xref: /openbmc/qemu/linux-user/elfload.c (revision a1a62ced)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "user-internals.h"
10 #include "signal-common.h"
11 #include "loader.h"
12 #include "user-mmap.h"
13 #include "disas/disas.h"
14 #include "qemu/bitops.h"
15 #include "qemu/path.h"
16 #include "qemu/queue.h"
17 #include "qemu/guest-random.h"
18 #include "qemu/units.h"
19 #include "qemu/selfmap.h"
20 #include "qemu/lockable.h"
21 #include "qapi/error.h"
22 #include "qemu/error-report.h"
23 #include "target_signal.h"
24 #include "accel/tcg/debuginfo.h"
25 
26 #ifdef _ARCH_PPC64
27 #undef ARCH_DLINFO
28 #undef ELF_PLATFORM
29 #undef ELF_HWCAP
30 #undef ELF_HWCAP2
31 #undef ELF_CLASS
32 #undef ELF_DATA
33 #undef ELF_ARCH
34 #endif
35 
36 #define ELF_OSABI   ELFOSABI_SYSV
37 
38 /* from personality.h */
39 
40 /*
41  * Flags for bug emulation.
42  *
43  * These occupy the top three bytes.
44  */
45 enum {
46     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
47     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
48                                            descriptors (signal handling) */
49     MMAP_PAGE_ZERO =    0x0100000,
50     ADDR_COMPAT_LAYOUT = 0x0200000,
51     READ_IMPLIES_EXEC = 0x0400000,
52     ADDR_LIMIT_32BIT =  0x0800000,
53     SHORT_INODE =       0x1000000,
54     WHOLE_SECONDS =     0x2000000,
55     STICKY_TIMEOUTS =   0x4000000,
56     ADDR_LIMIT_3GB =    0x8000000,
57 };
58 
59 /*
60  * Personality types.
61  *
62  * These go in the low byte.  Avoid using the top bit, it will
63  * conflict with error returns.
64  */
65 enum {
66     PER_LINUX =         0x0000,
67     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
68     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
69     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
70     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
71     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
72     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
73     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
74     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
75     PER_BSD =           0x0006,
76     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
77     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
78     PER_LINUX32 =       0x0008,
79     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
80     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
81     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
82     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
83     PER_RISCOS =        0x000c,
84     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
85     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
86     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
87     PER_HPUX =          0x0010,
88     PER_MASK =          0x00ff,
89 };
90 
91 /*
92  * Return the base personality without flags.
93  */
94 #define personality(pers)       (pers & PER_MASK)
95 
96 int info_is_fdpic(struct image_info *info)
97 {
98     return info->personality == PER_LINUX_FDPIC;
99 }
100 
101 /* this flag is uneffective under linux too, should be deleted */
102 #ifndef MAP_DENYWRITE
103 #define MAP_DENYWRITE 0
104 #endif
105 
106 /* should probably go in elf.h */
107 #ifndef ELIBBAD
108 #define ELIBBAD 80
109 #endif
110 
111 #if TARGET_BIG_ENDIAN
112 #define ELF_DATA        ELFDATA2MSB
113 #else
114 #define ELF_DATA        ELFDATA2LSB
115 #endif
116 
117 #ifdef TARGET_ABI_MIPSN32
118 typedef abi_ullong      target_elf_greg_t;
119 #define tswapreg(ptr)   tswap64(ptr)
120 #else
121 typedef abi_ulong       target_elf_greg_t;
122 #define tswapreg(ptr)   tswapal(ptr)
123 #endif
124 
125 #ifdef USE_UID16
126 typedef abi_ushort      target_uid_t;
127 typedef abi_ushort      target_gid_t;
128 #else
129 typedef abi_uint        target_uid_t;
130 typedef abi_uint        target_gid_t;
131 #endif
132 typedef abi_int         target_pid_t;
133 
134 #ifdef TARGET_I386
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 #define ELF_PLATFORM   "x86_64"
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = tswapreg(env->regs[15]);
171     (*regs)[1] = tswapreg(env->regs[14]);
172     (*regs)[2] = tswapreg(env->regs[13]);
173     (*regs)[3] = tswapreg(env->regs[12]);
174     (*regs)[4] = tswapreg(env->regs[R_EBP]);
175     (*regs)[5] = tswapreg(env->regs[R_EBX]);
176     (*regs)[6] = tswapreg(env->regs[11]);
177     (*regs)[7] = tswapreg(env->regs[10]);
178     (*regs)[8] = tswapreg(env->regs[9]);
179     (*regs)[9] = tswapreg(env->regs[8]);
180     (*regs)[10] = tswapreg(env->regs[R_EAX]);
181     (*regs)[11] = tswapreg(env->regs[R_ECX]);
182     (*regs)[12] = tswapreg(env->regs[R_EDX]);
183     (*regs)[13] = tswapreg(env->regs[R_ESI]);
184     (*regs)[14] = tswapreg(env->regs[R_EDI]);
185     (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */
186     (*regs)[16] = tswapreg(env->eip);
187     (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff);
188     (*regs)[18] = tswapreg(env->eflags);
189     (*regs)[19] = tswapreg(env->regs[R_ESP]);
190     (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff);
191     (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff);
192     (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff);
193     (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff);
194     (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff);
195     (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff);
196     (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff);
197 }
198 
199 #if ULONG_MAX > UINT32_MAX
200 #define INIT_GUEST_COMMPAGE
201 static bool init_guest_commpage(void)
202 {
203     /*
204      * The vsyscall page is at a high negative address aka kernel space,
205      * which means that we cannot actually allocate it with target_mmap.
206      * We still should be able to use page_set_flags, unless the user
207      * has specified -R reserved_va, which would trigger an assert().
208      */
209     if (reserved_va != 0 &&
210         TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) {
211         error_report("Cannot allocate vsyscall page");
212         exit(EXIT_FAILURE);
213     }
214     page_set_flags(TARGET_VSYSCALL_PAGE,
215                    TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK,
216                    PAGE_EXEC | PAGE_VALID);
217     return true;
218 }
219 #endif
220 #else
221 
222 /*
223  * This is used to ensure we don't load something for the wrong architecture.
224  */
225 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
226 
227 /*
228  * These are used to set parameters in the core dumps.
229  */
230 #define ELF_CLASS       ELFCLASS32
231 #define ELF_ARCH        EM_386
232 
233 #define ELF_PLATFORM get_elf_platform()
234 #define EXSTACK_DEFAULT true
235 
236 static const char *get_elf_platform(void)
237 {
238     static char elf_platform[] = "i386";
239     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
240     if (family > 6) {
241         family = 6;
242     }
243     if (family >= 3) {
244         elf_platform[1] = '0' + family;
245     }
246     return elf_platform;
247 }
248 
249 static inline void init_thread(struct target_pt_regs *regs,
250                                struct image_info *infop)
251 {
252     regs->esp = infop->start_stack;
253     regs->eip = infop->entry;
254 
255     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
256        starts %edx contains a pointer to a function which might be
257        registered using `atexit'.  This provides a mean for the
258        dynamic linker to call DT_FINI functions for shared libraries
259        that have been loaded before the code runs.
260 
261        A value of 0 tells we have no such handler.  */
262     regs->edx = 0;
263 }
264 
265 #define ELF_NREG    17
266 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
267 
268 /*
269  * Note that ELF_NREG should be 19 as there should be place for
270  * TRAPNO and ERR "registers" as well but linux doesn't dump
271  * those.
272  *
273  * See linux kernel: arch/x86/include/asm/elf.h
274  */
275 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
276 {
277     (*regs)[0] = tswapreg(env->regs[R_EBX]);
278     (*regs)[1] = tswapreg(env->regs[R_ECX]);
279     (*regs)[2] = tswapreg(env->regs[R_EDX]);
280     (*regs)[3] = tswapreg(env->regs[R_ESI]);
281     (*regs)[4] = tswapreg(env->regs[R_EDI]);
282     (*regs)[5] = tswapreg(env->regs[R_EBP]);
283     (*regs)[6] = tswapreg(env->regs[R_EAX]);
284     (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff);
285     (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff);
286     (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff);
287     (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff);
288     (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */
289     (*regs)[12] = tswapreg(env->eip);
290     (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff);
291     (*regs)[14] = tswapreg(env->eflags);
292     (*regs)[15] = tswapreg(env->regs[R_ESP]);
293     (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff);
294 }
295 #endif
296 
297 #define USE_ELF_CORE_DUMP
298 #define ELF_EXEC_PAGESIZE       4096
299 
300 #endif
301 
302 #ifdef TARGET_ARM
303 
304 #ifndef TARGET_AARCH64
305 /* 32 bit ARM definitions */
306 
307 #define ELF_ARCH        EM_ARM
308 #define ELF_CLASS       ELFCLASS32
309 #define EXSTACK_DEFAULT true
310 
311 static inline void init_thread(struct target_pt_regs *regs,
312                                struct image_info *infop)
313 {
314     abi_long stack = infop->start_stack;
315     memset(regs, 0, sizeof(*regs));
316 
317     regs->uregs[16] = ARM_CPU_MODE_USR;
318     if (infop->entry & 1) {
319         regs->uregs[16] |= CPSR_T;
320     }
321     regs->uregs[15] = infop->entry & 0xfffffffe;
322     regs->uregs[13] = infop->start_stack;
323     /* FIXME - what to for failure of get_user()? */
324     get_user_ual(regs->uregs[2], stack + 8); /* envp */
325     get_user_ual(regs->uregs[1], stack + 4); /* envp */
326     /* XXX: it seems that r0 is zeroed after ! */
327     regs->uregs[0] = 0;
328     /* For uClinux PIC binaries.  */
329     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
330     regs->uregs[10] = infop->start_data;
331 
332     /* Support ARM FDPIC.  */
333     if (info_is_fdpic(infop)) {
334         /* As described in the ABI document, r7 points to the loadmap info
335          * prepared by the kernel. If an interpreter is needed, r8 points
336          * to the interpreter loadmap and r9 points to the interpreter
337          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
338          * r9 points to the main program PT_DYNAMIC info.
339          */
340         regs->uregs[7] = infop->loadmap_addr;
341         if (infop->interpreter_loadmap_addr) {
342             /* Executable is dynamically loaded.  */
343             regs->uregs[8] = infop->interpreter_loadmap_addr;
344             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
345         } else {
346             regs->uregs[8] = 0;
347             regs->uregs[9] = infop->pt_dynamic_addr;
348         }
349     }
350 }
351 
352 #define ELF_NREG    18
353 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
354 
355 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
356 {
357     (*regs)[0] = tswapreg(env->regs[0]);
358     (*regs)[1] = tswapreg(env->regs[1]);
359     (*regs)[2] = tswapreg(env->regs[2]);
360     (*regs)[3] = tswapreg(env->regs[3]);
361     (*regs)[4] = tswapreg(env->regs[4]);
362     (*regs)[5] = tswapreg(env->regs[5]);
363     (*regs)[6] = tswapreg(env->regs[6]);
364     (*regs)[7] = tswapreg(env->regs[7]);
365     (*regs)[8] = tswapreg(env->regs[8]);
366     (*regs)[9] = tswapreg(env->regs[9]);
367     (*regs)[10] = tswapreg(env->regs[10]);
368     (*regs)[11] = tswapreg(env->regs[11]);
369     (*regs)[12] = tswapreg(env->regs[12]);
370     (*regs)[13] = tswapreg(env->regs[13]);
371     (*regs)[14] = tswapreg(env->regs[14]);
372     (*regs)[15] = tswapreg(env->regs[15]);
373 
374     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
375     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
376 }
377 
378 #define USE_ELF_CORE_DUMP
379 #define ELF_EXEC_PAGESIZE       4096
380 
381 enum
382 {
383     ARM_HWCAP_ARM_SWP       = 1 << 0,
384     ARM_HWCAP_ARM_HALF      = 1 << 1,
385     ARM_HWCAP_ARM_THUMB     = 1 << 2,
386     ARM_HWCAP_ARM_26BIT     = 1 << 3,
387     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
388     ARM_HWCAP_ARM_FPA       = 1 << 5,
389     ARM_HWCAP_ARM_VFP       = 1 << 6,
390     ARM_HWCAP_ARM_EDSP      = 1 << 7,
391     ARM_HWCAP_ARM_JAVA      = 1 << 8,
392     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
393     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
394     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
395     ARM_HWCAP_ARM_NEON      = 1 << 12,
396     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
397     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
398     ARM_HWCAP_ARM_TLS       = 1 << 15,
399     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
400     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
401     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
402     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
403     ARM_HWCAP_ARM_LPAE      = 1 << 20,
404     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
405 };
406 
407 enum {
408     ARM_HWCAP2_ARM_AES      = 1 << 0,
409     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
410     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
411     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
412     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
413 };
414 
415 /* The commpage only exists for 32 bit kernels */
416 
417 #define HI_COMMPAGE (intptr_t)0xffff0f00u
418 
419 static bool init_guest_commpage(void)
420 {
421     ARMCPU *cpu = ARM_CPU(thread_cpu);
422     abi_ptr commpage;
423     void *want;
424     void *addr;
425 
426     /*
427      * M-profile allocates maximum of 2GB address space, so can never
428      * allocate the commpage.  Skip it.
429      */
430     if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
431         return true;
432     }
433 
434     commpage = HI_COMMPAGE & -qemu_host_page_size;
435     want = g2h_untagged(commpage);
436     addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
437                 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
438 
439     if (addr == MAP_FAILED) {
440         perror("Allocating guest commpage");
441         exit(EXIT_FAILURE);
442     }
443     if (addr != want) {
444         return false;
445     }
446 
447     /* Set kernel helper versions; rest of page is 0.  */
448     __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu));
449 
450     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
451         perror("Protecting guest commpage");
452         exit(EXIT_FAILURE);
453     }
454 
455     page_set_flags(commpage, commpage | ~qemu_host_page_mask,
456                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
457     return true;
458 }
459 
460 #define ELF_HWCAP get_elf_hwcap()
461 #define ELF_HWCAP2 get_elf_hwcap2()
462 
463 uint32_t get_elf_hwcap(void)
464 {
465     ARMCPU *cpu = ARM_CPU(thread_cpu);
466     uint32_t hwcaps = 0;
467 
468     hwcaps |= ARM_HWCAP_ARM_SWP;
469     hwcaps |= ARM_HWCAP_ARM_HALF;
470     hwcaps |= ARM_HWCAP_ARM_THUMB;
471     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
472 
473     /* probe for the extra features */
474 #define GET_FEATURE(feat, hwcap) \
475     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
476 
477 #define GET_FEATURE_ID(feat, hwcap) \
478     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
479 
480     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
481     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
482     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
483     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
484     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
485     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
486     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
487     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
488     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
489     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
490 
491     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
492         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
493         hwcaps |= ARM_HWCAP_ARM_VFPv3;
494         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
495             hwcaps |= ARM_HWCAP_ARM_VFPD32;
496         } else {
497             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
498         }
499     }
500     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
501 
502     return hwcaps;
503 }
504 
505 uint32_t get_elf_hwcap2(void)
506 {
507     ARMCPU *cpu = ARM_CPU(thread_cpu);
508     uint32_t hwcaps = 0;
509 
510     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
511     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
512     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
513     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
514     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
515     return hwcaps;
516 }
517 
518 const char *elf_hwcap_str(uint32_t bit)
519 {
520     static const char *hwcap_str[] = {
521     [__builtin_ctz(ARM_HWCAP_ARM_SWP      )] = "swp",
522     [__builtin_ctz(ARM_HWCAP_ARM_HALF     )] = "half",
523     [__builtin_ctz(ARM_HWCAP_ARM_THUMB    )] = "thumb",
524     [__builtin_ctz(ARM_HWCAP_ARM_26BIT    )] = "26bit",
525     [__builtin_ctz(ARM_HWCAP_ARM_FAST_MULT)] = "fast_mult",
526     [__builtin_ctz(ARM_HWCAP_ARM_FPA      )] = "fpa",
527     [__builtin_ctz(ARM_HWCAP_ARM_VFP      )] = "vfp",
528     [__builtin_ctz(ARM_HWCAP_ARM_EDSP     )] = "edsp",
529     [__builtin_ctz(ARM_HWCAP_ARM_JAVA     )] = "java",
530     [__builtin_ctz(ARM_HWCAP_ARM_IWMMXT   )] = "iwmmxt",
531     [__builtin_ctz(ARM_HWCAP_ARM_CRUNCH   )] = "crunch",
532     [__builtin_ctz(ARM_HWCAP_ARM_THUMBEE  )] = "thumbee",
533     [__builtin_ctz(ARM_HWCAP_ARM_NEON     )] = "neon",
534     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3    )] = "vfpv3",
535     [__builtin_ctz(ARM_HWCAP_ARM_VFPv3D16 )] = "vfpv3d16",
536     [__builtin_ctz(ARM_HWCAP_ARM_TLS      )] = "tls",
537     [__builtin_ctz(ARM_HWCAP_ARM_VFPv4    )] = "vfpv4",
538     [__builtin_ctz(ARM_HWCAP_ARM_IDIVA    )] = "idiva",
539     [__builtin_ctz(ARM_HWCAP_ARM_IDIVT    )] = "idivt",
540     [__builtin_ctz(ARM_HWCAP_ARM_VFPD32   )] = "vfpd32",
541     [__builtin_ctz(ARM_HWCAP_ARM_LPAE     )] = "lpae",
542     [__builtin_ctz(ARM_HWCAP_ARM_EVTSTRM  )] = "evtstrm",
543     };
544 
545     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
546 }
547 
548 const char *elf_hwcap2_str(uint32_t bit)
549 {
550     static const char *hwcap_str[] = {
551     [__builtin_ctz(ARM_HWCAP2_ARM_AES  )] = "aes",
552     [__builtin_ctz(ARM_HWCAP2_ARM_PMULL)] = "pmull",
553     [__builtin_ctz(ARM_HWCAP2_ARM_SHA1 )] = "sha1",
554     [__builtin_ctz(ARM_HWCAP2_ARM_SHA2 )] = "sha2",
555     [__builtin_ctz(ARM_HWCAP2_ARM_CRC32)] = "crc32",
556     };
557 
558     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
559 }
560 
561 #undef GET_FEATURE
562 #undef GET_FEATURE_ID
563 
564 #define ELF_PLATFORM get_elf_platform()
565 
566 static const char *get_elf_platform(void)
567 {
568     CPUARMState *env = thread_cpu->env_ptr;
569 
570 #if TARGET_BIG_ENDIAN
571 # define END  "b"
572 #else
573 # define END  "l"
574 #endif
575 
576     if (arm_feature(env, ARM_FEATURE_V8)) {
577         return "v8" END;
578     } else if (arm_feature(env, ARM_FEATURE_V7)) {
579         if (arm_feature(env, ARM_FEATURE_M)) {
580             return "v7m" END;
581         } else {
582             return "v7" END;
583         }
584     } else if (arm_feature(env, ARM_FEATURE_V6)) {
585         return "v6" END;
586     } else if (arm_feature(env, ARM_FEATURE_V5)) {
587         return "v5" END;
588     } else {
589         return "v4" END;
590     }
591 
592 #undef END
593 }
594 
595 #else
596 /* 64 bit ARM definitions */
597 
598 #define ELF_ARCH        EM_AARCH64
599 #define ELF_CLASS       ELFCLASS64
600 #if TARGET_BIG_ENDIAN
601 # define ELF_PLATFORM    "aarch64_be"
602 #else
603 # define ELF_PLATFORM    "aarch64"
604 #endif
605 
606 static inline void init_thread(struct target_pt_regs *regs,
607                                struct image_info *infop)
608 {
609     abi_long stack = infop->start_stack;
610     memset(regs, 0, sizeof(*regs));
611 
612     regs->pc = infop->entry & ~0x3ULL;
613     regs->sp = stack;
614 }
615 
616 #define ELF_NREG    34
617 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
618 
619 static void elf_core_copy_regs(target_elf_gregset_t *regs,
620                                const CPUARMState *env)
621 {
622     int i;
623 
624     for (i = 0; i < 32; i++) {
625         (*regs)[i] = tswapreg(env->xregs[i]);
626     }
627     (*regs)[32] = tswapreg(env->pc);
628     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
629 }
630 
631 #define USE_ELF_CORE_DUMP
632 #define ELF_EXEC_PAGESIZE       4096
633 
634 enum {
635     ARM_HWCAP_A64_FP            = 1 << 0,
636     ARM_HWCAP_A64_ASIMD         = 1 << 1,
637     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
638     ARM_HWCAP_A64_AES           = 1 << 3,
639     ARM_HWCAP_A64_PMULL         = 1 << 4,
640     ARM_HWCAP_A64_SHA1          = 1 << 5,
641     ARM_HWCAP_A64_SHA2          = 1 << 6,
642     ARM_HWCAP_A64_CRC32         = 1 << 7,
643     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
644     ARM_HWCAP_A64_FPHP          = 1 << 9,
645     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
646     ARM_HWCAP_A64_CPUID         = 1 << 11,
647     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
648     ARM_HWCAP_A64_JSCVT         = 1 << 13,
649     ARM_HWCAP_A64_FCMA          = 1 << 14,
650     ARM_HWCAP_A64_LRCPC         = 1 << 15,
651     ARM_HWCAP_A64_DCPOP         = 1 << 16,
652     ARM_HWCAP_A64_SHA3          = 1 << 17,
653     ARM_HWCAP_A64_SM3           = 1 << 18,
654     ARM_HWCAP_A64_SM4           = 1 << 19,
655     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
656     ARM_HWCAP_A64_SHA512        = 1 << 21,
657     ARM_HWCAP_A64_SVE           = 1 << 22,
658     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
659     ARM_HWCAP_A64_DIT           = 1 << 24,
660     ARM_HWCAP_A64_USCAT         = 1 << 25,
661     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
662     ARM_HWCAP_A64_FLAGM         = 1 << 27,
663     ARM_HWCAP_A64_SSBS          = 1 << 28,
664     ARM_HWCAP_A64_SB            = 1 << 29,
665     ARM_HWCAP_A64_PACA          = 1 << 30,
666     ARM_HWCAP_A64_PACG          = 1UL << 31,
667 
668     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
669     ARM_HWCAP2_A64_SVE2         = 1 << 1,
670     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
671     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
672     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
673     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
674     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
675     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
676     ARM_HWCAP2_A64_FRINT        = 1 << 8,
677     ARM_HWCAP2_A64_SVEI8MM      = 1 << 9,
678     ARM_HWCAP2_A64_SVEF32MM     = 1 << 10,
679     ARM_HWCAP2_A64_SVEF64MM     = 1 << 11,
680     ARM_HWCAP2_A64_SVEBF16      = 1 << 12,
681     ARM_HWCAP2_A64_I8MM         = 1 << 13,
682     ARM_HWCAP2_A64_BF16         = 1 << 14,
683     ARM_HWCAP2_A64_DGH          = 1 << 15,
684     ARM_HWCAP2_A64_RNG          = 1 << 16,
685     ARM_HWCAP2_A64_BTI          = 1 << 17,
686     ARM_HWCAP2_A64_MTE          = 1 << 18,
687     ARM_HWCAP2_A64_ECV          = 1 << 19,
688     ARM_HWCAP2_A64_AFP          = 1 << 20,
689     ARM_HWCAP2_A64_RPRES        = 1 << 21,
690     ARM_HWCAP2_A64_MTE3         = 1 << 22,
691     ARM_HWCAP2_A64_SME          = 1 << 23,
692     ARM_HWCAP2_A64_SME_I16I64   = 1 << 24,
693     ARM_HWCAP2_A64_SME_F64F64   = 1 << 25,
694     ARM_HWCAP2_A64_SME_I8I32    = 1 << 26,
695     ARM_HWCAP2_A64_SME_F16F32   = 1 << 27,
696     ARM_HWCAP2_A64_SME_B16F32   = 1 << 28,
697     ARM_HWCAP2_A64_SME_F32F32   = 1 << 29,
698     ARM_HWCAP2_A64_SME_FA64     = 1 << 30,
699 };
700 
701 #define ELF_HWCAP   get_elf_hwcap()
702 #define ELF_HWCAP2  get_elf_hwcap2()
703 
704 #define GET_FEATURE_ID(feat, hwcap) \
705     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
706 
707 uint32_t get_elf_hwcap(void)
708 {
709     ARMCPU *cpu = ARM_CPU(thread_cpu);
710     uint32_t hwcaps = 0;
711 
712     hwcaps |= ARM_HWCAP_A64_FP;
713     hwcaps |= ARM_HWCAP_A64_ASIMD;
714     hwcaps |= ARM_HWCAP_A64_CPUID;
715 
716     /* probe for the extra features */
717 
718     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
719     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
720     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
721     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
722     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
723     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
724     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
725     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
726     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
727     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
728     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
729     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
730     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
731     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
732     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
733     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
734     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
735     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
736     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
737     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
738     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
739     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
740     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
741 
742     return hwcaps;
743 }
744 
745 uint32_t get_elf_hwcap2(void)
746 {
747     ARMCPU *cpu = ARM_CPU(thread_cpu);
748     uint32_t hwcaps = 0;
749 
750     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
751     GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2);
752     GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES);
753     GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL);
754     GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM);
755     GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3);
756     GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4);
757     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
758     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
759     GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM);
760     GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM);
761     GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM);
762     GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16);
763     GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM);
764     GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16);
765     GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG);
766     GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI);
767     GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE);
768     GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME |
769                               ARM_HWCAP2_A64_SME_F32F32 |
770                               ARM_HWCAP2_A64_SME_B16F32 |
771                               ARM_HWCAP2_A64_SME_F16F32 |
772                               ARM_HWCAP2_A64_SME_I8I32));
773     GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64);
774     GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64);
775     GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64);
776 
777     return hwcaps;
778 }
779 
780 const char *elf_hwcap_str(uint32_t bit)
781 {
782     static const char *hwcap_str[] = {
783     [__builtin_ctz(ARM_HWCAP_A64_FP      )] = "fp",
784     [__builtin_ctz(ARM_HWCAP_A64_ASIMD   )] = "asimd",
785     [__builtin_ctz(ARM_HWCAP_A64_EVTSTRM )] = "evtstrm",
786     [__builtin_ctz(ARM_HWCAP_A64_AES     )] = "aes",
787     [__builtin_ctz(ARM_HWCAP_A64_PMULL   )] = "pmull",
788     [__builtin_ctz(ARM_HWCAP_A64_SHA1    )] = "sha1",
789     [__builtin_ctz(ARM_HWCAP_A64_SHA2    )] = "sha2",
790     [__builtin_ctz(ARM_HWCAP_A64_CRC32   )] = "crc32",
791     [__builtin_ctz(ARM_HWCAP_A64_ATOMICS )] = "atomics",
792     [__builtin_ctz(ARM_HWCAP_A64_FPHP    )] = "fphp",
793     [__builtin_ctz(ARM_HWCAP_A64_ASIMDHP )] = "asimdhp",
794     [__builtin_ctz(ARM_HWCAP_A64_CPUID   )] = "cpuid",
795     [__builtin_ctz(ARM_HWCAP_A64_ASIMDRDM)] = "asimdrdm",
796     [__builtin_ctz(ARM_HWCAP_A64_JSCVT   )] = "jscvt",
797     [__builtin_ctz(ARM_HWCAP_A64_FCMA    )] = "fcma",
798     [__builtin_ctz(ARM_HWCAP_A64_LRCPC   )] = "lrcpc",
799     [__builtin_ctz(ARM_HWCAP_A64_DCPOP   )] = "dcpop",
800     [__builtin_ctz(ARM_HWCAP_A64_SHA3    )] = "sha3",
801     [__builtin_ctz(ARM_HWCAP_A64_SM3     )] = "sm3",
802     [__builtin_ctz(ARM_HWCAP_A64_SM4     )] = "sm4",
803     [__builtin_ctz(ARM_HWCAP_A64_ASIMDDP )] = "asimddp",
804     [__builtin_ctz(ARM_HWCAP_A64_SHA512  )] = "sha512",
805     [__builtin_ctz(ARM_HWCAP_A64_SVE     )] = "sve",
806     [__builtin_ctz(ARM_HWCAP_A64_ASIMDFHM)] = "asimdfhm",
807     [__builtin_ctz(ARM_HWCAP_A64_DIT     )] = "dit",
808     [__builtin_ctz(ARM_HWCAP_A64_USCAT   )] = "uscat",
809     [__builtin_ctz(ARM_HWCAP_A64_ILRCPC  )] = "ilrcpc",
810     [__builtin_ctz(ARM_HWCAP_A64_FLAGM   )] = "flagm",
811     [__builtin_ctz(ARM_HWCAP_A64_SSBS    )] = "ssbs",
812     [__builtin_ctz(ARM_HWCAP_A64_SB      )] = "sb",
813     [__builtin_ctz(ARM_HWCAP_A64_PACA    )] = "paca",
814     [__builtin_ctz(ARM_HWCAP_A64_PACG    )] = "pacg",
815     };
816 
817     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
818 }
819 
820 const char *elf_hwcap2_str(uint32_t bit)
821 {
822     static const char *hwcap_str[] = {
823     [__builtin_ctz(ARM_HWCAP2_A64_DCPODP       )] = "dcpodp",
824     [__builtin_ctz(ARM_HWCAP2_A64_SVE2         )] = "sve2",
825     [__builtin_ctz(ARM_HWCAP2_A64_SVEAES       )] = "sveaes",
826     [__builtin_ctz(ARM_HWCAP2_A64_SVEPMULL     )] = "svepmull",
827     [__builtin_ctz(ARM_HWCAP2_A64_SVEBITPERM   )] = "svebitperm",
828     [__builtin_ctz(ARM_HWCAP2_A64_SVESHA3      )] = "svesha3",
829     [__builtin_ctz(ARM_HWCAP2_A64_SVESM4       )] = "svesm4",
830     [__builtin_ctz(ARM_HWCAP2_A64_FLAGM2       )] = "flagm2",
831     [__builtin_ctz(ARM_HWCAP2_A64_FRINT        )] = "frint",
832     [__builtin_ctz(ARM_HWCAP2_A64_SVEI8MM      )] = "svei8mm",
833     [__builtin_ctz(ARM_HWCAP2_A64_SVEF32MM     )] = "svef32mm",
834     [__builtin_ctz(ARM_HWCAP2_A64_SVEF64MM     )] = "svef64mm",
835     [__builtin_ctz(ARM_HWCAP2_A64_SVEBF16      )] = "svebf16",
836     [__builtin_ctz(ARM_HWCAP2_A64_I8MM         )] = "i8mm",
837     [__builtin_ctz(ARM_HWCAP2_A64_BF16         )] = "bf16",
838     [__builtin_ctz(ARM_HWCAP2_A64_DGH          )] = "dgh",
839     [__builtin_ctz(ARM_HWCAP2_A64_RNG          )] = "rng",
840     [__builtin_ctz(ARM_HWCAP2_A64_BTI          )] = "bti",
841     [__builtin_ctz(ARM_HWCAP2_A64_MTE          )] = "mte",
842     [__builtin_ctz(ARM_HWCAP2_A64_ECV          )] = "ecv",
843     [__builtin_ctz(ARM_HWCAP2_A64_AFP          )] = "afp",
844     [__builtin_ctz(ARM_HWCAP2_A64_RPRES        )] = "rpres",
845     [__builtin_ctz(ARM_HWCAP2_A64_MTE3         )] = "mte3",
846     [__builtin_ctz(ARM_HWCAP2_A64_SME          )] = "sme",
847     [__builtin_ctz(ARM_HWCAP2_A64_SME_I16I64   )] = "sme_i16i64",
848     [__builtin_ctz(ARM_HWCAP2_A64_SME_F64F64   )] = "sme_f64f64",
849     [__builtin_ctz(ARM_HWCAP2_A64_SME_I8I32    )] = "sme_i8i32",
850     [__builtin_ctz(ARM_HWCAP2_A64_SME_F16F32   )] = "sme_f16f32",
851     [__builtin_ctz(ARM_HWCAP2_A64_SME_B16F32   )] = "sme_b16f32",
852     [__builtin_ctz(ARM_HWCAP2_A64_SME_F32F32   )] = "sme_f32f32",
853     [__builtin_ctz(ARM_HWCAP2_A64_SME_FA64     )] = "sme_fa64",
854     };
855 
856     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
857 }
858 
859 #undef GET_FEATURE_ID
860 
861 #endif /* not TARGET_AARCH64 */
862 #endif /* TARGET_ARM */
863 
864 #ifdef TARGET_SPARC
865 #ifdef TARGET_SPARC64
866 
867 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
868                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
869 #ifndef TARGET_ABI32
870 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
871 #else
872 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
873 #endif
874 
875 #define ELF_CLASS   ELFCLASS64
876 #define ELF_ARCH    EM_SPARCV9
877 #else
878 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
879                     | HWCAP_SPARC_MULDIV)
880 #define ELF_CLASS   ELFCLASS32
881 #define ELF_ARCH    EM_SPARC
882 #endif /* TARGET_SPARC64 */
883 
884 static inline void init_thread(struct target_pt_regs *regs,
885                                struct image_info *infop)
886 {
887     /* Note that target_cpu_copy_regs does not read psr/tstate. */
888     regs->pc = infop->entry;
889     regs->npc = regs->pc + 4;
890     regs->y = 0;
891     regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong)
892                         - TARGET_STACK_BIAS);
893 }
894 #endif /* TARGET_SPARC */
895 
896 #ifdef TARGET_PPC
897 
898 #define ELF_MACHINE    PPC_ELF_MACHINE
899 
900 #if defined(TARGET_PPC64)
901 
902 #define elf_check_arch(x) ( (x) == EM_PPC64 )
903 
904 #define ELF_CLASS       ELFCLASS64
905 
906 #else
907 
908 #define ELF_CLASS       ELFCLASS32
909 #define EXSTACK_DEFAULT true
910 
911 #endif
912 
913 #define ELF_ARCH        EM_PPC
914 
915 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
916    See arch/powerpc/include/asm/cputable.h.  */
917 enum {
918     QEMU_PPC_FEATURE_32 = 0x80000000,
919     QEMU_PPC_FEATURE_64 = 0x40000000,
920     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
921     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
922     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
923     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
924     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
925     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
926     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
927     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
928     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
929     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
930     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
931     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
932     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
933     QEMU_PPC_FEATURE_CELL = 0x00010000,
934     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
935     QEMU_PPC_FEATURE_SMT = 0x00004000,
936     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
937     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
938     QEMU_PPC_FEATURE_PA6T = 0x00000800,
939     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
940     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
941     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
942     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
943     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
944 
945     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
946     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
947 
948     /* Feature definitions in AT_HWCAP2.  */
949     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
950     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
951     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
952     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
953     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
954     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
955     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
956     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
957     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
958     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
959     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
960     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
961     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
962     QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */
963     QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */
964 };
965 
966 #define ELF_HWCAP get_elf_hwcap()
967 
968 static uint32_t get_elf_hwcap(void)
969 {
970     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
971     uint32_t features = 0;
972 
973     /* We don't have to be terribly complete here; the high points are
974        Altivec/FP/SPE support.  Anything else is just a bonus.  */
975 #define GET_FEATURE(flag, feature)                                      \
976     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
977 #define GET_FEATURE2(flags, feature) \
978     do { \
979         if ((cpu->env.insns_flags2 & flags) == flags) { \
980             features |= feature; \
981         } \
982     } while (0)
983     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
984     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
985     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
986     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
987     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
988     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
989     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
990     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
991     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
992     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
993     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
994                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
995                   QEMU_PPC_FEATURE_ARCH_2_06);
996 #undef GET_FEATURE
997 #undef GET_FEATURE2
998 
999     return features;
1000 }
1001 
1002 #define ELF_HWCAP2 get_elf_hwcap2()
1003 
1004 static uint32_t get_elf_hwcap2(void)
1005 {
1006     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
1007     uint32_t features = 0;
1008 
1009 #define GET_FEATURE(flag, feature)                                      \
1010     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
1011 #define GET_FEATURE2(flag, feature)                                      \
1012     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
1013 
1014     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
1015     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
1016     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
1017                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
1018                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
1019     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
1020                  QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128);
1021     GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 |
1022                  QEMU_PPC_FEATURE2_MMA);
1023 
1024 #undef GET_FEATURE
1025 #undef GET_FEATURE2
1026 
1027     return features;
1028 }
1029 
1030 /*
1031  * The requirements here are:
1032  * - keep the final alignment of sp (sp & 0xf)
1033  * - make sure the 32-bit value at the first 16 byte aligned position of
1034  *   AUXV is greater than 16 for glibc compatibility.
1035  *   AT_IGNOREPPC is used for that.
1036  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
1037  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
1038  */
1039 #define DLINFO_ARCH_ITEMS       5
1040 #define ARCH_DLINFO                                     \
1041     do {                                                \
1042         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
1043         /*                                              \
1044          * Handle glibc compatibility: these magic entries must \
1045          * be at the lowest addresses in the final auxv.        \
1046          */                                             \
1047         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1048         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
1049         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
1050         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
1051         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
1052     } while (0)
1053 
1054 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
1055 {
1056     _regs->gpr[1] = infop->start_stack;
1057 #if defined(TARGET_PPC64)
1058     if (get_ppc64_abi(infop) < 2) {
1059         uint64_t val;
1060         get_user_u64(val, infop->entry + 8);
1061         _regs->gpr[2] = val + infop->load_bias;
1062         get_user_u64(val, infop->entry);
1063         infop->entry = val + infop->load_bias;
1064     } else {
1065         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
1066     }
1067 #endif
1068     _regs->nip = infop->entry;
1069 }
1070 
1071 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
1072 #define ELF_NREG 48
1073 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1074 
1075 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
1076 {
1077     int i;
1078     target_ulong ccr = 0;
1079 
1080     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
1081         (*regs)[i] = tswapreg(env->gpr[i]);
1082     }
1083 
1084     (*regs)[32] = tswapreg(env->nip);
1085     (*regs)[33] = tswapreg(env->msr);
1086     (*regs)[35] = tswapreg(env->ctr);
1087     (*regs)[36] = tswapreg(env->lr);
1088     (*regs)[37] = tswapreg(cpu_read_xer(env));
1089 
1090     ccr = ppc_get_cr(env);
1091     (*regs)[38] = tswapreg(ccr);
1092 }
1093 
1094 #define USE_ELF_CORE_DUMP
1095 #define ELF_EXEC_PAGESIZE       4096
1096 
1097 #endif
1098 
1099 #ifdef TARGET_LOONGARCH64
1100 
1101 #define ELF_CLASS   ELFCLASS64
1102 #define ELF_ARCH    EM_LOONGARCH
1103 #define EXSTACK_DEFAULT true
1104 
1105 #define elf_check_arch(x) ((x) == EM_LOONGARCH)
1106 
1107 static inline void init_thread(struct target_pt_regs *regs,
1108                                struct image_info *infop)
1109 {
1110     /*Set crmd PG,DA = 1,0 */
1111     regs->csr.crmd = 2 << 3;
1112     regs->csr.era = infop->entry;
1113     regs->regs[3] = infop->start_stack;
1114 }
1115 
1116 /* See linux kernel: arch/loongarch/include/asm/elf.h */
1117 #define ELF_NREG 45
1118 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1119 
1120 enum {
1121     TARGET_EF_R0 = 0,
1122     TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33,
1123     TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34,
1124 };
1125 
1126 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1127                                const CPULoongArchState *env)
1128 {
1129     int i;
1130 
1131     (*regs)[TARGET_EF_R0] = 0;
1132 
1133     for (i = 1; i < ARRAY_SIZE(env->gpr); i++) {
1134         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]);
1135     }
1136 
1137     (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc);
1138     (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV);
1139 }
1140 
1141 #define USE_ELF_CORE_DUMP
1142 #define ELF_EXEC_PAGESIZE        4096
1143 
1144 #define ELF_HWCAP get_elf_hwcap()
1145 
1146 /* See arch/loongarch/include/uapi/asm/hwcap.h */
1147 enum {
1148     HWCAP_LOONGARCH_CPUCFG   = (1 << 0),
1149     HWCAP_LOONGARCH_LAM      = (1 << 1),
1150     HWCAP_LOONGARCH_UAL      = (1 << 2),
1151     HWCAP_LOONGARCH_FPU      = (1 << 3),
1152     HWCAP_LOONGARCH_LSX      = (1 << 4),
1153     HWCAP_LOONGARCH_LASX     = (1 << 5),
1154     HWCAP_LOONGARCH_CRC32    = (1 << 6),
1155     HWCAP_LOONGARCH_COMPLEX  = (1 << 7),
1156     HWCAP_LOONGARCH_CRYPTO   = (1 << 8),
1157     HWCAP_LOONGARCH_LVZ      = (1 << 9),
1158     HWCAP_LOONGARCH_LBT_X86  = (1 << 10),
1159     HWCAP_LOONGARCH_LBT_ARM  = (1 << 11),
1160     HWCAP_LOONGARCH_LBT_MIPS = (1 << 12),
1161 };
1162 
1163 static uint32_t get_elf_hwcap(void)
1164 {
1165     LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu);
1166     uint32_t hwcaps = 0;
1167 
1168     hwcaps |= HWCAP_LOONGARCH_CRC32;
1169 
1170     if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) {
1171         hwcaps |= HWCAP_LOONGARCH_UAL;
1172     }
1173 
1174     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) {
1175         hwcaps |= HWCAP_LOONGARCH_FPU;
1176     }
1177 
1178     if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) {
1179         hwcaps |= HWCAP_LOONGARCH_LAM;
1180     }
1181 
1182     return hwcaps;
1183 }
1184 
1185 #define ELF_PLATFORM "loongarch"
1186 
1187 #endif /* TARGET_LOONGARCH64 */
1188 
1189 #ifdef TARGET_MIPS
1190 
1191 #ifdef TARGET_MIPS64
1192 #define ELF_CLASS   ELFCLASS64
1193 #else
1194 #define ELF_CLASS   ELFCLASS32
1195 #endif
1196 #define ELF_ARCH    EM_MIPS
1197 #define EXSTACK_DEFAULT true
1198 
1199 #ifdef TARGET_ABI_MIPSN32
1200 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2)
1201 #else
1202 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2))
1203 #endif
1204 
1205 #define ELF_BASE_PLATFORM get_elf_base_platform()
1206 
1207 #define MATCH_PLATFORM_INSN(_flags, _base_platform)      \
1208     do { if ((cpu->env.insn_flags & (_flags)) == _flags) \
1209     { return _base_platform; } } while (0)
1210 
1211 static const char *get_elf_base_platform(void)
1212 {
1213     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1214 
1215     /* 64 bit ISAs goes first */
1216     MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6");
1217     MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5");
1218     MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2");
1219     MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64");
1220     MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5");
1221     MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4");
1222     MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3");
1223 
1224     /* 32 bit ISAs */
1225     MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6");
1226     MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5");
1227     MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2");
1228     MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32");
1229     MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2");
1230 
1231     /* Fallback */
1232     return "mips";
1233 }
1234 #undef MATCH_PLATFORM_INSN
1235 
1236 static inline void init_thread(struct target_pt_regs *regs,
1237                                struct image_info *infop)
1238 {
1239     regs->cp0_status = 2 << CP0St_KSU;
1240     regs->cp0_epc = infop->entry;
1241     regs->regs[29] = infop->start_stack;
1242 }
1243 
1244 /* See linux kernel: arch/mips/include/asm/elf.h.  */
1245 #define ELF_NREG 45
1246 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1247 
1248 /* See linux kernel: arch/mips/include/asm/reg.h.  */
1249 enum {
1250 #ifdef TARGET_MIPS64
1251     TARGET_EF_R0 = 0,
1252 #else
1253     TARGET_EF_R0 = 6,
1254 #endif
1255     TARGET_EF_R26 = TARGET_EF_R0 + 26,
1256     TARGET_EF_R27 = TARGET_EF_R0 + 27,
1257     TARGET_EF_LO = TARGET_EF_R0 + 32,
1258     TARGET_EF_HI = TARGET_EF_R0 + 33,
1259     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
1260     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
1261     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
1262     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
1263 };
1264 
1265 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1266 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
1267 {
1268     int i;
1269 
1270     for (i = 0; i < TARGET_EF_R0; i++) {
1271         (*regs)[i] = 0;
1272     }
1273     (*regs)[TARGET_EF_R0] = 0;
1274 
1275     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
1276         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
1277     }
1278 
1279     (*regs)[TARGET_EF_R26] = 0;
1280     (*regs)[TARGET_EF_R27] = 0;
1281     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
1282     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
1283     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
1284     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
1285     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
1286     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
1287 }
1288 
1289 #define USE_ELF_CORE_DUMP
1290 #define ELF_EXEC_PAGESIZE        4096
1291 
1292 /* See arch/mips/include/uapi/asm/hwcap.h.  */
1293 enum {
1294     HWCAP_MIPS_R6           = (1 << 0),
1295     HWCAP_MIPS_MSA          = (1 << 1),
1296     HWCAP_MIPS_CRC32        = (1 << 2),
1297     HWCAP_MIPS_MIPS16       = (1 << 3),
1298     HWCAP_MIPS_MDMX         = (1 << 4),
1299     HWCAP_MIPS_MIPS3D       = (1 << 5),
1300     HWCAP_MIPS_SMARTMIPS    = (1 << 6),
1301     HWCAP_MIPS_DSP          = (1 << 7),
1302     HWCAP_MIPS_DSP2         = (1 << 8),
1303     HWCAP_MIPS_DSP3         = (1 << 9),
1304     HWCAP_MIPS_MIPS16E2     = (1 << 10),
1305     HWCAP_LOONGSON_MMI      = (1 << 11),
1306     HWCAP_LOONGSON_EXT      = (1 << 12),
1307     HWCAP_LOONGSON_EXT2     = (1 << 13),
1308     HWCAP_LOONGSON_CPUCFG   = (1 << 14),
1309 };
1310 
1311 #define ELF_HWCAP get_elf_hwcap()
1312 
1313 #define GET_FEATURE_INSN(_flag, _hwcap) \
1314     do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0)
1315 
1316 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \
1317     do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0)
1318 
1319 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \
1320     do { \
1321         if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \
1322             hwcaps |= _hwcap; \
1323         } \
1324     } while (0)
1325 
1326 static uint32_t get_elf_hwcap(void)
1327 {
1328     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
1329     uint32_t hwcaps = 0;
1330 
1331     GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH,
1332                         2, HWCAP_MIPS_R6);
1333     GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA);
1334     GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI);
1335     GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT);
1336 
1337     return hwcaps;
1338 }
1339 
1340 #undef GET_FEATURE_REG_EQU
1341 #undef GET_FEATURE_REG_SET
1342 #undef GET_FEATURE_INSN
1343 
1344 #endif /* TARGET_MIPS */
1345 
1346 #ifdef TARGET_MICROBLAZE
1347 
1348 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1349 
1350 #define ELF_CLASS   ELFCLASS32
1351 #define ELF_ARCH    EM_MICROBLAZE
1352 
1353 static inline void init_thread(struct target_pt_regs *regs,
1354                                struct image_info *infop)
1355 {
1356     regs->pc = infop->entry;
1357     regs->r1 = infop->start_stack;
1358 
1359 }
1360 
1361 #define ELF_EXEC_PAGESIZE        4096
1362 
1363 #define USE_ELF_CORE_DUMP
1364 #define ELF_NREG 38
1365 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1366 
1367 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1368 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1369 {
1370     int i, pos = 0;
1371 
1372     for (i = 0; i < 32; i++) {
1373         (*regs)[pos++] = tswapreg(env->regs[i]);
1374     }
1375 
1376     (*regs)[pos++] = tswapreg(env->pc);
1377     (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env));
1378     (*regs)[pos++] = 0;
1379     (*regs)[pos++] = tswapreg(env->ear);
1380     (*regs)[pos++] = 0;
1381     (*regs)[pos++] = tswapreg(env->esr);
1382 }
1383 
1384 #endif /* TARGET_MICROBLAZE */
1385 
1386 #ifdef TARGET_NIOS2
1387 
1388 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1389 
1390 #define ELF_CLASS   ELFCLASS32
1391 #define ELF_ARCH    EM_ALTERA_NIOS2
1392 
1393 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1394 {
1395     regs->ea = infop->entry;
1396     regs->sp = infop->start_stack;
1397 }
1398 
1399 #define LO_COMMPAGE  TARGET_PAGE_SIZE
1400 
1401 static bool init_guest_commpage(void)
1402 {
1403     static const uint8_t kuser_page[4 + 2 * 64] = {
1404         /* __kuser_helper_version */
1405         [0x00] = 0x02, 0x00, 0x00, 0x00,
1406 
1407         /* __kuser_cmpxchg */
1408         [0x04] = 0x3a, 0x6c, 0x3b, 0x00,  /* trap 16 */
1409                  0x3a, 0x28, 0x00, 0xf8,  /* ret */
1410 
1411         /* __kuser_sigtramp */
1412         [0x44] = 0xc4, 0x22, 0x80, 0x00,  /* movi r2, __NR_rt_sigreturn */
1413                  0x3a, 0x68, 0x3b, 0x00,  /* trap 0 */
1414     };
1415 
1416     void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size);
1417     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
1418                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1419 
1420     if (addr == MAP_FAILED) {
1421         perror("Allocating guest commpage");
1422         exit(EXIT_FAILURE);
1423     }
1424     if (addr != want) {
1425         return false;
1426     }
1427 
1428     memcpy(addr, kuser_page, sizeof(kuser_page));
1429 
1430     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
1431         perror("Protecting guest commpage");
1432         exit(EXIT_FAILURE);
1433     }
1434 
1435     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1436                    PAGE_READ | PAGE_EXEC | PAGE_VALID);
1437     return true;
1438 }
1439 
1440 #define ELF_EXEC_PAGESIZE        4096
1441 
1442 #define USE_ELF_CORE_DUMP
1443 #define ELF_NREG 49
1444 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1445 
1446 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1447 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1448                                const CPUNios2State *env)
1449 {
1450     int i;
1451 
1452     (*regs)[0] = -1;
1453     for (i = 1; i < 8; i++)    /* r0-r7 */
1454         (*regs)[i] = tswapreg(env->regs[i + 7]);
1455 
1456     for (i = 8; i < 16; i++)   /* r8-r15 */
1457         (*regs)[i] = tswapreg(env->regs[i - 8]);
1458 
1459     for (i = 16; i < 24; i++)  /* r16-r23 */
1460         (*regs)[i] = tswapreg(env->regs[i + 7]);
1461     (*regs)[24] = -1;    /* R_ET */
1462     (*regs)[25] = -1;    /* R_BT */
1463     (*regs)[26] = tswapreg(env->regs[R_GP]);
1464     (*regs)[27] = tswapreg(env->regs[R_SP]);
1465     (*regs)[28] = tswapreg(env->regs[R_FP]);
1466     (*regs)[29] = tswapreg(env->regs[R_EA]);
1467     (*regs)[30] = -1;    /* R_SSTATUS */
1468     (*regs)[31] = tswapreg(env->regs[R_RA]);
1469 
1470     (*regs)[32] = tswapreg(env->pc);
1471 
1472     (*regs)[33] = -1; /* R_STATUS */
1473     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1474 
1475     for (i = 35; i < 49; i++)    /* ... */
1476         (*regs)[i] = -1;
1477 }
1478 
1479 #endif /* TARGET_NIOS2 */
1480 
1481 #ifdef TARGET_OPENRISC
1482 
1483 #define ELF_ARCH EM_OPENRISC
1484 #define ELF_CLASS ELFCLASS32
1485 #define ELF_DATA  ELFDATA2MSB
1486 
1487 static inline void init_thread(struct target_pt_regs *regs,
1488                                struct image_info *infop)
1489 {
1490     regs->pc = infop->entry;
1491     regs->gpr[1] = infop->start_stack;
1492 }
1493 
1494 #define USE_ELF_CORE_DUMP
1495 #define ELF_EXEC_PAGESIZE 8192
1496 
1497 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1498 #define ELF_NREG 34 /* gprs and pc, sr */
1499 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1500 
1501 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1502                                const CPUOpenRISCState *env)
1503 {
1504     int i;
1505 
1506     for (i = 0; i < 32; i++) {
1507         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1508     }
1509     (*regs)[32] = tswapreg(env->pc);
1510     (*regs)[33] = tswapreg(cpu_get_sr(env));
1511 }
1512 #define ELF_HWCAP 0
1513 #define ELF_PLATFORM NULL
1514 
1515 #endif /* TARGET_OPENRISC */
1516 
1517 #ifdef TARGET_SH4
1518 
1519 #define ELF_CLASS ELFCLASS32
1520 #define ELF_ARCH  EM_SH
1521 
1522 static inline void init_thread(struct target_pt_regs *regs,
1523                                struct image_info *infop)
1524 {
1525     /* Check other registers XXXXX */
1526     regs->pc = infop->entry;
1527     regs->regs[15] = infop->start_stack;
1528 }
1529 
1530 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1531 #define ELF_NREG 23
1532 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1533 
1534 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1535 enum {
1536     TARGET_REG_PC = 16,
1537     TARGET_REG_PR = 17,
1538     TARGET_REG_SR = 18,
1539     TARGET_REG_GBR = 19,
1540     TARGET_REG_MACH = 20,
1541     TARGET_REG_MACL = 21,
1542     TARGET_REG_SYSCALL = 22
1543 };
1544 
1545 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1546                                       const CPUSH4State *env)
1547 {
1548     int i;
1549 
1550     for (i = 0; i < 16; i++) {
1551         (*regs)[i] = tswapreg(env->gregs[i]);
1552     }
1553 
1554     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1555     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1556     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1557     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1558     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1559     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1560     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1561 }
1562 
1563 #define USE_ELF_CORE_DUMP
1564 #define ELF_EXEC_PAGESIZE        4096
1565 
1566 enum {
1567     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1568     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1569     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1570     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1571     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1572     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1573     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1574     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1575     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1576     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1577 };
1578 
1579 #define ELF_HWCAP get_elf_hwcap()
1580 
1581 static uint32_t get_elf_hwcap(void)
1582 {
1583     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1584     uint32_t hwcap = 0;
1585 
1586     hwcap |= SH_CPU_HAS_FPU;
1587 
1588     if (cpu->env.features & SH_FEATURE_SH4A) {
1589         hwcap |= SH_CPU_HAS_LLSC;
1590     }
1591 
1592     return hwcap;
1593 }
1594 
1595 #endif
1596 
1597 #ifdef TARGET_CRIS
1598 
1599 #define ELF_CLASS ELFCLASS32
1600 #define ELF_ARCH  EM_CRIS
1601 
1602 static inline void init_thread(struct target_pt_regs *regs,
1603                                struct image_info *infop)
1604 {
1605     regs->erp = infop->entry;
1606 }
1607 
1608 #define ELF_EXEC_PAGESIZE        8192
1609 
1610 #endif
1611 
1612 #ifdef TARGET_M68K
1613 
1614 #define ELF_CLASS       ELFCLASS32
1615 #define ELF_ARCH        EM_68K
1616 
1617 /* ??? Does this need to do anything?
1618    #define ELF_PLAT_INIT(_r) */
1619 
1620 static inline void init_thread(struct target_pt_regs *regs,
1621                                struct image_info *infop)
1622 {
1623     regs->usp = infop->start_stack;
1624     regs->sr = 0;
1625     regs->pc = infop->entry;
1626 }
1627 
1628 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1629 #define ELF_NREG 20
1630 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1631 
1632 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1633 {
1634     (*regs)[0] = tswapreg(env->dregs[1]);
1635     (*regs)[1] = tswapreg(env->dregs[2]);
1636     (*regs)[2] = tswapreg(env->dregs[3]);
1637     (*regs)[3] = tswapreg(env->dregs[4]);
1638     (*regs)[4] = tswapreg(env->dregs[5]);
1639     (*regs)[5] = tswapreg(env->dregs[6]);
1640     (*regs)[6] = tswapreg(env->dregs[7]);
1641     (*regs)[7] = tswapreg(env->aregs[0]);
1642     (*regs)[8] = tswapreg(env->aregs[1]);
1643     (*regs)[9] = tswapreg(env->aregs[2]);
1644     (*regs)[10] = tswapreg(env->aregs[3]);
1645     (*regs)[11] = tswapreg(env->aregs[4]);
1646     (*regs)[12] = tswapreg(env->aregs[5]);
1647     (*regs)[13] = tswapreg(env->aregs[6]);
1648     (*regs)[14] = tswapreg(env->dregs[0]);
1649     (*regs)[15] = tswapreg(env->aregs[7]);
1650     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1651     (*regs)[17] = tswapreg(env->sr);
1652     (*regs)[18] = tswapreg(env->pc);
1653     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1654 }
1655 
1656 #define USE_ELF_CORE_DUMP
1657 #define ELF_EXEC_PAGESIZE       8192
1658 
1659 #endif
1660 
1661 #ifdef TARGET_ALPHA
1662 
1663 #define ELF_CLASS      ELFCLASS64
1664 #define ELF_ARCH       EM_ALPHA
1665 
1666 static inline void init_thread(struct target_pt_regs *regs,
1667                                struct image_info *infop)
1668 {
1669     regs->pc = infop->entry;
1670     regs->ps = 8;
1671     regs->usp = infop->start_stack;
1672 }
1673 
1674 #define ELF_EXEC_PAGESIZE        8192
1675 
1676 #endif /* TARGET_ALPHA */
1677 
1678 #ifdef TARGET_S390X
1679 
1680 #define ELF_CLASS	ELFCLASS64
1681 #define ELF_DATA	ELFDATA2MSB
1682 #define ELF_ARCH	EM_S390
1683 
1684 #include "elf.h"
1685 
1686 #define ELF_HWCAP get_elf_hwcap()
1687 
1688 #define GET_FEATURE(_feat, _hwcap) \
1689     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1690 
1691 uint32_t get_elf_hwcap(void)
1692 {
1693     /*
1694      * Let's assume we always have esan3 and zarch.
1695      * 31-bit processes can use 64-bit registers (high gprs).
1696      */
1697     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1698 
1699     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1700     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1701     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1702     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1703     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1704         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1705         hwcap |= HWCAP_S390_ETF3EH;
1706     }
1707     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1708     GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT);
1709     GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2);
1710 
1711     return hwcap;
1712 }
1713 
1714 const char *elf_hwcap_str(uint32_t bit)
1715 {
1716     static const char *hwcap_str[] = {
1717         [HWCAP_S390_NR_ESAN3]     = "esan3",
1718         [HWCAP_S390_NR_ZARCH]     = "zarch",
1719         [HWCAP_S390_NR_STFLE]     = "stfle",
1720         [HWCAP_S390_NR_MSA]       = "msa",
1721         [HWCAP_S390_NR_LDISP]     = "ldisp",
1722         [HWCAP_S390_NR_EIMM]      = "eimm",
1723         [HWCAP_S390_NR_DFP]       = "dfp",
1724         [HWCAP_S390_NR_HPAGE]     = "edat",
1725         [HWCAP_S390_NR_ETF3EH]    = "etf3eh",
1726         [HWCAP_S390_NR_HIGH_GPRS] = "highgprs",
1727         [HWCAP_S390_NR_TE]        = "te",
1728         [HWCAP_S390_NR_VXRS]      = "vx",
1729         [HWCAP_S390_NR_VXRS_BCD]  = "vxd",
1730         [HWCAP_S390_NR_VXRS_EXT]  = "vxe",
1731         [HWCAP_S390_NR_GS]        = "gs",
1732         [HWCAP_S390_NR_VXRS_EXT2] = "vxe2",
1733         [HWCAP_S390_NR_VXRS_PDE]  = "vxp",
1734         [HWCAP_S390_NR_SORT]      = "sort",
1735         [HWCAP_S390_NR_DFLT]      = "dflt",
1736         [HWCAP_S390_NR_NNPA]      = "nnpa",
1737         [HWCAP_S390_NR_PCI_MIO]   = "pcimio",
1738         [HWCAP_S390_NR_SIE]       = "sie",
1739     };
1740 
1741     return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL;
1742 }
1743 
1744 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1745 {
1746     regs->psw.addr = infop->entry;
1747     regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \
1748                      PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \
1749                      PSW_MASK_32;
1750     regs->gprs[15] = infop->start_stack;
1751 }
1752 
1753 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs).  */
1754 #define ELF_NREG 27
1755 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1756 
1757 enum {
1758     TARGET_REG_PSWM = 0,
1759     TARGET_REG_PSWA = 1,
1760     TARGET_REG_GPRS = 2,
1761     TARGET_REG_ARS = 18,
1762     TARGET_REG_ORIG_R2 = 26,
1763 };
1764 
1765 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1766                                const CPUS390XState *env)
1767 {
1768     int i;
1769     uint32_t *aregs;
1770 
1771     (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask);
1772     (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr);
1773     for (i = 0; i < 16; i++) {
1774         (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]);
1775     }
1776     aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]);
1777     for (i = 0; i < 16; i++) {
1778         aregs[i] = tswap32(env->aregs[i]);
1779     }
1780     (*regs)[TARGET_REG_ORIG_R2] = 0;
1781 }
1782 
1783 #define USE_ELF_CORE_DUMP
1784 #define ELF_EXEC_PAGESIZE 4096
1785 
1786 #endif /* TARGET_S390X */
1787 
1788 #ifdef TARGET_RISCV
1789 
1790 #define ELF_ARCH  EM_RISCV
1791 
1792 #ifdef TARGET_RISCV32
1793 #define ELF_CLASS ELFCLASS32
1794 #else
1795 #define ELF_CLASS ELFCLASS64
1796 #endif
1797 
1798 #define ELF_HWCAP get_elf_hwcap()
1799 
1800 static uint32_t get_elf_hwcap(void)
1801 {
1802 #define MISA_BIT(EXT) (1 << (EXT - 'A'))
1803     RISCVCPU *cpu = RISCV_CPU(thread_cpu);
1804     uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A')
1805                     | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C')
1806                     | MISA_BIT('V');
1807 
1808     return cpu->env.misa_ext & mask;
1809 #undef MISA_BIT
1810 }
1811 
1812 static inline void init_thread(struct target_pt_regs *regs,
1813                                struct image_info *infop)
1814 {
1815     regs->sepc = infop->entry;
1816     regs->sp = infop->start_stack;
1817 }
1818 
1819 #define ELF_EXEC_PAGESIZE 4096
1820 
1821 #endif /* TARGET_RISCV */
1822 
1823 #ifdef TARGET_HPPA
1824 
1825 #define ELF_CLASS       ELFCLASS32
1826 #define ELF_ARCH        EM_PARISC
1827 #define ELF_PLATFORM    "PARISC"
1828 #define STACK_GROWS_DOWN 0
1829 #define STACK_ALIGNMENT  64
1830 
1831 static inline void init_thread(struct target_pt_regs *regs,
1832                                struct image_info *infop)
1833 {
1834     regs->iaoq[0] = infop->entry;
1835     regs->iaoq[1] = infop->entry + 4;
1836     regs->gr[23] = 0;
1837     regs->gr[24] = infop->argv;
1838     regs->gr[25] = infop->argc;
1839     /* The top-of-stack contains a linkage buffer.  */
1840     regs->gr[30] = infop->start_stack + 64;
1841     regs->gr[31] = infop->entry;
1842 }
1843 
1844 #define LO_COMMPAGE  0
1845 
1846 static bool init_guest_commpage(void)
1847 {
1848     void *want = g2h_untagged(LO_COMMPAGE);
1849     void *addr = mmap(want, qemu_host_page_size, PROT_NONE,
1850                       MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0);
1851 
1852     if (addr == MAP_FAILED) {
1853         perror("Allocating guest commpage");
1854         exit(EXIT_FAILURE);
1855     }
1856     if (addr != want) {
1857         return false;
1858     }
1859 
1860     /*
1861      * On Linux, page zero is normally marked execute only + gateway.
1862      * Normal read or write is supposed to fail (thus PROT_NONE above),
1863      * but specific offsets have kernel code mapped to raise permissions
1864      * and implement syscalls.  Here, simply mark the page executable.
1865      * Special case the entry points during translation (see do_page_zero).
1866      */
1867     page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK,
1868                    PAGE_EXEC | PAGE_VALID);
1869     return true;
1870 }
1871 
1872 #endif /* TARGET_HPPA */
1873 
1874 #ifdef TARGET_XTENSA
1875 
1876 #define ELF_CLASS       ELFCLASS32
1877 #define ELF_ARCH        EM_XTENSA
1878 
1879 static inline void init_thread(struct target_pt_regs *regs,
1880                                struct image_info *infop)
1881 {
1882     regs->windowbase = 0;
1883     regs->windowstart = 1;
1884     regs->areg[1] = infop->start_stack;
1885     regs->pc = infop->entry;
1886     if (info_is_fdpic(infop)) {
1887         regs->areg[4] = infop->loadmap_addr;
1888         regs->areg[5] = infop->interpreter_loadmap_addr;
1889         if (infop->interpreter_loadmap_addr) {
1890             regs->areg[6] = infop->interpreter_pt_dynamic_addr;
1891         } else {
1892             regs->areg[6] = infop->pt_dynamic_addr;
1893         }
1894     }
1895 }
1896 
1897 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1898 #define ELF_NREG 128
1899 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1900 
1901 enum {
1902     TARGET_REG_PC,
1903     TARGET_REG_PS,
1904     TARGET_REG_LBEG,
1905     TARGET_REG_LEND,
1906     TARGET_REG_LCOUNT,
1907     TARGET_REG_SAR,
1908     TARGET_REG_WINDOWSTART,
1909     TARGET_REG_WINDOWBASE,
1910     TARGET_REG_THREADPTR,
1911     TARGET_REG_AR0 = 64,
1912 };
1913 
1914 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1915                                const CPUXtensaState *env)
1916 {
1917     unsigned i;
1918 
1919     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1920     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1921     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1922     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1923     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1924     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1925     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1926     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1927     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1928     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1929     for (i = 0; i < env->config->nareg; ++i) {
1930         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1931     }
1932 }
1933 
1934 #define USE_ELF_CORE_DUMP
1935 #define ELF_EXEC_PAGESIZE       4096
1936 
1937 #endif /* TARGET_XTENSA */
1938 
1939 #ifdef TARGET_HEXAGON
1940 
1941 #define ELF_CLASS       ELFCLASS32
1942 #define ELF_ARCH        EM_HEXAGON
1943 
1944 static inline void init_thread(struct target_pt_regs *regs,
1945                                struct image_info *infop)
1946 {
1947     regs->sepc = infop->entry;
1948     regs->sp = infop->start_stack;
1949 }
1950 
1951 #endif /* TARGET_HEXAGON */
1952 
1953 #ifndef ELF_BASE_PLATFORM
1954 #define ELF_BASE_PLATFORM (NULL)
1955 #endif
1956 
1957 #ifndef ELF_PLATFORM
1958 #define ELF_PLATFORM (NULL)
1959 #endif
1960 
1961 #ifndef ELF_MACHINE
1962 #define ELF_MACHINE ELF_ARCH
1963 #endif
1964 
1965 #ifndef elf_check_arch
1966 #define elf_check_arch(x) ((x) == ELF_ARCH)
1967 #endif
1968 
1969 #ifndef elf_check_abi
1970 #define elf_check_abi(x) (1)
1971 #endif
1972 
1973 #ifndef ELF_HWCAP
1974 #define ELF_HWCAP 0
1975 #endif
1976 
1977 #ifndef STACK_GROWS_DOWN
1978 #define STACK_GROWS_DOWN 1
1979 #endif
1980 
1981 #ifndef STACK_ALIGNMENT
1982 #define STACK_ALIGNMENT 16
1983 #endif
1984 
1985 #ifdef TARGET_ABI32
1986 #undef ELF_CLASS
1987 #define ELF_CLASS ELFCLASS32
1988 #undef bswaptls
1989 #define bswaptls(ptr) bswap32s(ptr)
1990 #endif
1991 
1992 #ifndef EXSTACK_DEFAULT
1993 #define EXSTACK_DEFAULT false
1994 #endif
1995 
1996 #include "elf.h"
1997 
1998 /* We must delay the following stanzas until after "elf.h". */
1999 #if defined(TARGET_AARCH64)
2000 
2001 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2002                                     const uint32_t *data,
2003                                     struct image_info *info,
2004                                     Error **errp)
2005 {
2006     if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) {
2007         if (pr_datasz != sizeof(uint32_t)) {
2008             error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND");
2009             return false;
2010         }
2011         /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */
2012         info->note_flags = *data;
2013     }
2014     return true;
2015 }
2016 #define ARCH_USE_GNU_PROPERTY 1
2017 
2018 #else
2019 
2020 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz,
2021                                     const uint32_t *data,
2022                                     struct image_info *info,
2023                                     Error **errp)
2024 {
2025     g_assert_not_reached();
2026 }
2027 #define ARCH_USE_GNU_PROPERTY 0
2028 
2029 #endif
2030 
2031 struct exec
2032 {
2033     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
2034     unsigned int a_text;   /* length of text, in bytes */
2035     unsigned int a_data;   /* length of data, in bytes */
2036     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
2037     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
2038     unsigned int a_entry;  /* start address */
2039     unsigned int a_trsize; /* length of relocation info for text, in bytes */
2040     unsigned int a_drsize; /* length of relocation info for data, in bytes */
2041 };
2042 
2043 
2044 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
2045 #define OMAGIC 0407
2046 #define NMAGIC 0410
2047 #define ZMAGIC 0413
2048 #define QMAGIC 0314
2049 
2050 #define DLINFO_ITEMS 16
2051 
2052 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
2053 {
2054     memcpy(to, from, n);
2055 }
2056 
2057 #ifdef BSWAP_NEEDED
2058 static void bswap_ehdr(struct elfhdr *ehdr)
2059 {
2060     bswap16s(&ehdr->e_type);            /* Object file type */
2061     bswap16s(&ehdr->e_machine);         /* Architecture */
2062     bswap32s(&ehdr->e_version);         /* Object file version */
2063     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
2064     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
2065     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
2066     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
2067     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
2068     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
2069     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
2070     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
2071     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
2072     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
2073 }
2074 
2075 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
2076 {
2077     int i;
2078     for (i = 0; i < phnum; ++i, ++phdr) {
2079         bswap32s(&phdr->p_type);        /* Segment type */
2080         bswap32s(&phdr->p_flags);       /* Segment flags */
2081         bswaptls(&phdr->p_offset);      /* Segment file offset */
2082         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
2083         bswaptls(&phdr->p_paddr);       /* Segment physical address */
2084         bswaptls(&phdr->p_filesz);      /* Segment size in file */
2085         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
2086         bswaptls(&phdr->p_align);       /* Segment alignment */
2087     }
2088 }
2089 
2090 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
2091 {
2092     int i;
2093     for (i = 0; i < shnum; ++i, ++shdr) {
2094         bswap32s(&shdr->sh_name);
2095         bswap32s(&shdr->sh_type);
2096         bswaptls(&shdr->sh_flags);
2097         bswaptls(&shdr->sh_addr);
2098         bswaptls(&shdr->sh_offset);
2099         bswaptls(&shdr->sh_size);
2100         bswap32s(&shdr->sh_link);
2101         bswap32s(&shdr->sh_info);
2102         bswaptls(&shdr->sh_addralign);
2103         bswaptls(&shdr->sh_entsize);
2104     }
2105 }
2106 
2107 static void bswap_sym(struct elf_sym *sym)
2108 {
2109     bswap32s(&sym->st_name);
2110     bswaptls(&sym->st_value);
2111     bswaptls(&sym->st_size);
2112     bswap16s(&sym->st_shndx);
2113 }
2114 
2115 #ifdef TARGET_MIPS
2116 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
2117 {
2118     bswap16s(&abiflags->version);
2119     bswap32s(&abiflags->ases);
2120     bswap32s(&abiflags->isa_ext);
2121     bswap32s(&abiflags->flags1);
2122     bswap32s(&abiflags->flags2);
2123 }
2124 #endif
2125 #else
2126 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
2127 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
2128 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
2129 static inline void bswap_sym(struct elf_sym *sym) { }
2130 #ifdef TARGET_MIPS
2131 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
2132 #endif
2133 #endif
2134 
2135 #ifdef USE_ELF_CORE_DUMP
2136 static int elf_core_dump(int, const CPUArchState *);
2137 #endif /* USE_ELF_CORE_DUMP */
2138 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
2139 
2140 /* Verify the portions of EHDR within E_IDENT for the target.
2141    This can be performed before bswapping the entire header.  */
2142 static bool elf_check_ident(struct elfhdr *ehdr)
2143 {
2144     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
2145             && ehdr->e_ident[EI_MAG1] == ELFMAG1
2146             && ehdr->e_ident[EI_MAG2] == ELFMAG2
2147             && ehdr->e_ident[EI_MAG3] == ELFMAG3
2148             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
2149             && ehdr->e_ident[EI_DATA] == ELF_DATA
2150             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
2151 }
2152 
2153 /* Verify the portions of EHDR outside of E_IDENT for the target.
2154    This has to wait until after bswapping the header.  */
2155 static bool elf_check_ehdr(struct elfhdr *ehdr)
2156 {
2157     return (elf_check_arch(ehdr->e_machine)
2158             && elf_check_abi(ehdr->e_flags)
2159             && ehdr->e_ehsize == sizeof(struct elfhdr)
2160             && ehdr->e_phentsize == sizeof(struct elf_phdr)
2161             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
2162 }
2163 
2164 /*
2165  * 'copy_elf_strings()' copies argument/envelope strings from user
2166  * memory to free pages in kernel mem. These are in a format ready
2167  * to be put directly into the top of new user memory.
2168  *
2169  */
2170 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
2171                                   abi_ulong p, abi_ulong stack_limit)
2172 {
2173     char *tmp;
2174     int len, i;
2175     abi_ulong top = p;
2176 
2177     if (!p) {
2178         return 0;       /* bullet-proofing */
2179     }
2180 
2181     if (STACK_GROWS_DOWN) {
2182         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
2183         for (i = argc - 1; i >= 0; --i) {
2184             tmp = argv[i];
2185             if (!tmp) {
2186                 fprintf(stderr, "VFS: argc is wrong");
2187                 exit(-1);
2188             }
2189             len = strlen(tmp) + 1;
2190             tmp += len;
2191 
2192             if (len > (p - stack_limit)) {
2193                 return 0;
2194             }
2195             while (len) {
2196                 int bytes_to_copy = (len > offset) ? offset : len;
2197                 tmp -= bytes_to_copy;
2198                 p -= bytes_to_copy;
2199                 offset -= bytes_to_copy;
2200                 len -= bytes_to_copy;
2201 
2202                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
2203 
2204                 if (offset == 0) {
2205                     memcpy_to_target(p, scratch, top - p);
2206                     top = p;
2207                     offset = TARGET_PAGE_SIZE;
2208                 }
2209             }
2210         }
2211         if (p != top) {
2212             memcpy_to_target(p, scratch + offset, top - p);
2213         }
2214     } else {
2215         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
2216         for (i = 0; i < argc; ++i) {
2217             tmp = argv[i];
2218             if (!tmp) {
2219                 fprintf(stderr, "VFS: argc is wrong");
2220                 exit(-1);
2221             }
2222             len = strlen(tmp) + 1;
2223             if (len > (stack_limit - p)) {
2224                 return 0;
2225             }
2226             while (len) {
2227                 int bytes_to_copy = (len > remaining) ? remaining : len;
2228 
2229                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
2230 
2231                 tmp += bytes_to_copy;
2232                 remaining -= bytes_to_copy;
2233                 p += bytes_to_copy;
2234                 len -= bytes_to_copy;
2235 
2236                 if (remaining == 0) {
2237                     memcpy_to_target(top, scratch, p - top);
2238                     top = p;
2239                     remaining = TARGET_PAGE_SIZE;
2240                 }
2241             }
2242         }
2243         if (p != top) {
2244             memcpy_to_target(top, scratch, p - top);
2245         }
2246     }
2247 
2248     return p;
2249 }
2250 
2251 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
2252  * argument/environment space. Newer kernels (>2.6.33) allow more,
2253  * dependent on stack size, but guarantee at least 32 pages for
2254  * backwards compatibility.
2255  */
2256 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
2257 
2258 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
2259                                  struct image_info *info)
2260 {
2261     abi_ulong size, error, guard;
2262     int prot;
2263 
2264     size = guest_stack_size;
2265     if (size < STACK_LOWER_LIMIT) {
2266         size = STACK_LOWER_LIMIT;
2267     }
2268 
2269     if (STACK_GROWS_DOWN) {
2270         guard = TARGET_PAGE_SIZE;
2271         if (guard < qemu_real_host_page_size()) {
2272             guard = qemu_real_host_page_size();
2273         }
2274     } else {
2275         /* no guard page for hppa target where stack grows upwards. */
2276         guard = 0;
2277     }
2278 
2279     prot = PROT_READ | PROT_WRITE;
2280     if (info->exec_stack) {
2281         prot |= PROT_EXEC;
2282     }
2283     error = target_mmap(0, size + guard, prot,
2284                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2285     if (error == -1) {
2286         perror("mmap stack");
2287         exit(-1);
2288     }
2289 
2290     /* We reserve one extra page at the top of the stack as guard.  */
2291     if (STACK_GROWS_DOWN) {
2292         target_mprotect(error, guard, PROT_NONE);
2293         info->stack_limit = error + guard;
2294         return info->stack_limit + size - sizeof(void *);
2295     } else {
2296         info->stack_limit = error + size;
2297         return error;
2298     }
2299 }
2300 
2301 /**
2302  * zero_bss:
2303  *
2304  * Map and zero the bss.  We need to explicitly zero any fractional pages
2305  * after the data section (i.e. bss).  Return false on mapping failure.
2306  */
2307 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot)
2308 {
2309     abi_ulong align_bss;
2310 
2311     align_bss = TARGET_PAGE_ALIGN(start_bss);
2312     end_bss = TARGET_PAGE_ALIGN(end_bss);
2313 
2314     if (start_bss < align_bss) {
2315         int flags = page_get_flags(start_bss);
2316 
2317         if (!(flags & PAGE_VALID)) {
2318             /* Map the start of the bss. */
2319             align_bss -= TARGET_PAGE_SIZE;
2320         } else if (flags & PAGE_WRITE) {
2321             /* The page is already mapped writable. */
2322             memset(g2h_untagged(start_bss), 0, align_bss - start_bss);
2323         } else {
2324             /* Read-only zeros? */
2325             g_assert_not_reached();
2326         }
2327     }
2328 
2329     return align_bss >= end_bss ||
2330            target_mmap(align_bss, end_bss - align_bss, prot,
2331                        MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1;
2332 }
2333 
2334 #if defined(TARGET_ARM)
2335 static int elf_is_fdpic(struct elfhdr *exec)
2336 {
2337     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
2338 }
2339 #elif defined(TARGET_XTENSA)
2340 static int elf_is_fdpic(struct elfhdr *exec)
2341 {
2342     return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC;
2343 }
2344 #else
2345 /* Default implementation, always false.  */
2346 static int elf_is_fdpic(struct elfhdr *exec)
2347 {
2348     return 0;
2349 }
2350 #endif
2351 
2352 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
2353 {
2354     uint16_t n;
2355     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
2356 
2357     /* elf32_fdpic_loadseg */
2358     n = info->nsegs;
2359     while (n--) {
2360         sp -= 12;
2361         put_user_u32(loadsegs[n].addr, sp+0);
2362         put_user_u32(loadsegs[n].p_vaddr, sp+4);
2363         put_user_u32(loadsegs[n].p_memsz, sp+8);
2364     }
2365 
2366     /* elf32_fdpic_loadmap */
2367     sp -= 4;
2368     put_user_u16(0, sp+0); /* version */
2369     put_user_u16(info->nsegs, sp+2); /* nsegs */
2370 
2371     info->personality = PER_LINUX_FDPIC;
2372     info->loadmap_addr = sp;
2373 
2374     return sp;
2375 }
2376 
2377 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
2378                                    struct elfhdr *exec,
2379                                    struct image_info *info,
2380                                    struct image_info *interp_info)
2381 {
2382     abi_ulong sp;
2383     abi_ulong u_argc, u_argv, u_envp, u_auxv;
2384     int size;
2385     int i;
2386     abi_ulong u_rand_bytes;
2387     uint8_t k_rand_bytes[16];
2388     abi_ulong u_platform, u_base_platform;
2389     const char *k_platform, *k_base_platform;
2390     const int n = sizeof(elf_addr_t);
2391 
2392     sp = p;
2393 
2394     /* Needs to be before we load the env/argc/... */
2395     if (elf_is_fdpic(exec)) {
2396         /* Need 4 byte alignment for these structs */
2397         sp &= ~3;
2398         sp = loader_build_fdpic_loadmap(info, sp);
2399         info->other_info = interp_info;
2400         if (interp_info) {
2401             interp_info->other_info = info;
2402             sp = loader_build_fdpic_loadmap(interp_info, sp);
2403             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
2404             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
2405         } else {
2406             info->interpreter_loadmap_addr = 0;
2407             info->interpreter_pt_dynamic_addr = 0;
2408         }
2409     }
2410 
2411     u_base_platform = 0;
2412     k_base_platform = ELF_BASE_PLATFORM;
2413     if (k_base_platform) {
2414         size_t len = strlen(k_base_platform) + 1;
2415         if (STACK_GROWS_DOWN) {
2416             sp -= (len + n - 1) & ~(n - 1);
2417             u_base_platform = sp;
2418             /* FIXME - check return value of memcpy_to_target() for failure */
2419             memcpy_to_target(sp, k_base_platform, len);
2420         } else {
2421             memcpy_to_target(sp, k_base_platform, len);
2422             u_base_platform = sp;
2423             sp += len + 1;
2424         }
2425     }
2426 
2427     u_platform = 0;
2428     k_platform = ELF_PLATFORM;
2429     if (k_platform) {
2430         size_t len = strlen(k_platform) + 1;
2431         if (STACK_GROWS_DOWN) {
2432             sp -= (len + n - 1) & ~(n - 1);
2433             u_platform = sp;
2434             /* FIXME - check return value of memcpy_to_target() for failure */
2435             memcpy_to_target(sp, k_platform, len);
2436         } else {
2437             memcpy_to_target(sp, k_platform, len);
2438             u_platform = sp;
2439             sp += len + 1;
2440         }
2441     }
2442 
2443     /* Provide 16 byte alignment for the PRNG, and basic alignment for
2444      * the argv and envp pointers.
2445      */
2446     if (STACK_GROWS_DOWN) {
2447         sp = QEMU_ALIGN_DOWN(sp, 16);
2448     } else {
2449         sp = QEMU_ALIGN_UP(sp, 16);
2450     }
2451 
2452     /*
2453      * Generate 16 random bytes for userspace PRNG seeding.
2454      */
2455     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
2456     if (STACK_GROWS_DOWN) {
2457         sp -= 16;
2458         u_rand_bytes = sp;
2459         /* FIXME - check return value of memcpy_to_target() for failure */
2460         memcpy_to_target(sp, k_rand_bytes, 16);
2461     } else {
2462         memcpy_to_target(sp, k_rand_bytes, 16);
2463         u_rand_bytes = sp;
2464         sp += 16;
2465     }
2466 
2467     size = (DLINFO_ITEMS + 1) * 2;
2468     if (k_base_platform)
2469         size += 2;
2470     if (k_platform)
2471         size += 2;
2472 #ifdef DLINFO_ARCH_ITEMS
2473     size += DLINFO_ARCH_ITEMS * 2;
2474 #endif
2475 #ifdef ELF_HWCAP2
2476     size += 2;
2477 #endif
2478     info->auxv_len = size * n;
2479 
2480     size += envc + argc + 2;
2481     size += 1;  /* argc itself */
2482     size *= n;
2483 
2484     /* Allocate space and finalize stack alignment for entry now.  */
2485     if (STACK_GROWS_DOWN) {
2486         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
2487         sp = u_argc;
2488     } else {
2489         u_argc = sp;
2490         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
2491     }
2492 
2493     u_argv = u_argc + n;
2494     u_envp = u_argv + (argc + 1) * n;
2495     u_auxv = u_envp + (envc + 1) * n;
2496     info->saved_auxv = u_auxv;
2497     info->argc = argc;
2498     info->envc = envc;
2499     info->argv = u_argv;
2500     info->envp = u_envp;
2501 
2502     /* This is correct because Linux defines
2503      * elf_addr_t as Elf32_Off / Elf64_Off
2504      */
2505 #define NEW_AUX_ENT(id, val) do {               \
2506         put_user_ual(id, u_auxv);  u_auxv += n; \
2507         put_user_ual(val, u_auxv); u_auxv += n; \
2508     } while(0)
2509 
2510 #ifdef ARCH_DLINFO
2511     /*
2512      * ARCH_DLINFO must come first so platform specific code can enforce
2513      * special alignment requirements on the AUXV if necessary (eg. PPC).
2514      */
2515     ARCH_DLINFO;
2516 #endif
2517     /* There must be exactly DLINFO_ITEMS entries here, or the assert
2518      * on info->auxv_len will trigger.
2519      */
2520     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
2521     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
2522     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
2523     if ((info->alignment & ~qemu_host_page_mask) != 0) {
2524         /* Target doesn't support host page size alignment */
2525         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
2526     } else {
2527         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
2528                                                qemu_host_page_size)));
2529     }
2530     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
2531     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
2532     NEW_AUX_ENT(AT_ENTRY, info->entry);
2533     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2534     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2535     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2536     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2537     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2538     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2539     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2540     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2541     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2542 
2543 #ifdef ELF_HWCAP2
2544     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2545 #endif
2546 
2547     if (u_base_platform) {
2548         NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform);
2549     }
2550     if (u_platform) {
2551         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2552     }
2553     NEW_AUX_ENT (AT_NULL, 0);
2554 #undef NEW_AUX_ENT
2555 
2556     /* Check that our initial calculation of the auxv length matches how much
2557      * we actually put into it.
2558      */
2559     assert(info->auxv_len == u_auxv - info->saved_auxv);
2560 
2561     put_user_ual(argc, u_argc);
2562 
2563     p = info->arg_strings;
2564     for (i = 0; i < argc; ++i) {
2565         put_user_ual(p, u_argv);
2566         u_argv += n;
2567         p += target_strlen(p) + 1;
2568     }
2569     put_user_ual(0, u_argv);
2570 
2571     p = info->env_strings;
2572     for (i = 0; i < envc; ++i) {
2573         put_user_ual(p, u_envp);
2574         u_envp += n;
2575         p += target_strlen(p) + 1;
2576     }
2577     put_user_ual(0, u_envp);
2578 
2579     return sp;
2580 }
2581 
2582 #if defined(HI_COMMPAGE)
2583 #define LO_COMMPAGE -1
2584 #elif defined(LO_COMMPAGE)
2585 #define HI_COMMPAGE 0
2586 #else
2587 #define HI_COMMPAGE 0
2588 #define LO_COMMPAGE -1
2589 #ifndef INIT_GUEST_COMMPAGE
2590 #define init_guest_commpage() true
2591 #endif
2592 #endif
2593 
2594 /**
2595  * pgb_try_mmap:
2596  * @addr: host start address
2597  * @addr_last: host last address
2598  * @keep: do not unmap the probe region
2599  *
2600  * Return 1 if [@addr, @addr_last] is not mapped in the host,
2601  * return 0 if it is not available to map, and -1 on mmap error.
2602  * If @keep, the region is left mapped on success, otherwise unmapped.
2603  */
2604 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep)
2605 {
2606     size_t size = addr_last - addr + 1;
2607     void *p = mmap((void *)addr, size, PROT_NONE,
2608                    MAP_ANONYMOUS | MAP_PRIVATE |
2609                    MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0);
2610     int ret;
2611 
2612     if (p == MAP_FAILED) {
2613         return errno == EEXIST ? 0 : -1;
2614     }
2615     ret = p == (void *)addr;
2616     if (!keep || !ret) {
2617         munmap(p, size);
2618     }
2619     return ret;
2620 }
2621 
2622 /**
2623  * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk)
2624  * @addr: host address
2625  * @addr_last: host last address
2626  * @brk: host brk
2627  *
2628  * Like pgb_try_mmap, but additionally reserve some memory following brk.
2629  */
2630 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last,
2631                                  uintptr_t brk, bool keep)
2632 {
2633     uintptr_t brk_last = brk + 16 * MiB - 1;
2634 
2635     /* Do not map anything close to the host brk. */
2636     if (addr <= brk_last && brk <= addr_last) {
2637         return 0;
2638     }
2639     return pgb_try_mmap(addr, addr_last, keep);
2640 }
2641 
2642 /**
2643  * pgb_try_mmap_set:
2644  * @ga: set of guest addrs
2645  * @base: guest_base
2646  * @brk: host brk
2647  *
2648  * Return true if all @ga can be mapped by the host at @base.
2649  * On success, retain the mapping at index 0 for reserved_va.
2650  */
2651 
2652 typedef struct PGBAddrs {
2653     uintptr_t bounds[3][2]; /* start/last pairs */
2654     int nbounds;
2655 } PGBAddrs;
2656 
2657 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk)
2658 {
2659     for (int i = ga->nbounds - 1; i >= 0; --i) {
2660         if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base,
2661                                   ga->bounds[i][1] + base,
2662                                   brk, i == 0 && reserved_va) <= 0) {
2663             return false;
2664         }
2665     }
2666     return true;
2667 }
2668 
2669 /**
2670  * pgb_addr_set:
2671  * @ga: output set of guest addrs
2672  * @guest_loaddr: guest image low address
2673  * @guest_loaddr: guest image high address
2674  * @identity: create for identity mapping
2675  *
2676  * Fill in @ga with the image, COMMPAGE and NULL page.
2677  */
2678 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr,
2679                          abi_ulong guest_hiaddr, bool try_identity)
2680 {
2681     int n;
2682 
2683     /*
2684      * With a low commpage, or a guest mapped very low,
2685      * we may not be able to use the identity map.
2686      */
2687     if (try_identity) {
2688         if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) {
2689             return false;
2690         }
2691         if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) {
2692             return false;
2693         }
2694     }
2695 
2696     memset(ga, 0, sizeof(*ga));
2697     n = 0;
2698 
2699     if (reserved_va) {
2700         ga->bounds[n][0] = try_identity ? mmap_min_addr : 0;
2701         ga->bounds[n][1] = reserved_va;
2702         n++;
2703         /* LO_COMMPAGE and NULL handled by reserving from 0. */
2704     } else {
2705         /* Add any LO_COMMPAGE or NULL page. */
2706         if (LO_COMMPAGE != -1) {
2707             ga->bounds[n][0] = 0;
2708             ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1;
2709             n++;
2710         } else if (!try_identity) {
2711             ga->bounds[n][0] = 0;
2712             ga->bounds[n][1] = TARGET_PAGE_SIZE - 1;
2713             n++;
2714         }
2715 
2716         /* Add the guest image for ET_EXEC. */
2717         if (guest_loaddr) {
2718             ga->bounds[n][0] = guest_loaddr;
2719             ga->bounds[n][1] = guest_hiaddr;
2720             n++;
2721         }
2722     }
2723 
2724     /*
2725      * Temporarily disable
2726      *   "comparison is always false due to limited range of data type"
2727      * due to comparison between unsigned and (possible) 0.
2728      */
2729 #pragma GCC diagnostic push
2730 #pragma GCC diagnostic ignored "-Wtype-limits"
2731 
2732     /* Add any HI_COMMPAGE not covered by reserved_va. */
2733     if (reserved_va < HI_COMMPAGE) {
2734         ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask;
2735         ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1;
2736         n++;
2737     }
2738 
2739 #pragma GCC diagnostic pop
2740 
2741     ga->nbounds = n;
2742     return true;
2743 }
2744 
2745 static void pgb_fail_in_use(const char *image_name)
2746 {
2747     error_report("%s: requires virtual address space that is in use "
2748                  "(omit the -B option or choose a different value)",
2749                  image_name);
2750     exit(EXIT_FAILURE);
2751 }
2752 
2753 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr,
2754                       uintptr_t guest_hiaddr, uintptr_t align)
2755 {
2756     PGBAddrs ga;
2757     uintptr_t brk = (uintptr_t)sbrk(0);
2758 
2759     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2760         fprintf(stderr, "Requested guest base %p does not satisfy "
2761                 "host minimum alignment (0x%" PRIxPTR ")\n",
2762                 (void *)guest_base, align);
2763         exit(EXIT_FAILURE);
2764     }
2765 
2766     if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base)
2767         || !pgb_try_mmap_set(&ga, guest_base, brk)) {
2768         pgb_fail_in_use(image_name);
2769     }
2770 }
2771 
2772 /**
2773  * pgb_find_fallback:
2774  *
2775  * This is a fallback method for finding holes in the host address space
2776  * if we don't have the benefit of being able to access /proc/self/map.
2777  * It can potentially take a very long time as we can only dumbly iterate
2778  * up the host address space seeing if the allocation would work.
2779  */
2780 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align,
2781                                    uintptr_t brk)
2782 {
2783     /* TODO: come up with a better estimate of how much to skip. */
2784     uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB;
2785 
2786     for (uintptr_t base = skip; ; base += skip) {
2787         base = ROUND_UP(base, align);
2788         if (pgb_try_mmap_set(ga, base, brk)) {
2789             return base;
2790         }
2791         if (base >= -skip) {
2792             return -1;
2793         }
2794     }
2795 }
2796 
2797 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base,
2798                                IntervalTreeRoot *root)
2799 {
2800     for (int i = ga->nbounds - 1; i >= 0; --i) {
2801         uintptr_t s = base + ga->bounds[i][0];
2802         uintptr_t l = base + ga->bounds[i][1];
2803         IntervalTreeNode *n;
2804 
2805         if (l < s) {
2806             /* Wraparound. Skip to advance S to mmap_min_addr. */
2807             return mmap_min_addr - s;
2808         }
2809 
2810         n = interval_tree_iter_first(root, s, l);
2811         if (n != NULL) {
2812             /* Conflict.  Skip to advance S to LAST + 1. */
2813             return n->last - s + 1;
2814         }
2815     }
2816     return 0;  /* success */
2817 }
2818 
2819 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root,
2820                                 uintptr_t align, uintptr_t brk)
2821 {
2822     uintptr_t last = mmap_min_addr;
2823     uintptr_t base, skip;
2824 
2825     while (true) {
2826         base = ROUND_UP(last, align);
2827         if (base < last) {
2828             return -1;
2829         }
2830 
2831         skip = pgb_try_itree(ga, base, root);
2832         if (skip == 0) {
2833             break;
2834         }
2835 
2836         last = base + skip;
2837         if (last < base) {
2838             return -1;
2839         }
2840     }
2841 
2842     /*
2843      * We've chosen 'base' based on holes in the interval tree,
2844      * but we don't yet know if it is a valid host address.
2845      * Because it is the first matching hole, if the host addresses
2846      * are invalid we know there are no further matches.
2847      */
2848     return pgb_try_mmap_set(ga, base, brk) ? base : -1;
2849 }
2850 
2851 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr,
2852                         uintptr_t guest_hiaddr, uintptr_t align)
2853 {
2854     IntervalTreeRoot *root;
2855     uintptr_t brk, ret;
2856     PGBAddrs ga;
2857 
2858     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2859 
2860     /* Try the identity map first. */
2861     if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) {
2862         brk = (uintptr_t)sbrk(0);
2863         if (pgb_try_mmap_set(&ga, 0, brk)) {
2864             guest_base = 0;
2865             return;
2866         }
2867     }
2868 
2869     /*
2870      * Rebuild the address set for non-identity map.
2871      * This differs in the mapping of the guest NULL page.
2872      */
2873     pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false);
2874 
2875     root = read_self_maps();
2876 
2877     /* Read brk after we've read the maps, which will malloc. */
2878     brk = (uintptr_t)sbrk(0);
2879 
2880     if (!root) {
2881         ret = pgb_find_fallback(&ga, align, brk);
2882     } else {
2883         /*
2884          * Reserve the area close to the host brk.
2885          * This will be freed with the rest of the tree.
2886          */
2887         IntervalTreeNode *b = g_new0(IntervalTreeNode, 1);
2888         b->start = brk;
2889         b->last = brk + 16 * MiB - 1;
2890         interval_tree_insert(b, root);
2891 
2892         ret = pgb_find_itree(&ga, root, align, brk);
2893         free_self_maps(root);
2894     }
2895 
2896     if (ret == -1) {
2897         int w = TARGET_LONG_BITS / 4;
2898 
2899         error_report("%s: Unable to find a guest_base to satisfy all "
2900                      "guest address mapping requirements", image_name);
2901 
2902         for (int i = 0; i < ga.nbounds; ++i) {
2903             error_printf("  %0*" PRIx64 "-%0*" PRIx64 "\n",
2904                          w, (uint64_t)ga.bounds[i][0],
2905                          w, (uint64_t)ga.bounds[i][1]);
2906         }
2907         exit(EXIT_FAILURE);
2908     }
2909     guest_base = ret;
2910 }
2911 
2912 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2913                       abi_ulong guest_hiaddr)
2914 {
2915     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2916     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2917 
2918     /* Sanity check the guest binary. */
2919     if (reserved_va) {
2920         if (guest_hiaddr > reserved_va) {
2921             error_report("%s: requires more than reserved virtual "
2922                          "address space (0x%" PRIx64 " > 0x%lx)",
2923                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2924             exit(EXIT_FAILURE);
2925         }
2926     } else {
2927         if (guest_hiaddr != (uintptr_t)guest_hiaddr) {
2928             error_report("%s: requires more virtual address space "
2929                          "than the host can provide (0x%" PRIx64 ")",
2930                          image_name, (uint64_t)guest_hiaddr + 1);
2931             exit(EXIT_FAILURE);
2932         }
2933     }
2934 
2935     if (have_guest_base) {
2936         pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align);
2937     } else {
2938         pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align);
2939     }
2940 
2941     /* Reserve and initialize the commpage. */
2942     if (!init_guest_commpage()) {
2943         /* We have already probed for the commpage being free. */
2944         g_assert_not_reached();
2945     }
2946 
2947     assert(QEMU_IS_ALIGNED(guest_base, align));
2948     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2949                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2950 }
2951 
2952 enum {
2953     /* The string "GNU\0" as a magic number. */
2954     GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16),
2955     NOTE_DATA_SZ = 1 * KiB,
2956     NOTE_NAME_SZ = 4,
2957     ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8,
2958 };
2959 
2960 /*
2961  * Process a single gnu_property entry.
2962  * Return false for error.
2963  */
2964 static bool parse_elf_property(const uint32_t *data, int *off, int datasz,
2965                                struct image_info *info, bool have_prev_type,
2966                                uint32_t *prev_type, Error **errp)
2967 {
2968     uint32_t pr_type, pr_datasz, step;
2969 
2970     if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) {
2971         goto error_data;
2972     }
2973     datasz -= *off;
2974     data += *off / sizeof(uint32_t);
2975 
2976     if (datasz < 2 * sizeof(uint32_t)) {
2977         goto error_data;
2978     }
2979     pr_type = data[0];
2980     pr_datasz = data[1];
2981     data += 2;
2982     datasz -= 2 * sizeof(uint32_t);
2983     step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN);
2984     if (step > datasz) {
2985         goto error_data;
2986     }
2987 
2988     /* Properties are supposed to be unique and sorted on pr_type. */
2989     if (have_prev_type && pr_type <= *prev_type) {
2990         if (pr_type == *prev_type) {
2991             error_setg(errp, "Duplicate property in PT_GNU_PROPERTY");
2992         } else {
2993             error_setg(errp, "Unsorted property in PT_GNU_PROPERTY");
2994         }
2995         return false;
2996     }
2997     *prev_type = pr_type;
2998 
2999     if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) {
3000         return false;
3001     }
3002 
3003     *off += 2 * sizeof(uint32_t) + step;
3004     return true;
3005 
3006  error_data:
3007     error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY");
3008     return false;
3009 }
3010 
3011 /* Process NT_GNU_PROPERTY_TYPE_0. */
3012 static bool parse_elf_properties(int image_fd,
3013                                  struct image_info *info,
3014                                  const struct elf_phdr *phdr,
3015                                  char bprm_buf[BPRM_BUF_SIZE],
3016                                  Error **errp)
3017 {
3018     union {
3019         struct elf_note nhdr;
3020         uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)];
3021     } note;
3022 
3023     int n, off, datasz;
3024     bool have_prev_type;
3025     uint32_t prev_type;
3026 
3027     /* Unless the arch requires properties, ignore them. */
3028     if (!ARCH_USE_GNU_PROPERTY) {
3029         return true;
3030     }
3031 
3032     /* If the properties are crazy large, that's too bad. */
3033     n = phdr->p_filesz;
3034     if (n > sizeof(note)) {
3035         error_setg(errp, "PT_GNU_PROPERTY too large");
3036         return false;
3037     }
3038     if (n < sizeof(note.nhdr)) {
3039         error_setg(errp, "PT_GNU_PROPERTY too small");
3040         return false;
3041     }
3042 
3043     if (phdr->p_offset + n <= BPRM_BUF_SIZE) {
3044         memcpy(&note, bprm_buf + phdr->p_offset, n);
3045     } else {
3046         ssize_t len = pread(image_fd, &note, n, phdr->p_offset);
3047         if (len != n) {
3048             error_setg_errno(errp, errno, "Error reading file header");
3049             return false;
3050         }
3051     }
3052 
3053     /*
3054      * The contents of a valid PT_GNU_PROPERTY is a sequence
3055      * of uint32_t -- swap them all now.
3056      */
3057 #ifdef BSWAP_NEEDED
3058     for (int i = 0; i < n / 4; i++) {
3059         bswap32s(note.data + i);
3060     }
3061 #endif
3062 
3063     /*
3064      * Note that nhdr is 3 words, and that the "name" described by namesz
3065      * immediately follows nhdr and is thus at the 4th word.  Further, all
3066      * of the inputs to the kernel's round_up are multiples of 4.
3067      */
3068     if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 ||
3069         note.nhdr.n_namesz != NOTE_NAME_SZ ||
3070         note.data[3] != GNU0_MAGIC) {
3071         error_setg(errp, "Invalid note in PT_GNU_PROPERTY");
3072         return false;
3073     }
3074     off = sizeof(note.nhdr) + NOTE_NAME_SZ;
3075 
3076     datasz = note.nhdr.n_descsz + off;
3077     if (datasz > n) {
3078         error_setg(errp, "Invalid note size in PT_GNU_PROPERTY");
3079         return false;
3080     }
3081 
3082     have_prev_type = false;
3083     prev_type = 0;
3084     while (1) {
3085         if (off == datasz) {
3086             return true;  /* end, exit ok */
3087         }
3088         if (!parse_elf_property(note.data, &off, datasz, info,
3089                                 have_prev_type, &prev_type, errp)) {
3090             return false;
3091         }
3092         have_prev_type = true;
3093     }
3094 }
3095 
3096 /* Load an ELF image into the address space.
3097 
3098    IMAGE_NAME is the filename of the image, to use in error messages.
3099    IMAGE_FD is the open file descriptor for the image.
3100 
3101    BPRM_BUF is a copy of the beginning of the file; this of course
3102    contains the elf file header at offset 0.  It is assumed that this
3103    buffer is sufficiently aligned to present no problems to the host
3104    in accessing data at aligned offsets within the buffer.
3105 
3106    On return: INFO values will be filled in, as necessary or available.  */
3107 
3108 static void load_elf_image(const char *image_name, int image_fd,
3109                            struct image_info *info, char **pinterp_name,
3110                            char bprm_buf[BPRM_BUF_SIZE])
3111 {
3112     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
3113     struct elf_phdr *phdr;
3114     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
3115     int i, retval, prot_exec;
3116     Error *err = NULL;
3117 
3118     /* First of all, some simple consistency checks */
3119     if (!elf_check_ident(ehdr)) {
3120         error_setg(&err, "Invalid ELF image for this architecture");
3121         goto exit_errmsg;
3122     }
3123     bswap_ehdr(ehdr);
3124     if (!elf_check_ehdr(ehdr)) {
3125         error_setg(&err, "Invalid ELF image for this architecture");
3126         goto exit_errmsg;
3127     }
3128 
3129     i = ehdr->e_phnum * sizeof(struct elf_phdr);
3130     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
3131         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
3132     } else {
3133         phdr = (struct elf_phdr *) alloca(i);
3134         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
3135         if (retval != i) {
3136             goto exit_read;
3137         }
3138     }
3139     bswap_phdr(phdr, ehdr->e_phnum);
3140 
3141     info->nsegs = 0;
3142     info->pt_dynamic_addr = 0;
3143 
3144     mmap_lock();
3145 
3146     /*
3147      * Find the maximum size of the image and allocate an appropriate
3148      * amount of memory to handle that.  Locate the interpreter, if any.
3149      */
3150     loaddr = -1, hiaddr = 0;
3151     info->alignment = 0;
3152     info->exec_stack = EXSTACK_DEFAULT;
3153     for (i = 0; i < ehdr->e_phnum; ++i) {
3154         struct elf_phdr *eppnt = phdr + i;
3155         if (eppnt->p_type == PT_LOAD) {
3156             abi_ulong a = eppnt->p_vaddr - eppnt->p_offset;
3157             if (a < loaddr) {
3158                 loaddr = a;
3159             }
3160             a = eppnt->p_vaddr + eppnt->p_memsz - 1;
3161             if (a > hiaddr) {
3162                 hiaddr = a;
3163             }
3164             ++info->nsegs;
3165             info->alignment |= eppnt->p_align;
3166         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
3167             g_autofree char *interp_name = NULL;
3168 
3169             if (*pinterp_name) {
3170                 error_setg(&err, "Multiple PT_INTERP entries");
3171                 goto exit_errmsg;
3172             }
3173 
3174             interp_name = g_malloc(eppnt->p_filesz);
3175 
3176             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3177                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
3178                        eppnt->p_filesz);
3179             } else {
3180                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
3181                                eppnt->p_offset);
3182                 if (retval != eppnt->p_filesz) {
3183                     goto exit_read;
3184                 }
3185             }
3186             if (interp_name[eppnt->p_filesz - 1] != 0) {
3187                 error_setg(&err, "Invalid PT_INTERP entry");
3188                 goto exit_errmsg;
3189             }
3190             *pinterp_name = g_steal_pointer(&interp_name);
3191         } else if (eppnt->p_type == PT_GNU_PROPERTY) {
3192             if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) {
3193                 goto exit_errmsg;
3194             }
3195         } else if (eppnt->p_type == PT_GNU_STACK) {
3196             info->exec_stack = eppnt->p_flags & PF_X;
3197         }
3198     }
3199 
3200     load_addr = loaddr;
3201 
3202     if (pinterp_name != NULL) {
3203         if (ehdr->e_type == ET_EXEC) {
3204             /*
3205              * Make sure that the low address does not conflict with
3206              * MMAP_MIN_ADDR or the QEMU application itself.
3207              */
3208             probe_guest_base(image_name, loaddr, hiaddr);
3209         } else {
3210             abi_ulong align;
3211 
3212             /*
3213              * The binary is dynamic, but we still need to
3214              * select guest_base.  In this case we pass a size.
3215              */
3216             probe_guest_base(image_name, 0, hiaddr - loaddr);
3217 
3218             /*
3219              * Avoid collision with the loader by providing a different
3220              * default load address.
3221              */
3222             load_addr += elf_et_dyn_base;
3223 
3224             /*
3225              * TODO: Better support for mmap alignment is desirable.
3226              * Since we do not have complete control over the guest
3227              * address space, we prefer the kernel to choose some address
3228              * rather than force the use of LOAD_ADDR via MAP_FIXED.
3229              * But without MAP_FIXED we cannot guarantee alignment,
3230              * only suggest it.
3231              */
3232             align = pow2ceil(info->alignment);
3233             if (align) {
3234                 load_addr &= -align;
3235             }
3236         }
3237     }
3238 
3239     /*
3240      * Reserve address space for all of this.
3241      *
3242      * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get
3243      * exactly the address range that is required.  Without reserved_va,
3244      * the guest address space is not isolated.  We have attempted to avoid
3245      * conflict with the host program itself via probe_guest_base, but using
3246      * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check.
3247      *
3248      * Otherwise this is ET_DYN, and we are searching for a location
3249      * that can hold the memory space required.  If the image is
3250      * pre-linked, LOAD_ADDR will be non-zero, and the kernel should
3251      * honor that address if it happens to be free.
3252      *
3253      * In both cases, we will overwrite pages in this range with mappings
3254      * from the executable.
3255      */
3256     load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE,
3257                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
3258                             (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0),
3259                             -1, 0);
3260     if (load_addr == -1) {
3261         goto exit_mmap;
3262     }
3263     load_bias = load_addr - loaddr;
3264 
3265     if (elf_is_fdpic(ehdr)) {
3266         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
3267             g_malloc(sizeof(*loadsegs) * info->nsegs);
3268 
3269         for (i = 0; i < ehdr->e_phnum; ++i) {
3270             switch (phdr[i].p_type) {
3271             case PT_DYNAMIC:
3272                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
3273                 break;
3274             case PT_LOAD:
3275                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
3276                 loadsegs->p_vaddr = phdr[i].p_vaddr;
3277                 loadsegs->p_memsz = phdr[i].p_memsz;
3278                 ++loadsegs;
3279                 break;
3280             }
3281         }
3282     }
3283 
3284     info->load_bias = load_bias;
3285     info->code_offset = load_bias;
3286     info->data_offset = load_bias;
3287     info->load_addr = load_addr;
3288     info->entry = ehdr->e_entry + load_bias;
3289     info->start_code = -1;
3290     info->end_code = 0;
3291     info->start_data = -1;
3292     info->end_data = 0;
3293     /* Usual start for brk is after all sections of the main executable. */
3294     info->brk = TARGET_PAGE_ALIGN(hiaddr + load_bias);
3295     info->elf_flags = ehdr->e_flags;
3296 
3297     prot_exec = PROT_EXEC;
3298 #ifdef TARGET_AARCH64
3299     /*
3300      * If the BTI feature is present, this indicates that the executable
3301      * pages of the startup binary should be mapped with PROT_BTI, so that
3302      * branch targets are enforced.
3303      *
3304      * The startup binary is either the interpreter or the static executable.
3305      * The interpreter is responsible for all pages of a dynamic executable.
3306      *
3307      * Elf notes are backward compatible to older cpus.
3308      * Do not enable BTI unless it is supported.
3309      */
3310     if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI)
3311         && (pinterp_name == NULL || *pinterp_name == 0)
3312         && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) {
3313         prot_exec |= TARGET_PROT_BTI;
3314     }
3315 #endif
3316 
3317     for (i = 0; i < ehdr->e_phnum; i++) {
3318         struct elf_phdr *eppnt = phdr + i;
3319         if (eppnt->p_type == PT_LOAD) {
3320             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
3321             int elf_prot = 0;
3322 
3323             if (eppnt->p_flags & PF_R) {
3324                 elf_prot |= PROT_READ;
3325             }
3326             if (eppnt->p_flags & PF_W) {
3327                 elf_prot |= PROT_WRITE;
3328             }
3329             if (eppnt->p_flags & PF_X) {
3330                 elf_prot |= prot_exec;
3331             }
3332 
3333             vaddr = load_bias + eppnt->p_vaddr;
3334             vaddr_po = vaddr & ~TARGET_PAGE_MASK;
3335             vaddr_ps = vaddr & TARGET_PAGE_MASK;
3336 
3337             vaddr_ef = vaddr + eppnt->p_filesz;
3338             vaddr_em = vaddr + eppnt->p_memsz;
3339 
3340             /*
3341              * Some segments may be completely empty, with a non-zero p_memsz
3342              * but no backing file segment.
3343              */
3344             if (eppnt->p_filesz != 0) {
3345                 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
3346                                     elf_prot, MAP_PRIVATE | MAP_FIXED,
3347                                     image_fd, eppnt->p_offset - vaddr_po);
3348                 if (error == -1) {
3349                     goto exit_mmap;
3350                 }
3351             }
3352 
3353             /* If the load segment requests extra zeros (e.g. bss), map it. */
3354             if (vaddr_ef < vaddr_em &&
3355                 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) {
3356                 goto exit_mmap;
3357             }
3358 
3359             /* Find the full program boundaries.  */
3360             if (elf_prot & PROT_EXEC) {
3361                 if (vaddr < info->start_code) {
3362                     info->start_code = vaddr;
3363                 }
3364                 if (vaddr_ef > info->end_code) {
3365                     info->end_code = vaddr_ef;
3366                 }
3367             }
3368             if (elf_prot & PROT_WRITE) {
3369                 if (vaddr < info->start_data) {
3370                     info->start_data = vaddr;
3371                 }
3372                 if (vaddr_ef > info->end_data) {
3373                     info->end_data = vaddr_ef;
3374                 }
3375             }
3376 #ifdef TARGET_MIPS
3377         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
3378             Mips_elf_abiflags_v0 abiflags;
3379             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
3380                 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry");
3381                 goto exit_errmsg;
3382             }
3383             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
3384                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
3385                        sizeof(Mips_elf_abiflags_v0));
3386             } else {
3387                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
3388                                eppnt->p_offset);
3389                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
3390                     goto exit_read;
3391                 }
3392             }
3393             bswap_mips_abiflags(&abiflags);
3394             info->fp_abi = abiflags.fp_abi;
3395 #endif
3396         }
3397     }
3398 
3399     if (info->end_data == 0) {
3400         info->start_data = info->end_code;
3401         info->end_data = info->end_code;
3402     }
3403 
3404     if (qemu_log_enabled()) {
3405         load_symbols(ehdr, image_fd, load_bias);
3406     }
3407 
3408     debuginfo_report_elf(image_name, image_fd, load_bias);
3409 
3410     mmap_unlock();
3411 
3412     close(image_fd);
3413     return;
3414 
3415  exit_read:
3416     if (retval >= 0) {
3417         error_setg(&err, "Incomplete read of file header");
3418     } else {
3419         error_setg_errno(&err, errno, "Error reading file header");
3420     }
3421     goto exit_errmsg;
3422  exit_mmap:
3423     error_setg_errno(&err, errno, "Error mapping file");
3424     goto exit_errmsg;
3425  exit_errmsg:
3426     error_reportf_err(err, "%s: ", image_name);
3427     exit(-1);
3428 }
3429 
3430 static void load_elf_interp(const char *filename, struct image_info *info,
3431                             char bprm_buf[BPRM_BUF_SIZE])
3432 {
3433     int fd, retval;
3434     Error *err = NULL;
3435 
3436     fd = open(path(filename), O_RDONLY);
3437     if (fd < 0) {
3438         error_setg_file_open(&err, errno, filename);
3439         error_report_err(err);
3440         exit(-1);
3441     }
3442 
3443     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
3444     if (retval < 0) {
3445         error_setg_errno(&err, errno, "Error reading file header");
3446         error_reportf_err(err, "%s: ", filename);
3447         exit(-1);
3448     }
3449 
3450     if (retval < BPRM_BUF_SIZE) {
3451         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
3452     }
3453 
3454     load_elf_image(filename, fd, info, NULL, bprm_buf);
3455 }
3456 
3457 static int symfind(const void *s0, const void *s1)
3458 {
3459     struct elf_sym *sym = (struct elf_sym *)s1;
3460     __typeof(sym->st_value) addr = *(uint64_t *)s0;
3461     int result = 0;
3462 
3463     if (addr < sym->st_value) {
3464         result = -1;
3465     } else if (addr >= sym->st_value + sym->st_size) {
3466         result = 1;
3467     }
3468     return result;
3469 }
3470 
3471 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr)
3472 {
3473 #if ELF_CLASS == ELFCLASS32
3474     struct elf_sym *syms = s->disas_symtab.elf32;
3475 #else
3476     struct elf_sym *syms = s->disas_symtab.elf64;
3477 #endif
3478 
3479     // binary search
3480     struct elf_sym *sym;
3481 
3482     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
3483     if (sym != NULL) {
3484         return s->disas_strtab + sym->st_name;
3485     }
3486 
3487     return "";
3488 }
3489 
3490 /* FIXME: This should use elf_ops.h  */
3491 static int symcmp(const void *s0, const void *s1)
3492 {
3493     struct elf_sym *sym0 = (struct elf_sym *)s0;
3494     struct elf_sym *sym1 = (struct elf_sym *)s1;
3495     return (sym0->st_value < sym1->st_value)
3496         ? -1
3497         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
3498 }
3499 
3500 /* Best attempt to load symbols from this ELF object. */
3501 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
3502 {
3503     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
3504     uint64_t segsz;
3505     struct elf_shdr *shdr;
3506     char *strings = NULL;
3507     struct syminfo *s = NULL;
3508     struct elf_sym *new_syms, *syms = NULL;
3509 
3510     shnum = hdr->e_shnum;
3511     i = shnum * sizeof(struct elf_shdr);
3512     shdr = (struct elf_shdr *)alloca(i);
3513     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
3514         return;
3515     }
3516 
3517     bswap_shdr(shdr, shnum);
3518     for (i = 0; i < shnum; ++i) {
3519         if (shdr[i].sh_type == SHT_SYMTAB) {
3520             sym_idx = i;
3521             str_idx = shdr[i].sh_link;
3522             goto found;
3523         }
3524     }
3525 
3526     /* There will be no symbol table if the file was stripped.  */
3527     return;
3528 
3529  found:
3530     /* Now know where the strtab and symtab are.  Snarf them.  */
3531     s = g_try_new(struct syminfo, 1);
3532     if (!s) {
3533         goto give_up;
3534     }
3535 
3536     segsz = shdr[str_idx].sh_size;
3537     s->disas_strtab = strings = g_try_malloc(segsz);
3538     if (!strings ||
3539         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
3540         goto give_up;
3541     }
3542 
3543     segsz = shdr[sym_idx].sh_size;
3544     syms = g_try_malloc(segsz);
3545     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
3546         goto give_up;
3547     }
3548 
3549     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
3550         /* Implausibly large symbol table: give up rather than ploughing
3551          * on with the number of symbols calculation overflowing
3552          */
3553         goto give_up;
3554     }
3555     nsyms = segsz / sizeof(struct elf_sym);
3556     for (i = 0; i < nsyms; ) {
3557         bswap_sym(syms + i);
3558         /* Throw away entries which we do not need.  */
3559         if (syms[i].st_shndx == SHN_UNDEF
3560             || syms[i].st_shndx >= SHN_LORESERVE
3561             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
3562             if (i < --nsyms) {
3563                 syms[i] = syms[nsyms];
3564             }
3565         } else {
3566 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
3567             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
3568             syms[i].st_value &= ~(target_ulong)1;
3569 #endif
3570             syms[i].st_value += load_bias;
3571             i++;
3572         }
3573     }
3574 
3575     /* No "useful" symbol.  */
3576     if (nsyms == 0) {
3577         goto give_up;
3578     }
3579 
3580     /* Attempt to free the storage associated with the local symbols
3581        that we threw away.  Whether or not this has any effect on the
3582        memory allocation depends on the malloc implementation and how
3583        many symbols we managed to discard.  */
3584     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
3585     if (new_syms == NULL) {
3586         goto give_up;
3587     }
3588     syms = new_syms;
3589 
3590     qsort(syms, nsyms, sizeof(*syms), symcmp);
3591 
3592     s->disas_num_syms = nsyms;
3593 #if ELF_CLASS == ELFCLASS32
3594     s->disas_symtab.elf32 = syms;
3595 #else
3596     s->disas_symtab.elf64 = syms;
3597 #endif
3598     s->lookup_symbol = lookup_symbolxx;
3599     s->next = syminfos;
3600     syminfos = s;
3601 
3602     return;
3603 
3604 give_up:
3605     g_free(s);
3606     g_free(strings);
3607     g_free(syms);
3608 }
3609 
3610 uint32_t get_elf_eflags(int fd)
3611 {
3612     struct elfhdr ehdr;
3613     off_t offset;
3614     int ret;
3615 
3616     /* Read ELF header */
3617     offset = lseek(fd, 0, SEEK_SET);
3618     if (offset == (off_t) -1) {
3619         return 0;
3620     }
3621     ret = read(fd, &ehdr, sizeof(ehdr));
3622     if (ret < sizeof(ehdr)) {
3623         return 0;
3624     }
3625     offset = lseek(fd, offset, SEEK_SET);
3626     if (offset == (off_t) -1) {
3627         return 0;
3628     }
3629 
3630     /* Check ELF signature */
3631     if (!elf_check_ident(&ehdr)) {
3632         return 0;
3633     }
3634 
3635     /* check header */
3636     bswap_ehdr(&ehdr);
3637     if (!elf_check_ehdr(&ehdr)) {
3638         return 0;
3639     }
3640 
3641     /* return architecture id */
3642     return ehdr.e_flags;
3643 }
3644 
3645 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
3646 {
3647     struct image_info interp_info;
3648     struct elfhdr elf_ex;
3649     char *elf_interpreter = NULL;
3650     char *scratch;
3651 
3652     memset(&interp_info, 0, sizeof(interp_info));
3653 #ifdef TARGET_MIPS
3654     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
3655 #endif
3656 
3657     load_elf_image(bprm->filename, bprm->fd, info,
3658                    &elf_interpreter, bprm->buf);
3659 
3660     /* ??? We need a copy of the elf header for passing to create_elf_tables.
3661        If we do nothing, we'll have overwritten this when we re-use bprm->buf
3662        when we load the interpreter.  */
3663     elf_ex = *(struct elfhdr *)bprm->buf;
3664 
3665     /* Do this so that we can load the interpreter, if need be.  We will
3666        change some of these later */
3667     bprm->p = setup_arg_pages(bprm, info);
3668 
3669     scratch = g_new0(char, TARGET_PAGE_SIZE);
3670     if (STACK_GROWS_DOWN) {
3671         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3672                                    bprm->p, info->stack_limit);
3673         info->file_string = bprm->p;
3674         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3675                                    bprm->p, info->stack_limit);
3676         info->env_strings = bprm->p;
3677         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3678                                    bprm->p, info->stack_limit);
3679         info->arg_strings = bprm->p;
3680     } else {
3681         info->arg_strings = bprm->p;
3682         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
3683                                    bprm->p, info->stack_limit);
3684         info->env_strings = bprm->p;
3685         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
3686                                    bprm->p, info->stack_limit);
3687         info->file_string = bprm->p;
3688         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
3689                                    bprm->p, info->stack_limit);
3690     }
3691 
3692     g_free(scratch);
3693 
3694     if (!bprm->p) {
3695         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
3696         exit(-1);
3697     }
3698 
3699     if (elf_interpreter) {
3700         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
3701 
3702         /*
3703          * While unusual because of ELF_ET_DYN_BASE, if we are unlucky
3704          * with the mappings the interpreter can be loaded above but
3705          * near the main executable, which can leave very little room
3706          * for the heap.
3707          * If the current brk has less than 16MB, use the end of the
3708          * interpreter.
3709          */
3710         if (interp_info.brk > info->brk &&
3711             interp_info.load_bias - info->brk < 16 * MiB)  {
3712             info->brk = interp_info.brk;
3713         }
3714 
3715         /* If the program interpreter is one of these two, then assume
3716            an iBCS2 image.  Otherwise assume a native linux image.  */
3717 
3718         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
3719             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
3720             info->personality = PER_SVR4;
3721 
3722             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
3723                and some applications "depend" upon this behavior.  Since
3724                we do not have the power to recompile these, we emulate
3725                the SVr4 behavior.  Sigh.  */
3726             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
3727                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
3728         }
3729 #ifdef TARGET_MIPS
3730         info->interp_fp_abi = interp_info.fp_abi;
3731 #endif
3732     }
3733 
3734     /*
3735      * TODO: load a vdso, which would also contain the signal trampolines.
3736      * Otherwise, allocate a private page to hold them.
3737      */
3738     if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) {
3739         abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE,
3740                                           PROT_READ | PROT_WRITE,
3741                                           MAP_PRIVATE | MAP_ANON, -1, 0);
3742         if (tramp_page == -1) {
3743             return -errno;
3744         }
3745 
3746         setup_sigtramp(tramp_page);
3747         target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC);
3748     }
3749 
3750     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
3751                                 info, (elf_interpreter ? &interp_info : NULL));
3752     info->start_stack = bprm->p;
3753 
3754     /* If we have an interpreter, set that as the program's entry point.
3755        Copy the load_bias as well, to help PPC64 interpret the entry
3756        point as a function descriptor.  Do this after creating elf tables
3757        so that we copy the original program entry point into the AUXV.  */
3758     if (elf_interpreter) {
3759         info->load_bias = interp_info.load_bias;
3760         info->entry = interp_info.entry;
3761         g_free(elf_interpreter);
3762     }
3763 
3764 #ifdef USE_ELF_CORE_DUMP
3765     bprm->core_dump = &elf_core_dump;
3766 #endif
3767 
3768     return 0;
3769 }
3770 
3771 #ifdef USE_ELF_CORE_DUMP
3772 /*
3773  * Definitions to generate Intel SVR4-like core files.
3774  * These mostly have the same names as the SVR4 types with "target_elf_"
3775  * tacked on the front to prevent clashes with linux definitions,
3776  * and the typedef forms have been avoided.  This is mostly like
3777  * the SVR4 structure, but more Linuxy, with things that Linux does
3778  * not support and which gdb doesn't really use excluded.
3779  *
3780  * Fields we don't dump (their contents is zero) in linux-user qemu
3781  * are marked with XXX.
3782  *
3783  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
3784  *
3785  * Porting ELF coredump for target is (quite) simple process.  First you
3786  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
3787  * the target resides):
3788  *
3789  * #define USE_ELF_CORE_DUMP
3790  *
3791  * Next you define type of register set used for dumping.  ELF specification
3792  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
3793  *
3794  * typedef <target_regtype> target_elf_greg_t;
3795  * #define ELF_NREG <number of registers>
3796  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
3797  *
3798  * Last step is to implement target specific function that copies registers
3799  * from given cpu into just specified register set.  Prototype is:
3800  *
3801  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
3802  *                                const CPUArchState *env);
3803  *
3804  * Parameters:
3805  *     regs - copy register values into here (allocated and zeroed by caller)
3806  *     env - copy registers from here
3807  *
3808  * Example for ARM target is provided in this file.
3809  */
3810 
3811 /* An ELF note in memory */
3812 struct memelfnote {
3813     const char *name;
3814     size_t     namesz;
3815     size_t     namesz_rounded;
3816     int        type;
3817     size_t     datasz;
3818     size_t     datasz_rounded;
3819     void       *data;
3820     size_t     notesz;
3821 };
3822 
3823 struct target_elf_siginfo {
3824     abi_int    si_signo; /* signal number */
3825     abi_int    si_code;  /* extra code */
3826     abi_int    si_errno; /* errno */
3827 };
3828 
3829 struct target_elf_prstatus {
3830     struct target_elf_siginfo pr_info;      /* Info associated with signal */
3831     abi_short          pr_cursig;    /* Current signal */
3832     abi_ulong          pr_sigpend;   /* XXX */
3833     abi_ulong          pr_sighold;   /* XXX */
3834     target_pid_t       pr_pid;
3835     target_pid_t       pr_ppid;
3836     target_pid_t       pr_pgrp;
3837     target_pid_t       pr_sid;
3838     struct target_timeval pr_utime;  /* XXX User time */
3839     struct target_timeval pr_stime;  /* XXX System time */
3840     struct target_timeval pr_cutime; /* XXX Cumulative user time */
3841     struct target_timeval pr_cstime; /* XXX Cumulative system time */
3842     target_elf_gregset_t      pr_reg;       /* GP registers */
3843     abi_int            pr_fpvalid;   /* XXX */
3844 };
3845 
3846 #define ELF_PRARGSZ     (80) /* Number of chars for args */
3847 
3848 struct target_elf_prpsinfo {
3849     char         pr_state;       /* numeric process state */
3850     char         pr_sname;       /* char for pr_state */
3851     char         pr_zomb;        /* zombie */
3852     char         pr_nice;        /* nice val */
3853     abi_ulong    pr_flag;        /* flags */
3854     target_uid_t pr_uid;
3855     target_gid_t pr_gid;
3856     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3857     /* Lots missing */
3858     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3859     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3860 };
3861 
3862 /* Here is the structure in which status of each thread is captured. */
3863 struct elf_thread_status {
3864     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3865     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3866 #if 0
3867     elf_fpregset_t fpu;             /* NT_PRFPREG */
3868     struct task_struct *thread;
3869     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3870 #endif
3871     struct memelfnote notes[1];
3872     int num_notes;
3873 };
3874 
3875 struct elf_note_info {
3876     struct memelfnote   *notes;
3877     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3878     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3879 
3880     QTAILQ_HEAD(, elf_thread_status) thread_list;
3881 #if 0
3882     /*
3883      * Current version of ELF coredump doesn't support
3884      * dumping fp regs etc.
3885      */
3886     elf_fpregset_t *fpu;
3887     elf_fpxregset_t *xfpu;
3888     int thread_status_size;
3889 #endif
3890     int notes_size;
3891     int numnote;
3892 };
3893 
3894 struct vm_area_struct {
3895     target_ulong   vma_start;  /* start vaddr of memory region */
3896     target_ulong   vma_end;    /* end vaddr of memory region */
3897     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3898     QTAILQ_ENTRY(vm_area_struct) vma_link;
3899 };
3900 
3901 struct mm_struct {
3902     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3903     int mm_count;           /* number of mappings */
3904 };
3905 
3906 static struct mm_struct *vma_init(void);
3907 static void vma_delete(struct mm_struct *);
3908 static int vma_add_mapping(struct mm_struct *, target_ulong,
3909                            target_ulong, abi_ulong);
3910 static int vma_get_mapping_count(const struct mm_struct *);
3911 static struct vm_area_struct *vma_first(const struct mm_struct *);
3912 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3913 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3914 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3915                       unsigned long flags);
3916 
3917 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3918 static void fill_note(struct memelfnote *, const char *, int,
3919                       unsigned int, void *);
3920 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3921 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3922 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3923 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3924 static size_t note_size(const struct memelfnote *);
3925 static void free_note_info(struct elf_note_info *);
3926 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3927 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3928 
3929 static int dump_write(int, const void *, size_t);
3930 static int write_note(struct memelfnote *, int);
3931 static int write_note_info(struct elf_note_info *, int);
3932 
3933 #ifdef BSWAP_NEEDED
3934 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3935 {
3936     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3937     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3938     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3939     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3940     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3941     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3942     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3943     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3944     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3945     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3946     /* cpu times are not filled, so we skip them */
3947     /* regs should be in correct format already */
3948     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3949 }
3950 
3951 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3952 {
3953     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3954     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3955     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3956     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3957     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3958     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3959     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3960 }
3961 
3962 static void bswap_note(struct elf_note *en)
3963 {
3964     bswap32s(&en->n_namesz);
3965     bswap32s(&en->n_descsz);
3966     bswap32s(&en->n_type);
3967 }
3968 #else
3969 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3970 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3971 static inline void bswap_note(struct elf_note *en) { }
3972 #endif /* BSWAP_NEEDED */
3973 
3974 /*
3975  * Minimal support for linux memory regions.  These are needed
3976  * when we are finding out what memory exactly belongs to
3977  * emulated process.  No locks needed here, as long as
3978  * thread that received the signal is stopped.
3979  */
3980 
3981 static struct mm_struct *vma_init(void)
3982 {
3983     struct mm_struct *mm;
3984 
3985     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3986         return (NULL);
3987 
3988     mm->mm_count = 0;
3989     QTAILQ_INIT(&mm->mm_mmap);
3990 
3991     return (mm);
3992 }
3993 
3994 static void vma_delete(struct mm_struct *mm)
3995 {
3996     struct vm_area_struct *vma;
3997 
3998     while ((vma = vma_first(mm)) != NULL) {
3999         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
4000         g_free(vma);
4001     }
4002     g_free(mm);
4003 }
4004 
4005 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
4006                            target_ulong end, abi_ulong flags)
4007 {
4008     struct vm_area_struct *vma;
4009 
4010     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
4011         return (-1);
4012 
4013     vma->vma_start = start;
4014     vma->vma_end = end;
4015     vma->vma_flags = flags;
4016 
4017     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
4018     mm->mm_count++;
4019 
4020     return (0);
4021 }
4022 
4023 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
4024 {
4025     return (QTAILQ_FIRST(&mm->mm_mmap));
4026 }
4027 
4028 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
4029 {
4030     return (QTAILQ_NEXT(vma, vma_link));
4031 }
4032 
4033 static int vma_get_mapping_count(const struct mm_struct *mm)
4034 {
4035     return (mm->mm_count);
4036 }
4037 
4038 /*
4039  * Calculate file (dump) size of given memory region.
4040  */
4041 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
4042 {
4043     /* if we cannot even read the first page, skip it */
4044     if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
4045         return (0);
4046 
4047     /*
4048      * Usually we don't dump executable pages as they contain
4049      * non-writable code that debugger can read directly from
4050      * target library etc.  However, thread stacks are marked
4051      * also executable so we read in first page of given region
4052      * and check whether it contains elf header.  If there is
4053      * no elf header, we dump it.
4054      */
4055     if (vma->vma_flags & PROT_EXEC) {
4056         char page[TARGET_PAGE_SIZE];
4057 
4058         if (copy_from_user(page, vma->vma_start, sizeof (page))) {
4059             return 0;
4060         }
4061         if ((page[EI_MAG0] == ELFMAG0) &&
4062             (page[EI_MAG1] == ELFMAG1) &&
4063             (page[EI_MAG2] == ELFMAG2) &&
4064             (page[EI_MAG3] == ELFMAG3)) {
4065             /*
4066              * Mappings are possibly from ELF binary.  Don't dump
4067              * them.
4068              */
4069             return (0);
4070         }
4071     }
4072 
4073     return (vma->vma_end - vma->vma_start);
4074 }
4075 
4076 static int vma_walker(void *priv, target_ulong start, target_ulong end,
4077                       unsigned long flags)
4078 {
4079     struct mm_struct *mm = (struct mm_struct *)priv;
4080 
4081     vma_add_mapping(mm, start, end, flags);
4082     return (0);
4083 }
4084 
4085 static void fill_note(struct memelfnote *note, const char *name, int type,
4086                       unsigned int sz, void *data)
4087 {
4088     unsigned int namesz;
4089 
4090     namesz = strlen(name) + 1;
4091     note->name = name;
4092     note->namesz = namesz;
4093     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
4094     note->type = type;
4095     note->datasz = sz;
4096     note->datasz_rounded = roundup(sz, sizeof (int32_t));
4097 
4098     note->data = data;
4099 
4100     /*
4101      * We calculate rounded up note size here as specified by
4102      * ELF document.
4103      */
4104     note->notesz = sizeof (struct elf_note) +
4105         note->namesz_rounded + note->datasz_rounded;
4106 }
4107 
4108 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
4109                             uint32_t flags)
4110 {
4111     (void) memset(elf, 0, sizeof(*elf));
4112 
4113     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
4114     elf->e_ident[EI_CLASS] = ELF_CLASS;
4115     elf->e_ident[EI_DATA] = ELF_DATA;
4116     elf->e_ident[EI_VERSION] = EV_CURRENT;
4117     elf->e_ident[EI_OSABI] = ELF_OSABI;
4118 
4119     elf->e_type = ET_CORE;
4120     elf->e_machine = machine;
4121     elf->e_version = EV_CURRENT;
4122     elf->e_phoff = sizeof(struct elfhdr);
4123     elf->e_flags = flags;
4124     elf->e_ehsize = sizeof(struct elfhdr);
4125     elf->e_phentsize = sizeof(struct elf_phdr);
4126     elf->e_phnum = segs;
4127 
4128     bswap_ehdr(elf);
4129 }
4130 
4131 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
4132 {
4133     phdr->p_type = PT_NOTE;
4134     phdr->p_offset = offset;
4135     phdr->p_vaddr = 0;
4136     phdr->p_paddr = 0;
4137     phdr->p_filesz = sz;
4138     phdr->p_memsz = 0;
4139     phdr->p_flags = 0;
4140     phdr->p_align = 0;
4141 
4142     bswap_phdr(phdr, 1);
4143 }
4144 
4145 static size_t note_size(const struct memelfnote *note)
4146 {
4147     return (note->notesz);
4148 }
4149 
4150 static void fill_prstatus(struct target_elf_prstatus *prstatus,
4151                           const TaskState *ts, int signr)
4152 {
4153     (void) memset(prstatus, 0, sizeof (*prstatus));
4154     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
4155     prstatus->pr_pid = ts->ts_tid;
4156     prstatus->pr_ppid = getppid();
4157     prstatus->pr_pgrp = getpgrp();
4158     prstatus->pr_sid = getsid(0);
4159 
4160     bswap_prstatus(prstatus);
4161 }
4162 
4163 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
4164 {
4165     char *base_filename;
4166     unsigned int i, len;
4167 
4168     (void) memset(psinfo, 0, sizeof (*psinfo));
4169 
4170     len = ts->info->env_strings - ts->info->arg_strings;
4171     if (len >= ELF_PRARGSZ)
4172         len = ELF_PRARGSZ - 1;
4173     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) {
4174         return -EFAULT;
4175     }
4176     for (i = 0; i < len; i++)
4177         if (psinfo->pr_psargs[i] == 0)
4178             psinfo->pr_psargs[i] = ' ';
4179     psinfo->pr_psargs[len] = 0;
4180 
4181     psinfo->pr_pid = getpid();
4182     psinfo->pr_ppid = getppid();
4183     psinfo->pr_pgrp = getpgrp();
4184     psinfo->pr_sid = getsid(0);
4185     psinfo->pr_uid = getuid();
4186     psinfo->pr_gid = getgid();
4187 
4188     base_filename = g_path_get_basename(ts->bprm->filename);
4189     /*
4190      * Using strncpy here is fine: at max-length,
4191      * this field is not NUL-terminated.
4192      */
4193     (void) strncpy(psinfo->pr_fname, base_filename,
4194                    sizeof(psinfo->pr_fname));
4195 
4196     g_free(base_filename);
4197     bswap_psinfo(psinfo);
4198     return (0);
4199 }
4200 
4201 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
4202 {
4203     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
4204     elf_addr_t orig_auxv = auxv;
4205     void *ptr;
4206     int len = ts->info->auxv_len;
4207 
4208     /*
4209      * Auxiliary vector is stored in target process stack.  It contains
4210      * {type, value} pairs that we need to dump into note.  This is not
4211      * strictly necessary but we do it here for sake of completeness.
4212      */
4213 
4214     /* read in whole auxv vector and copy it to memelfnote */
4215     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
4216     if (ptr != NULL) {
4217         fill_note(note, "CORE", NT_AUXV, len, ptr);
4218         unlock_user(ptr, auxv, len);
4219     }
4220 }
4221 
4222 /*
4223  * Constructs name of coredump file.  We have following convention
4224  * for the name:
4225  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
4226  *
4227  * Returns the filename
4228  */
4229 static char *core_dump_filename(const TaskState *ts)
4230 {
4231     g_autoptr(GDateTime) now = g_date_time_new_now_local();
4232     g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S");
4233     g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename);
4234 
4235     return g_strdup_printf("qemu_%s_%s_%d.core",
4236                            base_filename, nowstr, (int)getpid());
4237 }
4238 
4239 static int dump_write(int fd, const void *ptr, size_t size)
4240 {
4241     const char *bufp = (const char *)ptr;
4242     ssize_t bytes_written, bytes_left;
4243     struct rlimit dumpsize;
4244     off_t pos;
4245 
4246     bytes_written = 0;
4247     getrlimit(RLIMIT_CORE, &dumpsize);
4248     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
4249         if (errno == ESPIPE) { /* not a seekable stream */
4250             bytes_left = size;
4251         } else {
4252             return pos;
4253         }
4254     } else {
4255         if (dumpsize.rlim_cur <= pos) {
4256             return -1;
4257         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
4258             bytes_left = size;
4259         } else {
4260             size_t limit_left=dumpsize.rlim_cur - pos;
4261             bytes_left = limit_left >= size ? size : limit_left ;
4262         }
4263     }
4264 
4265     /*
4266      * In normal conditions, single write(2) should do but
4267      * in case of socket etc. this mechanism is more portable.
4268      */
4269     do {
4270         bytes_written = write(fd, bufp, bytes_left);
4271         if (bytes_written < 0) {
4272             if (errno == EINTR)
4273                 continue;
4274             return (-1);
4275         } else if (bytes_written == 0) { /* eof */
4276             return (-1);
4277         }
4278         bufp += bytes_written;
4279         bytes_left -= bytes_written;
4280     } while (bytes_left > 0);
4281 
4282     return (0);
4283 }
4284 
4285 static int write_note(struct memelfnote *men, int fd)
4286 {
4287     struct elf_note en;
4288 
4289     en.n_namesz = men->namesz;
4290     en.n_type = men->type;
4291     en.n_descsz = men->datasz;
4292 
4293     bswap_note(&en);
4294 
4295     if (dump_write(fd, &en, sizeof(en)) != 0)
4296         return (-1);
4297     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
4298         return (-1);
4299     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
4300         return (-1);
4301 
4302     return (0);
4303 }
4304 
4305 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
4306 {
4307     CPUState *cpu = env_cpu((CPUArchState *)env);
4308     TaskState *ts = (TaskState *)cpu->opaque;
4309     struct elf_thread_status *ets;
4310 
4311     ets = g_malloc0(sizeof (*ets));
4312     ets->num_notes = 1; /* only prstatus is dumped */
4313     fill_prstatus(&ets->prstatus, ts, 0);
4314     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
4315     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
4316               &ets->prstatus);
4317 
4318     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
4319 
4320     info->notes_size += note_size(&ets->notes[0]);
4321 }
4322 
4323 static void init_note_info(struct elf_note_info *info)
4324 {
4325     /* Initialize the elf_note_info structure so that it is at
4326      * least safe to call free_note_info() on it. Must be
4327      * called before calling fill_note_info().
4328      */
4329     memset(info, 0, sizeof (*info));
4330     QTAILQ_INIT(&info->thread_list);
4331 }
4332 
4333 static int fill_note_info(struct elf_note_info *info,
4334                           long signr, const CPUArchState *env)
4335 {
4336 #define NUMNOTES 3
4337     CPUState *cpu = env_cpu((CPUArchState *)env);
4338     TaskState *ts = (TaskState *)cpu->opaque;
4339     int i;
4340 
4341     info->notes = g_new0(struct memelfnote, NUMNOTES);
4342     if (info->notes == NULL)
4343         return (-ENOMEM);
4344     info->prstatus = g_malloc0(sizeof (*info->prstatus));
4345     if (info->prstatus == NULL)
4346         return (-ENOMEM);
4347     info->psinfo = g_malloc0(sizeof (*info->psinfo));
4348     if (info->prstatus == NULL)
4349         return (-ENOMEM);
4350 
4351     /*
4352      * First fill in status (and registers) of current thread
4353      * including process info & aux vector.
4354      */
4355     fill_prstatus(info->prstatus, ts, signr);
4356     elf_core_copy_regs(&info->prstatus->pr_reg, env);
4357     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
4358               sizeof (*info->prstatus), info->prstatus);
4359     fill_psinfo(info->psinfo, ts);
4360     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
4361               sizeof (*info->psinfo), info->psinfo);
4362     fill_auxv_note(&info->notes[2], ts);
4363     info->numnote = 3;
4364 
4365     info->notes_size = 0;
4366     for (i = 0; i < info->numnote; i++)
4367         info->notes_size += note_size(&info->notes[i]);
4368 
4369     /* read and fill status of all threads */
4370     WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) {
4371         CPU_FOREACH(cpu) {
4372             if (cpu == thread_cpu) {
4373                 continue;
4374             }
4375             fill_thread_info(info, cpu->env_ptr);
4376         }
4377     }
4378 
4379     return (0);
4380 }
4381 
4382 static void free_note_info(struct elf_note_info *info)
4383 {
4384     struct elf_thread_status *ets;
4385 
4386     while (!QTAILQ_EMPTY(&info->thread_list)) {
4387         ets = QTAILQ_FIRST(&info->thread_list);
4388         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
4389         g_free(ets);
4390     }
4391 
4392     g_free(info->prstatus);
4393     g_free(info->psinfo);
4394     g_free(info->notes);
4395 }
4396 
4397 static int write_note_info(struct elf_note_info *info, int fd)
4398 {
4399     struct elf_thread_status *ets;
4400     int i, error = 0;
4401 
4402     /* write prstatus, psinfo and auxv for current thread */
4403     for (i = 0; i < info->numnote; i++)
4404         if ((error = write_note(&info->notes[i], fd)) != 0)
4405             return (error);
4406 
4407     /* write prstatus for each thread */
4408     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
4409         if ((error = write_note(&ets->notes[0], fd)) != 0)
4410             return (error);
4411     }
4412 
4413     return (0);
4414 }
4415 
4416 /*
4417  * Write out ELF coredump.
4418  *
4419  * See documentation of ELF object file format in:
4420  * http://www.caldera.com/developers/devspecs/gabi41.pdf
4421  *
4422  * Coredump format in linux is following:
4423  *
4424  * 0   +----------------------+         \
4425  *     | ELF header           | ET_CORE  |
4426  *     +----------------------+          |
4427  *     | ELF program headers  |          |--- headers
4428  *     | - NOTE section       |          |
4429  *     | - PT_LOAD sections   |          |
4430  *     +----------------------+         /
4431  *     | NOTEs:               |
4432  *     | - NT_PRSTATUS        |
4433  *     | - NT_PRSINFO         |
4434  *     | - NT_AUXV            |
4435  *     +----------------------+ <-- aligned to target page
4436  *     | Process memory dump  |
4437  *     :                      :
4438  *     .                      .
4439  *     :                      :
4440  *     |                      |
4441  *     +----------------------+
4442  *
4443  * NT_PRSTATUS -> struct elf_prstatus (per thread)
4444  * NT_PRSINFO  -> struct elf_prpsinfo
4445  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
4446  *
4447  * Format follows System V format as close as possible.  Current
4448  * version limitations are as follows:
4449  *     - no floating point registers are dumped
4450  *
4451  * Function returns 0 in case of success, negative errno otherwise.
4452  *
4453  * TODO: make this work also during runtime: it should be
4454  * possible to force coredump from running process and then
4455  * continue processing.  For example qemu could set up SIGUSR2
4456  * handler (provided that target process haven't registered
4457  * handler for that) that does the dump when signal is received.
4458  */
4459 static int elf_core_dump(int signr, const CPUArchState *env)
4460 {
4461     const CPUState *cpu = env_cpu((CPUArchState *)env);
4462     const TaskState *ts = (const TaskState *)cpu->opaque;
4463     struct vm_area_struct *vma = NULL;
4464     g_autofree char *corefile = NULL;
4465     struct elf_note_info info;
4466     struct elfhdr elf;
4467     struct elf_phdr phdr;
4468     struct rlimit dumpsize;
4469     struct mm_struct *mm = NULL;
4470     off_t offset = 0, data_offset = 0;
4471     int segs = 0;
4472     int fd = -1;
4473 
4474     init_note_info(&info);
4475 
4476     errno = 0;
4477     getrlimit(RLIMIT_CORE, &dumpsize);
4478     if (dumpsize.rlim_cur == 0)
4479         return 0;
4480 
4481     corefile = core_dump_filename(ts);
4482 
4483     if ((fd = open(corefile, O_WRONLY | O_CREAT,
4484                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
4485         return (-errno);
4486 
4487     /*
4488      * Walk through target process memory mappings and
4489      * set up structure containing this information.  After
4490      * this point vma_xxx functions can be used.
4491      */
4492     if ((mm = vma_init()) == NULL)
4493         goto out;
4494 
4495     walk_memory_regions(mm, vma_walker);
4496     segs = vma_get_mapping_count(mm);
4497 
4498     /*
4499      * Construct valid coredump ELF header.  We also
4500      * add one more segment for notes.
4501      */
4502     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
4503     if (dump_write(fd, &elf, sizeof (elf)) != 0)
4504         goto out;
4505 
4506     /* fill in the in-memory version of notes */
4507     if (fill_note_info(&info, signr, env) < 0)
4508         goto out;
4509 
4510     offset += sizeof (elf);                             /* elf header */
4511     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
4512 
4513     /* write out notes program header */
4514     fill_elf_note_phdr(&phdr, info.notes_size, offset);
4515 
4516     offset += info.notes_size;
4517     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
4518         goto out;
4519 
4520     /*
4521      * ELF specification wants data to start at page boundary so
4522      * we align it here.
4523      */
4524     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
4525 
4526     /*
4527      * Write program headers for memory regions mapped in
4528      * the target process.
4529      */
4530     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4531         (void) memset(&phdr, 0, sizeof (phdr));
4532 
4533         phdr.p_type = PT_LOAD;
4534         phdr.p_offset = offset;
4535         phdr.p_vaddr = vma->vma_start;
4536         phdr.p_paddr = 0;
4537         phdr.p_filesz = vma_dump_size(vma);
4538         offset += phdr.p_filesz;
4539         phdr.p_memsz = vma->vma_end - vma->vma_start;
4540         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
4541         if (vma->vma_flags & PROT_WRITE)
4542             phdr.p_flags |= PF_W;
4543         if (vma->vma_flags & PROT_EXEC)
4544             phdr.p_flags |= PF_X;
4545         phdr.p_align = ELF_EXEC_PAGESIZE;
4546 
4547         bswap_phdr(&phdr, 1);
4548         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
4549             goto out;
4550         }
4551     }
4552 
4553     /*
4554      * Next we write notes just after program headers.  No
4555      * alignment needed here.
4556      */
4557     if (write_note_info(&info, fd) < 0)
4558         goto out;
4559 
4560     /* align data to page boundary */
4561     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
4562         goto out;
4563 
4564     /*
4565      * Finally we can dump process memory into corefile as well.
4566      */
4567     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
4568         abi_ulong addr;
4569         abi_ulong end;
4570 
4571         end = vma->vma_start + vma_dump_size(vma);
4572 
4573         for (addr = vma->vma_start; addr < end;
4574              addr += TARGET_PAGE_SIZE) {
4575             char page[TARGET_PAGE_SIZE];
4576             int error;
4577 
4578             /*
4579              *  Read in page from target process memory and
4580              *  write it to coredump file.
4581              */
4582             error = copy_from_user(page, addr, sizeof (page));
4583             if (error != 0) {
4584                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
4585                                addr);
4586                 errno = -error;
4587                 goto out;
4588             }
4589             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
4590                 goto out;
4591         }
4592     }
4593 
4594  out:
4595     free_note_info(&info);
4596     if (mm != NULL)
4597         vma_delete(mm);
4598     (void) close(fd);
4599 
4600     if (errno != 0)
4601         return (-errno);
4602     return (0);
4603 }
4604 #endif /* USE_ELF_CORE_DUMP */
4605 
4606 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
4607 {
4608     init_thread(regs, infop);
4609 }
4610