1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 475 * to our VFP_FP16 feature bit. 476 */ 477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 479 480 return hwcaps; 481 } 482 483 static uint32_t get_elf_hwcap2(void) 484 { 485 ARMCPU *cpu = ARM_CPU(thread_cpu); 486 uint32_t hwcaps = 0; 487 488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 493 return hwcaps; 494 } 495 496 #undef GET_FEATURE 497 498 #else 499 /* 64 bit ARM definitions */ 500 #define ELF_START_MMAP 0x80000000 501 502 #define ELF_ARCH EM_AARCH64 503 #define ELF_CLASS ELFCLASS64 504 #define ELF_PLATFORM "aarch64" 505 506 static inline void init_thread(struct target_pt_regs *regs, 507 struct image_info *infop) 508 { 509 abi_long stack = infop->start_stack; 510 memset(regs, 0, sizeof(*regs)); 511 512 regs->pc = infop->entry & ~0x3ULL; 513 regs->sp = stack; 514 } 515 516 #define ELF_NREG 34 517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 518 519 static void elf_core_copy_regs(target_elf_gregset_t *regs, 520 const CPUARMState *env) 521 { 522 int i; 523 524 for (i = 0; i < 32; i++) { 525 (*regs)[i] = tswapreg(env->xregs[i]); 526 } 527 (*regs)[32] = tswapreg(env->pc); 528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 529 } 530 531 #define USE_ELF_CORE_DUMP 532 #define ELF_EXEC_PAGESIZE 4096 533 534 enum { 535 ARM_HWCAP_A64_FP = 1 << 0, 536 ARM_HWCAP_A64_ASIMD = 1 << 1, 537 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 538 ARM_HWCAP_A64_AES = 1 << 3, 539 ARM_HWCAP_A64_PMULL = 1 << 4, 540 ARM_HWCAP_A64_SHA1 = 1 << 5, 541 ARM_HWCAP_A64_SHA2 = 1 << 6, 542 ARM_HWCAP_A64_CRC32 = 1 << 7, 543 ARM_HWCAP_A64_ATOMICS = 1 << 8, 544 ARM_HWCAP_A64_FPHP = 1 << 9, 545 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 546 ARM_HWCAP_A64_CPUID = 1 << 11, 547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 548 ARM_HWCAP_A64_JSCVT = 1 << 13, 549 ARM_HWCAP_A64_FCMA = 1 << 14, 550 ARM_HWCAP_A64_LRCPC = 1 << 15, 551 ARM_HWCAP_A64_DCPOP = 1 << 16, 552 ARM_HWCAP_A64_SHA3 = 1 << 17, 553 ARM_HWCAP_A64_SM3 = 1 << 18, 554 ARM_HWCAP_A64_SM4 = 1 << 19, 555 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 556 ARM_HWCAP_A64_SHA512 = 1 << 21, 557 ARM_HWCAP_A64_SVE = 1 << 22, 558 }; 559 560 #define ELF_HWCAP get_elf_hwcap() 561 562 static uint32_t get_elf_hwcap(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint32_t hwcaps = 0; 566 567 hwcaps |= ARM_HWCAP_A64_FP; 568 hwcaps |= ARM_HWCAP_A64_ASIMD; 569 570 /* probe for the extra features */ 571 #define GET_FEATURE(feat, hwcap) \ 572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 582 GET_FEATURE(ARM_FEATURE_V8_FP16, 583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 584 GET_FEATURE(ARM_FEATURE_V8_ATOMICS, ARM_HWCAP_A64_ATOMICS); 585 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 586 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 587 #undef GET_FEATURE 588 589 return hwcaps; 590 } 591 592 #endif /* not TARGET_AARCH64 */ 593 #endif /* TARGET_ARM */ 594 595 #ifdef TARGET_SPARC 596 #ifdef TARGET_SPARC64 597 598 #define ELF_START_MMAP 0x80000000 599 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 600 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 601 #ifndef TARGET_ABI32 602 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 603 #else 604 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 605 #endif 606 607 #define ELF_CLASS ELFCLASS64 608 #define ELF_ARCH EM_SPARCV9 609 610 #define STACK_BIAS 2047 611 612 static inline void init_thread(struct target_pt_regs *regs, 613 struct image_info *infop) 614 { 615 #ifndef TARGET_ABI32 616 regs->tstate = 0; 617 #endif 618 regs->pc = infop->entry; 619 regs->npc = regs->pc + 4; 620 regs->y = 0; 621 #ifdef TARGET_ABI32 622 regs->u_regs[14] = infop->start_stack - 16 * 4; 623 #else 624 if (personality(infop->personality) == PER_LINUX32) 625 regs->u_regs[14] = infop->start_stack - 16 * 4; 626 else 627 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 628 #endif 629 } 630 631 #else 632 #define ELF_START_MMAP 0x80000000 633 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 634 | HWCAP_SPARC_MULDIV) 635 636 #define ELF_CLASS ELFCLASS32 637 #define ELF_ARCH EM_SPARC 638 639 static inline void init_thread(struct target_pt_regs *regs, 640 struct image_info *infop) 641 { 642 regs->psr = 0; 643 regs->pc = infop->entry; 644 regs->npc = regs->pc + 4; 645 regs->y = 0; 646 regs->u_regs[14] = infop->start_stack - 16 * 4; 647 } 648 649 #endif 650 #endif 651 652 #ifdef TARGET_PPC 653 654 #define ELF_MACHINE PPC_ELF_MACHINE 655 #define ELF_START_MMAP 0x80000000 656 657 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 658 659 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 660 661 #define ELF_CLASS ELFCLASS64 662 663 #else 664 665 #define ELF_CLASS ELFCLASS32 666 667 #endif 668 669 #define ELF_ARCH EM_PPC 670 671 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 672 See arch/powerpc/include/asm/cputable.h. */ 673 enum { 674 QEMU_PPC_FEATURE_32 = 0x80000000, 675 QEMU_PPC_FEATURE_64 = 0x40000000, 676 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 677 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 678 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 679 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 680 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 681 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 682 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 683 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 684 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 685 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 686 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 687 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 688 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 689 QEMU_PPC_FEATURE_CELL = 0x00010000, 690 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 691 QEMU_PPC_FEATURE_SMT = 0x00004000, 692 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 693 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 694 QEMU_PPC_FEATURE_PA6T = 0x00000800, 695 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 696 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 697 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 698 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 699 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 700 701 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 702 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 703 704 /* Feature definitions in AT_HWCAP2. */ 705 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 706 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 707 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 708 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 709 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 710 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 711 }; 712 713 #define ELF_HWCAP get_elf_hwcap() 714 715 static uint32_t get_elf_hwcap(void) 716 { 717 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 718 uint32_t features = 0; 719 720 /* We don't have to be terribly complete here; the high points are 721 Altivec/FP/SPE support. Anything else is just a bonus. */ 722 #define GET_FEATURE(flag, feature) \ 723 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 724 #define GET_FEATURE2(flags, feature) \ 725 do { \ 726 if ((cpu->env.insns_flags2 & flags) == flags) { \ 727 features |= feature; \ 728 } \ 729 } while (0) 730 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 731 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 732 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 733 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 734 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 735 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 736 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 737 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 738 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 739 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 740 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 741 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 742 QEMU_PPC_FEATURE_ARCH_2_06); 743 #undef GET_FEATURE 744 #undef GET_FEATURE2 745 746 return features; 747 } 748 749 #define ELF_HWCAP2 get_elf_hwcap2() 750 751 static uint32_t get_elf_hwcap2(void) 752 { 753 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 754 uint32_t features = 0; 755 756 #define GET_FEATURE(flag, feature) \ 757 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 758 #define GET_FEATURE2(flag, feature) \ 759 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 760 761 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 762 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 763 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 764 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 765 766 #undef GET_FEATURE 767 #undef GET_FEATURE2 768 769 return features; 770 } 771 772 /* 773 * The requirements here are: 774 * - keep the final alignment of sp (sp & 0xf) 775 * - make sure the 32-bit value at the first 16 byte aligned position of 776 * AUXV is greater than 16 for glibc compatibility. 777 * AT_IGNOREPPC is used for that. 778 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 779 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 780 */ 781 #define DLINFO_ARCH_ITEMS 5 782 #define ARCH_DLINFO \ 783 do { \ 784 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 785 /* \ 786 * Handle glibc compatibility: these magic entries must \ 787 * be at the lowest addresses in the final auxv. \ 788 */ \ 789 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 790 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 791 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 792 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 793 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 794 } while (0) 795 796 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 797 { 798 _regs->gpr[1] = infop->start_stack; 799 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 800 if (get_ppc64_abi(infop) < 2) { 801 uint64_t val; 802 get_user_u64(val, infop->entry + 8); 803 _regs->gpr[2] = val + infop->load_bias; 804 get_user_u64(val, infop->entry); 805 infop->entry = val + infop->load_bias; 806 } else { 807 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 808 } 809 #endif 810 _regs->nip = infop->entry; 811 } 812 813 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 814 #define ELF_NREG 48 815 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 816 817 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 818 { 819 int i; 820 target_ulong ccr = 0; 821 822 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 823 (*regs)[i] = tswapreg(env->gpr[i]); 824 } 825 826 (*regs)[32] = tswapreg(env->nip); 827 (*regs)[33] = tswapreg(env->msr); 828 (*regs)[35] = tswapreg(env->ctr); 829 (*regs)[36] = tswapreg(env->lr); 830 (*regs)[37] = tswapreg(env->xer); 831 832 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 833 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 834 } 835 (*regs)[38] = tswapreg(ccr); 836 } 837 838 #define USE_ELF_CORE_DUMP 839 #define ELF_EXEC_PAGESIZE 4096 840 841 #endif 842 843 #ifdef TARGET_MIPS 844 845 #define ELF_START_MMAP 0x80000000 846 847 #ifdef TARGET_MIPS64 848 #define ELF_CLASS ELFCLASS64 849 #else 850 #define ELF_CLASS ELFCLASS32 851 #endif 852 #define ELF_ARCH EM_MIPS 853 854 static inline void init_thread(struct target_pt_regs *regs, 855 struct image_info *infop) 856 { 857 regs->cp0_status = 2 << CP0St_KSU; 858 regs->cp0_epc = infop->entry; 859 regs->regs[29] = infop->start_stack; 860 } 861 862 /* See linux kernel: arch/mips/include/asm/elf.h. */ 863 #define ELF_NREG 45 864 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 865 866 /* See linux kernel: arch/mips/include/asm/reg.h. */ 867 enum { 868 #ifdef TARGET_MIPS64 869 TARGET_EF_R0 = 0, 870 #else 871 TARGET_EF_R0 = 6, 872 #endif 873 TARGET_EF_R26 = TARGET_EF_R0 + 26, 874 TARGET_EF_R27 = TARGET_EF_R0 + 27, 875 TARGET_EF_LO = TARGET_EF_R0 + 32, 876 TARGET_EF_HI = TARGET_EF_R0 + 33, 877 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 878 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 879 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 880 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 881 }; 882 883 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 884 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 885 { 886 int i; 887 888 for (i = 0; i < TARGET_EF_R0; i++) { 889 (*regs)[i] = 0; 890 } 891 (*regs)[TARGET_EF_R0] = 0; 892 893 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 894 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 895 } 896 897 (*regs)[TARGET_EF_R26] = 0; 898 (*regs)[TARGET_EF_R27] = 0; 899 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 900 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 901 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 902 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 903 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 904 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 905 } 906 907 #define USE_ELF_CORE_DUMP 908 #define ELF_EXEC_PAGESIZE 4096 909 910 /* See arch/mips/include/uapi/asm/hwcap.h. */ 911 enum { 912 HWCAP_MIPS_R6 = (1 << 0), 913 HWCAP_MIPS_MSA = (1 << 1), 914 }; 915 916 #define ELF_HWCAP get_elf_hwcap() 917 918 static uint32_t get_elf_hwcap(void) 919 { 920 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 921 uint32_t hwcaps = 0; 922 923 #define GET_FEATURE(flag, hwcap) \ 924 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 925 926 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 927 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 928 929 #undef GET_FEATURE 930 931 return hwcaps; 932 } 933 934 #endif /* TARGET_MIPS */ 935 936 #ifdef TARGET_MICROBLAZE 937 938 #define ELF_START_MMAP 0x80000000 939 940 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 941 942 #define ELF_CLASS ELFCLASS32 943 #define ELF_ARCH EM_MICROBLAZE 944 945 static inline void init_thread(struct target_pt_regs *regs, 946 struct image_info *infop) 947 { 948 regs->pc = infop->entry; 949 regs->r1 = infop->start_stack; 950 951 } 952 953 #define ELF_EXEC_PAGESIZE 4096 954 955 #define USE_ELF_CORE_DUMP 956 #define ELF_NREG 38 957 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 958 959 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 960 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 961 { 962 int i, pos = 0; 963 964 for (i = 0; i < 32; i++) { 965 (*regs)[pos++] = tswapreg(env->regs[i]); 966 } 967 968 for (i = 0; i < 6; i++) { 969 (*regs)[pos++] = tswapreg(env->sregs[i]); 970 } 971 } 972 973 #endif /* TARGET_MICROBLAZE */ 974 975 #ifdef TARGET_NIOS2 976 977 #define ELF_START_MMAP 0x80000000 978 979 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 980 981 #define ELF_CLASS ELFCLASS32 982 #define ELF_ARCH EM_ALTERA_NIOS2 983 984 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 985 { 986 regs->ea = infop->entry; 987 regs->sp = infop->start_stack; 988 regs->estatus = 0x3; 989 } 990 991 #define ELF_EXEC_PAGESIZE 4096 992 993 #define USE_ELF_CORE_DUMP 994 #define ELF_NREG 49 995 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 996 997 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 998 static void elf_core_copy_regs(target_elf_gregset_t *regs, 999 const CPUNios2State *env) 1000 { 1001 int i; 1002 1003 (*regs)[0] = -1; 1004 for (i = 1; i < 8; i++) /* r0-r7 */ 1005 (*regs)[i] = tswapreg(env->regs[i + 7]); 1006 1007 for (i = 8; i < 16; i++) /* r8-r15 */ 1008 (*regs)[i] = tswapreg(env->regs[i - 8]); 1009 1010 for (i = 16; i < 24; i++) /* r16-r23 */ 1011 (*regs)[i] = tswapreg(env->regs[i + 7]); 1012 (*regs)[24] = -1; /* R_ET */ 1013 (*regs)[25] = -1; /* R_BT */ 1014 (*regs)[26] = tswapreg(env->regs[R_GP]); 1015 (*regs)[27] = tswapreg(env->regs[R_SP]); 1016 (*regs)[28] = tswapreg(env->regs[R_FP]); 1017 (*regs)[29] = tswapreg(env->regs[R_EA]); 1018 (*regs)[30] = -1; /* R_SSTATUS */ 1019 (*regs)[31] = tswapreg(env->regs[R_RA]); 1020 1021 (*regs)[32] = tswapreg(env->regs[R_PC]); 1022 1023 (*regs)[33] = -1; /* R_STATUS */ 1024 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1025 1026 for (i = 35; i < 49; i++) /* ... */ 1027 (*regs)[i] = -1; 1028 } 1029 1030 #endif /* TARGET_NIOS2 */ 1031 1032 #ifdef TARGET_OPENRISC 1033 1034 #define ELF_START_MMAP 0x08000000 1035 1036 #define ELF_ARCH EM_OPENRISC 1037 #define ELF_CLASS ELFCLASS32 1038 #define ELF_DATA ELFDATA2MSB 1039 1040 static inline void init_thread(struct target_pt_regs *regs, 1041 struct image_info *infop) 1042 { 1043 regs->pc = infop->entry; 1044 regs->gpr[1] = infop->start_stack; 1045 } 1046 1047 #define USE_ELF_CORE_DUMP 1048 #define ELF_EXEC_PAGESIZE 8192 1049 1050 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1051 #define ELF_NREG 34 /* gprs and pc, sr */ 1052 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1053 1054 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1055 const CPUOpenRISCState *env) 1056 { 1057 int i; 1058 1059 for (i = 0; i < 32; i++) { 1060 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1061 } 1062 (*regs)[32] = tswapreg(env->pc); 1063 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1064 } 1065 #define ELF_HWCAP 0 1066 #define ELF_PLATFORM NULL 1067 1068 #endif /* TARGET_OPENRISC */ 1069 1070 #ifdef TARGET_SH4 1071 1072 #define ELF_START_MMAP 0x80000000 1073 1074 #define ELF_CLASS ELFCLASS32 1075 #define ELF_ARCH EM_SH 1076 1077 static inline void init_thread(struct target_pt_regs *regs, 1078 struct image_info *infop) 1079 { 1080 /* Check other registers XXXXX */ 1081 regs->pc = infop->entry; 1082 regs->regs[15] = infop->start_stack; 1083 } 1084 1085 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1086 #define ELF_NREG 23 1087 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1088 1089 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1090 enum { 1091 TARGET_REG_PC = 16, 1092 TARGET_REG_PR = 17, 1093 TARGET_REG_SR = 18, 1094 TARGET_REG_GBR = 19, 1095 TARGET_REG_MACH = 20, 1096 TARGET_REG_MACL = 21, 1097 TARGET_REG_SYSCALL = 22 1098 }; 1099 1100 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1101 const CPUSH4State *env) 1102 { 1103 int i; 1104 1105 for (i = 0; i < 16; i++) { 1106 (*regs)[i] = tswapreg(env->gregs[i]); 1107 } 1108 1109 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1110 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1111 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1112 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1113 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1114 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1115 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1116 } 1117 1118 #define USE_ELF_CORE_DUMP 1119 #define ELF_EXEC_PAGESIZE 4096 1120 1121 enum { 1122 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1123 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1124 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1125 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1126 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1127 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1128 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1129 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1130 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1131 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1132 }; 1133 1134 #define ELF_HWCAP get_elf_hwcap() 1135 1136 static uint32_t get_elf_hwcap(void) 1137 { 1138 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1139 uint32_t hwcap = 0; 1140 1141 hwcap |= SH_CPU_HAS_FPU; 1142 1143 if (cpu->env.features & SH_FEATURE_SH4A) { 1144 hwcap |= SH_CPU_HAS_LLSC; 1145 } 1146 1147 return hwcap; 1148 } 1149 1150 #endif 1151 1152 #ifdef TARGET_CRIS 1153 1154 #define ELF_START_MMAP 0x80000000 1155 1156 #define ELF_CLASS ELFCLASS32 1157 #define ELF_ARCH EM_CRIS 1158 1159 static inline void init_thread(struct target_pt_regs *regs, 1160 struct image_info *infop) 1161 { 1162 regs->erp = infop->entry; 1163 } 1164 1165 #define ELF_EXEC_PAGESIZE 8192 1166 1167 #endif 1168 1169 #ifdef TARGET_M68K 1170 1171 #define ELF_START_MMAP 0x80000000 1172 1173 #define ELF_CLASS ELFCLASS32 1174 #define ELF_ARCH EM_68K 1175 1176 /* ??? Does this need to do anything? 1177 #define ELF_PLAT_INIT(_r) */ 1178 1179 static inline void init_thread(struct target_pt_regs *regs, 1180 struct image_info *infop) 1181 { 1182 regs->usp = infop->start_stack; 1183 regs->sr = 0; 1184 regs->pc = infop->entry; 1185 } 1186 1187 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1188 #define ELF_NREG 20 1189 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1190 1191 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1192 { 1193 (*regs)[0] = tswapreg(env->dregs[1]); 1194 (*regs)[1] = tswapreg(env->dregs[2]); 1195 (*regs)[2] = tswapreg(env->dregs[3]); 1196 (*regs)[3] = tswapreg(env->dregs[4]); 1197 (*regs)[4] = tswapreg(env->dregs[5]); 1198 (*regs)[5] = tswapreg(env->dregs[6]); 1199 (*regs)[6] = tswapreg(env->dregs[7]); 1200 (*regs)[7] = tswapreg(env->aregs[0]); 1201 (*regs)[8] = tswapreg(env->aregs[1]); 1202 (*regs)[9] = tswapreg(env->aregs[2]); 1203 (*regs)[10] = tswapreg(env->aregs[3]); 1204 (*regs)[11] = tswapreg(env->aregs[4]); 1205 (*regs)[12] = tswapreg(env->aregs[5]); 1206 (*regs)[13] = tswapreg(env->aregs[6]); 1207 (*regs)[14] = tswapreg(env->dregs[0]); 1208 (*regs)[15] = tswapreg(env->aregs[7]); 1209 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1210 (*regs)[17] = tswapreg(env->sr); 1211 (*regs)[18] = tswapreg(env->pc); 1212 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1213 } 1214 1215 #define USE_ELF_CORE_DUMP 1216 #define ELF_EXEC_PAGESIZE 8192 1217 1218 #endif 1219 1220 #ifdef TARGET_ALPHA 1221 1222 #define ELF_START_MMAP (0x30000000000ULL) 1223 1224 #define ELF_CLASS ELFCLASS64 1225 #define ELF_ARCH EM_ALPHA 1226 1227 static inline void init_thread(struct target_pt_regs *regs, 1228 struct image_info *infop) 1229 { 1230 regs->pc = infop->entry; 1231 regs->ps = 8; 1232 regs->usp = infop->start_stack; 1233 } 1234 1235 #define ELF_EXEC_PAGESIZE 8192 1236 1237 #endif /* TARGET_ALPHA */ 1238 1239 #ifdef TARGET_S390X 1240 1241 #define ELF_START_MMAP (0x20000000000ULL) 1242 1243 #define ELF_CLASS ELFCLASS64 1244 #define ELF_DATA ELFDATA2MSB 1245 #define ELF_ARCH EM_S390 1246 1247 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1248 { 1249 regs->psw.addr = infop->entry; 1250 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1251 regs->gprs[15] = infop->start_stack; 1252 } 1253 1254 #endif /* TARGET_S390X */ 1255 1256 #ifdef TARGET_TILEGX 1257 1258 /* 42 bits real used address, a half for user mode */ 1259 #define ELF_START_MMAP (0x00000020000000000ULL) 1260 1261 #define elf_check_arch(x) ((x) == EM_TILEGX) 1262 1263 #define ELF_CLASS ELFCLASS64 1264 #define ELF_DATA ELFDATA2LSB 1265 #define ELF_ARCH EM_TILEGX 1266 1267 static inline void init_thread(struct target_pt_regs *regs, 1268 struct image_info *infop) 1269 { 1270 regs->pc = infop->entry; 1271 regs->sp = infop->start_stack; 1272 1273 } 1274 1275 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1276 1277 #endif /* TARGET_TILEGX */ 1278 1279 #ifdef TARGET_RISCV 1280 1281 #define ELF_START_MMAP 0x80000000 1282 #define ELF_ARCH EM_RISCV 1283 1284 #ifdef TARGET_RISCV32 1285 #define ELF_CLASS ELFCLASS32 1286 #else 1287 #define ELF_CLASS ELFCLASS64 1288 #endif 1289 1290 static inline void init_thread(struct target_pt_regs *regs, 1291 struct image_info *infop) 1292 { 1293 regs->sepc = infop->entry; 1294 regs->sp = infop->start_stack; 1295 } 1296 1297 #define ELF_EXEC_PAGESIZE 4096 1298 1299 #endif /* TARGET_RISCV */ 1300 1301 #ifdef TARGET_HPPA 1302 1303 #define ELF_START_MMAP 0x80000000 1304 #define ELF_CLASS ELFCLASS32 1305 #define ELF_ARCH EM_PARISC 1306 #define ELF_PLATFORM "PARISC" 1307 #define STACK_GROWS_DOWN 0 1308 #define STACK_ALIGNMENT 64 1309 1310 static inline void init_thread(struct target_pt_regs *regs, 1311 struct image_info *infop) 1312 { 1313 regs->iaoq[0] = infop->entry; 1314 regs->iaoq[1] = infop->entry + 4; 1315 regs->gr[23] = 0; 1316 regs->gr[24] = infop->arg_start; 1317 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1318 /* The top-of-stack contains a linkage buffer. */ 1319 regs->gr[30] = infop->start_stack + 64; 1320 regs->gr[31] = infop->entry; 1321 } 1322 1323 #endif /* TARGET_HPPA */ 1324 1325 #ifdef TARGET_XTENSA 1326 1327 #define ELF_START_MMAP 0x20000000 1328 1329 #define ELF_CLASS ELFCLASS32 1330 #define ELF_ARCH EM_XTENSA 1331 1332 static inline void init_thread(struct target_pt_regs *regs, 1333 struct image_info *infop) 1334 { 1335 regs->windowbase = 0; 1336 regs->windowstart = 1; 1337 regs->areg[1] = infop->start_stack; 1338 regs->pc = infop->entry; 1339 } 1340 1341 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1342 #define ELF_NREG 128 1343 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1344 1345 enum { 1346 TARGET_REG_PC, 1347 TARGET_REG_PS, 1348 TARGET_REG_LBEG, 1349 TARGET_REG_LEND, 1350 TARGET_REG_LCOUNT, 1351 TARGET_REG_SAR, 1352 TARGET_REG_WINDOWSTART, 1353 TARGET_REG_WINDOWBASE, 1354 TARGET_REG_THREADPTR, 1355 TARGET_REG_AR0 = 64, 1356 }; 1357 1358 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1359 const CPUXtensaState *env) 1360 { 1361 unsigned i; 1362 1363 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1364 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1365 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1366 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1367 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1368 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1369 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1370 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1371 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1372 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1373 for (i = 0; i < env->config->nareg; ++i) { 1374 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1375 } 1376 } 1377 1378 #define USE_ELF_CORE_DUMP 1379 #define ELF_EXEC_PAGESIZE 4096 1380 1381 #endif /* TARGET_XTENSA */ 1382 1383 #ifndef ELF_PLATFORM 1384 #define ELF_PLATFORM (NULL) 1385 #endif 1386 1387 #ifndef ELF_MACHINE 1388 #define ELF_MACHINE ELF_ARCH 1389 #endif 1390 1391 #ifndef elf_check_arch 1392 #define elf_check_arch(x) ((x) == ELF_ARCH) 1393 #endif 1394 1395 #ifndef ELF_HWCAP 1396 #define ELF_HWCAP 0 1397 #endif 1398 1399 #ifndef STACK_GROWS_DOWN 1400 #define STACK_GROWS_DOWN 1 1401 #endif 1402 1403 #ifndef STACK_ALIGNMENT 1404 #define STACK_ALIGNMENT 16 1405 #endif 1406 1407 #ifdef TARGET_ABI32 1408 #undef ELF_CLASS 1409 #define ELF_CLASS ELFCLASS32 1410 #undef bswaptls 1411 #define bswaptls(ptr) bswap32s(ptr) 1412 #endif 1413 1414 #include "elf.h" 1415 1416 struct exec 1417 { 1418 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1419 unsigned int a_text; /* length of text, in bytes */ 1420 unsigned int a_data; /* length of data, in bytes */ 1421 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1422 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1423 unsigned int a_entry; /* start address */ 1424 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1425 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1426 }; 1427 1428 1429 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1430 #define OMAGIC 0407 1431 #define NMAGIC 0410 1432 #define ZMAGIC 0413 1433 #define QMAGIC 0314 1434 1435 /* Necessary parameters */ 1436 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1437 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1438 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1439 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1440 1441 #define DLINFO_ITEMS 15 1442 1443 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1444 { 1445 memcpy(to, from, n); 1446 } 1447 1448 #ifdef BSWAP_NEEDED 1449 static void bswap_ehdr(struct elfhdr *ehdr) 1450 { 1451 bswap16s(&ehdr->e_type); /* Object file type */ 1452 bswap16s(&ehdr->e_machine); /* Architecture */ 1453 bswap32s(&ehdr->e_version); /* Object file version */ 1454 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1455 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1456 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1457 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1458 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1459 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1460 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1461 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1462 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1463 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1464 } 1465 1466 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1467 { 1468 int i; 1469 for (i = 0; i < phnum; ++i, ++phdr) { 1470 bswap32s(&phdr->p_type); /* Segment type */ 1471 bswap32s(&phdr->p_flags); /* Segment flags */ 1472 bswaptls(&phdr->p_offset); /* Segment file offset */ 1473 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1474 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1475 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1476 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1477 bswaptls(&phdr->p_align); /* Segment alignment */ 1478 } 1479 } 1480 1481 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1482 { 1483 int i; 1484 for (i = 0; i < shnum; ++i, ++shdr) { 1485 bswap32s(&shdr->sh_name); 1486 bswap32s(&shdr->sh_type); 1487 bswaptls(&shdr->sh_flags); 1488 bswaptls(&shdr->sh_addr); 1489 bswaptls(&shdr->sh_offset); 1490 bswaptls(&shdr->sh_size); 1491 bswap32s(&shdr->sh_link); 1492 bswap32s(&shdr->sh_info); 1493 bswaptls(&shdr->sh_addralign); 1494 bswaptls(&shdr->sh_entsize); 1495 } 1496 } 1497 1498 static void bswap_sym(struct elf_sym *sym) 1499 { 1500 bswap32s(&sym->st_name); 1501 bswaptls(&sym->st_value); 1502 bswaptls(&sym->st_size); 1503 bswap16s(&sym->st_shndx); 1504 } 1505 #else 1506 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1507 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1508 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1509 static inline void bswap_sym(struct elf_sym *sym) { } 1510 #endif 1511 1512 #ifdef USE_ELF_CORE_DUMP 1513 static int elf_core_dump(int, const CPUArchState *); 1514 #endif /* USE_ELF_CORE_DUMP */ 1515 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1516 1517 /* Verify the portions of EHDR within E_IDENT for the target. 1518 This can be performed before bswapping the entire header. */ 1519 static bool elf_check_ident(struct elfhdr *ehdr) 1520 { 1521 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1522 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1523 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1524 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1525 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1526 && ehdr->e_ident[EI_DATA] == ELF_DATA 1527 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1528 } 1529 1530 /* Verify the portions of EHDR outside of E_IDENT for the target. 1531 This has to wait until after bswapping the header. */ 1532 static bool elf_check_ehdr(struct elfhdr *ehdr) 1533 { 1534 return (elf_check_arch(ehdr->e_machine) 1535 && ehdr->e_ehsize == sizeof(struct elfhdr) 1536 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1537 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1538 } 1539 1540 /* 1541 * 'copy_elf_strings()' copies argument/envelope strings from user 1542 * memory to free pages in kernel mem. These are in a format ready 1543 * to be put directly into the top of new user memory. 1544 * 1545 */ 1546 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1547 abi_ulong p, abi_ulong stack_limit) 1548 { 1549 char *tmp; 1550 int len, i; 1551 abi_ulong top = p; 1552 1553 if (!p) { 1554 return 0; /* bullet-proofing */ 1555 } 1556 1557 if (STACK_GROWS_DOWN) { 1558 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1559 for (i = argc - 1; i >= 0; --i) { 1560 tmp = argv[i]; 1561 if (!tmp) { 1562 fprintf(stderr, "VFS: argc is wrong"); 1563 exit(-1); 1564 } 1565 len = strlen(tmp) + 1; 1566 tmp += len; 1567 1568 if (len > (p - stack_limit)) { 1569 return 0; 1570 } 1571 while (len) { 1572 int bytes_to_copy = (len > offset) ? offset : len; 1573 tmp -= bytes_to_copy; 1574 p -= bytes_to_copy; 1575 offset -= bytes_to_copy; 1576 len -= bytes_to_copy; 1577 1578 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1579 1580 if (offset == 0) { 1581 memcpy_to_target(p, scratch, top - p); 1582 top = p; 1583 offset = TARGET_PAGE_SIZE; 1584 } 1585 } 1586 } 1587 if (p != top) { 1588 memcpy_to_target(p, scratch + offset, top - p); 1589 } 1590 } else { 1591 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1592 for (i = 0; i < argc; ++i) { 1593 tmp = argv[i]; 1594 if (!tmp) { 1595 fprintf(stderr, "VFS: argc is wrong"); 1596 exit(-1); 1597 } 1598 len = strlen(tmp) + 1; 1599 if (len > (stack_limit - p)) { 1600 return 0; 1601 } 1602 while (len) { 1603 int bytes_to_copy = (len > remaining) ? remaining : len; 1604 1605 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1606 1607 tmp += bytes_to_copy; 1608 remaining -= bytes_to_copy; 1609 p += bytes_to_copy; 1610 len -= bytes_to_copy; 1611 1612 if (remaining == 0) { 1613 memcpy_to_target(top, scratch, p - top); 1614 top = p; 1615 remaining = TARGET_PAGE_SIZE; 1616 } 1617 } 1618 } 1619 if (p != top) { 1620 memcpy_to_target(top, scratch, p - top); 1621 } 1622 } 1623 1624 return p; 1625 } 1626 1627 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1628 * argument/environment space. Newer kernels (>2.6.33) allow more, 1629 * dependent on stack size, but guarantee at least 32 pages for 1630 * backwards compatibility. 1631 */ 1632 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1633 1634 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1635 struct image_info *info) 1636 { 1637 abi_ulong size, error, guard; 1638 1639 size = guest_stack_size; 1640 if (size < STACK_LOWER_LIMIT) { 1641 size = STACK_LOWER_LIMIT; 1642 } 1643 guard = TARGET_PAGE_SIZE; 1644 if (guard < qemu_real_host_page_size) { 1645 guard = qemu_real_host_page_size; 1646 } 1647 1648 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1649 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1650 if (error == -1) { 1651 perror("mmap stack"); 1652 exit(-1); 1653 } 1654 1655 /* We reserve one extra page at the top of the stack as guard. */ 1656 if (STACK_GROWS_DOWN) { 1657 target_mprotect(error, guard, PROT_NONE); 1658 info->stack_limit = error + guard; 1659 return info->stack_limit + size - sizeof(void *); 1660 } else { 1661 target_mprotect(error + size, guard, PROT_NONE); 1662 info->stack_limit = error + size; 1663 return error; 1664 } 1665 } 1666 1667 /* Map and zero the bss. We need to explicitly zero any fractional pages 1668 after the data section (i.e. bss). */ 1669 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1670 { 1671 uintptr_t host_start, host_map_start, host_end; 1672 1673 last_bss = TARGET_PAGE_ALIGN(last_bss); 1674 1675 /* ??? There is confusion between qemu_real_host_page_size and 1676 qemu_host_page_size here and elsewhere in target_mmap, which 1677 may lead to the end of the data section mapping from the file 1678 not being mapped. At least there was an explicit test and 1679 comment for that here, suggesting that "the file size must 1680 be known". The comment probably pre-dates the introduction 1681 of the fstat system call in target_mmap which does in fact 1682 find out the size. What isn't clear is if the workaround 1683 here is still actually needed. For now, continue with it, 1684 but merge it with the "normal" mmap that would allocate the bss. */ 1685 1686 host_start = (uintptr_t) g2h(elf_bss); 1687 host_end = (uintptr_t) g2h(last_bss); 1688 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1689 1690 if (host_map_start < host_end) { 1691 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1692 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1693 if (p == MAP_FAILED) { 1694 perror("cannot mmap brk"); 1695 exit(-1); 1696 } 1697 } 1698 1699 /* Ensure that the bss page(s) are valid */ 1700 if ((page_get_flags(last_bss-1) & prot) != prot) { 1701 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1702 } 1703 1704 if (host_start < host_map_start) { 1705 memset((void *)host_start, 0, host_map_start - host_start); 1706 } 1707 } 1708 1709 #ifdef TARGET_ARM 1710 static int elf_is_fdpic(struct elfhdr *exec) 1711 { 1712 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1713 } 1714 #else 1715 /* Default implementation, always false. */ 1716 static int elf_is_fdpic(struct elfhdr *exec) 1717 { 1718 return 0; 1719 } 1720 #endif 1721 1722 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1723 { 1724 uint16_t n; 1725 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1726 1727 /* elf32_fdpic_loadseg */ 1728 n = info->nsegs; 1729 while (n--) { 1730 sp -= 12; 1731 put_user_u32(loadsegs[n].addr, sp+0); 1732 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1733 put_user_u32(loadsegs[n].p_memsz, sp+8); 1734 } 1735 1736 /* elf32_fdpic_loadmap */ 1737 sp -= 4; 1738 put_user_u16(0, sp+0); /* version */ 1739 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1740 1741 info->personality = PER_LINUX_FDPIC; 1742 info->loadmap_addr = sp; 1743 1744 return sp; 1745 } 1746 1747 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1748 struct elfhdr *exec, 1749 struct image_info *info, 1750 struct image_info *interp_info) 1751 { 1752 abi_ulong sp; 1753 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1754 int size; 1755 int i; 1756 abi_ulong u_rand_bytes; 1757 uint8_t k_rand_bytes[16]; 1758 abi_ulong u_platform; 1759 const char *k_platform; 1760 const int n = sizeof(elf_addr_t); 1761 1762 sp = p; 1763 1764 /* Needs to be before we load the env/argc/... */ 1765 if (elf_is_fdpic(exec)) { 1766 /* Need 4 byte alignment for these structs */ 1767 sp &= ~3; 1768 sp = loader_build_fdpic_loadmap(info, sp); 1769 info->other_info = interp_info; 1770 if (interp_info) { 1771 interp_info->other_info = info; 1772 sp = loader_build_fdpic_loadmap(interp_info, sp); 1773 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1774 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1775 } else { 1776 info->interpreter_loadmap_addr = 0; 1777 info->interpreter_pt_dynamic_addr = 0; 1778 } 1779 } 1780 1781 u_platform = 0; 1782 k_platform = ELF_PLATFORM; 1783 if (k_platform) { 1784 size_t len = strlen(k_platform) + 1; 1785 if (STACK_GROWS_DOWN) { 1786 sp -= (len + n - 1) & ~(n - 1); 1787 u_platform = sp; 1788 /* FIXME - check return value of memcpy_to_target() for failure */ 1789 memcpy_to_target(sp, k_platform, len); 1790 } else { 1791 memcpy_to_target(sp, k_platform, len); 1792 u_platform = sp; 1793 sp += len + 1; 1794 } 1795 } 1796 1797 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1798 * the argv and envp pointers. 1799 */ 1800 if (STACK_GROWS_DOWN) { 1801 sp = QEMU_ALIGN_DOWN(sp, 16); 1802 } else { 1803 sp = QEMU_ALIGN_UP(sp, 16); 1804 } 1805 1806 /* 1807 * Generate 16 random bytes for userspace PRNG seeding (not 1808 * cryptically secure but it's not the aim of QEMU). 1809 */ 1810 for (i = 0; i < 16; i++) { 1811 k_rand_bytes[i] = rand(); 1812 } 1813 if (STACK_GROWS_DOWN) { 1814 sp -= 16; 1815 u_rand_bytes = sp; 1816 /* FIXME - check return value of memcpy_to_target() for failure */ 1817 memcpy_to_target(sp, k_rand_bytes, 16); 1818 } else { 1819 memcpy_to_target(sp, k_rand_bytes, 16); 1820 u_rand_bytes = sp; 1821 sp += 16; 1822 } 1823 1824 size = (DLINFO_ITEMS + 1) * 2; 1825 if (k_platform) 1826 size += 2; 1827 #ifdef DLINFO_ARCH_ITEMS 1828 size += DLINFO_ARCH_ITEMS * 2; 1829 #endif 1830 #ifdef ELF_HWCAP2 1831 size += 2; 1832 #endif 1833 info->auxv_len = size * n; 1834 1835 size += envc + argc + 2; 1836 size += 1; /* argc itself */ 1837 size *= n; 1838 1839 /* Allocate space and finalize stack alignment for entry now. */ 1840 if (STACK_GROWS_DOWN) { 1841 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1842 sp = u_argc; 1843 } else { 1844 u_argc = sp; 1845 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1846 } 1847 1848 u_argv = u_argc + n; 1849 u_envp = u_argv + (argc + 1) * n; 1850 u_auxv = u_envp + (envc + 1) * n; 1851 info->saved_auxv = u_auxv; 1852 info->arg_start = u_argv; 1853 info->arg_end = u_argv + argc * n; 1854 1855 /* This is correct because Linux defines 1856 * elf_addr_t as Elf32_Off / Elf64_Off 1857 */ 1858 #define NEW_AUX_ENT(id, val) do { \ 1859 put_user_ual(id, u_auxv); u_auxv += n; \ 1860 put_user_ual(val, u_auxv); u_auxv += n; \ 1861 } while(0) 1862 1863 #ifdef ARCH_DLINFO 1864 /* 1865 * ARCH_DLINFO must come first so platform specific code can enforce 1866 * special alignment requirements on the AUXV if necessary (eg. PPC). 1867 */ 1868 ARCH_DLINFO; 1869 #endif 1870 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1871 * on info->auxv_len will trigger. 1872 */ 1873 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1874 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1875 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1876 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1877 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1878 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1879 NEW_AUX_ENT(AT_ENTRY, info->entry); 1880 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1881 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1882 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1883 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1884 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1885 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1886 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1887 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1888 1889 #ifdef ELF_HWCAP2 1890 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1891 #endif 1892 1893 if (u_platform) { 1894 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1895 } 1896 NEW_AUX_ENT (AT_NULL, 0); 1897 #undef NEW_AUX_ENT 1898 1899 /* Check that our initial calculation of the auxv length matches how much 1900 * we actually put into it. 1901 */ 1902 assert(info->auxv_len == u_auxv - info->saved_auxv); 1903 1904 put_user_ual(argc, u_argc); 1905 1906 p = info->arg_strings; 1907 for (i = 0; i < argc; ++i) { 1908 put_user_ual(p, u_argv); 1909 u_argv += n; 1910 p += target_strlen(p) + 1; 1911 } 1912 put_user_ual(0, u_argv); 1913 1914 p = info->env_strings; 1915 for (i = 0; i < envc; ++i) { 1916 put_user_ual(p, u_envp); 1917 u_envp += n; 1918 p += target_strlen(p) + 1; 1919 } 1920 put_user_ual(0, u_envp); 1921 1922 return sp; 1923 } 1924 1925 unsigned long init_guest_space(unsigned long host_start, 1926 unsigned long host_size, 1927 unsigned long guest_start, 1928 bool fixed) 1929 { 1930 unsigned long current_start, aligned_start; 1931 int flags; 1932 1933 assert(host_start || host_size); 1934 1935 /* If just a starting address is given, then just verify that 1936 * address. */ 1937 if (host_start && !host_size) { 1938 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1939 if (init_guest_commpage(host_start, host_size) != 1) { 1940 return (unsigned long)-1; 1941 } 1942 #endif 1943 return host_start; 1944 } 1945 1946 /* Setup the initial flags and start address. */ 1947 current_start = host_start & qemu_host_page_mask; 1948 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1949 if (fixed) { 1950 flags |= MAP_FIXED; 1951 } 1952 1953 /* Otherwise, a non-zero size region of memory needs to be mapped 1954 * and validated. */ 1955 1956 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1957 /* On 32-bit ARM, we need to map not just the usable memory, but 1958 * also the commpage. Try to find a suitable place by allocating 1959 * a big chunk for all of it. If host_start, then the naive 1960 * strategy probably does good enough. 1961 */ 1962 if (!host_start) { 1963 unsigned long guest_full_size, host_full_size, real_start; 1964 1965 guest_full_size = 1966 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 1967 host_full_size = guest_full_size - guest_start; 1968 real_start = (unsigned long) 1969 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 1970 if (real_start == (unsigned long)-1) { 1971 if (host_size < host_full_size - qemu_host_page_size) { 1972 /* We failed to map a continous segment, but we're 1973 * allowed to have a gap between the usable memory and 1974 * the commpage where other things can be mapped. 1975 * This sparseness gives us more flexibility to find 1976 * an address range. 1977 */ 1978 goto naive; 1979 } 1980 return (unsigned long)-1; 1981 } 1982 munmap((void *)real_start, host_full_size); 1983 if (real_start & ~qemu_host_page_mask) { 1984 /* The same thing again, but with an extra qemu_host_page_size 1985 * so that we can shift around alignment. 1986 */ 1987 unsigned long real_size = host_full_size + qemu_host_page_size; 1988 real_start = (unsigned long) 1989 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 1990 if (real_start == (unsigned long)-1) { 1991 if (host_size < host_full_size - qemu_host_page_size) { 1992 goto naive; 1993 } 1994 return (unsigned long)-1; 1995 } 1996 munmap((void *)real_start, real_size); 1997 real_start = HOST_PAGE_ALIGN(real_start); 1998 } 1999 current_start = real_start; 2000 } 2001 naive: 2002 #endif 2003 2004 while (1) { 2005 unsigned long real_start, real_size, aligned_size; 2006 aligned_size = real_size = host_size; 2007 2008 /* Do not use mmap_find_vma here because that is limited to the 2009 * guest address space. We are going to make the 2010 * guest address space fit whatever we're given. 2011 */ 2012 real_start = (unsigned long) 2013 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2014 if (real_start == (unsigned long)-1) { 2015 return (unsigned long)-1; 2016 } 2017 2018 /* Check to see if the address is valid. */ 2019 if (host_start && real_start != current_start) { 2020 goto try_again; 2021 } 2022 2023 /* Ensure the address is properly aligned. */ 2024 if (real_start & ~qemu_host_page_mask) { 2025 /* Ideally, we adjust like 2026 * 2027 * pages: [ ][ ][ ][ ][ ] 2028 * old: [ real ] 2029 * [ aligned ] 2030 * new: [ real ] 2031 * [ aligned ] 2032 * 2033 * But if there is something else mapped right after it, 2034 * then obviously it won't have room to grow, and the 2035 * kernel will put the new larger real someplace else with 2036 * unknown alignment (if we made it to here, then 2037 * fixed=false). Which is why we grow real by a full page 2038 * size, instead of by part of one; so that even if we get 2039 * moved, we can still guarantee alignment. But this does 2040 * mean that there is a padding of < 1 page both before 2041 * and after the aligned range; the "after" could could 2042 * cause problems for ARM emulation where it could butt in 2043 * to where we need to put the commpage. 2044 */ 2045 munmap((void *)real_start, host_size); 2046 real_size = aligned_size + qemu_host_page_size; 2047 real_start = (unsigned long) 2048 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2049 if (real_start == (unsigned long)-1) { 2050 return (unsigned long)-1; 2051 } 2052 aligned_start = HOST_PAGE_ALIGN(real_start); 2053 } else { 2054 aligned_start = real_start; 2055 } 2056 2057 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2058 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2059 int valid = init_guest_commpage(aligned_start - guest_start, 2060 aligned_size + guest_start); 2061 if (valid == -1) { 2062 munmap((void *)real_start, real_size); 2063 return (unsigned long)-1; 2064 } else if (valid == 0) { 2065 goto try_again; 2066 } 2067 #endif 2068 2069 /* If nothing has said `return -1` or `goto try_again` yet, 2070 * then the address we have is good. 2071 */ 2072 break; 2073 2074 try_again: 2075 /* That address didn't work. Unmap and try a different one. 2076 * The address the host picked because is typically right at 2077 * the top of the host address space and leaves the guest with 2078 * no usable address space. Resort to a linear search. We 2079 * already compensated for mmap_min_addr, so this should not 2080 * happen often. Probably means we got unlucky and host 2081 * address space randomization put a shared library somewhere 2082 * inconvenient. 2083 * 2084 * This is probably a good strategy if host_start, but is 2085 * probably a bad strategy if not, which means we got here 2086 * because of trouble with ARM commpage setup. 2087 */ 2088 munmap((void *)real_start, real_size); 2089 current_start += qemu_host_page_size; 2090 if (host_start == current_start) { 2091 /* Theoretically possible if host doesn't have any suitably 2092 * aligned areas. Normally the first mmap will fail. 2093 */ 2094 return (unsigned long)-1; 2095 } 2096 } 2097 2098 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2099 2100 return aligned_start; 2101 } 2102 2103 static void probe_guest_base(const char *image_name, 2104 abi_ulong loaddr, abi_ulong hiaddr) 2105 { 2106 /* Probe for a suitable guest base address, if the user has not set 2107 * it explicitly, and set guest_base appropriately. 2108 * In case of error we will print a suitable message and exit. 2109 */ 2110 const char *errmsg; 2111 if (!have_guest_base && !reserved_va) { 2112 unsigned long host_start, real_start, host_size; 2113 2114 /* Round addresses to page boundaries. */ 2115 loaddr &= qemu_host_page_mask; 2116 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2117 2118 if (loaddr < mmap_min_addr) { 2119 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2120 } else { 2121 host_start = loaddr; 2122 if (host_start != loaddr) { 2123 errmsg = "Address overflow loading ELF binary"; 2124 goto exit_errmsg; 2125 } 2126 } 2127 host_size = hiaddr - loaddr; 2128 2129 /* Setup the initial guest memory space with ranges gleaned from 2130 * the ELF image that is being loaded. 2131 */ 2132 real_start = init_guest_space(host_start, host_size, loaddr, false); 2133 if (real_start == (unsigned long)-1) { 2134 errmsg = "Unable to find space for application"; 2135 goto exit_errmsg; 2136 } 2137 guest_base = real_start - loaddr; 2138 2139 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2140 TARGET_ABI_FMT_lx " to 0x%lx\n", 2141 loaddr, real_start); 2142 } 2143 return; 2144 2145 exit_errmsg: 2146 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2147 exit(-1); 2148 } 2149 2150 2151 /* Load an ELF image into the address space. 2152 2153 IMAGE_NAME is the filename of the image, to use in error messages. 2154 IMAGE_FD is the open file descriptor for the image. 2155 2156 BPRM_BUF is a copy of the beginning of the file; this of course 2157 contains the elf file header at offset 0. It is assumed that this 2158 buffer is sufficiently aligned to present no problems to the host 2159 in accessing data at aligned offsets within the buffer. 2160 2161 On return: INFO values will be filled in, as necessary or available. */ 2162 2163 static void load_elf_image(const char *image_name, int image_fd, 2164 struct image_info *info, char **pinterp_name, 2165 char bprm_buf[BPRM_BUF_SIZE]) 2166 { 2167 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2168 struct elf_phdr *phdr; 2169 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2170 int i, retval; 2171 const char *errmsg; 2172 2173 /* First of all, some simple consistency checks */ 2174 errmsg = "Invalid ELF image for this architecture"; 2175 if (!elf_check_ident(ehdr)) { 2176 goto exit_errmsg; 2177 } 2178 bswap_ehdr(ehdr); 2179 if (!elf_check_ehdr(ehdr)) { 2180 goto exit_errmsg; 2181 } 2182 2183 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2184 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2185 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2186 } else { 2187 phdr = (struct elf_phdr *) alloca(i); 2188 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2189 if (retval != i) { 2190 goto exit_read; 2191 } 2192 } 2193 bswap_phdr(phdr, ehdr->e_phnum); 2194 2195 info->nsegs = 0; 2196 info->pt_dynamic_addr = 0; 2197 2198 mmap_lock(); 2199 2200 /* Find the maximum size of the image and allocate an appropriate 2201 amount of memory to handle that. */ 2202 loaddr = -1, hiaddr = 0; 2203 for (i = 0; i < ehdr->e_phnum; ++i) { 2204 if (phdr[i].p_type == PT_LOAD) { 2205 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2206 if (a < loaddr) { 2207 loaddr = a; 2208 } 2209 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2210 if (a > hiaddr) { 2211 hiaddr = a; 2212 } 2213 ++info->nsegs; 2214 } 2215 } 2216 2217 load_addr = loaddr; 2218 if (ehdr->e_type == ET_DYN) { 2219 /* The image indicates that it can be loaded anywhere. Find a 2220 location that can hold the memory space required. If the 2221 image is pre-linked, LOADDR will be non-zero. Since we do 2222 not supply MAP_FIXED here we'll use that address if and 2223 only if it remains available. */ 2224 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2225 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2226 -1, 0); 2227 if (load_addr == -1) { 2228 goto exit_perror; 2229 } 2230 } else if (pinterp_name != NULL) { 2231 /* This is the main executable. Make sure that the low 2232 address does not conflict with MMAP_MIN_ADDR or the 2233 QEMU application itself. */ 2234 probe_guest_base(image_name, loaddr, hiaddr); 2235 } 2236 load_bias = load_addr - loaddr; 2237 2238 if (elf_is_fdpic(ehdr)) { 2239 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2240 g_malloc(sizeof(*loadsegs) * info->nsegs); 2241 2242 for (i = 0; i < ehdr->e_phnum; ++i) { 2243 switch (phdr[i].p_type) { 2244 case PT_DYNAMIC: 2245 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2246 break; 2247 case PT_LOAD: 2248 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2249 loadsegs->p_vaddr = phdr[i].p_vaddr; 2250 loadsegs->p_memsz = phdr[i].p_memsz; 2251 ++loadsegs; 2252 break; 2253 } 2254 } 2255 } 2256 2257 info->load_bias = load_bias; 2258 info->load_addr = load_addr; 2259 info->entry = ehdr->e_entry + load_bias; 2260 info->start_code = -1; 2261 info->end_code = 0; 2262 info->start_data = -1; 2263 info->end_data = 0; 2264 info->brk = 0; 2265 info->elf_flags = ehdr->e_flags; 2266 2267 for (i = 0; i < ehdr->e_phnum; i++) { 2268 struct elf_phdr *eppnt = phdr + i; 2269 if (eppnt->p_type == PT_LOAD) { 2270 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2271 int elf_prot = 0; 2272 2273 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2274 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2275 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2276 2277 vaddr = load_bias + eppnt->p_vaddr; 2278 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2279 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2280 2281 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2282 elf_prot, MAP_PRIVATE | MAP_FIXED, 2283 image_fd, eppnt->p_offset - vaddr_po); 2284 if (error == -1) { 2285 goto exit_perror; 2286 } 2287 2288 vaddr_ef = vaddr + eppnt->p_filesz; 2289 vaddr_em = vaddr + eppnt->p_memsz; 2290 2291 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2292 if (vaddr_ef < vaddr_em) { 2293 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2294 } 2295 2296 /* Find the full program boundaries. */ 2297 if (elf_prot & PROT_EXEC) { 2298 if (vaddr < info->start_code) { 2299 info->start_code = vaddr; 2300 } 2301 if (vaddr_ef > info->end_code) { 2302 info->end_code = vaddr_ef; 2303 } 2304 } 2305 if (elf_prot & PROT_WRITE) { 2306 if (vaddr < info->start_data) { 2307 info->start_data = vaddr; 2308 } 2309 if (vaddr_ef > info->end_data) { 2310 info->end_data = vaddr_ef; 2311 } 2312 if (vaddr_em > info->brk) { 2313 info->brk = vaddr_em; 2314 } 2315 } 2316 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2317 char *interp_name; 2318 2319 if (*pinterp_name) { 2320 errmsg = "Multiple PT_INTERP entries"; 2321 goto exit_errmsg; 2322 } 2323 interp_name = malloc(eppnt->p_filesz); 2324 if (!interp_name) { 2325 goto exit_perror; 2326 } 2327 2328 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2329 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2330 eppnt->p_filesz); 2331 } else { 2332 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2333 eppnt->p_offset); 2334 if (retval != eppnt->p_filesz) { 2335 goto exit_perror; 2336 } 2337 } 2338 if (interp_name[eppnt->p_filesz - 1] != 0) { 2339 errmsg = "Invalid PT_INTERP entry"; 2340 goto exit_errmsg; 2341 } 2342 *pinterp_name = interp_name; 2343 } 2344 } 2345 2346 if (info->end_data == 0) { 2347 info->start_data = info->end_code; 2348 info->end_data = info->end_code; 2349 info->brk = info->end_code; 2350 } 2351 2352 if (qemu_log_enabled()) { 2353 load_symbols(ehdr, image_fd, load_bias); 2354 } 2355 2356 mmap_unlock(); 2357 2358 close(image_fd); 2359 return; 2360 2361 exit_read: 2362 if (retval >= 0) { 2363 errmsg = "Incomplete read of file header"; 2364 goto exit_errmsg; 2365 } 2366 exit_perror: 2367 errmsg = strerror(errno); 2368 exit_errmsg: 2369 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2370 exit(-1); 2371 } 2372 2373 static void load_elf_interp(const char *filename, struct image_info *info, 2374 char bprm_buf[BPRM_BUF_SIZE]) 2375 { 2376 int fd, retval; 2377 2378 fd = open(path(filename), O_RDONLY); 2379 if (fd < 0) { 2380 goto exit_perror; 2381 } 2382 2383 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2384 if (retval < 0) { 2385 goto exit_perror; 2386 } 2387 if (retval < BPRM_BUF_SIZE) { 2388 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2389 } 2390 2391 load_elf_image(filename, fd, info, NULL, bprm_buf); 2392 return; 2393 2394 exit_perror: 2395 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2396 exit(-1); 2397 } 2398 2399 static int symfind(const void *s0, const void *s1) 2400 { 2401 target_ulong addr = *(target_ulong *)s0; 2402 struct elf_sym *sym = (struct elf_sym *)s1; 2403 int result = 0; 2404 if (addr < sym->st_value) { 2405 result = -1; 2406 } else if (addr >= sym->st_value + sym->st_size) { 2407 result = 1; 2408 } 2409 return result; 2410 } 2411 2412 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2413 { 2414 #if ELF_CLASS == ELFCLASS32 2415 struct elf_sym *syms = s->disas_symtab.elf32; 2416 #else 2417 struct elf_sym *syms = s->disas_symtab.elf64; 2418 #endif 2419 2420 // binary search 2421 struct elf_sym *sym; 2422 2423 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2424 if (sym != NULL) { 2425 return s->disas_strtab + sym->st_name; 2426 } 2427 2428 return ""; 2429 } 2430 2431 /* FIXME: This should use elf_ops.h */ 2432 static int symcmp(const void *s0, const void *s1) 2433 { 2434 struct elf_sym *sym0 = (struct elf_sym *)s0; 2435 struct elf_sym *sym1 = (struct elf_sym *)s1; 2436 return (sym0->st_value < sym1->st_value) 2437 ? -1 2438 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2439 } 2440 2441 /* Best attempt to load symbols from this ELF object. */ 2442 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2443 { 2444 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2445 uint64_t segsz; 2446 struct elf_shdr *shdr; 2447 char *strings = NULL; 2448 struct syminfo *s = NULL; 2449 struct elf_sym *new_syms, *syms = NULL; 2450 2451 shnum = hdr->e_shnum; 2452 i = shnum * sizeof(struct elf_shdr); 2453 shdr = (struct elf_shdr *)alloca(i); 2454 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2455 return; 2456 } 2457 2458 bswap_shdr(shdr, shnum); 2459 for (i = 0; i < shnum; ++i) { 2460 if (shdr[i].sh_type == SHT_SYMTAB) { 2461 sym_idx = i; 2462 str_idx = shdr[i].sh_link; 2463 goto found; 2464 } 2465 } 2466 2467 /* There will be no symbol table if the file was stripped. */ 2468 return; 2469 2470 found: 2471 /* Now know where the strtab and symtab are. Snarf them. */ 2472 s = g_try_new(struct syminfo, 1); 2473 if (!s) { 2474 goto give_up; 2475 } 2476 2477 segsz = shdr[str_idx].sh_size; 2478 s->disas_strtab = strings = g_try_malloc(segsz); 2479 if (!strings || 2480 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2481 goto give_up; 2482 } 2483 2484 segsz = shdr[sym_idx].sh_size; 2485 syms = g_try_malloc(segsz); 2486 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2487 goto give_up; 2488 } 2489 2490 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2491 /* Implausibly large symbol table: give up rather than ploughing 2492 * on with the number of symbols calculation overflowing 2493 */ 2494 goto give_up; 2495 } 2496 nsyms = segsz / sizeof(struct elf_sym); 2497 for (i = 0; i < nsyms; ) { 2498 bswap_sym(syms + i); 2499 /* Throw away entries which we do not need. */ 2500 if (syms[i].st_shndx == SHN_UNDEF 2501 || syms[i].st_shndx >= SHN_LORESERVE 2502 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2503 if (i < --nsyms) { 2504 syms[i] = syms[nsyms]; 2505 } 2506 } else { 2507 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2508 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2509 syms[i].st_value &= ~(target_ulong)1; 2510 #endif 2511 syms[i].st_value += load_bias; 2512 i++; 2513 } 2514 } 2515 2516 /* No "useful" symbol. */ 2517 if (nsyms == 0) { 2518 goto give_up; 2519 } 2520 2521 /* Attempt to free the storage associated with the local symbols 2522 that we threw away. Whether or not this has any effect on the 2523 memory allocation depends on the malloc implementation and how 2524 many symbols we managed to discard. */ 2525 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2526 if (new_syms == NULL) { 2527 goto give_up; 2528 } 2529 syms = new_syms; 2530 2531 qsort(syms, nsyms, sizeof(*syms), symcmp); 2532 2533 s->disas_num_syms = nsyms; 2534 #if ELF_CLASS == ELFCLASS32 2535 s->disas_symtab.elf32 = syms; 2536 #else 2537 s->disas_symtab.elf64 = syms; 2538 #endif 2539 s->lookup_symbol = lookup_symbolxx; 2540 s->next = syminfos; 2541 syminfos = s; 2542 2543 return; 2544 2545 give_up: 2546 g_free(s); 2547 g_free(strings); 2548 g_free(syms); 2549 } 2550 2551 uint32_t get_elf_eflags(int fd) 2552 { 2553 struct elfhdr ehdr; 2554 off_t offset; 2555 int ret; 2556 2557 /* Read ELF header */ 2558 offset = lseek(fd, 0, SEEK_SET); 2559 if (offset == (off_t) -1) { 2560 return 0; 2561 } 2562 ret = read(fd, &ehdr, sizeof(ehdr)); 2563 if (ret < sizeof(ehdr)) { 2564 return 0; 2565 } 2566 offset = lseek(fd, offset, SEEK_SET); 2567 if (offset == (off_t) -1) { 2568 return 0; 2569 } 2570 2571 /* Check ELF signature */ 2572 if (!elf_check_ident(&ehdr)) { 2573 return 0; 2574 } 2575 2576 /* check header */ 2577 bswap_ehdr(&ehdr); 2578 if (!elf_check_ehdr(&ehdr)) { 2579 return 0; 2580 } 2581 2582 /* return architecture id */ 2583 return ehdr.e_flags; 2584 } 2585 2586 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2587 { 2588 struct image_info interp_info; 2589 struct elfhdr elf_ex; 2590 char *elf_interpreter = NULL; 2591 char *scratch; 2592 2593 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2594 2595 load_elf_image(bprm->filename, bprm->fd, info, 2596 &elf_interpreter, bprm->buf); 2597 2598 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2599 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2600 when we load the interpreter. */ 2601 elf_ex = *(struct elfhdr *)bprm->buf; 2602 2603 /* Do this so that we can load the interpreter, if need be. We will 2604 change some of these later */ 2605 bprm->p = setup_arg_pages(bprm, info); 2606 2607 scratch = g_new0(char, TARGET_PAGE_SIZE); 2608 if (STACK_GROWS_DOWN) { 2609 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2610 bprm->p, info->stack_limit); 2611 info->file_string = bprm->p; 2612 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2613 bprm->p, info->stack_limit); 2614 info->env_strings = bprm->p; 2615 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2616 bprm->p, info->stack_limit); 2617 info->arg_strings = bprm->p; 2618 } else { 2619 info->arg_strings = bprm->p; 2620 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2621 bprm->p, info->stack_limit); 2622 info->env_strings = bprm->p; 2623 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2624 bprm->p, info->stack_limit); 2625 info->file_string = bprm->p; 2626 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2627 bprm->p, info->stack_limit); 2628 } 2629 2630 g_free(scratch); 2631 2632 if (!bprm->p) { 2633 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2634 exit(-1); 2635 } 2636 2637 if (elf_interpreter) { 2638 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2639 2640 /* If the program interpreter is one of these two, then assume 2641 an iBCS2 image. Otherwise assume a native linux image. */ 2642 2643 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2644 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2645 info->personality = PER_SVR4; 2646 2647 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2648 and some applications "depend" upon this behavior. Since 2649 we do not have the power to recompile these, we emulate 2650 the SVr4 behavior. Sigh. */ 2651 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2652 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2653 } 2654 } 2655 2656 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2657 info, (elf_interpreter ? &interp_info : NULL)); 2658 info->start_stack = bprm->p; 2659 2660 /* If we have an interpreter, set that as the program's entry point. 2661 Copy the load_bias as well, to help PPC64 interpret the entry 2662 point as a function descriptor. Do this after creating elf tables 2663 so that we copy the original program entry point into the AUXV. */ 2664 if (elf_interpreter) { 2665 info->load_bias = interp_info.load_bias; 2666 info->entry = interp_info.entry; 2667 free(elf_interpreter); 2668 } 2669 2670 #ifdef USE_ELF_CORE_DUMP 2671 bprm->core_dump = &elf_core_dump; 2672 #endif 2673 2674 return 0; 2675 } 2676 2677 #ifdef USE_ELF_CORE_DUMP 2678 /* 2679 * Definitions to generate Intel SVR4-like core files. 2680 * These mostly have the same names as the SVR4 types with "target_elf_" 2681 * tacked on the front to prevent clashes with linux definitions, 2682 * and the typedef forms have been avoided. This is mostly like 2683 * the SVR4 structure, but more Linuxy, with things that Linux does 2684 * not support and which gdb doesn't really use excluded. 2685 * 2686 * Fields we don't dump (their contents is zero) in linux-user qemu 2687 * are marked with XXX. 2688 * 2689 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2690 * 2691 * Porting ELF coredump for target is (quite) simple process. First you 2692 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2693 * the target resides): 2694 * 2695 * #define USE_ELF_CORE_DUMP 2696 * 2697 * Next you define type of register set used for dumping. ELF specification 2698 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2699 * 2700 * typedef <target_regtype> target_elf_greg_t; 2701 * #define ELF_NREG <number of registers> 2702 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2703 * 2704 * Last step is to implement target specific function that copies registers 2705 * from given cpu into just specified register set. Prototype is: 2706 * 2707 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2708 * const CPUArchState *env); 2709 * 2710 * Parameters: 2711 * regs - copy register values into here (allocated and zeroed by caller) 2712 * env - copy registers from here 2713 * 2714 * Example for ARM target is provided in this file. 2715 */ 2716 2717 /* An ELF note in memory */ 2718 struct memelfnote { 2719 const char *name; 2720 size_t namesz; 2721 size_t namesz_rounded; 2722 int type; 2723 size_t datasz; 2724 size_t datasz_rounded; 2725 void *data; 2726 size_t notesz; 2727 }; 2728 2729 struct target_elf_siginfo { 2730 abi_int si_signo; /* signal number */ 2731 abi_int si_code; /* extra code */ 2732 abi_int si_errno; /* errno */ 2733 }; 2734 2735 struct target_elf_prstatus { 2736 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2737 abi_short pr_cursig; /* Current signal */ 2738 abi_ulong pr_sigpend; /* XXX */ 2739 abi_ulong pr_sighold; /* XXX */ 2740 target_pid_t pr_pid; 2741 target_pid_t pr_ppid; 2742 target_pid_t pr_pgrp; 2743 target_pid_t pr_sid; 2744 struct target_timeval pr_utime; /* XXX User time */ 2745 struct target_timeval pr_stime; /* XXX System time */ 2746 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2747 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2748 target_elf_gregset_t pr_reg; /* GP registers */ 2749 abi_int pr_fpvalid; /* XXX */ 2750 }; 2751 2752 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2753 2754 struct target_elf_prpsinfo { 2755 char pr_state; /* numeric process state */ 2756 char pr_sname; /* char for pr_state */ 2757 char pr_zomb; /* zombie */ 2758 char pr_nice; /* nice val */ 2759 abi_ulong pr_flag; /* flags */ 2760 target_uid_t pr_uid; 2761 target_gid_t pr_gid; 2762 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2763 /* Lots missing */ 2764 char pr_fname[16]; /* filename of executable */ 2765 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2766 }; 2767 2768 /* Here is the structure in which status of each thread is captured. */ 2769 struct elf_thread_status { 2770 QTAILQ_ENTRY(elf_thread_status) ets_link; 2771 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2772 #if 0 2773 elf_fpregset_t fpu; /* NT_PRFPREG */ 2774 struct task_struct *thread; 2775 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2776 #endif 2777 struct memelfnote notes[1]; 2778 int num_notes; 2779 }; 2780 2781 struct elf_note_info { 2782 struct memelfnote *notes; 2783 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2784 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2785 2786 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2787 #if 0 2788 /* 2789 * Current version of ELF coredump doesn't support 2790 * dumping fp regs etc. 2791 */ 2792 elf_fpregset_t *fpu; 2793 elf_fpxregset_t *xfpu; 2794 int thread_status_size; 2795 #endif 2796 int notes_size; 2797 int numnote; 2798 }; 2799 2800 struct vm_area_struct { 2801 target_ulong vma_start; /* start vaddr of memory region */ 2802 target_ulong vma_end; /* end vaddr of memory region */ 2803 abi_ulong vma_flags; /* protection etc. flags for the region */ 2804 QTAILQ_ENTRY(vm_area_struct) vma_link; 2805 }; 2806 2807 struct mm_struct { 2808 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2809 int mm_count; /* number of mappings */ 2810 }; 2811 2812 static struct mm_struct *vma_init(void); 2813 static void vma_delete(struct mm_struct *); 2814 static int vma_add_mapping(struct mm_struct *, target_ulong, 2815 target_ulong, abi_ulong); 2816 static int vma_get_mapping_count(const struct mm_struct *); 2817 static struct vm_area_struct *vma_first(const struct mm_struct *); 2818 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2819 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2820 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2821 unsigned long flags); 2822 2823 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2824 static void fill_note(struct memelfnote *, const char *, int, 2825 unsigned int, void *); 2826 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2827 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2828 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2829 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2830 static size_t note_size(const struct memelfnote *); 2831 static void free_note_info(struct elf_note_info *); 2832 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2833 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2834 static int core_dump_filename(const TaskState *, char *, size_t); 2835 2836 static int dump_write(int, const void *, size_t); 2837 static int write_note(struct memelfnote *, int); 2838 static int write_note_info(struct elf_note_info *, int); 2839 2840 #ifdef BSWAP_NEEDED 2841 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2842 { 2843 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2844 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2845 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2846 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2847 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2848 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2849 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2850 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2851 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2852 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2853 /* cpu times are not filled, so we skip them */ 2854 /* regs should be in correct format already */ 2855 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2856 } 2857 2858 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2859 { 2860 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2861 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2862 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2863 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2864 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2865 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2866 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2867 } 2868 2869 static void bswap_note(struct elf_note *en) 2870 { 2871 bswap32s(&en->n_namesz); 2872 bswap32s(&en->n_descsz); 2873 bswap32s(&en->n_type); 2874 } 2875 #else 2876 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2877 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2878 static inline void bswap_note(struct elf_note *en) { } 2879 #endif /* BSWAP_NEEDED */ 2880 2881 /* 2882 * Minimal support for linux memory regions. These are needed 2883 * when we are finding out what memory exactly belongs to 2884 * emulated process. No locks needed here, as long as 2885 * thread that received the signal is stopped. 2886 */ 2887 2888 static struct mm_struct *vma_init(void) 2889 { 2890 struct mm_struct *mm; 2891 2892 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2893 return (NULL); 2894 2895 mm->mm_count = 0; 2896 QTAILQ_INIT(&mm->mm_mmap); 2897 2898 return (mm); 2899 } 2900 2901 static void vma_delete(struct mm_struct *mm) 2902 { 2903 struct vm_area_struct *vma; 2904 2905 while ((vma = vma_first(mm)) != NULL) { 2906 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2907 g_free(vma); 2908 } 2909 g_free(mm); 2910 } 2911 2912 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2913 target_ulong end, abi_ulong flags) 2914 { 2915 struct vm_area_struct *vma; 2916 2917 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2918 return (-1); 2919 2920 vma->vma_start = start; 2921 vma->vma_end = end; 2922 vma->vma_flags = flags; 2923 2924 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2925 mm->mm_count++; 2926 2927 return (0); 2928 } 2929 2930 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2931 { 2932 return (QTAILQ_FIRST(&mm->mm_mmap)); 2933 } 2934 2935 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2936 { 2937 return (QTAILQ_NEXT(vma, vma_link)); 2938 } 2939 2940 static int vma_get_mapping_count(const struct mm_struct *mm) 2941 { 2942 return (mm->mm_count); 2943 } 2944 2945 /* 2946 * Calculate file (dump) size of given memory region. 2947 */ 2948 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2949 { 2950 /* if we cannot even read the first page, skip it */ 2951 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2952 return (0); 2953 2954 /* 2955 * Usually we don't dump executable pages as they contain 2956 * non-writable code that debugger can read directly from 2957 * target library etc. However, thread stacks are marked 2958 * also executable so we read in first page of given region 2959 * and check whether it contains elf header. If there is 2960 * no elf header, we dump it. 2961 */ 2962 if (vma->vma_flags & PROT_EXEC) { 2963 char page[TARGET_PAGE_SIZE]; 2964 2965 copy_from_user(page, vma->vma_start, sizeof (page)); 2966 if ((page[EI_MAG0] == ELFMAG0) && 2967 (page[EI_MAG1] == ELFMAG1) && 2968 (page[EI_MAG2] == ELFMAG2) && 2969 (page[EI_MAG3] == ELFMAG3)) { 2970 /* 2971 * Mappings are possibly from ELF binary. Don't dump 2972 * them. 2973 */ 2974 return (0); 2975 } 2976 } 2977 2978 return (vma->vma_end - vma->vma_start); 2979 } 2980 2981 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2982 unsigned long flags) 2983 { 2984 struct mm_struct *mm = (struct mm_struct *)priv; 2985 2986 vma_add_mapping(mm, start, end, flags); 2987 return (0); 2988 } 2989 2990 static void fill_note(struct memelfnote *note, const char *name, int type, 2991 unsigned int sz, void *data) 2992 { 2993 unsigned int namesz; 2994 2995 namesz = strlen(name) + 1; 2996 note->name = name; 2997 note->namesz = namesz; 2998 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2999 note->type = type; 3000 note->datasz = sz; 3001 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3002 3003 note->data = data; 3004 3005 /* 3006 * We calculate rounded up note size here as specified by 3007 * ELF document. 3008 */ 3009 note->notesz = sizeof (struct elf_note) + 3010 note->namesz_rounded + note->datasz_rounded; 3011 } 3012 3013 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3014 uint32_t flags) 3015 { 3016 (void) memset(elf, 0, sizeof(*elf)); 3017 3018 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3019 elf->e_ident[EI_CLASS] = ELF_CLASS; 3020 elf->e_ident[EI_DATA] = ELF_DATA; 3021 elf->e_ident[EI_VERSION] = EV_CURRENT; 3022 elf->e_ident[EI_OSABI] = ELF_OSABI; 3023 3024 elf->e_type = ET_CORE; 3025 elf->e_machine = machine; 3026 elf->e_version = EV_CURRENT; 3027 elf->e_phoff = sizeof(struct elfhdr); 3028 elf->e_flags = flags; 3029 elf->e_ehsize = sizeof(struct elfhdr); 3030 elf->e_phentsize = sizeof(struct elf_phdr); 3031 elf->e_phnum = segs; 3032 3033 bswap_ehdr(elf); 3034 } 3035 3036 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3037 { 3038 phdr->p_type = PT_NOTE; 3039 phdr->p_offset = offset; 3040 phdr->p_vaddr = 0; 3041 phdr->p_paddr = 0; 3042 phdr->p_filesz = sz; 3043 phdr->p_memsz = 0; 3044 phdr->p_flags = 0; 3045 phdr->p_align = 0; 3046 3047 bswap_phdr(phdr, 1); 3048 } 3049 3050 static size_t note_size(const struct memelfnote *note) 3051 { 3052 return (note->notesz); 3053 } 3054 3055 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3056 const TaskState *ts, int signr) 3057 { 3058 (void) memset(prstatus, 0, sizeof (*prstatus)); 3059 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3060 prstatus->pr_pid = ts->ts_tid; 3061 prstatus->pr_ppid = getppid(); 3062 prstatus->pr_pgrp = getpgrp(); 3063 prstatus->pr_sid = getsid(0); 3064 3065 bswap_prstatus(prstatus); 3066 } 3067 3068 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3069 { 3070 char *base_filename; 3071 unsigned int i, len; 3072 3073 (void) memset(psinfo, 0, sizeof (*psinfo)); 3074 3075 len = ts->info->arg_end - ts->info->arg_start; 3076 if (len >= ELF_PRARGSZ) 3077 len = ELF_PRARGSZ - 1; 3078 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3079 return -EFAULT; 3080 for (i = 0; i < len; i++) 3081 if (psinfo->pr_psargs[i] == 0) 3082 psinfo->pr_psargs[i] = ' '; 3083 psinfo->pr_psargs[len] = 0; 3084 3085 psinfo->pr_pid = getpid(); 3086 psinfo->pr_ppid = getppid(); 3087 psinfo->pr_pgrp = getpgrp(); 3088 psinfo->pr_sid = getsid(0); 3089 psinfo->pr_uid = getuid(); 3090 psinfo->pr_gid = getgid(); 3091 3092 base_filename = g_path_get_basename(ts->bprm->filename); 3093 /* 3094 * Using strncpy here is fine: at max-length, 3095 * this field is not NUL-terminated. 3096 */ 3097 (void) strncpy(psinfo->pr_fname, base_filename, 3098 sizeof(psinfo->pr_fname)); 3099 3100 g_free(base_filename); 3101 bswap_psinfo(psinfo); 3102 return (0); 3103 } 3104 3105 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3106 { 3107 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3108 elf_addr_t orig_auxv = auxv; 3109 void *ptr; 3110 int len = ts->info->auxv_len; 3111 3112 /* 3113 * Auxiliary vector is stored in target process stack. It contains 3114 * {type, value} pairs that we need to dump into note. This is not 3115 * strictly necessary but we do it here for sake of completeness. 3116 */ 3117 3118 /* read in whole auxv vector and copy it to memelfnote */ 3119 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3120 if (ptr != NULL) { 3121 fill_note(note, "CORE", NT_AUXV, len, ptr); 3122 unlock_user(ptr, auxv, len); 3123 } 3124 } 3125 3126 /* 3127 * Constructs name of coredump file. We have following convention 3128 * for the name: 3129 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3130 * 3131 * Returns 0 in case of success, -1 otherwise (errno is set). 3132 */ 3133 static int core_dump_filename(const TaskState *ts, char *buf, 3134 size_t bufsize) 3135 { 3136 char timestamp[64]; 3137 char *base_filename = NULL; 3138 struct timeval tv; 3139 struct tm tm; 3140 3141 assert(bufsize >= PATH_MAX); 3142 3143 if (gettimeofday(&tv, NULL) < 0) { 3144 (void) fprintf(stderr, "unable to get current timestamp: %s", 3145 strerror(errno)); 3146 return (-1); 3147 } 3148 3149 base_filename = g_path_get_basename(ts->bprm->filename); 3150 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3151 localtime_r(&tv.tv_sec, &tm)); 3152 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3153 base_filename, timestamp, (int)getpid()); 3154 g_free(base_filename); 3155 3156 return (0); 3157 } 3158 3159 static int dump_write(int fd, const void *ptr, size_t size) 3160 { 3161 const char *bufp = (const char *)ptr; 3162 ssize_t bytes_written, bytes_left; 3163 struct rlimit dumpsize; 3164 off_t pos; 3165 3166 bytes_written = 0; 3167 getrlimit(RLIMIT_CORE, &dumpsize); 3168 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3169 if (errno == ESPIPE) { /* not a seekable stream */ 3170 bytes_left = size; 3171 } else { 3172 return pos; 3173 } 3174 } else { 3175 if (dumpsize.rlim_cur <= pos) { 3176 return -1; 3177 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3178 bytes_left = size; 3179 } else { 3180 size_t limit_left=dumpsize.rlim_cur - pos; 3181 bytes_left = limit_left >= size ? size : limit_left ; 3182 } 3183 } 3184 3185 /* 3186 * In normal conditions, single write(2) should do but 3187 * in case of socket etc. this mechanism is more portable. 3188 */ 3189 do { 3190 bytes_written = write(fd, bufp, bytes_left); 3191 if (bytes_written < 0) { 3192 if (errno == EINTR) 3193 continue; 3194 return (-1); 3195 } else if (bytes_written == 0) { /* eof */ 3196 return (-1); 3197 } 3198 bufp += bytes_written; 3199 bytes_left -= bytes_written; 3200 } while (bytes_left > 0); 3201 3202 return (0); 3203 } 3204 3205 static int write_note(struct memelfnote *men, int fd) 3206 { 3207 struct elf_note en; 3208 3209 en.n_namesz = men->namesz; 3210 en.n_type = men->type; 3211 en.n_descsz = men->datasz; 3212 3213 bswap_note(&en); 3214 3215 if (dump_write(fd, &en, sizeof(en)) != 0) 3216 return (-1); 3217 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3218 return (-1); 3219 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3220 return (-1); 3221 3222 return (0); 3223 } 3224 3225 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3226 { 3227 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3228 TaskState *ts = (TaskState *)cpu->opaque; 3229 struct elf_thread_status *ets; 3230 3231 ets = g_malloc0(sizeof (*ets)); 3232 ets->num_notes = 1; /* only prstatus is dumped */ 3233 fill_prstatus(&ets->prstatus, ts, 0); 3234 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3235 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3236 &ets->prstatus); 3237 3238 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3239 3240 info->notes_size += note_size(&ets->notes[0]); 3241 } 3242 3243 static void init_note_info(struct elf_note_info *info) 3244 { 3245 /* Initialize the elf_note_info structure so that it is at 3246 * least safe to call free_note_info() on it. Must be 3247 * called before calling fill_note_info(). 3248 */ 3249 memset(info, 0, sizeof (*info)); 3250 QTAILQ_INIT(&info->thread_list); 3251 } 3252 3253 static int fill_note_info(struct elf_note_info *info, 3254 long signr, const CPUArchState *env) 3255 { 3256 #define NUMNOTES 3 3257 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3258 TaskState *ts = (TaskState *)cpu->opaque; 3259 int i; 3260 3261 info->notes = g_new0(struct memelfnote, NUMNOTES); 3262 if (info->notes == NULL) 3263 return (-ENOMEM); 3264 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3265 if (info->prstatus == NULL) 3266 return (-ENOMEM); 3267 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3268 if (info->prstatus == NULL) 3269 return (-ENOMEM); 3270 3271 /* 3272 * First fill in status (and registers) of current thread 3273 * including process info & aux vector. 3274 */ 3275 fill_prstatus(info->prstatus, ts, signr); 3276 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3277 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3278 sizeof (*info->prstatus), info->prstatus); 3279 fill_psinfo(info->psinfo, ts); 3280 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3281 sizeof (*info->psinfo), info->psinfo); 3282 fill_auxv_note(&info->notes[2], ts); 3283 info->numnote = 3; 3284 3285 info->notes_size = 0; 3286 for (i = 0; i < info->numnote; i++) 3287 info->notes_size += note_size(&info->notes[i]); 3288 3289 /* read and fill status of all threads */ 3290 cpu_list_lock(); 3291 CPU_FOREACH(cpu) { 3292 if (cpu == thread_cpu) { 3293 continue; 3294 } 3295 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3296 } 3297 cpu_list_unlock(); 3298 3299 return (0); 3300 } 3301 3302 static void free_note_info(struct elf_note_info *info) 3303 { 3304 struct elf_thread_status *ets; 3305 3306 while (!QTAILQ_EMPTY(&info->thread_list)) { 3307 ets = QTAILQ_FIRST(&info->thread_list); 3308 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3309 g_free(ets); 3310 } 3311 3312 g_free(info->prstatus); 3313 g_free(info->psinfo); 3314 g_free(info->notes); 3315 } 3316 3317 static int write_note_info(struct elf_note_info *info, int fd) 3318 { 3319 struct elf_thread_status *ets; 3320 int i, error = 0; 3321 3322 /* write prstatus, psinfo and auxv for current thread */ 3323 for (i = 0; i < info->numnote; i++) 3324 if ((error = write_note(&info->notes[i], fd)) != 0) 3325 return (error); 3326 3327 /* write prstatus for each thread */ 3328 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3329 if ((error = write_note(&ets->notes[0], fd)) != 0) 3330 return (error); 3331 } 3332 3333 return (0); 3334 } 3335 3336 /* 3337 * Write out ELF coredump. 3338 * 3339 * See documentation of ELF object file format in: 3340 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3341 * 3342 * Coredump format in linux is following: 3343 * 3344 * 0 +----------------------+ \ 3345 * | ELF header | ET_CORE | 3346 * +----------------------+ | 3347 * | ELF program headers | |--- headers 3348 * | - NOTE section | | 3349 * | - PT_LOAD sections | | 3350 * +----------------------+ / 3351 * | NOTEs: | 3352 * | - NT_PRSTATUS | 3353 * | - NT_PRSINFO | 3354 * | - NT_AUXV | 3355 * +----------------------+ <-- aligned to target page 3356 * | Process memory dump | 3357 * : : 3358 * . . 3359 * : : 3360 * | | 3361 * +----------------------+ 3362 * 3363 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3364 * NT_PRSINFO -> struct elf_prpsinfo 3365 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3366 * 3367 * Format follows System V format as close as possible. Current 3368 * version limitations are as follows: 3369 * - no floating point registers are dumped 3370 * 3371 * Function returns 0 in case of success, negative errno otherwise. 3372 * 3373 * TODO: make this work also during runtime: it should be 3374 * possible to force coredump from running process and then 3375 * continue processing. For example qemu could set up SIGUSR2 3376 * handler (provided that target process haven't registered 3377 * handler for that) that does the dump when signal is received. 3378 */ 3379 static int elf_core_dump(int signr, const CPUArchState *env) 3380 { 3381 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3382 const TaskState *ts = (const TaskState *)cpu->opaque; 3383 struct vm_area_struct *vma = NULL; 3384 char corefile[PATH_MAX]; 3385 struct elf_note_info info; 3386 struct elfhdr elf; 3387 struct elf_phdr phdr; 3388 struct rlimit dumpsize; 3389 struct mm_struct *mm = NULL; 3390 off_t offset = 0, data_offset = 0; 3391 int segs = 0; 3392 int fd = -1; 3393 3394 init_note_info(&info); 3395 3396 errno = 0; 3397 getrlimit(RLIMIT_CORE, &dumpsize); 3398 if (dumpsize.rlim_cur == 0) 3399 return 0; 3400 3401 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3402 return (-errno); 3403 3404 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3405 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3406 return (-errno); 3407 3408 /* 3409 * Walk through target process memory mappings and 3410 * set up structure containing this information. After 3411 * this point vma_xxx functions can be used. 3412 */ 3413 if ((mm = vma_init()) == NULL) 3414 goto out; 3415 3416 walk_memory_regions(mm, vma_walker); 3417 segs = vma_get_mapping_count(mm); 3418 3419 /* 3420 * Construct valid coredump ELF header. We also 3421 * add one more segment for notes. 3422 */ 3423 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3424 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3425 goto out; 3426 3427 /* fill in the in-memory version of notes */ 3428 if (fill_note_info(&info, signr, env) < 0) 3429 goto out; 3430 3431 offset += sizeof (elf); /* elf header */ 3432 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3433 3434 /* write out notes program header */ 3435 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3436 3437 offset += info.notes_size; 3438 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3439 goto out; 3440 3441 /* 3442 * ELF specification wants data to start at page boundary so 3443 * we align it here. 3444 */ 3445 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3446 3447 /* 3448 * Write program headers for memory regions mapped in 3449 * the target process. 3450 */ 3451 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3452 (void) memset(&phdr, 0, sizeof (phdr)); 3453 3454 phdr.p_type = PT_LOAD; 3455 phdr.p_offset = offset; 3456 phdr.p_vaddr = vma->vma_start; 3457 phdr.p_paddr = 0; 3458 phdr.p_filesz = vma_dump_size(vma); 3459 offset += phdr.p_filesz; 3460 phdr.p_memsz = vma->vma_end - vma->vma_start; 3461 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3462 if (vma->vma_flags & PROT_WRITE) 3463 phdr.p_flags |= PF_W; 3464 if (vma->vma_flags & PROT_EXEC) 3465 phdr.p_flags |= PF_X; 3466 phdr.p_align = ELF_EXEC_PAGESIZE; 3467 3468 bswap_phdr(&phdr, 1); 3469 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3470 goto out; 3471 } 3472 } 3473 3474 /* 3475 * Next we write notes just after program headers. No 3476 * alignment needed here. 3477 */ 3478 if (write_note_info(&info, fd) < 0) 3479 goto out; 3480 3481 /* align data to page boundary */ 3482 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3483 goto out; 3484 3485 /* 3486 * Finally we can dump process memory into corefile as well. 3487 */ 3488 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3489 abi_ulong addr; 3490 abi_ulong end; 3491 3492 end = vma->vma_start + vma_dump_size(vma); 3493 3494 for (addr = vma->vma_start; addr < end; 3495 addr += TARGET_PAGE_SIZE) { 3496 char page[TARGET_PAGE_SIZE]; 3497 int error; 3498 3499 /* 3500 * Read in page from target process memory and 3501 * write it to coredump file. 3502 */ 3503 error = copy_from_user(page, addr, sizeof (page)); 3504 if (error != 0) { 3505 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3506 addr); 3507 errno = -error; 3508 goto out; 3509 } 3510 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3511 goto out; 3512 } 3513 } 3514 3515 out: 3516 free_note_info(&info); 3517 if (mm != NULL) 3518 vma_delete(mm); 3519 (void) close(fd); 3520 3521 if (errno != 0) 3522 return (-errno); 3523 return (0); 3524 } 3525 #endif /* USE_ELF_CORE_DUMP */ 3526 3527 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3528 { 3529 init_thread(regs, infop); 3530 } 3531