1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/mman.h> 6 #include <sys/resource.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 /* this flag is uneffective under linux too, should be deleted */ 82 #ifndef MAP_DENYWRITE 83 #define MAP_DENYWRITE 0 84 #endif 85 86 /* should probably go in elf.h */ 87 #ifndef ELIBBAD 88 #define ELIBBAD 80 89 #endif 90 91 #ifdef TARGET_WORDS_BIGENDIAN 92 #define ELF_DATA ELFDATA2MSB 93 #else 94 #define ELF_DATA ELFDATA2LSB 95 #endif 96 97 #ifdef TARGET_ABI_MIPSN32 98 typedef abi_ullong target_elf_greg_t; 99 #define tswapreg(ptr) tswap64(ptr) 100 #else 101 typedef abi_ulong target_elf_greg_t; 102 #define tswapreg(ptr) tswapal(ptr) 103 #endif 104 105 #ifdef USE_UID16 106 typedef abi_ushort target_uid_t; 107 typedef abi_ushort target_gid_t; 108 #else 109 typedef abi_uint target_uid_t; 110 typedef abi_uint target_gid_t; 111 #endif 112 typedef abi_int target_pid_t; 113 114 #ifdef TARGET_I386 115 116 #define ELF_PLATFORM get_elf_platform() 117 118 static const char *get_elf_platform(void) 119 { 120 static char elf_platform[] = "i386"; 121 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 122 if (family > 6) 123 family = 6; 124 if (family >= 3) 125 elf_platform[1] = '0' + family; 126 return elf_platform; 127 } 128 129 #define ELF_HWCAP get_elf_hwcap() 130 131 static uint32_t get_elf_hwcap(void) 132 { 133 X86CPU *cpu = X86_CPU(thread_cpu); 134 135 return cpu->env.features[FEAT_1_EDX]; 136 } 137 138 #ifdef TARGET_X86_64 139 #define ELF_START_MMAP 0x2aaaaab000ULL 140 141 #define ELF_CLASS ELFCLASS64 142 #define ELF_ARCH EM_X86_64 143 144 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 145 { 146 regs->rax = 0; 147 regs->rsp = infop->start_stack; 148 regs->rip = infop->entry; 149 } 150 151 #define ELF_NREG 27 152 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 153 154 /* 155 * Note that ELF_NREG should be 29 as there should be place for 156 * TRAPNO and ERR "registers" as well but linux doesn't dump 157 * those. 158 * 159 * See linux kernel: arch/x86/include/asm/elf.h 160 */ 161 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 162 { 163 (*regs)[0] = env->regs[15]; 164 (*regs)[1] = env->regs[14]; 165 (*regs)[2] = env->regs[13]; 166 (*regs)[3] = env->regs[12]; 167 (*regs)[4] = env->regs[R_EBP]; 168 (*regs)[5] = env->regs[R_EBX]; 169 (*regs)[6] = env->regs[11]; 170 (*regs)[7] = env->regs[10]; 171 (*regs)[8] = env->regs[9]; 172 (*regs)[9] = env->regs[8]; 173 (*regs)[10] = env->regs[R_EAX]; 174 (*regs)[11] = env->regs[R_ECX]; 175 (*regs)[12] = env->regs[R_EDX]; 176 (*regs)[13] = env->regs[R_ESI]; 177 (*regs)[14] = env->regs[R_EDI]; 178 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 179 (*regs)[16] = env->eip; 180 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 181 (*regs)[18] = env->eflags; 182 (*regs)[19] = env->regs[R_ESP]; 183 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 184 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 185 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 186 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 187 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 188 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 189 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 190 } 191 192 #else 193 194 #define ELF_START_MMAP 0x80000000 195 196 /* 197 * This is used to ensure we don't load something for the wrong architecture. 198 */ 199 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 200 201 /* 202 * These are used to set parameters in the core dumps. 203 */ 204 #define ELF_CLASS ELFCLASS32 205 #define ELF_ARCH EM_386 206 207 static inline void init_thread(struct target_pt_regs *regs, 208 struct image_info *infop) 209 { 210 regs->esp = infop->start_stack; 211 regs->eip = infop->entry; 212 213 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 214 starts %edx contains a pointer to a function which might be 215 registered using `atexit'. This provides a mean for the 216 dynamic linker to call DT_FINI functions for shared libraries 217 that have been loaded before the code runs. 218 219 A value of 0 tells we have no such handler. */ 220 regs->edx = 0; 221 } 222 223 #define ELF_NREG 17 224 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 225 226 /* 227 * Note that ELF_NREG should be 19 as there should be place for 228 * TRAPNO and ERR "registers" as well but linux doesn't dump 229 * those. 230 * 231 * See linux kernel: arch/x86/include/asm/elf.h 232 */ 233 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 234 { 235 (*regs)[0] = env->regs[R_EBX]; 236 (*regs)[1] = env->regs[R_ECX]; 237 (*regs)[2] = env->regs[R_EDX]; 238 (*regs)[3] = env->regs[R_ESI]; 239 (*regs)[4] = env->regs[R_EDI]; 240 (*regs)[5] = env->regs[R_EBP]; 241 (*regs)[6] = env->regs[R_EAX]; 242 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 243 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 244 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 245 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 246 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 247 (*regs)[12] = env->eip; 248 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 249 (*regs)[14] = env->eflags; 250 (*regs)[15] = env->regs[R_ESP]; 251 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 252 } 253 #endif 254 255 #define USE_ELF_CORE_DUMP 256 #define ELF_EXEC_PAGESIZE 4096 257 258 #endif 259 260 #ifdef TARGET_ARM 261 262 #ifndef TARGET_AARCH64 263 /* 32 bit ARM definitions */ 264 265 #define ELF_START_MMAP 0x80000000 266 267 #define ELF_ARCH EM_ARM 268 #define ELF_CLASS ELFCLASS32 269 270 static inline void init_thread(struct target_pt_regs *regs, 271 struct image_info *infop) 272 { 273 abi_long stack = infop->start_stack; 274 memset(regs, 0, sizeof(*regs)); 275 276 regs->ARM_cpsr = 0x10; 277 if (infop->entry & 1) 278 regs->ARM_cpsr |= CPSR_T; 279 regs->ARM_pc = infop->entry & 0xfffffffe; 280 regs->ARM_sp = infop->start_stack; 281 /* FIXME - what to for failure of get_user()? */ 282 get_user_ual(regs->ARM_r2, stack + 8); /* envp */ 283 get_user_ual(regs->ARM_r1, stack + 4); /* envp */ 284 /* XXX: it seems that r0 is zeroed after ! */ 285 regs->ARM_r0 = 0; 286 /* For uClinux PIC binaries. */ 287 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 288 regs->ARM_r10 = infop->start_data; 289 } 290 291 #define ELF_NREG 18 292 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 293 294 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 295 { 296 (*regs)[0] = tswapreg(env->regs[0]); 297 (*regs)[1] = tswapreg(env->regs[1]); 298 (*regs)[2] = tswapreg(env->regs[2]); 299 (*regs)[3] = tswapreg(env->regs[3]); 300 (*regs)[4] = tswapreg(env->regs[4]); 301 (*regs)[5] = tswapreg(env->regs[5]); 302 (*regs)[6] = tswapreg(env->regs[6]); 303 (*regs)[7] = tswapreg(env->regs[7]); 304 (*regs)[8] = tswapreg(env->regs[8]); 305 (*regs)[9] = tswapreg(env->regs[9]); 306 (*regs)[10] = tswapreg(env->regs[10]); 307 (*regs)[11] = tswapreg(env->regs[11]); 308 (*regs)[12] = tswapreg(env->regs[12]); 309 (*regs)[13] = tswapreg(env->regs[13]); 310 (*regs)[14] = tswapreg(env->regs[14]); 311 (*regs)[15] = tswapreg(env->regs[15]); 312 313 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 314 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 315 } 316 317 #define USE_ELF_CORE_DUMP 318 #define ELF_EXEC_PAGESIZE 4096 319 320 enum 321 { 322 ARM_HWCAP_ARM_SWP = 1 << 0, 323 ARM_HWCAP_ARM_HALF = 1 << 1, 324 ARM_HWCAP_ARM_THUMB = 1 << 2, 325 ARM_HWCAP_ARM_26BIT = 1 << 3, 326 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 327 ARM_HWCAP_ARM_FPA = 1 << 5, 328 ARM_HWCAP_ARM_VFP = 1 << 6, 329 ARM_HWCAP_ARM_EDSP = 1 << 7, 330 ARM_HWCAP_ARM_JAVA = 1 << 8, 331 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 332 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 333 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 334 ARM_HWCAP_ARM_NEON = 1 << 12, 335 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 336 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 337 ARM_HWCAP_ARM_TLS = 1 << 15, 338 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 339 ARM_HWCAP_ARM_IDIVA = 1 << 17, 340 ARM_HWCAP_ARM_IDIVT = 1 << 18, 341 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 342 ARM_HWCAP_ARM_LPAE = 1 << 20, 343 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 344 }; 345 346 enum { 347 ARM_HWCAP2_ARM_AES = 1 << 0, 348 ARM_HWCAP2_ARM_PMULL = 1 << 1, 349 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 350 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 351 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 352 }; 353 354 /* The commpage only exists for 32 bit kernels */ 355 356 #define TARGET_HAS_VALIDATE_GUEST_SPACE 357 /* Return 1 if the proposed guest space is suitable for the guest. 358 * Return 0 if the proposed guest space isn't suitable, but another 359 * address space should be tried. 360 * Return -1 if there is no way the proposed guest space can be 361 * valid regardless of the base. 362 * The guest code may leave a page mapped and populate it if the 363 * address is suitable. 364 */ 365 static int validate_guest_space(unsigned long guest_base, 366 unsigned long guest_size) 367 { 368 unsigned long real_start, test_page_addr; 369 370 /* We need to check that we can force a fault on access to the 371 * commpage at 0xffff0fxx 372 */ 373 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 374 375 /* If the commpage lies within the already allocated guest space, 376 * then there is no way we can allocate it. 377 */ 378 if (test_page_addr >= guest_base 379 && test_page_addr <= (guest_base + guest_size)) { 380 return -1; 381 } 382 383 /* Note it needs to be writeable to let us initialise it */ 384 real_start = (unsigned long) 385 mmap((void *)test_page_addr, qemu_host_page_size, 386 PROT_READ | PROT_WRITE, 387 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 388 389 /* If we can't map it then try another address */ 390 if (real_start == -1ul) { 391 return 0; 392 } 393 394 if (real_start != test_page_addr) { 395 /* OS didn't put the page where we asked - unmap and reject */ 396 munmap((void *)real_start, qemu_host_page_size); 397 return 0; 398 } 399 400 /* Leave the page mapped 401 * Populate it (mmap should have left it all 0'd) 402 */ 403 404 /* Kernel helper versions */ 405 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 406 407 /* Now it's populated make it RO */ 408 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 409 perror("Protecting guest commpage"); 410 exit(-1); 411 } 412 413 return 1; /* All good */ 414 } 415 416 #define ELF_HWCAP get_elf_hwcap() 417 #define ELF_HWCAP2 get_elf_hwcap2() 418 419 static uint32_t get_elf_hwcap(void) 420 { 421 ARMCPU *cpu = ARM_CPU(thread_cpu); 422 uint32_t hwcaps = 0; 423 424 hwcaps |= ARM_HWCAP_ARM_SWP; 425 hwcaps |= ARM_HWCAP_ARM_HALF; 426 hwcaps |= ARM_HWCAP_ARM_THUMB; 427 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 428 429 /* probe for the extra features */ 430 #define GET_FEATURE(feat, hwcap) \ 431 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 432 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 433 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 434 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 435 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 436 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 437 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 438 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 439 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 440 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 441 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 442 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 443 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 444 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 445 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 446 * to our VFP_FP16 feature bit. 447 */ 448 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 449 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 450 451 return hwcaps; 452 } 453 454 static uint32_t get_elf_hwcap2(void) 455 { 456 ARMCPU *cpu = ARM_CPU(thread_cpu); 457 uint32_t hwcaps = 0; 458 459 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 460 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 461 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 462 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 463 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 464 return hwcaps; 465 } 466 467 #undef GET_FEATURE 468 469 #else 470 /* 64 bit ARM definitions */ 471 #define ELF_START_MMAP 0x80000000 472 473 #define ELF_ARCH EM_AARCH64 474 #define ELF_CLASS ELFCLASS64 475 #define ELF_PLATFORM "aarch64" 476 477 static inline void init_thread(struct target_pt_regs *regs, 478 struct image_info *infop) 479 { 480 abi_long stack = infop->start_stack; 481 memset(regs, 0, sizeof(*regs)); 482 483 regs->pc = infop->entry & ~0x3ULL; 484 regs->sp = stack; 485 } 486 487 #define ELF_NREG 34 488 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 489 490 static void elf_core_copy_regs(target_elf_gregset_t *regs, 491 const CPUARMState *env) 492 { 493 int i; 494 495 for (i = 0; i < 32; i++) { 496 (*regs)[i] = tswapreg(env->xregs[i]); 497 } 498 (*regs)[32] = tswapreg(env->pc); 499 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 500 } 501 502 #define USE_ELF_CORE_DUMP 503 #define ELF_EXEC_PAGESIZE 4096 504 505 enum { 506 ARM_HWCAP_A64_FP = 1 << 0, 507 ARM_HWCAP_A64_ASIMD = 1 << 1, 508 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 509 ARM_HWCAP_A64_AES = 1 << 3, 510 ARM_HWCAP_A64_PMULL = 1 << 4, 511 ARM_HWCAP_A64_SHA1 = 1 << 5, 512 ARM_HWCAP_A64_SHA2 = 1 << 6, 513 ARM_HWCAP_A64_CRC32 = 1 << 7, 514 }; 515 516 #define ELF_HWCAP get_elf_hwcap() 517 518 static uint32_t get_elf_hwcap(void) 519 { 520 ARMCPU *cpu = ARM_CPU(thread_cpu); 521 uint32_t hwcaps = 0; 522 523 hwcaps |= ARM_HWCAP_A64_FP; 524 hwcaps |= ARM_HWCAP_A64_ASIMD; 525 526 /* probe for the extra features */ 527 #define GET_FEATURE(feat, hwcap) \ 528 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 529 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 530 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 531 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 532 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 533 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 534 #undef GET_FEATURE 535 536 return hwcaps; 537 } 538 539 #endif /* not TARGET_AARCH64 */ 540 #endif /* TARGET_ARM */ 541 542 #ifdef TARGET_UNICORE32 543 544 #define ELF_START_MMAP 0x80000000 545 546 #define ELF_CLASS ELFCLASS32 547 #define ELF_DATA ELFDATA2LSB 548 #define ELF_ARCH EM_UNICORE32 549 550 static inline void init_thread(struct target_pt_regs *regs, 551 struct image_info *infop) 552 { 553 abi_long stack = infop->start_stack; 554 memset(regs, 0, sizeof(*regs)); 555 regs->UC32_REG_asr = 0x10; 556 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 557 regs->UC32_REG_sp = infop->start_stack; 558 /* FIXME - what to for failure of get_user()? */ 559 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 560 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 561 /* XXX: it seems that r0 is zeroed after ! */ 562 regs->UC32_REG_00 = 0; 563 } 564 565 #define ELF_NREG 34 566 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 567 568 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 569 { 570 (*regs)[0] = env->regs[0]; 571 (*regs)[1] = env->regs[1]; 572 (*regs)[2] = env->regs[2]; 573 (*regs)[3] = env->regs[3]; 574 (*regs)[4] = env->regs[4]; 575 (*regs)[5] = env->regs[5]; 576 (*regs)[6] = env->regs[6]; 577 (*regs)[7] = env->regs[7]; 578 (*regs)[8] = env->regs[8]; 579 (*regs)[9] = env->regs[9]; 580 (*regs)[10] = env->regs[10]; 581 (*regs)[11] = env->regs[11]; 582 (*regs)[12] = env->regs[12]; 583 (*regs)[13] = env->regs[13]; 584 (*regs)[14] = env->regs[14]; 585 (*regs)[15] = env->regs[15]; 586 (*regs)[16] = env->regs[16]; 587 (*regs)[17] = env->regs[17]; 588 (*regs)[18] = env->regs[18]; 589 (*regs)[19] = env->regs[19]; 590 (*regs)[20] = env->regs[20]; 591 (*regs)[21] = env->regs[21]; 592 (*regs)[22] = env->regs[22]; 593 (*regs)[23] = env->regs[23]; 594 (*regs)[24] = env->regs[24]; 595 (*regs)[25] = env->regs[25]; 596 (*regs)[26] = env->regs[26]; 597 (*regs)[27] = env->regs[27]; 598 (*regs)[28] = env->regs[28]; 599 (*regs)[29] = env->regs[29]; 600 (*regs)[30] = env->regs[30]; 601 (*regs)[31] = env->regs[31]; 602 603 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 604 (*regs)[33] = env->regs[0]; /* XXX */ 605 } 606 607 #define USE_ELF_CORE_DUMP 608 #define ELF_EXEC_PAGESIZE 4096 609 610 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 611 612 #endif 613 614 #ifdef TARGET_SPARC 615 #ifdef TARGET_SPARC64 616 617 #define ELF_START_MMAP 0x80000000 618 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 619 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 620 #ifndef TARGET_ABI32 621 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 622 #else 623 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 624 #endif 625 626 #define ELF_CLASS ELFCLASS64 627 #define ELF_ARCH EM_SPARCV9 628 629 #define STACK_BIAS 2047 630 631 static inline void init_thread(struct target_pt_regs *regs, 632 struct image_info *infop) 633 { 634 #ifndef TARGET_ABI32 635 regs->tstate = 0; 636 #endif 637 regs->pc = infop->entry; 638 regs->npc = regs->pc + 4; 639 regs->y = 0; 640 #ifdef TARGET_ABI32 641 regs->u_regs[14] = infop->start_stack - 16 * 4; 642 #else 643 if (personality(infop->personality) == PER_LINUX32) 644 regs->u_regs[14] = infop->start_stack - 16 * 4; 645 else 646 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 647 #endif 648 } 649 650 #else 651 #define ELF_START_MMAP 0x80000000 652 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 653 | HWCAP_SPARC_MULDIV) 654 655 #define ELF_CLASS ELFCLASS32 656 #define ELF_ARCH EM_SPARC 657 658 static inline void init_thread(struct target_pt_regs *regs, 659 struct image_info *infop) 660 { 661 regs->psr = 0; 662 regs->pc = infop->entry; 663 regs->npc = regs->pc + 4; 664 regs->y = 0; 665 regs->u_regs[14] = infop->start_stack - 16 * 4; 666 } 667 668 #endif 669 #endif 670 671 #ifdef TARGET_PPC 672 673 #define ELF_MACHINE PPC_ELF_MACHINE 674 #define ELF_START_MMAP 0x80000000 675 676 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 677 678 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 679 680 #define ELF_CLASS ELFCLASS64 681 682 #else 683 684 #define ELF_CLASS ELFCLASS32 685 686 #endif 687 688 #define ELF_ARCH EM_PPC 689 690 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 691 See arch/powerpc/include/asm/cputable.h. */ 692 enum { 693 QEMU_PPC_FEATURE_32 = 0x80000000, 694 QEMU_PPC_FEATURE_64 = 0x40000000, 695 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 696 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 697 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 698 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 699 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 700 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 701 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 702 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 703 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 704 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 705 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 706 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 707 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 708 QEMU_PPC_FEATURE_CELL = 0x00010000, 709 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 710 QEMU_PPC_FEATURE_SMT = 0x00004000, 711 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 712 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 713 QEMU_PPC_FEATURE_PA6T = 0x00000800, 714 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 715 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 716 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 717 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 718 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 719 720 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 721 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 722 723 /* Feature definitions in AT_HWCAP2. */ 724 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 725 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 726 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 727 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 728 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 729 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 730 }; 731 732 #define ELF_HWCAP get_elf_hwcap() 733 734 static uint32_t get_elf_hwcap(void) 735 { 736 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 737 uint32_t features = 0; 738 739 /* We don't have to be terribly complete here; the high points are 740 Altivec/FP/SPE support. Anything else is just a bonus. */ 741 #define GET_FEATURE(flag, feature) \ 742 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 743 #define GET_FEATURE2(flag, feature) \ 744 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 745 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 746 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 747 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 748 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 749 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 750 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 751 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 752 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 753 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 754 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 755 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 756 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 757 QEMU_PPC_FEATURE_ARCH_2_06); 758 #undef GET_FEATURE 759 #undef GET_FEATURE2 760 761 return features; 762 } 763 764 #define ELF_HWCAP2 get_elf_hwcap2() 765 766 static uint32_t get_elf_hwcap2(void) 767 { 768 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 769 uint32_t features = 0; 770 771 #define GET_FEATURE(flag, feature) \ 772 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 773 #define GET_FEATURE2(flag, feature) \ 774 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 775 776 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 777 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 778 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 779 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 780 781 #undef GET_FEATURE 782 #undef GET_FEATURE2 783 784 return features; 785 } 786 787 /* 788 * The requirements here are: 789 * - keep the final alignment of sp (sp & 0xf) 790 * - make sure the 32-bit value at the first 16 byte aligned position of 791 * AUXV is greater than 16 for glibc compatibility. 792 * AT_IGNOREPPC is used for that. 793 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 794 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 795 */ 796 #define DLINFO_ARCH_ITEMS 5 797 #define ARCH_DLINFO \ 798 do { \ 799 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 800 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 801 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 802 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 803 /* \ 804 * Now handle glibc compatibility. \ 805 */ \ 806 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 807 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 808 } while (0) 809 810 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 811 { 812 _regs->gpr[1] = infop->start_stack; 813 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 814 if (get_ppc64_abi(infop) < 2) { 815 uint64_t val; 816 get_user_u64(val, infop->entry + 8); 817 _regs->gpr[2] = val + infop->load_bias; 818 get_user_u64(val, infop->entry); 819 infop->entry = val + infop->load_bias; 820 } else { 821 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 822 } 823 #endif 824 _regs->nip = infop->entry; 825 } 826 827 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 828 #define ELF_NREG 48 829 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 830 831 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 832 { 833 int i; 834 target_ulong ccr = 0; 835 836 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 837 (*regs)[i] = tswapreg(env->gpr[i]); 838 } 839 840 (*regs)[32] = tswapreg(env->nip); 841 (*regs)[33] = tswapreg(env->msr); 842 (*regs)[35] = tswapreg(env->ctr); 843 (*regs)[36] = tswapreg(env->lr); 844 (*regs)[37] = tswapreg(env->xer); 845 846 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 847 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 848 } 849 (*regs)[38] = tswapreg(ccr); 850 } 851 852 #define USE_ELF_CORE_DUMP 853 #define ELF_EXEC_PAGESIZE 4096 854 855 #endif 856 857 #ifdef TARGET_MIPS 858 859 #define ELF_START_MMAP 0x80000000 860 861 #ifdef TARGET_MIPS64 862 #define ELF_CLASS ELFCLASS64 863 #else 864 #define ELF_CLASS ELFCLASS32 865 #endif 866 #define ELF_ARCH EM_MIPS 867 868 static inline void init_thread(struct target_pt_regs *regs, 869 struct image_info *infop) 870 { 871 regs->cp0_status = 2 << CP0St_KSU; 872 regs->cp0_epc = infop->entry; 873 regs->regs[29] = infop->start_stack; 874 } 875 876 /* See linux kernel: arch/mips/include/asm/elf.h. */ 877 #define ELF_NREG 45 878 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 879 880 /* See linux kernel: arch/mips/include/asm/reg.h. */ 881 enum { 882 #ifdef TARGET_MIPS64 883 TARGET_EF_R0 = 0, 884 #else 885 TARGET_EF_R0 = 6, 886 #endif 887 TARGET_EF_R26 = TARGET_EF_R0 + 26, 888 TARGET_EF_R27 = TARGET_EF_R0 + 27, 889 TARGET_EF_LO = TARGET_EF_R0 + 32, 890 TARGET_EF_HI = TARGET_EF_R0 + 33, 891 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 892 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 893 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 894 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 895 }; 896 897 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 898 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 899 { 900 int i; 901 902 for (i = 0; i < TARGET_EF_R0; i++) { 903 (*regs)[i] = 0; 904 } 905 (*regs)[TARGET_EF_R0] = 0; 906 907 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 908 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 909 } 910 911 (*regs)[TARGET_EF_R26] = 0; 912 (*regs)[TARGET_EF_R27] = 0; 913 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 914 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 915 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 916 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 917 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 918 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 919 } 920 921 #define USE_ELF_CORE_DUMP 922 #define ELF_EXEC_PAGESIZE 4096 923 924 #endif /* TARGET_MIPS */ 925 926 #ifdef TARGET_MICROBLAZE 927 928 #define ELF_START_MMAP 0x80000000 929 930 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 931 932 #define ELF_CLASS ELFCLASS32 933 #define ELF_ARCH EM_MICROBLAZE 934 935 static inline void init_thread(struct target_pt_regs *regs, 936 struct image_info *infop) 937 { 938 regs->pc = infop->entry; 939 regs->r1 = infop->start_stack; 940 941 } 942 943 #define ELF_EXEC_PAGESIZE 4096 944 945 #define USE_ELF_CORE_DUMP 946 #define ELF_NREG 38 947 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 948 949 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 950 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 951 { 952 int i, pos = 0; 953 954 for (i = 0; i < 32; i++) { 955 (*regs)[pos++] = tswapreg(env->regs[i]); 956 } 957 958 for (i = 0; i < 6; i++) { 959 (*regs)[pos++] = tswapreg(env->sregs[i]); 960 } 961 } 962 963 #endif /* TARGET_MICROBLAZE */ 964 965 #ifdef TARGET_OPENRISC 966 967 #define ELF_START_MMAP 0x08000000 968 969 #define ELF_ARCH EM_OPENRISC 970 #define ELF_CLASS ELFCLASS32 971 #define ELF_DATA ELFDATA2MSB 972 973 static inline void init_thread(struct target_pt_regs *regs, 974 struct image_info *infop) 975 { 976 regs->pc = infop->entry; 977 regs->gpr[1] = infop->start_stack; 978 } 979 980 #define USE_ELF_CORE_DUMP 981 #define ELF_EXEC_PAGESIZE 8192 982 983 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 984 #define ELF_NREG 34 /* gprs and pc, sr */ 985 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 986 987 static void elf_core_copy_regs(target_elf_gregset_t *regs, 988 const CPUOpenRISCState *env) 989 { 990 int i; 991 992 for (i = 0; i < 32; i++) { 993 (*regs)[i] = tswapreg(env->gpr[i]); 994 } 995 996 (*regs)[32] = tswapreg(env->pc); 997 (*regs)[33] = tswapreg(env->sr); 998 } 999 #define ELF_HWCAP 0 1000 #define ELF_PLATFORM NULL 1001 1002 #endif /* TARGET_OPENRISC */ 1003 1004 #ifdef TARGET_SH4 1005 1006 #define ELF_START_MMAP 0x80000000 1007 1008 #define ELF_CLASS ELFCLASS32 1009 #define ELF_ARCH EM_SH 1010 1011 static inline void init_thread(struct target_pt_regs *regs, 1012 struct image_info *infop) 1013 { 1014 /* Check other registers XXXXX */ 1015 regs->pc = infop->entry; 1016 regs->regs[15] = infop->start_stack; 1017 } 1018 1019 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1020 #define ELF_NREG 23 1021 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1022 1023 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1024 enum { 1025 TARGET_REG_PC = 16, 1026 TARGET_REG_PR = 17, 1027 TARGET_REG_SR = 18, 1028 TARGET_REG_GBR = 19, 1029 TARGET_REG_MACH = 20, 1030 TARGET_REG_MACL = 21, 1031 TARGET_REG_SYSCALL = 22 1032 }; 1033 1034 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1035 const CPUSH4State *env) 1036 { 1037 int i; 1038 1039 for (i = 0; i < 16; i++) { 1040 (*regs[i]) = tswapreg(env->gregs[i]); 1041 } 1042 1043 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1044 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1045 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1046 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1047 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1048 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1049 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1050 } 1051 1052 #define USE_ELF_CORE_DUMP 1053 #define ELF_EXEC_PAGESIZE 4096 1054 1055 enum { 1056 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1057 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1058 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1059 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1060 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1061 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1062 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1063 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1064 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1065 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1066 }; 1067 1068 #define ELF_HWCAP get_elf_hwcap() 1069 1070 static uint32_t get_elf_hwcap(void) 1071 { 1072 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1073 uint32_t hwcap = 0; 1074 1075 hwcap |= SH_CPU_HAS_FPU; 1076 1077 if (cpu->env.features & SH_FEATURE_SH4A) { 1078 hwcap |= SH_CPU_HAS_LLSC; 1079 } 1080 1081 return hwcap; 1082 } 1083 1084 #endif 1085 1086 #ifdef TARGET_CRIS 1087 1088 #define ELF_START_MMAP 0x80000000 1089 1090 #define ELF_CLASS ELFCLASS32 1091 #define ELF_ARCH EM_CRIS 1092 1093 static inline void init_thread(struct target_pt_regs *regs, 1094 struct image_info *infop) 1095 { 1096 regs->erp = infop->entry; 1097 } 1098 1099 #define ELF_EXEC_PAGESIZE 8192 1100 1101 #endif 1102 1103 #ifdef TARGET_M68K 1104 1105 #define ELF_START_MMAP 0x80000000 1106 1107 #define ELF_CLASS ELFCLASS32 1108 #define ELF_ARCH EM_68K 1109 1110 /* ??? Does this need to do anything? 1111 #define ELF_PLAT_INIT(_r) */ 1112 1113 static inline void init_thread(struct target_pt_regs *regs, 1114 struct image_info *infop) 1115 { 1116 regs->usp = infop->start_stack; 1117 regs->sr = 0; 1118 regs->pc = infop->entry; 1119 } 1120 1121 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1122 #define ELF_NREG 20 1123 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1124 1125 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1126 { 1127 (*regs)[0] = tswapreg(env->dregs[1]); 1128 (*regs)[1] = tswapreg(env->dregs[2]); 1129 (*regs)[2] = tswapreg(env->dregs[3]); 1130 (*regs)[3] = tswapreg(env->dregs[4]); 1131 (*regs)[4] = tswapreg(env->dregs[5]); 1132 (*regs)[5] = tswapreg(env->dregs[6]); 1133 (*regs)[6] = tswapreg(env->dregs[7]); 1134 (*regs)[7] = tswapreg(env->aregs[0]); 1135 (*regs)[8] = tswapreg(env->aregs[1]); 1136 (*regs)[9] = tswapreg(env->aregs[2]); 1137 (*regs)[10] = tswapreg(env->aregs[3]); 1138 (*regs)[11] = tswapreg(env->aregs[4]); 1139 (*regs)[12] = tswapreg(env->aregs[5]); 1140 (*regs)[13] = tswapreg(env->aregs[6]); 1141 (*regs)[14] = tswapreg(env->dregs[0]); 1142 (*regs)[15] = tswapreg(env->aregs[7]); 1143 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1144 (*regs)[17] = tswapreg(env->sr); 1145 (*regs)[18] = tswapreg(env->pc); 1146 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1147 } 1148 1149 #define USE_ELF_CORE_DUMP 1150 #define ELF_EXEC_PAGESIZE 8192 1151 1152 #endif 1153 1154 #ifdef TARGET_ALPHA 1155 1156 #define ELF_START_MMAP (0x30000000000ULL) 1157 1158 #define ELF_CLASS ELFCLASS64 1159 #define ELF_ARCH EM_ALPHA 1160 1161 static inline void init_thread(struct target_pt_regs *regs, 1162 struct image_info *infop) 1163 { 1164 regs->pc = infop->entry; 1165 regs->ps = 8; 1166 regs->usp = infop->start_stack; 1167 } 1168 1169 #define ELF_EXEC_PAGESIZE 8192 1170 1171 #endif /* TARGET_ALPHA */ 1172 1173 #ifdef TARGET_S390X 1174 1175 #define ELF_START_MMAP (0x20000000000ULL) 1176 1177 #define ELF_CLASS ELFCLASS64 1178 #define ELF_DATA ELFDATA2MSB 1179 #define ELF_ARCH EM_S390 1180 1181 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1182 { 1183 regs->psw.addr = infop->entry; 1184 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1185 regs->gprs[15] = infop->start_stack; 1186 } 1187 1188 #endif /* TARGET_S390X */ 1189 1190 #ifdef TARGET_TILEGX 1191 1192 /* 42 bits real used address, a half for user mode */ 1193 #define ELF_START_MMAP (0x00000020000000000ULL) 1194 1195 #define elf_check_arch(x) ((x) == EM_TILEGX) 1196 1197 #define ELF_CLASS ELFCLASS64 1198 #define ELF_DATA ELFDATA2LSB 1199 #define ELF_ARCH EM_TILEGX 1200 1201 static inline void init_thread(struct target_pt_regs *regs, 1202 struct image_info *infop) 1203 { 1204 regs->pc = infop->entry; 1205 regs->sp = infop->start_stack; 1206 1207 } 1208 1209 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1210 1211 #endif /* TARGET_TILEGX */ 1212 1213 #ifndef ELF_PLATFORM 1214 #define ELF_PLATFORM (NULL) 1215 #endif 1216 1217 #ifndef ELF_MACHINE 1218 #define ELF_MACHINE ELF_ARCH 1219 #endif 1220 1221 #ifndef elf_check_arch 1222 #define elf_check_arch(x) ((x) == ELF_ARCH) 1223 #endif 1224 1225 #ifndef ELF_HWCAP 1226 #define ELF_HWCAP 0 1227 #endif 1228 1229 #ifdef TARGET_ABI32 1230 #undef ELF_CLASS 1231 #define ELF_CLASS ELFCLASS32 1232 #undef bswaptls 1233 #define bswaptls(ptr) bswap32s(ptr) 1234 #endif 1235 1236 #include "elf.h" 1237 1238 struct exec 1239 { 1240 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1241 unsigned int a_text; /* length of text, in bytes */ 1242 unsigned int a_data; /* length of data, in bytes */ 1243 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1244 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1245 unsigned int a_entry; /* start address */ 1246 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1247 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1248 }; 1249 1250 1251 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1252 #define OMAGIC 0407 1253 #define NMAGIC 0410 1254 #define ZMAGIC 0413 1255 #define QMAGIC 0314 1256 1257 /* Necessary parameters */ 1258 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1259 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1260 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1261 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1262 1263 #define DLINFO_ITEMS 14 1264 1265 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1266 { 1267 memcpy(to, from, n); 1268 } 1269 1270 #ifdef BSWAP_NEEDED 1271 static void bswap_ehdr(struct elfhdr *ehdr) 1272 { 1273 bswap16s(&ehdr->e_type); /* Object file type */ 1274 bswap16s(&ehdr->e_machine); /* Architecture */ 1275 bswap32s(&ehdr->e_version); /* Object file version */ 1276 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1277 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1278 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1279 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1280 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1281 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1282 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1283 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1284 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1285 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1286 } 1287 1288 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1289 { 1290 int i; 1291 for (i = 0; i < phnum; ++i, ++phdr) { 1292 bswap32s(&phdr->p_type); /* Segment type */ 1293 bswap32s(&phdr->p_flags); /* Segment flags */ 1294 bswaptls(&phdr->p_offset); /* Segment file offset */ 1295 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1296 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1297 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1298 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1299 bswaptls(&phdr->p_align); /* Segment alignment */ 1300 } 1301 } 1302 1303 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1304 { 1305 int i; 1306 for (i = 0; i < shnum; ++i, ++shdr) { 1307 bswap32s(&shdr->sh_name); 1308 bswap32s(&shdr->sh_type); 1309 bswaptls(&shdr->sh_flags); 1310 bswaptls(&shdr->sh_addr); 1311 bswaptls(&shdr->sh_offset); 1312 bswaptls(&shdr->sh_size); 1313 bswap32s(&shdr->sh_link); 1314 bswap32s(&shdr->sh_info); 1315 bswaptls(&shdr->sh_addralign); 1316 bswaptls(&shdr->sh_entsize); 1317 } 1318 } 1319 1320 static void bswap_sym(struct elf_sym *sym) 1321 { 1322 bswap32s(&sym->st_name); 1323 bswaptls(&sym->st_value); 1324 bswaptls(&sym->st_size); 1325 bswap16s(&sym->st_shndx); 1326 } 1327 #else 1328 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1329 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1330 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1331 static inline void bswap_sym(struct elf_sym *sym) { } 1332 #endif 1333 1334 #ifdef USE_ELF_CORE_DUMP 1335 static int elf_core_dump(int, const CPUArchState *); 1336 #endif /* USE_ELF_CORE_DUMP */ 1337 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1338 1339 /* Verify the portions of EHDR within E_IDENT for the target. 1340 This can be performed before bswapping the entire header. */ 1341 static bool elf_check_ident(struct elfhdr *ehdr) 1342 { 1343 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1344 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1345 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1346 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1347 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1348 && ehdr->e_ident[EI_DATA] == ELF_DATA 1349 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1350 } 1351 1352 /* Verify the portions of EHDR outside of E_IDENT for the target. 1353 This has to wait until after bswapping the header. */ 1354 static bool elf_check_ehdr(struct elfhdr *ehdr) 1355 { 1356 return (elf_check_arch(ehdr->e_machine) 1357 && ehdr->e_ehsize == sizeof(struct elfhdr) 1358 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1359 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1360 } 1361 1362 /* 1363 * 'copy_elf_strings()' copies argument/envelope strings from user 1364 * memory to free pages in kernel mem. These are in a format ready 1365 * to be put directly into the top of new user memory. 1366 * 1367 */ 1368 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1369 abi_ulong p, abi_ulong stack_limit) 1370 { 1371 char *tmp; 1372 int len, offset; 1373 abi_ulong top = p; 1374 1375 if (!p) { 1376 return 0; /* bullet-proofing */ 1377 } 1378 1379 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1380 1381 while (argc-- > 0) { 1382 tmp = argv[argc]; 1383 if (!tmp) { 1384 fprintf(stderr, "VFS: argc is wrong"); 1385 exit(-1); 1386 } 1387 len = strlen(tmp) + 1; 1388 tmp += len; 1389 1390 if (len > (p - stack_limit)) { 1391 return 0; 1392 } 1393 while (len) { 1394 int bytes_to_copy = (len > offset) ? offset : len; 1395 tmp -= bytes_to_copy; 1396 p -= bytes_to_copy; 1397 offset -= bytes_to_copy; 1398 len -= bytes_to_copy; 1399 1400 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1401 1402 if (offset == 0) { 1403 memcpy_to_target(p, scratch, top - p); 1404 top = p; 1405 offset = TARGET_PAGE_SIZE; 1406 } 1407 } 1408 } 1409 if (offset) { 1410 memcpy_to_target(p, scratch + offset, top - p); 1411 } 1412 1413 return p; 1414 } 1415 1416 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1417 * argument/environment space. Newer kernels (>2.6.33) allow more, 1418 * dependent on stack size, but guarantee at least 32 pages for 1419 * backwards compatibility. 1420 */ 1421 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1422 1423 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1424 struct image_info *info) 1425 { 1426 abi_ulong size, error, guard; 1427 1428 size = guest_stack_size; 1429 if (size < STACK_LOWER_LIMIT) { 1430 size = STACK_LOWER_LIMIT; 1431 } 1432 guard = TARGET_PAGE_SIZE; 1433 if (guard < qemu_real_host_page_size) { 1434 guard = qemu_real_host_page_size; 1435 } 1436 1437 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1438 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1439 if (error == -1) { 1440 perror("mmap stack"); 1441 exit(-1); 1442 } 1443 1444 /* We reserve one extra page at the top of the stack as guard. */ 1445 target_mprotect(error, guard, PROT_NONE); 1446 1447 info->stack_limit = error + guard; 1448 1449 return info->stack_limit + size - sizeof(void *); 1450 } 1451 1452 /* Map and zero the bss. We need to explicitly zero any fractional pages 1453 after the data section (i.e. bss). */ 1454 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1455 { 1456 uintptr_t host_start, host_map_start, host_end; 1457 1458 last_bss = TARGET_PAGE_ALIGN(last_bss); 1459 1460 /* ??? There is confusion between qemu_real_host_page_size and 1461 qemu_host_page_size here and elsewhere in target_mmap, which 1462 may lead to the end of the data section mapping from the file 1463 not being mapped. At least there was an explicit test and 1464 comment for that here, suggesting that "the file size must 1465 be known". The comment probably pre-dates the introduction 1466 of the fstat system call in target_mmap which does in fact 1467 find out the size. What isn't clear is if the workaround 1468 here is still actually needed. For now, continue with it, 1469 but merge it with the "normal" mmap that would allocate the bss. */ 1470 1471 host_start = (uintptr_t) g2h(elf_bss); 1472 host_end = (uintptr_t) g2h(last_bss); 1473 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1474 1475 if (host_map_start < host_end) { 1476 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1477 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1478 if (p == MAP_FAILED) { 1479 perror("cannot mmap brk"); 1480 exit(-1); 1481 } 1482 } 1483 1484 /* Ensure that the bss page(s) are valid */ 1485 if ((page_get_flags(last_bss-1) & prot) != prot) { 1486 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1487 } 1488 1489 if (host_start < host_map_start) { 1490 memset((void *)host_start, 0, host_map_start - host_start); 1491 } 1492 } 1493 1494 #ifdef CONFIG_USE_FDPIC 1495 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1496 { 1497 uint16_t n; 1498 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1499 1500 /* elf32_fdpic_loadseg */ 1501 n = info->nsegs; 1502 while (n--) { 1503 sp -= 12; 1504 put_user_u32(loadsegs[n].addr, sp+0); 1505 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1506 put_user_u32(loadsegs[n].p_memsz, sp+8); 1507 } 1508 1509 /* elf32_fdpic_loadmap */ 1510 sp -= 4; 1511 put_user_u16(0, sp+0); /* version */ 1512 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1513 1514 info->personality = PER_LINUX_FDPIC; 1515 info->loadmap_addr = sp; 1516 1517 return sp; 1518 } 1519 #endif 1520 1521 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1522 struct elfhdr *exec, 1523 struct image_info *info, 1524 struct image_info *interp_info) 1525 { 1526 abi_ulong sp; 1527 abi_ulong sp_auxv; 1528 int size; 1529 int i; 1530 abi_ulong u_rand_bytes; 1531 uint8_t k_rand_bytes[16]; 1532 abi_ulong u_platform; 1533 const char *k_platform; 1534 const int n = sizeof(elf_addr_t); 1535 1536 sp = p; 1537 1538 #ifdef CONFIG_USE_FDPIC 1539 /* Needs to be before we load the env/argc/... */ 1540 if (elf_is_fdpic(exec)) { 1541 /* Need 4 byte alignment for these structs */ 1542 sp &= ~3; 1543 sp = loader_build_fdpic_loadmap(info, sp); 1544 info->other_info = interp_info; 1545 if (interp_info) { 1546 interp_info->other_info = info; 1547 sp = loader_build_fdpic_loadmap(interp_info, sp); 1548 } 1549 } 1550 #endif 1551 1552 u_platform = 0; 1553 k_platform = ELF_PLATFORM; 1554 if (k_platform) { 1555 size_t len = strlen(k_platform) + 1; 1556 sp -= (len + n - 1) & ~(n - 1); 1557 u_platform = sp; 1558 /* FIXME - check return value of memcpy_to_target() for failure */ 1559 memcpy_to_target(sp, k_platform, len); 1560 } 1561 1562 /* 1563 * Generate 16 random bytes for userspace PRNG seeding (not 1564 * cryptically secure but it's not the aim of QEMU). 1565 */ 1566 for (i = 0; i < 16; i++) { 1567 k_rand_bytes[i] = rand(); 1568 } 1569 sp -= 16; 1570 u_rand_bytes = sp; 1571 /* FIXME - check return value of memcpy_to_target() for failure */ 1572 memcpy_to_target(sp, k_rand_bytes, 16); 1573 1574 /* 1575 * Force 16 byte _final_ alignment here for generality. 1576 */ 1577 sp = sp &~ (abi_ulong)15; 1578 size = (DLINFO_ITEMS + 1) * 2; 1579 if (k_platform) 1580 size += 2; 1581 #ifdef DLINFO_ARCH_ITEMS 1582 size += DLINFO_ARCH_ITEMS * 2; 1583 #endif 1584 #ifdef ELF_HWCAP2 1585 size += 2; 1586 #endif 1587 size += envc + argc + 2; 1588 size += 1; /* argc itself */ 1589 size *= n; 1590 if (size & 15) 1591 sp -= 16 - (size & 15); 1592 1593 /* This is correct because Linux defines 1594 * elf_addr_t as Elf32_Off / Elf64_Off 1595 */ 1596 #define NEW_AUX_ENT(id, val) do { \ 1597 sp -= n; put_user_ual(val, sp); \ 1598 sp -= n; put_user_ual(id, sp); \ 1599 } while(0) 1600 1601 sp_auxv = sp; 1602 NEW_AUX_ENT (AT_NULL, 0); 1603 1604 /* There must be exactly DLINFO_ITEMS entries here. */ 1605 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1606 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1607 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1608 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1609 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1610 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1611 NEW_AUX_ENT(AT_ENTRY, info->entry); 1612 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1613 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1614 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1615 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1616 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1617 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1618 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1619 1620 #ifdef ELF_HWCAP2 1621 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1622 #endif 1623 1624 if (k_platform) 1625 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1626 #ifdef ARCH_DLINFO 1627 /* 1628 * ARCH_DLINFO must come last so platform specific code can enforce 1629 * special alignment requirements on the AUXV if necessary (eg. PPC). 1630 */ 1631 ARCH_DLINFO; 1632 #endif 1633 #undef NEW_AUX_ENT 1634 1635 info->saved_auxv = sp; 1636 info->auxv_len = sp_auxv - sp; 1637 1638 sp = loader_build_argptr(envc, argc, sp, p, 0); 1639 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1640 assert(sp_auxv - sp == size); 1641 return sp; 1642 } 1643 1644 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1645 /* If the guest doesn't have a validation function just agree */ 1646 static int validate_guest_space(unsigned long guest_base, 1647 unsigned long guest_size) 1648 { 1649 return 1; 1650 } 1651 #endif 1652 1653 unsigned long init_guest_space(unsigned long host_start, 1654 unsigned long host_size, 1655 unsigned long guest_start, 1656 bool fixed) 1657 { 1658 unsigned long current_start, real_start; 1659 int flags; 1660 1661 assert(host_start || host_size); 1662 1663 /* If just a starting address is given, then just verify that 1664 * address. */ 1665 if (host_start && !host_size) { 1666 if (validate_guest_space(host_start, host_size) == 1) { 1667 return host_start; 1668 } else { 1669 return (unsigned long)-1; 1670 } 1671 } 1672 1673 /* Setup the initial flags and start address. */ 1674 current_start = host_start & qemu_host_page_mask; 1675 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1676 if (fixed) { 1677 flags |= MAP_FIXED; 1678 } 1679 1680 /* Otherwise, a non-zero size region of memory needs to be mapped 1681 * and validated. */ 1682 while (1) { 1683 unsigned long real_size = host_size; 1684 1685 /* Do not use mmap_find_vma here because that is limited to the 1686 * guest address space. We are going to make the 1687 * guest address space fit whatever we're given. 1688 */ 1689 real_start = (unsigned long) 1690 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1691 if (real_start == (unsigned long)-1) { 1692 return (unsigned long)-1; 1693 } 1694 1695 /* Ensure the address is properly aligned. */ 1696 if (real_start & ~qemu_host_page_mask) { 1697 munmap((void *)real_start, host_size); 1698 real_size = host_size + qemu_host_page_size; 1699 real_start = (unsigned long) 1700 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1701 if (real_start == (unsigned long)-1) { 1702 return (unsigned long)-1; 1703 } 1704 real_start = HOST_PAGE_ALIGN(real_start); 1705 } 1706 1707 /* Check to see if the address is valid. */ 1708 if (!host_start || real_start == current_start) { 1709 int valid = validate_guest_space(real_start - guest_start, 1710 real_size); 1711 if (valid == 1) { 1712 break; 1713 } else if (valid == -1) { 1714 return (unsigned long)-1; 1715 } 1716 /* valid == 0, so try again. */ 1717 } 1718 1719 /* That address didn't work. Unmap and try a different one. 1720 * The address the host picked because is typically right at 1721 * the top of the host address space and leaves the guest with 1722 * no usable address space. Resort to a linear search. We 1723 * already compensated for mmap_min_addr, so this should not 1724 * happen often. Probably means we got unlucky and host 1725 * address space randomization put a shared library somewhere 1726 * inconvenient. 1727 */ 1728 munmap((void *)real_start, host_size); 1729 current_start += qemu_host_page_size; 1730 if (host_start == current_start) { 1731 /* Theoretically possible if host doesn't have any suitably 1732 * aligned areas. Normally the first mmap will fail. 1733 */ 1734 return (unsigned long)-1; 1735 } 1736 } 1737 1738 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1739 1740 return real_start; 1741 } 1742 1743 static void probe_guest_base(const char *image_name, 1744 abi_ulong loaddr, abi_ulong hiaddr) 1745 { 1746 /* Probe for a suitable guest base address, if the user has not set 1747 * it explicitly, and set guest_base appropriately. 1748 * In case of error we will print a suitable message and exit. 1749 */ 1750 const char *errmsg; 1751 if (!have_guest_base && !reserved_va) { 1752 unsigned long host_start, real_start, host_size; 1753 1754 /* Round addresses to page boundaries. */ 1755 loaddr &= qemu_host_page_mask; 1756 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1757 1758 if (loaddr < mmap_min_addr) { 1759 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1760 } else { 1761 host_start = loaddr; 1762 if (host_start != loaddr) { 1763 errmsg = "Address overflow loading ELF binary"; 1764 goto exit_errmsg; 1765 } 1766 } 1767 host_size = hiaddr - loaddr; 1768 1769 /* Setup the initial guest memory space with ranges gleaned from 1770 * the ELF image that is being loaded. 1771 */ 1772 real_start = init_guest_space(host_start, host_size, loaddr, false); 1773 if (real_start == (unsigned long)-1) { 1774 errmsg = "Unable to find space for application"; 1775 goto exit_errmsg; 1776 } 1777 guest_base = real_start - loaddr; 1778 1779 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1780 TARGET_ABI_FMT_lx " to 0x%lx\n", 1781 loaddr, real_start); 1782 } 1783 return; 1784 1785 exit_errmsg: 1786 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1787 exit(-1); 1788 } 1789 1790 1791 /* Load an ELF image into the address space. 1792 1793 IMAGE_NAME is the filename of the image, to use in error messages. 1794 IMAGE_FD is the open file descriptor for the image. 1795 1796 BPRM_BUF is a copy of the beginning of the file; this of course 1797 contains the elf file header at offset 0. It is assumed that this 1798 buffer is sufficiently aligned to present no problems to the host 1799 in accessing data at aligned offsets within the buffer. 1800 1801 On return: INFO values will be filled in, as necessary or available. */ 1802 1803 static void load_elf_image(const char *image_name, int image_fd, 1804 struct image_info *info, char **pinterp_name, 1805 char bprm_buf[BPRM_BUF_SIZE]) 1806 { 1807 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1808 struct elf_phdr *phdr; 1809 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1810 int i, retval; 1811 const char *errmsg; 1812 1813 /* First of all, some simple consistency checks */ 1814 errmsg = "Invalid ELF image for this architecture"; 1815 if (!elf_check_ident(ehdr)) { 1816 goto exit_errmsg; 1817 } 1818 bswap_ehdr(ehdr); 1819 if (!elf_check_ehdr(ehdr)) { 1820 goto exit_errmsg; 1821 } 1822 1823 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1824 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1825 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1826 } else { 1827 phdr = (struct elf_phdr *) alloca(i); 1828 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1829 if (retval != i) { 1830 goto exit_read; 1831 } 1832 } 1833 bswap_phdr(phdr, ehdr->e_phnum); 1834 1835 #ifdef CONFIG_USE_FDPIC 1836 info->nsegs = 0; 1837 info->pt_dynamic_addr = 0; 1838 #endif 1839 1840 /* Find the maximum size of the image and allocate an appropriate 1841 amount of memory to handle that. */ 1842 loaddr = -1, hiaddr = 0; 1843 for (i = 0; i < ehdr->e_phnum; ++i) { 1844 if (phdr[i].p_type == PT_LOAD) { 1845 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1846 if (a < loaddr) { 1847 loaddr = a; 1848 } 1849 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1850 if (a > hiaddr) { 1851 hiaddr = a; 1852 } 1853 #ifdef CONFIG_USE_FDPIC 1854 ++info->nsegs; 1855 #endif 1856 } 1857 } 1858 1859 load_addr = loaddr; 1860 if (ehdr->e_type == ET_DYN) { 1861 /* The image indicates that it can be loaded anywhere. Find a 1862 location that can hold the memory space required. If the 1863 image is pre-linked, LOADDR will be non-zero. Since we do 1864 not supply MAP_FIXED here we'll use that address if and 1865 only if it remains available. */ 1866 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1867 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1868 -1, 0); 1869 if (load_addr == -1) { 1870 goto exit_perror; 1871 } 1872 } else if (pinterp_name != NULL) { 1873 /* This is the main executable. Make sure that the low 1874 address does not conflict with MMAP_MIN_ADDR or the 1875 QEMU application itself. */ 1876 probe_guest_base(image_name, loaddr, hiaddr); 1877 } 1878 load_bias = load_addr - loaddr; 1879 1880 #ifdef CONFIG_USE_FDPIC 1881 { 1882 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1883 g_malloc(sizeof(*loadsegs) * info->nsegs); 1884 1885 for (i = 0; i < ehdr->e_phnum; ++i) { 1886 switch (phdr[i].p_type) { 1887 case PT_DYNAMIC: 1888 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1889 break; 1890 case PT_LOAD: 1891 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1892 loadsegs->p_vaddr = phdr[i].p_vaddr; 1893 loadsegs->p_memsz = phdr[i].p_memsz; 1894 ++loadsegs; 1895 break; 1896 } 1897 } 1898 } 1899 #endif 1900 1901 info->load_bias = load_bias; 1902 info->load_addr = load_addr; 1903 info->entry = ehdr->e_entry + load_bias; 1904 info->start_code = -1; 1905 info->end_code = 0; 1906 info->start_data = -1; 1907 info->end_data = 0; 1908 info->brk = 0; 1909 info->elf_flags = ehdr->e_flags; 1910 1911 for (i = 0; i < ehdr->e_phnum; i++) { 1912 struct elf_phdr *eppnt = phdr + i; 1913 if (eppnt->p_type == PT_LOAD) { 1914 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1915 int elf_prot = 0; 1916 1917 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1918 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1919 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1920 1921 vaddr = load_bias + eppnt->p_vaddr; 1922 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1923 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1924 1925 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1926 elf_prot, MAP_PRIVATE | MAP_FIXED, 1927 image_fd, eppnt->p_offset - vaddr_po); 1928 if (error == -1) { 1929 goto exit_perror; 1930 } 1931 1932 vaddr_ef = vaddr + eppnt->p_filesz; 1933 vaddr_em = vaddr + eppnt->p_memsz; 1934 1935 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1936 if (vaddr_ef < vaddr_em) { 1937 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1938 } 1939 1940 /* Find the full program boundaries. */ 1941 if (elf_prot & PROT_EXEC) { 1942 if (vaddr < info->start_code) { 1943 info->start_code = vaddr; 1944 } 1945 if (vaddr_ef > info->end_code) { 1946 info->end_code = vaddr_ef; 1947 } 1948 } 1949 if (elf_prot & PROT_WRITE) { 1950 if (vaddr < info->start_data) { 1951 info->start_data = vaddr; 1952 } 1953 if (vaddr_ef > info->end_data) { 1954 info->end_data = vaddr_ef; 1955 } 1956 if (vaddr_em > info->brk) { 1957 info->brk = vaddr_em; 1958 } 1959 } 1960 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1961 char *interp_name; 1962 1963 if (*pinterp_name) { 1964 errmsg = "Multiple PT_INTERP entries"; 1965 goto exit_errmsg; 1966 } 1967 interp_name = malloc(eppnt->p_filesz); 1968 if (!interp_name) { 1969 goto exit_perror; 1970 } 1971 1972 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1973 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1974 eppnt->p_filesz); 1975 } else { 1976 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1977 eppnt->p_offset); 1978 if (retval != eppnt->p_filesz) { 1979 goto exit_perror; 1980 } 1981 } 1982 if (interp_name[eppnt->p_filesz - 1] != 0) { 1983 errmsg = "Invalid PT_INTERP entry"; 1984 goto exit_errmsg; 1985 } 1986 *pinterp_name = interp_name; 1987 } 1988 } 1989 1990 if (info->end_data == 0) { 1991 info->start_data = info->end_code; 1992 info->end_data = info->end_code; 1993 info->brk = info->end_code; 1994 } 1995 1996 if (qemu_log_enabled()) { 1997 load_symbols(ehdr, image_fd, load_bias); 1998 } 1999 2000 close(image_fd); 2001 return; 2002 2003 exit_read: 2004 if (retval >= 0) { 2005 errmsg = "Incomplete read of file header"; 2006 goto exit_errmsg; 2007 } 2008 exit_perror: 2009 errmsg = strerror(errno); 2010 exit_errmsg: 2011 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2012 exit(-1); 2013 } 2014 2015 static void load_elf_interp(const char *filename, struct image_info *info, 2016 char bprm_buf[BPRM_BUF_SIZE]) 2017 { 2018 int fd, retval; 2019 2020 fd = open(path(filename), O_RDONLY); 2021 if (fd < 0) { 2022 goto exit_perror; 2023 } 2024 2025 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2026 if (retval < 0) { 2027 goto exit_perror; 2028 } 2029 if (retval < BPRM_BUF_SIZE) { 2030 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2031 } 2032 2033 load_elf_image(filename, fd, info, NULL, bprm_buf); 2034 return; 2035 2036 exit_perror: 2037 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2038 exit(-1); 2039 } 2040 2041 static int symfind(const void *s0, const void *s1) 2042 { 2043 target_ulong addr = *(target_ulong *)s0; 2044 struct elf_sym *sym = (struct elf_sym *)s1; 2045 int result = 0; 2046 if (addr < sym->st_value) { 2047 result = -1; 2048 } else if (addr >= sym->st_value + sym->st_size) { 2049 result = 1; 2050 } 2051 return result; 2052 } 2053 2054 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2055 { 2056 #if ELF_CLASS == ELFCLASS32 2057 struct elf_sym *syms = s->disas_symtab.elf32; 2058 #else 2059 struct elf_sym *syms = s->disas_symtab.elf64; 2060 #endif 2061 2062 // binary search 2063 struct elf_sym *sym; 2064 2065 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2066 if (sym != NULL) { 2067 return s->disas_strtab + sym->st_name; 2068 } 2069 2070 return ""; 2071 } 2072 2073 /* FIXME: This should use elf_ops.h */ 2074 static int symcmp(const void *s0, const void *s1) 2075 { 2076 struct elf_sym *sym0 = (struct elf_sym *)s0; 2077 struct elf_sym *sym1 = (struct elf_sym *)s1; 2078 return (sym0->st_value < sym1->st_value) 2079 ? -1 2080 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2081 } 2082 2083 /* Best attempt to load symbols from this ELF object. */ 2084 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2085 { 2086 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2087 struct elf_shdr *shdr; 2088 char *strings = NULL; 2089 struct syminfo *s = NULL; 2090 struct elf_sym *new_syms, *syms = NULL; 2091 2092 shnum = hdr->e_shnum; 2093 i = shnum * sizeof(struct elf_shdr); 2094 shdr = (struct elf_shdr *)alloca(i); 2095 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2096 return; 2097 } 2098 2099 bswap_shdr(shdr, shnum); 2100 for (i = 0; i < shnum; ++i) { 2101 if (shdr[i].sh_type == SHT_SYMTAB) { 2102 sym_idx = i; 2103 str_idx = shdr[i].sh_link; 2104 goto found; 2105 } 2106 } 2107 2108 /* There will be no symbol table if the file was stripped. */ 2109 return; 2110 2111 found: 2112 /* Now know where the strtab and symtab are. Snarf them. */ 2113 s = malloc(sizeof(*s)); 2114 if (!s) { 2115 goto give_up; 2116 } 2117 2118 i = shdr[str_idx].sh_size; 2119 s->disas_strtab = strings = malloc(i); 2120 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2121 goto give_up; 2122 } 2123 2124 i = shdr[sym_idx].sh_size; 2125 syms = malloc(i); 2126 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2127 goto give_up; 2128 } 2129 2130 nsyms = i / sizeof(struct elf_sym); 2131 for (i = 0; i < nsyms; ) { 2132 bswap_sym(syms + i); 2133 /* Throw away entries which we do not need. */ 2134 if (syms[i].st_shndx == SHN_UNDEF 2135 || syms[i].st_shndx >= SHN_LORESERVE 2136 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2137 if (i < --nsyms) { 2138 syms[i] = syms[nsyms]; 2139 } 2140 } else { 2141 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2142 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2143 syms[i].st_value &= ~(target_ulong)1; 2144 #endif 2145 syms[i].st_value += load_bias; 2146 i++; 2147 } 2148 } 2149 2150 /* No "useful" symbol. */ 2151 if (nsyms == 0) { 2152 goto give_up; 2153 } 2154 2155 /* Attempt to free the storage associated with the local symbols 2156 that we threw away. Whether or not this has any effect on the 2157 memory allocation depends on the malloc implementation and how 2158 many symbols we managed to discard. */ 2159 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2160 if (new_syms == NULL) { 2161 goto give_up; 2162 } 2163 syms = new_syms; 2164 2165 qsort(syms, nsyms, sizeof(*syms), symcmp); 2166 2167 s->disas_num_syms = nsyms; 2168 #if ELF_CLASS == ELFCLASS32 2169 s->disas_symtab.elf32 = syms; 2170 #else 2171 s->disas_symtab.elf64 = syms; 2172 #endif 2173 s->lookup_symbol = lookup_symbolxx; 2174 s->next = syminfos; 2175 syminfos = s; 2176 2177 return; 2178 2179 give_up: 2180 free(s); 2181 free(strings); 2182 free(syms); 2183 } 2184 2185 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2186 { 2187 struct image_info interp_info; 2188 struct elfhdr elf_ex; 2189 char *elf_interpreter = NULL; 2190 char *scratch; 2191 2192 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2193 2194 load_elf_image(bprm->filename, bprm->fd, info, 2195 &elf_interpreter, bprm->buf); 2196 2197 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2198 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2199 when we load the interpreter. */ 2200 elf_ex = *(struct elfhdr *)bprm->buf; 2201 2202 /* Do this so that we can load the interpreter, if need be. We will 2203 change some of these later */ 2204 bprm->p = setup_arg_pages(bprm, info); 2205 2206 scratch = g_new0(char, TARGET_PAGE_SIZE); 2207 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2208 bprm->p, info->stack_limit); 2209 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2210 bprm->p, info->stack_limit); 2211 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2212 bprm->p, info->stack_limit); 2213 g_free(scratch); 2214 2215 if (!bprm->p) { 2216 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2217 exit(-1); 2218 } 2219 2220 if (elf_interpreter) { 2221 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2222 2223 /* If the program interpreter is one of these two, then assume 2224 an iBCS2 image. Otherwise assume a native linux image. */ 2225 2226 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2227 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2228 info->personality = PER_SVR4; 2229 2230 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2231 and some applications "depend" upon this behavior. Since 2232 we do not have the power to recompile these, we emulate 2233 the SVr4 behavior. Sigh. */ 2234 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2235 MAP_FIXED | MAP_PRIVATE, -1, 0); 2236 } 2237 } 2238 2239 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2240 info, (elf_interpreter ? &interp_info : NULL)); 2241 info->start_stack = bprm->p; 2242 2243 /* If we have an interpreter, set that as the program's entry point. 2244 Copy the load_bias as well, to help PPC64 interpret the entry 2245 point as a function descriptor. Do this after creating elf tables 2246 so that we copy the original program entry point into the AUXV. */ 2247 if (elf_interpreter) { 2248 info->load_bias = interp_info.load_bias; 2249 info->entry = interp_info.entry; 2250 free(elf_interpreter); 2251 } 2252 2253 #ifdef USE_ELF_CORE_DUMP 2254 bprm->core_dump = &elf_core_dump; 2255 #endif 2256 2257 return 0; 2258 } 2259 2260 #ifdef USE_ELF_CORE_DUMP 2261 /* 2262 * Definitions to generate Intel SVR4-like core files. 2263 * These mostly have the same names as the SVR4 types with "target_elf_" 2264 * tacked on the front to prevent clashes with linux definitions, 2265 * and the typedef forms have been avoided. This is mostly like 2266 * the SVR4 structure, but more Linuxy, with things that Linux does 2267 * not support and which gdb doesn't really use excluded. 2268 * 2269 * Fields we don't dump (their contents is zero) in linux-user qemu 2270 * are marked with XXX. 2271 * 2272 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2273 * 2274 * Porting ELF coredump for target is (quite) simple process. First you 2275 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2276 * the target resides): 2277 * 2278 * #define USE_ELF_CORE_DUMP 2279 * 2280 * Next you define type of register set used for dumping. ELF specification 2281 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2282 * 2283 * typedef <target_regtype> target_elf_greg_t; 2284 * #define ELF_NREG <number of registers> 2285 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2286 * 2287 * Last step is to implement target specific function that copies registers 2288 * from given cpu into just specified register set. Prototype is: 2289 * 2290 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2291 * const CPUArchState *env); 2292 * 2293 * Parameters: 2294 * regs - copy register values into here (allocated and zeroed by caller) 2295 * env - copy registers from here 2296 * 2297 * Example for ARM target is provided in this file. 2298 */ 2299 2300 /* An ELF note in memory */ 2301 struct memelfnote { 2302 const char *name; 2303 size_t namesz; 2304 size_t namesz_rounded; 2305 int type; 2306 size_t datasz; 2307 size_t datasz_rounded; 2308 void *data; 2309 size_t notesz; 2310 }; 2311 2312 struct target_elf_siginfo { 2313 abi_int si_signo; /* signal number */ 2314 abi_int si_code; /* extra code */ 2315 abi_int si_errno; /* errno */ 2316 }; 2317 2318 struct target_elf_prstatus { 2319 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2320 abi_short pr_cursig; /* Current signal */ 2321 abi_ulong pr_sigpend; /* XXX */ 2322 abi_ulong pr_sighold; /* XXX */ 2323 target_pid_t pr_pid; 2324 target_pid_t pr_ppid; 2325 target_pid_t pr_pgrp; 2326 target_pid_t pr_sid; 2327 struct target_timeval pr_utime; /* XXX User time */ 2328 struct target_timeval pr_stime; /* XXX System time */ 2329 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2330 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2331 target_elf_gregset_t pr_reg; /* GP registers */ 2332 abi_int pr_fpvalid; /* XXX */ 2333 }; 2334 2335 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2336 2337 struct target_elf_prpsinfo { 2338 char pr_state; /* numeric process state */ 2339 char pr_sname; /* char for pr_state */ 2340 char pr_zomb; /* zombie */ 2341 char pr_nice; /* nice val */ 2342 abi_ulong pr_flag; /* flags */ 2343 target_uid_t pr_uid; 2344 target_gid_t pr_gid; 2345 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2346 /* Lots missing */ 2347 char pr_fname[16]; /* filename of executable */ 2348 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2349 }; 2350 2351 /* Here is the structure in which status of each thread is captured. */ 2352 struct elf_thread_status { 2353 QTAILQ_ENTRY(elf_thread_status) ets_link; 2354 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2355 #if 0 2356 elf_fpregset_t fpu; /* NT_PRFPREG */ 2357 struct task_struct *thread; 2358 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2359 #endif 2360 struct memelfnote notes[1]; 2361 int num_notes; 2362 }; 2363 2364 struct elf_note_info { 2365 struct memelfnote *notes; 2366 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2367 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2368 2369 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2370 #if 0 2371 /* 2372 * Current version of ELF coredump doesn't support 2373 * dumping fp regs etc. 2374 */ 2375 elf_fpregset_t *fpu; 2376 elf_fpxregset_t *xfpu; 2377 int thread_status_size; 2378 #endif 2379 int notes_size; 2380 int numnote; 2381 }; 2382 2383 struct vm_area_struct { 2384 target_ulong vma_start; /* start vaddr of memory region */ 2385 target_ulong vma_end; /* end vaddr of memory region */ 2386 abi_ulong vma_flags; /* protection etc. flags for the region */ 2387 QTAILQ_ENTRY(vm_area_struct) vma_link; 2388 }; 2389 2390 struct mm_struct { 2391 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2392 int mm_count; /* number of mappings */ 2393 }; 2394 2395 static struct mm_struct *vma_init(void); 2396 static void vma_delete(struct mm_struct *); 2397 static int vma_add_mapping(struct mm_struct *, target_ulong, 2398 target_ulong, abi_ulong); 2399 static int vma_get_mapping_count(const struct mm_struct *); 2400 static struct vm_area_struct *vma_first(const struct mm_struct *); 2401 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2402 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2403 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2404 unsigned long flags); 2405 2406 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2407 static void fill_note(struct memelfnote *, const char *, int, 2408 unsigned int, void *); 2409 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2410 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2411 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2412 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2413 static size_t note_size(const struct memelfnote *); 2414 static void free_note_info(struct elf_note_info *); 2415 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2416 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2417 static int core_dump_filename(const TaskState *, char *, size_t); 2418 2419 static int dump_write(int, const void *, size_t); 2420 static int write_note(struct memelfnote *, int); 2421 static int write_note_info(struct elf_note_info *, int); 2422 2423 #ifdef BSWAP_NEEDED 2424 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2425 { 2426 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2427 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2428 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2429 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2430 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2431 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2432 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2433 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2434 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2435 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2436 /* cpu times are not filled, so we skip them */ 2437 /* regs should be in correct format already */ 2438 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2439 } 2440 2441 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2442 { 2443 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2444 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2445 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2446 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2447 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2448 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2449 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2450 } 2451 2452 static void bswap_note(struct elf_note *en) 2453 { 2454 bswap32s(&en->n_namesz); 2455 bswap32s(&en->n_descsz); 2456 bswap32s(&en->n_type); 2457 } 2458 #else 2459 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2460 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2461 static inline void bswap_note(struct elf_note *en) { } 2462 #endif /* BSWAP_NEEDED */ 2463 2464 /* 2465 * Minimal support for linux memory regions. These are needed 2466 * when we are finding out what memory exactly belongs to 2467 * emulated process. No locks needed here, as long as 2468 * thread that received the signal is stopped. 2469 */ 2470 2471 static struct mm_struct *vma_init(void) 2472 { 2473 struct mm_struct *mm; 2474 2475 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2476 return (NULL); 2477 2478 mm->mm_count = 0; 2479 QTAILQ_INIT(&mm->mm_mmap); 2480 2481 return (mm); 2482 } 2483 2484 static void vma_delete(struct mm_struct *mm) 2485 { 2486 struct vm_area_struct *vma; 2487 2488 while ((vma = vma_first(mm)) != NULL) { 2489 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2490 g_free(vma); 2491 } 2492 g_free(mm); 2493 } 2494 2495 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2496 target_ulong end, abi_ulong flags) 2497 { 2498 struct vm_area_struct *vma; 2499 2500 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2501 return (-1); 2502 2503 vma->vma_start = start; 2504 vma->vma_end = end; 2505 vma->vma_flags = flags; 2506 2507 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2508 mm->mm_count++; 2509 2510 return (0); 2511 } 2512 2513 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2514 { 2515 return (QTAILQ_FIRST(&mm->mm_mmap)); 2516 } 2517 2518 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2519 { 2520 return (QTAILQ_NEXT(vma, vma_link)); 2521 } 2522 2523 static int vma_get_mapping_count(const struct mm_struct *mm) 2524 { 2525 return (mm->mm_count); 2526 } 2527 2528 /* 2529 * Calculate file (dump) size of given memory region. 2530 */ 2531 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2532 { 2533 /* if we cannot even read the first page, skip it */ 2534 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2535 return (0); 2536 2537 /* 2538 * Usually we don't dump executable pages as they contain 2539 * non-writable code that debugger can read directly from 2540 * target library etc. However, thread stacks are marked 2541 * also executable so we read in first page of given region 2542 * and check whether it contains elf header. If there is 2543 * no elf header, we dump it. 2544 */ 2545 if (vma->vma_flags & PROT_EXEC) { 2546 char page[TARGET_PAGE_SIZE]; 2547 2548 copy_from_user(page, vma->vma_start, sizeof (page)); 2549 if ((page[EI_MAG0] == ELFMAG0) && 2550 (page[EI_MAG1] == ELFMAG1) && 2551 (page[EI_MAG2] == ELFMAG2) && 2552 (page[EI_MAG3] == ELFMAG3)) { 2553 /* 2554 * Mappings are possibly from ELF binary. Don't dump 2555 * them. 2556 */ 2557 return (0); 2558 } 2559 } 2560 2561 return (vma->vma_end - vma->vma_start); 2562 } 2563 2564 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2565 unsigned long flags) 2566 { 2567 struct mm_struct *mm = (struct mm_struct *)priv; 2568 2569 vma_add_mapping(mm, start, end, flags); 2570 return (0); 2571 } 2572 2573 static void fill_note(struct memelfnote *note, const char *name, int type, 2574 unsigned int sz, void *data) 2575 { 2576 unsigned int namesz; 2577 2578 namesz = strlen(name) + 1; 2579 note->name = name; 2580 note->namesz = namesz; 2581 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2582 note->type = type; 2583 note->datasz = sz; 2584 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2585 2586 note->data = data; 2587 2588 /* 2589 * We calculate rounded up note size here as specified by 2590 * ELF document. 2591 */ 2592 note->notesz = sizeof (struct elf_note) + 2593 note->namesz_rounded + note->datasz_rounded; 2594 } 2595 2596 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2597 uint32_t flags) 2598 { 2599 (void) memset(elf, 0, sizeof(*elf)); 2600 2601 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2602 elf->e_ident[EI_CLASS] = ELF_CLASS; 2603 elf->e_ident[EI_DATA] = ELF_DATA; 2604 elf->e_ident[EI_VERSION] = EV_CURRENT; 2605 elf->e_ident[EI_OSABI] = ELF_OSABI; 2606 2607 elf->e_type = ET_CORE; 2608 elf->e_machine = machine; 2609 elf->e_version = EV_CURRENT; 2610 elf->e_phoff = sizeof(struct elfhdr); 2611 elf->e_flags = flags; 2612 elf->e_ehsize = sizeof(struct elfhdr); 2613 elf->e_phentsize = sizeof(struct elf_phdr); 2614 elf->e_phnum = segs; 2615 2616 bswap_ehdr(elf); 2617 } 2618 2619 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2620 { 2621 phdr->p_type = PT_NOTE; 2622 phdr->p_offset = offset; 2623 phdr->p_vaddr = 0; 2624 phdr->p_paddr = 0; 2625 phdr->p_filesz = sz; 2626 phdr->p_memsz = 0; 2627 phdr->p_flags = 0; 2628 phdr->p_align = 0; 2629 2630 bswap_phdr(phdr, 1); 2631 } 2632 2633 static size_t note_size(const struct memelfnote *note) 2634 { 2635 return (note->notesz); 2636 } 2637 2638 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2639 const TaskState *ts, int signr) 2640 { 2641 (void) memset(prstatus, 0, sizeof (*prstatus)); 2642 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2643 prstatus->pr_pid = ts->ts_tid; 2644 prstatus->pr_ppid = getppid(); 2645 prstatus->pr_pgrp = getpgrp(); 2646 prstatus->pr_sid = getsid(0); 2647 2648 bswap_prstatus(prstatus); 2649 } 2650 2651 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2652 { 2653 char *base_filename; 2654 unsigned int i, len; 2655 2656 (void) memset(psinfo, 0, sizeof (*psinfo)); 2657 2658 len = ts->info->arg_end - ts->info->arg_start; 2659 if (len >= ELF_PRARGSZ) 2660 len = ELF_PRARGSZ - 1; 2661 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2662 return -EFAULT; 2663 for (i = 0; i < len; i++) 2664 if (psinfo->pr_psargs[i] == 0) 2665 psinfo->pr_psargs[i] = ' '; 2666 psinfo->pr_psargs[len] = 0; 2667 2668 psinfo->pr_pid = getpid(); 2669 psinfo->pr_ppid = getppid(); 2670 psinfo->pr_pgrp = getpgrp(); 2671 psinfo->pr_sid = getsid(0); 2672 psinfo->pr_uid = getuid(); 2673 psinfo->pr_gid = getgid(); 2674 2675 base_filename = g_path_get_basename(ts->bprm->filename); 2676 /* 2677 * Using strncpy here is fine: at max-length, 2678 * this field is not NUL-terminated. 2679 */ 2680 (void) strncpy(psinfo->pr_fname, base_filename, 2681 sizeof(psinfo->pr_fname)); 2682 2683 g_free(base_filename); 2684 bswap_psinfo(psinfo); 2685 return (0); 2686 } 2687 2688 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2689 { 2690 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2691 elf_addr_t orig_auxv = auxv; 2692 void *ptr; 2693 int len = ts->info->auxv_len; 2694 2695 /* 2696 * Auxiliary vector is stored in target process stack. It contains 2697 * {type, value} pairs that we need to dump into note. This is not 2698 * strictly necessary but we do it here for sake of completeness. 2699 */ 2700 2701 /* read in whole auxv vector and copy it to memelfnote */ 2702 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2703 if (ptr != NULL) { 2704 fill_note(note, "CORE", NT_AUXV, len, ptr); 2705 unlock_user(ptr, auxv, len); 2706 } 2707 } 2708 2709 /* 2710 * Constructs name of coredump file. We have following convention 2711 * for the name: 2712 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2713 * 2714 * Returns 0 in case of success, -1 otherwise (errno is set). 2715 */ 2716 static int core_dump_filename(const TaskState *ts, char *buf, 2717 size_t bufsize) 2718 { 2719 char timestamp[64]; 2720 char *filename = NULL; 2721 char *base_filename = NULL; 2722 struct timeval tv; 2723 struct tm tm; 2724 2725 assert(bufsize >= PATH_MAX); 2726 2727 if (gettimeofday(&tv, NULL) < 0) { 2728 (void) fprintf(stderr, "unable to get current timestamp: %s", 2729 strerror(errno)); 2730 return (-1); 2731 } 2732 2733 filename = strdup(ts->bprm->filename); 2734 base_filename = strdup(basename(filename)); 2735 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2736 localtime_r(&tv.tv_sec, &tm)); 2737 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2738 base_filename, timestamp, (int)getpid()); 2739 free(base_filename); 2740 free(filename); 2741 2742 return (0); 2743 } 2744 2745 static int dump_write(int fd, const void *ptr, size_t size) 2746 { 2747 const char *bufp = (const char *)ptr; 2748 ssize_t bytes_written, bytes_left; 2749 struct rlimit dumpsize; 2750 off_t pos; 2751 2752 bytes_written = 0; 2753 getrlimit(RLIMIT_CORE, &dumpsize); 2754 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2755 if (errno == ESPIPE) { /* not a seekable stream */ 2756 bytes_left = size; 2757 } else { 2758 return pos; 2759 } 2760 } else { 2761 if (dumpsize.rlim_cur <= pos) { 2762 return -1; 2763 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2764 bytes_left = size; 2765 } else { 2766 size_t limit_left=dumpsize.rlim_cur - pos; 2767 bytes_left = limit_left >= size ? size : limit_left ; 2768 } 2769 } 2770 2771 /* 2772 * In normal conditions, single write(2) should do but 2773 * in case of socket etc. this mechanism is more portable. 2774 */ 2775 do { 2776 bytes_written = write(fd, bufp, bytes_left); 2777 if (bytes_written < 0) { 2778 if (errno == EINTR) 2779 continue; 2780 return (-1); 2781 } else if (bytes_written == 0) { /* eof */ 2782 return (-1); 2783 } 2784 bufp += bytes_written; 2785 bytes_left -= bytes_written; 2786 } while (bytes_left > 0); 2787 2788 return (0); 2789 } 2790 2791 static int write_note(struct memelfnote *men, int fd) 2792 { 2793 struct elf_note en; 2794 2795 en.n_namesz = men->namesz; 2796 en.n_type = men->type; 2797 en.n_descsz = men->datasz; 2798 2799 bswap_note(&en); 2800 2801 if (dump_write(fd, &en, sizeof(en)) != 0) 2802 return (-1); 2803 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2804 return (-1); 2805 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2806 return (-1); 2807 2808 return (0); 2809 } 2810 2811 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2812 { 2813 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2814 TaskState *ts = (TaskState *)cpu->opaque; 2815 struct elf_thread_status *ets; 2816 2817 ets = g_malloc0(sizeof (*ets)); 2818 ets->num_notes = 1; /* only prstatus is dumped */ 2819 fill_prstatus(&ets->prstatus, ts, 0); 2820 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2821 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2822 &ets->prstatus); 2823 2824 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2825 2826 info->notes_size += note_size(&ets->notes[0]); 2827 } 2828 2829 static void init_note_info(struct elf_note_info *info) 2830 { 2831 /* Initialize the elf_note_info structure so that it is at 2832 * least safe to call free_note_info() on it. Must be 2833 * called before calling fill_note_info(). 2834 */ 2835 memset(info, 0, sizeof (*info)); 2836 QTAILQ_INIT(&info->thread_list); 2837 } 2838 2839 static int fill_note_info(struct elf_note_info *info, 2840 long signr, const CPUArchState *env) 2841 { 2842 #define NUMNOTES 3 2843 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2844 TaskState *ts = (TaskState *)cpu->opaque; 2845 int i; 2846 2847 info->notes = g_new0(struct memelfnote, NUMNOTES); 2848 if (info->notes == NULL) 2849 return (-ENOMEM); 2850 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2851 if (info->prstatus == NULL) 2852 return (-ENOMEM); 2853 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2854 if (info->prstatus == NULL) 2855 return (-ENOMEM); 2856 2857 /* 2858 * First fill in status (and registers) of current thread 2859 * including process info & aux vector. 2860 */ 2861 fill_prstatus(info->prstatus, ts, signr); 2862 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2863 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2864 sizeof (*info->prstatus), info->prstatus); 2865 fill_psinfo(info->psinfo, ts); 2866 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2867 sizeof (*info->psinfo), info->psinfo); 2868 fill_auxv_note(&info->notes[2], ts); 2869 info->numnote = 3; 2870 2871 info->notes_size = 0; 2872 for (i = 0; i < info->numnote; i++) 2873 info->notes_size += note_size(&info->notes[i]); 2874 2875 /* read and fill status of all threads */ 2876 cpu_list_lock(); 2877 CPU_FOREACH(cpu) { 2878 if (cpu == thread_cpu) { 2879 continue; 2880 } 2881 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2882 } 2883 cpu_list_unlock(); 2884 2885 return (0); 2886 } 2887 2888 static void free_note_info(struct elf_note_info *info) 2889 { 2890 struct elf_thread_status *ets; 2891 2892 while (!QTAILQ_EMPTY(&info->thread_list)) { 2893 ets = QTAILQ_FIRST(&info->thread_list); 2894 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2895 g_free(ets); 2896 } 2897 2898 g_free(info->prstatus); 2899 g_free(info->psinfo); 2900 g_free(info->notes); 2901 } 2902 2903 static int write_note_info(struct elf_note_info *info, int fd) 2904 { 2905 struct elf_thread_status *ets; 2906 int i, error = 0; 2907 2908 /* write prstatus, psinfo and auxv for current thread */ 2909 for (i = 0; i < info->numnote; i++) 2910 if ((error = write_note(&info->notes[i], fd)) != 0) 2911 return (error); 2912 2913 /* write prstatus for each thread */ 2914 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2915 if ((error = write_note(&ets->notes[0], fd)) != 0) 2916 return (error); 2917 } 2918 2919 return (0); 2920 } 2921 2922 /* 2923 * Write out ELF coredump. 2924 * 2925 * See documentation of ELF object file format in: 2926 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2927 * 2928 * Coredump format in linux is following: 2929 * 2930 * 0 +----------------------+ \ 2931 * | ELF header | ET_CORE | 2932 * +----------------------+ | 2933 * | ELF program headers | |--- headers 2934 * | - NOTE section | | 2935 * | - PT_LOAD sections | | 2936 * +----------------------+ / 2937 * | NOTEs: | 2938 * | - NT_PRSTATUS | 2939 * | - NT_PRSINFO | 2940 * | - NT_AUXV | 2941 * +----------------------+ <-- aligned to target page 2942 * | Process memory dump | 2943 * : : 2944 * . . 2945 * : : 2946 * | | 2947 * +----------------------+ 2948 * 2949 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2950 * NT_PRSINFO -> struct elf_prpsinfo 2951 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2952 * 2953 * Format follows System V format as close as possible. Current 2954 * version limitations are as follows: 2955 * - no floating point registers are dumped 2956 * 2957 * Function returns 0 in case of success, negative errno otherwise. 2958 * 2959 * TODO: make this work also during runtime: it should be 2960 * possible to force coredump from running process and then 2961 * continue processing. For example qemu could set up SIGUSR2 2962 * handler (provided that target process haven't registered 2963 * handler for that) that does the dump when signal is received. 2964 */ 2965 static int elf_core_dump(int signr, const CPUArchState *env) 2966 { 2967 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2968 const TaskState *ts = (const TaskState *)cpu->opaque; 2969 struct vm_area_struct *vma = NULL; 2970 char corefile[PATH_MAX]; 2971 struct elf_note_info info; 2972 struct elfhdr elf; 2973 struct elf_phdr phdr; 2974 struct rlimit dumpsize; 2975 struct mm_struct *mm = NULL; 2976 off_t offset = 0, data_offset = 0; 2977 int segs = 0; 2978 int fd = -1; 2979 2980 init_note_info(&info); 2981 2982 errno = 0; 2983 getrlimit(RLIMIT_CORE, &dumpsize); 2984 if (dumpsize.rlim_cur == 0) 2985 return 0; 2986 2987 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2988 return (-errno); 2989 2990 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2991 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2992 return (-errno); 2993 2994 /* 2995 * Walk through target process memory mappings and 2996 * set up structure containing this information. After 2997 * this point vma_xxx functions can be used. 2998 */ 2999 if ((mm = vma_init()) == NULL) 3000 goto out; 3001 3002 walk_memory_regions(mm, vma_walker); 3003 segs = vma_get_mapping_count(mm); 3004 3005 /* 3006 * Construct valid coredump ELF header. We also 3007 * add one more segment for notes. 3008 */ 3009 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3010 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3011 goto out; 3012 3013 /* fill in the in-memory version of notes */ 3014 if (fill_note_info(&info, signr, env) < 0) 3015 goto out; 3016 3017 offset += sizeof (elf); /* elf header */ 3018 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3019 3020 /* write out notes program header */ 3021 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3022 3023 offset += info.notes_size; 3024 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3025 goto out; 3026 3027 /* 3028 * ELF specification wants data to start at page boundary so 3029 * we align it here. 3030 */ 3031 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3032 3033 /* 3034 * Write program headers for memory regions mapped in 3035 * the target process. 3036 */ 3037 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3038 (void) memset(&phdr, 0, sizeof (phdr)); 3039 3040 phdr.p_type = PT_LOAD; 3041 phdr.p_offset = offset; 3042 phdr.p_vaddr = vma->vma_start; 3043 phdr.p_paddr = 0; 3044 phdr.p_filesz = vma_dump_size(vma); 3045 offset += phdr.p_filesz; 3046 phdr.p_memsz = vma->vma_end - vma->vma_start; 3047 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3048 if (vma->vma_flags & PROT_WRITE) 3049 phdr.p_flags |= PF_W; 3050 if (vma->vma_flags & PROT_EXEC) 3051 phdr.p_flags |= PF_X; 3052 phdr.p_align = ELF_EXEC_PAGESIZE; 3053 3054 bswap_phdr(&phdr, 1); 3055 dump_write(fd, &phdr, sizeof (phdr)); 3056 } 3057 3058 /* 3059 * Next we write notes just after program headers. No 3060 * alignment needed here. 3061 */ 3062 if (write_note_info(&info, fd) < 0) 3063 goto out; 3064 3065 /* align data to page boundary */ 3066 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3067 goto out; 3068 3069 /* 3070 * Finally we can dump process memory into corefile as well. 3071 */ 3072 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3073 abi_ulong addr; 3074 abi_ulong end; 3075 3076 end = vma->vma_start + vma_dump_size(vma); 3077 3078 for (addr = vma->vma_start; addr < end; 3079 addr += TARGET_PAGE_SIZE) { 3080 char page[TARGET_PAGE_SIZE]; 3081 int error; 3082 3083 /* 3084 * Read in page from target process memory and 3085 * write it to coredump file. 3086 */ 3087 error = copy_from_user(page, addr, sizeof (page)); 3088 if (error != 0) { 3089 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3090 addr); 3091 errno = -error; 3092 goto out; 3093 } 3094 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3095 goto out; 3096 } 3097 } 3098 3099 out: 3100 free_note_info(&info); 3101 if (mm != NULL) 3102 vma_delete(mm); 3103 (void) close(fd); 3104 3105 if (errno != 0) 3106 return (-errno); 3107 return (0); 3108 } 3109 #endif /* USE_ELF_CORE_DUMP */ 3110 3111 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3112 { 3113 init_thread(regs, infop); 3114 } 3115