1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 23 #ifdef _ARCH_PPC64 24 #undef ARCH_DLINFO 25 #undef ELF_PLATFORM 26 #undef ELF_HWCAP 27 #undef ELF_HWCAP2 28 #undef ELF_CLASS 29 #undef ELF_DATA 30 #undef ELF_ARCH 31 #endif 32 33 #define ELF_OSABI ELFOSABI_SYSV 34 35 /* from personality.h */ 36 37 /* 38 * Flags for bug emulation. 39 * 40 * These occupy the top three bytes. 41 */ 42 enum { 43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 45 descriptors (signal handling) */ 46 MMAP_PAGE_ZERO = 0x0100000, 47 ADDR_COMPAT_LAYOUT = 0x0200000, 48 READ_IMPLIES_EXEC = 0x0400000, 49 ADDR_LIMIT_32BIT = 0x0800000, 50 SHORT_INODE = 0x1000000, 51 WHOLE_SECONDS = 0x2000000, 52 STICKY_TIMEOUTS = 0x4000000, 53 ADDR_LIMIT_3GB = 0x8000000, 54 }; 55 56 /* 57 * Personality types. 58 * 59 * These go in the low byte. Avoid using the top bit, it will 60 * conflict with error returns. 61 */ 62 enum { 63 PER_LINUX = 0x0000, 64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 72 PER_BSD = 0x0006, 73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 75 PER_LINUX32 = 0x0008, 76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 80 PER_RISCOS = 0x000c, 81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 83 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 84 PER_HPUX = 0x0010, 85 PER_MASK = 0x00ff, 86 }; 87 88 /* 89 * Return the base personality without flags. 90 */ 91 #define personality(pers) (pers & PER_MASK) 92 93 int info_is_fdpic(struct image_info *info) 94 { 95 return info->personality == PER_LINUX_FDPIC; 96 } 97 98 /* this flag is uneffective under linux too, should be deleted */ 99 #ifndef MAP_DENYWRITE 100 #define MAP_DENYWRITE 0 101 #endif 102 103 /* should probably go in elf.h */ 104 #ifndef ELIBBAD 105 #define ELIBBAD 80 106 #endif 107 108 #if TARGET_BIG_ENDIAN 109 #define ELF_DATA ELFDATA2MSB 110 #else 111 #define ELF_DATA ELFDATA2LSB 112 #endif 113 114 #ifdef TARGET_ABI_MIPSN32 115 typedef abi_ullong target_elf_greg_t; 116 #define tswapreg(ptr) tswap64(ptr) 117 #else 118 typedef abi_ulong target_elf_greg_t; 119 #define tswapreg(ptr) tswapal(ptr) 120 #endif 121 122 #ifdef USE_UID16 123 typedef abi_ushort target_uid_t; 124 typedef abi_ushort target_gid_t; 125 #else 126 typedef abi_uint target_uid_t; 127 typedef abi_uint target_gid_t; 128 #endif 129 typedef abi_int target_pid_t; 130 131 #ifdef TARGET_I386 132 133 #define ELF_HWCAP get_elf_hwcap() 134 135 static uint32_t get_elf_hwcap(void) 136 { 137 X86CPU *cpu = X86_CPU(thread_cpu); 138 139 return cpu->env.features[FEAT_1_EDX]; 140 } 141 142 #ifdef TARGET_X86_64 143 #define ELF_START_MMAP 0x2aaaaab000ULL 144 145 #define ELF_CLASS ELFCLASS64 146 #define ELF_ARCH EM_X86_64 147 148 #define ELF_PLATFORM "x86_64" 149 150 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 151 { 152 regs->rax = 0; 153 regs->rsp = infop->start_stack; 154 regs->rip = infop->entry; 155 } 156 157 #define ELF_NREG 27 158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 159 160 /* 161 * Note that ELF_NREG should be 29 as there should be place for 162 * TRAPNO and ERR "registers" as well but linux doesn't dump 163 * those. 164 * 165 * See linux kernel: arch/x86/include/asm/elf.h 166 */ 167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 168 { 169 (*regs)[0] = tswapreg(env->regs[15]); 170 (*regs)[1] = tswapreg(env->regs[14]); 171 (*regs)[2] = tswapreg(env->regs[13]); 172 (*regs)[3] = tswapreg(env->regs[12]); 173 (*regs)[4] = tswapreg(env->regs[R_EBP]); 174 (*regs)[5] = tswapreg(env->regs[R_EBX]); 175 (*regs)[6] = tswapreg(env->regs[11]); 176 (*regs)[7] = tswapreg(env->regs[10]); 177 (*regs)[8] = tswapreg(env->regs[9]); 178 (*regs)[9] = tswapreg(env->regs[8]); 179 (*regs)[10] = tswapreg(env->regs[R_EAX]); 180 (*regs)[11] = tswapreg(env->regs[R_ECX]); 181 (*regs)[12] = tswapreg(env->regs[R_EDX]); 182 (*regs)[13] = tswapreg(env->regs[R_ESI]); 183 (*regs)[14] = tswapreg(env->regs[R_EDI]); 184 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 185 (*regs)[16] = tswapreg(env->eip); 186 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 187 (*regs)[18] = tswapreg(env->eflags); 188 (*regs)[19] = tswapreg(env->regs[R_ESP]); 189 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 190 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 191 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 192 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 193 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 194 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 195 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 196 } 197 198 #if ULONG_MAX > UINT32_MAX 199 #define INIT_GUEST_COMMPAGE 200 static bool init_guest_commpage(void) 201 { 202 /* 203 * The vsyscall page is at a high negative address aka kernel space, 204 * which means that we cannot actually allocate it with target_mmap. 205 * We still should be able to use page_set_flags, unless the user 206 * has specified -R reserved_va, which would trigger an assert(). 207 */ 208 if (reserved_va != 0 && 209 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) { 210 error_report("Cannot allocate vsyscall page"); 211 exit(EXIT_FAILURE); 212 } 213 page_set_flags(TARGET_VSYSCALL_PAGE, 214 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE, 215 PAGE_EXEC | PAGE_VALID); 216 return true; 217 } 218 #endif 219 #else 220 221 #define ELF_START_MMAP 0x80000000 222 223 /* 224 * This is used to ensure we don't load something for the wrong architecture. 225 */ 226 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 227 228 /* 229 * These are used to set parameters in the core dumps. 230 */ 231 #define ELF_CLASS ELFCLASS32 232 #define ELF_ARCH EM_386 233 234 #define ELF_PLATFORM get_elf_platform() 235 #define EXSTACK_DEFAULT true 236 237 static const char *get_elf_platform(void) 238 { 239 static char elf_platform[] = "i386"; 240 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 241 if (family > 6) { 242 family = 6; 243 } 244 if (family >= 3) { 245 elf_platform[1] = '0' + family; 246 } 247 return elf_platform; 248 } 249 250 static inline void init_thread(struct target_pt_regs *regs, 251 struct image_info *infop) 252 { 253 regs->esp = infop->start_stack; 254 regs->eip = infop->entry; 255 256 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 257 starts %edx contains a pointer to a function which might be 258 registered using `atexit'. This provides a mean for the 259 dynamic linker to call DT_FINI functions for shared libraries 260 that have been loaded before the code runs. 261 262 A value of 0 tells we have no such handler. */ 263 regs->edx = 0; 264 } 265 266 #define ELF_NREG 17 267 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 268 269 /* 270 * Note that ELF_NREG should be 19 as there should be place for 271 * TRAPNO and ERR "registers" as well but linux doesn't dump 272 * those. 273 * 274 * See linux kernel: arch/x86/include/asm/elf.h 275 */ 276 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 277 { 278 (*regs)[0] = tswapreg(env->regs[R_EBX]); 279 (*regs)[1] = tswapreg(env->regs[R_ECX]); 280 (*regs)[2] = tswapreg(env->regs[R_EDX]); 281 (*regs)[3] = tswapreg(env->regs[R_ESI]); 282 (*regs)[4] = tswapreg(env->regs[R_EDI]); 283 (*regs)[5] = tswapreg(env->regs[R_EBP]); 284 (*regs)[6] = tswapreg(env->regs[R_EAX]); 285 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 286 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 287 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 288 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 289 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 290 (*regs)[12] = tswapreg(env->eip); 291 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 292 (*regs)[14] = tswapreg(env->eflags); 293 (*regs)[15] = tswapreg(env->regs[R_ESP]); 294 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 295 } 296 #endif 297 298 #define USE_ELF_CORE_DUMP 299 #define ELF_EXEC_PAGESIZE 4096 300 301 #endif 302 303 #ifdef TARGET_ARM 304 305 #ifndef TARGET_AARCH64 306 /* 32 bit ARM definitions */ 307 308 #define ELF_START_MMAP 0x80000000 309 310 #define ELF_ARCH EM_ARM 311 #define ELF_CLASS ELFCLASS32 312 #define EXSTACK_DEFAULT true 313 314 static inline void init_thread(struct target_pt_regs *regs, 315 struct image_info *infop) 316 { 317 abi_long stack = infop->start_stack; 318 memset(regs, 0, sizeof(*regs)); 319 320 regs->uregs[16] = ARM_CPU_MODE_USR; 321 if (infop->entry & 1) { 322 regs->uregs[16] |= CPSR_T; 323 } 324 regs->uregs[15] = infop->entry & 0xfffffffe; 325 regs->uregs[13] = infop->start_stack; 326 /* FIXME - what to for failure of get_user()? */ 327 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 328 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 329 /* XXX: it seems that r0 is zeroed after ! */ 330 regs->uregs[0] = 0; 331 /* For uClinux PIC binaries. */ 332 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 333 regs->uregs[10] = infop->start_data; 334 335 /* Support ARM FDPIC. */ 336 if (info_is_fdpic(infop)) { 337 /* As described in the ABI document, r7 points to the loadmap info 338 * prepared by the kernel. If an interpreter is needed, r8 points 339 * to the interpreter loadmap and r9 points to the interpreter 340 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 341 * r9 points to the main program PT_DYNAMIC info. 342 */ 343 regs->uregs[7] = infop->loadmap_addr; 344 if (infop->interpreter_loadmap_addr) { 345 /* Executable is dynamically loaded. */ 346 regs->uregs[8] = infop->interpreter_loadmap_addr; 347 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 348 } else { 349 regs->uregs[8] = 0; 350 regs->uregs[9] = infop->pt_dynamic_addr; 351 } 352 } 353 } 354 355 #define ELF_NREG 18 356 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 357 358 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 359 { 360 (*regs)[0] = tswapreg(env->regs[0]); 361 (*regs)[1] = tswapreg(env->regs[1]); 362 (*regs)[2] = tswapreg(env->regs[2]); 363 (*regs)[3] = tswapreg(env->regs[3]); 364 (*regs)[4] = tswapreg(env->regs[4]); 365 (*regs)[5] = tswapreg(env->regs[5]); 366 (*regs)[6] = tswapreg(env->regs[6]); 367 (*regs)[7] = tswapreg(env->regs[7]); 368 (*regs)[8] = tswapreg(env->regs[8]); 369 (*regs)[9] = tswapreg(env->regs[9]); 370 (*regs)[10] = tswapreg(env->regs[10]); 371 (*regs)[11] = tswapreg(env->regs[11]); 372 (*regs)[12] = tswapreg(env->regs[12]); 373 (*regs)[13] = tswapreg(env->regs[13]); 374 (*regs)[14] = tswapreg(env->regs[14]); 375 (*regs)[15] = tswapreg(env->regs[15]); 376 377 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 378 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 379 } 380 381 #define USE_ELF_CORE_DUMP 382 #define ELF_EXEC_PAGESIZE 4096 383 384 enum 385 { 386 ARM_HWCAP_ARM_SWP = 1 << 0, 387 ARM_HWCAP_ARM_HALF = 1 << 1, 388 ARM_HWCAP_ARM_THUMB = 1 << 2, 389 ARM_HWCAP_ARM_26BIT = 1 << 3, 390 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 391 ARM_HWCAP_ARM_FPA = 1 << 5, 392 ARM_HWCAP_ARM_VFP = 1 << 6, 393 ARM_HWCAP_ARM_EDSP = 1 << 7, 394 ARM_HWCAP_ARM_JAVA = 1 << 8, 395 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 396 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 397 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 398 ARM_HWCAP_ARM_NEON = 1 << 12, 399 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 400 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 401 ARM_HWCAP_ARM_TLS = 1 << 15, 402 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 403 ARM_HWCAP_ARM_IDIVA = 1 << 17, 404 ARM_HWCAP_ARM_IDIVT = 1 << 18, 405 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 406 ARM_HWCAP_ARM_LPAE = 1 << 20, 407 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 408 }; 409 410 enum { 411 ARM_HWCAP2_ARM_AES = 1 << 0, 412 ARM_HWCAP2_ARM_PMULL = 1 << 1, 413 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 414 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 415 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 416 }; 417 418 /* The commpage only exists for 32 bit kernels */ 419 420 #define HI_COMMPAGE (intptr_t)0xffff0f00u 421 422 static bool init_guest_commpage(void) 423 { 424 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 425 void *want = g2h_untagged(commpage); 426 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 427 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 428 429 if (addr == MAP_FAILED) { 430 perror("Allocating guest commpage"); 431 exit(EXIT_FAILURE); 432 } 433 if (addr != want) { 434 return false; 435 } 436 437 /* Set kernel helper versions; rest of page is 0. */ 438 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 439 440 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 441 perror("Protecting guest commpage"); 442 exit(EXIT_FAILURE); 443 } 444 445 page_set_flags(commpage, commpage + qemu_host_page_size, 446 PAGE_READ | PAGE_EXEC | PAGE_VALID); 447 return true; 448 } 449 450 #define ELF_HWCAP get_elf_hwcap() 451 #define ELF_HWCAP2 get_elf_hwcap2() 452 453 static uint32_t get_elf_hwcap(void) 454 { 455 ARMCPU *cpu = ARM_CPU(thread_cpu); 456 uint32_t hwcaps = 0; 457 458 hwcaps |= ARM_HWCAP_ARM_SWP; 459 hwcaps |= ARM_HWCAP_ARM_HALF; 460 hwcaps |= ARM_HWCAP_ARM_THUMB; 461 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 462 463 /* probe for the extra features */ 464 #define GET_FEATURE(feat, hwcap) \ 465 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 466 467 #define GET_FEATURE_ID(feat, hwcap) \ 468 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 469 470 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 471 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 472 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 473 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 474 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 476 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 477 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 478 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 479 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 480 481 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 482 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 483 hwcaps |= ARM_HWCAP_ARM_VFPv3; 484 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 485 hwcaps |= ARM_HWCAP_ARM_VFPD32; 486 } else { 487 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 488 } 489 } 490 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 491 492 return hwcaps; 493 } 494 495 static uint32_t get_elf_hwcap2(void) 496 { 497 ARMCPU *cpu = ARM_CPU(thread_cpu); 498 uint32_t hwcaps = 0; 499 500 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 501 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 502 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 503 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 504 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 505 return hwcaps; 506 } 507 508 #undef GET_FEATURE 509 #undef GET_FEATURE_ID 510 511 #define ELF_PLATFORM get_elf_platform() 512 513 static const char *get_elf_platform(void) 514 { 515 CPUARMState *env = thread_cpu->env_ptr; 516 517 #if TARGET_BIG_ENDIAN 518 # define END "b" 519 #else 520 # define END "l" 521 #endif 522 523 if (arm_feature(env, ARM_FEATURE_V8)) { 524 return "v8" END; 525 } else if (arm_feature(env, ARM_FEATURE_V7)) { 526 if (arm_feature(env, ARM_FEATURE_M)) { 527 return "v7m" END; 528 } else { 529 return "v7" END; 530 } 531 } else if (arm_feature(env, ARM_FEATURE_V6)) { 532 return "v6" END; 533 } else if (arm_feature(env, ARM_FEATURE_V5)) { 534 return "v5" END; 535 } else { 536 return "v4" END; 537 } 538 539 #undef END 540 } 541 542 #else 543 /* 64 bit ARM definitions */ 544 #define ELF_START_MMAP 0x80000000 545 546 #define ELF_ARCH EM_AARCH64 547 #define ELF_CLASS ELFCLASS64 548 #if TARGET_BIG_ENDIAN 549 # define ELF_PLATFORM "aarch64_be" 550 #else 551 # define ELF_PLATFORM "aarch64" 552 #endif 553 554 static inline void init_thread(struct target_pt_regs *regs, 555 struct image_info *infop) 556 { 557 abi_long stack = infop->start_stack; 558 memset(regs, 0, sizeof(*regs)); 559 560 regs->pc = infop->entry & ~0x3ULL; 561 regs->sp = stack; 562 } 563 564 #define ELF_NREG 34 565 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 566 567 static void elf_core_copy_regs(target_elf_gregset_t *regs, 568 const CPUARMState *env) 569 { 570 int i; 571 572 for (i = 0; i < 32; i++) { 573 (*regs)[i] = tswapreg(env->xregs[i]); 574 } 575 (*regs)[32] = tswapreg(env->pc); 576 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 577 } 578 579 #define USE_ELF_CORE_DUMP 580 #define ELF_EXEC_PAGESIZE 4096 581 582 enum { 583 ARM_HWCAP_A64_FP = 1 << 0, 584 ARM_HWCAP_A64_ASIMD = 1 << 1, 585 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 586 ARM_HWCAP_A64_AES = 1 << 3, 587 ARM_HWCAP_A64_PMULL = 1 << 4, 588 ARM_HWCAP_A64_SHA1 = 1 << 5, 589 ARM_HWCAP_A64_SHA2 = 1 << 6, 590 ARM_HWCAP_A64_CRC32 = 1 << 7, 591 ARM_HWCAP_A64_ATOMICS = 1 << 8, 592 ARM_HWCAP_A64_FPHP = 1 << 9, 593 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 594 ARM_HWCAP_A64_CPUID = 1 << 11, 595 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 596 ARM_HWCAP_A64_JSCVT = 1 << 13, 597 ARM_HWCAP_A64_FCMA = 1 << 14, 598 ARM_HWCAP_A64_LRCPC = 1 << 15, 599 ARM_HWCAP_A64_DCPOP = 1 << 16, 600 ARM_HWCAP_A64_SHA3 = 1 << 17, 601 ARM_HWCAP_A64_SM3 = 1 << 18, 602 ARM_HWCAP_A64_SM4 = 1 << 19, 603 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 604 ARM_HWCAP_A64_SHA512 = 1 << 21, 605 ARM_HWCAP_A64_SVE = 1 << 22, 606 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 607 ARM_HWCAP_A64_DIT = 1 << 24, 608 ARM_HWCAP_A64_USCAT = 1 << 25, 609 ARM_HWCAP_A64_ILRCPC = 1 << 26, 610 ARM_HWCAP_A64_FLAGM = 1 << 27, 611 ARM_HWCAP_A64_SSBS = 1 << 28, 612 ARM_HWCAP_A64_SB = 1 << 29, 613 ARM_HWCAP_A64_PACA = 1 << 30, 614 ARM_HWCAP_A64_PACG = 1UL << 31, 615 616 ARM_HWCAP2_A64_DCPODP = 1 << 0, 617 ARM_HWCAP2_A64_SVE2 = 1 << 1, 618 ARM_HWCAP2_A64_SVEAES = 1 << 2, 619 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 620 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 621 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 622 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 623 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 624 ARM_HWCAP2_A64_FRINT = 1 << 8, 625 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 626 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 627 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 628 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 629 ARM_HWCAP2_A64_I8MM = 1 << 13, 630 ARM_HWCAP2_A64_BF16 = 1 << 14, 631 ARM_HWCAP2_A64_DGH = 1 << 15, 632 ARM_HWCAP2_A64_RNG = 1 << 16, 633 ARM_HWCAP2_A64_BTI = 1 << 17, 634 ARM_HWCAP2_A64_MTE = 1 << 18, 635 ARM_HWCAP2_A64_ECV = 1 << 19, 636 ARM_HWCAP2_A64_AFP = 1 << 20, 637 ARM_HWCAP2_A64_RPRES = 1 << 21, 638 ARM_HWCAP2_A64_MTE3 = 1 << 22, 639 ARM_HWCAP2_A64_SME = 1 << 23, 640 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 641 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 642 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 643 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 644 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 645 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 646 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 647 }; 648 649 #define ELF_HWCAP get_elf_hwcap() 650 #define ELF_HWCAP2 get_elf_hwcap2() 651 652 #define GET_FEATURE_ID(feat, hwcap) \ 653 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 654 655 static uint32_t get_elf_hwcap(void) 656 { 657 ARMCPU *cpu = ARM_CPU(thread_cpu); 658 uint32_t hwcaps = 0; 659 660 hwcaps |= ARM_HWCAP_A64_FP; 661 hwcaps |= ARM_HWCAP_A64_ASIMD; 662 hwcaps |= ARM_HWCAP_A64_CPUID; 663 664 /* probe for the extra features */ 665 666 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 667 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 668 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 669 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 670 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 671 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 672 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 673 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 674 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 675 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 676 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 677 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 678 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 679 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 680 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 681 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 682 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 683 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 684 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 685 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 686 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 687 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 688 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 689 690 return hwcaps; 691 } 692 693 static uint32_t get_elf_hwcap2(void) 694 { 695 ARMCPU *cpu = ARM_CPU(thread_cpu); 696 uint32_t hwcaps = 0; 697 698 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 699 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 700 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 701 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 702 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 703 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 704 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 705 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 706 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 707 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 708 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 709 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 710 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 711 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 712 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 713 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 714 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 715 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 716 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 717 ARM_HWCAP2_A64_SME_F32F32 | 718 ARM_HWCAP2_A64_SME_B16F32 | 719 ARM_HWCAP2_A64_SME_F16F32 | 720 ARM_HWCAP2_A64_SME_I8I32)); 721 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 722 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 723 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 724 725 return hwcaps; 726 } 727 728 #undef GET_FEATURE_ID 729 730 #endif /* not TARGET_AARCH64 */ 731 #endif /* TARGET_ARM */ 732 733 #ifdef TARGET_SPARC 734 #ifdef TARGET_SPARC64 735 736 #define ELF_START_MMAP 0x80000000 737 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 738 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 739 #ifndef TARGET_ABI32 740 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 741 #else 742 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 743 #endif 744 745 #define ELF_CLASS ELFCLASS64 746 #define ELF_ARCH EM_SPARCV9 747 #else 748 #define ELF_START_MMAP 0x80000000 749 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 750 | HWCAP_SPARC_MULDIV) 751 #define ELF_CLASS ELFCLASS32 752 #define ELF_ARCH EM_SPARC 753 #endif /* TARGET_SPARC64 */ 754 755 static inline void init_thread(struct target_pt_regs *regs, 756 struct image_info *infop) 757 { 758 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 759 regs->pc = infop->entry; 760 regs->npc = regs->pc + 4; 761 regs->y = 0; 762 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 763 - TARGET_STACK_BIAS); 764 } 765 #endif /* TARGET_SPARC */ 766 767 #ifdef TARGET_PPC 768 769 #define ELF_MACHINE PPC_ELF_MACHINE 770 #define ELF_START_MMAP 0x80000000 771 772 #if defined(TARGET_PPC64) 773 774 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 775 776 #define ELF_CLASS ELFCLASS64 777 778 #else 779 780 #define ELF_CLASS ELFCLASS32 781 #define EXSTACK_DEFAULT true 782 783 #endif 784 785 #define ELF_ARCH EM_PPC 786 787 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 788 See arch/powerpc/include/asm/cputable.h. */ 789 enum { 790 QEMU_PPC_FEATURE_32 = 0x80000000, 791 QEMU_PPC_FEATURE_64 = 0x40000000, 792 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 793 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 794 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 795 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 796 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 797 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 798 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 799 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 800 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 801 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 802 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 803 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 804 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 805 QEMU_PPC_FEATURE_CELL = 0x00010000, 806 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 807 QEMU_PPC_FEATURE_SMT = 0x00004000, 808 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 809 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 810 QEMU_PPC_FEATURE_PA6T = 0x00000800, 811 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 812 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 813 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 814 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 815 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 816 817 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 818 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 819 820 /* Feature definitions in AT_HWCAP2. */ 821 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 822 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 823 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 824 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 825 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 826 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 827 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 828 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 829 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 830 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 831 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 832 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 833 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 834 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 835 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 836 }; 837 838 #define ELF_HWCAP get_elf_hwcap() 839 840 static uint32_t get_elf_hwcap(void) 841 { 842 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 843 uint32_t features = 0; 844 845 /* We don't have to be terribly complete here; the high points are 846 Altivec/FP/SPE support. Anything else is just a bonus. */ 847 #define GET_FEATURE(flag, feature) \ 848 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 849 #define GET_FEATURE2(flags, feature) \ 850 do { \ 851 if ((cpu->env.insns_flags2 & flags) == flags) { \ 852 features |= feature; \ 853 } \ 854 } while (0) 855 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 856 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 857 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 858 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 859 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 860 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 861 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 862 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 863 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 864 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 865 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 866 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 867 QEMU_PPC_FEATURE_ARCH_2_06); 868 #undef GET_FEATURE 869 #undef GET_FEATURE2 870 871 return features; 872 } 873 874 #define ELF_HWCAP2 get_elf_hwcap2() 875 876 static uint32_t get_elf_hwcap2(void) 877 { 878 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 879 uint32_t features = 0; 880 881 #define GET_FEATURE(flag, feature) \ 882 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 883 #define GET_FEATURE2(flag, feature) \ 884 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 885 886 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 887 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 888 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 889 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 890 QEMU_PPC_FEATURE2_VEC_CRYPTO); 891 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 892 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 893 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 894 QEMU_PPC_FEATURE2_MMA); 895 896 #undef GET_FEATURE 897 #undef GET_FEATURE2 898 899 return features; 900 } 901 902 /* 903 * The requirements here are: 904 * - keep the final alignment of sp (sp & 0xf) 905 * - make sure the 32-bit value at the first 16 byte aligned position of 906 * AUXV is greater than 16 for glibc compatibility. 907 * AT_IGNOREPPC is used for that. 908 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 909 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 910 */ 911 #define DLINFO_ARCH_ITEMS 5 912 #define ARCH_DLINFO \ 913 do { \ 914 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 915 /* \ 916 * Handle glibc compatibility: these magic entries must \ 917 * be at the lowest addresses in the final auxv. \ 918 */ \ 919 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 920 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 921 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 922 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 923 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 924 } while (0) 925 926 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 927 { 928 _regs->gpr[1] = infop->start_stack; 929 #if defined(TARGET_PPC64) 930 if (get_ppc64_abi(infop) < 2) { 931 uint64_t val; 932 get_user_u64(val, infop->entry + 8); 933 _regs->gpr[2] = val + infop->load_bias; 934 get_user_u64(val, infop->entry); 935 infop->entry = val + infop->load_bias; 936 } else { 937 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 938 } 939 #endif 940 _regs->nip = infop->entry; 941 } 942 943 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 944 #define ELF_NREG 48 945 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 946 947 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 948 { 949 int i; 950 target_ulong ccr = 0; 951 952 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 953 (*regs)[i] = tswapreg(env->gpr[i]); 954 } 955 956 (*regs)[32] = tswapreg(env->nip); 957 (*regs)[33] = tswapreg(env->msr); 958 (*regs)[35] = tswapreg(env->ctr); 959 (*regs)[36] = tswapreg(env->lr); 960 (*regs)[37] = tswapreg(cpu_read_xer(env)); 961 962 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 963 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 964 } 965 (*regs)[38] = tswapreg(ccr); 966 } 967 968 #define USE_ELF_CORE_DUMP 969 #define ELF_EXEC_PAGESIZE 4096 970 971 #endif 972 973 #ifdef TARGET_LOONGARCH64 974 975 #define ELF_START_MMAP 0x80000000 976 977 #define ELF_CLASS ELFCLASS64 978 #define ELF_ARCH EM_LOONGARCH 979 #define EXSTACK_DEFAULT true 980 981 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 982 983 static inline void init_thread(struct target_pt_regs *regs, 984 struct image_info *infop) 985 { 986 /*Set crmd PG,DA = 1,0 */ 987 regs->csr.crmd = 2 << 3; 988 regs->csr.era = infop->entry; 989 regs->regs[3] = infop->start_stack; 990 } 991 992 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 993 #define ELF_NREG 45 994 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 995 996 enum { 997 TARGET_EF_R0 = 0, 998 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 999 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1000 }; 1001 1002 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1003 const CPULoongArchState *env) 1004 { 1005 int i; 1006 1007 (*regs)[TARGET_EF_R0] = 0; 1008 1009 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1010 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1011 } 1012 1013 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1014 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1015 } 1016 1017 #define USE_ELF_CORE_DUMP 1018 #define ELF_EXEC_PAGESIZE 4096 1019 1020 #define ELF_HWCAP get_elf_hwcap() 1021 1022 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1023 enum { 1024 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1025 HWCAP_LOONGARCH_LAM = (1 << 1), 1026 HWCAP_LOONGARCH_UAL = (1 << 2), 1027 HWCAP_LOONGARCH_FPU = (1 << 3), 1028 HWCAP_LOONGARCH_LSX = (1 << 4), 1029 HWCAP_LOONGARCH_LASX = (1 << 5), 1030 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1031 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1032 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1033 HWCAP_LOONGARCH_LVZ = (1 << 9), 1034 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1035 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1036 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1037 }; 1038 1039 static uint32_t get_elf_hwcap(void) 1040 { 1041 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1042 uint32_t hwcaps = 0; 1043 1044 hwcaps |= HWCAP_LOONGARCH_CRC32; 1045 1046 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1047 hwcaps |= HWCAP_LOONGARCH_UAL; 1048 } 1049 1050 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1051 hwcaps |= HWCAP_LOONGARCH_FPU; 1052 } 1053 1054 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1055 hwcaps |= HWCAP_LOONGARCH_LAM; 1056 } 1057 1058 return hwcaps; 1059 } 1060 1061 #define ELF_PLATFORM "loongarch" 1062 1063 #endif /* TARGET_LOONGARCH64 */ 1064 1065 #ifdef TARGET_MIPS 1066 1067 #define ELF_START_MMAP 0x80000000 1068 1069 #ifdef TARGET_MIPS64 1070 #define ELF_CLASS ELFCLASS64 1071 #else 1072 #define ELF_CLASS ELFCLASS32 1073 #endif 1074 #define ELF_ARCH EM_MIPS 1075 #define EXSTACK_DEFAULT true 1076 1077 #ifdef TARGET_ABI_MIPSN32 1078 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1079 #else 1080 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1081 #endif 1082 1083 #define ELF_BASE_PLATFORM get_elf_base_platform() 1084 1085 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1086 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1087 { return _base_platform; } } while (0) 1088 1089 static const char *get_elf_base_platform(void) 1090 { 1091 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1092 1093 /* 64 bit ISAs goes first */ 1094 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1095 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1096 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1097 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1098 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1099 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1100 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1101 1102 /* 32 bit ISAs */ 1103 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1104 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1105 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1106 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1107 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1108 1109 /* Fallback */ 1110 return "mips"; 1111 } 1112 #undef MATCH_PLATFORM_INSN 1113 1114 static inline void init_thread(struct target_pt_regs *regs, 1115 struct image_info *infop) 1116 { 1117 regs->cp0_status = 2 << CP0St_KSU; 1118 regs->cp0_epc = infop->entry; 1119 regs->regs[29] = infop->start_stack; 1120 } 1121 1122 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1123 #define ELF_NREG 45 1124 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1125 1126 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1127 enum { 1128 #ifdef TARGET_MIPS64 1129 TARGET_EF_R0 = 0, 1130 #else 1131 TARGET_EF_R0 = 6, 1132 #endif 1133 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1134 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1135 TARGET_EF_LO = TARGET_EF_R0 + 32, 1136 TARGET_EF_HI = TARGET_EF_R0 + 33, 1137 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1138 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1139 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1140 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1141 }; 1142 1143 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1144 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1145 { 1146 int i; 1147 1148 for (i = 0; i < TARGET_EF_R0; i++) { 1149 (*regs)[i] = 0; 1150 } 1151 (*regs)[TARGET_EF_R0] = 0; 1152 1153 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1154 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1155 } 1156 1157 (*regs)[TARGET_EF_R26] = 0; 1158 (*regs)[TARGET_EF_R27] = 0; 1159 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1160 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1161 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1162 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1163 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1164 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1165 } 1166 1167 #define USE_ELF_CORE_DUMP 1168 #define ELF_EXEC_PAGESIZE 4096 1169 1170 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1171 enum { 1172 HWCAP_MIPS_R6 = (1 << 0), 1173 HWCAP_MIPS_MSA = (1 << 1), 1174 HWCAP_MIPS_CRC32 = (1 << 2), 1175 HWCAP_MIPS_MIPS16 = (1 << 3), 1176 HWCAP_MIPS_MDMX = (1 << 4), 1177 HWCAP_MIPS_MIPS3D = (1 << 5), 1178 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1179 HWCAP_MIPS_DSP = (1 << 7), 1180 HWCAP_MIPS_DSP2 = (1 << 8), 1181 HWCAP_MIPS_DSP3 = (1 << 9), 1182 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1183 HWCAP_LOONGSON_MMI = (1 << 11), 1184 HWCAP_LOONGSON_EXT = (1 << 12), 1185 HWCAP_LOONGSON_EXT2 = (1 << 13), 1186 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1187 }; 1188 1189 #define ELF_HWCAP get_elf_hwcap() 1190 1191 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1192 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1193 1194 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1195 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1196 1197 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1198 do { \ 1199 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1200 hwcaps |= _hwcap; \ 1201 } \ 1202 } while (0) 1203 1204 static uint32_t get_elf_hwcap(void) 1205 { 1206 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1207 uint32_t hwcaps = 0; 1208 1209 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1210 2, HWCAP_MIPS_R6); 1211 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1212 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1213 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1214 1215 return hwcaps; 1216 } 1217 1218 #undef GET_FEATURE_REG_EQU 1219 #undef GET_FEATURE_REG_SET 1220 #undef GET_FEATURE_INSN 1221 1222 #endif /* TARGET_MIPS */ 1223 1224 #ifdef TARGET_MICROBLAZE 1225 1226 #define ELF_START_MMAP 0x80000000 1227 1228 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1229 1230 #define ELF_CLASS ELFCLASS32 1231 #define ELF_ARCH EM_MICROBLAZE 1232 1233 static inline void init_thread(struct target_pt_regs *regs, 1234 struct image_info *infop) 1235 { 1236 regs->pc = infop->entry; 1237 regs->r1 = infop->start_stack; 1238 1239 } 1240 1241 #define ELF_EXEC_PAGESIZE 4096 1242 1243 #define USE_ELF_CORE_DUMP 1244 #define ELF_NREG 38 1245 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1246 1247 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1248 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1249 { 1250 int i, pos = 0; 1251 1252 for (i = 0; i < 32; i++) { 1253 (*regs)[pos++] = tswapreg(env->regs[i]); 1254 } 1255 1256 (*regs)[pos++] = tswapreg(env->pc); 1257 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1258 (*regs)[pos++] = 0; 1259 (*regs)[pos++] = tswapreg(env->ear); 1260 (*regs)[pos++] = 0; 1261 (*regs)[pos++] = tswapreg(env->esr); 1262 } 1263 1264 #endif /* TARGET_MICROBLAZE */ 1265 1266 #ifdef TARGET_NIOS2 1267 1268 #define ELF_START_MMAP 0x80000000 1269 1270 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1271 1272 #define ELF_CLASS ELFCLASS32 1273 #define ELF_ARCH EM_ALTERA_NIOS2 1274 1275 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1276 { 1277 regs->ea = infop->entry; 1278 regs->sp = infop->start_stack; 1279 } 1280 1281 #define LO_COMMPAGE TARGET_PAGE_SIZE 1282 1283 static bool init_guest_commpage(void) 1284 { 1285 static const uint8_t kuser_page[4 + 2 * 64] = { 1286 /* __kuser_helper_version */ 1287 [0x00] = 0x02, 0x00, 0x00, 0x00, 1288 1289 /* __kuser_cmpxchg */ 1290 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1291 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1292 1293 /* __kuser_sigtramp */ 1294 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1295 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1296 }; 1297 1298 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1299 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1300 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1301 1302 if (addr == MAP_FAILED) { 1303 perror("Allocating guest commpage"); 1304 exit(EXIT_FAILURE); 1305 } 1306 if (addr != want) { 1307 return false; 1308 } 1309 1310 memcpy(addr, kuser_page, sizeof(kuser_page)); 1311 1312 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1313 perror("Protecting guest commpage"); 1314 exit(EXIT_FAILURE); 1315 } 1316 1317 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1318 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1319 return true; 1320 } 1321 1322 #define ELF_EXEC_PAGESIZE 4096 1323 1324 #define USE_ELF_CORE_DUMP 1325 #define ELF_NREG 49 1326 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1327 1328 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1329 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1330 const CPUNios2State *env) 1331 { 1332 int i; 1333 1334 (*regs)[0] = -1; 1335 for (i = 1; i < 8; i++) /* r0-r7 */ 1336 (*regs)[i] = tswapreg(env->regs[i + 7]); 1337 1338 for (i = 8; i < 16; i++) /* r8-r15 */ 1339 (*regs)[i] = tswapreg(env->regs[i - 8]); 1340 1341 for (i = 16; i < 24; i++) /* r16-r23 */ 1342 (*regs)[i] = tswapreg(env->regs[i + 7]); 1343 (*regs)[24] = -1; /* R_ET */ 1344 (*regs)[25] = -1; /* R_BT */ 1345 (*regs)[26] = tswapreg(env->regs[R_GP]); 1346 (*regs)[27] = tswapreg(env->regs[R_SP]); 1347 (*regs)[28] = tswapreg(env->regs[R_FP]); 1348 (*regs)[29] = tswapreg(env->regs[R_EA]); 1349 (*regs)[30] = -1; /* R_SSTATUS */ 1350 (*regs)[31] = tswapreg(env->regs[R_RA]); 1351 1352 (*regs)[32] = tswapreg(env->pc); 1353 1354 (*regs)[33] = -1; /* R_STATUS */ 1355 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1356 1357 for (i = 35; i < 49; i++) /* ... */ 1358 (*regs)[i] = -1; 1359 } 1360 1361 #endif /* TARGET_NIOS2 */ 1362 1363 #ifdef TARGET_OPENRISC 1364 1365 #define ELF_START_MMAP 0x08000000 1366 1367 #define ELF_ARCH EM_OPENRISC 1368 #define ELF_CLASS ELFCLASS32 1369 #define ELF_DATA ELFDATA2MSB 1370 1371 static inline void init_thread(struct target_pt_regs *regs, 1372 struct image_info *infop) 1373 { 1374 regs->pc = infop->entry; 1375 regs->gpr[1] = infop->start_stack; 1376 } 1377 1378 #define USE_ELF_CORE_DUMP 1379 #define ELF_EXEC_PAGESIZE 8192 1380 1381 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1382 #define ELF_NREG 34 /* gprs and pc, sr */ 1383 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1384 1385 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1386 const CPUOpenRISCState *env) 1387 { 1388 int i; 1389 1390 for (i = 0; i < 32; i++) { 1391 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1392 } 1393 (*regs)[32] = tswapreg(env->pc); 1394 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1395 } 1396 #define ELF_HWCAP 0 1397 #define ELF_PLATFORM NULL 1398 1399 #endif /* TARGET_OPENRISC */ 1400 1401 #ifdef TARGET_SH4 1402 1403 #define ELF_START_MMAP 0x80000000 1404 1405 #define ELF_CLASS ELFCLASS32 1406 #define ELF_ARCH EM_SH 1407 1408 static inline void init_thread(struct target_pt_regs *regs, 1409 struct image_info *infop) 1410 { 1411 /* Check other registers XXXXX */ 1412 regs->pc = infop->entry; 1413 regs->regs[15] = infop->start_stack; 1414 } 1415 1416 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1417 #define ELF_NREG 23 1418 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1419 1420 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1421 enum { 1422 TARGET_REG_PC = 16, 1423 TARGET_REG_PR = 17, 1424 TARGET_REG_SR = 18, 1425 TARGET_REG_GBR = 19, 1426 TARGET_REG_MACH = 20, 1427 TARGET_REG_MACL = 21, 1428 TARGET_REG_SYSCALL = 22 1429 }; 1430 1431 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1432 const CPUSH4State *env) 1433 { 1434 int i; 1435 1436 for (i = 0; i < 16; i++) { 1437 (*regs)[i] = tswapreg(env->gregs[i]); 1438 } 1439 1440 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1441 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1442 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1443 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1444 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1445 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1446 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1447 } 1448 1449 #define USE_ELF_CORE_DUMP 1450 #define ELF_EXEC_PAGESIZE 4096 1451 1452 enum { 1453 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1454 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1455 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1456 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1457 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1458 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1459 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1460 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1461 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1462 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1463 }; 1464 1465 #define ELF_HWCAP get_elf_hwcap() 1466 1467 static uint32_t get_elf_hwcap(void) 1468 { 1469 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1470 uint32_t hwcap = 0; 1471 1472 hwcap |= SH_CPU_HAS_FPU; 1473 1474 if (cpu->env.features & SH_FEATURE_SH4A) { 1475 hwcap |= SH_CPU_HAS_LLSC; 1476 } 1477 1478 return hwcap; 1479 } 1480 1481 #endif 1482 1483 #ifdef TARGET_CRIS 1484 1485 #define ELF_START_MMAP 0x80000000 1486 1487 #define ELF_CLASS ELFCLASS32 1488 #define ELF_ARCH EM_CRIS 1489 1490 static inline void init_thread(struct target_pt_regs *regs, 1491 struct image_info *infop) 1492 { 1493 regs->erp = infop->entry; 1494 } 1495 1496 #define ELF_EXEC_PAGESIZE 8192 1497 1498 #endif 1499 1500 #ifdef TARGET_M68K 1501 1502 #define ELF_START_MMAP 0x80000000 1503 1504 #define ELF_CLASS ELFCLASS32 1505 #define ELF_ARCH EM_68K 1506 1507 /* ??? Does this need to do anything? 1508 #define ELF_PLAT_INIT(_r) */ 1509 1510 static inline void init_thread(struct target_pt_regs *regs, 1511 struct image_info *infop) 1512 { 1513 regs->usp = infop->start_stack; 1514 regs->sr = 0; 1515 regs->pc = infop->entry; 1516 } 1517 1518 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1519 #define ELF_NREG 20 1520 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1521 1522 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1523 { 1524 (*regs)[0] = tswapreg(env->dregs[1]); 1525 (*regs)[1] = tswapreg(env->dregs[2]); 1526 (*regs)[2] = tswapreg(env->dregs[3]); 1527 (*regs)[3] = tswapreg(env->dregs[4]); 1528 (*regs)[4] = tswapreg(env->dregs[5]); 1529 (*regs)[5] = tswapreg(env->dregs[6]); 1530 (*regs)[6] = tswapreg(env->dregs[7]); 1531 (*regs)[7] = tswapreg(env->aregs[0]); 1532 (*regs)[8] = tswapreg(env->aregs[1]); 1533 (*regs)[9] = tswapreg(env->aregs[2]); 1534 (*regs)[10] = tswapreg(env->aregs[3]); 1535 (*regs)[11] = tswapreg(env->aregs[4]); 1536 (*regs)[12] = tswapreg(env->aregs[5]); 1537 (*regs)[13] = tswapreg(env->aregs[6]); 1538 (*regs)[14] = tswapreg(env->dregs[0]); 1539 (*regs)[15] = tswapreg(env->aregs[7]); 1540 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1541 (*regs)[17] = tswapreg(env->sr); 1542 (*regs)[18] = tswapreg(env->pc); 1543 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1544 } 1545 1546 #define USE_ELF_CORE_DUMP 1547 #define ELF_EXEC_PAGESIZE 8192 1548 1549 #endif 1550 1551 #ifdef TARGET_ALPHA 1552 1553 #define ELF_START_MMAP (0x30000000000ULL) 1554 1555 #define ELF_CLASS ELFCLASS64 1556 #define ELF_ARCH EM_ALPHA 1557 1558 static inline void init_thread(struct target_pt_regs *regs, 1559 struct image_info *infop) 1560 { 1561 regs->pc = infop->entry; 1562 regs->ps = 8; 1563 regs->usp = infop->start_stack; 1564 } 1565 1566 #define ELF_EXEC_PAGESIZE 8192 1567 1568 #endif /* TARGET_ALPHA */ 1569 1570 #ifdef TARGET_S390X 1571 1572 #define ELF_START_MMAP (0x20000000000ULL) 1573 1574 #define ELF_CLASS ELFCLASS64 1575 #define ELF_DATA ELFDATA2MSB 1576 #define ELF_ARCH EM_S390 1577 1578 #include "elf.h" 1579 1580 #define ELF_HWCAP get_elf_hwcap() 1581 1582 #define GET_FEATURE(_feat, _hwcap) \ 1583 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1584 1585 static uint32_t get_elf_hwcap(void) 1586 { 1587 /* 1588 * Let's assume we always have esan3 and zarch. 1589 * 31-bit processes can use 64-bit registers (high gprs). 1590 */ 1591 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1592 1593 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1594 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1595 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1596 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1597 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1598 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1599 hwcap |= HWCAP_S390_ETF3EH; 1600 } 1601 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1602 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1603 1604 return hwcap; 1605 } 1606 1607 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1608 { 1609 regs->psw.addr = infop->entry; 1610 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1611 regs->gprs[15] = infop->start_stack; 1612 } 1613 1614 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1615 #define ELF_NREG 27 1616 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1617 1618 enum { 1619 TARGET_REG_PSWM = 0, 1620 TARGET_REG_PSWA = 1, 1621 TARGET_REG_GPRS = 2, 1622 TARGET_REG_ARS = 18, 1623 TARGET_REG_ORIG_R2 = 26, 1624 }; 1625 1626 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1627 const CPUS390XState *env) 1628 { 1629 int i; 1630 uint32_t *aregs; 1631 1632 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1633 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1634 for (i = 0; i < 16; i++) { 1635 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1636 } 1637 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1638 for (i = 0; i < 16; i++) { 1639 aregs[i] = tswap32(env->aregs[i]); 1640 } 1641 (*regs)[TARGET_REG_ORIG_R2] = 0; 1642 } 1643 1644 #define USE_ELF_CORE_DUMP 1645 #define ELF_EXEC_PAGESIZE 4096 1646 1647 #endif /* TARGET_S390X */ 1648 1649 #ifdef TARGET_RISCV 1650 1651 #define ELF_START_MMAP 0x80000000 1652 #define ELF_ARCH EM_RISCV 1653 1654 #ifdef TARGET_RISCV32 1655 #define ELF_CLASS ELFCLASS32 1656 #else 1657 #define ELF_CLASS ELFCLASS64 1658 #endif 1659 1660 #define ELF_HWCAP get_elf_hwcap() 1661 1662 static uint32_t get_elf_hwcap(void) 1663 { 1664 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1665 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1666 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1667 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1668 1669 return cpu->env.misa_ext & mask; 1670 #undef MISA_BIT 1671 } 1672 1673 static inline void init_thread(struct target_pt_regs *regs, 1674 struct image_info *infop) 1675 { 1676 regs->sepc = infop->entry; 1677 regs->sp = infop->start_stack; 1678 } 1679 1680 #define ELF_EXEC_PAGESIZE 4096 1681 1682 #endif /* TARGET_RISCV */ 1683 1684 #ifdef TARGET_HPPA 1685 1686 #define ELF_START_MMAP 0x80000000 1687 #define ELF_CLASS ELFCLASS32 1688 #define ELF_ARCH EM_PARISC 1689 #define ELF_PLATFORM "PARISC" 1690 #define STACK_GROWS_DOWN 0 1691 #define STACK_ALIGNMENT 64 1692 1693 static inline void init_thread(struct target_pt_regs *regs, 1694 struct image_info *infop) 1695 { 1696 regs->iaoq[0] = infop->entry; 1697 regs->iaoq[1] = infop->entry + 4; 1698 regs->gr[23] = 0; 1699 regs->gr[24] = infop->argv; 1700 regs->gr[25] = infop->argc; 1701 /* The top-of-stack contains a linkage buffer. */ 1702 regs->gr[30] = infop->start_stack + 64; 1703 regs->gr[31] = infop->entry; 1704 } 1705 1706 #define LO_COMMPAGE 0 1707 1708 static bool init_guest_commpage(void) 1709 { 1710 void *want = g2h_untagged(LO_COMMPAGE); 1711 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1712 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1713 1714 if (addr == MAP_FAILED) { 1715 perror("Allocating guest commpage"); 1716 exit(EXIT_FAILURE); 1717 } 1718 if (addr != want) { 1719 return false; 1720 } 1721 1722 /* 1723 * On Linux, page zero is normally marked execute only + gateway. 1724 * Normal read or write is supposed to fail (thus PROT_NONE above), 1725 * but specific offsets have kernel code mapped to raise permissions 1726 * and implement syscalls. Here, simply mark the page executable. 1727 * Special case the entry points during translation (see do_page_zero). 1728 */ 1729 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1730 PAGE_EXEC | PAGE_VALID); 1731 return true; 1732 } 1733 1734 #endif /* TARGET_HPPA */ 1735 1736 #ifdef TARGET_XTENSA 1737 1738 #define ELF_START_MMAP 0x20000000 1739 1740 #define ELF_CLASS ELFCLASS32 1741 #define ELF_ARCH EM_XTENSA 1742 1743 static inline void init_thread(struct target_pt_regs *regs, 1744 struct image_info *infop) 1745 { 1746 regs->windowbase = 0; 1747 regs->windowstart = 1; 1748 regs->areg[1] = infop->start_stack; 1749 regs->pc = infop->entry; 1750 } 1751 1752 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1753 #define ELF_NREG 128 1754 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1755 1756 enum { 1757 TARGET_REG_PC, 1758 TARGET_REG_PS, 1759 TARGET_REG_LBEG, 1760 TARGET_REG_LEND, 1761 TARGET_REG_LCOUNT, 1762 TARGET_REG_SAR, 1763 TARGET_REG_WINDOWSTART, 1764 TARGET_REG_WINDOWBASE, 1765 TARGET_REG_THREADPTR, 1766 TARGET_REG_AR0 = 64, 1767 }; 1768 1769 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1770 const CPUXtensaState *env) 1771 { 1772 unsigned i; 1773 1774 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1775 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1776 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1777 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1778 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1779 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1780 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1781 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1782 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1783 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1784 for (i = 0; i < env->config->nareg; ++i) { 1785 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1786 } 1787 } 1788 1789 #define USE_ELF_CORE_DUMP 1790 #define ELF_EXEC_PAGESIZE 4096 1791 1792 #endif /* TARGET_XTENSA */ 1793 1794 #ifdef TARGET_HEXAGON 1795 1796 #define ELF_START_MMAP 0x20000000 1797 1798 #define ELF_CLASS ELFCLASS32 1799 #define ELF_ARCH EM_HEXAGON 1800 1801 static inline void init_thread(struct target_pt_regs *regs, 1802 struct image_info *infop) 1803 { 1804 regs->sepc = infop->entry; 1805 regs->sp = infop->start_stack; 1806 } 1807 1808 #endif /* TARGET_HEXAGON */ 1809 1810 #ifndef ELF_BASE_PLATFORM 1811 #define ELF_BASE_PLATFORM (NULL) 1812 #endif 1813 1814 #ifndef ELF_PLATFORM 1815 #define ELF_PLATFORM (NULL) 1816 #endif 1817 1818 #ifndef ELF_MACHINE 1819 #define ELF_MACHINE ELF_ARCH 1820 #endif 1821 1822 #ifndef elf_check_arch 1823 #define elf_check_arch(x) ((x) == ELF_ARCH) 1824 #endif 1825 1826 #ifndef elf_check_abi 1827 #define elf_check_abi(x) (1) 1828 #endif 1829 1830 #ifndef ELF_HWCAP 1831 #define ELF_HWCAP 0 1832 #endif 1833 1834 #ifndef STACK_GROWS_DOWN 1835 #define STACK_GROWS_DOWN 1 1836 #endif 1837 1838 #ifndef STACK_ALIGNMENT 1839 #define STACK_ALIGNMENT 16 1840 #endif 1841 1842 #ifdef TARGET_ABI32 1843 #undef ELF_CLASS 1844 #define ELF_CLASS ELFCLASS32 1845 #undef bswaptls 1846 #define bswaptls(ptr) bswap32s(ptr) 1847 #endif 1848 1849 #ifndef EXSTACK_DEFAULT 1850 #define EXSTACK_DEFAULT false 1851 #endif 1852 1853 #include "elf.h" 1854 1855 /* We must delay the following stanzas until after "elf.h". */ 1856 #if defined(TARGET_AARCH64) 1857 1858 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1859 const uint32_t *data, 1860 struct image_info *info, 1861 Error **errp) 1862 { 1863 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1864 if (pr_datasz != sizeof(uint32_t)) { 1865 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1866 return false; 1867 } 1868 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1869 info->note_flags = *data; 1870 } 1871 return true; 1872 } 1873 #define ARCH_USE_GNU_PROPERTY 1 1874 1875 #else 1876 1877 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1878 const uint32_t *data, 1879 struct image_info *info, 1880 Error **errp) 1881 { 1882 g_assert_not_reached(); 1883 } 1884 #define ARCH_USE_GNU_PROPERTY 0 1885 1886 #endif 1887 1888 struct exec 1889 { 1890 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1891 unsigned int a_text; /* length of text, in bytes */ 1892 unsigned int a_data; /* length of data, in bytes */ 1893 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1894 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1895 unsigned int a_entry; /* start address */ 1896 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1897 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1898 }; 1899 1900 1901 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1902 #define OMAGIC 0407 1903 #define NMAGIC 0410 1904 #define ZMAGIC 0413 1905 #define QMAGIC 0314 1906 1907 /* Necessary parameters */ 1908 #define TARGET_ELF_EXEC_PAGESIZE \ 1909 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1910 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1911 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1912 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1913 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1914 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1915 1916 #define DLINFO_ITEMS 16 1917 1918 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1919 { 1920 memcpy(to, from, n); 1921 } 1922 1923 #ifdef BSWAP_NEEDED 1924 static void bswap_ehdr(struct elfhdr *ehdr) 1925 { 1926 bswap16s(&ehdr->e_type); /* Object file type */ 1927 bswap16s(&ehdr->e_machine); /* Architecture */ 1928 bswap32s(&ehdr->e_version); /* Object file version */ 1929 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1930 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1931 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1932 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1933 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1934 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1935 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1936 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1937 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1938 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1939 } 1940 1941 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1942 { 1943 int i; 1944 for (i = 0; i < phnum; ++i, ++phdr) { 1945 bswap32s(&phdr->p_type); /* Segment type */ 1946 bswap32s(&phdr->p_flags); /* Segment flags */ 1947 bswaptls(&phdr->p_offset); /* Segment file offset */ 1948 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1949 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1950 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1951 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1952 bswaptls(&phdr->p_align); /* Segment alignment */ 1953 } 1954 } 1955 1956 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1957 { 1958 int i; 1959 for (i = 0; i < shnum; ++i, ++shdr) { 1960 bswap32s(&shdr->sh_name); 1961 bswap32s(&shdr->sh_type); 1962 bswaptls(&shdr->sh_flags); 1963 bswaptls(&shdr->sh_addr); 1964 bswaptls(&shdr->sh_offset); 1965 bswaptls(&shdr->sh_size); 1966 bswap32s(&shdr->sh_link); 1967 bswap32s(&shdr->sh_info); 1968 bswaptls(&shdr->sh_addralign); 1969 bswaptls(&shdr->sh_entsize); 1970 } 1971 } 1972 1973 static void bswap_sym(struct elf_sym *sym) 1974 { 1975 bswap32s(&sym->st_name); 1976 bswaptls(&sym->st_value); 1977 bswaptls(&sym->st_size); 1978 bswap16s(&sym->st_shndx); 1979 } 1980 1981 #ifdef TARGET_MIPS 1982 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1983 { 1984 bswap16s(&abiflags->version); 1985 bswap32s(&abiflags->ases); 1986 bswap32s(&abiflags->isa_ext); 1987 bswap32s(&abiflags->flags1); 1988 bswap32s(&abiflags->flags2); 1989 } 1990 #endif 1991 #else 1992 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1993 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1994 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1995 static inline void bswap_sym(struct elf_sym *sym) { } 1996 #ifdef TARGET_MIPS 1997 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1998 #endif 1999 #endif 2000 2001 #ifdef USE_ELF_CORE_DUMP 2002 static int elf_core_dump(int, const CPUArchState *); 2003 #endif /* USE_ELF_CORE_DUMP */ 2004 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2005 2006 /* Verify the portions of EHDR within E_IDENT for the target. 2007 This can be performed before bswapping the entire header. */ 2008 static bool elf_check_ident(struct elfhdr *ehdr) 2009 { 2010 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2011 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2012 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2013 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2014 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2015 && ehdr->e_ident[EI_DATA] == ELF_DATA 2016 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2017 } 2018 2019 /* Verify the portions of EHDR outside of E_IDENT for the target. 2020 This has to wait until after bswapping the header. */ 2021 static bool elf_check_ehdr(struct elfhdr *ehdr) 2022 { 2023 return (elf_check_arch(ehdr->e_machine) 2024 && elf_check_abi(ehdr->e_flags) 2025 && ehdr->e_ehsize == sizeof(struct elfhdr) 2026 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2027 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2028 } 2029 2030 /* 2031 * 'copy_elf_strings()' copies argument/envelope strings from user 2032 * memory to free pages in kernel mem. These are in a format ready 2033 * to be put directly into the top of new user memory. 2034 * 2035 */ 2036 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2037 abi_ulong p, abi_ulong stack_limit) 2038 { 2039 char *tmp; 2040 int len, i; 2041 abi_ulong top = p; 2042 2043 if (!p) { 2044 return 0; /* bullet-proofing */ 2045 } 2046 2047 if (STACK_GROWS_DOWN) { 2048 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2049 for (i = argc - 1; i >= 0; --i) { 2050 tmp = argv[i]; 2051 if (!tmp) { 2052 fprintf(stderr, "VFS: argc is wrong"); 2053 exit(-1); 2054 } 2055 len = strlen(tmp) + 1; 2056 tmp += len; 2057 2058 if (len > (p - stack_limit)) { 2059 return 0; 2060 } 2061 while (len) { 2062 int bytes_to_copy = (len > offset) ? offset : len; 2063 tmp -= bytes_to_copy; 2064 p -= bytes_to_copy; 2065 offset -= bytes_to_copy; 2066 len -= bytes_to_copy; 2067 2068 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2069 2070 if (offset == 0) { 2071 memcpy_to_target(p, scratch, top - p); 2072 top = p; 2073 offset = TARGET_PAGE_SIZE; 2074 } 2075 } 2076 } 2077 if (p != top) { 2078 memcpy_to_target(p, scratch + offset, top - p); 2079 } 2080 } else { 2081 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2082 for (i = 0; i < argc; ++i) { 2083 tmp = argv[i]; 2084 if (!tmp) { 2085 fprintf(stderr, "VFS: argc is wrong"); 2086 exit(-1); 2087 } 2088 len = strlen(tmp) + 1; 2089 if (len > (stack_limit - p)) { 2090 return 0; 2091 } 2092 while (len) { 2093 int bytes_to_copy = (len > remaining) ? remaining : len; 2094 2095 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2096 2097 tmp += bytes_to_copy; 2098 remaining -= bytes_to_copy; 2099 p += bytes_to_copy; 2100 len -= bytes_to_copy; 2101 2102 if (remaining == 0) { 2103 memcpy_to_target(top, scratch, p - top); 2104 top = p; 2105 remaining = TARGET_PAGE_SIZE; 2106 } 2107 } 2108 } 2109 if (p != top) { 2110 memcpy_to_target(top, scratch, p - top); 2111 } 2112 } 2113 2114 return p; 2115 } 2116 2117 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2118 * argument/environment space. Newer kernels (>2.6.33) allow more, 2119 * dependent on stack size, but guarantee at least 32 pages for 2120 * backwards compatibility. 2121 */ 2122 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2123 2124 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2125 struct image_info *info) 2126 { 2127 abi_ulong size, error, guard; 2128 int prot; 2129 2130 size = guest_stack_size; 2131 if (size < STACK_LOWER_LIMIT) { 2132 size = STACK_LOWER_LIMIT; 2133 } 2134 2135 if (STACK_GROWS_DOWN) { 2136 guard = TARGET_PAGE_SIZE; 2137 if (guard < qemu_real_host_page_size()) { 2138 guard = qemu_real_host_page_size(); 2139 } 2140 } else { 2141 /* no guard page for hppa target where stack grows upwards. */ 2142 guard = 0; 2143 } 2144 2145 prot = PROT_READ | PROT_WRITE; 2146 if (info->exec_stack) { 2147 prot |= PROT_EXEC; 2148 } 2149 error = target_mmap(0, size + guard, prot, 2150 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2151 if (error == -1) { 2152 perror("mmap stack"); 2153 exit(-1); 2154 } 2155 2156 /* We reserve one extra page at the top of the stack as guard. */ 2157 if (STACK_GROWS_DOWN) { 2158 target_mprotect(error, guard, PROT_NONE); 2159 info->stack_limit = error + guard; 2160 return info->stack_limit + size - sizeof(void *); 2161 } else { 2162 info->stack_limit = error + size; 2163 return error; 2164 } 2165 } 2166 2167 /* Map and zero the bss. We need to explicitly zero any fractional pages 2168 after the data section (i.e. bss). */ 2169 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2170 { 2171 uintptr_t host_start, host_map_start, host_end; 2172 2173 last_bss = TARGET_PAGE_ALIGN(last_bss); 2174 2175 /* ??? There is confusion between qemu_real_host_page_size and 2176 qemu_host_page_size here and elsewhere in target_mmap, which 2177 may lead to the end of the data section mapping from the file 2178 not being mapped. At least there was an explicit test and 2179 comment for that here, suggesting that "the file size must 2180 be known". The comment probably pre-dates the introduction 2181 of the fstat system call in target_mmap which does in fact 2182 find out the size. What isn't clear is if the workaround 2183 here is still actually needed. For now, continue with it, 2184 but merge it with the "normal" mmap that would allocate the bss. */ 2185 2186 host_start = (uintptr_t) g2h_untagged(elf_bss); 2187 host_end = (uintptr_t) g2h_untagged(last_bss); 2188 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2189 2190 if (host_map_start < host_end) { 2191 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2192 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2193 if (p == MAP_FAILED) { 2194 perror("cannot mmap brk"); 2195 exit(-1); 2196 } 2197 } 2198 2199 /* Ensure that the bss page(s) are valid */ 2200 if ((page_get_flags(last_bss-1) & prot) != prot) { 2201 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2202 } 2203 2204 if (host_start < host_map_start) { 2205 memset((void *)host_start, 0, host_map_start - host_start); 2206 } 2207 } 2208 2209 #ifdef TARGET_ARM 2210 static int elf_is_fdpic(struct elfhdr *exec) 2211 { 2212 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2213 } 2214 #else 2215 /* Default implementation, always false. */ 2216 static int elf_is_fdpic(struct elfhdr *exec) 2217 { 2218 return 0; 2219 } 2220 #endif 2221 2222 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2223 { 2224 uint16_t n; 2225 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2226 2227 /* elf32_fdpic_loadseg */ 2228 n = info->nsegs; 2229 while (n--) { 2230 sp -= 12; 2231 put_user_u32(loadsegs[n].addr, sp+0); 2232 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2233 put_user_u32(loadsegs[n].p_memsz, sp+8); 2234 } 2235 2236 /* elf32_fdpic_loadmap */ 2237 sp -= 4; 2238 put_user_u16(0, sp+0); /* version */ 2239 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2240 2241 info->personality = PER_LINUX_FDPIC; 2242 info->loadmap_addr = sp; 2243 2244 return sp; 2245 } 2246 2247 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2248 struct elfhdr *exec, 2249 struct image_info *info, 2250 struct image_info *interp_info) 2251 { 2252 abi_ulong sp; 2253 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2254 int size; 2255 int i; 2256 abi_ulong u_rand_bytes; 2257 uint8_t k_rand_bytes[16]; 2258 abi_ulong u_platform, u_base_platform; 2259 const char *k_platform, *k_base_platform; 2260 const int n = sizeof(elf_addr_t); 2261 2262 sp = p; 2263 2264 /* Needs to be before we load the env/argc/... */ 2265 if (elf_is_fdpic(exec)) { 2266 /* Need 4 byte alignment for these structs */ 2267 sp &= ~3; 2268 sp = loader_build_fdpic_loadmap(info, sp); 2269 info->other_info = interp_info; 2270 if (interp_info) { 2271 interp_info->other_info = info; 2272 sp = loader_build_fdpic_loadmap(interp_info, sp); 2273 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2274 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2275 } else { 2276 info->interpreter_loadmap_addr = 0; 2277 info->interpreter_pt_dynamic_addr = 0; 2278 } 2279 } 2280 2281 u_base_platform = 0; 2282 k_base_platform = ELF_BASE_PLATFORM; 2283 if (k_base_platform) { 2284 size_t len = strlen(k_base_platform) + 1; 2285 if (STACK_GROWS_DOWN) { 2286 sp -= (len + n - 1) & ~(n - 1); 2287 u_base_platform = sp; 2288 /* FIXME - check return value of memcpy_to_target() for failure */ 2289 memcpy_to_target(sp, k_base_platform, len); 2290 } else { 2291 memcpy_to_target(sp, k_base_platform, len); 2292 u_base_platform = sp; 2293 sp += len + 1; 2294 } 2295 } 2296 2297 u_platform = 0; 2298 k_platform = ELF_PLATFORM; 2299 if (k_platform) { 2300 size_t len = strlen(k_platform) + 1; 2301 if (STACK_GROWS_DOWN) { 2302 sp -= (len + n - 1) & ~(n - 1); 2303 u_platform = sp; 2304 /* FIXME - check return value of memcpy_to_target() for failure */ 2305 memcpy_to_target(sp, k_platform, len); 2306 } else { 2307 memcpy_to_target(sp, k_platform, len); 2308 u_platform = sp; 2309 sp += len + 1; 2310 } 2311 } 2312 2313 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2314 * the argv and envp pointers. 2315 */ 2316 if (STACK_GROWS_DOWN) { 2317 sp = QEMU_ALIGN_DOWN(sp, 16); 2318 } else { 2319 sp = QEMU_ALIGN_UP(sp, 16); 2320 } 2321 2322 /* 2323 * Generate 16 random bytes for userspace PRNG seeding. 2324 */ 2325 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2326 if (STACK_GROWS_DOWN) { 2327 sp -= 16; 2328 u_rand_bytes = sp; 2329 /* FIXME - check return value of memcpy_to_target() for failure */ 2330 memcpy_to_target(sp, k_rand_bytes, 16); 2331 } else { 2332 memcpy_to_target(sp, k_rand_bytes, 16); 2333 u_rand_bytes = sp; 2334 sp += 16; 2335 } 2336 2337 size = (DLINFO_ITEMS + 1) * 2; 2338 if (k_base_platform) 2339 size += 2; 2340 if (k_platform) 2341 size += 2; 2342 #ifdef DLINFO_ARCH_ITEMS 2343 size += DLINFO_ARCH_ITEMS * 2; 2344 #endif 2345 #ifdef ELF_HWCAP2 2346 size += 2; 2347 #endif 2348 info->auxv_len = size * n; 2349 2350 size += envc + argc + 2; 2351 size += 1; /* argc itself */ 2352 size *= n; 2353 2354 /* Allocate space and finalize stack alignment for entry now. */ 2355 if (STACK_GROWS_DOWN) { 2356 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2357 sp = u_argc; 2358 } else { 2359 u_argc = sp; 2360 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2361 } 2362 2363 u_argv = u_argc + n; 2364 u_envp = u_argv + (argc + 1) * n; 2365 u_auxv = u_envp + (envc + 1) * n; 2366 info->saved_auxv = u_auxv; 2367 info->argc = argc; 2368 info->envc = envc; 2369 info->argv = u_argv; 2370 info->envp = u_envp; 2371 2372 /* This is correct because Linux defines 2373 * elf_addr_t as Elf32_Off / Elf64_Off 2374 */ 2375 #define NEW_AUX_ENT(id, val) do { \ 2376 put_user_ual(id, u_auxv); u_auxv += n; \ 2377 put_user_ual(val, u_auxv); u_auxv += n; \ 2378 } while(0) 2379 2380 #ifdef ARCH_DLINFO 2381 /* 2382 * ARCH_DLINFO must come first so platform specific code can enforce 2383 * special alignment requirements on the AUXV if necessary (eg. PPC). 2384 */ 2385 ARCH_DLINFO; 2386 #endif 2387 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2388 * on info->auxv_len will trigger. 2389 */ 2390 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2391 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2392 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2393 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2394 /* Target doesn't support host page size alignment */ 2395 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2396 } else { 2397 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2398 qemu_host_page_size))); 2399 } 2400 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2401 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2402 NEW_AUX_ENT(AT_ENTRY, info->entry); 2403 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2404 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2405 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2406 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2407 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2408 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2409 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2410 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2411 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2412 2413 #ifdef ELF_HWCAP2 2414 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2415 #endif 2416 2417 if (u_base_platform) { 2418 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2419 } 2420 if (u_platform) { 2421 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2422 } 2423 NEW_AUX_ENT (AT_NULL, 0); 2424 #undef NEW_AUX_ENT 2425 2426 /* Check that our initial calculation of the auxv length matches how much 2427 * we actually put into it. 2428 */ 2429 assert(info->auxv_len == u_auxv - info->saved_auxv); 2430 2431 put_user_ual(argc, u_argc); 2432 2433 p = info->arg_strings; 2434 for (i = 0; i < argc; ++i) { 2435 put_user_ual(p, u_argv); 2436 u_argv += n; 2437 p += target_strlen(p) + 1; 2438 } 2439 put_user_ual(0, u_argv); 2440 2441 p = info->env_strings; 2442 for (i = 0; i < envc; ++i) { 2443 put_user_ual(p, u_envp); 2444 u_envp += n; 2445 p += target_strlen(p) + 1; 2446 } 2447 put_user_ual(0, u_envp); 2448 2449 return sp; 2450 } 2451 2452 #if defined(HI_COMMPAGE) 2453 #define LO_COMMPAGE -1 2454 #elif defined(LO_COMMPAGE) 2455 #define HI_COMMPAGE 0 2456 #else 2457 #define HI_COMMPAGE 0 2458 #define LO_COMMPAGE -1 2459 #ifndef INIT_GUEST_COMMPAGE 2460 #define init_guest_commpage() true 2461 #endif 2462 #endif 2463 2464 static void pgb_fail_in_use(const char *image_name) 2465 { 2466 error_report("%s: requires virtual address space that is in use " 2467 "(omit the -B option or choose a different value)", 2468 image_name); 2469 exit(EXIT_FAILURE); 2470 } 2471 2472 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2473 abi_ulong guest_hiaddr, long align) 2474 { 2475 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2476 void *addr, *test; 2477 2478 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2479 fprintf(stderr, "Requested guest base %p does not satisfy " 2480 "host minimum alignment (0x%lx)\n", 2481 (void *)guest_base, align); 2482 exit(EXIT_FAILURE); 2483 } 2484 2485 /* Sanity check the guest binary. */ 2486 if (reserved_va) { 2487 if (guest_hiaddr > reserved_va) { 2488 error_report("%s: requires more than reserved virtual " 2489 "address space (0x%" PRIx64 " > 0x%lx)", 2490 image_name, (uint64_t)guest_hiaddr, reserved_va); 2491 exit(EXIT_FAILURE); 2492 } 2493 } else { 2494 #if HOST_LONG_BITS < TARGET_ABI_BITS 2495 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2496 error_report("%s: requires more virtual address space " 2497 "than the host can provide (0x%" PRIx64 ")", 2498 image_name, (uint64_t)guest_hiaddr - guest_base); 2499 exit(EXIT_FAILURE); 2500 } 2501 #endif 2502 } 2503 2504 /* 2505 * Expand the allocation to the entire reserved_va. 2506 * Exclude the mmap_min_addr hole. 2507 */ 2508 if (reserved_va) { 2509 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2510 : mmap_min_addr - guest_base); 2511 guest_hiaddr = reserved_va; 2512 } 2513 2514 /* Reserve the address space for the binary, or reserved_va. */ 2515 test = g2h_untagged(guest_loaddr); 2516 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2517 if (test != addr) { 2518 pgb_fail_in_use(image_name); 2519 } 2520 qemu_log_mask(CPU_LOG_PAGE, 2521 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2522 __func__, addr, guest_hiaddr - guest_loaddr); 2523 } 2524 2525 /** 2526 * pgd_find_hole_fallback: potential mmap address 2527 * @guest_size: size of available space 2528 * @brk: location of break 2529 * @align: memory alignment 2530 * 2531 * This is a fallback method for finding a hole in the host address 2532 * space if we don't have the benefit of being able to access 2533 * /proc/self/map. It can potentially take a very long time as we can 2534 * only dumbly iterate up the host address space seeing if the 2535 * allocation would work. 2536 */ 2537 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2538 long align, uintptr_t offset) 2539 { 2540 uintptr_t base; 2541 2542 /* Start (aligned) at the bottom and work our way up */ 2543 base = ROUND_UP(mmap_min_addr, align); 2544 2545 while (true) { 2546 uintptr_t align_start, end; 2547 align_start = ROUND_UP(base, align); 2548 end = align_start + guest_size + offset; 2549 2550 /* if brk is anywhere in the range give ourselves some room to grow. */ 2551 if (align_start <= brk && brk < end) { 2552 base = brk + (16 * MiB); 2553 continue; 2554 } else if (align_start + guest_size < align_start) { 2555 /* we have run out of space */ 2556 return -1; 2557 } else { 2558 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2559 MAP_FIXED_NOREPLACE; 2560 void * mmap_start = mmap((void *) align_start, guest_size, 2561 PROT_NONE, flags, -1, 0); 2562 if (mmap_start != MAP_FAILED) { 2563 munmap(mmap_start, guest_size); 2564 if (mmap_start == (void *) align_start) { 2565 qemu_log_mask(CPU_LOG_PAGE, 2566 "%s: base @ %p for %" PRIdPTR" bytes\n", 2567 __func__, mmap_start + offset, guest_size); 2568 return (uintptr_t) mmap_start + offset; 2569 } 2570 } 2571 base += qemu_host_page_size; 2572 } 2573 } 2574 } 2575 2576 /* Return value for guest_base, or -1 if no hole found. */ 2577 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2578 long align, uintptr_t offset) 2579 { 2580 GSList *maps, *iter; 2581 uintptr_t this_start, this_end, next_start, brk; 2582 intptr_t ret = -1; 2583 2584 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2585 2586 maps = read_self_maps(); 2587 2588 /* Read brk after we've read the maps, which will malloc. */ 2589 brk = (uintptr_t)sbrk(0); 2590 2591 if (!maps) { 2592 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2593 } 2594 2595 /* The first hole is before the first map entry. */ 2596 this_start = mmap_min_addr; 2597 2598 for (iter = maps; iter; 2599 this_start = next_start, iter = g_slist_next(iter)) { 2600 uintptr_t align_start, hole_size; 2601 2602 this_end = ((MapInfo *)iter->data)->start; 2603 next_start = ((MapInfo *)iter->data)->end; 2604 align_start = ROUND_UP(this_start + offset, align); 2605 2606 /* Skip holes that are too small. */ 2607 if (align_start >= this_end) { 2608 continue; 2609 } 2610 hole_size = this_end - align_start; 2611 if (hole_size < guest_size) { 2612 continue; 2613 } 2614 2615 /* If this hole contains brk, give ourselves some room to grow. */ 2616 if (this_start <= brk && brk < this_end) { 2617 hole_size -= guest_size; 2618 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2619 align_start += 1 * GiB; 2620 } else if (hole_size >= 16 * MiB) { 2621 align_start += 16 * MiB; 2622 } else { 2623 align_start = (this_end - guest_size) & -align; 2624 if (align_start < this_start) { 2625 continue; 2626 } 2627 } 2628 } 2629 2630 /* Record the lowest successful match. */ 2631 if (ret < 0) { 2632 ret = align_start; 2633 } 2634 /* If this hole contains the identity map, select it. */ 2635 if (align_start <= guest_loaddr && 2636 guest_loaddr + guest_size <= this_end) { 2637 ret = 0; 2638 } 2639 /* If this hole ends above the identity map, stop looking. */ 2640 if (this_end >= guest_loaddr) { 2641 break; 2642 } 2643 } 2644 free_self_maps(maps); 2645 2646 if (ret != -1) { 2647 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2648 " for %" PRIuPTR " bytes\n", 2649 __func__, ret, guest_size); 2650 } 2651 2652 return ret; 2653 } 2654 2655 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2656 abi_ulong orig_hiaddr, long align) 2657 { 2658 uintptr_t loaddr = orig_loaddr; 2659 uintptr_t hiaddr = orig_hiaddr; 2660 uintptr_t offset = 0; 2661 uintptr_t addr; 2662 2663 if (hiaddr != orig_hiaddr) { 2664 error_report("%s: requires virtual address space that the " 2665 "host cannot provide (0x%" PRIx64 ")", 2666 image_name, (uint64_t)orig_hiaddr); 2667 exit(EXIT_FAILURE); 2668 } 2669 2670 loaddr &= -align; 2671 if (HI_COMMPAGE) { 2672 /* 2673 * Extend the allocation to include the commpage. 2674 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2675 * need to ensure there is space bellow the guest_base so we 2676 * can map the commpage in the place needed when the address 2677 * arithmetic wraps around. 2678 */ 2679 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2680 hiaddr = (uintptr_t) 4 << 30; 2681 } else { 2682 offset = -(HI_COMMPAGE & -align); 2683 } 2684 } else if (LO_COMMPAGE != -1) { 2685 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2686 } 2687 2688 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2689 if (addr == -1) { 2690 /* 2691 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2692 * that can satisfy both. But as the normal arm32 link base address 2693 * is ~32k, and we extend down to include the commpage, making the 2694 * overhead only ~96k, this is unlikely. 2695 */ 2696 error_report("%s: Unable to allocate %#zx bytes of " 2697 "virtual address space", image_name, 2698 (size_t)(hiaddr - loaddr)); 2699 exit(EXIT_FAILURE); 2700 } 2701 2702 guest_base = addr; 2703 2704 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2705 __func__, addr, hiaddr - loaddr); 2706 } 2707 2708 static void pgb_dynamic(const char *image_name, long align) 2709 { 2710 /* 2711 * The executable is dynamic and does not require a fixed address. 2712 * All we need is a commpage that satisfies align. 2713 * If we do not need a commpage, leave guest_base == 0. 2714 */ 2715 if (HI_COMMPAGE) { 2716 uintptr_t addr, commpage; 2717 2718 /* 64-bit hosts should have used reserved_va. */ 2719 assert(sizeof(uintptr_t) == 4); 2720 2721 /* 2722 * By putting the commpage at the first hole, that puts guest_base 2723 * just above that, and maximises the positive guest addresses. 2724 */ 2725 commpage = HI_COMMPAGE & -align; 2726 addr = pgb_find_hole(commpage, -commpage, align, 0); 2727 assert(addr != -1); 2728 guest_base = addr; 2729 } 2730 } 2731 2732 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2733 abi_ulong guest_hiaddr, long align) 2734 { 2735 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2736 void *addr, *test; 2737 2738 if (guest_hiaddr > reserved_va) { 2739 error_report("%s: requires more than reserved virtual " 2740 "address space (0x%" PRIx64 " > 0x%lx)", 2741 image_name, (uint64_t)guest_hiaddr, reserved_va); 2742 exit(EXIT_FAILURE); 2743 } 2744 2745 /* Widen the "image" to the entire reserved address space. */ 2746 pgb_static(image_name, 0, reserved_va, align); 2747 2748 /* osdep.h defines this as 0 if it's missing */ 2749 flags |= MAP_FIXED_NOREPLACE; 2750 2751 /* Reserve the memory on the host. */ 2752 assert(guest_base != 0); 2753 test = g2h_untagged(0); 2754 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2755 if (addr == MAP_FAILED || addr != test) { 2756 error_report("Unable to reserve 0x%lx bytes of virtual address " 2757 "space at %p (%s) for use as guest address space (check your " 2758 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2759 "using -R option)", reserved_va, test, strerror(errno)); 2760 exit(EXIT_FAILURE); 2761 } 2762 2763 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2764 __func__, addr, reserved_va); 2765 } 2766 2767 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2768 abi_ulong guest_hiaddr) 2769 { 2770 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2771 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2772 2773 if (have_guest_base) { 2774 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2775 } else if (reserved_va) { 2776 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2777 } else if (guest_loaddr) { 2778 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2779 } else { 2780 pgb_dynamic(image_name, align); 2781 } 2782 2783 /* Reserve and initialize the commpage. */ 2784 if (!init_guest_commpage()) { 2785 /* 2786 * With have_guest_base, the user has selected the address and 2787 * we are trying to work with that. Otherwise, we have selected 2788 * free space and init_guest_commpage must succeeded. 2789 */ 2790 assert(have_guest_base); 2791 pgb_fail_in_use(image_name); 2792 } 2793 2794 assert(QEMU_IS_ALIGNED(guest_base, align)); 2795 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2796 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2797 } 2798 2799 enum { 2800 /* The string "GNU\0" as a magic number. */ 2801 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2802 NOTE_DATA_SZ = 1 * KiB, 2803 NOTE_NAME_SZ = 4, 2804 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2805 }; 2806 2807 /* 2808 * Process a single gnu_property entry. 2809 * Return false for error. 2810 */ 2811 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2812 struct image_info *info, bool have_prev_type, 2813 uint32_t *prev_type, Error **errp) 2814 { 2815 uint32_t pr_type, pr_datasz, step; 2816 2817 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2818 goto error_data; 2819 } 2820 datasz -= *off; 2821 data += *off / sizeof(uint32_t); 2822 2823 if (datasz < 2 * sizeof(uint32_t)) { 2824 goto error_data; 2825 } 2826 pr_type = data[0]; 2827 pr_datasz = data[1]; 2828 data += 2; 2829 datasz -= 2 * sizeof(uint32_t); 2830 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2831 if (step > datasz) { 2832 goto error_data; 2833 } 2834 2835 /* Properties are supposed to be unique and sorted on pr_type. */ 2836 if (have_prev_type && pr_type <= *prev_type) { 2837 if (pr_type == *prev_type) { 2838 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2839 } else { 2840 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2841 } 2842 return false; 2843 } 2844 *prev_type = pr_type; 2845 2846 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2847 return false; 2848 } 2849 2850 *off += 2 * sizeof(uint32_t) + step; 2851 return true; 2852 2853 error_data: 2854 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2855 return false; 2856 } 2857 2858 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2859 static bool parse_elf_properties(int image_fd, 2860 struct image_info *info, 2861 const struct elf_phdr *phdr, 2862 char bprm_buf[BPRM_BUF_SIZE], 2863 Error **errp) 2864 { 2865 union { 2866 struct elf_note nhdr; 2867 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2868 } note; 2869 2870 int n, off, datasz; 2871 bool have_prev_type; 2872 uint32_t prev_type; 2873 2874 /* Unless the arch requires properties, ignore them. */ 2875 if (!ARCH_USE_GNU_PROPERTY) { 2876 return true; 2877 } 2878 2879 /* If the properties are crazy large, that's too bad. */ 2880 n = phdr->p_filesz; 2881 if (n > sizeof(note)) { 2882 error_setg(errp, "PT_GNU_PROPERTY too large"); 2883 return false; 2884 } 2885 if (n < sizeof(note.nhdr)) { 2886 error_setg(errp, "PT_GNU_PROPERTY too small"); 2887 return false; 2888 } 2889 2890 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2891 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2892 } else { 2893 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2894 if (len != n) { 2895 error_setg_errno(errp, errno, "Error reading file header"); 2896 return false; 2897 } 2898 } 2899 2900 /* 2901 * The contents of a valid PT_GNU_PROPERTY is a sequence 2902 * of uint32_t -- swap them all now. 2903 */ 2904 #ifdef BSWAP_NEEDED 2905 for (int i = 0; i < n / 4; i++) { 2906 bswap32s(note.data + i); 2907 } 2908 #endif 2909 2910 /* 2911 * Note that nhdr is 3 words, and that the "name" described by namesz 2912 * immediately follows nhdr and is thus at the 4th word. Further, all 2913 * of the inputs to the kernel's round_up are multiples of 4. 2914 */ 2915 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2916 note.nhdr.n_namesz != NOTE_NAME_SZ || 2917 note.data[3] != GNU0_MAGIC) { 2918 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2919 return false; 2920 } 2921 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2922 2923 datasz = note.nhdr.n_descsz + off; 2924 if (datasz > n) { 2925 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2926 return false; 2927 } 2928 2929 have_prev_type = false; 2930 prev_type = 0; 2931 while (1) { 2932 if (off == datasz) { 2933 return true; /* end, exit ok */ 2934 } 2935 if (!parse_elf_property(note.data, &off, datasz, info, 2936 have_prev_type, &prev_type, errp)) { 2937 return false; 2938 } 2939 have_prev_type = true; 2940 } 2941 } 2942 2943 /* Load an ELF image into the address space. 2944 2945 IMAGE_NAME is the filename of the image, to use in error messages. 2946 IMAGE_FD is the open file descriptor for the image. 2947 2948 BPRM_BUF is a copy of the beginning of the file; this of course 2949 contains the elf file header at offset 0. It is assumed that this 2950 buffer is sufficiently aligned to present no problems to the host 2951 in accessing data at aligned offsets within the buffer. 2952 2953 On return: INFO values will be filled in, as necessary or available. */ 2954 2955 static void load_elf_image(const char *image_name, int image_fd, 2956 struct image_info *info, char **pinterp_name, 2957 char bprm_buf[BPRM_BUF_SIZE]) 2958 { 2959 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2960 struct elf_phdr *phdr; 2961 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2962 int i, retval, prot_exec; 2963 Error *err = NULL; 2964 2965 /* First of all, some simple consistency checks */ 2966 if (!elf_check_ident(ehdr)) { 2967 error_setg(&err, "Invalid ELF image for this architecture"); 2968 goto exit_errmsg; 2969 } 2970 bswap_ehdr(ehdr); 2971 if (!elf_check_ehdr(ehdr)) { 2972 error_setg(&err, "Invalid ELF image for this architecture"); 2973 goto exit_errmsg; 2974 } 2975 2976 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2977 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2978 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2979 } else { 2980 phdr = (struct elf_phdr *) alloca(i); 2981 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2982 if (retval != i) { 2983 goto exit_read; 2984 } 2985 } 2986 bswap_phdr(phdr, ehdr->e_phnum); 2987 2988 info->nsegs = 0; 2989 info->pt_dynamic_addr = 0; 2990 2991 mmap_lock(); 2992 2993 /* 2994 * Find the maximum size of the image and allocate an appropriate 2995 * amount of memory to handle that. Locate the interpreter, if any. 2996 */ 2997 loaddr = -1, hiaddr = 0; 2998 info->alignment = 0; 2999 info->exec_stack = EXSTACK_DEFAULT; 3000 for (i = 0; i < ehdr->e_phnum; ++i) { 3001 struct elf_phdr *eppnt = phdr + i; 3002 if (eppnt->p_type == PT_LOAD) { 3003 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3004 if (a < loaddr) { 3005 loaddr = a; 3006 } 3007 a = eppnt->p_vaddr + eppnt->p_memsz; 3008 if (a > hiaddr) { 3009 hiaddr = a; 3010 } 3011 ++info->nsegs; 3012 info->alignment |= eppnt->p_align; 3013 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3014 g_autofree char *interp_name = NULL; 3015 3016 if (*pinterp_name) { 3017 error_setg(&err, "Multiple PT_INTERP entries"); 3018 goto exit_errmsg; 3019 } 3020 3021 interp_name = g_malloc(eppnt->p_filesz); 3022 3023 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3024 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3025 eppnt->p_filesz); 3026 } else { 3027 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3028 eppnt->p_offset); 3029 if (retval != eppnt->p_filesz) { 3030 goto exit_read; 3031 } 3032 } 3033 if (interp_name[eppnt->p_filesz - 1] != 0) { 3034 error_setg(&err, "Invalid PT_INTERP entry"); 3035 goto exit_errmsg; 3036 } 3037 *pinterp_name = g_steal_pointer(&interp_name); 3038 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3039 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3040 goto exit_errmsg; 3041 } 3042 } else if (eppnt->p_type == PT_GNU_STACK) { 3043 info->exec_stack = eppnt->p_flags & PF_X; 3044 } 3045 } 3046 3047 if (pinterp_name != NULL) { 3048 /* 3049 * This is the main executable. 3050 * 3051 * Reserve extra space for brk. 3052 * We hold on to this space while placing the interpreter 3053 * and the stack, lest they be placed immediately after 3054 * the data segment and block allocation from the brk. 3055 * 3056 * 16MB is chosen as "large enough" without being so large as 3057 * to allow the result to not fit with a 32-bit guest on a 3058 * 32-bit host. However some 64 bit guests (e.g. s390x) 3059 * attempt to place their heap further ahead and currently 3060 * nothing stops them smashing into QEMUs address space. 3061 */ 3062 #if TARGET_LONG_BITS == 64 3063 info->reserve_brk = 32 * MiB; 3064 #else 3065 info->reserve_brk = 16 * MiB; 3066 #endif 3067 hiaddr += info->reserve_brk; 3068 3069 if (ehdr->e_type == ET_EXEC) { 3070 /* 3071 * Make sure that the low address does not conflict with 3072 * MMAP_MIN_ADDR or the QEMU application itself. 3073 */ 3074 probe_guest_base(image_name, loaddr, hiaddr); 3075 } else { 3076 /* 3077 * The binary is dynamic, but we still need to 3078 * select guest_base. In this case we pass a size. 3079 */ 3080 probe_guest_base(image_name, 0, hiaddr - loaddr); 3081 } 3082 } 3083 3084 /* 3085 * Reserve address space for all of this. 3086 * 3087 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3088 * exactly the address range that is required. 3089 * 3090 * Otherwise this is ET_DYN, and we are searching for a location 3091 * that can hold the memory space required. If the image is 3092 * pre-linked, LOADDR will be non-zero, and the kernel should 3093 * honor that address if it happens to be free. 3094 * 3095 * In both cases, we will overwrite pages in this range with mappings 3096 * from the executable. 3097 */ 3098 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 3099 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3100 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3101 -1, 0); 3102 if (load_addr == -1) { 3103 goto exit_mmap; 3104 } 3105 load_bias = load_addr - loaddr; 3106 3107 if (elf_is_fdpic(ehdr)) { 3108 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3109 g_malloc(sizeof(*loadsegs) * info->nsegs); 3110 3111 for (i = 0; i < ehdr->e_phnum; ++i) { 3112 switch (phdr[i].p_type) { 3113 case PT_DYNAMIC: 3114 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3115 break; 3116 case PT_LOAD: 3117 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3118 loadsegs->p_vaddr = phdr[i].p_vaddr; 3119 loadsegs->p_memsz = phdr[i].p_memsz; 3120 ++loadsegs; 3121 break; 3122 } 3123 } 3124 } 3125 3126 info->load_bias = load_bias; 3127 info->code_offset = load_bias; 3128 info->data_offset = load_bias; 3129 info->load_addr = load_addr; 3130 info->entry = ehdr->e_entry + load_bias; 3131 info->start_code = -1; 3132 info->end_code = 0; 3133 info->start_data = -1; 3134 info->end_data = 0; 3135 info->brk = 0; 3136 info->elf_flags = ehdr->e_flags; 3137 3138 prot_exec = PROT_EXEC; 3139 #ifdef TARGET_AARCH64 3140 /* 3141 * If the BTI feature is present, this indicates that the executable 3142 * pages of the startup binary should be mapped with PROT_BTI, so that 3143 * branch targets are enforced. 3144 * 3145 * The startup binary is either the interpreter or the static executable. 3146 * The interpreter is responsible for all pages of a dynamic executable. 3147 * 3148 * Elf notes are backward compatible to older cpus. 3149 * Do not enable BTI unless it is supported. 3150 */ 3151 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3152 && (pinterp_name == NULL || *pinterp_name == 0) 3153 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3154 prot_exec |= TARGET_PROT_BTI; 3155 } 3156 #endif 3157 3158 for (i = 0; i < ehdr->e_phnum; i++) { 3159 struct elf_phdr *eppnt = phdr + i; 3160 if (eppnt->p_type == PT_LOAD) { 3161 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3162 int elf_prot = 0; 3163 3164 if (eppnt->p_flags & PF_R) { 3165 elf_prot |= PROT_READ; 3166 } 3167 if (eppnt->p_flags & PF_W) { 3168 elf_prot |= PROT_WRITE; 3169 } 3170 if (eppnt->p_flags & PF_X) { 3171 elf_prot |= prot_exec; 3172 } 3173 3174 vaddr = load_bias + eppnt->p_vaddr; 3175 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3176 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3177 3178 vaddr_ef = vaddr + eppnt->p_filesz; 3179 vaddr_em = vaddr + eppnt->p_memsz; 3180 3181 /* 3182 * Some segments may be completely empty, with a non-zero p_memsz 3183 * but no backing file segment. 3184 */ 3185 if (eppnt->p_filesz != 0) { 3186 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3187 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3188 MAP_PRIVATE | MAP_FIXED, 3189 image_fd, eppnt->p_offset - vaddr_po); 3190 3191 if (error == -1) { 3192 goto exit_mmap; 3193 } 3194 3195 /* 3196 * If the load segment requests extra zeros (e.g. bss), map it. 3197 */ 3198 if (eppnt->p_filesz < eppnt->p_memsz) { 3199 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3200 } 3201 } else if (eppnt->p_memsz != 0) { 3202 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3203 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3204 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3205 -1, 0); 3206 3207 if (error == -1) { 3208 goto exit_mmap; 3209 } 3210 } 3211 3212 /* Find the full program boundaries. */ 3213 if (elf_prot & PROT_EXEC) { 3214 if (vaddr < info->start_code) { 3215 info->start_code = vaddr; 3216 } 3217 if (vaddr_ef > info->end_code) { 3218 info->end_code = vaddr_ef; 3219 } 3220 } 3221 if (elf_prot & PROT_WRITE) { 3222 if (vaddr < info->start_data) { 3223 info->start_data = vaddr; 3224 } 3225 if (vaddr_ef > info->end_data) { 3226 info->end_data = vaddr_ef; 3227 } 3228 } 3229 if (vaddr_em > info->brk) { 3230 info->brk = vaddr_em; 3231 } 3232 #ifdef TARGET_MIPS 3233 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3234 Mips_elf_abiflags_v0 abiflags; 3235 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3236 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3237 goto exit_errmsg; 3238 } 3239 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3240 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3241 sizeof(Mips_elf_abiflags_v0)); 3242 } else { 3243 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3244 eppnt->p_offset); 3245 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3246 goto exit_read; 3247 } 3248 } 3249 bswap_mips_abiflags(&abiflags); 3250 info->fp_abi = abiflags.fp_abi; 3251 #endif 3252 } 3253 } 3254 3255 if (info->end_data == 0) { 3256 info->start_data = info->end_code; 3257 info->end_data = info->end_code; 3258 } 3259 3260 if (qemu_log_enabled()) { 3261 load_symbols(ehdr, image_fd, load_bias); 3262 } 3263 3264 mmap_unlock(); 3265 3266 close(image_fd); 3267 return; 3268 3269 exit_read: 3270 if (retval >= 0) { 3271 error_setg(&err, "Incomplete read of file header"); 3272 } else { 3273 error_setg_errno(&err, errno, "Error reading file header"); 3274 } 3275 goto exit_errmsg; 3276 exit_mmap: 3277 error_setg_errno(&err, errno, "Error mapping file"); 3278 goto exit_errmsg; 3279 exit_errmsg: 3280 error_reportf_err(err, "%s: ", image_name); 3281 exit(-1); 3282 } 3283 3284 static void load_elf_interp(const char *filename, struct image_info *info, 3285 char bprm_buf[BPRM_BUF_SIZE]) 3286 { 3287 int fd, retval; 3288 Error *err = NULL; 3289 3290 fd = open(path(filename), O_RDONLY); 3291 if (fd < 0) { 3292 error_setg_file_open(&err, errno, filename); 3293 error_report_err(err); 3294 exit(-1); 3295 } 3296 3297 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3298 if (retval < 0) { 3299 error_setg_errno(&err, errno, "Error reading file header"); 3300 error_reportf_err(err, "%s: ", filename); 3301 exit(-1); 3302 } 3303 3304 if (retval < BPRM_BUF_SIZE) { 3305 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3306 } 3307 3308 load_elf_image(filename, fd, info, NULL, bprm_buf); 3309 } 3310 3311 static int symfind(const void *s0, const void *s1) 3312 { 3313 target_ulong addr = *(target_ulong *)s0; 3314 struct elf_sym *sym = (struct elf_sym *)s1; 3315 int result = 0; 3316 if (addr < sym->st_value) { 3317 result = -1; 3318 } else if (addr >= sym->st_value + sym->st_size) { 3319 result = 1; 3320 } 3321 return result; 3322 } 3323 3324 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3325 { 3326 #if ELF_CLASS == ELFCLASS32 3327 struct elf_sym *syms = s->disas_symtab.elf32; 3328 #else 3329 struct elf_sym *syms = s->disas_symtab.elf64; 3330 #endif 3331 3332 // binary search 3333 struct elf_sym *sym; 3334 3335 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3336 if (sym != NULL) { 3337 return s->disas_strtab + sym->st_name; 3338 } 3339 3340 return ""; 3341 } 3342 3343 /* FIXME: This should use elf_ops.h */ 3344 static int symcmp(const void *s0, const void *s1) 3345 { 3346 struct elf_sym *sym0 = (struct elf_sym *)s0; 3347 struct elf_sym *sym1 = (struct elf_sym *)s1; 3348 return (sym0->st_value < sym1->st_value) 3349 ? -1 3350 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3351 } 3352 3353 /* Best attempt to load symbols from this ELF object. */ 3354 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3355 { 3356 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3357 uint64_t segsz; 3358 struct elf_shdr *shdr; 3359 char *strings = NULL; 3360 struct syminfo *s = NULL; 3361 struct elf_sym *new_syms, *syms = NULL; 3362 3363 shnum = hdr->e_shnum; 3364 i = shnum * sizeof(struct elf_shdr); 3365 shdr = (struct elf_shdr *)alloca(i); 3366 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3367 return; 3368 } 3369 3370 bswap_shdr(shdr, shnum); 3371 for (i = 0; i < shnum; ++i) { 3372 if (shdr[i].sh_type == SHT_SYMTAB) { 3373 sym_idx = i; 3374 str_idx = shdr[i].sh_link; 3375 goto found; 3376 } 3377 } 3378 3379 /* There will be no symbol table if the file was stripped. */ 3380 return; 3381 3382 found: 3383 /* Now know where the strtab and symtab are. Snarf them. */ 3384 s = g_try_new(struct syminfo, 1); 3385 if (!s) { 3386 goto give_up; 3387 } 3388 3389 segsz = shdr[str_idx].sh_size; 3390 s->disas_strtab = strings = g_try_malloc(segsz); 3391 if (!strings || 3392 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3393 goto give_up; 3394 } 3395 3396 segsz = shdr[sym_idx].sh_size; 3397 syms = g_try_malloc(segsz); 3398 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3399 goto give_up; 3400 } 3401 3402 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3403 /* Implausibly large symbol table: give up rather than ploughing 3404 * on with the number of symbols calculation overflowing 3405 */ 3406 goto give_up; 3407 } 3408 nsyms = segsz / sizeof(struct elf_sym); 3409 for (i = 0; i < nsyms; ) { 3410 bswap_sym(syms + i); 3411 /* Throw away entries which we do not need. */ 3412 if (syms[i].st_shndx == SHN_UNDEF 3413 || syms[i].st_shndx >= SHN_LORESERVE 3414 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3415 if (i < --nsyms) { 3416 syms[i] = syms[nsyms]; 3417 } 3418 } else { 3419 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3420 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3421 syms[i].st_value &= ~(target_ulong)1; 3422 #endif 3423 syms[i].st_value += load_bias; 3424 i++; 3425 } 3426 } 3427 3428 /* No "useful" symbol. */ 3429 if (nsyms == 0) { 3430 goto give_up; 3431 } 3432 3433 /* Attempt to free the storage associated with the local symbols 3434 that we threw away. Whether or not this has any effect on the 3435 memory allocation depends on the malloc implementation and how 3436 many symbols we managed to discard. */ 3437 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3438 if (new_syms == NULL) { 3439 goto give_up; 3440 } 3441 syms = new_syms; 3442 3443 qsort(syms, nsyms, sizeof(*syms), symcmp); 3444 3445 s->disas_num_syms = nsyms; 3446 #if ELF_CLASS == ELFCLASS32 3447 s->disas_symtab.elf32 = syms; 3448 #else 3449 s->disas_symtab.elf64 = syms; 3450 #endif 3451 s->lookup_symbol = lookup_symbolxx; 3452 s->next = syminfos; 3453 syminfos = s; 3454 3455 return; 3456 3457 give_up: 3458 g_free(s); 3459 g_free(strings); 3460 g_free(syms); 3461 } 3462 3463 uint32_t get_elf_eflags(int fd) 3464 { 3465 struct elfhdr ehdr; 3466 off_t offset; 3467 int ret; 3468 3469 /* Read ELF header */ 3470 offset = lseek(fd, 0, SEEK_SET); 3471 if (offset == (off_t) -1) { 3472 return 0; 3473 } 3474 ret = read(fd, &ehdr, sizeof(ehdr)); 3475 if (ret < sizeof(ehdr)) { 3476 return 0; 3477 } 3478 offset = lseek(fd, offset, SEEK_SET); 3479 if (offset == (off_t) -1) { 3480 return 0; 3481 } 3482 3483 /* Check ELF signature */ 3484 if (!elf_check_ident(&ehdr)) { 3485 return 0; 3486 } 3487 3488 /* check header */ 3489 bswap_ehdr(&ehdr); 3490 if (!elf_check_ehdr(&ehdr)) { 3491 return 0; 3492 } 3493 3494 /* return architecture id */ 3495 return ehdr.e_flags; 3496 } 3497 3498 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3499 { 3500 struct image_info interp_info; 3501 struct elfhdr elf_ex; 3502 char *elf_interpreter = NULL; 3503 char *scratch; 3504 3505 memset(&interp_info, 0, sizeof(interp_info)); 3506 #ifdef TARGET_MIPS 3507 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3508 #endif 3509 3510 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3511 3512 load_elf_image(bprm->filename, bprm->fd, info, 3513 &elf_interpreter, bprm->buf); 3514 3515 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3516 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3517 when we load the interpreter. */ 3518 elf_ex = *(struct elfhdr *)bprm->buf; 3519 3520 /* Do this so that we can load the interpreter, if need be. We will 3521 change some of these later */ 3522 bprm->p = setup_arg_pages(bprm, info); 3523 3524 scratch = g_new0(char, TARGET_PAGE_SIZE); 3525 if (STACK_GROWS_DOWN) { 3526 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3527 bprm->p, info->stack_limit); 3528 info->file_string = bprm->p; 3529 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3530 bprm->p, info->stack_limit); 3531 info->env_strings = bprm->p; 3532 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3533 bprm->p, info->stack_limit); 3534 info->arg_strings = bprm->p; 3535 } else { 3536 info->arg_strings = bprm->p; 3537 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3538 bprm->p, info->stack_limit); 3539 info->env_strings = bprm->p; 3540 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3541 bprm->p, info->stack_limit); 3542 info->file_string = bprm->p; 3543 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3544 bprm->p, info->stack_limit); 3545 } 3546 3547 g_free(scratch); 3548 3549 if (!bprm->p) { 3550 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3551 exit(-1); 3552 } 3553 3554 if (elf_interpreter) { 3555 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3556 3557 /* If the program interpreter is one of these two, then assume 3558 an iBCS2 image. Otherwise assume a native linux image. */ 3559 3560 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3561 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3562 info->personality = PER_SVR4; 3563 3564 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3565 and some applications "depend" upon this behavior. Since 3566 we do not have the power to recompile these, we emulate 3567 the SVr4 behavior. Sigh. */ 3568 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3569 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3570 } 3571 #ifdef TARGET_MIPS 3572 info->interp_fp_abi = interp_info.fp_abi; 3573 #endif 3574 } 3575 3576 /* 3577 * TODO: load a vdso, which would also contain the signal trampolines. 3578 * Otherwise, allocate a private page to hold them. 3579 */ 3580 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3581 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3582 PROT_READ | PROT_WRITE, 3583 MAP_PRIVATE | MAP_ANON, -1, 0); 3584 if (tramp_page == -1) { 3585 return -errno; 3586 } 3587 3588 setup_sigtramp(tramp_page); 3589 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3590 } 3591 3592 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3593 info, (elf_interpreter ? &interp_info : NULL)); 3594 info->start_stack = bprm->p; 3595 3596 /* If we have an interpreter, set that as the program's entry point. 3597 Copy the load_bias as well, to help PPC64 interpret the entry 3598 point as a function descriptor. Do this after creating elf tables 3599 so that we copy the original program entry point into the AUXV. */ 3600 if (elf_interpreter) { 3601 info->load_bias = interp_info.load_bias; 3602 info->entry = interp_info.entry; 3603 g_free(elf_interpreter); 3604 } 3605 3606 #ifdef USE_ELF_CORE_DUMP 3607 bprm->core_dump = &elf_core_dump; 3608 #endif 3609 3610 /* 3611 * If we reserved extra space for brk, release it now. 3612 * The implementation of do_brk in syscalls.c expects to be able 3613 * to mmap pages in this space. 3614 */ 3615 if (info->reserve_brk) { 3616 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3617 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3618 target_munmap(start_brk, end_brk - start_brk); 3619 } 3620 3621 return 0; 3622 } 3623 3624 #ifdef USE_ELF_CORE_DUMP 3625 /* 3626 * Definitions to generate Intel SVR4-like core files. 3627 * These mostly have the same names as the SVR4 types with "target_elf_" 3628 * tacked on the front to prevent clashes with linux definitions, 3629 * and the typedef forms have been avoided. This is mostly like 3630 * the SVR4 structure, but more Linuxy, with things that Linux does 3631 * not support and which gdb doesn't really use excluded. 3632 * 3633 * Fields we don't dump (their contents is zero) in linux-user qemu 3634 * are marked with XXX. 3635 * 3636 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3637 * 3638 * Porting ELF coredump for target is (quite) simple process. First you 3639 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3640 * the target resides): 3641 * 3642 * #define USE_ELF_CORE_DUMP 3643 * 3644 * Next you define type of register set used for dumping. ELF specification 3645 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3646 * 3647 * typedef <target_regtype> target_elf_greg_t; 3648 * #define ELF_NREG <number of registers> 3649 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3650 * 3651 * Last step is to implement target specific function that copies registers 3652 * from given cpu into just specified register set. Prototype is: 3653 * 3654 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3655 * const CPUArchState *env); 3656 * 3657 * Parameters: 3658 * regs - copy register values into here (allocated and zeroed by caller) 3659 * env - copy registers from here 3660 * 3661 * Example for ARM target is provided in this file. 3662 */ 3663 3664 /* An ELF note in memory */ 3665 struct memelfnote { 3666 const char *name; 3667 size_t namesz; 3668 size_t namesz_rounded; 3669 int type; 3670 size_t datasz; 3671 size_t datasz_rounded; 3672 void *data; 3673 size_t notesz; 3674 }; 3675 3676 struct target_elf_siginfo { 3677 abi_int si_signo; /* signal number */ 3678 abi_int si_code; /* extra code */ 3679 abi_int si_errno; /* errno */ 3680 }; 3681 3682 struct target_elf_prstatus { 3683 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3684 abi_short pr_cursig; /* Current signal */ 3685 abi_ulong pr_sigpend; /* XXX */ 3686 abi_ulong pr_sighold; /* XXX */ 3687 target_pid_t pr_pid; 3688 target_pid_t pr_ppid; 3689 target_pid_t pr_pgrp; 3690 target_pid_t pr_sid; 3691 struct target_timeval pr_utime; /* XXX User time */ 3692 struct target_timeval pr_stime; /* XXX System time */ 3693 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3694 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3695 target_elf_gregset_t pr_reg; /* GP registers */ 3696 abi_int pr_fpvalid; /* XXX */ 3697 }; 3698 3699 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3700 3701 struct target_elf_prpsinfo { 3702 char pr_state; /* numeric process state */ 3703 char pr_sname; /* char for pr_state */ 3704 char pr_zomb; /* zombie */ 3705 char pr_nice; /* nice val */ 3706 abi_ulong pr_flag; /* flags */ 3707 target_uid_t pr_uid; 3708 target_gid_t pr_gid; 3709 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3710 /* Lots missing */ 3711 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3712 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3713 }; 3714 3715 /* Here is the structure in which status of each thread is captured. */ 3716 struct elf_thread_status { 3717 QTAILQ_ENTRY(elf_thread_status) ets_link; 3718 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3719 #if 0 3720 elf_fpregset_t fpu; /* NT_PRFPREG */ 3721 struct task_struct *thread; 3722 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3723 #endif 3724 struct memelfnote notes[1]; 3725 int num_notes; 3726 }; 3727 3728 struct elf_note_info { 3729 struct memelfnote *notes; 3730 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3731 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3732 3733 QTAILQ_HEAD(, elf_thread_status) thread_list; 3734 #if 0 3735 /* 3736 * Current version of ELF coredump doesn't support 3737 * dumping fp regs etc. 3738 */ 3739 elf_fpregset_t *fpu; 3740 elf_fpxregset_t *xfpu; 3741 int thread_status_size; 3742 #endif 3743 int notes_size; 3744 int numnote; 3745 }; 3746 3747 struct vm_area_struct { 3748 target_ulong vma_start; /* start vaddr of memory region */ 3749 target_ulong vma_end; /* end vaddr of memory region */ 3750 abi_ulong vma_flags; /* protection etc. flags for the region */ 3751 QTAILQ_ENTRY(vm_area_struct) vma_link; 3752 }; 3753 3754 struct mm_struct { 3755 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3756 int mm_count; /* number of mappings */ 3757 }; 3758 3759 static struct mm_struct *vma_init(void); 3760 static void vma_delete(struct mm_struct *); 3761 static int vma_add_mapping(struct mm_struct *, target_ulong, 3762 target_ulong, abi_ulong); 3763 static int vma_get_mapping_count(const struct mm_struct *); 3764 static struct vm_area_struct *vma_first(const struct mm_struct *); 3765 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3766 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3767 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3768 unsigned long flags); 3769 3770 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3771 static void fill_note(struct memelfnote *, const char *, int, 3772 unsigned int, void *); 3773 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3774 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3775 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3776 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3777 static size_t note_size(const struct memelfnote *); 3778 static void free_note_info(struct elf_note_info *); 3779 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3780 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3781 3782 static int dump_write(int, const void *, size_t); 3783 static int write_note(struct memelfnote *, int); 3784 static int write_note_info(struct elf_note_info *, int); 3785 3786 #ifdef BSWAP_NEEDED 3787 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3788 { 3789 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3790 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3791 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3792 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3793 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3794 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3795 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3796 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3797 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3798 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3799 /* cpu times are not filled, so we skip them */ 3800 /* regs should be in correct format already */ 3801 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3802 } 3803 3804 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3805 { 3806 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3807 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3808 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3809 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3810 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3811 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3812 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3813 } 3814 3815 static void bswap_note(struct elf_note *en) 3816 { 3817 bswap32s(&en->n_namesz); 3818 bswap32s(&en->n_descsz); 3819 bswap32s(&en->n_type); 3820 } 3821 #else 3822 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3823 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3824 static inline void bswap_note(struct elf_note *en) { } 3825 #endif /* BSWAP_NEEDED */ 3826 3827 /* 3828 * Minimal support for linux memory regions. These are needed 3829 * when we are finding out what memory exactly belongs to 3830 * emulated process. No locks needed here, as long as 3831 * thread that received the signal is stopped. 3832 */ 3833 3834 static struct mm_struct *vma_init(void) 3835 { 3836 struct mm_struct *mm; 3837 3838 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3839 return (NULL); 3840 3841 mm->mm_count = 0; 3842 QTAILQ_INIT(&mm->mm_mmap); 3843 3844 return (mm); 3845 } 3846 3847 static void vma_delete(struct mm_struct *mm) 3848 { 3849 struct vm_area_struct *vma; 3850 3851 while ((vma = vma_first(mm)) != NULL) { 3852 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3853 g_free(vma); 3854 } 3855 g_free(mm); 3856 } 3857 3858 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3859 target_ulong end, abi_ulong flags) 3860 { 3861 struct vm_area_struct *vma; 3862 3863 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3864 return (-1); 3865 3866 vma->vma_start = start; 3867 vma->vma_end = end; 3868 vma->vma_flags = flags; 3869 3870 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3871 mm->mm_count++; 3872 3873 return (0); 3874 } 3875 3876 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3877 { 3878 return (QTAILQ_FIRST(&mm->mm_mmap)); 3879 } 3880 3881 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3882 { 3883 return (QTAILQ_NEXT(vma, vma_link)); 3884 } 3885 3886 static int vma_get_mapping_count(const struct mm_struct *mm) 3887 { 3888 return (mm->mm_count); 3889 } 3890 3891 /* 3892 * Calculate file (dump) size of given memory region. 3893 */ 3894 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3895 { 3896 /* if we cannot even read the first page, skip it */ 3897 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3898 return (0); 3899 3900 /* 3901 * Usually we don't dump executable pages as they contain 3902 * non-writable code that debugger can read directly from 3903 * target library etc. However, thread stacks are marked 3904 * also executable so we read in first page of given region 3905 * and check whether it contains elf header. If there is 3906 * no elf header, we dump it. 3907 */ 3908 if (vma->vma_flags & PROT_EXEC) { 3909 char page[TARGET_PAGE_SIZE]; 3910 3911 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3912 return 0; 3913 } 3914 if ((page[EI_MAG0] == ELFMAG0) && 3915 (page[EI_MAG1] == ELFMAG1) && 3916 (page[EI_MAG2] == ELFMAG2) && 3917 (page[EI_MAG3] == ELFMAG3)) { 3918 /* 3919 * Mappings are possibly from ELF binary. Don't dump 3920 * them. 3921 */ 3922 return (0); 3923 } 3924 } 3925 3926 return (vma->vma_end - vma->vma_start); 3927 } 3928 3929 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3930 unsigned long flags) 3931 { 3932 struct mm_struct *mm = (struct mm_struct *)priv; 3933 3934 vma_add_mapping(mm, start, end, flags); 3935 return (0); 3936 } 3937 3938 static void fill_note(struct memelfnote *note, const char *name, int type, 3939 unsigned int sz, void *data) 3940 { 3941 unsigned int namesz; 3942 3943 namesz = strlen(name) + 1; 3944 note->name = name; 3945 note->namesz = namesz; 3946 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3947 note->type = type; 3948 note->datasz = sz; 3949 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3950 3951 note->data = data; 3952 3953 /* 3954 * We calculate rounded up note size here as specified by 3955 * ELF document. 3956 */ 3957 note->notesz = sizeof (struct elf_note) + 3958 note->namesz_rounded + note->datasz_rounded; 3959 } 3960 3961 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3962 uint32_t flags) 3963 { 3964 (void) memset(elf, 0, sizeof(*elf)); 3965 3966 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3967 elf->e_ident[EI_CLASS] = ELF_CLASS; 3968 elf->e_ident[EI_DATA] = ELF_DATA; 3969 elf->e_ident[EI_VERSION] = EV_CURRENT; 3970 elf->e_ident[EI_OSABI] = ELF_OSABI; 3971 3972 elf->e_type = ET_CORE; 3973 elf->e_machine = machine; 3974 elf->e_version = EV_CURRENT; 3975 elf->e_phoff = sizeof(struct elfhdr); 3976 elf->e_flags = flags; 3977 elf->e_ehsize = sizeof(struct elfhdr); 3978 elf->e_phentsize = sizeof(struct elf_phdr); 3979 elf->e_phnum = segs; 3980 3981 bswap_ehdr(elf); 3982 } 3983 3984 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3985 { 3986 phdr->p_type = PT_NOTE; 3987 phdr->p_offset = offset; 3988 phdr->p_vaddr = 0; 3989 phdr->p_paddr = 0; 3990 phdr->p_filesz = sz; 3991 phdr->p_memsz = 0; 3992 phdr->p_flags = 0; 3993 phdr->p_align = 0; 3994 3995 bswap_phdr(phdr, 1); 3996 } 3997 3998 static size_t note_size(const struct memelfnote *note) 3999 { 4000 return (note->notesz); 4001 } 4002 4003 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4004 const TaskState *ts, int signr) 4005 { 4006 (void) memset(prstatus, 0, sizeof (*prstatus)); 4007 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4008 prstatus->pr_pid = ts->ts_tid; 4009 prstatus->pr_ppid = getppid(); 4010 prstatus->pr_pgrp = getpgrp(); 4011 prstatus->pr_sid = getsid(0); 4012 4013 bswap_prstatus(prstatus); 4014 } 4015 4016 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4017 { 4018 char *base_filename; 4019 unsigned int i, len; 4020 4021 (void) memset(psinfo, 0, sizeof (*psinfo)); 4022 4023 len = ts->info->env_strings - ts->info->arg_strings; 4024 if (len >= ELF_PRARGSZ) 4025 len = ELF_PRARGSZ - 1; 4026 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4027 return -EFAULT; 4028 } 4029 for (i = 0; i < len; i++) 4030 if (psinfo->pr_psargs[i] == 0) 4031 psinfo->pr_psargs[i] = ' '; 4032 psinfo->pr_psargs[len] = 0; 4033 4034 psinfo->pr_pid = getpid(); 4035 psinfo->pr_ppid = getppid(); 4036 psinfo->pr_pgrp = getpgrp(); 4037 psinfo->pr_sid = getsid(0); 4038 psinfo->pr_uid = getuid(); 4039 psinfo->pr_gid = getgid(); 4040 4041 base_filename = g_path_get_basename(ts->bprm->filename); 4042 /* 4043 * Using strncpy here is fine: at max-length, 4044 * this field is not NUL-terminated. 4045 */ 4046 (void) strncpy(psinfo->pr_fname, base_filename, 4047 sizeof(psinfo->pr_fname)); 4048 4049 g_free(base_filename); 4050 bswap_psinfo(psinfo); 4051 return (0); 4052 } 4053 4054 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4055 { 4056 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4057 elf_addr_t orig_auxv = auxv; 4058 void *ptr; 4059 int len = ts->info->auxv_len; 4060 4061 /* 4062 * Auxiliary vector is stored in target process stack. It contains 4063 * {type, value} pairs that we need to dump into note. This is not 4064 * strictly necessary but we do it here for sake of completeness. 4065 */ 4066 4067 /* read in whole auxv vector and copy it to memelfnote */ 4068 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4069 if (ptr != NULL) { 4070 fill_note(note, "CORE", NT_AUXV, len, ptr); 4071 unlock_user(ptr, auxv, len); 4072 } 4073 } 4074 4075 /* 4076 * Constructs name of coredump file. We have following convention 4077 * for the name: 4078 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4079 * 4080 * Returns the filename 4081 */ 4082 static char *core_dump_filename(const TaskState *ts) 4083 { 4084 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4085 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4086 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4087 4088 return g_strdup_printf("qemu_%s_%s_%d.core", 4089 base_filename, nowstr, (int)getpid()); 4090 } 4091 4092 static int dump_write(int fd, const void *ptr, size_t size) 4093 { 4094 const char *bufp = (const char *)ptr; 4095 ssize_t bytes_written, bytes_left; 4096 struct rlimit dumpsize; 4097 off_t pos; 4098 4099 bytes_written = 0; 4100 getrlimit(RLIMIT_CORE, &dumpsize); 4101 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4102 if (errno == ESPIPE) { /* not a seekable stream */ 4103 bytes_left = size; 4104 } else { 4105 return pos; 4106 } 4107 } else { 4108 if (dumpsize.rlim_cur <= pos) { 4109 return -1; 4110 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4111 bytes_left = size; 4112 } else { 4113 size_t limit_left=dumpsize.rlim_cur - pos; 4114 bytes_left = limit_left >= size ? size : limit_left ; 4115 } 4116 } 4117 4118 /* 4119 * In normal conditions, single write(2) should do but 4120 * in case of socket etc. this mechanism is more portable. 4121 */ 4122 do { 4123 bytes_written = write(fd, bufp, bytes_left); 4124 if (bytes_written < 0) { 4125 if (errno == EINTR) 4126 continue; 4127 return (-1); 4128 } else if (bytes_written == 0) { /* eof */ 4129 return (-1); 4130 } 4131 bufp += bytes_written; 4132 bytes_left -= bytes_written; 4133 } while (bytes_left > 0); 4134 4135 return (0); 4136 } 4137 4138 static int write_note(struct memelfnote *men, int fd) 4139 { 4140 struct elf_note en; 4141 4142 en.n_namesz = men->namesz; 4143 en.n_type = men->type; 4144 en.n_descsz = men->datasz; 4145 4146 bswap_note(&en); 4147 4148 if (dump_write(fd, &en, sizeof(en)) != 0) 4149 return (-1); 4150 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4151 return (-1); 4152 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4153 return (-1); 4154 4155 return (0); 4156 } 4157 4158 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4159 { 4160 CPUState *cpu = env_cpu((CPUArchState *)env); 4161 TaskState *ts = (TaskState *)cpu->opaque; 4162 struct elf_thread_status *ets; 4163 4164 ets = g_malloc0(sizeof (*ets)); 4165 ets->num_notes = 1; /* only prstatus is dumped */ 4166 fill_prstatus(&ets->prstatus, ts, 0); 4167 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4168 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4169 &ets->prstatus); 4170 4171 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4172 4173 info->notes_size += note_size(&ets->notes[0]); 4174 } 4175 4176 static void init_note_info(struct elf_note_info *info) 4177 { 4178 /* Initialize the elf_note_info structure so that it is at 4179 * least safe to call free_note_info() on it. Must be 4180 * called before calling fill_note_info(). 4181 */ 4182 memset(info, 0, sizeof (*info)); 4183 QTAILQ_INIT(&info->thread_list); 4184 } 4185 4186 static int fill_note_info(struct elf_note_info *info, 4187 long signr, const CPUArchState *env) 4188 { 4189 #define NUMNOTES 3 4190 CPUState *cpu = env_cpu((CPUArchState *)env); 4191 TaskState *ts = (TaskState *)cpu->opaque; 4192 int i; 4193 4194 info->notes = g_new0(struct memelfnote, NUMNOTES); 4195 if (info->notes == NULL) 4196 return (-ENOMEM); 4197 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4198 if (info->prstatus == NULL) 4199 return (-ENOMEM); 4200 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4201 if (info->prstatus == NULL) 4202 return (-ENOMEM); 4203 4204 /* 4205 * First fill in status (and registers) of current thread 4206 * including process info & aux vector. 4207 */ 4208 fill_prstatus(info->prstatus, ts, signr); 4209 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4210 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4211 sizeof (*info->prstatus), info->prstatus); 4212 fill_psinfo(info->psinfo, ts); 4213 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4214 sizeof (*info->psinfo), info->psinfo); 4215 fill_auxv_note(&info->notes[2], ts); 4216 info->numnote = 3; 4217 4218 info->notes_size = 0; 4219 for (i = 0; i < info->numnote; i++) 4220 info->notes_size += note_size(&info->notes[i]); 4221 4222 /* read and fill status of all threads */ 4223 cpu_list_lock(); 4224 CPU_FOREACH(cpu) { 4225 if (cpu == thread_cpu) { 4226 continue; 4227 } 4228 fill_thread_info(info, cpu->env_ptr); 4229 } 4230 cpu_list_unlock(); 4231 4232 return (0); 4233 } 4234 4235 static void free_note_info(struct elf_note_info *info) 4236 { 4237 struct elf_thread_status *ets; 4238 4239 while (!QTAILQ_EMPTY(&info->thread_list)) { 4240 ets = QTAILQ_FIRST(&info->thread_list); 4241 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4242 g_free(ets); 4243 } 4244 4245 g_free(info->prstatus); 4246 g_free(info->psinfo); 4247 g_free(info->notes); 4248 } 4249 4250 static int write_note_info(struct elf_note_info *info, int fd) 4251 { 4252 struct elf_thread_status *ets; 4253 int i, error = 0; 4254 4255 /* write prstatus, psinfo and auxv for current thread */ 4256 for (i = 0; i < info->numnote; i++) 4257 if ((error = write_note(&info->notes[i], fd)) != 0) 4258 return (error); 4259 4260 /* write prstatus for each thread */ 4261 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4262 if ((error = write_note(&ets->notes[0], fd)) != 0) 4263 return (error); 4264 } 4265 4266 return (0); 4267 } 4268 4269 /* 4270 * Write out ELF coredump. 4271 * 4272 * See documentation of ELF object file format in: 4273 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4274 * 4275 * Coredump format in linux is following: 4276 * 4277 * 0 +----------------------+ \ 4278 * | ELF header | ET_CORE | 4279 * +----------------------+ | 4280 * | ELF program headers | |--- headers 4281 * | - NOTE section | | 4282 * | - PT_LOAD sections | | 4283 * +----------------------+ / 4284 * | NOTEs: | 4285 * | - NT_PRSTATUS | 4286 * | - NT_PRSINFO | 4287 * | - NT_AUXV | 4288 * +----------------------+ <-- aligned to target page 4289 * | Process memory dump | 4290 * : : 4291 * . . 4292 * : : 4293 * | | 4294 * +----------------------+ 4295 * 4296 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4297 * NT_PRSINFO -> struct elf_prpsinfo 4298 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4299 * 4300 * Format follows System V format as close as possible. Current 4301 * version limitations are as follows: 4302 * - no floating point registers are dumped 4303 * 4304 * Function returns 0 in case of success, negative errno otherwise. 4305 * 4306 * TODO: make this work also during runtime: it should be 4307 * possible to force coredump from running process and then 4308 * continue processing. For example qemu could set up SIGUSR2 4309 * handler (provided that target process haven't registered 4310 * handler for that) that does the dump when signal is received. 4311 */ 4312 static int elf_core_dump(int signr, const CPUArchState *env) 4313 { 4314 const CPUState *cpu = env_cpu((CPUArchState *)env); 4315 const TaskState *ts = (const TaskState *)cpu->opaque; 4316 struct vm_area_struct *vma = NULL; 4317 g_autofree char *corefile = NULL; 4318 struct elf_note_info info; 4319 struct elfhdr elf; 4320 struct elf_phdr phdr; 4321 struct rlimit dumpsize; 4322 struct mm_struct *mm = NULL; 4323 off_t offset = 0, data_offset = 0; 4324 int segs = 0; 4325 int fd = -1; 4326 4327 init_note_info(&info); 4328 4329 errno = 0; 4330 getrlimit(RLIMIT_CORE, &dumpsize); 4331 if (dumpsize.rlim_cur == 0) 4332 return 0; 4333 4334 corefile = core_dump_filename(ts); 4335 4336 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4337 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4338 return (-errno); 4339 4340 /* 4341 * Walk through target process memory mappings and 4342 * set up structure containing this information. After 4343 * this point vma_xxx functions can be used. 4344 */ 4345 if ((mm = vma_init()) == NULL) 4346 goto out; 4347 4348 walk_memory_regions(mm, vma_walker); 4349 segs = vma_get_mapping_count(mm); 4350 4351 /* 4352 * Construct valid coredump ELF header. We also 4353 * add one more segment for notes. 4354 */ 4355 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4356 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4357 goto out; 4358 4359 /* fill in the in-memory version of notes */ 4360 if (fill_note_info(&info, signr, env) < 0) 4361 goto out; 4362 4363 offset += sizeof (elf); /* elf header */ 4364 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4365 4366 /* write out notes program header */ 4367 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4368 4369 offset += info.notes_size; 4370 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4371 goto out; 4372 4373 /* 4374 * ELF specification wants data to start at page boundary so 4375 * we align it here. 4376 */ 4377 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4378 4379 /* 4380 * Write program headers for memory regions mapped in 4381 * the target process. 4382 */ 4383 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4384 (void) memset(&phdr, 0, sizeof (phdr)); 4385 4386 phdr.p_type = PT_LOAD; 4387 phdr.p_offset = offset; 4388 phdr.p_vaddr = vma->vma_start; 4389 phdr.p_paddr = 0; 4390 phdr.p_filesz = vma_dump_size(vma); 4391 offset += phdr.p_filesz; 4392 phdr.p_memsz = vma->vma_end - vma->vma_start; 4393 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4394 if (vma->vma_flags & PROT_WRITE) 4395 phdr.p_flags |= PF_W; 4396 if (vma->vma_flags & PROT_EXEC) 4397 phdr.p_flags |= PF_X; 4398 phdr.p_align = ELF_EXEC_PAGESIZE; 4399 4400 bswap_phdr(&phdr, 1); 4401 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4402 goto out; 4403 } 4404 } 4405 4406 /* 4407 * Next we write notes just after program headers. No 4408 * alignment needed here. 4409 */ 4410 if (write_note_info(&info, fd) < 0) 4411 goto out; 4412 4413 /* align data to page boundary */ 4414 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4415 goto out; 4416 4417 /* 4418 * Finally we can dump process memory into corefile as well. 4419 */ 4420 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4421 abi_ulong addr; 4422 abi_ulong end; 4423 4424 end = vma->vma_start + vma_dump_size(vma); 4425 4426 for (addr = vma->vma_start; addr < end; 4427 addr += TARGET_PAGE_SIZE) { 4428 char page[TARGET_PAGE_SIZE]; 4429 int error; 4430 4431 /* 4432 * Read in page from target process memory and 4433 * write it to coredump file. 4434 */ 4435 error = copy_from_user(page, addr, sizeof (page)); 4436 if (error != 0) { 4437 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4438 addr); 4439 errno = -error; 4440 goto out; 4441 } 4442 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4443 goto out; 4444 } 4445 } 4446 4447 out: 4448 free_note_info(&info); 4449 if (mm != NULL) 4450 vma_delete(mm); 4451 (void) close(fd); 4452 4453 if (errno != 0) 4454 return (-errno); 4455 return (0); 4456 } 4457 #endif /* USE_ELF_CORE_DUMP */ 4458 4459 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4460 { 4461 init_thread(regs, infop); 4462 } 4463