 /* 3966 * In normal conditions, single write(2) should do but 3967 * in case of socket etc. this mechanism is more portable. 3968 */ 3969 do { 3970 bytes_written = write(fd, bufp, bytes_left); 3971 if (bytes_written < 0) { 3972 if (errno == EINTR) 3973 continue; 3974 return (-1); 3975 } else if (bytes_written == 0) { /* eof */ 3976 return (-1); 3977 } 3978 bufp += bytes_written; 3979 bytes_left -= bytes_written; 3980 } while (bytes_left > 0); 3981 3982 return (0); 3983 } 3984 3985 static int write_note(struct memelfnote *men, int fd) 3986 { 3987 struct elf_note en; 3988 3989 en.n_namesz = men->namesz; 3990 en.n_type = men->type; 3991 en.n_descsz = men->datasz; 3992 3993 bswap_note(&en); 3994 3995 if (dump_write(fd, &en, sizeof(en)) != 0) 3996 return (-1); 3997 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3998 return (-1); 3999 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4000 return (-1); 4001 4002 return (0); 4003 } 4004 4005 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4006 { 4007 CPUState *cpu = env_cpu((CPUArchState *)env); 4008 TaskState *ts = (TaskState *)cpu->opaque; 4009 struct elf_thread_status *ets; 4010 4011 ets = g_malloc0(sizeof (*ets)); 4012 ets->num_notes = 1; /* only prstatus is dumped */ 4013 fill_prstatus(&ets->prstatus, ts, 0); 4014 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4015 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4016 &ets->prstatus); 4017 4018 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4019 4020 info->notes_size += note_size(&ets->notes[0]); 4021 } 4022 4023 static void init_note_info(struct elf_note_info *info) 4024 { 4025 /* Initialize the elf_note_info structure so that it is at 4026 * least safe to call free_note_info() on it. Must be 4027 * called before calling fill_note_info(). 4028 */ 4029 memset(info, 0, sizeof (*info)); 4030 QTAILQ_INIT(&info->thread_list); 4031 } 4032 4033 static int fill_note_info(struct elf_note_info *info, 4034 long signr, const CPUArchState *env) 4035 { 4036 #define NUMNOTES 3 4037 CPUState *cpu = env_cpu((CPUArchState *)env); 4038 TaskState *ts = (TaskState *)cpu->opaque; 4039 int i; 4040 4041 info->notes = g_new0(struct memelfnote, NUMNOTES); 4042 if (info->notes == NULL) 4043 return (-ENOMEM); 4044 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4045 if (info->prstatus == NULL) 4046 return (-ENOMEM); 4047 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4048 if (info->prstatus == NULL) 4049 return (-ENOMEM); 4050 4051 /* 4052 * First fill in status (and registers) of current thread 4053 * including process info & aux vector. 4054 */ 4055 fill_prstatus(info->prstatus, ts, signr); 4056 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4057 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4058 sizeof (*info->prstatus), info->prstatus); 4059 fill_psinfo(info->psinfo, ts); 4060 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4061 sizeof (*info->psinfo), info->psinfo); 4062 fill_auxv_note(&info->notes[2], ts); 4063 info->numnote = 3; 4064 4065 info->notes_size = 0; 4066 for (i = 0; i < info->numnote; i++) 4067 info->notes_size += note_size(&info->notes[i]); 4068 4069 /* read and fill status of all threads */ 4070 cpu_list_lock(); 4071 CPU_FOREACH(cpu) { 4072 if (cpu == thread_cpu) { 4073 continue; 4074 } 4075 fill_thread_info(info, cpu->env_ptr); 4076 } 4077 cpu_list_unlock(); 4078 4079 return (0); 4080 } 4081 4082 static void free_note_info(struct elf_note_info *info) 4083 { 4084 struct elf_thread_status *ets; 4085 4086 while (!QTAILQ_EMPTY(&info->thread_list)) { 4087 ets = QTAILQ_FIRST(&info->thread_list); 4088 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4089 g_free(ets); 4090 } 4091 4092 g_free(info->prstatus); 4093 g_free(info->psinfo); 4094 g_free(info->notes); 4095 } 4096 4097 static int write_note_info(struct elf_note_info *info, int fd) 4098 { 4099 struct elf_thread_status *ets; 4100 int i, error = 0; 4101 4102 /* write prstatus, psinfo and auxv for current thread */ 4103 for (i = 0; i < info->numnote; i++) 4104 if ((error = write_note(&info->notes[i], fd)) != 0) 4105 return (error); 4106 4107 /* write prstatus for each thread */ 4108 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4109 if ((error = write_note(&ets->notes[0], fd)) != 0) 4110 return (error); 4111 } 4112 4113 return (0); 4114 } 4115 4116 /* 4117 * Write out ELF coredump. 4118 * 4119 * See documentation of ELF object file format in: 4120 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4121 * 4122 * Coredump format in linux is following: 4123 * 4124 * 0 +----------------------+ \ 4125 * | ELF header | ET_CORE | 4126 * +----------------------+ | 4127 * | ELF program headers | |--- headers 4128 * | - NOTE section | | 4129 * | - PT_LOAD sections | | 4130 * +----------------------+ / 4131 * | NOTEs: | 4132 * | - NT_PRSTATUS | 4133 * | - NT_PRSINFO | 4134 * | - NT_AUXV | 4135 * +----------------------+ <-- aligned to target page 4136 * | Process memory dump | 4137 * : : 4138 * . . 4139 * : : 4140 * | | 4141 * +----------------------+ 4142 * 4143 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4144 * NT_PRSINFO -> struct elf_prpsinfo 4145 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4146 * 4147 * Format follows System V format as close as possible. Current 4148 * version limitations are as follows: 4149 * - no floating point registers are dumped 4150 * 4151 * Function returns 0 in case of success, negative errno otherwise. 4152 * 4153 * TODO: make this work also during runtime: it should be 4154 * possible to force coredump from running process and then 4155 * continue processing. For example qemu could set up SIGUSR2 4156 * handler (provided that target process haven't registered 4157 * handler for that) that does the dump when signal is received. 4158 */ 4159 static int elf_core_dump(int signr, const CPUArchState *env) 4160 { 4161 const CPUState *cpu = env_cpu((CPUArchState *)env); 4162 const TaskState *ts = (const TaskState *)cpu->opaque; 4163 struct vm_area_struct *vma = NULL; 4164 g_autofree char *corefile = NULL; 4165 struct elf_note_info info; 4166 struct elfhdr elf; 4167 struct elf_phdr phdr; 4168 struct rlimit dumpsize; 4169 struct mm_struct *mm = NULL; 4170 off_t offset = 0, data_offset = 0; 4171 int segs = 0; 4172 int fd = -1; 4173 4174 init_note_info(&info); 4175 4176 errno = 0; 4177 getrlimit(RLIMIT_CORE, &dumpsize); 4178 if (dumpsize.rlim_cur == 0) 4179 return 0; 4180 4181 corefile = core_dump_filename(ts); 4182 4183 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4184 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4185 return (-errno); 4186 4187 /* 4188 * Walk through target process memory mappings and 4189 * set up structure containing this information. After 4190 * this point vma_xxx functions can be used. 4191 */ 4192 if ((mm = vma_init()) == NULL) 4193 goto out; 4194 4195 walk_memory_regions(mm, vma_walker); 4196 segs = vma_get_mapping_count(mm); 4197 4198 /* 4199 * Construct valid coredump ELF header. We also 4200 * add one more segment for notes. 4201 */ 4202 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4203 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4204 goto out; 4205 4206 /* fill in the in-memory version of notes */ 4207 if (fill_note_info(&info, signr, env) < 0) 4208 goto out; 4209 4210 offset += sizeof (elf); /* elf header */ 4211 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4212 4213 /* write out notes program header */ 4214 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4215 4216 offset += info.notes_size; 4217 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4218 goto out; 4219 4220 /* 4221 * ELF specification wants data to start at page boundary so 4222 * we align it here. 4223 */ 4224 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4225 4226 /* 4227 * Write program headers for memory regions mapped in 4228 * the target process. 4229 */ 4230 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4231 (void) memset(&phdr, 0, sizeof (phdr)); 4232 4233 phdr.p_type = PT_LOAD; 4234 phdr.p_offset = offset; 4235 phdr.p_vaddr = vma->vma_start; 4236 phdr.p_paddr = 0; 4237 phdr.p_filesz = vma_dump_size(vma); 4238 offset += phdr.p_filesz; 4239 phdr.p_memsz = vma->vma_end - vma->vma_start; 4240 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4241 if (vma->vma_flags & PROT_WRITE) 4242 phdr.p_flags |= PF_W; 4243 if (vma->vma_flags & PROT_EXEC) 4244 phdr.p_flags |= PF_X; 4245 phdr.p_align = ELF_EXEC_PAGESIZE; 4246 4247 bswap_phdr(&phdr, 1); 4248 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4249 goto out; 4250 } 4251 } 4252 4253 /* 4254 * Next we write notes just after program headers. No 4255 * alignment needed here. 4256 */ 4257 if (write_note_info(&info, fd) < 0) 4258 goto out; 4259 4260 /* align data to page boundary */ 4261 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4262 goto out; 4263 4264 /* 4265 * Finally we can dump process memory into corefile as well. 4266 */ 4267 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4268 abi_ulong addr; 4269 abi_ulong end; 4270 4271 end = vma->vma_start + vma_dump_size(vma); 4272 4273 for (addr = vma->vma_start; addr < end; 4274 addr += TARGET_PAGE_SIZE) { 4275 char page[TARGET_PAGE_SIZE]; 4276 int error; 4277 4278 /* 4279 * Read in page from target process memory and 4280 * write it to coredump file. 4281 */ 4282 error = copy_from_user(page, addr, sizeof (page)); 4283 if (error != 0) { 4284 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4285 addr); 4286 errno = -error; 4287 goto out; 4288 } 4289 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4290 goto out; 4291 } 4292 } 4293 4294 out: 4295 free_note_info(&info); 4296 if (mm != NULL) 4297 vma_delete(mm); 4298 (void) close(fd); 4299 4300 if (errno != 0) 4301 return (-errno); 4302 return (0); 4303 } 4304 #endif /* USE_ELF_CORE_DUMP */ 4305 4306 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4307 { 4308 init_thread(regs, infop); 4309 } 4310