1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->uregs[16] = ARM_CPU_MODE_USR; 277 if (infop->entry & 1) { 278 regs->uregs[16] |= CPSR_T; 279 } 280 regs->uregs[15] = infop->entry & 0xfffffffe; 281 regs->uregs[13] = infop->start_stack; 282 /* FIXME - what to for failure of get_user()? */ 283 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 284 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 285 /* XXX: it seems that r0 is zeroed after ! */ 286 regs->uregs[0] = 0; 287 /* For uClinux PIC binaries. */ 288 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 289 regs->uregs[10] = infop->start_data; 290 } 291 292 #define ELF_NREG 18 293 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 294 295 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 296 { 297 (*regs)[0] = tswapreg(env->regs[0]); 298 (*regs)[1] = tswapreg(env->regs[1]); 299 (*regs)[2] = tswapreg(env->regs[2]); 300 (*regs)[3] = tswapreg(env->regs[3]); 301 (*regs)[4] = tswapreg(env->regs[4]); 302 (*regs)[5] = tswapreg(env->regs[5]); 303 (*regs)[6] = tswapreg(env->regs[6]); 304 (*regs)[7] = tswapreg(env->regs[7]); 305 (*regs)[8] = tswapreg(env->regs[8]); 306 (*regs)[9] = tswapreg(env->regs[9]); 307 (*regs)[10] = tswapreg(env->regs[10]); 308 (*regs)[11] = tswapreg(env->regs[11]); 309 (*regs)[12] = tswapreg(env->regs[12]); 310 (*regs)[13] = tswapreg(env->regs[13]); 311 (*regs)[14] = tswapreg(env->regs[14]); 312 (*regs)[15] = tswapreg(env->regs[15]); 313 314 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 315 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 316 } 317 318 #define USE_ELF_CORE_DUMP 319 #define ELF_EXEC_PAGESIZE 4096 320 321 enum 322 { 323 ARM_HWCAP_ARM_SWP = 1 << 0, 324 ARM_HWCAP_ARM_HALF = 1 << 1, 325 ARM_HWCAP_ARM_THUMB = 1 << 2, 326 ARM_HWCAP_ARM_26BIT = 1 << 3, 327 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 328 ARM_HWCAP_ARM_FPA = 1 << 5, 329 ARM_HWCAP_ARM_VFP = 1 << 6, 330 ARM_HWCAP_ARM_EDSP = 1 << 7, 331 ARM_HWCAP_ARM_JAVA = 1 << 8, 332 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 333 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 334 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 335 ARM_HWCAP_ARM_NEON = 1 << 12, 336 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 337 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 338 ARM_HWCAP_ARM_TLS = 1 << 15, 339 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 340 ARM_HWCAP_ARM_IDIVA = 1 << 17, 341 ARM_HWCAP_ARM_IDIVT = 1 << 18, 342 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 343 ARM_HWCAP_ARM_LPAE = 1 << 20, 344 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 345 }; 346 347 enum { 348 ARM_HWCAP2_ARM_AES = 1 << 0, 349 ARM_HWCAP2_ARM_PMULL = 1 << 1, 350 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 351 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 352 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 353 }; 354 355 /* The commpage only exists for 32 bit kernels */ 356 357 #define TARGET_HAS_VALIDATE_GUEST_SPACE 358 /* Return 1 if the proposed guest space is suitable for the guest. 359 * Return 0 if the proposed guest space isn't suitable, but another 360 * address space should be tried. 361 * Return -1 if there is no way the proposed guest space can be 362 * valid regardless of the base. 363 * The guest code may leave a page mapped and populate it if the 364 * address is suitable. 365 */ 366 static int validate_guest_space(unsigned long guest_base, 367 unsigned long guest_size) 368 { 369 unsigned long real_start, test_page_addr; 370 371 /* We need to check that we can force a fault on access to the 372 * commpage at 0xffff0fxx 373 */ 374 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 375 376 /* If the commpage lies within the already allocated guest space, 377 * then there is no way we can allocate it. 378 */ 379 if (test_page_addr >= guest_base 380 && test_page_addr < (guest_base + guest_size)) { 381 return -1; 382 } 383 384 /* Note it needs to be writeable to let us initialise it */ 385 real_start = (unsigned long) 386 mmap((void *)test_page_addr, qemu_host_page_size, 387 PROT_READ | PROT_WRITE, 388 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 389 390 /* If we can't map it then try another address */ 391 if (real_start == -1ul) { 392 return 0; 393 } 394 395 if (real_start != test_page_addr) { 396 /* OS didn't put the page where we asked - unmap and reject */ 397 munmap((void *)real_start, qemu_host_page_size); 398 return 0; 399 } 400 401 /* Leave the page mapped 402 * Populate it (mmap should have left it all 0'd) 403 */ 404 405 /* Kernel helper versions */ 406 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 407 408 /* Now it's populated make it RO */ 409 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 410 perror("Protecting guest commpage"); 411 exit(-1); 412 } 413 414 return 1; /* All good */ 415 } 416 417 #define ELF_HWCAP get_elf_hwcap() 418 #define ELF_HWCAP2 get_elf_hwcap2() 419 420 static uint32_t get_elf_hwcap(void) 421 { 422 ARMCPU *cpu = ARM_CPU(thread_cpu); 423 uint32_t hwcaps = 0; 424 425 hwcaps |= ARM_HWCAP_ARM_SWP; 426 hwcaps |= ARM_HWCAP_ARM_HALF; 427 hwcaps |= ARM_HWCAP_ARM_THUMB; 428 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 429 430 /* probe for the extra features */ 431 #define GET_FEATURE(feat, hwcap) \ 432 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 433 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 434 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 435 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 436 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 437 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 438 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 439 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 440 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 441 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 442 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 443 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 444 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 445 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 446 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 447 * to our VFP_FP16 feature bit. 448 */ 449 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 450 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 451 452 return hwcaps; 453 } 454 455 static uint32_t get_elf_hwcap2(void) 456 { 457 ARMCPU *cpu = ARM_CPU(thread_cpu); 458 uint32_t hwcaps = 0; 459 460 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 461 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 462 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 463 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 464 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 465 return hwcaps; 466 } 467 468 #undef GET_FEATURE 469 470 #else 471 /* 64 bit ARM definitions */ 472 #define ELF_START_MMAP 0x80000000 473 474 #define ELF_ARCH EM_AARCH64 475 #define ELF_CLASS ELFCLASS64 476 #define ELF_PLATFORM "aarch64" 477 478 static inline void init_thread(struct target_pt_regs *regs, 479 struct image_info *infop) 480 { 481 abi_long stack = infop->start_stack; 482 memset(regs, 0, sizeof(*regs)); 483 484 regs->pc = infop->entry & ~0x3ULL; 485 regs->sp = stack; 486 } 487 488 #define ELF_NREG 34 489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 490 491 static void elf_core_copy_regs(target_elf_gregset_t *regs, 492 const CPUARMState *env) 493 { 494 int i; 495 496 for (i = 0; i < 32; i++) { 497 (*regs)[i] = tswapreg(env->xregs[i]); 498 } 499 (*regs)[32] = tswapreg(env->pc); 500 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 501 } 502 503 #define USE_ELF_CORE_DUMP 504 #define ELF_EXEC_PAGESIZE 4096 505 506 enum { 507 ARM_HWCAP_A64_FP = 1 << 0, 508 ARM_HWCAP_A64_ASIMD = 1 << 1, 509 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 510 ARM_HWCAP_A64_AES = 1 << 3, 511 ARM_HWCAP_A64_PMULL = 1 << 4, 512 ARM_HWCAP_A64_SHA1 = 1 << 5, 513 ARM_HWCAP_A64_SHA2 = 1 << 6, 514 ARM_HWCAP_A64_CRC32 = 1 << 7, 515 ARM_HWCAP_A64_ATOMICS = 1 << 8, 516 ARM_HWCAP_A64_FPHP = 1 << 9, 517 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 518 ARM_HWCAP_A64_CPUID = 1 << 11, 519 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 520 ARM_HWCAP_A64_JSCVT = 1 << 13, 521 ARM_HWCAP_A64_FCMA = 1 << 14, 522 ARM_HWCAP_A64_LRCPC = 1 << 15, 523 ARM_HWCAP_A64_DCPOP = 1 << 16, 524 ARM_HWCAP_A64_SHA3 = 1 << 17, 525 ARM_HWCAP_A64_SM3 = 1 << 18, 526 ARM_HWCAP_A64_SM4 = 1 << 19, 527 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 528 ARM_HWCAP_A64_SHA512 = 1 << 21, 529 ARM_HWCAP_A64_SVE = 1 << 22, 530 }; 531 532 #define ELF_HWCAP get_elf_hwcap() 533 534 static uint32_t get_elf_hwcap(void) 535 { 536 ARMCPU *cpu = ARM_CPU(thread_cpu); 537 uint32_t hwcaps = 0; 538 539 hwcaps |= ARM_HWCAP_A64_FP; 540 hwcaps |= ARM_HWCAP_A64_ASIMD; 541 542 /* probe for the extra features */ 543 #define GET_FEATURE(feat, hwcap) \ 544 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 545 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 546 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 547 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 548 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 549 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 550 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 551 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 552 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 553 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 554 GET_FEATURE(ARM_FEATURE_V8_FP16, 555 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 556 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 557 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 558 #undef GET_FEATURE 559 560 return hwcaps; 561 } 562 563 #endif /* not TARGET_AARCH64 */ 564 #endif /* TARGET_ARM */ 565 566 #ifdef TARGET_UNICORE32 567 568 #define ELF_START_MMAP 0x80000000 569 570 #define ELF_CLASS ELFCLASS32 571 #define ELF_DATA ELFDATA2LSB 572 #define ELF_ARCH EM_UNICORE32 573 574 static inline void init_thread(struct target_pt_regs *regs, 575 struct image_info *infop) 576 { 577 abi_long stack = infop->start_stack; 578 memset(regs, 0, sizeof(*regs)); 579 regs->UC32_REG_asr = 0x10; 580 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 581 regs->UC32_REG_sp = infop->start_stack; 582 /* FIXME - what to for failure of get_user()? */ 583 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 584 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 585 /* XXX: it seems that r0 is zeroed after ! */ 586 regs->UC32_REG_00 = 0; 587 } 588 589 #define ELF_NREG 34 590 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 591 592 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 593 { 594 (*regs)[0] = env->regs[0]; 595 (*regs)[1] = env->regs[1]; 596 (*regs)[2] = env->regs[2]; 597 (*regs)[3] = env->regs[3]; 598 (*regs)[4] = env->regs[4]; 599 (*regs)[5] = env->regs[5]; 600 (*regs)[6] = env->regs[6]; 601 (*regs)[7] = env->regs[7]; 602 (*regs)[8] = env->regs[8]; 603 (*regs)[9] = env->regs[9]; 604 (*regs)[10] = env->regs[10]; 605 (*regs)[11] = env->regs[11]; 606 (*regs)[12] = env->regs[12]; 607 (*regs)[13] = env->regs[13]; 608 (*regs)[14] = env->regs[14]; 609 (*regs)[15] = env->regs[15]; 610 (*regs)[16] = env->regs[16]; 611 (*regs)[17] = env->regs[17]; 612 (*regs)[18] = env->regs[18]; 613 (*regs)[19] = env->regs[19]; 614 (*regs)[20] = env->regs[20]; 615 (*regs)[21] = env->regs[21]; 616 (*regs)[22] = env->regs[22]; 617 (*regs)[23] = env->regs[23]; 618 (*regs)[24] = env->regs[24]; 619 (*regs)[25] = env->regs[25]; 620 (*regs)[26] = env->regs[26]; 621 (*regs)[27] = env->regs[27]; 622 (*regs)[28] = env->regs[28]; 623 (*regs)[29] = env->regs[29]; 624 (*regs)[30] = env->regs[30]; 625 (*regs)[31] = env->regs[31]; 626 627 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 628 (*regs)[33] = env->regs[0]; /* XXX */ 629 } 630 631 #define USE_ELF_CORE_DUMP 632 #define ELF_EXEC_PAGESIZE 4096 633 634 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 635 636 #endif 637 638 #ifdef TARGET_SPARC 639 #ifdef TARGET_SPARC64 640 641 #define ELF_START_MMAP 0x80000000 642 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 643 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 644 #ifndef TARGET_ABI32 645 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 646 #else 647 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 648 #endif 649 650 #define ELF_CLASS ELFCLASS64 651 #define ELF_ARCH EM_SPARCV9 652 653 #define STACK_BIAS 2047 654 655 static inline void init_thread(struct target_pt_regs *regs, 656 struct image_info *infop) 657 { 658 #ifndef TARGET_ABI32 659 regs->tstate = 0; 660 #endif 661 regs->pc = infop->entry; 662 regs->npc = regs->pc + 4; 663 regs->y = 0; 664 #ifdef TARGET_ABI32 665 regs->u_regs[14] = infop->start_stack - 16 * 4; 666 #else 667 if (personality(infop->personality) == PER_LINUX32) 668 regs->u_regs[14] = infop->start_stack - 16 * 4; 669 else 670 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 671 #endif 672 } 673 674 #else 675 #define ELF_START_MMAP 0x80000000 676 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 677 | HWCAP_SPARC_MULDIV) 678 679 #define ELF_CLASS ELFCLASS32 680 #define ELF_ARCH EM_SPARC 681 682 static inline void init_thread(struct target_pt_regs *regs, 683 struct image_info *infop) 684 { 685 regs->psr = 0; 686 regs->pc = infop->entry; 687 regs->npc = regs->pc + 4; 688 regs->y = 0; 689 regs->u_regs[14] = infop->start_stack - 16 * 4; 690 } 691 692 #endif 693 #endif 694 695 #ifdef TARGET_PPC 696 697 #define ELF_MACHINE PPC_ELF_MACHINE 698 #define ELF_START_MMAP 0x80000000 699 700 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 701 702 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 703 704 #define ELF_CLASS ELFCLASS64 705 706 #else 707 708 #define ELF_CLASS ELFCLASS32 709 710 #endif 711 712 #define ELF_ARCH EM_PPC 713 714 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 715 See arch/powerpc/include/asm/cputable.h. */ 716 enum { 717 QEMU_PPC_FEATURE_32 = 0x80000000, 718 QEMU_PPC_FEATURE_64 = 0x40000000, 719 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 720 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 721 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 722 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 723 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 724 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 725 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 726 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 727 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 728 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 729 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 730 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 731 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 732 QEMU_PPC_FEATURE_CELL = 0x00010000, 733 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 734 QEMU_PPC_FEATURE_SMT = 0x00004000, 735 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 736 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 737 QEMU_PPC_FEATURE_PA6T = 0x00000800, 738 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 739 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 740 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 741 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 742 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 743 744 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 745 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 746 747 /* Feature definitions in AT_HWCAP2. */ 748 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 749 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 750 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 751 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 752 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 753 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 754 }; 755 756 #define ELF_HWCAP get_elf_hwcap() 757 758 static uint32_t get_elf_hwcap(void) 759 { 760 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 761 uint32_t features = 0; 762 763 /* We don't have to be terribly complete here; the high points are 764 Altivec/FP/SPE support. Anything else is just a bonus. */ 765 #define GET_FEATURE(flag, feature) \ 766 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 767 #define GET_FEATURE2(flags, feature) \ 768 do { \ 769 if ((cpu->env.insns_flags2 & flags) == flags) { \ 770 features |= feature; \ 771 } \ 772 } while (0) 773 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 774 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 775 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 776 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 777 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 778 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 779 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 780 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 781 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 782 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 783 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 784 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 785 QEMU_PPC_FEATURE_ARCH_2_06); 786 #undef GET_FEATURE 787 #undef GET_FEATURE2 788 789 return features; 790 } 791 792 #define ELF_HWCAP2 get_elf_hwcap2() 793 794 static uint32_t get_elf_hwcap2(void) 795 { 796 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 797 uint32_t features = 0; 798 799 #define GET_FEATURE(flag, feature) \ 800 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 801 #define GET_FEATURE2(flag, feature) \ 802 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 803 804 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 805 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 806 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 807 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 808 809 #undef GET_FEATURE 810 #undef GET_FEATURE2 811 812 return features; 813 } 814 815 /* 816 * The requirements here are: 817 * - keep the final alignment of sp (sp & 0xf) 818 * - make sure the 32-bit value at the first 16 byte aligned position of 819 * AUXV is greater than 16 for glibc compatibility. 820 * AT_IGNOREPPC is used for that. 821 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 822 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 823 */ 824 #define DLINFO_ARCH_ITEMS 5 825 #define ARCH_DLINFO \ 826 do { \ 827 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 828 /* \ 829 * Handle glibc compatibility: these magic entries must \ 830 * be at the lowest addresses in the final auxv. \ 831 */ \ 832 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 833 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 834 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 835 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 836 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 837 } while (0) 838 839 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 840 { 841 _regs->gpr[1] = infop->start_stack; 842 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 843 if (get_ppc64_abi(infop) < 2) { 844 uint64_t val; 845 get_user_u64(val, infop->entry + 8); 846 _regs->gpr[2] = val + infop->load_bias; 847 get_user_u64(val, infop->entry); 848 infop->entry = val + infop->load_bias; 849 } else { 850 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 851 } 852 #endif 853 _regs->nip = infop->entry; 854 } 855 856 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 857 #define ELF_NREG 48 858 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 859 860 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 861 { 862 int i; 863 target_ulong ccr = 0; 864 865 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 866 (*regs)[i] = tswapreg(env->gpr[i]); 867 } 868 869 (*regs)[32] = tswapreg(env->nip); 870 (*regs)[33] = tswapreg(env->msr); 871 (*regs)[35] = tswapreg(env->ctr); 872 (*regs)[36] = tswapreg(env->lr); 873 (*regs)[37] = tswapreg(env->xer); 874 875 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 876 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 877 } 878 (*regs)[38] = tswapreg(ccr); 879 } 880 881 #define USE_ELF_CORE_DUMP 882 #define ELF_EXEC_PAGESIZE 4096 883 884 #endif 885 886 #ifdef TARGET_MIPS 887 888 #define ELF_START_MMAP 0x80000000 889 890 #ifdef TARGET_MIPS64 891 #define ELF_CLASS ELFCLASS64 892 #else 893 #define ELF_CLASS ELFCLASS32 894 #endif 895 #define ELF_ARCH EM_MIPS 896 897 static inline void init_thread(struct target_pt_regs *regs, 898 struct image_info *infop) 899 { 900 regs->cp0_status = 2 << CP0St_KSU; 901 regs->cp0_epc = infop->entry; 902 regs->regs[29] = infop->start_stack; 903 } 904 905 /* See linux kernel: arch/mips/include/asm/elf.h. */ 906 #define ELF_NREG 45 907 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 908 909 /* See linux kernel: arch/mips/include/asm/reg.h. */ 910 enum { 911 #ifdef TARGET_MIPS64 912 TARGET_EF_R0 = 0, 913 #else 914 TARGET_EF_R0 = 6, 915 #endif 916 TARGET_EF_R26 = TARGET_EF_R0 + 26, 917 TARGET_EF_R27 = TARGET_EF_R0 + 27, 918 TARGET_EF_LO = TARGET_EF_R0 + 32, 919 TARGET_EF_HI = TARGET_EF_R0 + 33, 920 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 921 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 922 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 923 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 924 }; 925 926 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 927 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 928 { 929 int i; 930 931 for (i = 0; i < TARGET_EF_R0; i++) { 932 (*regs)[i] = 0; 933 } 934 (*regs)[TARGET_EF_R0] = 0; 935 936 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 937 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 938 } 939 940 (*regs)[TARGET_EF_R26] = 0; 941 (*regs)[TARGET_EF_R27] = 0; 942 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 943 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 944 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 945 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 946 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 947 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 948 } 949 950 #define USE_ELF_CORE_DUMP 951 #define ELF_EXEC_PAGESIZE 4096 952 953 #endif /* TARGET_MIPS */ 954 955 #ifdef TARGET_MICROBLAZE 956 957 #define ELF_START_MMAP 0x80000000 958 959 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 960 961 #define ELF_CLASS ELFCLASS32 962 #define ELF_ARCH EM_MICROBLAZE 963 964 static inline void init_thread(struct target_pt_regs *regs, 965 struct image_info *infop) 966 { 967 regs->pc = infop->entry; 968 regs->r1 = infop->start_stack; 969 970 } 971 972 #define ELF_EXEC_PAGESIZE 4096 973 974 #define USE_ELF_CORE_DUMP 975 #define ELF_NREG 38 976 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 977 978 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 979 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 980 { 981 int i, pos = 0; 982 983 for (i = 0; i < 32; i++) { 984 (*regs)[pos++] = tswapreg(env->regs[i]); 985 } 986 987 for (i = 0; i < 6; i++) { 988 (*regs)[pos++] = tswapreg(env->sregs[i]); 989 } 990 } 991 992 #endif /* TARGET_MICROBLAZE */ 993 994 #ifdef TARGET_NIOS2 995 996 #define ELF_START_MMAP 0x80000000 997 998 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 999 1000 #define ELF_CLASS ELFCLASS32 1001 #define ELF_ARCH EM_ALTERA_NIOS2 1002 1003 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1004 { 1005 regs->ea = infop->entry; 1006 regs->sp = infop->start_stack; 1007 regs->estatus = 0x3; 1008 } 1009 1010 #define ELF_EXEC_PAGESIZE 4096 1011 1012 #define USE_ELF_CORE_DUMP 1013 #define ELF_NREG 49 1014 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1015 1016 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1017 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1018 const CPUNios2State *env) 1019 { 1020 int i; 1021 1022 (*regs)[0] = -1; 1023 for (i = 1; i < 8; i++) /* r0-r7 */ 1024 (*regs)[i] = tswapreg(env->regs[i + 7]); 1025 1026 for (i = 8; i < 16; i++) /* r8-r15 */ 1027 (*regs)[i] = tswapreg(env->regs[i - 8]); 1028 1029 for (i = 16; i < 24; i++) /* r16-r23 */ 1030 (*regs)[i] = tswapreg(env->regs[i + 7]); 1031 (*regs)[24] = -1; /* R_ET */ 1032 (*regs)[25] = -1; /* R_BT */ 1033 (*regs)[26] = tswapreg(env->regs[R_GP]); 1034 (*regs)[27] = tswapreg(env->regs[R_SP]); 1035 (*regs)[28] = tswapreg(env->regs[R_FP]); 1036 (*regs)[29] = tswapreg(env->regs[R_EA]); 1037 (*regs)[30] = -1; /* R_SSTATUS */ 1038 (*regs)[31] = tswapreg(env->regs[R_RA]); 1039 1040 (*regs)[32] = tswapreg(env->regs[R_PC]); 1041 1042 (*regs)[33] = -1; /* R_STATUS */ 1043 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1044 1045 for (i = 35; i < 49; i++) /* ... */ 1046 (*regs)[i] = -1; 1047 } 1048 1049 #endif /* TARGET_NIOS2 */ 1050 1051 #ifdef TARGET_OPENRISC 1052 1053 #define ELF_START_MMAP 0x08000000 1054 1055 #define ELF_ARCH EM_OPENRISC 1056 #define ELF_CLASS ELFCLASS32 1057 #define ELF_DATA ELFDATA2MSB 1058 1059 static inline void init_thread(struct target_pt_regs *regs, 1060 struct image_info *infop) 1061 { 1062 regs->pc = infop->entry; 1063 regs->gpr[1] = infop->start_stack; 1064 } 1065 1066 #define USE_ELF_CORE_DUMP 1067 #define ELF_EXEC_PAGESIZE 8192 1068 1069 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1070 #define ELF_NREG 34 /* gprs and pc, sr */ 1071 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1072 1073 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1074 const CPUOpenRISCState *env) 1075 { 1076 int i; 1077 1078 for (i = 0; i < 32; i++) { 1079 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1080 } 1081 (*regs)[32] = tswapreg(env->pc); 1082 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1083 } 1084 #define ELF_HWCAP 0 1085 #define ELF_PLATFORM NULL 1086 1087 #endif /* TARGET_OPENRISC */ 1088 1089 #ifdef TARGET_SH4 1090 1091 #define ELF_START_MMAP 0x80000000 1092 1093 #define ELF_CLASS ELFCLASS32 1094 #define ELF_ARCH EM_SH 1095 1096 static inline void init_thread(struct target_pt_regs *regs, 1097 struct image_info *infop) 1098 { 1099 /* Check other registers XXXXX */ 1100 regs->pc = infop->entry; 1101 regs->regs[15] = infop->start_stack; 1102 } 1103 1104 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1105 #define ELF_NREG 23 1106 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1107 1108 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1109 enum { 1110 TARGET_REG_PC = 16, 1111 TARGET_REG_PR = 17, 1112 TARGET_REG_SR = 18, 1113 TARGET_REG_GBR = 19, 1114 TARGET_REG_MACH = 20, 1115 TARGET_REG_MACL = 21, 1116 TARGET_REG_SYSCALL = 22 1117 }; 1118 1119 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1120 const CPUSH4State *env) 1121 { 1122 int i; 1123 1124 for (i = 0; i < 16; i++) { 1125 (*regs)[i] = tswapreg(env->gregs[i]); 1126 } 1127 1128 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1129 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1130 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1131 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1132 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1133 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1134 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1135 } 1136 1137 #define USE_ELF_CORE_DUMP 1138 #define ELF_EXEC_PAGESIZE 4096 1139 1140 enum { 1141 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1142 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1143 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1144 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1145 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1146 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1147 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1148 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1149 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1150 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1151 }; 1152 1153 #define ELF_HWCAP get_elf_hwcap() 1154 1155 static uint32_t get_elf_hwcap(void) 1156 { 1157 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1158 uint32_t hwcap = 0; 1159 1160 hwcap |= SH_CPU_HAS_FPU; 1161 1162 if (cpu->env.features & SH_FEATURE_SH4A) { 1163 hwcap |= SH_CPU_HAS_LLSC; 1164 } 1165 1166 return hwcap; 1167 } 1168 1169 #endif 1170 1171 #ifdef TARGET_CRIS 1172 1173 #define ELF_START_MMAP 0x80000000 1174 1175 #define ELF_CLASS ELFCLASS32 1176 #define ELF_ARCH EM_CRIS 1177 1178 static inline void init_thread(struct target_pt_regs *regs, 1179 struct image_info *infop) 1180 { 1181 regs->erp = infop->entry; 1182 } 1183 1184 #define ELF_EXEC_PAGESIZE 8192 1185 1186 #endif 1187 1188 #ifdef TARGET_M68K 1189 1190 #define ELF_START_MMAP 0x80000000 1191 1192 #define ELF_CLASS ELFCLASS32 1193 #define ELF_ARCH EM_68K 1194 1195 /* ??? Does this need to do anything? 1196 #define ELF_PLAT_INIT(_r) */ 1197 1198 static inline void init_thread(struct target_pt_regs *regs, 1199 struct image_info *infop) 1200 { 1201 regs->usp = infop->start_stack; 1202 regs->sr = 0; 1203 regs->pc = infop->entry; 1204 } 1205 1206 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1207 #define ELF_NREG 20 1208 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1209 1210 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1211 { 1212 (*regs)[0] = tswapreg(env->dregs[1]); 1213 (*regs)[1] = tswapreg(env->dregs[2]); 1214 (*regs)[2] = tswapreg(env->dregs[3]); 1215 (*regs)[3] = tswapreg(env->dregs[4]); 1216 (*regs)[4] = tswapreg(env->dregs[5]); 1217 (*regs)[5] = tswapreg(env->dregs[6]); 1218 (*regs)[6] = tswapreg(env->dregs[7]); 1219 (*regs)[7] = tswapreg(env->aregs[0]); 1220 (*regs)[8] = tswapreg(env->aregs[1]); 1221 (*regs)[9] = tswapreg(env->aregs[2]); 1222 (*regs)[10] = tswapreg(env->aregs[3]); 1223 (*regs)[11] = tswapreg(env->aregs[4]); 1224 (*regs)[12] = tswapreg(env->aregs[5]); 1225 (*regs)[13] = tswapreg(env->aregs[6]); 1226 (*regs)[14] = tswapreg(env->dregs[0]); 1227 (*regs)[15] = tswapreg(env->aregs[7]); 1228 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1229 (*regs)[17] = tswapreg(env->sr); 1230 (*regs)[18] = tswapreg(env->pc); 1231 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1232 } 1233 1234 #define USE_ELF_CORE_DUMP 1235 #define ELF_EXEC_PAGESIZE 8192 1236 1237 #endif 1238 1239 #ifdef TARGET_ALPHA 1240 1241 #define ELF_START_MMAP (0x30000000000ULL) 1242 1243 #define ELF_CLASS ELFCLASS64 1244 #define ELF_ARCH EM_ALPHA 1245 1246 static inline void init_thread(struct target_pt_regs *regs, 1247 struct image_info *infop) 1248 { 1249 regs->pc = infop->entry; 1250 regs->ps = 8; 1251 regs->usp = infop->start_stack; 1252 } 1253 1254 #define ELF_EXEC_PAGESIZE 8192 1255 1256 #endif /* TARGET_ALPHA */ 1257 1258 #ifdef TARGET_S390X 1259 1260 #define ELF_START_MMAP (0x20000000000ULL) 1261 1262 #define ELF_CLASS ELFCLASS64 1263 #define ELF_DATA ELFDATA2MSB 1264 #define ELF_ARCH EM_S390 1265 1266 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1267 { 1268 regs->psw.addr = infop->entry; 1269 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1270 regs->gprs[15] = infop->start_stack; 1271 } 1272 1273 #endif /* TARGET_S390X */ 1274 1275 #ifdef TARGET_TILEGX 1276 1277 /* 42 bits real used address, a half for user mode */ 1278 #define ELF_START_MMAP (0x00000020000000000ULL) 1279 1280 #define elf_check_arch(x) ((x) == EM_TILEGX) 1281 1282 #define ELF_CLASS ELFCLASS64 1283 #define ELF_DATA ELFDATA2LSB 1284 #define ELF_ARCH EM_TILEGX 1285 1286 static inline void init_thread(struct target_pt_regs *regs, 1287 struct image_info *infop) 1288 { 1289 regs->pc = infop->entry; 1290 regs->sp = infop->start_stack; 1291 1292 } 1293 1294 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1295 1296 #endif /* TARGET_TILEGX */ 1297 1298 #ifdef TARGET_HPPA 1299 1300 #define ELF_START_MMAP 0x80000000 1301 #define ELF_CLASS ELFCLASS32 1302 #define ELF_ARCH EM_PARISC 1303 #define ELF_PLATFORM "PARISC" 1304 #define STACK_GROWS_DOWN 0 1305 #define STACK_ALIGNMENT 64 1306 1307 static inline void init_thread(struct target_pt_regs *regs, 1308 struct image_info *infop) 1309 { 1310 regs->iaoq[0] = infop->entry; 1311 regs->iaoq[1] = infop->entry + 4; 1312 regs->gr[23] = 0; 1313 regs->gr[24] = infop->arg_start; 1314 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1315 /* The top-of-stack contains a linkage buffer. */ 1316 regs->gr[30] = infop->start_stack + 64; 1317 regs->gr[31] = infop->entry; 1318 } 1319 1320 #endif /* TARGET_HPPA */ 1321 1322 #ifndef ELF_PLATFORM 1323 #define ELF_PLATFORM (NULL) 1324 #endif 1325 1326 #ifndef ELF_MACHINE 1327 #define ELF_MACHINE ELF_ARCH 1328 #endif 1329 1330 #ifndef elf_check_arch 1331 #define elf_check_arch(x) ((x) == ELF_ARCH) 1332 #endif 1333 1334 #ifndef ELF_HWCAP 1335 #define ELF_HWCAP 0 1336 #endif 1337 1338 #ifndef STACK_GROWS_DOWN 1339 #define STACK_GROWS_DOWN 1 1340 #endif 1341 1342 #ifndef STACK_ALIGNMENT 1343 #define STACK_ALIGNMENT 16 1344 #endif 1345 1346 #ifdef TARGET_ABI32 1347 #undef ELF_CLASS 1348 #define ELF_CLASS ELFCLASS32 1349 #undef bswaptls 1350 #define bswaptls(ptr) bswap32s(ptr) 1351 #endif 1352 1353 #include "elf.h" 1354 1355 struct exec 1356 { 1357 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1358 unsigned int a_text; /* length of text, in bytes */ 1359 unsigned int a_data; /* length of data, in bytes */ 1360 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1361 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1362 unsigned int a_entry; /* start address */ 1363 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1364 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1365 }; 1366 1367 1368 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1369 #define OMAGIC 0407 1370 #define NMAGIC 0410 1371 #define ZMAGIC 0413 1372 #define QMAGIC 0314 1373 1374 /* Necessary parameters */ 1375 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1376 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1377 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1378 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1379 1380 #define DLINFO_ITEMS 15 1381 1382 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1383 { 1384 memcpy(to, from, n); 1385 } 1386 1387 #ifdef BSWAP_NEEDED 1388 static void bswap_ehdr(struct elfhdr *ehdr) 1389 { 1390 bswap16s(&ehdr->e_type); /* Object file type */ 1391 bswap16s(&ehdr->e_machine); /* Architecture */ 1392 bswap32s(&ehdr->e_version); /* Object file version */ 1393 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1394 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1395 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1396 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1397 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1398 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1399 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1400 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1401 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1402 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1403 } 1404 1405 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1406 { 1407 int i; 1408 for (i = 0; i < phnum; ++i, ++phdr) { 1409 bswap32s(&phdr->p_type); /* Segment type */ 1410 bswap32s(&phdr->p_flags); /* Segment flags */ 1411 bswaptls(&phdr->p_offset); /* Segment file offset */ 1412 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1413 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1414 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1415 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1416 bswaptls(&phdr->p_align); /* Segment alignment */ 1417 } 1418 } 1419 1420 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1421 { 1422 int i; 1423 for (i = 0; i < shnum; ++i, ++shdr) { 1424 bswap32s(&shdr->sh_name); 1425 bswap32s(&shdr->sh_type); 1426 bswaptls(&shdr->sh_flags); 1427 bswaptls(&shdr->sh_addr); 1428 bswaptls(&shdr->sh_offset); 1429 bswaptls(&shdr->sh_size); 1430 bswap32s(&shdr->sh_link); 1431 bswap32s(&shdr->sh_info); 1432 bswaptls(&shdr->sh_addralign); 1433 bswaptls(&shdr->sh_entsize); 1434 } 1435 } 1436 1437 static void bswap_sym(struct elf_sym *sym) 1438 { 1439 bswap32s(&sym->st_name); 1440 bswaptls(&sym->st_value); 1441 bswaptls(&sym->st_size); 1442 bswap16s(&sym->st_shndx); 1443 } 1444 #else 1445 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1446 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1447 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1448 static inline void bswap_sym(struct elf_sym *sym) { } 1449 #endif 1450 1451 #ifdef USE_ELF_CORE_DUMP 1452 static int elf_core_dump(int, const CPUArchState *); 1453 #endif /* USE_ELF_CORE_DUMP */ 1454 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1455 1456 /* Verify the portions of EHDR within E_IDENT for the target. 1457 This can be performed before bswapping the entire header. */ 1458 static bool elf_check_ident(struct elfhdr *ehdr) 1459 { 1460 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1461 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1462 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1463 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1464 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1465 && ehdr->e_ident[EI_DATA] == ELF_DATA 1466 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1467 } 1468 1469 /* Verify the portions of EHDR outside of E_IDENT for the target. 1470 This has to wait until after bswapping the header. */ 1471 static bool elf_check_ehdr(struct elfhdr *ehdr) 1472 { 1473 return (elf_check_arch(ehdr->e_machine) 1474 && ehdr->e_ehsize == sizeof(struct elfhdr) 1475 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1476 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1477 } 1478 1479 /* 1480 * 'copy_elf_strings()' copies argument/envelope strings from user 1481 * memory to free pages in kernel mem. These are in a format ready 1482 * to be put directly into the top of new user memory. 1483 * 1484 */ 1485 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1486 abi_ulong p, abi_ulong stack_limit) 1487 { 1488 char *tmp; 1489 int len, i; 1490 abi_ulong top = p; 1491 1492 if (!p) { 1493 return 0; /* bullet-proofing */ 1494 } 1495 1496 if (STACK_GROWS_DOWN) { 1497 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1498 for (i = argc - 1; i >= 0; --i) { 1499 tmp = argv[i]; 1500 if (!tmp) { 1501 fprintf(stderr, "VFS: argc is wrong"); 1502 exit(-1); 1503 } 1504 len = strlen(tmp) + 1; 1505 tmp += len; 1506 1507 if (len > (p - stack_limit)) { 1508 return 0; 1509 } 1510 while (len) { 1511 int bytes_to_copy = (len > offset) ? offset : len; 1512 tmp -= bytes_to_copy; 1513 p -= bytes_to_copy; 1514 offset -= bytes_to_copy; 1515 len -= bytes_to_copy; 1516 1517 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1518 1519 if (offset == 0) { 1520 memcpy_to_target(p, scratch, top - p); 1521 top = p; 1522 offset = TARGET_PAGE_SIZE; 1523 } 1524 } 1525 } 1526 if (p != top) { 1527 memcpy_to_target(p, scratch + offset, top - p); 1528 } 1529 } else { 1530 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1531 for (i = 0; i < argc; ++i) { 1532 tmp = argv[i]; 1533 if (!tmp) { 1534 fprintf(stderr, "VFS: argc is wrong"); 1535 exit(-1); 1536 } 1537 len = strlen(tmp) + 1; 1538 if (len > (stack_limit - p)) { 1539 return 0; 1540 } 1541 while (len) { 1542 int bytes_to_copy = (len > remaining) ? remaining : len; 1543 1544 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1545 1546 tmp += bytes_to_copy; 1547 remaining -= bytes_to_copy; 1548 p += bytes_to_copy; 1549 len -= bytes_to_copy; 1550 1551 if (remaining == 0) { 1552 memcpy_to_target(top, scratch, p - top); 1553 top = p; 1554 remaining = TARGET_PAGE_SIZE; 1555 } 1556 } 1557 } 1558 if (p != top) { 1559 memcpy_to_target(top, scratch, p - top); 1560 } 1561 } 1562 1563 return p; 1564 } 1565 1566 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1567 * argument/environment space. Newer kernels (>2.6.33) allow more, 1568 * dependent on stack size, but guarantee at least 32 pages for 1569 * backwards compatibility. 1570 */ 1571 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1572 1573 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1574 struct image_info *info) 1575 { 1576 abi_ulong size, error, guard; 1577 1578 size = guest_stack_size; 1579 if (size < STACK_LOWER_LIMIT) { 1580 size = STACK_LOWER_LIMIT; 1581 } 1582 guard = TARGET_PAGE_SIZE; 1583 if (guard < qemu_real_host_page_size) { 1584 guard = qemu_real_host_page_size; 1585 } 1586 1587 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1588 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1589 if (error == -1) { 1590 perror("mmap stack"); 1591 exit(-1); 1592 } 1593 1594 /* We reserve one extra page at the top of the stack as guard. */ 1595 if (STACK_GROWS_DOWN) { 1596 target_mprotect(error, guard, PROT_NONE); 1597 info->stack_limit = error + guard; 1598 return info->stack_limit + size - sizeof(void *); 1599 } else { 1600 target_mprotect(error + size, guard, PROT_NONE); 1601 info->stack_limit = error + size; 1602 return error; 1603 } 1604 } 1605 1606 /* Map and zero the bss. We need to explicitly zero any fractional pages 1607 after the data section (i.e. bss). */ 1608 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1609 { 1610 uintptr_t host_start, host_map_start, host_end; 1611 1612 last_bss = TARGET_PAGE_ALIGN(last_bss); 1613 1614 /* ??? There is confusion between qemu_real_host_page_size and 1615 qemu_host_page_size here and elsewhere in target_mmap, which 1616 may lead to the end of the data section mapping from the file 1617 not being mapped. At least there was an explicit test and 1618 comment for that here, suggesting that "the file size must 1619 be known". The comment probably pre-dates the introduction 1620 of the fstat system call in target_mmap which does in fact 1621 find out the size. What isn't clear is if the workaround 1622 here is still actually needed. For now, continue with it, 1623 but merge it with the "normal" mmap that would allocate the bss. */ 1624 1625 host_start = (uintptr_t) g2h(elf_bss); 1626 host_end = (uintptr_t) g2h(last_bss); 1627 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1628 1629 if (host_map_start < host_end) { 1630 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1631 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1632 if (p == MAP_FAILED) { 1633 perror("cannot mmap brk"); 1634 exit(-1); 1635 } 1636 } 1637 1638 /* Ensure that the bss page(s) are valid */ 1639 if ((page_get_flags(last_bss-1) & prot) != prot) { 1640 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1641 } 1642 1643 if (host_start < host_map_start) { 1644 memset((void *)host_start, 0, host_map_start - host_start); 1645 } 1646 } 1647 1648 #ifdef CONFIG_USE_FDPIC 1649 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1650 { 1651 uint16_t n; 1652 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1653 1654 /* elf32_fdpic_loadseg */ 1655 n = info->nsegs; 1656 while (n--) { 1657 sp -= 12; 1658 put_user_u32(loadsegs[n].addr, sp+0); 1659 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1660 put_user_u32(loadsegs[n].p_memsz, sp+8); 1661 } 1662 1663 /* elf32_fdpic_loadmap */ 1664 sp -= 4; 1665 put_user_u16(0, sp+0); /* version */ 1666 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1667 1668 info->personality = PER_LINUX_FDPIC; 1669 info->loadmap_addr = sp; 1670 1671 return sp; 1672 } 1673 #endif 1674 1675 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1676 struct elfhdr *exec, 1677 struct image_info *info, 1678 struct image_info *interp_info) 1679 { 1680 abi_ulong sp; 1681 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1682 int size; 1683 int i; 1684 abi_ulong u_rand_bytes; 1685 uint8_t k_rand_bytes[16]; 1686 abi_ulong u_platform; 1687 const char *k_platform; 1688 const int n = sizeof(elf_addr_t); 1689 1690 sp = p; 1691 1692 #ifdef CONFIG_USE_FDPIC 1693 /* Needs to be before we load the env/argc/... */ 1694 if (elf_is_fdpic(exec)) { 1695 /* Need 4 byte alignment for these structs */ 1696 sp &= ~3; 1697 sp = loader_build_fdpic_loadmap(info, sp); 1698 info->other_info = interp_info; 1699 if (interp_info) { 1700 interp_info->other_info = info; 1701 sp = loader_build_fdpic_loadmap(interp_info, sp); 1702 } 1703 } 1704 #endif 1705 1706 u_platform = 0; 1707 k_platform = ELF_PLATFORM; 1708 if (k_platform) { 1709 size_t len = strlen(k_platform) + 1; 1710 if (STACK_GROWS_DOWN) { 1711 sp -= (len + n - 1) & ~(n - 1); 1712 u_platform = sp; 1713 /* FIXME - check return value of memcpy_to_target() for failure */ 1714 memcpy_to_target(sp, k_platform, len); 1715 } else { 1716 memcpy_to_target(sp, k_platform, len); 1717 u_platform = sp; 1718 sp += len + 1; 1719 } 1720 } 1721 1722 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1723 * the argv and envp pointers. 1724 */ 1725 if (STACK_GROWS_DOWN) { 1726 sp = QEMU_ALIGN_DOWN(sp, 16); 1727 } else { 1728 sp = QEMU_ALIGN_UP(sp, 16); 1729 } 1730 1731 /* 1732 * Generate 16 random bytes for userspace PRNG seeding (not 1733 * cryptically secure but it's not the aim of QEMU). 1734 */ 1735 for (i = 0; i < 16; i++) { 1736 k_rand_bytes[i] = rand(); 1737 } 1738 if (STACK_GROWS_DOWN) { 1739 sp -= 16; 1740 u_rand_bytes = sp; 1741 /* FIXME - check return value of memcpy_to_target() for failure */ 1742 memcpy_to_target(sp, k_rand_bytes, 16); 1743 } else { 1744 memcpy_to_target(sp, k_rand_bytes, 16); 1745 u_rand_bytes = sp; 1746 sp += 16; 1747 } 1748 1749 size = (DLINFO_ITEMS + 1) * 2; 1750 if (k_platform) 1751 size += 2; 1752 #ifdef DLINFO_ARCH_ITEMS 1753 size += DLINFO_ARCH_ITEMS * 2; 1754 #endif 1755 #ifdef ELF_HWCAP2 1756 size += 2; 1757 #endif 1758 info->auxv_len = size * n; 1759 1760 size += envc + argc + 2; 1761 size += 1; /* argc itself */ 1762 size *= n; 1763 1764 /* Allocate space and finalize stack alignment for entry now. */ 1765 if (STACK_GROWS_DOWN) { 1766 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1767 sp = u_argc; 1768 } else { 1769 u_argc = sp; 1770 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1771 } 1772 1773 u_argv = u_argc + n; 1774 u_envp = u_argv + (argc + 1) * n; 1775 u_auxv = u_envp + (envc + 1) * n; 1776 info->saved_auxv = u_auxv; 1777 info->arg_start = u_argv; 1778 info->arg_end = u_argv + argc * n; 1779 1780 /* This is correct because Linux defines 1781 * elf_addr_t as Elf32_Off / Elf64_Off 1782 */ 1783 #define NEW_AUX_ENT(id, val) do { \ 1784 put_user_ual(id, u_auxv); u_auxv += n; \ 1785 put_user_ual(val, u_auxv); u_auxv += n; \ 1786 } while(0) 1787 1788 #ifdef ARCH_DLINFO 1789 /* 1790 * ARCH_DLINFO must come first so platform specific code can enforce 1791 * special alignment requirements on the AUXV if necessary (eg. PPC). 1792 */ 1793 ARCH_DLINFO; 1794 #endif 1795 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1796 * on info->auxv_len will trigger. 1797 */ 1798 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1799 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1800 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1801 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1802 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1803 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1804 NEW_AUX_ENT(AT_ENTRY, info->entry); 1805 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1806 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1807 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1808 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1809 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1810 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1811 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1812 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1813 1814 #ifdef ELF_HWCAP2 1815 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1816 #endif 1817 1818 if (u_platform) { 1819 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1820 } 1821 NEW_AUX_ENT (AT_NULL, 0); 1822 #undef NEW_AUX_ENT 1823 1824 /* Check that our initial calculation of the auxv length matches how much 1825 * we actually put into it. 1826 */ 1827 assert(info->auxv_len == u_auxv - info->saved_auxv); 1828 1829 put_user_ual(argc, u_argc); 1830 1831 p = info->arg_strings; 1832 for (i = 0; i < argc; ++i) { 1833 put_user_ual(p, u_argv); 1834 u_argv += n; 1835 p += target_strlen(p) + 1; 1836 } 1837 put_user_ual(0, u_argv); 1838 1839 p = info->env_strings; 1840 for (i = 0; i < envc; ++i) { 1841 put_user_ual(p, u_envp); 1842 u_envp += n; 1843 p += target_strlen(p) + 1; 1844 } 1845 put_user_ual(0, u_envp); 1846 1847 return sp; 1848 } 1849 1850 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1851 /* If the guest doesn't have a validation function just agree */ 1852 static int validate_guest_space(unsigned long guest_base, 1853 unsigned long guest_size) 1854 { 1855 return 1; 1856 } 1857 #endif 1858 1859 unsigned long init_guest_space(unsigned long host_start, 1860 unsigned long host_size, 1861 unsigned long guest_start, 1862 bool fixed) 1863 { 1864 unsigned long current_start, real_start; 1865 int flags; 1866 1867 assert(host_start || host_size); 1868 1869 /* If just a starting address is given, then just verify that 1870 * address. */ 1871 if (host_start && !host_size) { 1872 if (validate_guest_space(host_start, host_size) == 1) { 1873 return host_start; 1874 } else { 1875 return (unsigned long)-1; 1876 } 1877 } 1878 1879 /* Setup the initial flags and start address. */ 1880 current_start = host_start & qemu_host_page_mask; 1881 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1882 if (fixed) { 1883 flags |= MAP_FIXED; 1884 } 1885 1886 /* Otherwise, a non-zero size region of memory needs to be mapped 1887 * and validated. */ 1888 while (1) { 1889 unsigned long real_size = host_size; 1890 1891 /* Do not use mmap_find_vma here because that is limited to the 1892 * guest address space. We are going to make the 1893 * guest address space fit whatever we're given. 1894 */ 1895 real_start = (unsigned long) 1896 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1897 if (real_start == (unsigned long)-1) { 1898 return (unsigned long)-1; 1899 } 1900 1901 /* Ensure the address is properly aligned. */ 1902 if (real_start & ~qemu_host_page_mask) { 1903 munmap((void *)real_start, host_size); 1904 real_size = host_size + qemu_host_page_size; 1905 real_start = (unsigned long) 1906 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1907 if (real_start == (unsigned long)-1) { 1908 return (unsigned long)-1; 1909 } 1910 real_start = HOST_PAGE_ALIGN(real_start); 1911 } 1912 1913 /* Check to see if the address is valid. */ 1914 if (!host_start || real_start == current_start) { 1915 int valid = validate_guest_space(real_start - guest_start, 1916 real_size); 1917 if (valid == 1) { 1918 break; 1919 } else if (valid == -1) { 1920 return (unsigned long)-1; 1921 } 1922 /* valid == 0, so try again. */ 1923 } 1924 1925 /* That address didn't work. Unmap and try a different one. 1926 * The address the host picked because is typically right at 1927 * the top of the host address space and leaves the guest with 1928 * no usable address space. Resort to a linear search. We 1929 * already compensated for mmap_min_addr, so this should not 1930 * happen often. Probably means we got unlucky and host 1931 * address space randomization put a shared library somewhere 1932 * inconvenient. 1933 */ 1934 munmap((void *)real_start, host_size); 1935 current_start += qemu_host_page_size; 1936 if (host_start == current_start) { 1937 /* Theoretically possible if host doesn't have any suitably 1938 * aligned areas. Normally the first mmap will fail. 1939 */ 1940 return (unsigned long)-1; 1941 } 1942 } 1943 1944 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1945 1946 return real_start; 1947 } 1948 1949 static void probe_guest_base(const char *image_name, 1950 abi_ulong loaddr, abi_ulong hiaddr) 1951 { 1952 /* Probe for a suitable guest base address, if the user has not set 1953 * it explicitly, and set guest_base appropriately. 1954 * In case of error we will print a suitable message and exit. 1955 */ 1956 const char *errmsg; 1957 if (!have_guest_base && !reserved_va) { 1958 unsigned long host_start, real_start, host_size; 1959 1960 /* Round addresses to page boundaries. */ 1961 loaddr &= qemu_host_page_mask; 1962 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1963 1964 if (loaddr < mmap_min_addr) { 1965 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1966 } else { 1967 host_start = loaddr; 1968 if (host_start != loaddr) { 1969 errmsg = "Address overflow loading ELF binary"; 1970 goto exit_errmsg; 1971 } 1972 } 1973 host_size = hiaddr - loaddr; 1974 1975 /* Setup the initial guest memory space with ranges gleaned from 1976 * the ELF image that is being loaded. 1977 */ 1978 real_start = init_guest_space(host_start, host_size, loaddr, false); 1979 if (real_start == (unsigned long)-1) { 1980 errmsg = "Unable to find space for application"; 1981 goto exit_errmsg; 1982 } 1983 guest_base = real_start - loaddr; 1984 1985 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1986 TARGET_ABI_FMT_lx " to 0x%lx\n", 1987 loaddr, real_start); 1988 } 1989 return; 1990 1991 exit_errmsg: 1992 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1993 exit(-1); 1994 } 1995 1996 1997 /* Load an ELF image into the address space. 1998 1999 IMAGE_NAME is the filename of the image, to use in error messages. 2000 IMAGE_FD is the open file descriptor for the image. 2001 2002 BPRM_BUF is a copy of the beginning of the file; this of course 2003 contains the elf file header at offset 0. It is assumed that this 2004 buffer is sufficiently aligned to present no problems to the host 2005 in accessing data at aligned offsets within the buffer. 2006 2007 On return: INFO values will be filled in, as necessary or available. */ 2008 2009 static void load_elf_image(const char *image_name, int image_fd, 2010 struct image_info *info, char **pinterp_name, 2011 char bprm_buf[BPRM_BUF_SIZE]) 2012 { 2013 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2014 struct elf_phdr *phdr; 2015 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2016 int i, retval; 2017 const char *errmsg; 2018 2019 /* First of all, some simple consistency checks */ 2020 errmsg = "Invalid ELF image for this architecture"; 2021 if (!elf_check_ident(ehdr)) { 2022 goto exit_errmsg; 2023 } 2024 bswap_ehdr(ehdr); 2025 if (!elf_check_ehdr(ehdr)) { 2026 goto exit_errmsg; 2027 } 2028 2029 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2030 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2031 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2032 } else { 2033 phdr = (struct elf_phdr *) alloca(i); 2034 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2035 if (retval != i) { 2036 goto exit_read; 2037 } 2038 } 2039 bswap_phdr(phdr, ehdr->e_phnum); 2040 2041 #ifdef CONFIG_USE_FDPIC 2042 info->nsegs = 0; 2043 info->pt_dynamic_addr = 0; 2044 #endif 2045 2046 mmap_lock(); 2047 2048 /* Find the maximum size of the image and allocate an appropriate 2049 amount of memory to handle that. */ 2050 loaddr = -1, hiaddr = 0; 2051 for (i = 0; i < ehdr->e_phnum; ++i) { 2052 if (phdr[i].p_type == PT_LOAD) { 2053 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2054 if (a < loaddr) { 2055 loaddr = a; 2056 } 2057 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2058 if (a > hiaddr) { 2059 hiaddr = a; 2060 } 2061 #ifdef CONFIG_USE_FDPIC 2062 ++info->nsegs; 2063 #endif 2064 } 2065 } 2066 2067 load_addr = loaddr; 2068 if (ehdr->e_type == ET_DYN) { 2069 /* The image indicates that it can be loaded anywhere. Find a 2070 location that can hold the memory space required. If the 2071 image is pre-linked, LOADDR will be non-zero. Since we do 2072 not supply MAP_FIXED here we'll use that address if and 2073 only if it remains available. */ 2074 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2075 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2076 -1, 0); 2077 if (load_addr == -1) { 2078 goto exit_perror; 2079 } 2080 } else if (pinterp_name != NULL) { 2081 /* This is the main executable. Make sure that the low 2082 address does not conflict with MMAP_MIN_ADDR or the 2083 QEMU application itself. */ 2084 probe_guest_base(image_name, loaddr, hiaddr); 2085 } 2086 load_bias = load_addr - loaddr; 2087 2088 #ifdef CONFIG_USE_FDPIC 2089 { 2090 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2091 g_malloc(sizeof(*loadsegs) * info->nsegs); 2092 2093 for (i = 0; i < ehdr->e_phnum; ++i) { 2094 switch (phdr[i].p_type) { 2095 case PT_DYNAMIC: 2096 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2097 break; 2098 case PT_LOAD: 2099 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2100 loadsegs->p_vaddr = phdr[i].p_vaddr; 2101 loadsegs->p_memsz = phdr[i].p_memsz; 2102 ++loadsegs; 2103 break; 2104 } 2105 } 2106 } 2107 #endif 2108 2109 info->load_bias = load_bias; 2110 info->load_addr = load_addr; 2111 info->entry = ehdr->e_entry + load_bias; 2112 info->start_code = -1; 2113 info->end_code = 0; 2114 info->start_data = -1; 2115 info->end_data = 0; 2116 info->brk = 0; 2117 info->elf_flags = ehdr->e_flags; 2118 2119 for (i = 0; i < ehdr->e_phnum; i++) { 2120 struct elf_phdr *eppnt = phdr + i; 2121 if (eppnt->p_type == PT_LOAD) { 2122 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2123 int elf_prot = 0; 2124 2125 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2126 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2127 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2128 2129 vaddr = load_bias + eppnt->p_vaddr; 2130 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2131 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2132 2133 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2134 elf_prot, MAP_PRIVATE | MAP_FIXED, 2135 image_fd, eppnt->p_offset - vaddr_po); 2136 if (error == -1) { 2137 goto exit_perror; 2138 } 2139 2140 vaddr_ef = vaddr + eppnt->p_filesz; 2141 vaddr_em = vaddr + eppnt->p_memsz; 2142 2143 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2144 if (vaddr_ef < vaddr_em) { 2145 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2146 } 2147 2148 /* Find the full program boundaries. */ 2149 if (elf_prot & PROT_EXEC) { 2150 if (vaddr < info->start_code) { 2151 info->start_code = vaddr; 2152 } 2153 if (vaddr_ef > info->end_code) { 2154 info->end_code = vaddr_ef; 2155 } 2156 } 2157 if (elf_prot & PROT_WRITE) { 2158 if (vaddr < info->start_data) { 2159 info->start_data = vaddr; 2160 } 2161 if (vaddr_ef > info->end_data) { 2162 info->end_data = vaddr_ef; 2163 } 2164 if (vaddr_em > info->brk) { 2165 info->brk = vaddr_em; 2166 } 2167 } 2168 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2169 char *interp_name; 2170 2171 if (*pinterp_name) { 2172 errmsg = "Multiple PT_INTERP entries"; 2173 goto exit_errmsg; 2174 } 2175 interp_name = malloc(eppnt->p_filesz); 2176 if (!interp_name) { 2177 goto exit_perror; 2178 } 2179 2180 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2181 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2182 eppnt->p_filesz); 2183 } else { 2184 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2185 eppnt->p_offset); 2186 if (retval != eppnt->p_filesz) { 2187 goto exit_perror; 2188 } 2189 } 2190 if (interp_name[eppnt->p_filesz - 1] != 0) { 2191 errmsg = "Invalid PT_INTERP entry"; 2192 goto exit_errmsg; 2193 } 2194 *pinterp_name = interp_name; 2195 } 2196 } 2197 2198 if (info->end_data == 0) { 2199 info->start_data = info->end_code; 2200 info->end_data = info->end_code; 2201 info->brk = info->end_code; 2202 } 2203 2204 if (qemu_log_enabled()) { 2205 load_symbols(ehdr, image_fd, load_bias); 2206 } 2207 2208 mmap_unlock(); 2209 2210 close(image_fd); 2211 return; 2212 2213 exit_read: 2214 if (retval >= 0) { 2215 errmsg = "Incomplete read of file header"; 2216 goto exit_errmsg; 2217 } 2218 exit_perror: 2219 errmsg = strerror(errno); 2220 exit_errmsg: 2221 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2222 exit(-1); 2223 } 2224 2225 static void load_elf_interp(const char *filename, struct image_info *info, 2226 char bprm_buf[BPRM_BUF_SIZE]) 2227 { 2228 int fd, retval; 2229 2230 fd = open(path(filename), O_RDONLY); 2231 if (fd < 0) { 2232 goto exit_perror; 2233 } 2234 2235 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2236 if (retval < 0) { 2237 goto exit_perror; 2238 } 2239 if (retval < BPRM_BUF_SIZE) { 2240 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2241 } 2242 2243 load_elf_image(filename, fd, info, NULL, bprm_buf); 2244 return; 2245 2246 exit_perror: 2247 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2248 exit(-1); 2249 } 2250 2251 static int symfind(const void *s0, const void *s1) 2252 { 2253 target_ulong addr = *(target_ulong *)s0; 2254 struct elf_sym *sym = (struct elf_sym *)s1; 2255 int result = 0; 2256 if (addr < sym->st_value) { 2257 result = -1; 2258 } else if (addr >= sym->st_value + sym->st_size) { 2259 result = 1; 2260 } 2261 return result; 2262 } 2263 2264 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2265 { 2266 #if ELF_CLASS == ELFCLASS32 2267 struct elf_sym *syms = s->disas_symtab.elf32; 2268 #else 2269 struct elf_sym *syms = s->disas_symtab.elf64; 2270 #endif 2271 2272 // binary search 2273 struct elf_sym *sym; 2274 2275 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2276 if (sym != NULL) { 2277 return s->disas_strtab + sym->st_name; 2278 } 2279 2280 return ""; 2281 } 2282 2283 /* FIXME: This should use elf_ops.h */ 2284 static int symcmp(const void *s0, const void *s1) 2285 { 2286 struct elf_sym *sym0 = (struct elf_sym *)s0; 2287 struct elf_sym *sym1 = (struct elf_sym *)s1; 2288 return (sym0->st_value < sym1->st_value) 2289 ? -1 2290 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2291 } 2292 2293 /* Best attempt to load symbols from this ELF object. */ 2294 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2295 { 2296 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2297 uint64_t segsz; 2298 struct elf_shdr *shdr; 2299 char *strings = NULL; 2300 struct syminfo *s = NULL; 2301 struct elf_sym *new_syms, *syms = NULL; 2302 2303 shnum = hdr->e_shnum; 2304 i = shnum * sizeof(struct elf_shdr); 2305 shdr = (struct elf_shdr *)alloca(i); 2306 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2307 return; 2308 } 2309 2310 bswap_shdr(shdr, shnum); 2311 for (i = 0; i < shnum; ++i) { 2312 if (shdr[i].sh_type == SHT_SYMTAB) { 2313 sym_idx = i; 2314 str_idx = shdr[i].sh_link; 2315 goto found; 2316 } 2317 } 2318 2319 /* There will be no symbol table if the file was stripped. */ 2320 return; 2321 2322 found: 2323 /* Now know where the strtab and symtab are. Snarf them. */ 2324 s = g_try_new(struct syminfo, 1); 2325 if (!s) { 2326 goto give_up; 2327 } 2328 2329 segsz = shdr[str_idx].sh_size; 2330 s->disas_strtab = strings = g_try_malloc(segsz); 2331 if (!strings || 2332 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2333 goto give_up; 2334 } 2335 2336 segsz = shdr[sym_idx].sh_size; 2337 syms = g_try_malloc(segsz); 2338 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2339 goto give_up; 2340 } 2341 2342 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2343 /* Implausibly large symbol table: give up rather than ploughing 2344 * on with the number of symbols calculation overflowing 2345 */ 2346 goto give_up; 2347 } 2348 nsyms = segsz / sizeof(struct elf_sym); 2349 for (i = 0; i < nsyms; ) { 2350 bswap_sym(syms + i); 2351 /* Throw away entries which we do not need. */ 2352 if (syms[i].st_shndx == SHN_UNDEF 2353 || syms[i].st_shndx >= SHN_LORESERVE 2354 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2355 if (i < --nsyms) { 2356 syms[i] = syms[nsyms]; 2357 } 2358 } else { 2359 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2360 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2361 syms[i].st_value &= ~(target_ulong)1; 2362 #endif 2363 syms[i].st_value += load_bias; 2364 i++; 2365 } 2366 } 2367 2368 /* No "useful" symbol. */ 2369 if (nsyms == 0) { 2370 goto give_up; 2371 } 2372 2373 /* Attempt to free the storage associated with the local symbols 2374 that we threw away. Whether or not this has any effect on the 2375 memory allocation depends on the malloc implementation and how 2376 many symbols we managed to discard. */ 2377 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2378 if (new_syms == NULL) { 2379 goto give_up; 2380 } 2381 syms = new_syms; 2382 2383 qsort(syms, nsyms, sizeof(*syms), symcmp); 2384 2385 s->disas_num_syms = nsyms; 2386 #if ELF_CLASS == ELFCLASS32 2387 s->disas_symtab.elf32 = syms; 2388 #else 2389 s->disas_symtab.elf64 = syms; 2390 #endif 2391 s->lookup_symbol = lookup_symbolxx; 2392 s->next = syminfos; 2393 syminfos = s; 2394 2395 return; 2396 2397 give_up: 2398 g_free(s); 2399 g_free(strings); 2400 g_free(syms); 2401 } 2402 2403 uint32_t get_elf_eflags(int fd) 2404 { 2405 struct elfhdr ehdr; 2406 off_t offset; 2407 int ret; 2408 2409 /* Read ELF header */ 2410 offset = lseek(fd, 0, SEEK_SET); 2411 if (offset == (off_t) -1) { 2412 return 0; 2413 } 2414 ret = read(fd, &ehdr, sizeof(ehdr)); 2415 if (ret < sizeof(ehdr)) { 2416 return 0; 2417 } 2418 offset = lseek(fd, offset, SEEK_SET); 2419 if (offset == (off_t) -1) { 2420 return 0; 2421 } 2422 2423 /* Check ELF signature */ 2424 if (!elf_check_ident(&ehdr)) { 2425 return 0; 2426 } 2427 2428 /* check header */ 2429 bswap_ehdr(&ehdr); 2430 if (!elf_check_ehdr(&ehdr)) { 2431 return 0; 2432 } 2433 2434 /* return architecture id */ 2435 return ehdr.e_flags; 2436 } 2437 2438 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2439 { 2440 struct image_info interp_info; 2441 struct elfhdr elf_ex; 2442 char *elf_interpreter = NULL; 2443 char *scratch; 2444 2445 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2446 2447 load_elf_image(bprm->filename, bprm->fd, info, 2448 &elf_interpreter, bprm->buf); 2449 2450 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2451 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2452 when we load the interpreter. */ 2453 elf_ex = *(struct elfhdr *)bprm->buf; 2454 2455 /* Do this so that we can load the interpreter, if need be. We will 2456 change some of these later */ 2457 bprm->p = setup_arg_pages(bprm, info); 2458 2459 scratch = g_new0(char, TARGET_PAGE_SIZE); 2460 if (STACK_GROWS_DOWN) { 2461 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2462 bprm->p, info->stack_limit); 2463 info->file_string = bprm->p; 2464 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2465 bprm->p, info->stack_limit); 2466 info->env_strings = bprm->p; 2467 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2468 bprm->p, info->stack_limit); 2469 info->arg_strings = bprm->p; 2470 } else { 2471 info->arg_strings = bprm->p; 2472 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2473 bprm->p, info->stack_limit); 2474 info->env_strings = bprm->p; 2475 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2476 bprm->p, info->stack_limit); 2477 info->file_string = bprm->p; 2478 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2479 bprm->p, info->stack_limit); 2480 } 2481 2482 g_free(scratch); 2483 2484 if (!bprm->p) { 2485 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2486 exit(-1); 2487 } 2488 2489 if (elf_interpreter) { 2490 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2491 2492 /* If the program interpreter is one of these two, then assume 2493 an iBCS2 image. Otherwise assume a native linux image. */ 2494 2495 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2496 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2497 info->personality = PER_SVR4; 2498 2499 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2500 and some applications "depend" upon this behavior. Since 2501 we do not have the power to recompile these, we emulate 2502 the SVr4 behavior. Sigh. */ 2503 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2504 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2505 } 2506 } 2507 2508 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2509 info, (elf_interpreter ? &interp_info : NULL)); 2510 info->start_stack = bprm->p; 2511 2512 /* If we have an interpreter, set that as the program's entry point. 2513 Copy the load_bias as well, to help PPC64 interpret the entry 2514 point as a function descriptor. Do this after creating elf tables 2515 so that we copy the original program entry point into the AUXV. */ 2516 if (elf_interpreter) { 2517 info->load_bias = interp_info.load_bias; 2518 info->entry = interp_info.entry; 2519 free(elf_interpreter); 2520 } 2521 2522 #ifdef USE_ELF_CORE_DUMP 2523 bprm->core_dump = &elf_core_dump; 2524 #endif 2525 2526 return 0; 2527 } 2528 2529 #ifdef USE_ELF_CORE_DUMP 2530 /* 2531 * Definitions to generate Intel SVR4-like core files. 2532 * These mostly have the same names as the SVR4 types with "target_elf_" 2533 * tacked on the front to prevent clashes with linux definitions, 2534 * and the typedef forms have been avoided. This is mostly like 2535 * the SVR4 structure, but more Linuxy, with things that Linux does 2536 * not support and which gdb doesn't really use excluded. 2537 * 2538 * Fields we don't dump (their contents is zero) in linux-user qemu 2539 * are marked with XXX. 2540 * 2541 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2542 * 2543 * Porting ELF coredump for target is (quite) simple process. First you 2544 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2545 * the target resides): 2546 * 2547 * #define USE_ELF_CORE_DUMP 2548 * 2549 * Next you define type of register set used for dumping. ELF specification 2550 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2551 * 2552 * typedef <target_regtype> target_elf_greg_t; 2553 * #define ELF_NREG <number of registers> 2554 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2555 * 2556 * Last step is to implement target specific function that copies registers 2557 * from given cpu into just specified register set. Prototype is: 2558 * 2559 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2560 * const CPUArchState *env); 2561 * 2562 * Parameters: 2563 * regs - copy register values into here (allocated and zeroed by caller) 2564 * env - copy registers from here 2565 * 2566 * Example for ARM target is provided in this file. 2567 */ 2568 2569 /* An ELF note in memory */ 2570 struct memelfnote { 2571 const char *name; 2572 size_t namesz; 2573 size_t namesz_rounded; 2574 int type; 2575 size_t datasz; 2576 size_t datasz_rounded; 2577 void *data; 2578 size_t notesz; 2579 }; 2580 2581 struct target_elf_siginfo { 2582 abi_int si_signo; /* signal number */ 2583 abi_int si_code; /* extra code */ 2584 abi_int si_errno; /* errno */ 2585 }; 2586 2587 struct target_elf_prstatus { 2588 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2589 abi_short pr_cursig; /* Current signal */ 2590 abi_ulong pr_sigpend; /* XXX */ 2591 abi_ulong pr_sighold; /* XXX */ 2592 target_pid_t pr_pid; 2593 target_pid_t pr_ppid; 2594 target_pid_t pr_pgrp; 2595 target_pid_t pr_sid; 2596 struct target_timeval pr_utime; /* XXX User time */ 2597 struct target_timeval pr_stime; /* XXX System time */ 2598 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2599 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2600 target_elf_gregset_t pr_reg; /* GP registers */ 2601 abi_int pr_fpvalid; /* XXX */ 2602 }; 2603 2604 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2605 2606 struct target_elf_prpsinfo { 2607 char pr_state; /* numeric process state */ 2608 char pr_sname; /* char for pr_state */ 2609 char pr_zomb; /* zombie */ 2610 char pr_nice; /* nice val */ 2611 abi_ulong pr_flag; /* flags */ 2612 target_uid_t pr_uid; 2613 target_gid_t pr_gid; 2614 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2615 /* Lots missing */ 2616 char pr_fname[16]; /* filename of executable */ 2617 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2618 }; 2619 2620 /* Here is the structure in which status of each thread is captured. */ 2621 struct elf_thread_status { 2622 QTAILQ_ENTRY(elf_thread_status) ets_link; 2623 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2624 #if 0 2625 elf_fpregset_t fpu; /* NT_PRFPREG */ 2626 struct task_struct *thread; 2627 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2628 #endif 2629 struct memelfnote notes[1]; 2630 int num_notes; 2631 }; 2632 2633 struct elf_note_info { 2634 struct memelfnote *notes; 2635 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2636 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2637 2638 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2639 #if 0 2640 /* 2641 * Current version of ELF coredump doesn't support 2642 * dumping fp regs etc. 2643 */ 2644 elf_fpregset_t *fpu; 2645 elf_fpxregset_t *xfpu; 2646 int thread_status_size; 2647 #endif 2648 int notes_size; 2649 int numnote; 2650 }; 2651 2652 struct vm_area_struct { 2653 target_ulong vma_start; /* start vaddr of memory region */ 2654 target_ulong vma_end; /* end vaddr of memory region */ 2655 abi_ulong vma_flags; /* protection etc. flags for the region */ 2656 QTAILQ_ENTRY(vm_area_struct) vma_link; 2657 }; 2658 2659 struct mm_struct { 2660 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2661 int mm_count; /* number of mappings */ 2662 }; 2663 2664 static struct mm_struct *vma_init(void); 2665 static void vma_delete(struct mm_struct *); 2666 static int vma_add_mapping(struct mm_struct *, target_ulong, 2667 target_ulong, abi_ulong); 2668 static int vma_get_mapping_count(const struct mm_struct *); 2669 static struct vm_area_struct *vma_first(const struct mm_struct *); 2670 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2671 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2672 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2673 unsigned long flags); 2674 2675 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2676 static void fill_note(struct memelfnote *, const char *, int, 2677 unsigned int, void *); 2678 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2679 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2680 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2681 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2682 static size_t note_size(const struct memelfnote *); 2683 static void free_note_info(struct elf_note_info *); 2684 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2685 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2686 static int core_dump_filename(const TaskState *, char *, size_t); 2687 2688 static int dump_write(int, const void *, size_t); 2689 static int write_note(struct memelfnote *, int); 2690 static int write_note_info(struct elf_note_info *, int); 2691 2692 #ifdef BSWAP_NEEDED 2693 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2694 { 2695 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2696 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2697 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2698 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2699 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2700 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2701 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2702 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2703 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2704 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2705 /* cpu times are not filled, so we skip them */ 2706 /* regs should be in correct format already */ 2707 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2708 } 2709 2710 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2711 { 2712 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2713 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2714 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2715 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2716 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2717 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2718 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2719 } 2720 2721 static void bswap_note(struct elf_note *en) 2722 { 2723 bswap32s(&en->n_namesz); 2724 bswap32s(&en->n_descsz); 2725 bswap32s(&en->n_type); 2726 } 2727 #else 2728 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2729 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2730 static inline void bswap_note(struct elf_note *en) { } 2731 #endif /* BSWAP_NEEDED */ 2732 2733 /* 2734 * Minimal support for linux memory regions. These are needed 2735 * when we are finding out what memory exactly belongs to 2736 * emulated process. No locks needed here, as long as 2737 * thread that received the signal is stopped. 2738 */ 2739 2740 static struct mm_struct *vma_init(void) 2741 { 2742 struct mm_struct *mm; 2743 2744 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2745 return (NULL); 2746 2747 mm->mm_count = 0; 2748 QTAILQ_INIT(&mm->mm_mmap); 2749 2750 return (mm); 2751 } 2752 2753 static void vma_delete(struct mm_struct *mm) 2754 { 2755 struct vm_area_struct *vma; 2756 2757 while ((vma = vma_first(mm)) != NULL) { 2758 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2759 g_free(vma); 2760 } 2761 g_free(mm); 2762 } 2763 2764 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2765 target_ulong end, abi_ulong flags) 2766 { 2767 struct vm_area_struct *vma; 2768 2769 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2770 return (-1); 2771 2772 vma->vma_start = start; 2773 vma->vma_end = end; 2774 vma->vma_flags = flags; 2775 2776 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2777 mm->mm_count++; 2778 2779 return (0); 2780 } 2781 2782 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2783 { 2784 return (QTAILQ_FIRST(&mm->mm_mmap)); 2785 } 2786 2787 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2788 { 2789 return (QTAILQ_NEXT(vma, vma_link)); 2790 } 2791 2792 static int vma_get_mapping_count(const struct mm_struct *mm) 2793 { 2794 return (mm->mm_count); 2795 } 2796 2797 /* 2798 * Calculate file (dump) size of given memory region. 2799 */ 2800 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2801 { 2802 /* if we cannot even read the first page, skip it */ 2803 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2804 return (0); 2805 2806 /* 2807 * Usually we don't dump executable pages as they contain 2808 * non-writable code that debugger can read directly from 2809 * target library etc. However, thread stacks are marked 2810 * also executable so we read in first page of given region 2811 * and check whether it contains elf header. If there is 2812 * no elf header, we dump it. 2813 */ 2814 if (vma->vma_flags & PROT_EXEC) { 2815 char page[TARGET_PAGE_SIZE]; 2816 2817 copy_from_user(page, vma->vma_start, sizeof (page)); 2818 if ((page[EI_MAG0] == ELFMAG0) && 2819 (page[EI_MAG1] == ELFMAG1) && 2820 (page[EI_MAG2] == ELFMAG2) && 2821 (page[EI_MAG3] == ELFMAG3)) { 2822 /* 2823 * Mappings are possibly from ELF binary. Don't dump 2824 * them. 2825 */ 2826 return (0); 2827 } 2828 } 2829 2830 return (vma->vma_end - vma->vma_start); 2831 } 2832 2833 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2834 unsigned long flags) 2835 { 2836 struct mm_struct *mm = (struct mm_struct *)priv; 2837 2838 vma_add_mapping(mm, start, end, flags); 2839 return (0); 2840 } 2841 2842 static void fill_note(struct memelfnote *note, const char *name, int type, 2843 unsigned int sz, void *data) 2844 { 2845 unsigned int namesz; 2846 2847 namesz = strlen(name) + 1; 2848 note->name = name; 2849 note->namesz = namesz; 2850 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2851 note->type = type; 2852 note->datasz = sz; 2853 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2854 2855 note->data = data; 2856 2857 /* 2858 * We calculate rounded up note size here as specified by 2859 * ELF document. 2860 */ 2861 note->notesz = sizeof (struct elf_note) + 2862 note->namesz_rounded + note->datasz_rounded; 2863 } 2864 2865 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2866 uint32_t flags) 2867 { 2868 (void) memset(elf, 0, sizeof(*elf)); 2869 2870 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2871 elf->e_ident[EI_CLASS] = ELF_CLASS; 2872 elf->e_ident[EI_DATA] = ELF_DATA; 2873 elf->e_ident[EI_VERSION] = EV_CURRENT; 2874 elf->e_ident[EI_OSABI] = ELF_OSABI; 2875 2876 elf->e_type = ET_CORE; 2877 elf->e_machine = machine; 2878 elf->e_version = EV_CURRENT; 2879 elf->e_phoff = sizeof(struct elfhdr); 2880 elf->e_flags = flags; 2881 elf->e_ehsize = sizeof(struct elfhdr); 2882 elf->e_phentsize = sizeof(struct elf_phdr); 2883 elf->e_phnum = segs; 2884 2885 bswap_ehdr(elf); 2886 } 2887 2888 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2889 { 2890 phdr->p_type = PT_NOTE; 2891 phdr->p_offset = offset; 2892 phdr->p_vaddr = 0; 2893 phdr->p_paddr = 0; 2894 phdr->p_filesz = sz; 2895 phdr->p_memsz = 0; 2896 phdr->p_flags = 0; 2897 phdr->p_align = 0; 2898 2899 bswap_phdr(phdr, 1); 2900 } 2901 2902 static size_t note_size(const struct memelfnote *note) 2903 { 2904 return (note->notesz); 2905 } 2906 2907 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2908 const TaskState *ts, int signr) 2909 { 2910 (void) memset(prstatus, 0, sizeof (*prstatus)); 2911 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2912 prstatus->pr_pid = ts->ts_tid; 2913 prstatus->pr_ppid = getppid(); 2914 prstatus->pr_pgrp = getpgrp(); 2915 prstatus->pr_sid = getsid(0); 2916 2917 bswap_prstatus(prstatus); 2918 } 2919 2920 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2921 { 2922 char *base_filename; 2923 unsigned int i, len; 2924 2925 (void) memset(psinfo, 0, sizeof (*psinfo)); 2926 2927 len = ts->info->arg_end - ts->info->arg_start; 2928 if (len >= ELF_PRARGSZ) 2929 len = ELF_PRARGSZ - 1; 2930 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2931 return -EFAULT; 2932 for (i = 0; i < len; i++) 2933 if (psinfo->pr_psargs[i] == 0) 2934 psinfo->pr_psargs[i] = ' '; 2935 psinfo->pr_psargs[len] = 0; 2936 2937 psinfo->pr_pid = getpid(); 2938 psinfo->pr_ppid = getppid(); 2939 psinfo->pr_pgrp = getpgrp(); 2940 psinfo->pr_sid = getsid(0); 2941 psinfo->pr_uid = getuid(); 2942 psinfo->pr_gid = getgid(); 2943 2944 base_filename = g_path_get_basename(ts->bprm->filename); 2945 /* 2946 * Using strncpy here is fine: at max-length, 2947 * this field is not NUL-terminated. 2948 */ 2949 (void) strncpy(psinfo->pr_fname, base_filename, 2950 sizeof(psinfo->pr_fname)); 2951 2952 g_free(base_filename); 2953 bswap_psinfo(psinfo); 2954 return (0); 2955 } 2956 2957 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2958 { 2959 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2960 elf_addr_t orig_auxv = auxv; 2961 void *ptr; 2962 int len = ts->info->auxv_len; 2963 2964 /* 2965 * Auxiliary vector is stored in target process stack. It contains 2966 * {type, value} pairs that we need to dump into note. This is not 2967 * strictly necessary but we do it here for sake of completeness. 2968 */ 2969 2970 /* read in whole auxv vector and copy it to memelfnote */ 2971 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2972 if (ptr != NULL) { 2973 fill_note(note, "CORE", NT_AUXV, len, ptr); 2974 unlock_user(ptr, auxv, len); 2975 } 2976 } 2977 2978 /* 2979 * Constructs name of coredump file. We have following convention 2980 * for the name: 2981 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2982 * 2983 * Returns 0 in case of success, -1 otherwise (errno is set). 2984 */ 2985 static int core_dump_filename(const TaskState *ts, char *buf, 2986 size_t bufsize) 2987 { 2988 char timestamp[64]; 2989 char *base_filename = NULL; 2990 struct timeval tv; 2991 struct tm tm; 2992 2993 assert(bufsize >= PATH_MAX); 2994 2995 if (gettimeofday(&tv, NULL) < 0) { 2996 (void) fprintf(stderr, "unable to get current timestamp: %s", 2997 strerror(errno)); 2998 return (-1); 2999 } 3000 3001 base_filename = g_path_get_basename(ts->bprm->filename); 3002 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3003 localtime_r(&tv.tv_sec, &tm)); 3004 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3005 base_filename, timestamp, (int)getpid()); 3006 g_free(base_filename); 3007 3008 return (0); 3009 } 3010 3011 static int dump_write(int fd, const void *ptr, size_t size) 3012 { 3013 const char *bufp = (const char *)ptr; 3014 ssize_t bytes_written, bytes_left; 3015 struct rlimit dumpsize; 3016 off_t pos; 3017 3018 bytes_written = 0; 3019 getrlimit(RLIMIT_CORE, &dumpsize); 3020 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3021 if (errno == ESPIPE) { /* not a seekable stream */ 3022 bytes_left = size; 3023 } else { 3024 return pos; 3025 } 3026 } else { 3027 if (dumpsize.rlim_cur <= pos) { 3028 return -1; 3029 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3030 bytes_left = size; 3031 } else { 3032 size_t limit_left=dumpsize.rlim_cur - pos; 3033 bytes_left = limit_left >= size ? size : limit_left ; 3034 } 3035 } 3036 3037 /* 3038 * In normal conditions, single write(2) should do but 3039 * in case of socket etc. this mechanism is more portable. 3040 */ 3041 do { 3042 bytes_written = write(fd, bufp, bytes_left); 3043 if (bytes_written < 0) { 3044 if (errno == EINTR) 3045 continue; 3046 return (-1); 3047 } else if (bytes_written == 0) { /* eof */ 3048 return (-1); 3049 } 3050 bufp += bytes_written; 3051 bytes_left -= bytes_written; 3052 } while (bytes_left > 0); 3053 3054 return (0); 3055 } 3056 3057 static int write_note(struct memelfnote *men, int fd) 3058 { 3059 struct elf_note en; 3060 3061 en.n_namesz = men->namesz; 3062 en.n_type = men->type; 3063 en.n_descsz = men->datasz; 3064 3065 bswap_note(&en); 3066 3067 if (dump_write(fd, &en, sizeof(en)) != 0) 3068 return (-1); 3069 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3070 return (-1); 3071 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3072 return (-1); 3073 3074 return (0); 3075 } 3076 3077 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3078 { 3079 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3080 TaskState *ts = (TaskState *)cpu->opaque; 3081 struct elf_thread_status *ets; 3082 3083 ets = g_malloc0(sizeof (*ets)); 3084 ets->num_notes = 1; /* only prstatus is dumped */ 3085 fill_prstatus(&ets->prstatus, ts, 0); 3086 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3087 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3088 &ets->prstatus); 3089 3090 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3091 3092 info->notes_size += note_size(&ets->notes[0]); 3093 } 3094 3095 static void init_note_info(struct elf_note_info *info) 3096 { 3097 /* Initialize the elf_note_info structure so that it is at 3098 * least safe to call free_note_info() on it. Must be 3099 * called before calling fill_note_info(). 3100 */ 3101 memset(info, 0, sizeof (*info)); 3102 QTAILQ_INIT(&info->thread_list); 3103 } 3104 3105 static int fill_note_info(struct elf_note_info *info, 3106 long signr, const CPUArchState *env) 3107 { 3108 #define NUMNOTES 3 3109 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3110 TaskState *ts = (TaskState *)cpu->opaque; 3111 int i; 3112 3113 info->notes = g_new0(struct memelfnote, NUMNOTES); 3114 if (info->notes == NULL) 3115 return (-ENOMEM); 3116 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3117 if (info->prstatus == NULL) 3118 return (-ENOMEM); 3119 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3120 if (info->prstatus == NULL) 3121 return (-ENOMEM); 3122 3123 /* 3124 * First fill in status (and registers) of current thread 3125 * including process info & aux vector. 3126 */ 3127 fill_prstatus(info->prstatus, ts, signr); 3128 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3129 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3130 sizeof (*info->prstatus), info->prstatus); 3131 fill_psinfo(info->psinfo, ts); 3132 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3133 sizeof (*info->psinfo), info->psinfo); 3134 fill_auxv_note(&info->notes[2], ts); 3135 info->numnote = 3; 3136 3137 info->notes_size = 0; 3138 for (i = 0; i < info->numnote; i++) 3139 info->notes_size += note_size(&info->notes[i]); 3140 3141 /* read and fill status of all threads */ 3142 cpu_list_lock(); 3143 CPU_FOREACH(cpu) { 3144 if (cpu == thread_cpu) { 3145 continue; 3146 } 3147 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3148 } 3149 cpu_list_unlock(); 3150 3151 return (0); 3152 } 3153 3154 static void free_note_info(struct elf_note_info *info) 3155 { 3156 struct elf_thread_status *ets; 3157 3158 while (!QTAILQ_EMPTY(&info->thread_list)) { 3159 ets = QTAILQ_FIRST(&info->thread_list); 3160 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3161 g_free(ets); 3162 } 3163 3164 g_free(info->prstatus); 3165 g_free(info->psinfo); 3166 g_free(info->notes); 3167 } 3168 3169 static int write_note_info(struct elf_note_info *info, int fd) 3170 { 3171 struct elf_thread_status *ets; 3172 int i, error = 0; 3173 3174 /* write prstatus, psinfo and auxv for current thread */ 3175 for (i = 0; i < info->numnote; i++) 3176 if ((error = write_note(&info->notes[i], fd)) != 0) 3177 return (error); 3178 3179 /* write prstatus for each thread */ 3180 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3181 if ((error = write_note(&ets->notes[0], fd)) != 0) 3182 return (error); 3183 } 3184 3185 return (0); 3186 } 3187 3188 /* 3189 * Write out ELF coredump. 3190 * 3191 * See documentation of ELF object file format in: 3192 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3193 * 3194 * Coredump format in linux is following: 3195 * 3196 * 0 +----------------------+ \ 3197 * | ELF header | ET_CORE | 3198 * +----------------------+ | 3199 * | ELF program headers | |--- headers 3200 * | - NOTE section | | 3201 * | - PT_LOAD sections | | 3202 * +----------------------+ / 3203 * | NOTEs: | 3204 * | - NT_PRSTATUS | 3205 * | - NT_PRSINFO | 3206 * | - NT_AUXV | 3207 * +----------------------+ <-- aligned to target page 3208 * | Process memory dump | 3209 * : : 3210 * . . 3211 * : : 3212 * | | 3213 * +----------------------+ 3214 * 3215 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3216 * NT_PRSINFO -> struct elf_prpsinfo 3217 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3218 * 3219 * Format follows System V format as close as possible. Current 3220 * version limitations are as follows: 3221 * - no floating point registers are dumped 3222 * 3223 * Function returns 0 in case of success, negative errno otherwise. 3224 * 3225 * TODO: make this work also during runtime: it should be 3226 * possible to force coredump from running process and then 3227 * continue processing. For example qemu could set up SIGUSR2 3228 * handler (provided that target process haven't registered 3229 * handler for that) that does the dump when signal is received. 3230 */ 3231 static int elf_core_dump(int signr, const CPUArchState *env) 3232 { 3233 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3234 const TaskState *ts = (const TaskState *)cpu->opaque; 3235 struct vm_area_struct *vma = NULL; 3236 char corefile[PATH_MAX]; 3237 struct elf_note_info info; 3238 struct elfhdr elf; 3239 struct elf_phdr phdr; 3240 struct rlimit dumpsize; 3241 struct mm_struct *mm = NULL; 3242 off_t offset = 0, data_offset = 0; 3243 int segs = 0; 3244 int fd = -1; 3245 3246 init_note_info(&info); 3247 3248 errno = 0; 3249 getrlimit(RLIMIT_CORE, &dumpsize); 3250 if (dumpsize.rlim_cur == 0) 3251 return 0; 3252 3253 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3254 return (-errno); 3255 3256 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3257 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3258 return (-errno); 3259 3260 /* 3261 * Walk through target process memory mappings and 3262 * set up structure containing this information. After 3263 * this point vma_xxx functions can be used. 3264 */ 3265 if ((mm = vma_init()) == NULL) 3266 goto out; 3267 3268 walk_memory_regions(mm, vma_walker); 3269 segs = vma_get_mapping_count(mm); 3270 3271 /* 3272 * Construct valid coredump ELF header. We also 3273 * add one more segment for notes. 3274 */ 3275 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3276 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3277 goto out; 3278 3279 /* fill in the in-memory version of notes */ 3280 if (fill_note_info(&info, signr, env) < 0) 3281 goto out; 3282 3283 offset += sizeof (elf); /* elf header */ 3284 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3285 3286 /* write out notes program header */ 3287 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3288 3289 offset += info.notes_size; 3290 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3291 goto out; 3292 3293 /* 3294 * ELF specification wants data to start at page boundary so 3295 * we align it here. 3296 */ 3297 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3298 3299 /* 3300 * Write program headers for memory regions mapped in 3301 * the target process. 3302 */ 3303 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3304 (void) memset(&phdr, 0, sizeof (phdr)); 3305 3306 phdr.p_type = PT_LOAD; 3307 phdr.p_offset = offset; 3308 phdr.p_vaddr = vma->vma_start; 3309 phdr.p_paddr = 0; 3310 phdr.p_filesz = vma_dump_size(vma); 3311 offset += phdr.p_filesz; 3312 phdr.p_memsz = vma->vma_end - vma->vma_start; 3313 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3314 if (vma->vma_flags & PROT_WRITE) 3315 phdr.p_flags |= PF_W; 3316 if (vma->vma_flags & PROT_EXEC) 3317 phdr.p_flags |= PF_X; 3318 phdr.p_align = ELF_EXEC_PAGESIZE; 3319 3320 bswap_phdr(&phdr, 1); 3321 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3322 goto out; 3323 } 3324 } 3325 3326 /* 3327 * Next we write notes just after program headers. No 3328 * alignment needed here. 3329 */ 3330 if (write_note_info(&info, fd) < 0) 3331 goto out; 3332 3333 /* align data to page boundary */ 3334 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3335 goto out; 3336 3337 /* 3338 * Finally we can dump process memory into corefile as well. 3339 */ 3340 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3341 abi_ulong addr; 3342 abi_ulong end; 3343 3344 end = vma->vma_start + vma_dump_size(vma); 3345 3346 for (addr = vma->vma_start; addr < end; 3347 addr += TARGET_PAGE_SIZE) { 3348 char page[TARGET_PAGE_SIZE]; 3349 int error; 3350 3351 /* 3352 * Read in page from target process memory and 3353 * write it to coredump file. 3354 */ 3355 error = copy_from_user(page, addr, sizeof (page)); 3356 if (error != 0) { 3357 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3358 addr); 3359 errno = -error; 3360 goto out; 3361 } 3362 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3363 goto out; 3364 } 3365 } 3366 3367 out: 3368 free_note_info(&info); 3369 if (mm != NULL) 3370 vma_delete(mm); 3371 (void) close(fd); 3372 3373 if (errno != 0) 3374 return (-errno); 3375 return (0); 3376 } 3377 #endif /* USE_ELF_CORE_DUMP */ 3378 3379 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3380 { 3381 init_thread(regs, infop); 3382 } 3383