1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qemu/lockable.h" 21 #include "qapi/error.h" 22 #include "qemu/error-report.h" 23 #include "target_signal.h" 24 #include "accel/tcg/debuginfo.h" 25 26 #ifdef _ARCH_PPC64 27 #undef ARCH_DLINFO 28 #undef ELF_PLATFORM 29 #undef ELF_HWCAP 30 #undef ELF_HWCAP2 31 #undef ELF_CLASS 32 #undef ELF_DATA 33 #undef ELF_ARCH 34 #endif 35 36 #define ELF_OSABI ELFOSABI_SYSV 37 38 /* from personality.h */ 39 40 /* 41 * Flags for bug emulation. 42 * 43 * These occupy the top three bytes. 44 */ 45 enum { 46 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 47 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 48 descriptors (signal handling) */ 49 MMAP_PAGE_ZERO = 0x0100000, 50 ADDR_COMPAT_LAYOUT = 0x0200000, 51 READ_IMPLIES_EXEC = 0x0400000, 52 ADDR_LIMIT_32BIT = 0x0800000, 53 SHORT_INODE = 0x1000000, 54 WHOLE_SECONDS = 0x2000000, 55 STICKY_TIMEOUTS = 0x4000000, 56 ADDR_LIMIT_3GB = 0x8000000, 57 }; 58 59 /* 60 * Personality types. 61 * 62 * These go in the low byte. Avoid using the top bit, it will 63 * conflict with error returns. 64 */ 65 enum { 66 PER_LINUX = 0x0000, 67 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 68 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 69 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 70 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 72 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 73 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 74 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 75 PER_BSD = 0x0006, 76 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 77 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 78 PER_LINUX32 = 0x0008, 79 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 80 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 81 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 82 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 83 PER_RISCOS = 0x000c, 84 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 85 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 86 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 87 PER_HPUX = 0x0010, 88 PER_MASK = 0x00ff, 89 }; 90 91 /* 92 * Return the base personality without flags. 93 */ 94 #define personality(pers) (pers & PER_MASK) 95 96 int info_is_fdpic(struct image_info *info) 97 { 98 return info->personality == PER_LINUX_FDPIC; 99 } 100 101 /* this flag is uneffective under linux too, should be deleted */ 102 #ifndef MAP_DENYWRITE 103 #define MAP_DENYWRITE 0 104 #endif 105 106 /* should probably go in elf.h */ 107 #ifndef ELIBBAD 108 #define ELIBBAD 80 109 #endif 110 111 #if TARGET_BIG_ENDIAN 112 #define ELF_DATA ELFDATA2MSB 113 #else 114 #define ELF_DATA ELFDATA2LSB 115 #endif 116 117 #ifdef TARGET_ABI_MIPSN32 118 typedef abi_ullong target_elf_greg_t; 119 #define tswapreg(ptr) tswap64(ptr) 120 #else 121 typedef abi_ulong target_elf_greg_t; 122 #define tswapreg(ptr) tswapal(ptr) 123 #endif 124 125 #ifdef USE_UID16 126 typedef abi_ushort target_uid_t; 127 typedef abi_ushort target_gid_t; 128 #else 129 typedef abi_uint target_uid_t; 130 typedef abi_uint target_gid_t; 131 #endif 132 typedef abi_int target_pid_t; 133 134 #ifdef TARGET_I386 135 136 #define ELF_HWCAP get_elf_hwcap() 137 138 static uint32_t get_elf_hwcap(void) 139 { 140 X86CPU *cpu = X86_CPU(thread_cpu); 141 142 return cpu->env.features[FEAT_1_EDX]; 143 } 144 145 #ifdef TARGET_X86_64 146 #define ELF_START_MMAP 0x2aaaaab000ULL 147 148 #define ELF_CLASS ELFCLASS64 149 #define ELF_ARCH EM_X86_64 150 151 #define ELF_PLATFORM "x86_64" 152 153 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 154 { 155 regs->rax = 0; 156 regs->rsp = infop->start_stack; 157 regs->rip = infop->entry; 158 } 159 160 #define ELF_NREG 27 161 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 162 163 /* 164 * Note that ELF_NREG should be 29 as there should be place for 165 * TRAPNO and ERR "registers" as well but linux doesn't dump 166 * those. 167 * 168 * See linux kernel: arch/x86/include/asm/elf.h 169 */ 170 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 171 { 172 (*regs)[0] = tswapreg(env->regs[15]); 173 (*regs)[1] = tswapreg(env->regs[14]); 174 (*regs)[2] = tswapreg(env->regs[13]); 175 (*regs)[3] = tswapreg(env->regs[12]); 176 (*regs)[4] = tswapreg(env->regs[R_EBP]); 177 (*regs)[5] = tswapreg(env->regs[R_EBX]); 178 (*regs)[6] = tswapreg(env->regs[11]); 179 (*regs)[7] = tswapreg(env->regs[10]); 180 (*regs)[8] = tswapreg(env->regs[9]); 181 (*regs)[9] = tswapreg(env->regs[8]); 182 (*regs)[10] = tswapreg(env->regs[R_EAX]); 183 (*regs)[11] = tswapreg(env->regs[R_ECX]); 184 (*regs)[12] = tswapreg(env->regs[R_EDX]); 185 (*regs)[13] = tswapreg(env->regs[R_ESI]); 186 (*regs)[14] = tswapreg(env->regs[R_EDI]); 187 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 188 (*regs)[16] = tswapreg(env->eip); 189 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 190 (*regs)[18] = tswapreg(env->eflags); 191 (*regs)[19] = tswapreg(env->regs[R_ESP]); 192 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 193 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 194 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 195 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 196 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 197 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 198 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 199 } 200 201 #if ULONG_MAX > UINT32_MAX 202 #define INIT_GUEST_COMMPAGE 203 static bool init_guest_commpage(void) 204 { 205 /* 206 * The vsyscall page is at a high negative address aka kernel space, 207 * which means that we cannot actually allocate it with target_mmap. 208 * We still should be able to use page_set_flags, unless the user 209 * has specified -R reserved_va, which would trigger an assert(). 210 */ 211 if (reserved_va != 0 && 212 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE - 1 > reserved_va) { 213 error_report("Cannot allocate vsyscall page"); 214 exit(EXIT_FAILURE); 215 } 216 page_set_flags(TARGET_VSYSCALL_PAGE, 217 TARGET_VSYSCALL_PAGE | ~TARGET_PAGE_MASK, 218 PAGE_EXEC | PAGE_VALID); 219 return true; 220 } 221 #endif 222 #else 223 224 #define ELF_START_MMAP 0x80000000 225 226 /* 227 * This is used to ensure we don't load something for the wrong architecture. 228 */ 229 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 230 231 /* 232 * These are used to set parameters in the core dumps. 233 */ 234 #define ELF_CLASS ELFCLASS32 235 #define ELF_ARCH EM_386 236 237 #define ELF_PLATFORM get_elf_platform() 238 #define EXSTACK_DEFAULT true 239 240 static const char *get_elf_platform(void) 241 { 242 static char elf_platform[] = "i386"; 243 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 244 if (family > 6) { 245 family = 6; 246 } 247 if (family >= 3) { 248 elf_platform[1] = '0' + family; 249 } 250 return elf_platform; 251 } 252 253 static inline void init_thread(struct target_pt_regs *regs, 254 struct image_info *infop) 255 { 256 regs->esp = infop->start_stack; 257 regs->eip = infop->entry; 258 259 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 260 starts %edx contains a pointer to a function which might be 261 registered using `atexit'. This provides a mean for the 262 dynamic linker to call DT_FINI functions for shared libraries 263 that have been loaded before the code runs. 264 265 A value of 0 tells we have no such handler. */ 266 regs->edx = 0; 267 } 268 269 #define ELF_NREG 17 270 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 271 272 /* 273 * Note that ELF_NREG should be 19 as there should be place for 274 * TRAPNO and ERR "registers" as well but linux doesn't dump 275 * those. 276 * 277 * See linux kernel: arch/x86/include/asm/elf.h 278 */ 279 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 280 { 281 (*regs)[0] = tswapreg(env->regs[R_EBX]); 282 (*regs)[1] = tswapreg(env->regs[R_ECX]); 283 (*regs)[2] = tswapreg(env->regs[R_EDX]); 284 (*regs)[3] = tswapreg(env->regs[R_ESI]); 285 (*regs)[4] = tswapreg(env->regs[R_EDI]); 286 (*regs)[5] = tswapreg(env->regs[R_EBP]); 287 (*regs)[6] = tswapreg(env->regs[R_EAX]); 288 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 289 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 290 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 291 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 292 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 293 (*regs)[12] = tswapreg(env->eip); 294 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 295 (*regs)[14] = tswapreg(env->eflags); 296 (*regs)[15] = tswapreg(env->regs[R_ESP]); 297 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 298 } 299 #endif 300 301 #define USE_ELF_CORE_DUMP 302 #define ELF_EXEC_PAGESIZE 4096 303 304 #endif 305 306 #ifdef TARGET_ARM 307 308 #ifndef TARGET_AARCH64 309 /* 32 bit ARM definitions */ 310 311 #define ELF_START_MMAP 0x80000000 312 313 #define ELF_ARCH EM_ARM 314 #define ELF_CLASS ELFCLASS32 315 #define EXSTACK_DEFAULT true 316 317 static inline void init_thread(struct target_pt_regs *regs, 318 struct image_info *infop) 319 { 320 abi_long stack = infop->start_stack; 321 memset(regs, 0, sizeof(*regs)); 322 323 regs->uregs[16] = ARM_CPU_MODE_USR; 324 if (infop->entry & 1) { 325 regs->uregs[16] |= CPSR_T; 326 } 327 regs->uregs[15] = infop->entry & 0xfffffffe; 328 regs->uregs[13] = infop->start_stack; 329 /* FIXME - what to for failure of get_user()? */ 330 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 331 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 332 /* XXX: it seems that r0 is zeroed after ! */ 333 regs->uregs[0] = 0; 334 /* For uClinux PIC binaries. */ 335 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 336 regs->uregs[10] = infop->start_data; 337 338 /* Support ARM FDPIC. */ 339 if (info_is_fdpic(infop)) { 340 /* As described in the ABI document, r7 points to the loadmap info 341 * prepared by the kernel. If an interpreter is needed, r8 points 342 * to the interpreter loadmap and r9 points to the interpreter 343 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 344 * r9 points to the main program PT_DYNAMIC info. 345 */ 346 regs->uregs[7] = infop->loadmap_addr; 347 if (infop->interpreter_loadmap_addr) { 348 /* Executable is dynamically loaded. */ 349 regs->uregs[8] = infop->interpreter_loadmap_addr; 350 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 351 } else { 352 regs->uregs[8] = 0; 353 regs->uregs[9] = infop->pt_dynamic_addr; 354 } 355 } 356 } 357 358 #define ELF_NREG 18 359 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 360 361 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 362 { 363 (*regs)[0] = tswapreg(env->regs[0]); 364 (*regs)[1] = tswapreg(env->regs[1]); 365 (*regs)[2] = tswapreg(env->regs[2]); 366 (*regs)[3] = tswapreg(env->regs[3]); 367 (*regs)[4] = tswapreg(env->regs[4]); 368 (*regs)[5] = tswapreg(env->regs[5]); 369 (*regs)[6] = tswapreg(env->regs[6]); 370 (*regs)[7] = tswapreg(env->regs[7]); 371 (*regs)[8] = tswapreg(env->regs[8]); 372 (*regs)[9] = tswapreg(env->regs[9]); 373 (*regs)[10] = tswapreg(env->regs[10]); 374 (*regs)[11] = tswapreg(env->regs[11]); 375 (*regs)[12] = tswapreg(env->regs[12]); 376 (*regs)[13] = tswapreg(env->regs[13]); 377 (*regs)[14] = tswapreg(env->regs[14]); 378 (*regs)[15] = tswapreg(env->regs[15]); 379 380 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 381 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 382 } 383 384 #define USE_ELF_CORE_DUMP 385 #define ELF_EXEC_PAGESIZE 4096 386 387 enum 388 { 389 ARM_HWCAP_ARM_SWP = 1 << 0, 390 ARM_HWCAP_ARM_HALF = 1 << 1, 391 ARM_HWCAP_ARM_THUMB = 1 << 2, 392 ARM_HWCAP_ARM_26BIT = 1 << 3, 393 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 394 ARM_HWCAP_ARM_FPA = 1 << 5, 395 ARM_HWCAP_ARM_VFP = 1 << 6, 396 ARM_HWCAP_ARM_EDSP = 1 << 7, 397 ARM_HWCAP_ARM_JAVA = 1 << 8, 398 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 399 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 400 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 401 ARM_HWCAP_ARM_NEON = 1 << 12, 402 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 403 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 404 ARM_HWCAP_ARM_TLS = 1 << 15, 405 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 406 ARM_HWCAP_ARM_IDIVA = 1 << 17, 407 ARM_HWCAP_ARM_IDIVT = 1 << 18, 408 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 409 ARM_HWCAP_ARM_LPAE = 1 << 20, 410 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 411 }; 412 413 enum { 414 ARM_HWCAP2_ARM_AES = 1 << 0, 415 ARM_HWCAP2_ARM_PMULL = 1 << 1, 416 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 417 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 418 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 419 }; 420 421 /* The commpage only exists for 32 bit kernels */ 422 423 #define HI_COMMPAGE (intptr_t)0xffff0f00u 424 425 static bool init_guest_commpage(void) 426 { 427 ARMCPU *cpu = ARM_CPU(thread_cpu); 428 abi_ptr commpage; 429 void *want; 430 void *addr; 431 432 /* 433 * M-profile allocates maximum of 2GB address space, so can never 434 * allocate the commpage. Skip it. 435 */ 436 if (arm_feature(&cpu->env, ARM_FEATURE_M)) { 437 return true; 438 } 439 440 commpage = HI_COMMPAGE & -qemu_host_page_size; 441 want = g2h_untagged(commpage); 442 addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 443 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 444 445 if (addr == MAP_FAILED) { 446 perror("Allocating guest commpage"); 447 exit(EXIT_FAILURE); 448 } 449 if (addr != want) { 450 return false; 451 } 452 453 /* Set kernel helper versions; rest of page is 0. */ 454 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 455 456 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 457 perror("Protecting guest commpage"); 458 exit(EXIT_FAILURE); 459 } 460 461 page_set_flags(commpage, commpage | ~qemu_host_page_mask, 462 PAGE_READ | PAGE_EXEC | PAGE_VALID); 463 return true; 464 } 465 466 #define ELF_HWCAP get_elf_hwcap() 467 #define ELF_HWCAP2 get_elf_hwcap2() 468 469 static uint32_t get_elf_hwcap(void) 470 { 471 ARMCPU *cpu = ARM_CPU(thread_cpu); 472 uint32_t hwcaps = 0; 473 474 hwcaps |= ARM_HWCAP_ARM_SWP; 475 hwcaps |= ARM_HWCAP_ARM_HALF; 476 hwcaps |= ARM_HWCAP_ARM_THUMB; 477 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 478 479 /* probe for the extra features */ 480 #define GET_FEATURE(feat, hwcap) \ 481 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 482 483 #define GET_FEATURE_ID(feat, hwcap) \ 484 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 485 486 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 487 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 488 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 489 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 490 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 491 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 492 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 493 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 494 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 495 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 496 497 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 498 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 499 hwcaps |= ARM_HWCAP_ARM_VFPv3; 500 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 501 hwcaps |= ARM_HWCAP_ARM_VFPD32; 502 } else { 503 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 504 } 505 } 506 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 507 508 return hwcaps; 509 } 510 511 static uint32_t get_elf_hwcap2(void) 512 { 513 ARMCPU *cpu = ARM_CPU(thread_cpu); 514 uint32_t hwcaps = 0; 515 516 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 517 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 518 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 519 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 520 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 521 return hwcaps; 522 } 523 524 #undef GET_FEATURE 525 #undef GET_FEATURE_ID 526 527 #define ELF_PLATFORM get_elf_platform() 528 529 static const char *get_elf_platform(void) 530 { 531 CPUARMState *env = thread_cpu->env_ptr; 532 533 #if TARGET_BIG_ENDIAN 534 # define END "b" 535 #else 536 # define END "l" 537 #endif 538 539 if (arm_feature(env, ARM_FEATURE_V8)) { 540 return "v8" END; 541 } else if (arm_feature(env, ARM_FEATURE_V7)) { 542 if (arm_feature(env, ARM_FEATURE_M)) { 543 return "v7m" END; 544 } else { 545 return "v7" END; 546 } 547 } else if (arm_feature(env, ARM_FEATURE_V6)) { 548 return "v6" END; 549 } else if (arm_feature(env, ARM_FEATURE_V5)) { 550 return "v5" END; 551 } else { 552 return "v4" END; 553 } 554 555 #undef END 556 } 557 558 #else 559 /* 64 bit ARM definitions */ 560 #define ELF_START_MMAP 0x80000000 561 562 #define ELF_ARCH EM_AARCH64 563 #define ELF_CLASS ELFCLASS64 564 #if TARGET_BIG_ENDIAN 565 # define ELF_PLATFORM "aarch64_be" 566 #else 567 # define ELF_PLATFORM "aarch64" 568 #endif 569 570 static inline void init_thread(struct target_pt_regs *regs, 571 struct image_info *infop) 572 { 573 abi_long stack = infop->start_stack; 574 memset(regs, 0, sizeof(*regs)); 575 576 regs->pc = infop->entry & ~0x3ULL; 577 regs->sp = stack; 578 } 579 580 #define ELF_NREG 34 581 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 582 583 static void elf_core_copy_regs(target_elf_gregset_t *regs, 584 const CPUARMState *env) 585 { 586 int i; 587 588 for (i = 0; i < 32; i++) { 589 (*regs)[i] = tswapreg(env->xregs[i]); 590 } 591 (*regs)[32] = tswapreg(env->pc); 592 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 593 } 594 595 #define USE_ELF_CORE_DUMP 596 #define ELF_EXEC_PAGESIZE 4096 597 598 enum { 599 ARM_HWCAP_A64_FP = 1 << 0, 600 ARM_HWCAP_A64_ASIMD = 1 << 1, 601 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 602 ARM_HWCAP_A64_AES = 1 << 3, 603 ARM_HWCAP_A64_PMULL = 1 << 4, 604 ARM_HWCAP_A64_SHA1 = 1 << 5, 605 ARM_HWCAP_A64_SHA2 = 1 << 6, 606 ARM_HWCAP_A64_CRC32 = 1 << 7, 607 ARM_HWCAP_A64_ATOMICS = 1 << 8, 608 ARM_HWCAP_A64_FPHP = 1 << 9, 609 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 610 ARM_HWCAP_A64_CPUID = 1 << 11, 611 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 612 ARM_HWCAP_A64_JSCVT = 1 << 13, 613 ARM_HWCAP_A64_FCMA = 1 << 14, 614 ARM_HWCAP_A64_LRCPC = 1 << 15, 615 ARM_HWCAP_A64_DCPOP = 1 << 16, 616 ARM_HWCAP_A64_SHA3 = 1 << 17, 617 ARM_HWCAP_A64_SM3 = 1 << 18, 618 ARM_HWCAP_A64_SM4 = 1 << 19, 619 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 620 ARM_HWCAP_A64_SHA512 = 1 << 21, 621 ARM_HWCAP_A64_SVE = 1 << 22, 622 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 623 ARM_HWCAP_A64_DIT = 1 << 24, 624 ARM_HWCAP_A64_USCAT = 1 << 25, 625 ARM_HWCAP_A64_ILRCPC = 1 << 26, 626 ARM_HWCAP_A64_FLAGM = 1 << 27, 627 ARM_HWCAP_A64_SSBS = 1 << 28, 628 ARM_HWCAP_A64_SB = 1 << 29, 629 ARM_HWCAP_A64_PACA = 1 << 30, 630 ARM_HWCAP_A64_PACG = 1UL << 31, 631 632 ARM_HWCAP2_A64_DCPODP = 1 << 0, 633 ARM_HWCAP2_A64_SVE2 = 1 << 1, 634 ARM_HWCAP2_A64_SVEAES = 1 << 2, 635 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 636 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 637 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 638 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 639 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 640 ARM_HWCAP2_A64_FRINT = 1 << 8, 641 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 642 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 643 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 644 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 645 ARM_HWCAP2_A64_I8MM = 1 << 13, 646 ARM_HWCAP2_A64_BF16 = 1 << 14, 647 ARM_HWCAP2_A64_DGH = 1 << 15, 648 ARM_HWCAP2_A64_RNG = 1 << 16, 649 ARM_HWCAP2_A64_BTI = 1 << 17, 650 ARM_HWCAP2_A64_MTE = 1 << 18, 651 ARM_HWCAP2_A64_ECV = 1 << 19, 652 ARM_HWCAP2_A64_AFP = 1 << 20, 653 ARM_HWCAP2_A64_RPRES = 1 << 21, 654 ARM_HWCAP2_A64_MTE3 = 1 << 22, 655 ARM_HWCAP2_A64_SME = 1 << 23, 656 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 657 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 658 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 659 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 660 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 661 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 662 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 663 }; 664 665 #define ELF_HWCAP get_elf_hwcap() 666 #define ELF_HWCAP2 get_elf_hwcap2() 667 668 #define GET_FEATURE_ID(feat, hwcap) \ 669 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 670 671 static uint32_t get_elf_hwcap(void) 672 { 673 ARMCPU *cpu = ARM_CPU(thread_cpu); 674 uint32_t hwcaps = 0; 675 676 hwcaps |= ARM_HWCAP_A64_FP; 677 hwcaps |= ARM_HWCAP_A64_ASIMD; 678 hwcaps |= ARM_HWCAP_A64_CPUID; 679 680 /* probe for the extra features */ 681 682 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 683 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 684 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 685 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 686 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 687 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 688 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 689 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 690 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 691 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 692 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 693 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 694 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 695 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 696 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 697 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 698 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 699 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 700 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 701 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 702 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 703 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 704 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 705 706 return hwcaps; 707 } 708 709 static uint32_t get_elf_hwcap2(void) 710 { 711 ARMCPU *cpu = ARM_CPU(thread_cpu); 712 uint32_t hwcaps = 0; 713 714 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 715 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 716 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 717 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 718 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 719 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 720 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 721 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 722 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 723 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 724 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 725 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 726 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 727 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 728 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 729 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 730 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 731 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 732 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 733 ARM_HWCAP2_A64_SME_F32F32 | 734 ARM_HWCAP2_A64_SME_B16F32 | 735 ARM_HWCAP2_A64_SME_F16F32 | 736 ARM_HWCAP2_A64_SME_I8I32)); 737 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 738 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 739 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 740 741 return hwcaps; 742 } 743 744 #undef GET_FEATURE_ID 745 746 #endif /* not TARGET_AARCH64 */ 747 #endif /* TARGET_ARM */ 748 749 #ifdef TARGET_SPARC 750 #ifdef TARGET_SPARC64 751 752 #define ELF_START_MMAP 0x80000000 753 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 754 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 755 #ifndef TARGET_ABI32 756 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 757 #else 758 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 759 #endif 760 761 #define ELF_CLASS ELFCLASS64 762 #define ELF_ARCH EM_SPARCV9 763 #else 764 #define ELF_START_MMAP 0x80000000 765 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 766 | HWCAP_SPARC_MULDIV) 767 #define ELF_CLASS ELFCLASS32 768 #define ELF_ARCH EM_SPARC 769 #endif /* TARGET_SPARC64 */ 770 771 static inline void init_thread(struct target_pt_regs *regs, 772 struct image_info *infop) 773 { 774 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 775 regs->pc = infop->entry; 776 regs->npc = regs->pc + 4; 777 regs->y = 0; 778 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 779 - TARGET_STACK_BIAS); 780 } 781 #endif /* TARGET_SPARC */ 782 783 #ifdef TARGET_PPC 784 785 #define ELF_MACHINE PPC_ELF_MACHINE 786 #define ELF_START_MMAP 0x80000000 787 788 #if defined(TARGET_PPC64) 789 790 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 791 792 #define ELF_CLASS ELFCLASS64 793 794 #else 795 796 #define ELF_CLASS ELFCLASS32 797 #define EXSTACK_DEFAULT true 798 799 #endif 800 801 #define ELF_ARCH EM_PPC 802 803 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 804 See arch/powerpc/include/asm/cputable.h. */ 805 enum { 806 QEMU_PPC_FEATURE_32 = 0x80000000, 807 QEMU_PPC_FEATURE_64 = 0x40000000, 808 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 809 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 810 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 811 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 812 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 813 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 814 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 815 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 816 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 817 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 818 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 819 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 820 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 821 QEMU_PPC_FEATURE_CELL = 0x00010000, 822 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 823 QEMU_PPC_FEATURE_SMT = 0x00004000, 824 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 825 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 826 QEMU_PPC_FEATURE_PA6T = 0x00000800, 827 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 828 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 829 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 830 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 831 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 832 833 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 834 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 835 836 /* Feature definitions in AT_HWCAP2. */ 837 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 838 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 839 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 840 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 841 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 842 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 843 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 844 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 845 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 846 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 847 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 848 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 849 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 850 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 851 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 852 }; 853 854 #define ELF_HWCAP get_elf_hwcap() 855 856 static uint32_t get_elf_hwcap(void) 857 { 858 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 859 uint32_t features = 0; 860 861 /* We don't have to be terribly complete here; the high points are 862 Altivec/FP/SPE support. Anything else is just a bonus. */ 863 #define GET_FEATURE(flag, feature) \ 864 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 865 #define GET_FEATURE2(flags, feature) \ 866 do { \ 867 if ((cpu->env.insns_flags2 & flags) == flags) { \ 868 features |= feature; \ 869 } \ 870 } while (0) 871 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 872 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 873 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 874 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 875 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 876 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 877 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 878 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 879 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 880 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 881 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 882 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 883 QEMU_PPC_FEATURE_ARCH_2_06); 884 #undef GET_FEATURE 885 #undef GET_FEATURE2 886 887 return features; 888 } 889 890 #define ELF_HWCAP2 get_elf_hwcap2() 891 892 static uint32_t get_elf_hwcap2(void) 893 { 894 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 895 uint32_t features = 0; 896 897 #define GET_FEATURE(flag, feature) \ 898 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 899 #define GET_FEATURE2(flag, feature) \ 900 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 901 902 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 903 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 904 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 905 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 906 QEMU_PPC_FEATURE2_VEC_CRYPTO); 907 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 908 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 909 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 910 QEMU_PPC_FEATURE2_MMA); 911 912 #undef GET_FEATURE 913 #undef GET_FEATURE2 914 915 return features; 916 } 917 918 /* 919 * The requirements here are: 920 * - keep the final alignment of sp (sp & 0xf) 921 * - make sure the 32-bit value at the first 16 byte aligned position of 922 * AUXV is greater than 16 for glibc compatibility. 923 * AT_IGNOREPPC is used for that. 924 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 925 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 926 */ 927 #define DLINFO_ARCH_ITEMS 5 928 #define ARCH_DLINFO \ 929 do { \ 930 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 931 /* \ 932 * Handle glibc compatibility: these magic entries must \ 933 * be at the lowest addresses in the final auxv. \ 934 */ \ 935 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 936 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 937 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 938 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 939 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 940 } while (0) 941 942 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 943 { 944 _regs->gpr[1] = infop->start_stack; 945 #if defined(TARGET_PPC64) 946 if (get_ppc64_abi(infop) < 2) { 947 uint64_t val; 948 get_user_u64(val, infop->entry + 8); 949 _regs->gpr[2] = val + infop->load_bias; 950 get_user_u64(val, infop->entry); 951 infop->entry = val + infop->load_bias; 952 } else { 953 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 954 } 955 #endif 956 _regs->nip = infop->entry; 957 } 958 959 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 960 #define ELF_NREG 48 961 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 962 963 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 964 { 965 int i; 966 target_ulong ccr = 0; 967 968 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 969 (*regs)[i] = tswapreg(env->gpr[i]); 970 } 971 972 (*regs)[32] = tswapreg(env->nip); 973 (*regs)[33] = tswapreg(env->msr); 974 (*regs)[35] = tswapreg(env->ctr); 975 (*regs)[36] = tswapreg(env->lr); 976 (*regs)[37] = tswapreg(cpu_read_xer(env)); 977 978 ccr = ppc_get_cr(env); 979 (*regs)[38] = tswapreg(ccr); 980 } 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_EXEC_PAGESIZE 4096 984 985 #endif 986 987 #ifdef TARGET_LOONGARCH64 988 989 #define ELF_START_MMAP 0x80000000 990 991 #define ELF_CLASS ELFCLASS64 992 #define ELF_ARCH EM_LOONGARCH 993 #define EXSTACK_DEFAULT true 994 995 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 996 997 static inline void init_thread(struct target_pt_regs *regs, 998 struct image_info *infop) 999 { 1000 /*Set crmd PG,DA = 1,0 */ 1001 regs->csr.crmd = 2 << 3; 1002 regs->csr.era = infop->entry; 1003 regs->regs[3] = infop->start_stack; 1004 } 1005 1006 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 1007 #define ELF_NREG 45 1008 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1009 1010 enum { 1011 TARGET_EF_R0 = 0, 1012 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1013 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1014 }; 1015 1016 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1017 const CPULoongArchState *env) 1018 { 1019 int i; 1020 1021 (*regs)[TARGET_EF_R0] = 0; 1022 1023 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1024 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1025 } 1026 1027 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1028 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1029 } 1030 1031 #define USE_ELF_CORE_DUMP 1032 #define ELF_EXEC_PAGESIZE 4096 1033 1034 #define ELF_HWCAP get_elf_hwcap() 1035 1036 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1037 enum { 1038 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1039 HWCAP_LOONGARCH_LAM = (1 << 1), 1040 HWCAP_LOONGARCH_UAL = (1 << 2), 1041 HWCAP_LOONGARCH_FPU = (1 << 3), 1042 HWCAP_LOONGARCH_LSX = (1 << 4), 1043 HWCAP_LOONGARCH_LASX = (1 << 5), 1044 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1045 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1046 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1047 HWCAP_LOONGARCH_LVZ = (1 << 9), 1048 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1049 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1050 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1051 }; 1052 1053 static uint32_t get_elf_hwcap(void) 1054 { 1055 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1056 uint32_t hwcaps = 0; 1057 1058 hwcaps |= HWCAP_LOONGARCH_CRC32; 1059 1060 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1061 hwcaps |= HWCAP_LOONGARCH_UAL; 1062 } 1063 1064 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1065 hwcaps |= HWCAP_LOONGARCH_FPU; 1066 } 1067 1068 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1069 hwcaps |= HWCAP_LOONGARCH_LAM; 1070 } 1071 1072 return hwcaps; 1073 } 1074 1075 #define ELF_PLATFORM "loongarch" 1076 1077 #endif /* TARGET_LOONGARCH64 */ 1078 1079 #ifdef TARGET_MIPS 1080 1081 #define ELF_START_MMAP 0x80000000 1082 1083 #ifdef TARGET_MIPS64 1084 #define ELF_CLASS ELFCLASS64 1085 #else 1086 #define ELF_CLASS ELFCLASS32 1087 #endif 1088 #define ELF_ARCH EM_MIPS 1089 #define EXSTACK_DEFAULT true 1090 1091 #ifdef TARGET_ABI_MIPSN32 1092 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1093 #else 1094 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1095 #endif 1096 1097 #define ELF_BASE_PLATFORM get_elf_base_platform() 1098 1099 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1100 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1101 { return _base_platform; } } while (0) 1102 1103 static const char *get_elf_base_platform(void) 1104 { 1105 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1106 1107 /* 64 bit ISAs goes first */ 1108 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1109 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1110 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1111 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1112 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1113 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1114 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1115 1116 /* 32 bit ISAs */ 1117 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1118 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1119 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1120 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1121 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1122 1123 /* Fallback */ 1124 return "mips"; 1125 } 1126 #undef MATCH_PLATFORM_INSN 1127 1128 static inline void init_thread(struct target_pt_regs *regs, 1129 struct image_info *infop) 1130 { 1131 regs->cp0_status = 2 << CP0St_KSU; 1132 regs->cp0_epc = infop->entry; 1133 regs->regs[29] = infop->start_stack; 1134 } 1135 1136 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1137 #define ELF_NREG 45 1138 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1139 1140 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1141 enum { 1142 #ifdef TARGET_MIPS64 1143 TARGET_EF_R0 = 0, 1144 #else 1145 TARGET_EF_R0 = 6, 1146 #endif 1147 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1148 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1149 TARGET_EF_LO = TARGET_EF_R0 + 32, 1150 TARGET_EF_HI = TARGET_EF_R0 + 33, 1151 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1152 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1153 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1154 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1155 }; 1156 1157 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1158 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1159 { 1160 int i; 1161 1162 for (i = 0; i < TARGET_EF_R0; i++) { 1163 (*regs)[i] = 0; 1164 } 1165 (*regs)[TARGET_EF_R0] = 0; 1166 1167 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1168 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1169 } 1170 1171 (*regs)[TARGET_EF_R26] = 0; 1172 (*regs)[TARGET_EF_R27] = 0; 1173 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1174 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1175 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1176 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1177 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1178 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1179 } 1180 1181 #define USE_ELF_CORE_DUMP 1182 #define ELF_EXEC_PAGESIZE 4096 1183 1184 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1185 enum { 1186 HWCAP_MIPS_R6 = (1 << 0), 1187 HWCAP_MIPS_MSA = (1 << 1), 1188 HWCAP_MIPS_CRC32 = (1 << 2), 1189 HWCAP_MIPS_MIPS16 = (1 << 3), 1190 HWCAP_MIPS_MDMX = (1 << 4), 1191 HWCAP_MIPS_MIPS3D = (1 << 5), 1192 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1193 HWCAP_MIPS_DSP = (1 << 7), 1194 HWCAP_MIPS_DSP2 = (1 << 8), 1195 HWCAP_MIPS_DSP3 = (1 << 9), 1196 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1197 HWCAP_LOONGSON_MMI = (1 << 11), 1198 HWCAP_LOONGSON_EXT = (1 << 12), 1199 HWCAP_LOONGSON_EXT2 = (1 << 13), 1200 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1201 }; 1202 1203 #define ELF_HWCAP get_elf_hwcap() 1204 1205 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1206 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1207 1208 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1209 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1210 1211 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1212 do { \ 1213 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1214 hwcaps |= _hwcap; \ 1215 } \ 1216 } while (0) 1217 1218 static uint32_t get_elf_hwcap(void) 1219 { 1220 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1221 uint32_t hwcaps = 0; 1222 1223 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1224 2, HWCAP_MIPS_R6); 1225 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1226 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1227 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1228 1229 return hwcaps; 1230 } 1231 1232 #undef GET_FEATURE_REG_EQU 1233 #undef GET_FEATURE_REG_SET 1234 #undef GET_FEATURE_INSN 1235 1236 #endif /* TARGET_MIPS */ 1237 1238 #ifdef TARGET_MICROBLAZE 1239 1240 #define ELF_START_MMAP 0x80000000 1241 1242 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1243 1244 #define ELF_CLASS ELFCLASS32 1245 #define ELF_ARCH EM_MICROBLAZE 1246 1247 static inline void init_thread(struct target_pt_regs *regs, 1248 struct image_info *infop) 1249 { 1250 regs->pc = infop->entry; 1251 regs->r1 = infop->start_stack; 1252 1253 } 1254 1255 #define ELF_EXEC_PAGESIZE 4096 1256 1257 #define USE_ELF_CORE_DUMP 1258 #define ELF_NREG 38 1259 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1260 1261 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1262 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1263 { 1264 int i, pos = 0; 1265 1266 for (i = 0; i < 32; i++) { 1267 (*regs)[pos++] = tswapreg(env->regs[i]); 1268 } 1269 1270 (*regs)[pos++] = tswapreg(env->pc); 1271 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1272 (*regs)[pos++] = 0; 1273 (*regs)[pos++] = tswapreg(env->ear); 1274 (*regs)[pos++] = 0; 1275 (*regs)[pos++] = tswapreg(env->esr); 1276 } 1277 1278 #endif /* TARGET_MICROBLAZE */ 1279 1280 #ifdef TARGET_NIOS2 1281 1282 #define ELF_START_MMAP 0x80000000 1283 1284 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1285 1286 #define ELF_CLASS ELFCLASS32 1287 #define ELF_ARCH EM_ALTERA_NIOS2 1288 1289 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1290 { 1291 regs->ea = infop->entry; 1292 regs->sp = infop->start_stack; 1293 } 1294 1295 #define LO_COMMPAGE TARGET_PAGE_SIZE 1296 1297 static bool init_guest_commpage(void) 1298 { 1299 static const uint8_t kuser_page[4 + 2 * 64] = { 1300 /* __kuser_helper_version */ 1301 [0x00] = 0x02, 0x00, 0x00, 0x00, 1302 1303 /* __kuser_cmpxchg */ 1304 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1305 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1306 1307 /* __kuser_sigtramp */ 1308 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1309 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1310 }; 1311 1312 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1313 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1314 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1315 1316 if (addr == MAP_FAILED) { 1317 perror("Allocating guest commpage"); 1318 exit(EXIT_FAILURE); 1319 } 1320 if (addr != want) { 1321 return false; 1322 } 1323 1324 memcpy(addr, kuser_page, sizeof(kuser_page)); 1325 1326 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1327 perror("Protecting guest commpage"); 1328 exit(EXIT_FAILURE); 1329 } 1330 1331 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1332 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1333 return true; 1334 } 1335 1336 #define ELF_EXEC_PAGESIZE 4096 1337 1338 #define USE_ELF_CORE_DUMP 1339 #define ELF_NREG 49 1340 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1341 1342 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1343 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1344 const CPUNios2State *env) 1345 { 1346 int i; 1347 1348 (*regs)[0] = -1; 1349 for (i = 1; i < 8; i++) /* r0-r7 */ 1350 (*regs)[i] = tswapreg(env->regs[i + 7]); 1351 1352 for (i = 8; i < 16; i++) /* r8-r15 */ 1353 (*regs)[i] = tswapreg(env->regs[i - 8]); 1354 1355 for (i = 16; i < 24; i++) /* r16-r23 */ 1356 (*regs)[i] = tswapreg(env->regs[i + 7]); 1357 (*regs)[24] = -1; /* R_ET */ 1358 (*regs)[25] = -1; /* R_BT */ 1359 (*regs)[26] = tswapreg(env->regs[R_GP]); 1360 (*regs)[27] = tswapreg(env->regs[R_SP]); 1361 (*regs)[28] = tswapreg(env->regs[R_FP]); 1362 (*regs)[29] = tswapreg(env->regs[R_EA]); 1363 (*regs)[30] = -1; /* R_SSTATUS */ 1364 (*regs)[31] = tswapreg(env->regs[R_RA]); 1365 1366 (*regs)[32] = tswapreg(env->pc); 1367 1368 (*regs)[33] = -1; /* R_STATUS */ 1369 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1370 1371 for (i = 35; i < 49; i++) /* ... */ 1372 (*regs)[i] = -1; 1373 } 1374 1375 #endif /* TARGET_NIOS2 */ 1376 1377 #ifdef TARGET_OPENRISC 1378 1379 #define ELF_START_MMAP 0x08000000 1380 1381 #define ELF_ARCH EM_OPENRISC 1382 #define ELF_CLASS ELFCLASS32 1383 #define ELF_DATA ELFDATA2MSB 1384 1385 static inline void init_thread(struct target_pt_regs *regs, 1386 struct image_info *infop) 1387 { 1388 regs->pc = infop->entry; 1389 regs->gpr[1] = infop->start_stack; 1390 } 1391 1392 #define USE_ELF_CORE_DUMP 1393 #define ELF_EXEC_PAGESIZE 8192 1394 1395 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1396 #define ELF_NREG 34 /* gprs and pc, sr */ 1397 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1398 1399 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1400 const CPUOpenRISCState *env) 1401 { 1402 int i; 1403 1404 for (i = 0; i < 32; i++) { 1405 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1406 } 1407 (*regs)[32] = tswapreg(env->pc); 1408 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1409 } 1410 #define ELF_HWCAP 0 1411 #define ELF_PLATFORM NULL 1412 1413 #endif /* TARGET_OPENRISC */ 1414 1415 #ifdef TARGET_SH4 1416 1417 #define ELF_START_MMAP 0x80000000 1418 1419 #define ELF_CLASS ELFCLASS32 1420 #define ELF_ARCH EM_SH 1421 1422 static inline void init_thread(struct target_pt_regs *regs, 1423 struct image_info *infop) 1424 { 1425 /* Check other registers XXXXX */ 1426 regs->pc = infop->entry; 1427 regs->regs[15] = infop->start_stack; 1428 } 1429 1430 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1431 #define ELF_NREG 23 1432 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1433 1434 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1435 enum { 1436 TARGET_REG_PC = 16, 1437 TARGET_REG_PR = 17, 1438 TARGET_REG_SR = 18, 1439 TARGET_REG_GBR = 19, 1440 TARGET_REG_MACH = 20, 1441 TARGET_REG_MACL = 21, 1442 TARGET_REG_SYSCALL = 22 1443 }; 1444 1445 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1446 const CPUSH4State *env) 1447 { 1448 int i; 1449 1450 for (i = 0; i < 16; i++) { 1451 (*regs)[i] = tswapreg(env->gregs[i]); 1452 } 1453 1454 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1455 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1456 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1457 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1458 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1459 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1460 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1461 } 1462 1463 #define USE_ELF_CORE_DUMP 1464 #define ELF_EXEC_PAGESIZE 4096 1465 1466 enum { 1467 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1468 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1469 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1470 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1471 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1472 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1473 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1474 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1475 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1476 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1477 }; 1478 1479 #define ELF_HWCAP get_elf_hwcap() 1480 1481 static uint32_t get_elf_hwcap(void) 1482 { 1483 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1484 uint32_t hwcap = 0; 1485 1486 hwcap |= SH_CPU_HAS_FPU; 1487 1488 if (cpu->env.features & SH_FEATURE_SH4A) { 1489 hwcap |= SH_CPU_HAS_LLSC; 1490 } 1491 1492 return hwcap; 1493 } 1494 1495 #endif 1496 1497 #ifdef TARGET_CRIS 1498 1499 #define ELF_START_MMAP 0x80000000 1500 1501 #define ELF_CLASS ELFCLASS32 1502 #define ELF_ARCH EM_CRIS 1503 1504 static inline void init_thread(struct target_pt_regs *regs, 1505 struct image_info *infop) 1506 { 1507 regs->erp = infop->entry; 1508 } 1509 1510 #define ELF_EXEC_PAGESIZE 8192 1511 1512 #endif 1513 1514 #ifdef TARGET_M68K 1515 1516 #define ELF_START_MMAP 0x80000000 1517 1518 #define ELF_CLASS ELFCLASS32 1519 #define ELF_ARCH EM_68K 1520 1521 /* ??? Does this need to do anything? 1522 #define ELF_PLAT_INIT(_r) */ 1523 1524 static inline void init_thread(struct target_pt_regs *regs, 1525 struct image_info *infop) 1526 { 1527 regs->usp = infop->start_stack; 1528 regs->sr = 0; 1529 regs->pc = infop->entry; 1530 } 1531 1532 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1533 #define ELF_NREG 20 1534 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1535 1536 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1537 { 1538 (*regs)[0] = tswapreg(env->dregs[1]); 1539 (*regs)[1] = tswapreg(env->dregs[2]); 1540 (*regs)[2] = tswapreg(env->dregs[3]); 1541 (*regs)[3] = tswapreg(env->dregs[4]); 1542 (*regs)[4] = tswapreg(env->dregs[5]); 1543 (*regs)[5] = tswapreg(env->dregs[6]); 1544 (*regs)[6] = tswapreg(env->dregs[7]); 1545 (*regs)[7] = tswapreg(env->aregs[0]); 1546 (*regs)[8] = tswapreg(env->aregs[1]); 1547 (*regs)[9] = tswapreg(env->aregs[2]); 1548 (*regs)[10] = tswapreg(env->aregs[3]); 1549 (*regs)[11] = tswapreg(env->aregs[4]); 1550 (*regs)[12] = tswapreg(env->aregs[5]); 1551 (*regs)[13] = tswapreg(env->aregs[6]); 1552 (*regs)[14] = tswapreg(env->dregs[0]); 1553 (*regs)[15] = tswapreg(env->aregs[7]); 1554 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1555 (*regs)[17] = tswapreg(env->sr); 1556 (*regs)[18] = tswapreg(env->pc); 1557 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1558 } 1559 1560 #define USE_ELF_CORE_DUMP 1561 #define ELF_EXEC_PAGESIZE 8192 1562 1563 #endif 1564 1565 #ifdef TARGET_ALPHA 1566 1567 #define ELF_START_MMAP (0x30000000000ULL) 1568 1569 #define ELF_CLASS ELFCLASS64 1570 #define ELF_ARCH EM_ALPHA 1571 1572 static inline void init_thread(struct target_pt_regs *regs, 1573 struct image_info *infop) 1574 { 1575 regs->pc = infop->entry; 1576 regs->ps = 8; 1577 regs->usp = infop->start_stack; 1578 } 1579 1580 #define ELF_EXEC_PAGESIZE 8192 1581 1582 #endif /* TARGET_ALPHA */ 1583 1584 #ifdef TARGET_S390X 1585 1586 #define ELF_START_MMAP (0x20000000000ULL) 1587 1588 #define ELF_CLASS ELFCLASS64 1589 #define ELF_DATA ELFDATA2MSB 1590 #define ELF_ARCH EM_S390 1591 1592 #include "elf.h" 1593 1594 #define ELF_HWCAP get_elf_hwcap() 1595 1596 #define GET_FEATURE(_feat, _hwcap) \ 1597 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1598 1599 uint32_t get_elf_hwcap(void) 1600 { 1601 /* 1602 * Let's assume we always have esan3 and zarch. 1603 * 31-bit processes can use 64-bit registers (high gprs). 1604 */ 1605 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1606 1607 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1608 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1609 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1610 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1611 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1612 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1613 hwcap |= HWCAP_S390_ETF3EH; 1614 } 1615 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1616 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1617 GET_FEATURE(S390_FEAT_VECTOR_ENH2, HWCAP_S390_VXRS_EXT2); 1618 1619 return hwcap; 1620 } 1621 1622 const char *elf_hwcap_str(uint32_t bit) 1623 { 1624 static const char *hwcap_str[] = { 1625 [HWCAP_S390_NR_ESAN3] = "esan3", 1626 [HWCAP_S390_NR_ZARCH] = "zarch", 1627 [HWCAP_S390_NR_STFLE] = "stfle", 1628 [HWCAP_S390_NR_MSA] = "msa", 1629 [HWCAP_S390_NR_LDISP] = "ldisp", 1630 [HWCAP_S390_NR_EIMM] = "eimm", 1631 [HWCAP_S390_NR_DFP] = "dfp", 1632 [HWCAP_S390_NR_HPAGE] = "edat", 1633 [HWCAP_S390_NR_ETF3EH] = "etf3eh", 1634 [HWCAP_S390_NR_HIGH_GPRS] = "highgprs", 1635 [HWCAP_S390_NR_TE] = "te", 1636 [HWCAP_S390_NR_VXRS] = "vx", 1637 [HWCAP_S390_NR_VXRS_BCD] = "vxd", 1638 [HWCAP_S390_NR_VXRS_EXT] = "vxe", 1639 [HWCAP_S390_NR_GS] = "gs", 1640 [HWCAP_S390_NR_VXRS_EXT2] = "vxe2", 1641 [HWCAP_S390_NR_VXRS_PDE] = "vxp", 1642 [HWCAP_S390_NR_SORT] = "sort", 1643 [HWCAP_S390_NR_DFLT] = "dflt", 1644 [HWCAP_S390_NR_NNPA] = "nnpa", 1645 [HWCAP_S390_NR_PCI_MIO] = "pcimio", 1646 [HWCAP_S390_NR_SIE] = "sie", 1647 }; 1648 1649 return bit < ARRAY_SIZE(hwcap_str) ? hwcap_str[bit] : NULL; 1650 } 1651 1652 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1653 { 1654 regs->psw.addr = infop->entry; 1655 regs->psw.mask = PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | \ 1656 PSW_MASK_MCHECK | PSW_MASK_PSTATE | PSW_MASK_64 | \ 1657 PSW_MASK_32; 1658 regs->gprs[15] = infop->start_stack; 1659 } 1660 1661 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1662 #define ELF_NREG 27 1663 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1664 1665 enum { 1666 TARGET_REG_PSWM = 0, 1667 TARGET_REG_PSWA = 1, 1668 TARGET_REG_GPRS = 2, 1669 TARGET_REG_ARS = 18, 1670 TARGET_REG_ORIG_R2 = 26, 1671 }; 1672 1673 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1674 const CPUS390XState *env) 1675 { 1676 int i; 1677 uint32_t *aregs; 1678 1679 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1680 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1681 for (i = 0; i < 16; i++) { 1682 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1683 } 1684 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1685 for (i = 0; i < 16; i++) { 1686 aregs[i] = tswap32(env->aregs[i]); 1687 } 1688 (*regs)[TARGET_REG_ORIG_R2] = 0; 1689 } 1690 1691 #define USE_ELF_CORE_DUMP 1692 #define ELF_EXEC_PAGESIZE 4096 1693 1694 #endif /* TARGET_S390X */ 1695 1696 #ifdef TARGET_RISCV 1697 1698 #define ELF_START_MMAP 0x80000000 1699 #define ELF_ARCH EM_RISCV 1700 1701 #ifdef TARGET_RISCV32 1702 #define ELF_CLASS ELFCLASS32 1703 #else 1704 #define ELF_CLASS ELFCLASS64 1705 #endif 1706 1707 #define ELF_HWCAP get_elf_hwcap() 1708 1709 static uint32_t get_elf_hwcap(void) 1710 { 1711 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1712 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1713 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1714 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C') 1715 | MISA_BIT('V'); 1716 1717 return cpu->env.misa_ext & mask; 1718 #undef MISA_BIT 1719 } 1720 1721 static inline void init_thread(struct target_pt_regs *regs, 1722 struct image_info *infop) 1723 { 1724 regs->sepc = infop->entry; 1725 regs->sp = infop->start_stack; 1726 } 1727 1728 #define ELF_EXEC_PAGESIZE 4096 1729 1730 #endif /* TARGET_RISCV */ 1731 1732 #ifdef TARGET_HPPA 1733 1734 #define ELF_START_MMAP 0x80000000 1735 #define ELF_CLASS ELFCLASS32 1736 #define ELF_ARCH EM_PARISC 1737 #define ELF_PLATFORM "PARISC" 1738 #define STACK_GROWS_DOWN 0 1739 #define STACK_ALIGNMENT 64 1740 1741 static inline void init_thread(struct target_pt_regs *regs, 1742 struct image_info *infop) 1743 { 1744 regs->iaoq[0] = infop->entry; 1745 regs->iaoq[1] = infop->entry + 4; 1746 regs->gr[23] = 0; 1747 regs->gr[24] = infop->argv; 1748 regs->gr[25] = infop->argc; 1749 /* The top-of-stack contains a linkage buffer. */ 1750 regs->gr[30] = infop->start_stack + 64; 1751 regs->gr[31] = infop->entry; 1752 } 1753 1754 #define LO_COMMPAGE 0 1755 1756 static bool init_guest_commpage(void) 1757 { 1758 void *want = g2h_untagged(LO_COMMPAGE); 1759 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1760 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1761 1762 if (addr == MAP_FAILED) { 1763 perror("Allocating guest commpage"); 1764 exit(EXIT_FAILURE); 1765 } 1766 if (addr != want) { 1767 return false; 1768 } 1769 1770 /* 1771 * On Linux, page zero is normally marked execute only + gateway. 1772 * Normal read or write is supposed to fail (thus PROT_NONE above), 1773 * but specific offsets have kernel code mapped to raise permissions 1774 * and implement syscalls. Here, simply mark the page executable. 1775 * Special case the entry points during translation (see do_page_zero). 1776 */ 1777 page_set_flags(LO_COMMPAGE, LO_COMMPAGE | ~TARGET_PAGE_MASK, 1778 PAGE_EXEC | PAGE_VALID); 1779 return true; 1780 } 1781 1782 #endif /* TARGET_HPPA */ 1783 1784 #ifdef TARGET_XTENSA 1785 1786 #define ELF_START_MMAP 0x20000000 1787 1788 #define ELF_CLASS ELFCLASS32 1789 #define ELF_ARCH EM_XTENSA 1790 1791 static inline void init_thread(struct target_pt_regs *regs, 1792 struct image_info *infop) 1793 { 1794 regs->windowbase = 0; 1795 regs->windowstart = 1; 1796 regs->areg[1] = infop->start_stack; 1797 regs->pc = infop->entry; 1798 if (info_is_fdpic(infop)) { 1799 regs->areg[4] = infop->loadmap_addr; 1800 regs->areg[5] = infop->interpreter_loadmap_addr; 1801 if (infop->interpreter_loadmap_addr) { 1802 regs->areg[6] = infop->interpreter_pt_dynamic_addr; 1803 } else { 1804 regs->areg[6] = infop->pt_dynamic_addr; 1805 } 1806 } 1807 } 1808 1809 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1810 #define ELF_NREG 128 1811 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1812 1813 enum { 1814 TARGET_REG_PC, 1815 TARGET_REG_PS, 1816 TARGET_REG_LBEG, 1817 TARGET_REG_LEND, 1818 TARGET_REG_LCOUNT, 1819 TARGET_REG_SAR, 1820 TARGET_REG_WINDOWSTART, 1821 TARGET_REG_WINDOWBASE, 1822 TARGET_REG_THREADPTR, 1823 TARGET_REG_AR0 = 64, 1824 }; 1825 1826 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1827 const CPUXtensaState *env) 1828 { 1829 unsigned i; 1830 1831 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1832 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1833 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1834 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1835 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1836 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1837 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1838 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1839 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1840 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1841 for (i = 0; i < env->config->nareg; ++i) { 1842 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1843 } 1844 } 1845 1846 #define USE_ELF_CORE_DUMP 1847 #define ELF_EXEC_PAGESIZE 4096 1848 1849 #endif /* TARGET_XTENSA */ 1850 1851 #ifdef TARGET_HEXAGON 1852 1853 #define ELF_START_MMAP 0x20000000 1854 1855 #define ELF_CLASS ELFCLASS32 1856 #define ELF_ARCH EM_HEXAGON 1857 1858 static inline void init_thread(struct target_pt_regs *regs, 1859 struct image_info *infop) 1860 { 1861 regs->sepc = infop->entry; 1862 regs->sp = infop->start_stack; 1863 } 1864 1865 #endif /* TARGET_HEXAGON */ 1866 1867 #ifndef ELF_BASE_PLATFORM 1868 #define ELF_BASE_PLATFORM (NULL) 1869 #endif 1870 1871 #ifndef ELF_PLATFORM 1872 #define ELF_PLATFORM (NULL) 1873 #endif 1874 1875 #ifndef ELF_MACHINE 1876 #define ELF_MACHINE ELF_ARCH 1877 #endif 1878 1879 #ifndef elf_check_arch 1880 #define elf_check_arch(x) ((x) == ELF_ARCH) 1881 #endif 1882 1883 #ifndef elf_check_abi 1884 #define elf_check_abi(x) (1) 1885 #endif 1886 1887 #ifndef ELF_HWCAP 1888 #define ELF_HWCAP 0 1889 #endif 1890 1891 #ifndef STACK_GROWS_DOWN 1892 #define STACK_GROWS_DOWN 1 1893 #endif 1894 1895 #ifndef STACK_ALIGNMENT 1896 #define STACK_ALIGNMENT 16 1897 #endif 1898 1899 #ifdef TARGET_ABI32 1900 #undef ELF_CLASS 1901 #define ELF_CLASS ELFCLASS32 1902 #undef bswaptls 1903 #define bswaptls(ptr) bswap32s(ptr) 1904 #endif 1905 1906 #ifndef EXSTACK_DEFAULT 1907 #define EXSTACK_DEFAULT false 1908 #endif 1909 1910 #include "elf.h" 1911 1912 /* We must delay the following stanzas until after "elf.h". */ 1913 #if defined(TARGET_AARCH64) 1914 1915 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1916 const uint32_t *data, 1917 struct image_info *info, 1918 Error **errp) 1919 { 1920 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1921 if (pr_datasz != sizeof(uint32_t)) { 1922 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1923 return false; 1924 } 1925 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1926 info->note_flags = *data; 1927 } 1928 return true; 1929 } 1930 #define ARCH_USE_GNU_PROPERTY 1 1931 1932 #else 1933 1934 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1935 const uint32_t *data, 1936 struct image_info *info, 1937 Error **errp) 1938 { 1939 g_assert_not_reached(); 1940 } 1941 #define ARCH_USE_GNU_PROPERTY 0 1942 1943 #endif 1944 1945 struct exec 1946 { 1947 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1948 unsigned int a_text; /* length of text, in bytes */ 1949 unsigned int a_data; /* length of data, in bytes */ 1950 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1951 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1952 unsigned int a_entry; /* start address */ 1953 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1954 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1955 }; 1956 1957 1958 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1959 #define OMAGIC 0407 1960 #define NMAGIC 0410 1961 #define ZMAGIC 0413 1962 #define QMAGIC 0314 1963 1964 #define DLINFO_ITEMS 16 1965 1966 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1967 { 1968 memcpy(to, from, n); 1969 } 1970 1971 #ifdef BSWAP_NEEDED 1972 static void bswap_ehdr(struct elfhdr *ehdr) 1973 { 1974 bswap16s(&ehdr->e_type); /* Object file type */ 1975 bswap16s(&ehdr->e_machine); /* Architecture */ 1976 bswap32s(&ehdr->e_version); /* Object file version */ 1977 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1978 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1979 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1980 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1981 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1982 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1983 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1984 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1985 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1986 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1987 } 1988 1989 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1990 { 1991 int i; 1992 for (i = 0; i < phnum; ++i, ++phdr) { 1993 bswap32s(&phdr->p_type); /* Segment type */ 1994 bswap32s(&phdr->p_flags); /* Segment flags */ 1995 bswaptls(&phdr->p_offset); /* Segment file offset */ 1996 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1997 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1998 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1999 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 2000 bswaptls(&phdr->p_align); /* Segment alignment */ 2001 } 2002 } 2003 2004 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 2005 { 2006 int i; 2007 for (i = 0; i < shnum; ++i, ++shdr) { 2008 bswap32s(&shdr->sh_name); 2009 bswap32s(&shdr->sh_type); 2010 bswaptls(&shdr->sh_flags); 2011 bswaptls(&shdr->sh_addr); 2012 bswaptls(&shdr->sh_offset); 2013 bswaptls(&shdr->sh_size); 2014 bswap32s(&shdr->sh_link); 2015 bswap32s(&shdr->sh_info); 2016 bswaptls(&shdr->sh_addralign); 2017 bswaptls(&shdr->sh_entsize); 2018 } 2019 } 2020 2021 static void bswap_sym(struct elf_sym *sym) 2022 { 2023 bswap32s(&sym->st_name); 2024 bswaptls(&sym->st_value); 2025 bswaptls(&sym->st_size); 2026 bswap16s(&sym->st_shndx); 2027 } 2028 2029 #ifdef TARGET_MIPS 2030 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 2031 { 2032 bswap16s(&abiflags->version); 2033 bswap32s(&abiflags->ases); 2034 bswap32s(&abiflags->isa_ext); 2035 bswap32s(&abiflags->flags1); 2036 bswap32s(&abiflags->flags2); 2037 } 2038 #endif 2039 #else 2040 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 2041 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 2042 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 2043 static inline void bswap_sym(struct elf_sym *sym) { } 2044 #ifdef TARGET_MIPS 2045 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 2046 #endif 2047 #endif 2048 2049 #ifdef USE_ELF_CORE_DUMP 2050 static int elf_core_dump(int, const CPUArchState *); 2051 #endif /* USE_ELF_CORE_DUMP */ 2052 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2053 2054 /* Verify the portions of EHDR within E_IDENT for the target. 2055 This can be performed before bswapping the entire header. */ 2056 static bool elf_check_ident(struct elfhdr *ehdr) 2057 { 2058 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2059 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2060 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2061 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2062 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2063 && ehdr->e_ident[EI_DATA] == ELF_DATA 2064 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2065 } 2066 2067 /* Verify the portions of EHDR outside of E_IDENT for the target. 2068 This has to wait until after bswapping the header. */ 2069 static bool elf_check_ehdr(struct elfhdr *ehdr) 2070 { 2071 return (elf_check_arch(ehdr->e_machine) 2072 && elf_check_abi(ehdr->e_flags) 2073 && ehdr->e_ehsize == sizeof(struct elfhdr) 2074 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2075 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2076 } 2077 2078 /* 2079 * 'copy_elf_strings()' copies argument/envelope strings from user 2080 * memory to free pages in kernel mem. These are in a format ready 2081 * to be put directly into the top of new user memory. 2082 * 2083 */ 2084 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2085 abi_ulong p, abi_ulong stack_limit) 2086 { 2087 char *tmp; 2088 int len, i; 2089 abi_ulong top = p; 2090 2091 if (!p) { 2092 return 0; /* bullet-proofing */ 2093 } 2094 2095 if (STACK_GROWS_DOWN) { 2096 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2097 for (i = argc - 1; i >= 0; --i) { 2098 tmp = argv[i]; 2099 if (!tmp) { 2100 fprintf(stderr, "VFS: argc is wrong"); 2101 exit(-1); 2102 } 2103 len = strlen(tmp) + 1; 2104 tmp += len; 2105 2106 if (len > (p - stack_limit)) { 2107 return 0; 2108 } 2109 while (len) { 2110 int bytes_to_copy = (len > offset) ? offset : len; 2111 tmp -= bytes_to_copy; 2112 p -= bytes_to_copy; 2113 offset -= bytes_to_copy; 2114 len -= bytes_to_copy; 2115 2116 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2117 2118 if (offset == 0) { 2119 memcpy_to_target(p, scratch, top - p); 2120 top = p; 2121 offset = TARGET_PAGE_SIZE; 2122 } 2123 } 2124 } 2125 if (p != top) { 2126 memcpy_to_target(p, scratch + offset, top - p); 2127 } 2128 } else { 2129 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2130 for (i = 0; i < argc; ++i) { 2131 tmp = argv[i]; 2132 if (!tmp) { 2133 fprintf(stderr, "VFS: argc is wrong"); 2134 exit(-1); 2135 } 2136 len = strlen(tmp) + 1; 2137 if (len > (stack_limit - p)) { 2138 return 0; 2139 } 2140 while (len) { 2141 int bytes_to_copy = (len > remaining) ? remaining : len; 2142 2143 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2144 2145 tmp += bytes_to_copy; 2146 remaining -= bytes_to_copy; 2147 p += bytes_to_copy; 2148 len -= bytes_to_copy; 2149 2150 if (remaining == 0) { 2151 memcpy_to_target(top, scratch, p - top); 2152 top = p; 2153 remaining = TARGET_PAGE_SIZE; 2154 } 2155 } 2156 } 2157 if (p != top) { 2158 memcpy_to_target(top, scratch, p - top); 2159 } 2160 } 2161 2162 return p; 2163 } 2164 2165 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2166 * argument/environment space. Newer kernels (>2.6.33) allow more, 2167 * dependent on stack size, but guarantee at least 32 pages for 2168 * backwards compatibility. 2169 */ 2170 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2171 2172 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2173 struct image_info *info) 2174 { 2175 abi_ulong size, error, guard; 2176 int prot; 2177 2178 size = guest_stack_size; 2179 if (size < STACK_LOWER_LIMIT) { 2180 size = STACK_LOWER_LIMIT; 2181 } 2182 2183 if (STACK_GROWS_DOWN) { 2184 guard = TARGET_PAGE_SIZE; 2185 if (guard < qemu_real_host_page_size()) { 2186 guard = qemu_real_host_page_size(); 2187 } 2188 } else { 2189 /* no guard page for hppa target where stack grows upwards. */ 2190 guard = 0; 2191 } 2192 2193 prot = PROT_READ | PROT_WRITE; 2194 if (info->exec_stack) { 2195 prot |= PROT_EXEC; 2196 } 2197 error = target_mmap(0, size + guard, prot, 2198 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2199 if (error == -1) { 2200 perror("mmap stack"); 2201 exit(-1); 2202 } 2203 2204 /* We reserve one extra page at the top of the stack as guard. */ 2205 if (STACK_GROWS_DOWN) { 2206 target_mprotect(error, guard, PROT_NONE); 2207 info->stack_limit = error + guard; 2208 return info->stack_limit + size - sizeof(void *); 2209 } else { 2210 info->stack_limit = error + size; 2211 return error; 2212 } 2213 } 2214 2215 /** 2216 * zero_bss: 2217 * 2218 * Map and zero the bss. We need to explicitly zero any fractional pages 2219 * after the data section (i.e. bss). Return false on mapping failure. 2220 */ 2221 static bool zero_bss(abi_ulong start_bss, abi_ulong end_bss, int prot) 2222 { 2223 abi_ulong align_bss; 2224 2225 align_bss = TARGET_PAGE_ALIGN(start_bss); 2226 end_bss = TARGET_PAGE_ALIGN(end_bss); 2227 2228 if (start_bss < align_bss) { 2229 int flags = page_get_flags(start_bss); 2230 2231 if (!(flags & PAGE_VALID)) { 2232 /* Map the start of the bss. */ 2233 align_bss -= TARGET_PAGE_SIZE; 2234 } else if (flags & PAGE_WRITE) { 2235 /* The page is already mapped writable. */ 2236 memset(g2h_untagged(start_bss), 0, align_bss - start_bss); 2237 } else { 2238 /* Read-only zeros? */ 2239 g_assert_not_reached(); 2240 } 2241 } 2242 2243 return align_bss >= end_bss || 2244 target_mmap(align_bss, end_bss - align_bss, prot, 2245 MAP_FIXED | MAP_PRIVATE | MAP_ANON, -1, 0) != -1; 2246 } 2247 2248 #if defined(TARGET_ARM) 2249 static int elf_is_fdpic(struct elfhdr *exec) 2250 { 2251 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2252 } 2253 #elif defined(TARGET_XTENSA) 2254 static int elf_is_fdpic(struct elfhdr *exec) 2255 { 2256 return exec->e_ident[EI_OSABI] == ELFOSABI_XTENSA_FDPIC; 2257 } 2258 #else 2259 /* Default implementation, always false. */ 2260 static int elf_is_fdpic(struct elfhdr *exec) 2261 { 2262 return 0; 2263 } 2264 #endif 2265 2266 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2267 { 2268 uint16_t n; 2269 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2270 2271 /* elf32_fdpic_loadseg */ 2272 n = info->nsegs; 2273 while (n--) { 2274 sp -= 12; 2275 put_user_u32(loadsegs[n].addr, sp+0); 2276 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2277 put_user_u32(loadsegs[n].p_memsz, sp+8); 2278 } 2279 2280 /* elf32_fdpic_loadmap */ 2281 sp -= 4; 2282 put_user_u16(0, sp+0); /* version */ 2283 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2284 2285 info->personality = PER_LINUX_FDPIC; 2286 info->loadmap_addr = sp; 2287 2288 return sp; 2289 } 2290 2291 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2292 struct elfhdr *exec, 2293 struct image_info *info, 2294 struct image_info *interp_info) 2295 { 2296 abi_ulong sp; 2297 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2298 int size; 2299 int i; 2300 abi_ulong u_rand_bytes; 2301 uint8_t k_rand_bytes[16]; 2302 abi_ulong u_platform, u_base_platform; 2303 const char *k_platform, *k_base_platform; 2304 const int n = sizeof(elf_addr_t); 2305 2306 sp = p; 2307 2308 /* Needs to be before we load the env/argc/... */ 2309 if (elf_is_fdpic(exec)) { 2310 /* Need 4 byte alignment for these structs */ 2311 sp &= ~3; 2312 sp = loader_build_fdpic_loadmap(info, sp); 2313 info->other_info = interp_info; 2314 if (interp_info) { 2315 interp_info->other_info = info; 2316 sp = loader_build_fdpic_loadmap(interp_info, sp); 2317 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2318 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2319 } else { 2320 info->interpreter_loadmap_addr = 0; 2321 info->interpreter_pt_dynamic_addr = 0; 2322 } 2323 } 2324 2325 u_base_platform = 0; 2326 k_base_platform = ELF_BASE_PLATFORM; 2327 if (k_base_platform) { 2328 size_t len = strlen(k_base_platform) + 1; 2329 if (STACK_GROWS_DOWN) { 2330 sp -= (len + n - 1) & ~(n - 1); 2331 u_base_platform = sp; 2332 /* FIXME - check return value of memcpy_to_target() for failure */ 2333 memcpy_to_target(sp, k_base_platform, len); 2334 } else { 2335 memcpy_to_target(sp, k_base_platform, len); 2336 u_base_platform = sp; 2337 sp += len + 1; 2338 } 2339 } 2340 2341 u_platform = 0; 2342 k_platform = ELF_PLATFORM; 2343 if (k_platform) { 2344 size_t len = strlen(k_platform) + 1; 2345 if (STACK_GROWS_DOWN) { 2346 sp -= (len + n - 1) & ~(n - 1); 2347 u_platform = sp; 2348 /* FIXME - check return value of memcpy_to_target() for failure */ 2349 memcpy_to_target(sp, k_platform, len); 2350 } else { 2351 memcpy_to_target(sp, k_platform, len); 2352 u_platform = sp; 2353 sp += len + 1; 2354 } 2355 } 2356 2357 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2358 * the argv and envp pointers. 2359 */ 2360 if (STACK_GROWS_DOWN) { 2361 sp = QEMU_ALIGN_DOWN(sp, 16); 2362 } else { 2363 sp = QEMU_ALIGN_UP(sp, 16); 2364 } 2365 2366 /* 2367 * Generate 16 random bytes for userspace PRNG seeding. 2368 */ 2369 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2370 if (STACK_GROWS_DOWN) { 2371 sp -= 16; 2372 u_rand_bytes = sp; 2373 /* FIXME - check return value of memcpy_to_target() for failure */ 2374 memcpy_to_target(sp, k_rand_bytes, 16); 2375 } else { 2376 memcpy_to_target(sp, k_rand_bytes, 16); 2377 u_rand_bytes = sp; 2378 sp += 16; 2379 } 2380 2381 size = (DLINFO_ITEMS + 1) * 2; 2382 if (k_base_platform) 2383 size += 2; 2384 if (k_platform) 2385 size += 2; 2386 #ifdef DLINFO_ARCH_ITEMS 2387 size += DLINFO_ARCH_ITEMS * 2; 2388 #endif 2389 #ifdef ELF_HWCAP2 2390 size += 2; 2391 #endif 2392 info->auxv_len = size * n; 2393 2394 size += envc + argc + 2; 2395 size += 1; /* argc itself */ 2396 size *= n; 2397 2398 /* Allocate space and finalize stack alignment for entry now. */ 2399 if (STACK_GROWS_DOWN) { 2400 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2401 sp = u_argc; 2402 } else { 2403 u_argc = sp; 2404 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2405 } 2406 2407 u_argv = u_argc + n; 2408 u_envp = u_argv + (argc + 1) * n; 2409 u_auxv = u_envp + (envc + 1) * n; 2410 info->saved_auxv = u_auxv; 2411 info->argc = argc; 2412 info->envc = envc; 2413 info->argv = u_argv; 2414 info->envp = u_envp; 2415 2416 /* This is correct because Linux defines 2417 * elf_addr_t as Elf32_Off / Elf64_Off 2418 */ 2419 #define NEW_AUX_ENT(id, val) do { \ 2420 put_user_ual(id, u_auxv); u_auxv += n; \ 2421 put_user_ual(val, u_auxv); u_auxv += n; \ 2422 } while(0) 2423 2424 #ifdef ARCH_DLINFO 2425 /* 2426 * ARCH_DLINFO must come first so platform specific code can enforce 2427 * special alignment requirements on the AUXV if necessary (eg. PPC). 2428 */ 2429 ARCH_DLINFO; 2430 #endif 2431 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2432 * on info->auxv_len will trigger. 2433 */ 2434 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2435 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2436 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2437 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2438 /* Target doesn't support host page size alignment */ 2439 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2440 } else { 2441 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2442 qemu_host_page_size))); 2443 } 2444 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2445 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2446 NEW_AUX_ENT(AT_ENTRY, info->entry); 2447 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2448 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2449 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2450 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2451 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2452 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2453 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2454 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2455 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2456 2457 #ifdef ELF_HWCAP2 2458 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2459 #endif 2460 2461 if (u_base_platform) { 2462 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2463 } 2464 if (u_platform) { 2465 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2466 } 2467 NEW_AUX_ENT (AT_NULL, 0); 2468 #undef NEW_AUX_ENT 2469 2470 /* Check that our initial calculation of the auxv length matches how much 2471 * we actually put into it. 2472 */ 2473 assert(info->auxv_len == u_auxv - info->saved_auxv); 2474 2475 put_user_ual(argc, u_argc); 2476 2477 p = info->arg_strings; 2478 for (i = 0; i < argc; ++i) { 2479 put_user_ual(p, u_argv); 2480 u_argv += n; 2481 p += target_strlen(p) + 1; 2482 } 2483 put_user_ual(0, u_argv); 2484 2485 p = info->env_strings; 2486 for (i = 0; i < envc; ++i) { 2487 put_user_ual(p, u_envp); 2488 u_envp += n; 2489 p += target_strlen(p) + 1; 2490 } 2491 put_user_ual(0, u_envp); 2492 2493 return sp; 2494 } 2495 2496 #if defined(HI_COMMPAGE) 2497 #define LO_COMMPAGE -1 2498 #elif defined(LO_COMMPAGE) 2499 #define HI_COMMPAGE 0 2500 #else 2501 #define HI_COMMPAGE 0 2502 #define LO_COMMPAGE -1 2503 #ifndef INIT_GUEST_COMMPAGE 2504 #define init_guest_commpage() true 2505 #endif 2506 #endif 2507 2508 /** 2509 * pgb_try_mmap: 2510 * @addr: host start address 2511 * @addr_last: host last address 2512 * @keep: do not unmap the probe region 2513 * 2514 * Return 1 if [@addr, @addr_last] is not mapped in the host, 2515 * return 0 if it is not available to map, and -1 on mmap error. 2516 * If @keep, the region is left mapped on success, otherwise unmapped. 2517 */ 2518 static int pgb_try_mmap(uintptr_t addr, uintptr_t addr_last, bool keep) 2519 { 2520 size_t size = addr_last - addr + 1; 2521 void *p = mmap((void *)addr, size, PROT_NONE, 2522 MAP_ANONYMOUS | MAP_PRIVATE | 2523 MAP_NORESERVE | MAP_FIXED_NOREPLACE, -1, 0); 2524 int ret; 2525 2526 if (p == MAP_FAILED) { 2527 return errno == EEXIST ? 0 : -1; 2528 } 2529 ret = p == (void *)addr; 2530 if (!keep || !ret) { 2531 munmap(p, size); 2532 } 2533 return ret; 2534 } 2535 2536 /** 2537 * pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t size, uintptr_t brk) 2538 * @addr: host address 2539 * @addr_last: host last address 2540 * @brk: host brk 2541 * 2542 * Like pgb_try_mmap, but additionally reserve some memory following brk. 2543 */ 2544 static int pgb_try_mmap_skip_brk(uintptr_t addr, uintptr_t addr_last, 2545 uintptr_t brk, bool keep) 2546 { 2547 uintptr_t brk_last = brk + 16 * MiB - 1; 2548 2549 /* Do not map anything close to the host brk. */ 2550 if (addr <= brk_last && brk <= addr_last) { 2551 return 0; 2552 } 2553 return pgb_try_mmap(addr, addr_last, keep); 2554 } 2555 2556 /** 2557 * pgb_try_mmap_set: 2558 * @ga: set of guest addrs 2559 * @base: guest_base 2560 * @brk: host brk 2561 * 2562 * Return true if all @ga can be mapped by the host at @base. 2563 * On success, retain the mapping at index 0 for reserved_va. 2564 */ 2565 2566 typedef struct PGBAddrs { 2567 uintptr_t bounds[3][2]; /* start/last pairs */ 2568 int nbounds; 2569 } PGBAddrs; 2570 2571 static bool pgb_try_mmap_set(const PGBAddrs *ga, uintptr_t base, uintptr_t brk) 2572 { 2573 for (int i = ga->nbounds - 1; i >= 0; --i) { 2574 if (pgb_try_mmap_skip_brk(ga->bounds[i][0] + base, 2575 ga->bounds[i][1] + base, 2576 brk, i == 0 && reserved_va) <= 0) { 2577 return false; 2578 } 2579 } 2580 return true; 2581 } 2582 2583 /** 2584 * pgb_addr_set: 2585 * @ga: output set of guest addrs 2586 * @guest_loaddr: guest image low address 2587 * @guest_loaddr: guest image high address 2588 * @identity: create for identity mapping 2589 * 2590 * Fill in @ga with the image, COMMPAGE and NULL page. 2591 */ 2592 static bool pgb_addr_set(PGBAddrs *ga, abi_ulong guest_loaddr, 2593 abi_ulong guest_hiaddr, bool try_identity) 2594 { 2595 int n; 2596 2597 /* 2598 * With a low commpage, or a guest mapped very low, 2599 * we may not be able to use the identity map. 2600 */ 2601 if (try_identity) { 2602 if (LO_COMMPAGE != -1 && LO_COMMPAGE < mmap_min_addr) { 2603 return false; 2604 } 2605 if (guest_loaddr != 0 && guest_loaddr < mmap_min_addr) { 2606 return false; 2607 } 2608 } 2609 2610 memset(ga, 0, sizeof(*ga)); 2611 n = 0; 2612 2613 if (reserved_va) { 2614 ga->bounds[n][0] = try_identity ? mmap_min_addr : 0; 2615 ga->bounds[n][1] = reserved_va; 2616 n++; 2617 /* LO_COMMPAGE and NULL handled by reserving from 0. */ 2618 } else { 2619 /* Add any LO_COMMPAGE or NULL page. */ 2620 if (LO_COMMPAGE != -1) { 2621 ga->bounds[n][0] = 0; 2622 ga->bounds[n][1] = LO_COMMPAGE + TARGET_PAGE_SIZE - 1; 2623 n++; 2624 } else if (!try_identity) { 2625 ga->bounds[n][0] = 0; 2626 ga->bounds[n][1] = TARGET_PAGE_SIZE - 1; 2627 n++; 2628 } 2629 2630 /* Add the guest image for ET_EXEC. */ 2631 if (guest_loaddr) { 2632 ga->bounds[n][0] = guest_loaddr; 2633 ga->bounds[n][1] = guest_hiaddr; 2634 n++; 2635 } 2636 } 2637 2638 /* 2639 * Temporarily disable 2640 * "comparison is always false due to limited range of data type" 2641 * due to comparison between unsigned and (possible) 0. 2642 */ 2643 #pragma GCC diagnostic push 2644 #pragma GCC diagnostic ignored "-Wtype-limits" 2645 2646 /* Add any HI_COMMPAGE not covered by reserved_va. */ 2647 if (reserved_va < HI_COMMPAGE) { 2648 ga->bounds[n][0] = HI_COMMPAGE & qemu_host_page_mask; 2649 ga->bounds[n][1] = HI_COMMPAGE + TARGET_PAGE_SIZE - 1; 2650 n++; 2651 } 2652 2653 #pragma GCC diagnostic pop 2654 2655 ga->nbounds = n; 2656 return true; 2657 } 2658 2659 static void pgb_fail_in_use(const char *image_name) 2660 { 2661 error_report("%s: requires virtual address space that is in use " 2662 "(omit the -B option or choose a different value)", 2663 image_name); 2664 exit(EXIT_FAILURE); 2665 } 2666 2667 static void pgb_fixed(const char *image_name, uintptr_t guest_loaddr, 2668 uintptr_t guest_hiaddr, uintptr_t align) 2669 { 2670 PGBAddrs ga; 2671 uintptr_t brk = (uintptr_t)sbrk(0); 2672 2673 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2674 fprintf(stderr, "Requested guest base %p does not satisfy " 2675 "host minimum alignment (0x%" PRIxPTR ")\n", 2676 (void *)guest_base, align); 2677 exit(EXIT_FAILURE); 2678 } 2679 2680 if (!pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, !guest_base) 2681 || !pgb_try_mmap_set(&ga, guest_base, brk)) { 2682 pgb_fail_in_use(image_name); 2683 } 2684 } 2685 2686 /** 2687 * pgb_find_fallback: 2688 * 2689 * This is a fallback method for finding holes in the host address space 2690 * if we don't have the benefit of being able to access /proc/self/map. 2691 * It can potentially take a very long time as we can only dumbly iterate 2692 * up the host address space seeing if the allocation would work. 2693 */ 2694 static uintptr_t pgb_find_fallback(const PGBAddrs *ga, uintptr_t align, 2695 uintptr_t brk) 2696 { 2697 /* TODO: come up with a better estimate of how much to skip. */ 2698 uintptr_t skip = sizeof(uintptr_t) == 4 ? MiB : GiB; 2699 2700 for (uintptr_t base = skip; ; base += skip) { 2701 base = ROUND_UP(base, align); 2702 if (pgb_try_mmap_set(ga, base, brk)) { 2703 return base; 2704 } 2705 if (base >= -skip) { 2706 return -1; 2707 } 2708 } 2709 } 2710 2711 static uintptr_t pgb_try_itree(const PGBAddrs *ga, uintptr_t base, 2712 IntervalTreeRoot *root) 2713 { 2714 for (int i = ga->nbounds - 1; i >= 0; --i) { 2715 uintptr_t s = base + ga->bounds[i][0]; 2716 uintptr_t l = base + ga->bounds[i][1]; 2717 IntervalTreeNode *n; 2718 2719 if (l < s) { 2720 /* Wraparound. Skip to advance S to mmap_min_addr. */ 2721 return mmap_min_addr - s; 2722 } 2723 2724 n = interval_tree_iter_first(root, s, l); 2725 if (n != NULL) { 2726 /* Conflict. Skip to advance S to LAST + 1. */ 2727 return n->last - s + 1; 2728 } 2729 } 2730 return 0; /* success */ 2731 } 2732 2733 static uintptr_t pgb_find_itree(const PGBAddrs *ga, IntervalTreeRoot *root, 2734 uintptr_t align, uintptr_t brk) 2735 { 2736 uintptr_t last = mmap_min_addr; 2737 uintptr_t base, skip; 2738 2739 while (true) { 2740 base = ROUND_UP(last, align); 2741 if (base < last) { 2742 return -1; 2743 } 2744 2745 skip = pgb_try_itree(ga, base, root); 2746 if (skip == 0) { 2747 break; 2748 } 2749 2750 last = base + skip; 2751 if (last < base) { 2752 return -1; 2753 } 2754 } 2755 2756 /* 2757 * We've chosen 'base' based on holes in the interval tree, 2758 * but we don't yet know if it is a valid host address. 2759 * Because it is the first matching hole, if the host addresses 2760 * are invalid we know there are no further matches. 2761 */ 2762 return pgb_try_mmap_set(ga, base, brk) ? base : -1; 2763 } 2764 2765 static void pgb_dynamic(const char *image_name, uintptr_t guest_loaddr, 2766 uintptr_t guest_hiaddr, uintptr_t align) 2767 { 2768 IntervalTreeRoot *root; 2769 uintptr_t brk, ret; 2770 PGBAddrs ga; 2771 2772 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2773 2774 /* Try the identity map first. */ 2775 if (pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, true)) { 2776 brk = (uintptr_t)sbrk(0); 2777 if (pgb_try_mmap_set(&ga, 0, brk)) { 2778 guest_base = 0; 2779 return; 2780 } 2781 } 2782 2783 /* 2784 * Rebuild the address set for non-identity map. 2785 * This differs in the mapping of the guest NULL page. 2786 */ 2787 pgb_addr_set(&ga, guest_loaddr, guest_hiaddr, false); 2788 2789 root = read_self_maps(); 2790 2791 /* Read brk after we've read the maps, which will malloc. */ 2792 brk = (uintptr_t)sbrk(0); 2793 2794 if (!root) { 2795 ret = pgb_find_fallback(&ga, align, brk); 2796 } else { 2797 /* 2798 * Reserve the area close to the host brk. 2799 * This will be freed with the rest of the tree. 2800 */ 2801 IntervalTreeNode *b = g_new0(IntervalTreeNode, 1); 2802 b->start = brk; 2803 b->last = brk + 16 * MiB - 1; 2804 interval_tree_insert(b, root); 2805 2806 ret = pgb_find_itree(&ga, root, align, brk); 2807 free_self_maps(root); 2808 } 2809 2810 if (ret == -1) { 2811 int w = TARGET_LONG_BITS / 4; 2812 2813 error_report("%s: Unable to find a guest_base to satisfy all " 2814 "guest address mapping requirements", image_name); 2815 2816 for (int i = 0; i < ga.nbounds; ++i) { 2817 error_printf(" %0*" PRIx64 "-%0*" PRIx64 "\n", 2818 w, (uint64_t)ga.bounds[i][0], 2819 w, (uint64_t)ga.bounds[i][1]); 2820 } 2821 exit(EXIT_FAILURE); 2822 } 2823 guest_base = ret; 2824 } 2825 2826 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2827 abi_ulong guest_hiaddr) 2828 { 2829 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2830 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2831 2832 /* Sanity check the guest binary. */ 2833 if (reserved_va) { 2834 if (guest_hiaddr > reserved_va) { 2835 error_report("%s: requires more than reserved virtual " 2836 "address space (0x%" PRIx64 " > 0x%lx)", 2837 image_name, (uint64_t)guest_hiaddr, reserved_va); 2838 exit(EXIT_FAILURE); 2839 } 2840 } else { 2841 if (guest_hiaddr != (uintptr_t)guest_hiaddr) { 2842 error_report("%s: requires more virtual address space " 2843 "than the host can provide (0x%" PRIx64 ")", 2844 image_name, (uint64_t)guest_hiaddr + 1); 2845 exit(EXIT_FAILURE); 2846 } 2847 } 2848 2849 if (have_guest_base) { 2850 pgb_fixed(image_name, guest_loaddr, guest_hiaddr, align); 2851 } else { 2852 pgb_dynamic(image_name, guest_loaddr, guest_hiaddr, align); 2853 } 2854 2855 /* Reserve and initialize the commpage. */ 2856 if (!init_guest_commpage()) { 2857 /* We have already probed for the commpage being free. */ 2858 g_assert_not_reached(); 2859 } 2860 2861 assert(QEMU_IS_ALIGNED(guest_base, align)); 2862 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2863 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2864 } 2865 2866 enum { 2867 /* The string "GNU\0" as a magic number. */ 2868 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2869 NOTE_DATA_SZ = 1 * KiB, 2870 NOTE_NAME_SZ = 4, 2871 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2872 }; 2873 2874 /* 2875 * Process a single gnu_property entry. 2876 * Return false for error. 2877 */ 2878 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2879 struct image_info *info, bool have_prev_type, 2880 uint32_t *prev_type, Error **errp) 2881 { 2882 uint32_t pr_type, pr_datasz, step; 2883 2884 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2885 goto error_data; 2886 } 2887 datasz -= *off; 2888 data += *off / sizeof(uint32_t); 2889 2890 if (datasz < 2 * sizeof(uint32_t)) { 2891 goto error_data; 2892 } 2893 pr_type = data[0]; 2894 pr_datasz = data[1]; 2895 data += 2; 2896 datasz -= 2 * sizeof(uint32_t); 2897 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2898 if (step > datasz) { 2899 goto error_data; 2900 } 2901 2902 /* Properties are supposed to be unique and sorted on pr_type. */ 2903 if (have_prev_type && pr_type <= *prev_type) { 2904 if (pr_type == *prev_type) { 2905 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2906 } else { 2907 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2908 } 2909 return false; 2910 } 2911 *prev_type = pr_type; 2912 2913 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2914 return false; 2915 } 2916 2917 *off += 2 * sizeof(uint32_t) + step; 2918 return true; 2919 2920 error_data: 2921 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2922 return false; 2923 } 2924 2925 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2926 static bool parse_elf_properties(int image_fd, 2927 struct image_info *info, 2928 const struct elf_phdr *phdr, 2929 char bprm_buf[BPRM_BUF_SIZE], 2930 Error **errp) 2931 { 2932 union { 2933 struct elf_note nhdr; 2934 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2935 } note; 2936 2937 int n, off, datasz; 2938 bool have_prev_type; 2939 uint32_t prev_type; 2940 2941 /* Unless the arch requires properties, ignore them. */ 2942 if (!ARCH_USE_GNU_PROPERTY) { 2943 return true; 2944 } 2945 2946 /* If the properties are crazy large, that's too bad. */ 2947 n = phdr->p_filesz; 2948 if (n > sizeof(note)) { 2949 error_setg(errp, "PT_GNU_PROPERTY too large"); 2950 return false; 2951 } 2952 if (n < sizeof(note.nhdr)) { 2953 error_setg(errp, "PT_GNU_PROPERTY too small"); 2954 return false; 2955 } 2956 2957 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2958 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2959 } else { 2960 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2961 if (len != n) { 2962 error_setg_errno(errp, errno, "Error reading file header"); 2963 return false; 2964 } 2965 } 2966 2967 /* 2968 * The contents of a valid PT_GNU_PROPERTY is a sequence 2969 * of uint32_t -- swap them all now. 2970 */ 2971 #ifdef BSWAP_NEEDED 2972 for (int i = 0; i < n / 4; i++) { 2973 bswap32s(note.data + i); 2974 } 2975 #endif 2976 2977 /* 2978 * Note that nhdr is 3 words, and that the "name" described by namesz 2979 * immediately follows nhdr and is thus at the 4th word. Further, all 2980 * of the inputs to the kernel's round_up are multiples of 4. 2981 */ 2982 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2983 note.nhdr.n_namesz != NOTE_NAME_SZ || 2984 note.data[3] != GNU0_MAGIC) { 2985 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2986 return false; 2987 } 2988 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2989 2990 datasz = note.nhdr.n_descsz + off; 2991 if (datasz > n) { 2992 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2993 return false; 2994 } 2995 2996 have_prev_type = false; 2997 prev_type = 0; 2998 while (1) { 2999 if (off == datasz) { 3000 return true; /* end, exit ok */ 3001 } 3002 if (!parse_elf_property(note.data, &off, datasz, info, 3003 have_prev_type, &prev_type, errp)) { 3004 return false; 3005 } 3006 have_prev_type = true; 3007 } 3008 } 3009 3010 /* Load an ELF image into the address space. 3011 3012 IMAGE_NAME is the filename of the image, to use in error messages. 3013 IMAGE_FD is the open file descriptor for the image. 3014 3015 BPRM_BUF is a copy of the beginning of the file; this of course 3016 contains the elf file header at offset 0. It is assumed that this 3017 buffer is sufficiently aligned to present no problems to the host 3018 in accessing data at aligned offsets within the buffer. 3019 3020 On return: INFO values will be filled in, as necessary or available. */ 3021 3022 static void load_elf_image(const char *image_name, int image_fd, 3023 struct image_info *info, char **pinterp_name, 3024 char bprm_buf[BPRM_BUF_SIZE]) 3025 { 3026 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 3027 struct elf_phdr *phdr; 3028 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 3029 int i, retval, prot_exec; 3030 Error *err = NULL; 3031 3032 /* First of all, some simple consistency checks */ 3033 if (!elf_check_ident(ehdr)) { 3034 error_setg(&err, "Invalid ELF image for this architecture"); 3035 goto exit_errmsg; 3036 } 3037 bswap_ehdr(ehdr); 3038 if (!elf_check_ehdr(ehdr)) { 3039 error_setg(&err, "Invalid ELF image for this architecture"); 3040 goto exit_errmsg; 3041 } 3042 3043 i = ehdr->e_phnum * sizeof(struct elf_phdr); 3044 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 3045 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 3046 } else { 3047 phdr = (struct elf_phdr *) alloca(i); 3048 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 3049 if (retval != i) { 3050 goto exit_read; 3051 } 3052 } 3053 bswap_phdr(phdr, ehdr->e_phnum); 3054 3055 info->nsegs = 0; 3056 info->pt_dynamic_addr = 0; 3057 3058 mmap_lock(); 3059 3060 /* 3061 * Find the maximum size of the image and allocate an appropriate 3062 * amount of memory to handle that. Locate the interpreter, if any. 3063 */ 3064 loaddr = -1, hiaddr = 0; 3065 info->alignment = 0; 3066 info->exec_stack = EXSTACK_DEFAULT; 3067 for (i = 0; i < ehdr->e_phnum; ++i) { 3068 struct elf_phdr *eppnt = phdr + i; 3069 if (eppnt->p_type == PT_LOAD) { 3070 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3071 if (a < loaddr) { 3072 loaddr = a; 3073 } 3074 a = eppnt->p_vaddr + eppnt->p_memsz - 1; 3075 if (a > hiaddr) { 3076 hiaddr = a; 3077 } 3078 ++info->nsegs; 3079 info->alignment |= eppnt->p_align; 3080 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3081 g_autofree char *interp_name = NULL; 3082 3083 if (*pinterp_name) { 3084 error_setg(&err, "Multiple PT_INTERP entries"); 3085 goto exit_errmsg; 3086 } 3087 3088 interp_name = g_malloc(eppnt->p_filesz); 3089 3090 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3091 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3092 eppnt->p_filesz); 3093 } else { 3094 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3095 eppnt->p_offset); 3096 if (retval != eppnt->p_filesz) { 3097 goto exit_read; 3098 } 3099 } 3100 if (interp_name[eppnt->p_filesz - 1] != 0) { 3101 error_setg(&err, "Invalid PT_INTERP entry"); 3102 goto exit_errmsg; 3103 } 3104 *pinterp_name = g_steal_pointer(&interp_name); 3105 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3106 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3107 goto exit_errmsg; 3108 } 3109 } else if (eppnt->p_type == PT_GNU_STACK) { 3110 info->exec_stack = eppnt->p_flags & PF_X; 3111 } 3112 } 3113 3114 load_addr = loaddr; 3115 3116 if (pinterp_name != NULL) { 3117 if (ehdr->e_type == ET_EXEC) { 3118 /* 3119 * Make sure that the low address does not conflict with 3120 * MMAP_MIN_ADDR or the QEMU application itself. 3121 */ 3122 probe_guest_base(image_name, loaddr, hiaddr); 3123 } else { 3124 abi_ulong align; 3125 3126 /* 3127 * The binary is dynamic, but we still need to 3128 * select guest_base. In this case we pass a size. 3129 */ 3130 probe_guest_base(image_name, 0, hiaddr - loaddr); 3131 3132 /* 3133 * Avoid collision with the loader by providing a different 3134 * default load address. 3135 */ 3136 load_addr += elf_et_dyn_base; 3137 3138 /* 3139 * TODO: Better support for mmap alignment is desirable. 3140 * Since we do not have complete control over the guest 3141 * address space, we prefer the kernel to choose some address 3142 * rather than force the use of LOAD_ADDR via MAP_FIXED. 3143 * But without MAP_FIXED we cannot guarantee alignment, 3144 * only suggest it. 3145 */ 3146 align = pow2ceil(info->alignment); 3147 if (align) { 3148 load_addr &= -align; 3149 } 3150 } 3151 } 3152 3153 /* 3154 * Reserve address space for all of this. 3155 * 3156 * In the case of ET_EXEC, we supply MAP_FIXED_NOREPLACE so that we get 3157 * exactly the address range that is required. Without reserved_va, 3158 * the guest address space is not isolated. We have attempted to avoid 3159 * conflict with the host program itself via probe_guest_base, but using 3160 * MAP_FIXED_NOREPLACE instead of MAP_FIXED provides an extra check. 3161 * 3162 * Otherwise this is ET_DYN, and we are searching for a location 3163 * that can hold the memory space required. If the image is 3164 * pre-linked, LOAD_ADDR will be non-zero, and the kernel should 3165 * honor that address if it happens to be free. 3166 * 3167 * In both cases, we will overwrite pages in this range with mappings 3168 * from the executable. 3169 */ 3170 load_addr = target_mmap(load_addr, (size_t)hiaddr - loaddr + 1, PROT_NONE, 3171 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3172 (ehdr->e_type == ET_EXEC ? MAP_FIXED_NOREPLACE : 0), 3173 -1, 0); 3174 if (load_addr == -1) { 3175 goto exit_mmap; 3176 } 3177 load_bias = load_addr - loaddr; 3178 3179 if (elf_is_fdpic(ehdr)) { 3180 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3181 g_malloc(sizeof(*loadsegs) * info->nsegs); 3182 3183 for (i = 0; i < ehdr->e_phnum; ++i) { 3184 switch (phdr[i].p_type) { 3185 case PT_DYNAMIC: 3186 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3187 break; 3188 case PT_LOAD: 3189 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3190 loadsegs->p_vaddr = phdr[i].p_vaddr; 3191 loadsegs->p_memsz = phdr[i].p_memsz; 3192 ++loadsegs; 3193 break; 3194 } 3195 } 3196 } 3197 3198 info->load_bias = load_bias; 3199 info->code_offset = load_bias; 3200 info->data_offset = load_bias; 3201 info->load_addr = load_addr; 3202 info->entry = ehdr->e_entry + load_bias; 3203 info->start_code = -1; 3204 info->end_code = 0; 3205 info->start_data = -1; 3206 info->end_data = 0; 3207 /* Usual start for brk is after all sections of the main executable. */ 3208 info->brk = TARGET_PAGE_ALIGN(hiaddr); 3209 info->elf_flags = ehdr->e_flags; 3210 3211 prot_exec = PROT_EXEC; 3212 #ifdef TARGET_AARCH64 3213 /* 3214 * If the BTI feature is present, this indicates that the executable 3215 * pages of the startup binary should be mapped with PROT_BTI, so that 3216 * branch targets are enforced. 3217 * 3218 * The startup binary is either the interpreter or the static executable. 3219 * The interpreter is responsible for all pages of a dynamic executable. 3220 * 3221 * Elf notes are backward compatible to older cpus. 3222 * Do not enable BTI unless it is supported. 3223 */ 3224 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3225 && (pinterp_name == NULL || *pinterp_name == 0) 3226 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3227 prot_exec |= TARGET_PROT_BTI; 3228 } 3229 #endif 3230 3231 for (i = 0; i < ehdr->e_phnum; i++) { 3232 struct elf_phdr *eppnt = phdr + i; 3233 if (eppnt->p_type == PT_LOAD) { 3234 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 3235 int elf_prot = 0; 3236 3237 if (eppnt->p_flags & PF_R) { 3238 elf_prot |= PROT_READ; 3239 } 3240 if (eppnt->p_flags & PF_W) { 3241 elf_prot |= PROT_WRITE; 3242 } 3243 if (eppnt->p_flags & PF_X) { 3244 elf_prot |= prot_exec; 3245 } 3246 3247 vaddr = load_bias + eppnt->p_vaddr; 3248 vaddr_po = vaddr & ~TARGET_PAGE_MASK; 3249 vaddr_ps = vaddr & TARGET_PAGE_MASK; 3250 3251 vaddr_ef = vaddr + eppnt->p_filesz; 3252 vaddr_em = vaddr + eppnt->p_memsz; 3253 3254 /* 3255 * Some segments may be completely empty, with a non-zero p_memsz 3256 * but no backing file segment. 3257 */ 3258 if (eppnt->p_filesz != 0) { 3259 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 3260 elf_prot, MAP_PRIVATE | MAP_FIXED, 3261 image_fd, eppnt->p_offset - vaddr_po); 3262 if (error == -1) { 3263 goto exit_mmap; 3264 } 3265 } 3266 3267 /* If the load segment requests extra zeros (e.g. bss), map it. */ 3268 if (vaddr_ef < vaddr_em && 3269 !zero_bss(vaddr_ef, vaddr_em, elf_prot)) { 3270 goto exit_mmap; 3271 } 3272 3273 /* Find the full program boundaries. */ 3274 if (elf_prot & PROT_EXEC) { 3275 if (vaddr < info->start_code) { 3276 info->start_code = vaddr; 3277 } 3278 if (vaddr_ef > info->end_code) { 3279 info->end_code = vaddr_ef; 3280 } 3281 } 3282 if (elf_prot & PROT_WRITE) { 3283 if (vaddr < info->start_data) { 3284 info->start_data = vaddr; 3285 } 3286 if (vaddr_ef > info->end_data) { 3287 info->end_data = vaddr_ef; 3288 } 3289 } 3290 #ifdef TARGET_MIPS 3291 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3292 Mips_elf_abiflags_v0 abiflags; 3293 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3294 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3295 goto exit_errmsg; 3296 } 3297 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3298 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3299 sizeof(Mips_elf_abiflags_v0)); 3300 } else { 3301 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3302 eppnt->p_offset); 3303 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3304 goto exit_read; 3305 } 3306 } 3307 bswap_mips_abiflags(&abiflags); 3308 info->fp_abi = abiflags.fp_abi; 3309 #endif 3310 } 3311 } 3312 3313 if (info->end_data == 0) { 3314 info->start_data = info->end_code; 3315 info->end_data = info->end_code; 3316 } 3317 3318 if (qemu_log_enabled()) { 3319 load_symbols(ehdr, image_fd, load_bias); 3320 } 3321 3322 debuginfo_report_elf(image_name, image_fd, load_bias); 3323 3324 mmap_unlock(); 3325 3326 close(image_fd); 3327 return; 3328 3329 exit_read: 3330 if (retval >= 0) { 3331 error_setg(&err, "Incomplete read of file header"); 3332 } else { 3333 error_setg_errno(&err, errno, "Error reading file header"); 3334 } 3335 goto exit_errmsg; 3336 exit_mmap: 3337 error_setg_errno(&err, errno, "Error mapping file"); 3338 goto exit_errmsg; 3339 exit_errmsg: 3340 error_reportf_err(err, "%s: ", image_name); 3341 exit(-1); 3342 } 3343 3344 static void load_elf_interp(const char *filename, struct image_info *info, 3345 char bprm_buf[BPRM_BUF_SIZE]) 3346 { 3347 int fd, retval; 3348 Error *err = NULL; 3349 3350 fd = open(path(filename), O_RDONLY); 3351 if (fd < 0) { 3352 error_setg_file_open(&err, errno, filename); 3353 error_report_err(err); 3354 exit(-1); 3355 } 3356 3357 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3358 if (retval < 0) { 3359 error_setg_errno(&err, errno, "Error reading file header"); 3360 error_reportf_err(err, "%s: ", filename); 3361 exit(-1); 3362 } 3363 3364 if (retval < BPRM_BUF_SIZE) { 3365 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3366 } 3367 3368 load_elf_image(filename, fd, info, NULL, bprm_buf); 3369 } 3370 3371 static int symfind(const void *s0, const void *s1) 3372 { 3373 struct elf_sym *sym = (struct elf_sym *)s1; 3374 __typeof(sym->st_value) addr = *(uint64_t *)s0; 3375 int result = 0; 3376 3377 if (addr < sym->st_value) { 3378 result = -1; 3379 } else if (addr >= sym->st_value + sym->st_size) { 3380 result = 1; 3381 } 3382 return result; 3383 } 3384 3385 static const char *lookup_symbolxx(struct syminfo *s, uint64_t orig_addr) 3386 { 3387 #if ELF_CLASS == ELFCLASS32 3388 struct elf_sym *syms = s->disas_symtab.elf32; 3389 #else 3390 struct elf_sym *syms = s->disas_symtab.elf64; 3391 #endif 3392 3393 // binary search 3394 struct elf_sym *sym; 3395 3396 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3397 if (sym != NULL) { 3398 return s->disas_strtab + sym->st_name; 3399 } 3400 3401 return ""; 3402 } 3403 3404 /* FIXME: This should use elf_ops.h */ 3405 static int symcmp(const void *s0, const void *s1) 3406 { 3407 struct elf_sym *sym0 = (struct elf_sym *)s0; 3408 struct elf_sym *sym1 = (struct elf_sym *)s1; 3409 return (sym0->st_value < sym1->st_value) 3410 ? -1 3411 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3412 } 3413 3414 /* Best attempt to load symbols from this ELF object. */ 3415 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3416 { 3417 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3418 uint64_t segsz; 3419 struct elf_shdr *shdr; 3420 char *strings = NULL; 3421 struct syminfo *s = NULL; 3422 struct elf_sym *new_syms, *syms = NULL; 3423 3424 shnum = hdr->e_shnum; 3425 i = shnum * sizeof(struct elf_shdr); 3426 shdr = (struct elf_shdr *)alloca(i); 3427 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3428 return; 3429 } 3430 3431 bswap_shdr(shdr, shnum); 3432 for (i = 0; i < shnum; ++i) { 3433 if (shdr[i].sh_type == SHT_SYMTAB) { 3434 sym_idx = i; 3435 str_idx = shdr[i].sh_link; 3436 goto found; 3437 } 3438 } 3439 3440 /* There will be no symbol table if the file was stripped. */ 3441 return; 3442 3443 found: 3444 /* Now know where the strtab and symtab are. Snarf them. */ 3445 s = g_try_new(struct syminfo, 1); 3446 if (!s) { 3447 goto give_up; 3448 } 3449 3450 segsz = shdr[str_idx].sh_size; 3451 s->disas_strtab = strings = g_try_malloc(segsz); 3452 if (!strings || 3453 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3454 goto give_up; 3455 } 3456 3457 segsz = shdr[sym_idx].sh_size; 3458 syms = g_try_malloc(segsz); 3459 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3460 goto give_up; 3461 } 3462 3463 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3464 /* Implausibly large symbol table: give up rather than ploughing 3465 * on with the number of symbols calculation overflowing 3466 */ 3467 goto give_up; 3468 } 3469 nsyms = segsz / sizeof(struct elf_sym); 3470 for (i = 0; i < nsyms; ) { 3471 bswap_sym(syms + i); 3472 /* Throw away entries which we do not need. */ 3473 if (syms[i].st_shndx == SHN_UNDEF 3474 || syms[i].st_shndx >= SHN_LORESERVE 3475 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3476 if (i < --nsyms) { 3477 syms[i] = syms[nsyms]; 3478 } 3479 } else { 3480 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3481 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3482 syms[i].st_value &= ~(target_ulong)1; 3483 #endif 3484 syms[i].st_value += load_bias; 3485 i++; 3486 } 3487 } 3488 3489 /* No "useful" symbol. */ 3490 if (nsyms == 0) { 3491 goto give_up; 3492 } 3493 3494 /* Attempt to free the storage associated with the local symbols 3495 that we threw away. Whether or not this has any effect on the 3496 memory allocation depends on the malloc implementation and how 3497 many symbols we managed to discard. */ 3498 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3499 if (new_syms == NULL) { 3500 goto give_up; 3501 } 3502 syms = new_syms; 3503 3504 qsort(syms, nsyms, sizeof(*syms), symcmp); 3505 3506 s->disas_num_syms = nsyms; 3507 #if ELF_CLASS == ELFCLASS32 3508 s->disas_symtab.elf32 = syms; 3509 #else 3510 s->disas_symtab.elf64 = syms; 3511 #endif 3512 s->lookup_symbol = lookup_symbolxx; 3513 s->next = syminfos; 3514 syminfos = s; 3515 3516 return; 3517 3518 give_up: 3519 g_free(s); 3520 g_free(strings); 3521 g_free(syms); 3522 } 3523 3524 uint32_t get_elf_eflags(int fd) 3525 { 3526 struct elfhdr ehdr; 3527 off_t offset; 3528 int ret; 3529 3530 /* Read ELF header */ 3531 offset = lseek(fd, 0, SEEK_SET); 3532 if (offset == (off_t) -1) { 3533 return 0; 3534 } 3535 ret = read(fd, &ehdr, sizeof(ehdr)); 3536 if (ret < sizeof(ehdr)) { 3537 return 0; 3538 } 3539 offset = lseek(fd, offset, SEEK_SET); 3540 if (offset == (off_t) -1) { 3541 return 0; 3542 } 3543 3544 /* Check ELF signature */ 3545 if (!elf_check_ident(&ehdr)) { 3546 return 0; 3547 } 3548 3549 /* check header */ 3550 bswap_ehdr(&ehdr); 3551 if (!elf_check_ehdr(&ehdr)) { 3552 return 0; 3553 } 3554 3555 /* return architecture id */ 3556 return ehdr.e_flags; 3557 } 3558 3559 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3560 { 3561 struct image_info interp_info; 3562 struct elfhdr elf_ex; 3563 char *elf_interpreter = NULL; 3564 char *scratch; 3565 3566 memset(&interp_info, 0, sizeof(interp_info)); 3567 #ifdef TARGET_MIPS 3568 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3569 #endif 3570 3571 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3572 3573 load_elf_image(bprm->filename, bprm->fd, info, 3574 &elf_interpreter, bprm->buf); 3575 3576 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3577 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3578 when we load the interpreter. */ 3579 elf_ex = *(struct elfhdr *)bprm->buf; 3580 3581 /* Do this so that we can load the interpreter, if need be. We will 3582 change some of these later */ 3583 bprm->p = setup_arg_pages(bprm, info); 3584 3585 scratch = g_new0(char, TARGET_PAGE_SIZE); 3586 if (STACK_GROWS_DOWN) { 3587 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3588 bprm->p, info->stack_limit); 3589 info->file_string = bprm->p; 3590 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3591 bprm->p, info->stack_limit); 3592 info->env_strings = bprm->p; 3593 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3594 bprm->p, info->stack_limit); 3595 info->arg_strings = bprm->p; 3596 } else { 3597 info->arg_strings = bprm->p; 3598 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3599 bprm->p, info->stack_limit); 3600 info->env_strings = bprm->p; 3601 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3602 bprm->p, info->stack_limit); 3603 info->file_string = bprm->p; 3604 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3605 bprm->p, info->stack_limit); 3606 } 3607 3608 g_free(scratch); 3609 3610 if (!bprm->p) { 3611 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3612 exit(-1); 3613 } 3614 3615 if (elf_interpreter) { 3616 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3617 3618 /* 3619 * While unusual because of ELF_ET_DYN_BASE, if we are unlucky 3620 * with the mappings the interpreter can be loaded above but 3621 * near the main executable, which can leave very little room 3622 * for the heap. 3623 * If the current brk has less than 16MB, use the end of the 3624 * interpreter. 3625 */ 3626 if (interp_info.brk > info->brk && 3627 interp_info.load_bias - info->brk < 16 * MiB) { 3628 info->brk = interp_info.brk; 3629 } 3630 3631 /* If the program interpreter is one of these two, then assume 3632 an iBCS2 image. Otherwise assume a native linux image. */ 3633 3634 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3635 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3636 info->personality = PER_SVR4; 3637 3638 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3639 and some applications "depend" upon this behavior. Since 3640 we do not have the power to recompile these, we emulate 3641 the SVr4 behavior. Sigh. */ 3642 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3643 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3644 } 3645 #ifdef TARGET_MIPS 3646 info->interp_fp_abi = interp_info.fp_abi; 3647 #endif 3648 } 3649 3650 /* 3651 * TODO: load a vdso, which would also contain the signal trampolines. 3652 * Otherwise, allocate a private page to hold them. 3653 */ 3654 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3655 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3656 PROT_READ | PROT_WRITE, 3657 MAP_PRIVATE | MAP_ANON, -1, 0); 3658 if (tramp_page == -1) { 3659 return -errno; 3660 } 3661 3662 setup_sigtramp(tramp_page); 3663 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3664 } 3665 3666 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3667 info, (elf_interpreter ? &interp_info : NULL)); 3668 info->start_stack = bprm->p; 3669 3670 /* If we have an interpreter, set that as the program's entry point. 3671 Copy the load_bias as well, to help PPC64 interpret the entry 3672 point as a function descriptor. Do this after creating elf tables 3673 so that we copy the original program entry point into the AUXV. */ 3674 if (elf_interpreter) { 3675 info->load_bias = interp_info.load_bias; 3676 info->entry = interp_info.entry; 3677 g_free(elf_interpreter); 3678 } 3679 3680 #ifdef USE_ELF_CORE_DUMP 3681 bprm->core_dump = &elf_core_dump; 3682 #endif 3683 3684 return 0; 3685 } 3686 3687 #ifdef USE_ELF_CORE_DUMP 3688 /* 3689 * Definitions to generate Intel SVR4-like core files. 3690 * These mostly have the same names as the SVR4 types with "target_elf_" 3691 * tacked on the front to prevent clashes with linux definitions, 3692 * and the typedef forms have been avoided. This is mostly like 3693 * the SVR4 structure, but more Linuxy, with things that Linux does 3694 * not support and which gdb doesn't really use excluded. 3695 * 3696 * Fields we don't dump (their contents is zero) in linux-user qemu 3697 * are marked with XXX. 3698 * 3699 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3700 * 3701 * Porting ELF coredump for target is (quite) simple process. First you 3702 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3703 * the target resides): 3704 * 3705 * #define USE_ELF_CORE_DUMP 3706 * 3707 * Next you define type of register set used for dumping. ELF specification 3708 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3709 * 3710 * typedef <target_regtype> target_elf_greg_t; 3711 * #define ELF_NREG <number of registers> 3712 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3713 * 3714 * Last step is to implement target specific function that copies registers 3715 * from given cpu into just specified register set. Prototype is: 3716 * 3717 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3718 * const CPUArchState *env); 3719 * 3720 * Parameters: 3721 * regs - copy register values into here (allocated and zeroed by caller) 3722 * env - copy registers from here 3723 * 3724 * Example for ARM target is provided in this file. 3725 */ 3726 3727 /* An ELF note in memory */ 3728 struct memelfnote { 3729 const char *name; 3730 size_t namesz; 3731 size_t namesz_rounded; 3732 int type; 3733 size_t datasz; 3734 size_t datasz_rounded; 3735 void *data; 3736 size_t notesz; 3737 }; 3738 3739 struct target_elf_siginfo { 3740 abi_int si_signo; /* signal number */ 3741 abi_int si_code; /* extra code */ 3742 abi_int si_errno; /* errno */ 3743 }; 3744 3745 struct target_elf_prstatus { 3746 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3747 abi_short pr_cursig; /* Current signal */ 3748 abi_ulong pr_sigpend; /* XXX */ 3749 abi_ulong pr_sighold; /* XXX */ 3750 target_pid_t pr_pid; 3751 target_pid_t pr_ppid; 3752 target_pid_t pr_pgrp; 3753 target_pid_t pr_sid; 3754 struct target_timeval pr_utime; /* XXX User time */ 3755 struct target_timeval pr_stime; /* XXX System time */ 3756 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3757 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3758 target_elf_gregset_t pr_reg; /* GP registers */ 3759 abi_int pr_fpvalid; /* XXX */ 3760 }; 3761 3762 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3763 3764 struct target_elf_prpsinfo { 3765 char pr_state; /* numeric process state */ 3766 char pr_sname; /* char for pr_state */ 3767 char pr_zomb; /* zombie */ 3768 char pr_nice; /* nice val */ 3769 abi_ulong pr_flag; /* flags */ 3770 target_uid_t pr_uid; 3771 target_gid_t pr_gid; 3772 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3773 /* Lots missing */ 3774 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3775 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3776 }; 3777 3778 /* Here is the structure in which status of each thread is captured. */ 3779 struct elf_thread_status { 3780 QTAILQ_ENTRY(elf_thread_status) ets_link; 3781 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3782 #if 0 3783 elf_fpregset_t fpu; /* NT_PRFPREG */ 3784 struct task_struct *thread; 3785 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3786 #endif 3787 struct memelfnote notes[1]; 3788 int num_notes; 3789 }; 3790 3791 struct elf_note_info { 3792 struct memelfnote *notes; 3793 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3794 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3795 3796 QTAILQ_HEAD(, elf_thread_status) thread_list; 3797 #if 0 3798 /* 3799 * Current version of ELF coredump doesn't support 3800 * dumping fp regs etc. 3801 */ 3802 elf_fpregset_t *fpu; 3803 elf_fpxregset_t *xfpu; 3804 int thread_status_size; 3805 #endif 3806 int notes_size; 3807 int numnote; 3808 }; 3809 3810 struct vm_area_struct { 3811 target_ulong vma_start; /* start vaddr of memory region */ 3812 target_ulong vma_end; /* end vaddr of memory region */ 3813 abi_ulong vma_flags; /* protection etc. flags for the region */ 3814 QTAILQ_ENTRY(vm_area_struct) vma_link; 3815 }; 3816 3817 struct mm_struct { 3818 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3819 int mm_count; /* number of mappings */ 3820 }; 3821 3822 static struct mm_struct *vma_init(void); 3823 static void vma_delete(struct mm_struct *); 3824 static int vma_add_mapping(struct mm_struct *, target_ulong, 3825 target_ulong, abi_ulong); 3826 static int vma_get_mapping_count(const struct mm_struct *); 3827 static struct vm_area_struct *vma_first(const struct mm_struct *); 3828 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3829 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3830 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3831 unsigned long flags); 3832 3833 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3834 static void fill_note(struct memelfnote *, const char *, int, 3835 unsigned int, void *); 3836 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3837 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3838 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3839 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3840 static size_t note_size(const struct memelfnote *); 3841 static void free_note_info(struct elf_note_info *); 3842 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3843 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3844 3845 static int dump_write(int, const void *, size_t); 3846 static int write_note(struct memelfnote *, int); 3847 static int write_note_info(struct elf_note_info *, int); 3848 3849 #ifdef BSWAP_NEEDED 3850 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3851 { 3852 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3853 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3854 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3855 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3856 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3857 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3858 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3859 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3860 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3861 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3862 /* cpu times are not filled, so we skip them */ 3863 /* regs should be in correct format already */ 3864 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3865 } 3866 3867 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3868 { 3869 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3870 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3871 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3872 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3873 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3874 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3875 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3876 } 3877 3878 static void bswap_note(struct elf_note *en) 3879 { 3880 bswap32s(&en->n_namesz); 3881 bswap32s(&en->n_descsz); 3882 bswap32s(&en->n_type); 3883 } 3884 #else 3885 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3886 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3887 static inline void bswap_note(struct elf_note *en) { } 3888 #endif /* BSWAP_NEEDED */ 3889 3890 /* 3891 * Minimal support for linux memory regions. These are needed 3892 * when we are finding out what memory exactly belongs to 3893 * emulated process. No locks needed here, as long as 3894 * thread that received the signal is stopped. 3895 */ 3896 3897 static struct mm_struct *vma_init(void) 3898 { 3899 struct mm_struct *mm; 3900 3901 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3902 return (NULL); 3903 3904 mm->mm_count = 0; 3905 QTAILQ_INIT(&mm->mm_mmap); 3906 3907 return (mm); 3908 } 3909 3910 static void vma_delete(struct mm_struct *mm) 3911 { 3912 struct vm_area_struct *vma; 3913 3914 while ((vma = vma_first(mm)) != NULL) { 3915 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3916 g_free(vma); 3917 } 3918 g_free(mm); 3919 } 3920 3921 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3922 target_ulong end, abi_ulong flags) 3923 { 3924 struct vm_area_struct *vma; 3925 3926 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3927 return (-1); 3928 3929 vma->vma_start = start; 3930 vma->vma_end = end; 3931 vma->vma_flags = flags; 3932 3933 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3934 mm->mm_count++; 3935 3936 return (0); 3937 } 3938 3939 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3940 { 3941 return (QTAILQ_FIRST(&mm->mm_mmap)); 3942 } 3943 3944 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3945 { 3946 return (QTAILQ_NEXT(vma, vma_link)); 3947 } 3948 3949 static int vma_get_mapping_count(const struct mm_struct *mm) 3950 { 3951 return (mm->mm_count); 3952 } 3953 3954 /* 3955 * Calculate file (dump) size of given memory region. 3956 */ 3957 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3958 { 3959 /* if we cannot even read the first page, skip it */ 3960 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3961 return (0); 3962 3963 /* 3964 * Usually we don't dump executable pages as they contain 3965 * non-writable code that debugger can read directly from 3966 * target library etc. However, thread stacks are marked 3967 * also executable so we read in first page of given region 3968 * and check whether it contains elf header. If there is 3969 * no elf header, we dump it. 3970 */ 3971 if (vma->vma_flags & PROT_EXEC) { 3972 char page[TARGET_PAGE_SIZE]; 3973 3974 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3975 return 0; 3976 } 3977 if ((page[EI_MAG0] == ELFMAG0) && 3978 (page[EI_MAG1] == ELFMAG1) && 3979 (page[EI_MAG2] == ELFMAG2) && 3980 (page[EI_MAG3] == ELFMAG3)) { 3981 /* 3982 * Mappings are possibly from ELF binary. Don't dump 3983 * them. 3984 */ 3985 return (0); 3986 } 3987 } 3988 3989 return (vma->vma_end - vma->vma_start); 3990 } 3991 3992 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3993 unsigned long flags) 3994 { 3995 struct mm_struct *mm = (struct mm_struct *)priv; 3996 3997 vma_add_mapping(mm, start, end, flags); 3998 return (0); 3999 } 4000 4001 static void fill_note(struct memelfnote *note, const char *name, int type, 4002 unsigned int sz, void *data) 4003 { 4004 unsigned int namesz; 4005 4006 namesz = strlen(name) + 1; 4007 note->name = name; 4008 note->namesz = namesz; 4009 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 4010 note->type = type; 4011 note->datasz = sz; 4012 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 4013 4014 note->data = data; 4015 4016 /* 4017 * We calculate rounded up note size here as specified by 4018 * ELF document. 4019 */ 4020 note->notesz = sizeof (struct elf_note) + 4021 note->namesz_rounded + note->datasz_rounded; 4022 } 4023 4024 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 4025 uint32_t flags) 4026 { 4027 (void) memset(elf, 0, sizeof(*elf)); 4028 4029 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 4030 elf->e_ident[EI_CLASS] = ELF_CLASS; 4031 elf->e_ident[EI_DATA] = ELF_DATA; 4032 elf->e_ident[EI_VERSION] = EV_CURRENT; 4033 elf->e_ident[EI_OSABI] = ELF_OSABI; 4034 4035 elf->e_type = ET_CORE; 4036 elf->e_machine = machine; 4037 elf->e_version = EV_CURRENT; 4038 elf->e_phoff = sizeof(struct elfhdr); 4039 elf->e_flags = flags; 4040 elf->e_ehsize = sizeof(struct elfhdr); 4041 elf->e_phentsize = sizeof(struct elf_phdr); 4042 elf->e_phnum = segs; 4043 4044 bswap_ehdr(elf); 4045 } 4046 4047 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 4048 { 4049 phdr->p_type = PT_NOTE; 4050 phdr->p_offset = offset; 4051 phdr->p_vaddr = 0; 4052 phdr->p_paddr = 0; 4053 phdr->p_filesz = sz; 4054 phdr->p_memsz = 0; 4055 phdr->p_flags = 0; 4056 phdr->p_align = 0; 4057 4058 bswap_phdr(phdr, 1); 4059 } 4060 4061 static size_t note_size(const struct memelfnote *note) 4062 { 4063 return (note->notesz); 4064 } 4065 4066 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4067 const TaskState *ts, int signr) 4068 { 4069 (void) memset(prstatus, 0, sizeof (*prstatus)); 4070 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4071 prstatus->pr_pid = ts->ts_tid; 4072 prstatus->pr_ppid = getppid(); 4073 prstatus->pr_pgrp = getpgrp(); 4074 prstatus->pr_sid = getsid(0); 4075 4076 bswap_prstatus(prstatus); 4077 } 4078 4079 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4080 { 4081 char *base_filename; 4082 unsigned int i, len; 4083 4084 (void) memset(psinfo, 0, sizeof (*psinfo)); 4085 4086 len = ts->info->env_strings - ts->info->arg_strings; 4087 if (len >= ELF_PRARGSZ) 4088 len = ELF_PRARGSZ - 1; 4089 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4090 return -EFAULT; 4091 } 4092 for (i = 0; i < len; i++) 4093 if (psinfo->pr_psargs[i] == 0) 4094 psinfo->pr_psargs[i] = ' '; 4095 psinfo->pr_psargs[len] = 0; 4096 4097 psinfo->pr_pid = getpid(); 4098 psinfo->pr_ppid = getppid(); 4099 psinfo->pr_pgrp = getpgrp(); 4100 psinfo->pr_sid = getsid(0); 4101 psinfo->pr_uid = getuid(); 4102 psinfo->pr_gid = getgid(); 4103 4104 base_filename = g_path_get_basename(ts->bprm->filename); 4105 /* 4106 * Using strncpy here is fine: at max-length, 4107 * this field is not NUL-terminated. 4108 */ 4109 (void) strncpy(psinfo->pr_fname, base_filename, 4110 sizeof(psinfo->pr_fname)); 4111 4112 g_free(base_filename); 4113 bswap_psinfo(psinfo); 4114 return (0); 4115 } 4116 4117 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4118 { 4119 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4120 elf_addr_t orig_auxv = auxv; 4121 void *ptr; 4122 int len = ts->info->auxv_len; 4123 4124 /* 4125 * Auxiliary vector is stored in target process stack. It contains 4126 * {type, value} pairs that we need to dump into note. This is not 4127 * strictly necessary but we do it here for sake of completeness. 4128 */ 4129 4130 /* read in whole auxv vector and copy it to memelfnote */ 4131 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4132 if (ptr != NULL) { 4133 fill_note(note, "CORE", NT_AUXV, len, ptr); 4134 unlock_user(ptr, auxv, len); 4135 } 4136 } 4137 4138 /* 4139 * Constructs name of coredump file. We have following convention 4140 * for the name: 4141 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4142 * 4143 * Returns the filename 4144 */ 4145 static char *core_dump_filename(const TaskState *ts) 4146 { 4147 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4148 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4149 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4150 4151 return g_strdup_printf("qemu_%s_%s_%d.core", 4152 base_filename, nowstr, (int)getpid()); 4153 } 4154 4155 static int dump_write(int fd, const void *ptr, size_t size) 4156 { 4157 const char *bufp = (const char *)ptr; 4158 ssize_t bytes_written, bytes_left; 4159 struct rlimit dumpsize; 4160 off_t pos; 4161 4162 bytes_written = 0; 4163 getrlimit(RLIMIT_CORE, &dumpsize); 4164 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4165 if (errno == ESPIPE) { /* not a seekable stream */ 4166 bytes_left = size; 4167 } else { 4168 return pos; 4169 } 4170 } else { 4171 if (dumpsize.rlim_cur <= pos) { 4172 return -1; 4173 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4174 bytes_left = size; 4175 } else { 4176 size_t limit_left=dumpsize.rlim_cur - pos; 4177 bytes_left = limit_left >= size ? size : limit_left ; 4178 } 4179 } 4180 4181 /* 4182 * In normal conditions, single write(2) should do but 4183 * in case of socket etc. this mechanism is more portable. 4184 */ 4185 do { 4186 bytes_written = write(fd, bufp, bytes_left); 4187 if (bytes_written < 0) { 4188 if (errno == EINTR) 4189 continue; 4190 return (-1); 4191 } else if (bytes_written == 0) { /* eof */ 4192 return (-1); 4193 } 4194 bufp += bytes_written; 4195 bytes_left -= bytes_written; 4196 } while (bytes_left > 0); 4197 4198 return (0); 4199 } 4200 4201 static int write_note(struct memelfnote *men, int fd) 4202 { 4203 struct elf_note en; 4204 4205 en.n_namesz = men->namesz; 4206 en.n_type = men->type; 4207 en.n_descsz = men->datasz; 4208 4209 bswap_note(&en); 4210 4211 if (dump_write(fd, &en, sizeof(en)) != 0) 4212 return (-1); 4213 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4214 return (-1); 4215 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4216 return (-1); 4217 4218 return (0); 4219 } 4220 4221 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4222 { 4223 CPUState *cpu = env_cpu((CPUArchState *)env); 4224 TaskState *ts = (TaskState *)cpu->opaque; 4225 struct elf_thread_status *ets; 4226 4227 ets = g_malloc0(sizeof (*ets)); 4228 ets->num_notes = 1; /* only prstatus is dumped */ 4229 fill_prstatus(&ets->prstatus, ts, 0); 4230 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4231 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4232 &ets->prstatus); 4233 4234 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4235 4236 info->notes_size += note_size(&ets->notes[0]); 4237 } 4238 4239 static void init_note_info(struct elf_note_info *info) 4240 { 4241 /* Initialize the elf_note_info structure so that it is at 4242 * least safe to call free_note_info() on it. Must be 4243 * called before calling fill_note_info(). 4244 */ 4245 memset(info, 0, sizeof (*info)); 4246 QTAILQ_INIT(&info->thread_list); 4247 } 4248 4249 static int fill_note_info(struct elf_note_info *info, 4250 long signr, const CPUArchState *env) 4251 { 4252 #define NUMNOTES 3 4253 CPUState *cpu = env_cpu((CPUArchState *)env); 4254 TaskState *ts = (TaskState *)cpu->opaque; 4255 int i; 4256 4257 info->notes = g_new0(struct memelfnote, NUMNOTES); 4258 if (info->notes == NULL) 4259 return (-ENOMEM); 4260 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4261 if (info->prstatus == NULL) 4262 return (-ENOMEM); 4263 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4264 if (info->prstatus == NULL) 4265 return (-ENOMEM); 4266 4267 /* 4268 * First fill in status (and registers) of current thread 4269 * including process info & aux vector. 4270 */ 4271 fill_prstatus(info->prstatus, ts, signr); 4272 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4273 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4274 sizeof (*info->prstatus), info->prstatus); 4275 fill_psinfo(info->psinfo, ts); 4276 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4277 sizeof (*info->psinfo), info->psinfo); 4278 fill_auxv_note(&info->notes[2], ts); 4279 info->numnote = 3; 4280 4281 info->notes_size = 0; 4282 for (i = 0; i < info->numnote; i++) 4283 info->notes_size += note_size(&info->notes[i]); 4284 4285 /* read and fill status of all threads */ 4286 WITH_QEMU_LOCK_GUARD(&qemu_cpu_list_lock) { 4287 CPU_FOREACH(cpu) { 4288 if (cpu == thread_cpu) { 4289 continue; 4290 } 4291 fill_thread_info(info, cpu->env_ptr); 4292 } 4293 } 4294 4295 return (0); 4296 } 4297 4298 static void free_note_info(struct elf_note_info *info) 4299 { 4300 struct elf_thread_status *ets; 4301 4302 while (!QTAILQ_EMPTY(&info->thread_list)) { 4303 ets = QTAILQ_FIRST(&info->thread_list); 4304 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4305 g_free(ets); 4306 } 4307 4308 g_free(info->prstatus); 4309 g_free(info->psinfo); 4310 g_free(info->notes); 4311 } 4312 4313 static int write_note_info(struct elf_note_info *info, int fd) 4314 { 4315 struct elf_thread_status *ets; 4316 int i, error = 0; 4317 4318 /* write prstatus, psinfo and auxv for current thread */ 4319 for (i = 0; i < info->numnote; i++) 4320 if ((error = write_note(&info->notes[i], fd)) != 0) 4321 return (error); 4322 4323 /* write prstatus for each thread */ 4324 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4325 if ((error = write_note(&ets->notes[0], fd)) != 0) 4326 return (error); 4327 } 4328 4329 return (0); 4330 } 4331 4332 /* 4333 * Write out ELF coredump. 4334 * 4335 * See documentation of ELF object file format in: 4336 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4337 * 4338 * Coredump format in linux is following: 4339 * 4340 * 0 +----------------------+ \ 4341 * | ELF header | ET_CORE | 4342 * +----------------------+ | 4343 * | ELF program headers | |--- headers 4344 * | - NOTE section | | 4345 * | - PT_LOAD sections | | 4346 * +----------------------+ / 4347 * | NOTEs: | 4348 * | - NT_PRSTATUS | 4349 * | - NT_PRSINFO | 4350 * | - NT_AUXV | 4351 * +----------------------+ <-- aligned to target page 4352 * | Process memory dump | 4353 * : : 4354 * . . 4355 * : : 4356 * | | 4357 * +----------------------+ 4358 * 4359 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4360 * NT_PRSINFO -> struct elf_prpsinfo 4361 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4362 * 4363 * Format follows System V format as close as possible. Current 4364 * version limitations are as follows: 4365 * - no floating point registers are dumped 4366 * 4367 * Function returns 0 in case of success, negative errno otherwise. 4368 * 4369 * TODO: make this work also during runtime: it should be 4370 * possible to force coredump from running process and then 4371 * continue processing. For example qemu could set up SIGUSR2 4372 * handler (provided that target process haven't registered 4373 * handler for that) that does the dump when signal is received. 4374 */ 4375 static int elf_core_dump(int signr, const CPUArchState *env) 4376 { 4377 const CPUState *cpu = env_cpu((CPUArchState *)env); 4378 const TaskState *ts = (const TaskState *)cpu->opaque; 4379 struct vm_area_struct *vma = NULL; 4380 g_autofree char *corefile = NULL; 4381 struct elf_note_info info; 4382 struct elfhdr elf; 4383 struct elf_phdr phdr; 4384 struct rlimit dumpsize; 4385 struct mm_struct *mm = NULL; 4386 off_t offset = 0, data_offset = 0; 4387 int segs = 0; 4388 int fd = -1; 4389 4390 init_note_info(&info); 4391 4392 errno = 0; 4393 getrlimit(RLIMIT_CORE, &dumpsize); 4394 if (dumpsize.rlim_cur == 0) 4395 return 0; 4396 4397 corefile = core_dump_filename(ts); 4398 4399 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4400 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4401 return (-errno); 4402 4403 /* 4404 * Walk through target process memory mappings and 4405 * set up structure containing this information. After 4406 * this point vma_xxx functions can be used. 4407 */ 4408 if ((mm = vma_init()) == NULL) 4409 goto out; 4410 4411 walk_memory_regions(mm, vma_walker); 4412 segs = vma_get_mapping_count(mm); 4413 4414 /* 4415 * Construct valid coredump ELF header. We also 4416 * add one more segment for notes. 4417 */ 4418 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4419 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4420 goto out; 4421 4422 /* fill in the in-memory version of notes */ 4423 if (fill_note_info(&info, signr, env) < 0) 4424 goto out; 4425 4426 offset += sizeof (elf); /* elf header */ 4427 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4428 4429 /* write out notes program header */ 4430 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4431 4432 offset += info.notes_size; 4433 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4434 goto out; 4435 4436 /* 4437 * ELF specification wants data to start at page boundary so 4438 * we align it here. 4439 */ 4440 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4441 4442 /* 4443 * Write program headers for memory regions mapped in 4444 * the target process. 4445 */ 4446 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4447 (void) memset(&phdr, 0, sizeof (phdr)); 4448 4449 phdr.p_type = PT_LOAD; 4450 phdr.p_offset = offset; 4451 phdr.p_vaddr = vma->vma_start; 4452 phdr.p_paddr = 0; 4453 phdr.p_filesz = vma_dump_size(vma); 4454 offset += phdr.p_filesz; 4455 phdr.p_memsz = vma->vma_end - vma->vma_start; 4456 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4457 if (vma->vma_flags & PROT_WRITE) 4458 phdr.p_flags |= PF_W; 4459 if (vma->vma_flags & PROT_EXEC) 4460 phdr.p_flags |= PF_X; 4461 phdr.p_align = ELF_EXEC_PAGESIZE; 4462 4463 bswap_phdr(&phdr, 1); 4464 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4465 goto out; 4466 } 4467 } 4468 4469 /* 4470 * Next we write notes just after program headers. No 4471 * alignment needed here. 4472 */ 4473 if (write_note_info(&info, fd) < 0) 4474 goto out; 4475 4476 /* align data to page boundary */ 4477 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4478 goto out; 4479 4480 /* 4481 * Finally we can dump process memory into corefile as well. 4482 */ 4483 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4484 abi_ulong addr; 4485 abi_ulong end; 4486 4487 end = vma->vma_start + vma_dump_size(vma); 4488 4489 for (addr = vma->vma_start; addr < end; 4490 addr += TARGET_PAGE_SIZE) { 4491 char page[TARGET_PAGE_SIZE]; 4492 int error; 4493 4494 /* 4495 * Read in page from target process memory and 4496 * write it to coredump file. 4497 */ 4498 error = copy_from_user(page, addr, sizeof (page)); 4499 if (error != 0) { 4500 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4501 addr); 4502 errno = -error; 4503 goto out; 4504 } 4505 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4506 goto out; 4507 } 4508 } 4509 4510 out: 4511 free_note_info(&info); 4512 if (mm != NULL) 4513 vma_delete(mm); 4514 (void) close(fd); 4515 4516 if (errno != 0) 4517 return (-errno); 4518 return (0); 4519 } 4520 #endif /* USE_ELF_CORE_DUMP */ 4521 4522 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4523 { 4524 init_thread(regs, infop); 4525 } 4526