xref: /openbmc/qemu/linux-user/elfload.c (revision 988fa103)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/guest-random.h"
12 
13 #ifdef _ARCH_PPC64
14 #undef ARCH_DLINFO
15 #undef ELF_PLATFORM
16 #undef ELF_HWCAP
17 #undef ELF_HWCAP2
18 #undef ELF_CLASS
19 #undef ELF_DATA
20 #undef ELF_ARCH
21 #endif
22 
23 #define ELF_OSABI   ELFOSABI_SYSV
24 
25 /* from personality.h */
26 
27 /*
28  * Flags for bug emulation.
29  *
30  * These occupy the top three bytes.
31  */
32 enum {
33     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
34     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
35                                            descriptors (signal handling) */
36     MMAP_PAGE_ZERO =    0x0100000,
37     ADDR_COMPAT_LAYOUT = 0x0200000,
38     READ_IMPLIES_EXEC = 0x0400000,
39     ADDR_LIMIT_32BIT =  0x0800000,
40     SHORT_INODE =       0x1000000,
41     WHOLE_SECONDS =     0x2000000,
42     STICKY_TIMEOUTS =   0x4000000,
43     ADDR_LIMIT_3GB =    0x8000000,
44 };
45 
46 /*
47  * Personality types.
48  *
49  * These go in the low byte.  Avoid using the top bit, it will
50  * conflict with error returns.
51  */
52 enum {
53     PER_LINUX =         0x0000,
54     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
55     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
56     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
57     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
58     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
59     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
60     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
62     PER_BSD =           0x0006,
63     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
64     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
65     PER_LINUX32 =       0x0008,
66     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
67     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
68     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
69     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
70     PER_RISCOS =        0x000c,
71     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
72     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
73     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
74     PER_HPUX =          0x0010,
75     PER_MASK =          0x00ff,
76 };
77 
78 /*
79  * Return the base personality without flags.
80  */
81 #define personality(pers)       (pers & PER_MASK)
82 
83 int info_is_fdpic(struct image_info *info)
84 {
85     return info->personality == PER_LINUX_FDPIC;
86 }
87 
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
92 
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
97 
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA        ELFDATA2MSB
100 #else
101 #define ELF_DATA        ELFDATA2LSB
102 #endif
103 
104 #ifdef TARGET_ABI_MIPSN32
105 typedef abi_ullong      target_elf_greg_t;
106 #define tswapreg(ptr)   tswap64(ptr)
107 #else
108 typedef abi_ulong       target_elf_greg_t;
109 #define tswapreg(ptr)   tswapal(ptr)
110 #endif
111 
112 #ifdef USE_UID16
113 typedef abi_ushort      target_uid_t;
114 typedef abi_ushort      target_gid_t;
115 #else
116 typedef abi_uint        target_uid_t;
117 typedef abi_uint        target_gid_t;
118 #endif
119 typedef abi_int         target_pid_t;
120 
121 #ifdef TARGET_I386
122 
123 #define ELF_PLATFORM get_elf_platform()
124 
125 static const char *get_elf_platform(void)
126 {
127     static char elf_platform[] = "i386";
128     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
129     if (family > 6)
130         family = 6;
131     if (family >= 3)
132         elf_platform[1] = '0' + family;
133     return elf_platform;
134 }
135 
136 #define ELF_HWCAP get_elf_hwcap()
137 
138 static uint32_t get_elf_hwcap(void)
139 {
140     X86CPU *cpu = X86_CPU(thread_cpu);
141 
142     return cpu->env.features[FEAT_1_EDX];
143 }
144 
145 #ifdef TARGET_X86_64
146 #define ELF_START_MMAP 0x2aaaaab000ULL
147 
148 #define ELF_CLASS      ELFCLASS64
149 #define ELF_ARCH       EM_X86_64
150 
151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
152 {
153     regs->rax = 0;
154     regs->rsp = infop->start_stack;
155     regs->rip = infop->entry;
156 }
157 
158 #define ELF_NREG    27
159 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
160 
161 /*
162  * Note that ELF_NREG should be 29 as there should be place for
163  * TRAPNO and ERR "registers" as well but linux doesn't dump
164  * those.
165  *
166  * See linux kernel: arch/x86/include/asm/elf.h
167  */
168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
169 {
170     (*regs)[0] = env->regs[15];
171     (*regs)[1] = env->regs[14];
172     (*regs)[2] = env->regs[13];
173     (*regs)[3] = env->regs[12];
174     (*regs)[4] = env->regs[R_EBP];
175     (*regs)[5] = env->regs[R_EBX];
176     (*regs)[6] = env->regs[11];
177     (*regs)[7] = env->regs[10];
178     (*regs)[8] = env->regs[9];
179     (*regs)[9] = env->regs[8];
180     (*regs)[10] = env->regs[R_EAX];
181     (*regs)[11] = env->regs[R_ECX];
182     (*regs)[12] = env->regs[R_EDX];
183     (*regs)[13] = env->regs[R_ESI];
184     (*regs)[14] = env->regs[R_EDI];
185     (*regs)[15] = env->regs[R_EAX]; /* XXX */
186     (*regs)[16] = env->eip;
187     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
188     (*regs)[18] = env->eflags;
189     (*regs)[19] = env->regs[R_ESP];
190     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
191     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
192     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
193     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
194     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
195     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
196     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
197 }
198 
199 #else
200 
201 #define ELF_START_MMAP 0x80000000
202 
203 /*
204  * This is used to ensure we don't load something for the wrong architecture.
205  */
206 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
207 
208 /*
209  * These are used to set parameters in the core dumps.
210  */
211 #define ELF_CLASS       ELFCLASS32
212 #define ELF_ARCH        EM_386
213 
214 static inline void init_thread(struct target_pt_regs *regs,
215                                struct image_info *infop)
216 {
217     regs->esp = infop->start_stack;
218     regs->eip = infop->entry;
219 
220     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
221        starts %edx contains a pointer to a function which might be
222        registered using `atexit'.  This provides a mean for the
223        dynamic linker to call DT_FINI functions for shared libraries
224        that have been loaded before the code runs.
225 
226        A value of 0 tells we have no such handler.  */
227     regs->edx = 0;
228 }
229 
230 #define ELF_NREG    17
231 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
232 
233 /*
234  * Note that ELF_NREG should be 19 as there should be place for
235  * TRAPNO and ERR "registers" as well but linux doesn't dump
236  * those.
237  *
238  * See linux kernel: arch/x86/include/asm/elf.h
239  */
240 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
241 {
242     (*regs)[0] = env->regs[R_EBX];
243     (*regs)[1] = env->regs[R_ECX];
244     (*regs)[2] = env->regs[R_EDX];
245     (*regs)[3] = env->regs[R_ESI];
246     (*regs)[4] = env->regs[R_EDI];
247     (*regs)[5] = env->regs[R_EBP];
248     (*regs)[6] = env->regs[R_EAX];
249     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
250     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
251     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
252     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
253     (*regs)[11] = env->regs[R_EAX]; /* XXX */
254     (*regs)[12] = env->eip;
255     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
256     (*regs)[14] = env->eflags;
257     (*regs)[15] = env->regs[R_ESP];
258     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
259 }
260 #endif
261 
262 #define USE_ELF_CORE_DUMP
263 #define ELF_EXEC_PAGESIZE       4096
264 
265 #endif
266 
267 #ifdef TARGET_ARM
268 
269 #ifndef TARGET_AARCH64
270 /* 32 bit ARM definitions */
271 
272 #define ELF_START_MMAP 0x80000000
273 
274 #define ELF_ARCH        EM_ARM
275 #define ELF_CLASS       ELFCLASS32
276 
277 static inline void init_thread(struct target_pt_regs *regs,
278                                struct image_info *infop)
279 {
280     abi_long stack = infop->start_stack;
281     memset(regs, 0, sizeof(*regs));
282 
283     regs->uregs[16] = ARM_CPU_MODE_USR;
284     if (infop->entry & 1) {
285         regs->uregs[16] |= CPSR_T;
286     }
287     regs->uregs[15] = infop->entry & 0xfffffffe;
288     regs->uregs[13] = infop->start_stack;
289     /* FIXME - what to for failure of get_user()? */
290     get_user_ual(regs->uregs[2], stack + 8); /* envp */
291     get_user_ual(regs->uregs[1], stack + 4); /* envp */
292     /* XXX: it seems that r0 is zeroed after ! */
293     regs->uregs[0] = 0;
294     /* For uClinux PIC binaries.  */
295     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
296     regs->uregs[10] = infop->start_data;
297 
298     /* Support ARM FDPIC.  */
299     if (info_is_fdpic(infop)) {
300         /* As described in the ABI document, r7 points to the loadmap info
301          * prepared by the kernel. If an interpreter is needed, r8 points
302          * to the interpreter loadmap and r9 points to the interpreter
303          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
304          * r9 points to the main program PT_DYNAMIC info.
305          */
306         regs->uregs[7] = infop->loadmap_addr;
307         if (infop->interpreter_loadmap_addr) {
308             /* Executable is dynamically loaded.  */
309             regs->uregs[8] = infop->interpreter_loadmap_addr;
310             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
311         } else {
312             regs->uregs[8] = 0;
313             regs->uregs[9] = infop->pt_dynamic_addr;
314         }
315     }
316 }
317 
318 #define ELF_NREG    18
319 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
320 
321 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
322 {
323     (*regs)[0] = tswapreg(env->regs[0]);
324     (*regs)[1] = tswapreg(env->regs[1]);
325     (*regs)[2] = tswapreg(env->regs[2]);
326     (*regs)[3] = tswapreg(env->regs[3]);
327     (*regs)[4] = tswapreg(env->regs[4]);
328     (*regs)[5] = tswapreg(env->regs[5]);
329     (*regs)[6] = tswapreg(env->regs[6]);
330     (*regs)[7] = tswapreg(env->regs[7]);
331     (*regs)[8] = tswapreg(env->regs[8]);
332     (*regs)[9] = tswapreg(env->regs[9]);
333     (*regs)[10] = tswapreg(env->regs[10]);
334     (*regs)[11] = tswapreg(env->regs[11]);
335     (*regs)[12] = tswapreg(env->regs[12]);
336     (*regs)[13] = tswapreg(env->regs[13]);
337     (*regs)[14] = tswapreg(env->regs[14]);
338     (*regs)[15] = tswapreg(env->regs[15]);
339 
340     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
341     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
342 }
343 
344 #define USE_ELF_CORE_DUMP
345 #define ELF_EXEC_PAGESIZE       4096
346 
347 enum
348 {
349     ARM_HWCAP_ARM_SWP       = 1 << 0,
350     ARM_HWCAP_ARM_HALF      = 1 << 1,
351     ARM_HWCAP_ARM_THUMB     = 1 << 2,
352     ARM_HWCAP_ARM_26BIT     = 1 << 3,
353     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
354     ARM_HWCAP_ARM_FPA       = 1 << 5,
355     ARM_HWCAP_ARM_VFP       = 1 << 6,
356     ARM_HWCAP_ARM_EDSP      = 1 << 7,
357     ARM_HWCAP_ARM_JAVA      = 1 << 8,
358     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
359     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
360     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
361     ARM_HWCAP_ARM_NEON      = 1 << 12,
362     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
363     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
364     ARM_HWCAP_ARM_TLS       = 1 << 15,
365     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
366     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
367     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
368     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
369     ARM_HWCAP_ARM_LPAE      = 1 << 20,
370     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
371 };
372 
373 enum {
374     ARM_HWCAP2_ARM_AES      = 1 << 0,
375     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
376     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
377     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
378     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
379 };
380 
381 /* The commpage only exists for 32 bit kernels */
382 
383 /* Return 1 if the proposed guest space is suitable for the guest.
384  * Return 0 if the proposed guest space isn't suitable, but another
385  * address space should be tried.
386  * Return -1 if there is no way the proposed guest space can be
387  * valid regardless of the base.
388  * The guest code may leave a page mapped and populate it if the
389  * address is suitable.
390  */
391 static int init_guest_commpage(unsigned long guest_base,
392                                unsigned long guest_size)
393 {
394     unsigned long real_start, test_page_addr;
395 
396     /* We need to check that we can force a fault on access to the
397      * commpage at 0xffff0fxx
398      */
399     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
400 
401     /* If the commpage lies within the already allocated guest space,
402      * then there is no way we can allocate it.
403      *
404      * You may be thinking that that this check is redundant because
405      * we already validated the guest size against MAX_RESERVED_VA;
406      * but if qemu_host_page_mask is unusually large, then
407      * test_page_addr may be lower.
408      */
409     if (test_page_addr >= guest_base
410         && test_page_addr < (guest_base + guest_size)) {
411         return -1;
412     }
413 
414     /* Note it needs to be writeable to let us initialise it */
415     real_start = (unsigned long)
416                  mmap((void *)test_page_addr, qemu_host_page_size,
417                      PROT_READ | PROT_WRITE,
418                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
419 
420     /* If we can't map it then try another address */
421     if (real_start == -1ul) {
422         return 0;
423     }
424 
425     if (real_start != test_page_addr) {
426         /* OS didn't put the page where we asked - unmap and reject */
427         munmap((void *)real_start, qemu_host_page_size);
428         return 0;
429     }
430 
431     /* Leave the page mapped
432      * Populate it (mmap should have left it all 0'd)
433      */
434 
435     /* Kernel helper versions */
436     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
437 
438     /* Now it's populated make it RO */
439     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
440         perror("Protecting guest commpage");
441         exit(-1);
442     }
443 
444     return 1; /* All good */
445 }
446 
447 #define ELF_HWCAP get_elf_hwcap()
448 #define ELF_HWCAP2 get_elf_hwcap2()
449 
450 static uint32_t get_elf_hwcap(void)
451 {
452     ARMCPU *cpu = ARM_CPU(thread_cpu);
453     uint32_t hwcaps = 0;
454 
455     hwcaps |= ARM_HWCAP_ARM_SWP;
456     hwcaps |= ARM_HWCAP_ARM_HALF;
457     hwcaps |= ARM_HWCAP_ARM_THUMB;
458     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
459 
460     /* probe for the extra features */
461 #define GET_FEATURE(feat, hwcap) \
462     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
463 
464 #define GET_FEATURE_ID(feat, hwcap) \
465     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
466 
467     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
468     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
469     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
470     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
471     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
472     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
473     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
474     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
475     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
476     GET_FEATURE_ID(arm_div, ARM_HWCAP_ARM_IDIVA);
477     GET_FEATURE_ID(thumb_div, ARM_HWCAP_ARM_IDIVT);
478     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
479      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
480      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
481      * to our VFP_FP16 feature bit.
482      */
483     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
484     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
485 
486     return hwcaps;
487 }
488 
489 static uint32_t get_elf_hwcap2(void)
490 {
491     ARMCPU *cpu = ARM_CPU(thread_cpu);
492     uint32_t hwcaps = 0;
493 
494     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
495     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
496     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
497     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
498     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
499     return hwcaps;
500 }
501 
502 #undef GET_FEATURE
503 #undef GET_FEATURE_ID
504 
505 #define ELF_PLATFORM get_elf_platform()
506 
507 static const char *get_elf_platform(void)
508 {
509     CPUARMState *env = thread_cpu->env_ptr;
510 
511 #ifdef TARGET_WORDS_BIGENDIAN
512 # define END  "b"
513 #else
514 # define END  "l"
515 #endif
516 
517     if (arm_feature(env, ARM_FEATURE_V8)) {
518         return "v8" END;
519     } else if (arm_feature(env, ARM_FEATURE_V7)) {
520         if (arm_feature(env, ARM_FEATURE_M)) {
521             return "v7m" END;
522         } else {
523             return "v7" END;
524         }
525     } else if (arm_feature(env, ARM_FEATURE_V6)) {
526         return "v6" END;
527     } else if (arm_feature(env, ARM_FEATURE_V5)) {
528         return "v5" END;
529     } else {
530         return "v4" END;
531     }
532 
533 #undef END
534 }
535 
536 #else
537 /* 64 bit ARM definitions */
538 #define ELF_START_MMAP 0x80000000
539 
540 #define ELF_ARCH        EM_AARCH64
541 #define ELF_CLASS       ELFCLASS64
542 #ifdef TARGET_WORDS_BIGENDIAN
543 # define ELF_PLATFORM    "aarch64_be"
544 #else
545 # define ELF_PLATFORM    "aarch64"
546 #endif
547 
548 static inline void init_thread(struct target_pt_regs *regs,
549                                struct image_info *infop)
550 {
551     abi_long stack = infop->start_stack;
552     memset(regs, 0, sizeof(*regs));
553 
554     regs->pc = infop->entry & ~0x3ULL;
555     regs->sp = stack;
556 }
557 
558 #define ELF_NREG    34
559 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
560 
561 static void elf_core_copy_regs(target_elf_gregset_t *regs,
562                                const CPUARMState *env)
563 {
564     int i;
565 
566     for (i = 0; i < 32; i++) {
567         (*regs)[i] = tswapreg(env->xregs[i]);
568     }
569     (*regs)[32] = tswapreg(env->pc);
570     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
571 }
572 
573 #define USE_ELF_CORE_DUMP
574 #define ELF_EXEC_PAGESIZE       4096
575 
576 enum {
577     ARM_HWCAP_A64_FP            = 1 << 0,
578     ARM_HWCAP_A64_ASIMD         = 1 << 1,
579     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
580     ARM_HWCAP_A64_AES           = 1 << 3,
581     ARM_HWCAP_A64_PMULL         = 1 << 4,
582     ARM_HWCAP_A64_SHA1          = 1 << 5,
583     ARM_HWCAP_A64_SHA2          = 1 << 6,
584     ARM_HWCAP_A64_CRC32         = 1 << 7,
585     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
586     ARM_HWCAP_A64_FPHP          = 1 << 9,
587     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
588     ARM_HWCAP_A64_CPUID         = 1 << 11,
589     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
590     ARM_HWCAP_A64_JSCVT         = 1 << 13,
591     ARM_HWCAP_A64_FCMA          = 1 << 14,
592     ARM_HWCAP_A64_LRCPC         = 1 << 15,
593     ARM_HWCAP_A64_DCPOP         = 1 << 16,
594     ARM_HWCAP_A64_SHA3          = 1 << 17,
595     ARM_HWCAP_A64_SM3           = 1 << 18,
596     ARM_HWCAP_A64_SM4           = 1 << 19,
597     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
598     ARM_HWCAP_A64_SHA512        = 1 << 21,
599     ARM_HWCAP_A64_SVE           = 1 << 22,
600     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
601     ARM_HWCAP_A64_DIT           = 1 << 24,
602     ARM_HWCAP_A64_USCAT         = 1 << 25,
603     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
604     ARM_HWCAP_A64_FLAGM         = 1 << 27,
605     ARM_HWCAP_A64_SSBS          = 1 << 28,
606     ARM_HWCAP_A64_SB            = 1 << 29,
607     ARM_HWCAP_A64_PACA          = 1 << 30,
608     ARM_HWCAP_A64_PACG          = 1UL << 31,
609 };
610 
611 #define ELF_HWCAP get_elf_hwcap()
612 
613 static uint32_t get_elf_hwcap(void)
614 {
615     ARMCPU *cpu = ARM_CPU(thread_cpu);
616     uint32_t hwcaps = 0;
617 
618     hwcaps |= ARM_HWCAP_A64_FP;
619     hwcaps |= ARM_HWCAP_A64_ASIMD;
620     hwcaps |= ARM_HWCAP_A64_CPUID;
621 
622     /* probe for the extra features */
623 #define GET_FEATURE_ID(feat, hwcap) \
624     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
625 
626     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
627     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
628     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
629     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
630     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
631     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
632     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
633     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
634     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
635     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
636     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
637     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
638     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
639     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
640     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
641     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
642     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
643     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
644     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
645     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
646 
647 #undef GET_FEATURE_ID
648 
649     return hwcaps;
650 }
651 
652 #endif /* not TARGET_AARCH64 */
653 #endif /* TARGET_ARM */
654 
655 #ifdef TARGET_SPARC
656 #ifdef TARGET_SPARC64
657 
658 #define ELF_START_MMAP 0x80000000
659 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
660                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
661 #ifndef TARGET_ABI32
662 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
663 #else
664 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
665 #endif
666 
667 #define ELF_CLASS   ELFCLASS64
668 #define ELF_ARCH    EM_SPARCV9
669 
670 #define STACK_BIAS              2047
671 
672 static inline void init_thread(struct target_pt_regs *regs,
673                                struct image_info *infop)
674 {
675 #ifndef TARGET_ABI32
676     regs->tstate = 0;
677 #endif
678     regs->pc = infop->entry;
679     regs->npc = regs->pc + 4;
680     regs->y = 0;
681 #ifdef TARGET_ABI32
682     regs->u_regs[14] = infop->start_stack - 16 * 4;
683 #else
684     if (personality(infop->personality) == PER_LINUX32)
685         regs->u_regs[14] = infop->start_stack - 16 * 4;
686     else
687         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
688 #endif
689 }
690 
691 #else
692 #define ELF_START_MMAP 0x80000000
693 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
694                     | HWCAP_SPARC_MULDIV)
695 
696 #define ELF_CLASS   ELFCLASS32
697 #define ELF_ARCH    EM_SPARC
698 
699 static inline void init_thread(struct target_pt_regs *regs,
700                                struct image_info *infop)
701 {
702     regs->psr = 0;
703     regs->pc = infop->entry;
704     regs->npc = regs->pc + 4;
705     regs->y = 0;
706     regs->u_regs[14] = infop->start_stack - 16 * 4;
707 }
708 
709 #endif
710 #endif
711 
712 #ifdef TARGET_PPC
713 
714 #define ELF_MACHINE    PPC_ELF_MACHINE
715 #define ELF_START_MMAP 0x80000000
716 
717 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
718 
719 #define elf_check_arch(x) ( (x) == EM_PPC64 )
720 
721 #define ELF_CLASS       ELFCLASS64
722 
723 #else
724 
725 #define ELF_CLASS       ELFCLASS32
726 
727 #endif
728 
729 #define ELF_ARCH        EM_PPC
730 
731 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
732    See arch/powerpc/include/asm/cputable.h.  */
733 enum {
734     QEMU_PPC_FEATURE_32 = 0x80000000,
735     QEMU_PPC_FEATURE_64 = 0x40000000,
736     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
737     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
738     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
739     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
740     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
741     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
742     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
743     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
744     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
745     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
746     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
747     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
748     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
749     QEMU_PPC_FEATURE_CELL = 0x00010000,
750     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
751     QEMU_PPC_FEATURE_SMT = 0x00004000,
752     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
753     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
754     QEMU_PPC_FEATURE_PA6T = 0x00000800,
755     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
756     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
757     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
758     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
759     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
760 
761     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
762     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
763 
764     /* Feature definitions in AT_HWCAP2.  */
765     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
766     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
767     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
768     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
769     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
770     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
771     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
772     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
773     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
774     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
775     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
776     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
777     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
778 };
779 
780 #define ELF_HWCAP get_elf_hwcap()
781 
782 static uint32_t get_elf_hwcap(void)
783 {
784     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
785     uint32_t features = 0;
786 
787     /* We don't have to be terribly complete here; the high points are
788        Altivec/FP/SPE support.  Anything else is just a bonus.  */
789 #define GET_FEATURE(flag, feature)                                      \
790     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
791 #define GET_FEATURE2(flags, feature) \
792     do { \
793         if ((cpu->env.insns_flags2 & flags) == flags) { \
794             features |= feature; \
795         } \
796     } while (0)
797     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
798     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
799     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
800     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
801     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
802     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
803     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
804     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
805     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
806     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
807     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
808                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
809                   QEMU_PPC_FEATURE_ARCH_2_06);
810 #undef GET_FEATURE
811 #undef GET_FEATURE2
812 
813     return features;
814 }
815 
816 #define ELF_HWCAP2 get_elf_hwcap2()
817 
818 static uint32_t get_elf_hwcap2(void)
819 {
820     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
821     uint32_t features = 0;
822 
823 #define GET_FEATURE(flag, feature)                                      \
824     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
825 #define GET_FEATURE2(flag, feature)                                      \
826     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
827 
828     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
829     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
830     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
831                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
832                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
833     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
834                  QEMU_PPC_FEATURE2_DARN);
835 
836 #undef GET_FEATURE
837 #undef GET_FEATURE2
838 
839     return features;
840 }
841 
842 /*
843  * The requirements here are:
844  * - keep the final alignment of sp (sp & 0xf)
845  * - make sure the 32-bit value at the first 16 byte aligned position of
846  *   AUXV is greater than 16 for glibc compatibility.
847  *   AT_IGNOREPPC is used for that.
848  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
849  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
850  */
851 #define DLINFO_ARCH_ITEMS       5
852 #define ARCH_DLINFO                                     \
853     do {                                                \
854         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
855         /*                                              \
856          * Handle glibc compatibility: these magic entries must \
857          * be at the lowest addresses in the final auxv.        \
858          */                                             \
859         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
860         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
861         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
862         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
863         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
864     } while (0)
865 
866 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
867 {
868     _regs->gpr[1] = infop->start_stack;
869 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
870     if (get_ppc64_abi(infop) < 2) {
871         uint64_t val;
872         get_user_u64(val, infop->entry + 8);
873         _regs->gpr[2] = val + infop->load_bias;
874         get_user_u64(val, infop->entry);
875         infop->entry = val + infop->load_bias;
876     } else {
877         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
878     }
879 #endif
880     _regs->nip = infop->entry;
881 }
882 
883 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
884 #define ELF_NREG 48
885 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
886 
887 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
888 {
889     int i;
890     target_ulong ccr = 0;
891 
892     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
893         (*regs)[i] = tswapreg(env->gpr[i]);
894     }
895 
896     (*regs)[32] = tswapreg(env->nip);
897     (*regs)[33] = tswapreg(env->msr);
898     (*regs)[35] = tswapreg(env->ctr);
899     (*regs)[36] = tswapreg(env->lr);
900     (*regs)[37] = tswapreg(env->xer);
901 
902     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
903         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
904     }
905     (*regs)[38] = tswapreg(ccr);
906 }
907 
908 #define USE_ELF_CORE_DUMP
909 #define ELF_EXEC_PAGESIZE       4096
910 
911 #endif
912 
913 #ifdef TARGET_MIPS
914 
915 #define ELF_START_MMAP 0x80000000
916 
917 #ifdef TARGET_MIPS64
918 #define ELF_CLASS   ELFCLASS64
919 #else
920 #define ELF_CLASS   ELFCLASS32
921 #endif
922 #define ELF_ARCH    EM_MIPS
923 
924 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
925 
926 static inline void init_thread(struct target_pt_regs *regs,
927                                struct image_info *infop)
928 {
929     regs->cp0_status = 2 << CP0St_KSU;
930     regs->cp0_epc = infop->entry;
931     regs->regs[29] = infop->start_stack;
932 }
933 
934 /* See linux kernel: arch/mips/include/asm/elf.h.  */
935 #define ELF_NREG 45
936 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
937 
938 /* See linux kernel: arch/mips/include/asm/reg.h.  */
939 enum {
940 #ifdef TARGET_MIPS64
941     TARGET_EF_R0 = 0,
942 #else
943     TARGET_EF_R0 = 6,
944 #endif
945     TARGET_EF_R26 = TARGET_EF_R0 + 26,
946     TARGET_EF_R27 = TARGET_EF_R0 + 27,
947     TARGET_EF_LO = TARGET_EF_R0 + 32,
948     TARGET_EF_HI = TARGET_EF_R0 + 33,
949     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
950     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
951     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
952     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
953 };
954 
955 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
956 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
957 {
958     int i;
959 
960     for (i = 0; i < TARGET_EF_R0; i++) {
961         (*regs)[i] = 0;
962     }
963     (*regs)[TARGET_EF_R0] = 0;
964 
965     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
966         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
967     }
968 
969     (*regs)[TARGET_EF_R26] = 0;
970     (*regs)[TARGET_EF_R27] = 0;
971     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
972     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
973     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
974     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
975     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
976     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
977 }
978 
979 #define USE_ELF_CORE_DUMP
980 #define ELF_EXEC_PAGESIZE        4096
981 
982 /* See arch/mips/include/uapi/asm/hwcap.h.  */
983 enum {
984     HWCAP_MIPS_R6           = (1 << 0),
985     HWCAP_MIPS_MSA          = (1 << 1),
986 };
987 
988 #define ELF_HWCAP get_elf_hwcap()
989 
990 static uint32_t get_elf_hwcap(void)
991 {
992     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
993     uint32_t hwcaps = 0;
994 
995 #define GET_FEATURE(flag, hwcap) \
996     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
997 
998     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
999     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
1000 
1001 #undef GET_FEATURE
1002 
1003     return hwcaps;
1004 }
1005 
1006 #endif /* TARGET_MIPS */
1007 
1008 #ifdef TARGET_MICROBLAZE
1009 
1010 #define ELF_START_MMAP 0x80000000
1011 
1012 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1013 
1014 #define ELF_CLASS   ELFCLASS32
1015 #define ELF_ARCH    EM_MICROBLAZE
1016 
1017 static inline void init_thread(struct target_pt_regs *regs,
1018                                struct image_info *infop)
1019 {
1020     regs->pc = infop->entry;
1021     regs->r1 = infop->start_stack;
1022 
1023 }
1024 
1025 #define ELF_EXEC_PAGESIZE        4096
1026 
1027 #define USE_ELF_CORE_DUMP
1028 #define ELF_NREG 38
1029 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1030 
1031 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1032 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1033 {
1034     int i, pos = 0;
1035 
1036     for (i = 0; i < 32; i++) {
1037         (*regs)[pos++] = tswapreg(env->regs[i]);
1038     }
1039 
1040     for (i = 0; i < 6; i++) {
1041         (*regs)[pos++] = tswapreg(env->sregs[i]);
1042     }
1043 }
1044 
1045 #endif /* TARGET_MICROBLAZE */
1046 
1047 #ifdef TARGET_NIOS2
1048 
1049 #define ELF_START_MMAP 0x80000000
1050 
1051 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1052 
1053 #define ELF_CLASS   ELFCLASS32
1054 #define ELF_ARCH    EM_ALTERA_NIOS2
1055 
1056 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1057 {
1058     regs->ea = infop->entry;
1059     regs->sp = infop->start_stack;
1060     regs->estatus = 0x3;
1061 }
1062 
1063 #define ELF_EXEC_PAGESIZE        4096
1064 
1065 #define USE_ELF_CORE_DUMP
1066 #define ELF_NREG 49
1067 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1068 
1069 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1070 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1071                                const CPUNios2State *env)
1072 {
1073     int i;
1074 
1075     (*regs)[0] = -1;
1076     for (i = 1; i < 8; i++)    /* r0-r7 */
1077         (*regs)[i] = tswapreg(env->regs[i + 7]);
1078 
1079     for (i = 8; i < 16; i++)   /* r8-r15 */
1080         (*regs)[i] = tswapreg(env->regs[i - 8]);
1081 
1082     for (i = 16; i < 24; i++)  /* r16-r23 */
1083         (*regs)[i] = tswapreg(env->regs[i + 7]);
1084     (*regs)[24] = -1;    /* R_ET */
1085     (*regs)[25] = -1;    /* R_BT */
1086     (*regs)[26] = tswapreg(env->regs[R_GP]);
1087     (*regs)[27] = tswapreg(env->regs[R_SP]);
1088     (*regs)[28] = tswapreg(env->regs[R_FP]);
1089     (*regs)[29] = tswapreg(env->regs[R_EA]);
1090     (*regs)[30] = -1;    /* R_SSTATUS */
1091     (*regs)[31] = tswapreg(env->regs[R_RA]);
1092 
1093     (*regs)[32] = tswapreg(env->regs[R_PC]);
1094 
1095     (*regs)[33] = -1; /* R_STATUS */
1096     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1097 
1098     for (i = 35; i < 49; i++)    /* ... */
1099         (*regs)[i] = -1;
1100 }
1101 
1102 #endif /* TARGET_NIOS2 */
1103 
1104 #ifdef TARGET_OPENRISC
1105 
1106 #define ELF_START_MMAP 0x08000000
1107 
1108 #define ELF_ARCH EM_OPENRISC
1109 #define ELF_CLASS ELFCLASS32
1110 #define ELF_DATA  ELFDATA2MSB
1111 
1112 static inline void init_thread(struct target_pt_regs *regs,
1113                                struct image_info *infop)
1114 {
1115     regs->pc = infop->entry;
1116     regs->gpr[1] = infop->start_stack;
1117 }
1118 
1119 #define USE_ELF_CORE_DUMP
1120 #define ELF_EXEC_PAGESIZE 8192
1121 
1122 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1123 #define ELF_NREG 34 /* gprs and pc, sr */
1124 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1125 
1126 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1127                                const CPUOpenRISCState *env)
1128 {
1129     int i;
1130 
1131     for (i = 0; i < 32; i++) {
1132         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1133     }
1134     (*regs)[32] = tswapreg(env->pc);
1135     (*regs)[33] = tswapreg(cpu_get_sr(env));
1136 }
1137 #define ELF_HWCAP 0
1138 #define ELF_PLATFORM NULL
1139 
1140 #endif /* TARGET_OPENRISC */
1141 
1142 #ifdef TARGET_SH4
1143 
1144 #define ELF_START_MMAP 0x80000000
1145 
1146 #define ELF_CLASS ELFCLASS32
1147 #define ELF_ARCH  EM_SH
1148 
1149 static inline void init_thread(struct target_pt_regs *regs,
1150                                struct image_info *infop)
1151 {
1152     /* Check other registers XXXXX */
1153     regs->pc = infop->entry;
1154     regs->regs[15] = infop->start_stack;
1155 }
1156 
1157 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1158 #define ELF_NREG 23
1159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1160 
1161 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1162 enum {
1163     TARGET_REG_PC = 16,
1164     TARGET_REG_PR = 17,
1165     TARGET_REG_SR = 18,
1166     TARGET_REG_GBR = 19,
1167     TARGET_REG_MACH = 20,
1168     TARGET_REG_MACL = 21,
1169     TARGET_REG_SYSCALL = 22
1170 };
1171 
1172 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1173                                       const CPUSH4State *env)
1174 {
1175     int i;
1176 
1177     for (i = 0; i < 16; i++) {
1178         (*regs)[i] = tswapreg(env->gregs[i]);
1179     }
1180 
1181     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1182     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1183     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1184     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1185     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1186     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1187     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1188 }
1189 
1190 #define USE_ELF_CORE_DUMP
1191 #define ELF_EXEC_PAGESIZE        4096
1192 
1193 enum {
1194     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1195     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1196     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1197     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1198     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1199     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1200     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1201     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1202     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1203     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1204 };
1205 
1206 #define ELF_HWCAP get_elf_hwcap()
1207 
1208 static uint32_t get_elf_hwcap(void)
1209 {
1210     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1211     uint32_t hwcap = 0;
1212 
1213     hwcap |= SH_CPU_HAS_FPU;
1214 
1215     if (cpu->env.features & SH_FEATURE_SH4A) {
1216         hwcap |= SH_CPU_HAS_LLSC;
1217     }
1218 
1219     return hwcap;
1220 }
1221 
1222 #endif
1223 
1224 #ifdef TARGET_CRIS
1225 
1226 #define ELF_START_MMAP 0x80000000
1227 
1228 #define ELF_CLASS ELFCLASS32
1229 #define ELF_ARCH  EM_CRIS
1230 
1231 static inline void init_thread(struct target_pt_regs *regs,
1232                                struct image_info *infop)
1233 {
1234     regs->erp = infop->entry;
1235 }
1236 
1237 #define ELF_EXEC_PAGESIZE        8192
1238 
1239 #endif
1240 
1241 #ifdef TARGET_M68K
1242 
1243 #define ELF_START_MMAP 0x80000000
1244 
1245 #define ELF_CLASS       ELFCLASS32
1246 #define ELF_ARCH        EM_68K
1247 
1248 /* ??? Does this need to do anything?
1249    #define ELF_PLAT_INIT(_r) */
1250 
1251 static inline void init_thread(struct target_pt_regs *regs,
1252                                struct image_info *infop)
1253 {
1254     regs->usp = infop->start_stack;
1255     regs->sr = 0;
1256     regs->pc = infop->entry;
1257 }
1258 
1259 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1260 #define ELF_NREG 20
1261 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1262 
1263 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1264 {
1265     (*regs)[0] = tswapreg(env->dregs[1]);
1266     (*regs)[1] = tswapreg(env->dregs[2]);
1267     (*regs)[2] = tswapreg(env->dregs[3]);
1268     (*regs)[3] = tswapreg(env->dregs[4]);
1269     (*regs)[4] = tswapreg(env->dregs[5]);
1270     (*regs)[5] = tswapreg(env->dregs[6]);
1271     (*regs)[6] = tswapreg(env->dregs[7]);
1272     (*regs)[7] = tswapreg(env->aregs[0]);
1273     (*regs)[8] = tswapreg(env->aregs[1]);
1274     (*regs)[9] = tswapreg(env->aregs[2]);
1275     (*regs)[10] = tswapreg(env->aregs[3]);
1276     (*regs)[11] = tswapreg(env->aregs[4]);
1277     (*regs)[12] = tswapreg(env->aregs[5]);
1278     (*regs)[13] = tswapreg(env->aregs[6]);
1279     (*regs)[14] = tswapreg(env->dregs[0]);
1280     (*regs)[15] = tswapreg(env->aregs[7]);
1281     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1282     (*regs)[17] = tswapreg(env->sr);
1283     (*regs)[18] = tswapreg(env->pc);
1284     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1285 }
1286 
1287 #define USE_ELF_CORE_DUMP
1288 #define ELF_EXEC_PAGESIZE       8192
1289 
1290 #endif
1291 
1292 #ifdef TARGET_ALPHA
1293 
1294 #define ELF_START_MMAP (0x30000000000ULL)
1295 
1296 #define ELF_CLASS      ELFCLASS64
1297 #define ELF_ARCH       EM_ALPHA
1298 
1299 static inline void init_thread(struct target_pt_regs *regs,
1300                                struct image_info *infop)
1301 {
1302     regs->pc = infop->entry;
1303     regs->ps = 8;
1304     regs->usp = infop->start_stack;
1305 }
1306 
1307 #define ELF_EXEC_PAGESIZE        8192
1308 
1309 #endif /* TARGET_ALPHA */
1310 
1311 #ifdef TARGET_S390X
1312 
1313 #define ELF_START_MMAP (0x20000000000ULL)
1314 
1315 #define ELF_CLASS	ELFCLASS64
1316 #define ELF_DATA	ELFDATA2MSB
1317 #define ELF_ARCH	EM_S390
1318 
1319 #include "elf.h"
1320 
1321 #define ELF_HWCAP get_elf_hwcap()
1322 
1323 #define GET_FEATURE(_feat, _hwcap) \
1324     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1325 
1326 static uint32_t get_elf_hwcap(void)
1327 {
1328     /*
1329      * Let's assume we always have esan3 and zarch.
1330      * 31-bit processes can use 64-bit registers (high gprs).
1331      */
1332     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1333 
1334     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1335     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1336     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1337     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1338     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1339         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1340         hwcap |= HWCAP_S390_ETF3EH;
1341     }
1342     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1343 
1344     return hwcap;
1345 }
1346 
1347 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1348 {
1349     regs->psw.addr = infop->entry;
1350     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1351     regs->gprs[15] = infop->start_stack;
1352 }
1353 
1354 #endif /* TARGET_S390X */
1355 
1356 #ifdef TARGET_TILEGX
1357 
1358 /* 42 bits real used address, a half for user mode */
1359 #define ELF_START_MMAP (0x00000020000000000ULL)
1360 
1361 #define elf_check_arch(x) ((x) == EM_TILEGX)
1362 
1363 #define ELF_CLASS   ELFCLASS64
1364 #define ELF_DATA    ELFDATA2LSB
1365 #define ELF_ARCH    EM_TILEGX
1366 
1367 static inline void init_thread(struct target_pt_regs *regs,
1368                                struct image_info *infop)
1369 {
1370     regs->pc = infop->entry;
1371     regs->sp = infop->start_stack;
1372 
1373 }
1374 
1375 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1376 
1377 #endif /* TARGET_TILEGX */
1378 
1379 #ifdef TARGET_RISCV
1380 
1381 #define ELF_START_MMAP 0x80000000
1382 #define ELF_ARCH  EM_RISCV
1383 
1384 #ifdef TARGET_RISCV32
1385 #define ELF_CLASS ELFCLASS32
1386 #else
1387 #define ELF_CLASS ELFCLASS64
1388 #endif
1389 
1390 static inline void init_thread(struct target_pt_regs *regs,
1391                                struct image_info *infop)
1392 {
1393     regs->sepc = infop->entry;
1394     regs->sp = infop->start_stack;
1395 }
1396 
1397 #define ELF_EXEC_PAGESIZE 4096
1398 
1399 #endif /* TARGET_RISCV */
1400 
1401 #ifdef TARGET_HPPA
1402 
1403 #define ELF_START_MMAP  0x80000000
1404 #define ELF_CLASS       ELFCLASS32
1405 #define ELF_ARCH        EM_PARISC
1406 #define ELF_PLATFORM    "PARISC"
1407 #define STACK_GROWS_DOWN 0
1408 #define STACK_ALIGNMENT  64
1409 
1410 static inline void init_thread(struct target_pt_regs *regs,
1411                                struct image_info *infop)
1412 {
1413     regs->iaoq[0] = infop->entry;
1414     regs->iaoq[1] = infop->entry + 4;
1415     regs->gr[23] = 0;
1416     regs->gr[24] = infop->arg_start;
1417     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1418     /* The top-of-stack contains a linkage buffer.  */
1419     regs->gr[30] = infop->start_stack + 64;
1420     regs->gr[31] = infop->entry;
1421 }
1422 
1423 #endif /* TARGET_HPPA */
1424 
1425 #ifdef TARGET_XTENSA
1426 
1427 #define ELF_START_MMAP 0x20000000
1428 
1429 #define ELF_CLASS       ELFCLASS32
1430 #define ELF_ARCH        EM_XTENSA
1431 
1432 static inline void init_thread(struct target_pt_regs *regs,
1433                                struct image_info *infop)
1434 {
1435     regs->windowbase = 0;
1436     regs->windowstart = 1;
1437     regs->areg[1] = infop->start_stack;
1438     regs->pc = infop->entry;
1439 }
1440 
1441 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1442 #define ELF_NREG 128
1443 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1444 
1445 enum {
1446     TARGET_REG_PC,
1447     TARGET_REG_PS,
1448     TARGET_REG_LBEG,
1449     TARGET_REG_LEND,
1450     TARGET_REG_LCOUNT,
1451     TARGET_REG_SAR,
1452     TARGET_REG_WINDOWSTART,
1453     TARGET_REG_WINDOWBASE,
1454     TARGET_REG_THREADPTR,
1455     TARGET_REG_AR0 = 64,
1456 };
1457 
1458 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1459                                const CPUXtensaState *env)
1460 {
1461     unsigned i;
1462 
1463     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1464     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1465     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1466     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1467     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1468     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1469     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1470     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1471     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1472     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1473     for (i = 0; i < env->config->nareg; ++i) {
1474         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1475     }
1476 }
1477 
1478 #define USE_ELF_CORE_DUMP
1479 #define ELF_EXEC_PAGESIZE       4096
1480 
1481 #endif /* TARGET_XTENSA */
1482 
1483 #ifndef ELF_PLATFORM
1484 #define ELF_PLATFORM (NULL)
1485 #endif
1486 
1487 #ifndef ELF_MACHINE
1488 #define ELF_MACHINE ELF_ARCH
1489 #endif
1490 
1491 #ifndef elf_check_arch
1492 #define elf_check_arch(x) ((x) == ELF_ARCH)
1493 #endif
1494 
1495 #ifndef ELF_HWCAP
1496 #define ELF_HWCAP 0
1497 #endif
1498 
1499 #ifndef STACK_GROWS_DOWN
1500 #define STACK_GROWS_DOWN 1
1501 #endif
1502 
1503 #ifndef STACK_ALIGNMENT
1504 #define STACK_ALIGNMENT 16
1505 #endif
1506 
1507 #ifdef TARGET_ABI32
1508 #undef ELF_CLASS
1509 #define ELF_CLASS ELFCLASS32
1510 #undef bswaptls
1511 #define bswaptls(ptr) bswap32s(ptr)
1512 #endif
1513 
1514 #include "elf.h"
1515 
1516 struct exec
1517 {
1518     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1519     unsigned int a_text;   /* length of text, in bytes */
1520     unsigned int a_data;   /* length of data, in bytes */
1521     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1522     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1523     unsigned int a_entry;  /* start address */
1524     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1525     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1526 };
1527 
1528 
1529 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1530 #define OMAGIC 0407
1531 #define NMAGIC 0410
1532 #define ZMAGIC 0413
1533 #define QMAGIC 0314
1534 
1535 /* Necessary parameters */
1536 #define TARGET_ELF_EXEC_PAGESIZE \
1537         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1538          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1539 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1540 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1541                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1542 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1543 
1544 #define DLINFO_ITEMS 15
1545 
1546 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1547 {
1548     memcpy(to, from, n);
1549 }
1550 
1551 #ifdef BSWAP_NEEDED
1552 static void bswap_ehdr(struct elfhdr *ehdr)
1553 {
1554     bswap16s(&ehdr->e_type);            /* Object file type */
1555     bswap16s(&ehdr->e_machine);         /* Architecture */
1556     bswap32s(&ehdr->e_version);         /* Object file version */
1557     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1558     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1559     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1560     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1561     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1562     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1563     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1564     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1565     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1566     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1567 }
1568 
1569 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1570 {
1571     int i;
1572     for (i = 0; i < phnum; ++i, ++phdr) {
1573         bswap32s(&phdr->p_type);        /* Segment type */
1574         bswap32s(&phdr->p_flags);       /* Segment flags */
1575         bswaptls(&phdr->p_offset);      /* Segment file offset */
1576         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1577         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1578         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1579         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1580         bswaptls(&phdr->p_align);       /* Segment alignment */
1581     }
1582 }
1583 
1584 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1585 {
1586     int i;
1587     for (i = 0; i < shnum; ++i, ++shdr) {
1588         bswap32s(&shdr->sh_name);
1589         bswap32s(&shdr->sh_type);
1590         bswaptls(&shdr->sh_flags);
1591         bswaptls(&shdr->sh_addr);
1592         bswaptls(&shdr->sh_offset);
1593         bswaptls(&shdr->sh_size);
1594         bswap32s(&shdr->sh_link);
1595         bswap32s(&shdr->sh_info);
1596         bswaptls(&shdr->sh_addralign);
1597         bswaptls(&shdr->sh_entsize);
1598     }
1599 }
1600 
1601 static void bswap_sym(struct elf_sym *sym)
1602 {
1603     bswap32s(&sym->st_name);
1604     bswaptls(&sym->st_value);
1605     bswaptls(&sym->st_size);
1606     bswap16s(&sym->st_shndx);
1607 }
1608 
1609 #ifdef TARGET_MIPS
1610 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1611 {
1612     bswap16s(&abiflags->version);
1613     bswap32s(&abiflags->ases);
1614     bswap32s(&abiflags->isa_ext);
1615     bswap32s(&abiflags->flags1);
1616     bswap32s(&abiflags->flags2);
1617 }
1618 #endif
1619 #else
1620 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1621 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1622 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1623 static inline void bswap_sym(struct elf_sym *sym) { }
1624 #ifdef TARGET_MIPS
1625 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1626 #endif
1627 #endif
1628 
1629 #ifdef USE_ELF_CORE_DUMP
1630 static int elf_core_dump(int, const CPUArchState *);
1631 #endif /* USE_ELF_CORE_DUMP */
1632 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1633 
1634 /* Verify the portions of EHDR within E_IDENT for the target.
1635    This can be performed before bswapping the entire header.  */
1636 static bool elf_check_ident(struct elfhdr *ehdr)
1637 {
1638     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1639             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1640             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1641             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1642             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1643             && ehdr->e_ident[EI_DATA] == ELF_DATA
1644             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1645 }
1646 
1647 /* Verify the portions of EHDR outside of E_IDENT for the target.
1648    This has to wait until after bswapping the header.  */
1649 static bool elf_check_ehdr(struct elfhdr *ehdr)
1650 {
1651     return (elf_check_arch(ehdr->e_machine)
1652             && ehdr->e_ehsize == sizeof(struct elfhdr)
1653             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1654             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1655 }
1656 
1657 /*
1658  * 'copy_elf_strings()' copies argument/envelope strings from user
1659  * memory to free pages in kernel mem. These are in a format ready
1660  * to be put directly into the top of new user memory.
1661  *
1662  */
1663 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1664                                   abi_ulong p, abi_ulong stack_limit)
1665 {
1666     char *tmp;
1667     int len, i;
1668     abi_ulong top = p;
1669 
1670     if (!p) {
1671         return 0;       /* bullet-proofing */
1672     }
1673 
1674     if (STACK_GROWS_DOWN) {
1675         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1676         for (i = argc - 1; i >= 0; --i) {
1677             tmp = argv[i];
1678             if (!tmp) {
1679                 fprintf(stderr, "VFS: argc is wrong");
1680                 exit(-1);
1681             }
1682             len = strlen(tmp) + 1;
1683             tmp += len;
1684 
1685             if (len > (p - stack_limit)) {
1686                 return 0;
1687             }
1688             while (len) {
1689                 int bytes_to_copy = (len > offset) ? offset : len;
1690                 tmp -= bytes_to_copy;
1691                 p -= bytes_to_copy;
1692                 offset -= bytes_to_copy;
1693                 len -= bytes_to_copy;
1694 
1695                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1696 
1697                 if (offset == 0) {
1698                     memcpy_to_target(p, scratch, top - p);
1699                     top = p;
1700                     offset = TARGET_PAGE_SIZE;
1701                 }
1702             }
1703         }
1704         if (p != top) {
1705             memcpy_to_target(p, scratch + offset, top - p);
1706         }
1707     } else {
1708         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1709         for (i = 0; i < argc; ++i) {
1710             tmp = argv[i];
1711             if (!tmp) {
1712                 fprintf(stderr, "VFS: argc is wrong");
1713                 exit(-1);
1714             }
1715             len = strlen(tmp) + 1;
1716             if (len > (stack_limit - p)) {
1717                 return 0;
1718             }
1719             while (len) {
1720                 int bytes_to_copy = (len > remaining) ? remaining : len;
1721 
1722                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1723 
1724                 tmp += bytes_to_copy;
1725                 remaining -= bytes_to_copy;
1726                 p += bytes_to_copy;
1727                 len -= bytes_to_copy;
1728 
1729                 if (remaining == 0) {
1730                     memcpy_to_target(top, scratch, p - top);
1731                     top = p;
1732                     remaining = TARGET_PAGE_SIZE;
1733                 }
1734             }
1735         }
1736         if (p != top) {
1737             memcpy_to_target(top, scratch, p - top);
1738         }
1739     }
1740 
1741     return p;
1742 }
1743 
1744 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1745  * argument/environment space. Newer kernels (>2.6.33) allow more,
1746  * dependent on stack size, but guarantee at least 32 pages for
1747  * backwards compatibility.
1748  */
1749 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1750 
1751 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1752                                  struct image_info *info)
1753 {
1754     abi_ulong size, error, guard;
1755 
1756     size = guest_stack_size;
1757     if (size < STACK_LOWER_LIMIT) {
1758         size = STACK_LOWER_LIMIT;
1759     }
1760     guard = TARGET_PAGE_SIZE;
1761     if (guard < qemu_real_host_page_size) {
1762         guard = qemu_real_host_page_size;
1763     }
1764 
1765     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1766                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1767     if (error == -1) {
1768         perror("mmap stack");
1769         exit(-1);
1770     }
1771 
1772     /* We reserve one extra page at the top of the stack as guard.  */
1773     if (STACK_GROWS_DOWN) {
1774         target_mprotect(error, guard, PROT_NONE);
1775         info->stack_limit = error + guard;
1776         return info->stack_limit + size - sizeof(void *);
1777     } else {
1778         target_mprotect(error + size, guard, PROT_NONE);
1779         info->stack_limit = error + size;
1780         return error;
1781     }
1782 }
1783 
1784 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1785    after the data section (i.e. bss).  */
1786 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1787 {
1788     uintptr_t host_start, host_map_start, host_end;
1789 
1790     last_bss = TARGET_PAGE_ALIGN(last_bss);
1791 
1792     /* ??? There is confusion between qemu_real_host_page_size and
1793        qemu_host_page_size here and elsewhere in target_mmap, which
1794        may lead to the end of the data section mapping from the file
1795        not being mapped.  At least there was an explicit test and
1796        comment for that here, suggesting that "the file size must
1797        be known".  The comment probably pre-dates the introduction
1798        of the fstat system call in target_mmap which does in fact
1799        find out the size.  What isn't clear is if the workaround
1800        here is still actually needed.  For now, continue with it,
1801        but merge it with the "normal" mmap that would allocate the bss.  */
1802 
1803     host_start = (uintptr_t) g2h(elf_bss);
1804     host_end = (uintptr_t) g2h(last_bss);
1805     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1806 
1807     if (host_map_start < host_end) {
1808         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1809                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1810         if (p == MAP_FAILED) {
1811             perror("cannot mmap brk");
1812             exit(-1);
1813         }
1814     }
1815 
1816     /* Ensure that the bss page(s) are valid */
1817     if ((page_get_flags(last_bss-1) & prot) != prot) {
1818         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1819     }
1820 
1821     if (host_start < host_map_start) {
1822         memset((void *)host_start, 0, host_map_start - host_start);
1823     }
1824 }
1825 
1826 #ifdef TARGET_ARM
1827 static int elf_is_fdpic(struct elfhdr *exec)
1828 {
1829     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1830 }
1831 #else
1832 /* Default implementation, always false.  */
1833 static int elf_is_fdpic(struct elfhdr *exec)
1834 {
1835     return 0;
1836 }
1837 #endif
1838 
1839 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1840 {
1841     uint16_t n;
1842     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1843 
1844     /* elf32_fdpic_loadseg */
1845     n = info->nsegs;
1846     while (n--) {
1847         sp -= 12;
1848         put_user_u32(loadsegs[n].addr, sp+0);
1849         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1850         put_user_u32(loadsegs[n].p_memsz, sp+8);
1851     }
1852 
1853     /* elf32_fdpic_loadmap */
1854     sp -= 4;
1855     put_user_u16(0, sp+0); /* version */
1856     put_user_u16(info->nsegs, sp+2); /* nsegs */
1857 
1858     info->personality = PER_LINUX_FDPIC;
1859     info->loadmap_addr = sp;
1860 
1861     return sp;
1862 }
1863 
1864 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1865                                    struct elfhdr *exec,
1866                                    struct image_info *info,
1867                                    struct image_info *interp_info)
1868 {
1869     abi_ulong sp;
1870     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1871     int size;
1872     int i;
1873     abi_ulong u_rand_bytes;
1874     uint8_t k_rand_bytes[16];
1875     abi_ulong u_platform;
1876     const char *k_platform;
1877     const int n = sizeof(elf_addr_t);
1878 
1879     sp = p;
1880 
1881     /* Needs to be before we load the env/argc/... */
1882     if (elf_is_fdpic(exec)) {
1883         /* Need 4 byte alignment for these structs */
1884         sp &= ~3;
1885         sp = loader_build_fdpic_loadmap(info, sp);
1886         info->other_info = interp_info;
1887         if (interp_info) {
1888             interp_info->other_info = info;
1889             sp = loader_build_fdpic_loadmap(interp_info, sp);
1890             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1891             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1892         } else {
1893             info->interpreter_loadmap_addr = 0;
1894             info->interpreter_pt_dynamic_addr = 0;
1895         }
1896     }
1897 
1898     u_platform = 0;
1899     k_platform = ELF_PLATFORM;
1900     if (k_platform) {
1901         size_t len = strlen(k_platform) + 1;
1902         if (STACK_GROWS_DOWN) {
1903             sp -= (len + n - 1) & ~(n - 1);
1904             u_platform = sp;
1905             /* FIXME - check return value of memcpy_to_target() for failure */
1906             memcpy_to_target(sp, k_platform, len);
1907         } else {
1908             memcpy_to_target(sp, k_platform, len);
1909             u_platform = sp;
1910             sp += len + 1;
1911         }
1912     }
1913 
1914     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1915      * the argv and envp pointers.
1916      */
1917     if (STACK_GROWS_DOWN) {
1918         sp = QEMU_ALIGN_DOWN(sp, 16);
1919     } else {
1920         sp = QEMU_ALIGN_UP(sp, 16);
1921     }
1922 
1923     /*
1924      * Generate 16 random bytes for userspace PRNG seeding.
1925      */
1926     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1927     if (STACK_GROWS_DOWN) {
1928         sp -= 16;
1929         u_rand_bytes = sp;
1930         /* FIXME - check return value of memcpy_to_target() for failure */
1931         memcpy_to_target(sp, k_rand_bytes, 16);
1932     } else {
1933         memcpy_to_target(sp, k_rand_bytes, 16);
1934         u_rand_bytes = sp;
1935         sp += 16;
1936     }
1937 
1938     size = (DLINFO_ITEMS + 1) * 2;
1939     if (k_platform)
1940         size += 2;
1941 #ifdef DLINFO_ARCH_ITEMS
1942     size += DLINFO_ARCH_ITEMS * 2;
1943 #endif
1944 #ifdef ELF_HWCAP2
1945     size += 2;
1946 #endif
1947     info->auxv_len = size * n;
1948 
1949     size += envc + argc + 2;
1950     size += 1;  /* argc itself */
1951     size *= n;
1952 
1953     /* Allocate space and finalize stack alignment for entry now.  */
1954     if (STACK_GROWS_DOWN) {
1955         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1956         sp = u_argc;
1957     } else {
1958         u_argc = sp;
1959         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1960     }
1961 
1962     u_argv = u_argc + n;
1963     u_envp = u_argv + (argc + 1) * n;
1964     u_auxv = u_envp + (envc + 1) * n;
1965     info->saved_auxv = u_auxv;
1966     info->arg_start = u_argv;
1967     info->arg_end = u_argv + argc * n;
1968 
1969     /* This is correct because Linux defines
1970      * elf_addr_t as Elf32_Off / Elf64_Off
1971      */
1972 #define NEW_AUX_ENT(id, val) do {               \
1973         put_user_ual(id, u_auxv);  u_auxv += n; \
1974         put_user_ual(val, u_auxv); u_auxv += n; \
1975     } while(0)
1976 
1977 #ifdef ARCH_DLINFO
1978     /*
1979      * ARCH_DLINFO must come first so platform specific code can enforce
1980      * special alignment requirements on the AUXV if necessary (eg. PPC).
1981      */
1982     ARCH_DLINFO;
1983 #endif
1984     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1985      * on info->auxv_len will trigger.
1986      */
1987     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1988     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1989     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1990     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1991         /* Target doesn't support host page size alignment */
1992         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1993     } else {
1994         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1995                                                qemu_host_page_size)));
1996     }
1997     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1998     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1999     NEW_AUX_ENT(AT_ENTRY, info->entry);
2000     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
2001     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
2002     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
2003     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
2004     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2005     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2006     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2007     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2008 
2009 #ifdef ELF_HWCAP2
2010     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2011 #endif
2012 
2013     if (u_platform) {
2014         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2015     }
2016     NEW_AUX_ENT (AT_NULL, 0);
2017 #undef NEW_AUX_ENT
2018 
2019     /* Check that our initial calculation of the auxv length matches how much
2020      * we actually put into it.
2021      */
2022     assert(info->auxv_len == u_auxv - info->saved_auxv);
2023 
2024     put_user_ual(argc, u_argc);
2025 
2026     p = info->arg_strings;
2027     for (i = 0; i < argc; ++i) {
2028         put_user_ual(p, u_argv);
2029         u_argv += n;
2030         p += target_strlen(p) + 1;
2031     }
2032     put_user_ual(0, u_argv);
2033 
2034     p = info->env_strings;
2035     for (i = 0; i < envc; ++i) {
2036         put_user_ual(p, u_envp);
2037         u_envp += n;
2038         p += target_strlen(p) + 1;
2039     }
2040     put_user_ual(0, u_envp);
2041 
2042     return sp;
2043 }
2044 
2045 unsigned long init_guest_space(unsigned long host_start,
2046                                unsigned long host_size,
2047                                unsigned long guest_start,
2048                                bool fixed)
2049 {
2050     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2051     unsigned long align = MAX(SHMLBA, qemu_host_page_size);
2052     unsigned long current_start, aligned_start;
2053     int flags;
2054 
2055     assert(host_start || host_size);
2056 
2057     /* If just a starting address is given, then just verify that
2058      * address.  */
2059     if (host_start && !host_size) {
2060 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2061         if (init_guest_commpage(host_start, host_size) != 1) {
2062             return (unsigned long)-1;
2063         }
2064 #endif
2065         return host_start;
2066     }
2067 
2068     /* Setup the initial flags and start address.  */
2069     current_start = host_start & -align;
2070     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2071     if (fixed) {
2072         flags |= MAP_FIXED;
2073     }
2074 
2075     /* Otherwise, a non-zero size region of memory needs to be mapped
2076      * and validated.  */
2077 
2078 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2079     /* On 32-bit ARM, we need to map not just the usable memory, but
2080      * also the commpage.  Try to find a suitable place by allocating
2081      * a big chunk for all of it.  If host_start, then the naive
2082      * strategy probably does good enough.
2083      */
2084     if (!host_start) {
2085         unsigned long guest_full_size, host_full_size, real_start;
2086 
2087         guest_full_size =
2088             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
2089         host_full_size = guest_full_size - guest_start;
2090         real_start = (unsigned long)
2091             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
2092         if (real_start == (unsigned long)-1) {
2093             if (host_size < host_full_size - qemu_host_page_size) {
2094                 /* We failed to map a continous segment, but we're
2095                  * allowed to have a gap between the usable memory and
2096                  * the commpage where other things can be mapped.
2097                  * This sparseness gives us more flexibility to find
2098                  * an address range.
2099                  */
2100                 goto naive;
2101             }
2102             return (unsigned long)-1;
2103         }
2104         munmap((void *)real_start, host_full_size);
2105         if (real_start & (align - 1)) {
2106             /* The same thing again, but with extra
2107              * so that we can shift around alignment.
2108              */
2109             unsigned long real_size = host_full_size + qemu_host_page_size;
2110             real_start = (unsigned long)
2111                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
2112             if (real_start == (unsigned long)-1) {
2113                 if (host_size < host_full_size - qemu_host_page_size) {
2114                     goto naive;
2115                 }
2116                 return (unsigned long)-1;
2117             }
2118             munmap((void *)real_start, real_size);
2119             real_start = ROUND_UP(real_start, align);
2120         }
2121         current_start = real_start;
2122     }
2123  naive:
2124 #endif
2125 
2126     while (1) {
2127         unsigned long real_start, real_size, aligned_size;
2128         aligned_size = real_size = host_size;
2129 
2130         /* Do not use mmap_find_vma here because that is limited to the
2131          * guest address space.  We are going to make the
2132          * guest address space fit whatever we're given.
2133          */
2134         real_start = (unsigned long)
2135             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2136         if (real_start == (unsigned long)-1) {
2137             return (unsigned long)-1;
2138         }
2139 
2140         /* Check to see if the address is valid.  */
2141         if (host_start && real_start != current_start) {
2142             goto try_again;
2143         }
2144 
2145         /* Ensure the address is properly aligned.  */
2146         if (real_start & (align - 1)) {
2147             /* Ideally, we adjust like
2148              *
2149              *    pages: [  ][  ][  ][  ][  ]
2150              *      old:   [   real   ]
2151              *             [ aligned  ]
2152              *      new:   [     real     ]
2153              *               [ aligned  ]
2154              *
2155              * But if there is something else mapped right after it,
2156              * then obviously it won't have room to grow, and the
2157              * kernel will put the new larger real someplace else with
2158              * unknown alignment (if we made it to here, then
2159              * fixed=false).  Which is why we grow real by a full page
2160              * size, instead of by part of one; so that even if we get
2161              * moved, we can still guarantee alignment.  But this does
2162              * mean that there is a padding of < 1 page both before
2163              * and after the aligned range; the "after" could could
2164              * cause problems for ARM emulation where it could butt in
2165              * to where we need to put the commpage.
2166              */
2167             munmap((void *)real_start, host_size);
2168             real_size = aligned_size + qemu_host_page_size;
2169             real_start = (unsigned long)
2170                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2171             if (real_start == (unsigned long)-1) {
2172                 return (unsigned long)-1;
2173             }
2174             aligned_start = ROUND_UP(real_start, align);
2175         } else {
2176             aligned_start = real_start;
2177         }
2178 
2179 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2180         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2181         int valid = init_guest_commpage(aligned_start - guest_start,
2182                                         aligned_size + guest_start);
2183         if (valid == -1) {
2184             munmap((void *)real_start, real_size);
2185             return (unsigned long)-1;
2186         } else if (valid == 0) {
2187             goto try_again;
2188         }
2189 #endif
2190 
2191         /* If nothing has said `return -1` or `goto try_again` yet,
2192          * then the address we have is good.
2193          */
2194         break;
2195 
2196     try_again:
2197         /* That address didn't work.  Unmap and try a different one.
2198          * The address the host picked because is typically right at
2199          * the top of the host address space and leaves the guest with
2200          * no usable address space.  Resort to a linear search.  We
2201          * already compensated for mmap_min_addr, so this should not
2202          * happen often.  Probably means we got unlucky and host
2203          * address space randomization put a shared library somewhere
2204          * inconvenient.
2205          *
2206          * This is probably a good strategy if host_start, but is
2207          * probably a bad strategy if not, which means we got here
2208          * because of trouble with ARM commpage setup.
2209          */
2210         munmap((void *)real_start, real_size);
2211         current_start += align;
2212         if (host_start == current_start) {
2213             /* Theoretically possible if host doesn't have any suitably
2214              * aligned areas.  Normally the first mmap will fail.
2215              */
2216             return (unsigned long)-1;
2217         }
2218     }
2219 
2220     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2221 
2222     return aligned_start;
2223 }
2224 
2225 static void probe_guest_base(const char *image_name,
2226                              abi_ulong loaddr, abi_ulong hiaddr)
2227 {
2228     /* Probe for a suitable guest base address, if the user has not set
2229      * it explicitly, and set guest_base appropriately.
2230      * In case of error we will print a suitable message and exit.
2231      */
2232     const char *errmsg;
2233     if (!have_guest_base && !reserved_va) {
2234         unsigned long host_start, real_start, host_size;
2235 
2236         /* Round addresses to page boundaries.  */
2237         loaddr &= qemu_host_page_mask;
2238         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2239 
2240         if (loaddr < mmap_min_addr) {
2241             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2242         } else {
2243             host_start = loaddr;
2244             if (host_start != loaddr) {
2245                 errmsg = "Address overflow loading ELF binary";
2246                 goto exit_errmsg;
2247             }
2248         }
2249         host_size = hiaddr - loaddr;
2250 
2251         /* Setup the initial guest memory space with ranges gleaned from
2252          * the ELF image that is being loaded.
2253          */
2254         real_start = init_guest_space(host_start, host_size, loaddr, false);
2255         if (real_start == (unsigned long)-1) {
2256             errmsg = "Unable to find space for application";
2257             goto exit_errmsg;
2258         }
2259         guest_base = real_start - loaddr;
2260 
2261         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2262                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2263                       loaddr, real_start);
2264     }
2265     return;
2266 
2267 exit_errmsg:
2268     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2269     exit(-1);
2270 }
2271 
2272 
2273 /* Load an ELF image into the address space.
2274 
2275    IMAGE_NAME is the filename of the image, to use in error messages.
2276    IMAGE_FD is the open file descriptor for the image.
2277 
2278    BPRM_BUF is a copy of the beginning of the file; this of course
2279    contains the elf file header at offset 0.  It is assumed that this
2280    buffer is sufficiently aligned to present no problems to the host
2281    in accessing data at aligned offsets within the buffer.
2282 
2283    On return: INFO values will be filled in, as necessary or available.  */
2284 
2285 static void load_elf_image(const char *image_name, int image_fd,
2286                            struct image_info *info, char **pinterp_name,
2287                            char bprm_buf[BPRM_BUF_SIZE])
2288 {
2289     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2290     struct elf_phdr *phdr;
2291     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2292     int i, retval;
2293     const char *errmsg;
2294 
2295     /* First of all, some simple consistency checks */
2296     errmsg = "Invalid ELF image for this architecture";
2297     if (!elf_check_ident(ehdr)) {
2298         goto exit_errmsg;
2299     }
2300     bswap_ehdr(ehdr);
2301     if (!elf_check_ehdr(ehdr)) {
2302         goto exit_errmsg;
2303     }
2304 
2305     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2306     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2307         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2308     } else {
2309         phdr = (struct elf_phdr *) alloca(i);
2310         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2311         if (retval != i) {
2312             goto exit_read;
2313         }
2314     }
2315     bswap_phdr(phdr, ehdr->e_phnum);
2316 
2317     info->nsegs = 0;
2318     info->pt_dynamic_addr = 0;
2319 
2320     mmap_lock();
2321 
2322     /* Find the maximum size of the image and allocate an appropriate
2323        amount of memory to handle that.  */
2324     loaddr = -1, hiaddr = 0;
2325     info->alignment = 0;
2326     for (i = 0; i < ehdr->e_phnum; ++i) {
2327         if (phdr[i].p_type == PT_LOAD) {
2328             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2329             if (a < loaddr) {
2330                 loaddr = a;
2331             }
2332             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2333             if (a > hiaddr) {
2334                 hiaddr = a;
2335             }
2336             ++info->nsegs;
2337             info->alignment |= phdr[i].p_align;
2338         }
2339     }
2340 
2341     load_addr = loaddr;
2342     if (ehdr->e_type == ET_DYN) {
2343         /* The image indicates that it can be loaded anywhere.  Find a
2344            location that can hold the memory space required.  If the
2345            image is pre-linked, LOADDR will be non-zero.  Since we do
2346            not supply MAP_FIXED here we'll use that address if and
2347            only if it remains available.  */
2348         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2349                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2350                                 -1, 0);
2351         if (load_addr == -1) {
2352             goto exit_perror;
2353         }
2354     } else if (pinterp_name != NULL) {
2355         /* This is the main executable.  Make sure that the low
2356            address does not conflict with MMAP_MIN_ADDR or the
2357            QEMU application itself.  */
2358         probe_guest_base(image_name, loaddr, hiaddr);
2359     }
2360     load_bias = load_addr - loaddr;
2361 
2362     if (elf_is_fdpic(ehdr)) {
2363         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2364             g_malloc(sizeof(*loadsegs) * info->nsegs);
2365 
2366         for (i = 0; i < ehdr->e_phnum; ++i) {
2367             switch (phdr[i].p_type) {
2368             case PT_DYNAMIC:
2369                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2370                 break;
2371             case PT_LOAD:
2372                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2373                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2374                 loadsegs->p_memsz = phdr[i].p_memsz;
2375                 ++loadsegs;
2376                 break;
2377             }
2378         }
2379     }
2380 
2381     info->load_bias = load_bias;
2382     info->load_addr = load_addr;
2383     info->entry = ehdr->e_entry + load_bias;
2384     info->start_code = -1;
2385     info->end_code = 0;
2386     info->start_data = -1;
2387     info->end_data = 0;
2388     info->brk = 0;
2389     info->elf_flags = ehdr->e_flags;
2390 
2391     for (i = 0; i < ehdr->e_phnum; i++) {
2392         struct elf_phdr *eppnt = phdr + i;
2393         if (eppnt->p_type == PT_LOAD) {
2394             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2395             int elf_prot = 0;
2396 
2397             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2398             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2399             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2400 
2401             vaddr = load_bias + eppnt->p_vaddr;
2402             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2403             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2404             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2405 
2406             /*
2407              * Some segments may be completely empty without any backing file
2408              * segment, in that case just let zero_bss allocate an empty buffer
2409              * for it.
2410              */
2411             if (eppnt->p_filesz != 0) {
2412                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2413                                     MAP_PRIVATE | MAP_FIXED,
2414                                     image_fd, eppnt->p_offset - vaddr_po);
2415 
2416                 if (error == -1) {
2417                     goto exit_perror;
2418                 }
2419             }
2420 
2421             vaddr_ef = vaddr + eppnt->p_filesz;
2422             vaddr_em = vaddr + eppnt->p_memsz;
2423 
2424             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2425             if (vaddr_ef < vaddr_em) {
2426                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2427             }
2428 
2429             /* Find the full program boundaries.  */
2430             if (elf_prot & PROT_EXEC) {
2431                 if (vaddr < info->start_code) {
2432                     info->start_code = vaddr;
2433                 }
2434                 if (vaddr_ef > info->end_code) {
2435                     info->end_code = vaddr_ef;
2436                 }
2437             }
2438             if (elf_prot & PROT_WRITE) {
2439                 if (vaddr < info->start_data) {
2440                     info->start_data = vaddr;
2441                 }
2442                 if (vaddr_ef > info->end_data) {
2443                     info->end_data = vaddr_ef;
2444                 }
2445                 if (vaddr_em > info->brk) {
2446                     info->brk = vaddr_em;
2447                 }
2448             }
2449         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2450             char *interp_name;
2451 
2452             if (*pinterp_name) {
2453                 errmsg = "Multiple PT_INTERP entries";
2454                 goto exit_errmsg;
2455             }
2456             interp_name = malloc(eppnt->p_filesz);
2457             if (!interp_name) {
2458                 goto exit_perror;
2459             }
2460 
2461             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2462                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2463                        eppnt->p_filesz);
2464             } else {
2465                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2466                                eppnt->p_offset);
2467                 if (retval != eppnt->p_filesz) {
2468                     goto exit_perror;
2469                 }
2470             }
2471             if (interp_name[eppnt->p_filesz - 1] != 0) {
2472                 errmsg = "Invalid PT_INTERP entry";
2473                 goto exit_errmsg;
2474             }
2475             *pinterp_name = interp_name;
2476 #ifdef TARGET_MIPS
2477         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2478             Mips_elf_abiflags_v0 abiflags;
2479             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2480                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2481                 goto exit_errmsg;
2482             }
2483             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2484                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2485                        sizeof(Mips_elf_abiflags_v0));
2486             } else {
2487                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2488                                eppnt->p_offset);
2489                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2490                     goto exit_perror;
2491                 }
2492             }
2493             bswap_mips_abiflags(&abiflags);
2494             info->fp_abi = abiflags.fp_abi;
2495 #endif
2496         }
2497     }
2498 
2499     if (info->end_data == 0) {
2500         info->start_data = info->end_code;
2501         info->end_data = info->end_code;
2502         info->brk = info->end_code;
2503     }
2504 
2505     if (qemu_log_enabled()) {
2506         load_symbols(ehdr, image_fd, load_bias);
2507     }
2508 
2509     mmap_unlock();
2510 
2511     close(image_fd);
2512     return;
2513 
2514  exit_read:
2515     if (retval >= 0) {
2516         errmsg = "Incomplete read of file header";
2517         goto exit_errmsg;
2518     }
2519  exit_perror:
2520     errmsg = strerror(errno);
2521  exit_errmsg:
2522     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2523     exit(-1);
2524 }
2525 
2526 static void load_elf_interp(const char *filename, struct image_info *info,
2527                             char bprm_buf[BPRM_BUF_SIZE])
2528 {
2529     int fd, retval;
2530 
2531     fd = open(path(filename), O_RDONLY);
2532     if (fd < 0) {
2533         goto exit_perror;
2534     }
2535 
2536     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2537     if (retval < 0) {
2538         goto exit_perror;
2539     }
2540     if (retval < BPRM_BUF_SIZE) {
2541         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2542     }
2543 
2544     load_elf_image(filename, fd, info, NULL, bprm_buf);
2545     return;
2546 
2547  exit_perror:
2548     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2549     exit(-1);
2550 }
2551 
2552 static int symfind(const void *s0, const void *s1)
2553 {
2554     target_ulong addr = *(target_ulong *)s0;
2555     struct elf_sym *sym = (struct elf_sym *)s1;
2556     int result = 0;
2557     if (addr < sym->st_value) {
2558         result = -1;
2559     } else if (addr >= sym->st_value + sym->st_size) {
2560         result = 1;
2561     }
2562     return result;
2563 }
2564 
2565 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2566 {
2567 #if ELF_CLASS == ELFCLASS32
2568     struct elf_sym *syms = s->disas_symtab.elf32;
2569 #else
2570     struct elf_sym *syms = s->disas_symtab.elf64;
2571 #endif
2572 
2573     // binary search
2574     struct elf_sym *sym;
2575 
2576     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2577     if (sym != NULL) {
2578         return s->disas_strtab + sym->st_name;
2579     }
2580 
2581     return "";
2582 }
2583 
2584 /* FIXME: This should use elf_ops.h  */
2585 static int symcmp(const void *s0, const void *s1)
2586 {
2587     struct elf_sym *sym0 = (struct elf_sym *)s0;
2588     struct elf_sym *sym1 = (struct elf_sym *)s1;
2589     return (sym0->st_value < sym1->st_value)
2590         ? -1
2591         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2592 }
2593 
2594 /* Best attempt to load symbols from this ELF object. */
2595 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2596 {
2597     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2598     uint64_t segsz;
2599     struct elf_shdr *shdr;
2600     char *strings = NULL;
2601     struct syminfo *s = NULL;
2602     struct elf_sym *new_syms, *syms = NULL;
2603 
2604     shnum = hdr->e_shnum;
2605     i = shnum * sizeof(struct elf_shdr);
2606     shdr = (struct elf_shdr *)alloca(i);
2607     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2608         return;
2609     }
2610 
2611     bswap_shdr(shdr, shnum);
2612     for (i = 0; i < shnum; ++i) {
2613         if (shdr[i].sh_type == SHT_SYMTAB) {
2614             sym_idx = i;
2615             str_idx = shdr[i].sh_link;
2616             goto found;
2617         }
2618     }
2619 
2620     /* There will be no symbol table if the file was stripped.  */
2621     return;
2622 
2623  found:
2624     /* Now know where the strtab and symtab are.  Snarf them.  */
2625     s = g_try_new(struct syminfo, 1);
2626     if (!s) {
2627         goto give_up;
2628     }
2629 
2630     segsz = shdr[str_idx].sh_size;
2631     s->disas_strtab = strings = g_try_malloc(segsz);
2632     if (!strings ||
2633         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2634         goto give_up;
2635     }
2636 
2637     segsz = shdr[sym_idx].sh_size;
2638     syms = g_try_malloc(segsz);
2639     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2640         goto give_up;
2641     }
2642 
2643     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2644         /* Implausibly large symbol table: give up rather than ploughing
2645          * on with the number of symbols calculation overflowing
2646          */
2647         goto give_up;
2648     }
2649     nsyms = segsz / sizeof(struct elf_sym);
2650     for (i = 0; i < nsyms; ) {
2651         bswap_sym(syms + i);
2652         /* Throw away entries which we do not need.  */
2653         if (syms[i].st_shndx == SHN_UNDEF
2654             || syms[i].st_shndx >= SHN_LORESERVE
2655             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2656             if (i < --nsyms) {
2657                 syms[i] = syms[nsyms];
2658             }
2659         } else {
2660 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2661             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2662             syms[i].st_value &= ~(target_ulong)1;
2663 #endif
2664             syms[i].st_value += load_bias;
2665             i++;
2666         }
2667     }
2668 
2669     /* No "useful" symbol.  */
2670     if (nsyms == 0) {
2671         goto give_up;
2672     }
2673 
2674     /* Attempt to free the storage associated with the local symbols
2675        that we threw away.  Whether or not this has any effect on the
2676        memory allocation depends on the malloc implementation and how
2677        many symbols we managed to discard.  */
2678     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2679     if (new_syms == NULL) {
2680         goto give_up;
2681     }
2682     syms = new_syms;
2683 
2684     qsort(syms, nsyms, sizeof(*syms), symcmp);
2685 
2686     s->disas_num_syms = nsyms;
2687 #if ELF_CLASS == ELFCLASS32
2688     s->disas_symtab.elf32 = syms;
2689 #else
2690     s->disas_symtab.elf64 = syms;
2691 #endif
2692     s->lookup_symbol = lookup_symbolxx;
2693     s->next = syminfos;
2694     syminfos = s;
2695 
2696     return;
2697 
2698 give_up:
2699     g_free(s);
2700     g_free(strings);
2701     g_free(syms);
2702 }
2703 
2704 uint32_t get_elf_eflags(int fd)
2705 {
2706     struct elfhdr ehdr;
2707     off_t offset;
2708     int ret;
2709 
2710     /* Read ELF header */
2711     offset = lseek(fd, 0, SEEK_SET);
2712     if (offset == (off_t) -1) {
2713         return 0;
2714     }
2715     ret = read(fd, &ehdr, sizeof(ehdr));
2716     if (ret < sizeof(ehdr)) {
2717         return 0;
2718     }
2719     offset = lseek(fd, offset, SEEK_SET);
2720     if (offset == (off_t) -1) {
2721         return 0;
2722     }
2723 
2724     /* Check ELF signature */
2725     if (!elf_check_ident(&ehdr)) {
2726         return 0;
2727     }
2728 
2729     /* check header */
2730     bswap_ehdr(&ehdr);
2731     if (!elf_check_ehdr(&ehdr)) {
2732         return 0;
2733     }
2734 
2735     /* return architecture id */
2736     return ehdr.e_flags;
2737 }
2738 
2739 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2740 {
2741     struct image_info interp_info;
2742     struct elfhdr elf_ex;
2743     char *elf_interpreter = NULL;
2744     char *scratch;
2745 
2746     memset(&interp_info, 0, sizeof(interp_info));
2747 #ifdef TARGET_MIPS
2748     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2749 #endif
2750 
2751     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2752 
2753     load_elf_image(bprm->filename, bprm->fd, info,
2754                    &elf_interpreter, bprm->buf);
2755 
2756     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2757        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2758        when we load the interpreter.  */
2759     elf_ex = *(struct elfhdr *)bprm->buf;
2760 
2761     /* Do this so that we can load the interpreter, if need be.  We will
2762        change some of these later */
2763     bprm->p = setup_arg_pages(bprm, info);
2764 
2765     scratch = g_new0(char, TARGET_PAGE_SIZE);
2766     if (STACK_GROWS_DOWN) {
2767         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2768                                    bprm->p, info->stack_limit);
2769         info->file_string = bprm->p;
2770         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2771                                    bprm->p, info->stack_limit);
2772         info->env_strings = bprm->p;
2773         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2774                                    bprm->p, info->stack_limit);
2775         info->arg_strings = bprm->p;
2776     } else {
2777         info->arg_strings = bprm->p;
2778         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2779                                    bprm->p, info->stack_limit);
2780         info->env_strings = bprm->p;
2781         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2782                                    bprm->p, info->stack_limit);
2783         info->file_string = bprm->p;
2784         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2785                                    bprm->p, info->stack_limit);
2786     }
2787 
2788     g_free(scratch);
2789 
2790     if (!bprm->p) {
2791         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2792         exit(-1);
2793     }
2794 
2795     if (elf_interpreter) {
2796         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2797 
2798         /* If the program interpreter is one of these two, then assume
2799            an iBCS2 image.  Otherwise assume a native linux image.  */
2800 
2801         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2802             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2803             info->personality = PER_SVR4;
2804 
2805             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2806                and some applications "depend" upon this behavior.  Since
2807                we do not have the power to recompile these, we emulate
2808                the SVr4 behavior.  Sigh.  */
2809             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2810                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2811         }
2812 #ifdef TARGET_MIPS
2813         info->interp_fp_abi = interp_info.fp_abi;
2814 #endif
2815     }
2816 
2817     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2818                                 info, (elf_interpreter ? &interp_info : NULL));
2819     info->start_stack = bprm->p;
2820 
2821     /* If we have an interpreter, set that as the program's entry point.
2822        Copy the load_bias as well, to help PPC64 interpret the entry
2823        point as a function descriptor.  Do this after creating elf tables
2824        so that we copy the original program entry point into the AUXV.  */
2825     if (elf_interpreter) {
2826         info->load_bias = interp_info.load_bias;
2827         info->entry = interp_info.entry;
2828         free(elf_interpreter);
2829     }
2830 
2831 #ifdef USE_ELF_CORE_DUMP
2832     bprm->core_dump = &elf_core_dump;
2833 #endif
2834 
2835     return 0;
2836 }
2837 
2838 #ifdef USE_ELF_CORE_DUMP
2839 /*
2840  * Definitions to generate Intel SVR4-like core files.
2841  * These mostly have the same names as the SVR4 types with "target_elf_"
2842  * tacked on the front to prevent clashes with linux definitions,
2843  * and the typedef forms have been avoided.  This is mostly like
2844  * the SVR4 structure, but more Linuxy, with things that Linux does
2845  * not support and which gdb doesn't really use excluded.
2846  *
2847  * Fields we don't dump (their contents is zero) in linux-user qemu
2848  * are marked with XXX.
2849  *
2850  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2851  *
2852  * Porting ELF coredump for target is (quite) simple process.  First you
2853  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2854  * the target resides):
2855  *
2856  * #define USE_ELF_CORE_DUMP
2857  *
2858  * Next you define type of register set used for dumping.  ELF specification
2859  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2860  *
2861  * typedef <target_regtype> target_elf_greg_t;
2862  * #define ELF_NREG <number of registers>
2863  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2864  *
2865  * Last step is to implement target specific function that copies registers
2866  * from given cpu into just specified register set.  Prototype is:
2867  *
2868  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2869  *                                const CPUArchState *env);
2870  *
2871  * Parameters:
2872  *     regs - copy register values into here (allocated and zeroed by caller)
2873  *     env - copy registers from here
2874  *
2875  * Example for ARM target is provided in this file.
2876  */
2877 
2878 /* An ELF note in memory */
2879 struct memelfnote {
2880     const char *name;
2881     size_t     namesz;
2882     size_t     namesz_rounded;
2883     int        type;
2884     size_t     datasz;
2885     size_t     datasz_rounded;
2886     void       *data;
2887     size_t     notesz;
2888 };
2889 
2890 struct target_elf_siginfo {
2891     abi_int    si_signo; /* signal number */
2892     abi_int    si_code;  /* extra code */
2893     abi_int    si_errno; /* errno */
2894 };
2895 
2896 struct target_elf_prstatus {
2897     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2898     abi_short          pr_cursig;    /* Current signal */
2899     abi_ulong          pr_sigpend;   /* XXX */
2900     abi_ulong          pr_sighold;   /* XXX */
2901     target_pid_t       pr_pid;
2902     target_pid_t       pr_ppid;
2903     target_pid_t       pr_pgrp;
2904     target_pid_t       pr_sid;
2905     struct target_timeval pr_utime;  /* XXX User time */
2906     struct target_timeval pr_stime;  /* XXX System time */
2907     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2908     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2909     target_elf_gregset_t      pr_reg;       /* GP registers */
2910     abi_int            pr_fpvalid;   /* XXX */
2911 };
2912 
2913 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2914 
2915 struct target_elf_prpsinfo {
2916     char         pr_state;       /* numeric process state */
2917     char         pr_sname;       /* char for pr_state */
2918     char         pr_zomb;        /* zombie */
2919     char         pr_nice;        /* nice val */
2920     abi_ulong    pr_flag;        /* flags */
2921     target_uid_t pr_uid;
2922     target_gid_t pr_gid;
2923     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2924     /* Lots missing */
2925     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
2926     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2927 };
2928 
2929 /* Here is the structure in which status of each thread is captured. */
2930 struct elf_thread_status {
2931     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2932     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2933 #if 0
2934     elf_fpregset_t fpu;             /* NT_PRFPREG */
2935     struct task_struct *thread;
2936     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2937 #endif
2938     struct memelfnote notes[1];
2939     int num_notes;
2940 };
2941 
2942 struct elf_note_info {
2943     struct memelfnote   *notes;
2944     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2945     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2946 
2947     QTAILQ_HEAD(, elf_thread_status) thread_list;
2948 #if 0
2949     /*
2950      * Current version of ELF coredump doesn't support
2951      * dumping fp regs etc.
2952      */
2953     elf_fpregset_t *fpu;
2954     elf_fpxregset_t *xfpu;
2955     int thread_status_size;
2956 #endif
2957     int notes_size;
2958     int numnote;
2959 };
2960 
2961 struct vm_area_struct {
2962     target_ulong   vma_start;  /* start vaddr of memory region */
2963     target_ulong   vma_end;    /* end vaddr of memory region */
2964     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2965     QTAILQ_ENTRY(vm_area_struct) vma_link;
2966 };
2967 
2968 struct mm_struct {
2969     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2970     int mm_count;           /* number of mappings */
2971 };
2972 
2973 static struct mm_struct *vma_init(void);
2974 static void vma_delete(struct mm_struct *);
2975 static int vma_add_mapping(struct mm_struct *, target_ulong,
2976                            target_ulong, abi_ulong);
2977 static int vma_get_mapping_count(const struct mm_struct *);
2978 static struct vm_area_struct *vma_first(const struct mm_struct *);
2979 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2980 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2981 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2982                       unsigned long flags);
2983 
2984 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2985 static void fill_note(struct memelfnote *, const char *, int,
2986                       unsigned int, void *);
2987 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2988 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2989 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2990 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2991 static size_t note_size(const struct memelfnote *);
2992 static void free_note_info(struct elf_note_info *);
2993 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2994 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2995 static int core_dump_filename(const TaskState *, char *, size_t);
2996 
2997 static int dump_write(int, const void *, size_t);
2998 static int write_note(struct memelfnote *, int);
2999 static int write_note_info(struct elf_note_info *, int);
3000 
3001 #ifdef BSWAP_NEEDED
3002 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3003 {
3004     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3005     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3006     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3007     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3008     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3009     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3010     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3011     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3012     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3013     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3014     /* cpu times are not filled, so we skip them */
3015     /* regs should be in correct format already */
3016     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3017 }
3018 
3019 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3020 {
3021     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3022     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3023     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3024     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3025     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3026     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3027     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3028 }
3029 
3030 static void bswap_note(struct elf_note *en)
3031 {
3032     bswap32s(&en->n_namesz);
3033     bswap32s(&en->n_descsz);
3034     bswap32s(&en->n_type);
3035 }
3036 #else
3037 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3038 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3039 static inline void bswap_note(struct elf_note *en) { }
3040 #endif /* BSWAP_NEEDED */
3041 
3042 /*
3043  * Minimal support for linux memory regions.  These are needed
3044  * when we are finding out what memory exactly belongs to
3045  * emulated process.  No locks needed here, as long as
3046  * thread that received the signal is stopped.
3047  */
3048 
3049 static struct mm_struct *vma_init(void)
3050 {
3051     struct mm_struct *mm;
3052 
3053     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3054         return (NULL);
3055 
3056     mm->mm_count = 0;
3057     QTAILQ_INIT(&mm->mm_mmap);
3058 
3059     return (mm);
3060 }
3061 
3062 static void vma_delete(struct mm_struct *mm)
3063 {
3064     struct vm_area_struct *vma;
3065 
3066     while ((vma = vma_first(mm)) != NULL) {
3067         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3068         g_free(vma);
3069     }
3070     g_free(mm);
3071 }
3072 
3073 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3074                            target_ulong end, abi_ulong flags)
3075 {
3076     struct vm_area_struct *vma;
3077 
3078     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3079         return (-1);
3080 
3081     vma->vma_start = start;
3082     vma->vma_end = end;
3083     vma->vma_flags = flags;
3084 
3085     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3086     mm->mm_count++;
3087 
3088     return (0);
3089 }
3090 
3091 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3092 {
3093     return (QTAILQ_FIRST(&mm->mm_mmap));
3094 }
3095 
3096 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3097 {
3098     return (QTAILQ_NEXT(vma, vma_link));
3099 }
3100 
3101 static int vma_get_mapping_count(const struct mm_struct *mm)
3102 {
3103     return (mm->mm_count);
3104 }
3105 
3106 /*
3107  * Calculate file (dump) size of given memory region.
3108  */
3109 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3110 {
3111     /* if we cannot even read the first page, skip it */
3112     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3113         return (0);
3114 
3115     /*
3116      * Usually we don't dump executable pages as they contain
3117      * non-writable code that debugger can read directly from
3118      * target library etc.  However, thread stacks are marked
3119      * also executable so we read in first page of given region
3120      * and check whether it contains elf header.  If there is
3121      * no elf header, we dump it.
3122      */
3123     if (vma->vma_flags & PROT_EXEC) {
3124         char page[TARGET_PAGE_SIZE];
3125 
3126         copy_from_user(page, vma->vma_start, sizeof (page));
3127         if ((page[EI_MAG0] == ELFMAG0) &&
3128             (page[EI_MAG1] == ELFMAG1) &&
3129             (page[EI_MAG2] == ELFMAG2) &&
3130             (page[EI_MAG3] == ELFMAG3)) {
3131             /*
3132              * Mappings are possibly from ELF binary.  Don't dump
3133              * them.
3134              */
3135             return (0);
3136         }
3137     }
3138 
3139     return (vma->vma_end - vma->vma_start);
3140 }
3141 
3142 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3143                       unsigned long flags)
3144 {
3145     struct mm_struct *mm = (struct mm_struct *)priv;
3146 
3147     vma_add_mapping(mm, start, end, flags);
3148     return (0);
3149 }
3150 
3151 static void fill_note(struct memelfnote *note, const char *name, int type,
3152                       unsigned int sz, void *data)
3153 {
3154     unsigned int namesz;
3155 
3156     namesz = strlen(name) + 1;
3157     note->name = name;
3158     note->namesz = namesz;
3159     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3160     note->type = type;
3161     note->datasz = sz;
3162     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3163 
3164     note->data = data;
3165 
3166     /*
3167      * We calculate rounded up note size here as specified by
3168      * ELF document.
3169      */
3170     note->notesz = sizeof (struct elf_note) +
3171         note->namesz_rounded + note->datasz_rounded;
3172 }
3173 
3174 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3175                             uint32_t flags)
3176 {
3177     (void) memset(elf, 0, sizeof(*elf));
3178 
3179     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3180     elf->e_ident[EI_CLASS] = ELF_CLASS;
3181     elf->e_ident[EI_DATA] = ELF_DATA;
3182     elf->e_ident[EI_VERSION] = EV_CURRENT;
3183     elf->e_ident[EI_OSABI] = ELF_OSABI;
3184 
3185     elf->e_type = ET_CORE;
3186     elf->e_machine = machine;
3187     elf->e_version = EV_CURRENT;
3188     elf->e_phoff = sizeof(struct elfhdr);
3189     elf->e_flags = flags;
3190     elf->e_ehsize = sizeof(struct elfhdr);
3191     elf->e_phentsize = sizeof(struct elf_phdr);
3192     elf->e_phnum = segs;
3193 
3194     bswap_ehdr(elf);
3195 }
3196 
3197 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3198 {
3199     phdr->p_type = PT_NOTE;
3200     phdr->p_offset = offset;
3201     phdr->p_vaddr = 0;
3202     phdr->p_paddr = 0;
3203     phdr->p_filesz = sz;
3204     phdr->p_memsz = 0;
3205     phdr->p_flags = 0;
3206     phdr->p_align = 0;
3207 
3208     bswap_phdr(phdr, 1);
3209 }
3210 
3211 static size_t note_size(const struct memelfnote *note)
3212 {
3213     return (note->notesz);
3214 }
3215 
3216 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3217                           const TaskState *ts, int signr)
3218 {
3219     (void) memset(prstatus, 0, sizeof (*prstatus));
3220     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3221     prstatus->pr_pid = ts->ts_tid;
3222     prstatus->pr_ppid = getppid();
3223     prstatus->pr_pgrp = getpgrp();
3224     prstatus->pr_sid = getsid(0);
3225 
3226     bswap_prstatus(prstatus);
3227 }
3228 
3229 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3230 {
3231     char *base_filename;
3232     unsigned int i, len;
3233 
3234     (void) memset(psinfo, 0, sizeof (*psinfo));
3235 
3236     len = ts->info->arg_end - ts->info->arg_start;
3237     if (len >= ELF_PRARGSZ)
3238         len = ELF_PRARGSZ - 1;
3239     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3240         return -EFAULT;
3241     for (i = 0; i < len; i++)
3242         if (psinfo->pr_psargs[i] == 0)
3243             psinfo->pr_psargs[i] = ' ';
3244     psinfo->pr_psargs[len] = 0;
3245 
3246     psinfo->pr_pid = getpid();
3247     psinfo->pr_ppid = getppid();
3248     psinfo->pr_pgrp = getpgrp();
3249     psinfo->pr_sid = getsid(0);
3250     psinfo->pr_uid = getuid();
3251     psinfo->pr_gid = getgid();
3252 
3253     base_filename = g_path_get_basename(ts->bprm->filename);
3254     /*
3255      * Using strncpy here is fine: at max-length,
3256      * this field is not NUL-terminated.
3257      */
3258     (void) strncpy(psinfo->pr_fname, base_filename,
3259                    sizeof(psinfo->pr_fname));
3260 
3261     g_free(base_filename);
3262     bswap_psinfo(psinfo);
3263     return (0);
3264 }
3265 
3266 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3267 {
3268     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3269     elf_addr_t orig_auxv = auxv;
3270     void *ptr;
3271     int len = ts->info->auxv_len;
3272 
3273     /*
3274      * Auxiliary vector is stored in target process stack.  It contains
3275      * {type, value} pairs that we need to dump into note.  This is not
3276      * strictly necessary but we do it here for sake of completeness.
3277      */
3278 
3279     /* read in whole auxv vector and copy it to memelfnote */
3280     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3281     if (ptr != NULL) {
3282         fill_note(note, "CORE", NT_AUXV, len, ptr);
3283         unlock_user(ptr, auxv, len);
3284     }
3285 }
3286 
3287 /*
3288  * Constructs name of coredump file.  We have following convention
3289  * for the name:
3290  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3291  *
3292  * Returns 0 in case of success, -1 otherwise (errno is set).
3293  */
3294 static int core_dump_filename(const TaskState *ts, char *buf,
3295                               size_t bufsize)
3296 {
3297     char timestamp[64];
3298     char *base_filename = NULL;
3299     struct timeval tv;
3300     struct tm tm;
3301 
3302     assert(bufsize >= PATH_MAX);
3303 
3304     if (gettimeofday(&tv, NULL) < 0) {
3305         (void) fprintf(stderr, "unable to get current timestamp: %s",
3306                        strerror(errno));
3307         return (-1);
3308     }
3309 
3310     base_filename = g_path_get_basename(ts->bprm->filename);
3311     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3312                     localtime_r(&tv.tv_sec, &tm));
3313     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3314                     base_filename, timestamp, (int)getpid());
3315     g_free(base_filename);
3316 
3317     return (0);
3318 }
3319 
3320 static int dump_write(int fd, const void *ptr, size_t size)
3321 {
3322     const char *bufp = (const char *)ptr;
3323     ssize_t bytes_written, bytes_left;
3324     struct rlimit dumpsize;
3325     off_t pos;
3326 
3327     bytes_written = 0;
3328     getrlimit(RLIMIT_CORE, &dumpsize);
3329     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3330         if (errno == ESPIPE) { /* not a seekable stream */
3331             bytes_left = size;
3332         } else {
3333             return pos;
3334         }
3335     } else {
3336         if (dumpsize.rlim_cur <= pos) {
3337             return -1;
3338         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3339             bytes_left = size;
3340         } else {
3341             size_t limit_left=dumpsize.rlim_cur - pos;
3342             bytes_left = limit_left >= size ? size : limit_left ;
3343         }
3344     }
3345 
3346     /*
3347      * In normal conditions, single write(2) should do but
3348      * in case of socket etc. this mechanism is more portable.
3349      */
3350     do {
3351         bytes_written = write(fd, bufp, bytes_left);
3352         if (bytes_written < 0) {
3353             if (errno == EINTR)
3354                 continue;
3355             return (-1);
3356         } else if (bytes_written == 0) { /* eof */
3357             return (-1);
3358         }
3359         bufp += bytes_written;
3360         bytes_left -= bytes_written;
3361     } while (bytes_left > 0);
3362 
3363     return (0);
3364 }
3365 
3366 static int write_note(struct memelfnote *men, int fd)
3367 {
3368     struct elf_note en;
3369 
3370     en.n_namesz = men->namesz;
3371     en.n_type = men->type;
3372     en.n_descsz = men->datasz;
3373 
3374     bswap_note(&en);
3375 
3376     if (dump_write(fd, &en, sizeof(en)) != 0)
3377         return (-1);
3378     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3379         return (-1);
3380     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3381         return (-1);
3382 
3383     return (0);
3384 }
3385 
3386 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3387 {
3388     CPUState *cpu = env_cpu((CPUArchState *)env);
3389     TaskState *ts = (TaskState *)cpu->opaque;
3390     struct elf_thread_status *ets;
3391 
3392     ets = g_malloc0(sizeof (*ets));
3393     ets->num_notes = 1; /* only prstatus is dumped */
3394     fill_prstatus(&ets->prstatus, ts, 0);
3395     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3396     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3397               &ets->prstatus);
3398 
3399     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3400 
3401     info->notes_size += note_size(&ets->notes[0]);
3402 }
3403 
3404 static void init_note_info(struct elf_note_info *info)
3405 {
3406     /* Initialize the elf_note_info structure so that it is at
3407      * least safe to call free_note_info() on it. Must be
3408      * called before calling fill_note_info().
3409      */
3410     memset(info, 0, sizeof (*info));
3411     QTAILQ_INIT(&info->thread_list);
3412 }
3413 
3414 static int fill_note_info(struct elf_note_info *info,
3415                           long signr, const CPUArchState *env)
3416 {
3417 #define NUMNOTES 3
3418     CPUState *cpu = env_cpu((CPUArchState *)env);
3419     TaskState *ts = (TaskState *)cpu->opaque;
3420     int i;
3421 
3422     info->notes = g_new0(struct memelfnote, NUMNOTES);
3423     if (info->notes == NULL)
3424         return (-ENOMEM);
3425     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3426     if (info->prstatus == NULL)
3427         return (-ENOMEM);
3428     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3429     if (info->prstatus == NULL)
3430         return (-ENOMEM);
3431 
3432     /*
3433      * First fill in status (and registers) of current thread
3434      * including process info & aux vector.
3435      */
3436     fill_prstatus(info->prstatus, ts, signr);
3437     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3438     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3439               sizeof (*info->prstatus), info->prstatus);
3440     fill_psinfo(info->psinfo, ts);
3441     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3442               sizeof (*info->psinfo), info->psinfo);
3443     fill_auxv_note(&info->notes[2], ts);
3444     info->numnote = 3;
3445 
3446     info->notes_size = 0;
3447     for (i = 0; i < info->numnote; i++)
3448         info->notes_size += note_size(&info->notes[i]);
3449 
3450     /* read and fill status of all threads */
3451     cpu_list_lock();
3452     CPU_FOREACH(cpu) {
3453         if (cpu == thread_cpu) {
3454             continue;
3455         }
3456         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3457     }
3458     cpu_list_unlock();
3459 
3460     return (0);
3461 }
3462 
3463 static void free_note_info(struct elf_note_info *info)
3464 {
3465     struct elf_thread_status *ets;
3466 
3467     while (!QTAILQ_EMPTY(&info->thread_list)) {
3468         ets = QTAILQ_FIRST(&info->thread_list);
3469         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3470         g_free(ets);
3471     }
3472 
3473     g_free(info->prstatus);
3474     g_free(info->psinfo);
3475     g_free(info->notes);
3476 }
3477 
3478 static int write_note_info(struct elf_note_info *info, int fd)
3479 {
3480     struct elf_thread_status *ets;
3481     int i, error = 0;
3482 
3483     /* write prstatus, psinfo and auxv for current thread */
3484     for (i = 0; i < info->numnote; i++)
3485         if ((error = write_note(&info->notes[i], fd)) != 0)
3486             return (error);
3487 
3488     /* write prstatus for each thread */
3489     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3490         if ((error = write_note(&ets->notes[0], fd)) != 0)
3491             return (error);
3492     }
3493 
3494     return (0);
3495 }
3496 
3497 /*
3498  * Write out ELF coredump.
3499  *
3500  * See documentation of ELF object file format in:
3501  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3502  *
3503  * Coredump format in linux is following:
3504  *
3505  * 0   +----------------------+         \
3506  *     | ELF header           | ET_CORE  |
3507  *     +----------------------+          |
3508  *     | ELF program headers  |          |--- headers
3509  *     | - NOTE section       |          |
3510  *     | - PT_LOAD sections   |          |
3511  *     +----------------------+         /
3512  *     | NOTEs:               |
3513  *     | - NT_PRSTATUS        |
3514  *     | - NT_PRSINFO         |
3515  *     | - NT_AUXV            |
3516  *     +----------------------+ <-- aligned to target page
3517  *     | Process memory dump  |
3518  *     :                      :
3519  *     .                      .
3520  *     :                      :
3521  *     |                      |
3522  *     +----------------------+
3523  *
3524  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3525  * NT_PRSINFO  -> struct elf_prpsinfo
3526  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3527  *
3528  * Format follows System V format as close as possible.  Current
3529  * version limitations are as follows:
3530  *     - no floating point registers are dumped
3531  *
3532  * Function returns 0 in case of success, negative errno otherwise.
3533  *
3534  * TODO: make this work also during runtime: it should be
3535  * possible to force coredump from running process and then
3536  * continue processing.  For example qemu could set up SIGUSR2
3537  * handler (provided that target process haven't registered
3538  * handler for that) that does the dump when signal is received.
3539  */
3540 static int elf_core_dump(int signr, const CPUArchState *env)
3541 {
3542     const CPUState *cpu = env_cpu((CPUArchState *)env);
3543     const TaskState *ts = (const TaskState *)cpu->opaque;
3544     struct vm_area_struct *vma = NULL;
3545     char corefile[PATH_MAX];
3546     struct elf_note_info info;
3547     struct elfhdr elf;
3548     struct elf_phdr phdr;
3549     struct rlimit dumpsize;
3550     struct mm_struct *mm = NULL;
3551     off_t offset = 0, data_offset = 0;
3552     int segs = 0;
3553     int fd = -1;
3554 
3555     init_note_info(&info);
3556 
3557     errno = 0;
3558     getrlimit(RLIMIT_CORE, &dumpsize);
3559     if (dumpsize.rlim_cur == 0)
3560         return 0;
3561 
3562     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3563         return (-errno);
3564 
3565     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3566                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3567         return (-errno);
3568 
3569     /*
3570      * Walk through target process memory mappings and
3571      * set up structure containing this information.  After
3572      * this point vma_xxx functions can be used.
3573      */
3574     if ((mm = vma_init()) == NULL)
3575         goto out;
3576 
3577     walk_memory_regions(mm, vma_walker);
3578     segs = vma_get_mapping_count(mm);
3579 
3580     /*
3581      * Construct valid coredump ELF header.  We also
3582      * add one more segment for notes.
3583      */
3584     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3585     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3586         goto out;
3587 
3588     /* fill in the in-memory version of notes */
3589     if (fill_note_info(&info, signr, env) < 0)
3590         goto out;
3591 
3592     offset += sizeof (elf);                             /* elf header */
3593     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3594 
3595     /* write out notes program header */
3596     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3597 
3598     offset += info.notes_size;
3599     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3600         goto out;
3601 
3602     /*
3603      * ELF specification wants data to start at page boundary so
3604      * we align it here.
3605      */
3606     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3607 
3608     /*
3609      * Write program headers for memory regions mapped in
3610      * the target process.
3611      */
3612     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3613         (void) memset(&phdr, 0, sizeof (phdr));
3614 
3615         phdr.p_type = PT_LOAD;
3616         phdr.p_offset = offset;
3617         phdr.p_vaddr = vma->vma_start;
3618         phdr.p_paddr = 0;
3619         phdr.p_filesz = vma_dump_size(vma);
3620         offset += phdr.p_filesz;
3621         phdr.p_memsz = vma->vma_end - vma->vma_start;
3622         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3623         if (vma->vma_flags & PROT_WRITE)
3624             phdr.p_flags |= PF_W;
3625         if (vma->vma_flags & PROT_EXEC)
3626             phdr.p_flags |= PF_X;
3627         phdr.p_align = ELF_EXEC_PAGESIZE;
3628 
3629         bswap_phdr(&phdr, 1);
3630         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3631             goto out;
3632         }
3633     }
3634 
3635     /*
3636      * Next we write notes just after program headers.  No
3637      * alignment needed here.
3638      */
3639     if (write_note_info(&info, fd) < 0)
3640         goto out;
3641 
3642     /* align data to page boundary */
3643     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3644         goto out;
3645 
3646     /*
3647      * Finally we can dump process memory into corefile as well.
3648      */
3649     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3650         abi_ulong addr;
3651         abi_ulong end;
3652 
3653         end = vma->vma_start + vma_dump_size(vma);
3654 
3655         for (addr = vma->vma_start; addr < end;
3656              addr += TARGET_PAGE_SIZE) {
3657             char page[TARGET_PAGE_SIZE];
3658             int error;
3659 
3660             /*
3661              *  Read in page from target process memory and
3662              *  write it to coredump file.
3663              */
3664             error = copy_from_user(page, addr, sizeof (page));
3665             if (error != 0) {
3666                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3667                                addr);
3668                 errno = -error;
3669                 goto out;
3670             }
3671             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3672                 goto out;
3673         }
3674     }
3675 
3676  out:
3677     free_note_info(&info);
3678     if (mm != NULL)
3679         vma_delete(mm);
3680     (void) close(fd);
3681 
3682     if (errno != 0)
3683         return (-errno);
3684     return (0);
3685 }
3686 #endif /* USE_ELF_CORE_DUMP */
3687 
3688 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3689 {
3690     init_thread(regs, infop);
3691 }
3692