1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 #include "accel/tcg/debuginfo.h" 23 24 #ifdef _ARCH_PPC64 25 #undef ARCH_DLINFO 26 #undef ELF_PLATFORM 27 #undef ELF_HWCAP 28 #undef ELF_HWCAP2 29 #undef ELF_CLASS 30 #undef ELF_DATA 31 #undef ELF_ARCH 32 #endif 33 34 #define ELF_OSABI ELFOSABI_SYSV 35 36 /* from personality.h */ 37 38 /* 39 * Flags for bug emulation. 40 * 41 * These occupy the top three bytes. 42 */ 43 enum { 44 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 45 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 46 descriptors (signal handling) */ 47 MMAP_PAGE_ZERO = 0x0100000, 48 ADDR_COMPAT_LAYOUT = 0x0200000, 49 READ_IMPLIES_EXEC = 0x0400000, 50 ADDR_LIMIT_32BIT = 0x0800000, 51 SHORT_INODE = 0x1000000, 52 WHOLE_SECONDS = 0x2000000, 53 STICKY_TIMEOUTS = 0x4000000, 54 ADDR_LIMIT_3GB = 0x8000000, 55 }; 56 57 /* 58 * Personality types. 59 * 60 * These go in the low byte. Avoid using the top bit, it will 61 * conflict with error returns. 62 */ 63 enum { 64 PER_LINUX = 0x0000, 65 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 66 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 67 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 68 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 69 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 70 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 71 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 72 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 73 PER_BSD = 0x0006, 74 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 75 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 76 PER_LINUX32 = 0x0008, 77 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 78 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 79 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 80 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 81 PER_RISCOS = 0x000c, 82 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 83 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 84 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 85 PER_HPUX = 0x0010, 86 PER_MASK = 0x00ff, 87 }; 88 89 /* 90 * Return the base personality without flags. 91 */ 92 #define personality(pers) (pers & PER_MASK) 93 94 int info_is_fdpic(struct image_info *info) 95 { 96 return info->personality == PER_LINUX_FDPIC; 97 } 98 99 /* this flag is uneffective under linux too, should be deleted */ 100 #ifndef MAP_DENYWRITE 101 #define MAP_DENYWRITE 0 102 #endif 103 104 /* should probably go in elf.h */ 105 #ifndef ELIBBAD 106 #define ELIBBAD 80 107 #endif 108 109 #if TARGET_BIG_ENDIAN 110 #define ELF_DATA ELFDATA2MSB 111 #else 112 #define ELF_DATA ELFDATA2LSB 113 #endif 114 115 #ifdef TARGET_ABI_MIPSN32 116 typedef abi_ullong target_elf_greg_t; 117 #define tswapreg(ptr) tswap64(ptr) 118 #else 119 typedef abi_ulong target_elf_greg_t; 120 #define tswapreg(ptr) tswapal(ptr) 121 #endif 122 123 #ifdef USE_UID16 124 typedef abi_ushort target_uid_t; 125 typedef abi_ushort target_gid_t; 126 #else 127 typedef abi_uint target_uid_t; 128 typedef abi_uint target_gid_t; 129 #endif 130 typedef abi_int target_pid_t; 131 132 #ifdef TARGET_I386 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 #define ELF_PLATFORM "x86_64" 150 151 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 152 { 153 regs->rax = 0; 154 regs->rsp = infop->start_stack; 155 regs->rip = infop->entry; 156 } 157 158 #define ELF_NREG 27 159 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 160 161 /* 162 * Note that ELF_NREG should be 29 as there should be place for 163 * TRAPNO and ERR "registers" as well but linux doesn't dump 164 * those. 165 * 166 * See linux kernel: arch/x86/include/asm/elf.h 167 */ 168 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 169 { 170 (*regs)[0] = tswapreg(env->regs[15]); 171 (*regs)[1] = tswapreg(env->regs[14]); 172 (*regs)[2] = tswapreg(env->regs[13]); 173 (*regs)[3] = tswapreg(env->regs[12]); 174 (*regs)[4] = tswapreg(env->regs[R_EBP]); 175 (*regs)[5] = tswapreg(env->regs[R_EBX]); 176 (*regs)[6] = tswapreg(env->regs[11]); 177 (*regs)[7] = tswapreg(env->regs[10]); 178 (*regs)[8] = tswapreg(env->regs[9]); 179 (*regs)[9] = tswapreg(env->regs[8]); 180 (*regs)[10] = tswapreg(env->regs[R_EAX]); 181 (*regs)[11] = tswapreg(env->regs[R_ECX]); 182 (*regs)[12] = tswapreg(env->regs[R_EDX]); 183 (*regs)[13] = tswapreg(env->regs[R_ESI]); 184 (*regs)[14] = tswapreg(env->regs[R_EDI]); 185 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 186 (*regs)[16] = tswapreg(env->eip); 187 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 188 (*regs)[18] = tswapreg(env->eflags); 189 (*regs)[19] = tswapreg(env->regs[R_ESP]); 190 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 191 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 192 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 193 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 194 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 195 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 196 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 197 } 198 199 #if ULONG_MAX > UINT32_MAX 200 #define INIT_GUEST_COMMPAGE 201 static bool init_guest_commpage(void) 202 { 203 /* 204 * The vsyscall page is at a high negative address aka kernel space, 205 * which means that we cannot actually allocate it with target_mmap. 206 * We still should be able to use page_set_flags, unless the user 207 * has specified -R reserved_va, which would trigger an assert(). 208 */ 209 if (reserved_va != 0 && 210 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) { 211 error_report("Cannot allocate vsyscall page"); 212 exit(EXIT_FAILURE); 213 } 214 page_set_flags(TARGET_VSYSCALL_PAGE, 215 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE, 216 PAGE_EXEC | PAGE_VALID); 217 return true; 218 } 219 #endif 220 #else 221 222 #define ELF_START_MMAP 0x80000000 223 224 /* 225 * This is used to ensure we don't load something for the wrong architecture. 226 */ 227 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 228 229 /* 230 * These are used to set parameters in the core dumps. 231 */ 232 #define ELF_CLASS ELFCLASS32 233 #define ELF_ARCH EM_386 234 235 #define ELF_PLATFORM get_elf_platform() 236 #define EXSTACK_DEFAULT true 237 238 static const char *get_elf_platform(void) 239 { 240 static char elf_platform[] = "i386"; 241 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 242 if (family > 6) { 243 family = 6; 244 } 245 if (family >= 3) { 246 elf_platform[1] = '0' + family; 247 } 248 return elf_platform; 249 } 250 251 static inline void init_thread(struct target_pt_regs *regs, 252 struct image_info *infop) 253 { 254 regs->esp = infop->start_stack; 255 regs->eip = infop->entry; 256 257 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 258 starts %edx contains a pointer to a function which might be 259 registered using `atexit'. This provides a mean for the 260 dynamic linker to call DT_FINI functions for shared libraries 261 that have been loaded before the code runs. 262 263 A value of 0 tells we have no such handler. */ 264 regs->edx = 0; 265 } 266 267 #define ELF_NREG 17 268 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 269 270 /* 271 * Note that ELF_NREG should be 19 as there should be place for 272 * TRAPNO and ERR "registers" as well but linux doesn't dump 273 * those. 274 * 275 * See linux kernel: arch/x86/include/asm/elf.h 276 */ 277 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 278 { 279 (*regs)[0] = tswapreg(env->regs[R_EBX]); 280 (*regs)[1] = tswapreg(env->regs[R_ECX]); 281 (*regs)[2] = tswapreg(env->regs[R_EDX]); 282 (*regs)[3] = tswapreg(env->regs[R_ESI]); 283 (*regs)[4] = tswapreg(env->regs[R_EDI]); 284 (*regs)[5] = tswapreg(env->regs[R_EBP]); 285 (*regs)[6] = tswapreg(env->regs[R_EAX]); 286 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 287 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 288 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 289 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 290 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 291 (*regs)[12] = tswapreg(env->eip); 292 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 293 (*regs)[14] = tswapreg(env->eflags); 294 (*regs)[15] = tswapreg(env->regs[R_ESP]); 295 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 296 } 297 #endif 298 299 #define USE_ELF_CORE_DUMP 300 #define ELF_EXEC_PAGESIZE 4096 301 302 #endif 303 304 #ifdef TARGET_ARM 305 306 #ifndef TARGET_AARCH64 307 /* 32 bit ARM definitions */ 308 309 #define ELF_START_MMAP 0x80000000 310 311 #define ELF_ARCH EM_ARM 312 #define ELF_CLASS ELFCLASS32 313 #define EXSTACK_DEFAULT true 314 315 static inline void init_thread(struct target_pt_regs *regs, 316 struct image_info *infop) 317 { 318 abi_long stack = infop->start_stack; 319 memset(regs, 0, sizeof(*regs)); 320 321 regs->uregs[16] = ARM_CPU_MODE_USR; 322 if (infop->entry & 1) { 323 regs->uregs[16] |= CPSR_T; 324 } 325 regs->uregs[15] = infop->entry & 0xfffffffe; 326 regs->uregs[13] = infop->start_stack; 327 /* FIXME - what to for failure of get_user()? */ 328 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 329 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 330 /* XXX: it seems that r0 is zeroed after ! */ 331 regs->uregs[0] = 0; 332 /* For uClinux PIC binaries. */ 333 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 334 regs->uregs[10] = infop->start_data; 335 336 /* Support ARM FDPIC. */ 337 if (info_is_fdpic(infop)) { 338 /* As described in the ABI document, r7 points to the loadmap info 339 * prepared by the kernel. If an interpreter is needed, r8 points 340 * to the interpreter loadmap and r9 points to the interpreter 341 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 342 * r9 points to the main program PT_DYNAMIC info. 343 */ 344 regs->uregs[7] = infop->loadmap_addr; 345 if (infop->interpreter_loadmap_addr) { 346 /* Executable is dynamically loaded. */ 347 regs->uregs[8] = infop->interpreter_loadmap_addr; 348 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 349 } else { 350 regs->uregs[8] = 0; 351 regs->uregs[9] = infop->pt_dynamic_addr; 352 } 353 } 354 } 355 356 #define ELF_NREG 18 357 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 358 359 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 360 { 361 (*regs)[0] = tswapreg(env->regs[0]); 362 (*regs)[1] = tswapreg(env->regs[1]); 363 (*regs)[2] = tswapreg(env->regs[2]); 364 (*regs)[3] = tswapreg(env->regs[3]); 365 (*regs)[4] = tswapreg(env->regs[4]); 366 (*regs)[5] = tswapreg(env->regs[5]); 367 (*regs)[6] = tswapreg(env->regs[6]); 368 (*regs)[7] = tswapreg(env->regs[7]); 369 (*regs)[8] = tswapreg(env->regs[8]); 370 (*regs)[9] = tswapreg(env->regs[9]); 371 (*regs)[10] = tswapreg(env->regs[10]); 372 (*regs)[11] = tswapreg(env->regs[11]); 373 (*regs)[12] = tswapreg(env->regs[12]); 374 (*regs)[13] = tswapreg(env->regs[13]); 375 (*regs)[14] = tswapreg(env->regs[14]); 376 (*regs)[15] = tswapreg(env->regs[15]); 377 378 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 379 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 380 } 381 382 #define USE_ELF_CORE_DUMP 383 #define ELF_EXEC_PAGESIZE 4096 384 385 enum 386 { 387 ARM_HWCAP_ARM_SWP = 1 << 0, 388 ARM_HWCAP_ARM_HALF = 1 << 1, 389 ARM_HWCAP_ARM_THUMB = 1 << 2, 390 ARM_HWCAP_ARM_26BIT = 1 << 3, 391 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 392 ARM_HWCAP_ARM_FPA = 1 << 5, 393 ARM_HWCAP_ARM_VFP = 1 << 6, 394 ARM_HWCAP_ARM_EDSP = 1 << 7, 395 ARM_HWCAP_ARM_JAVA = 1 << 8, 396 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 397 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 398 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 399 ARM_HWCAP_ARM_NEON = 1 << 12, 400 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 401 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 402 ARM_HWCAP_ARM_TLS = 1 << 15, 403 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 404 ARM_HWCAP_ARM_IDIVA = 1 << 17, 405 ARM_HWCAP_ARM_IDIVT = 1 << 18, 406 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 407 ARM_HWCAP_ARM_LPAE = 1 << 20, 408 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 409 }; 410 411 enum { 412 ARM_HWCAP2_ARM_AES = 1 << 0, 413 ARM_HWCAP2_ARM_PMULL = 1 << 1, 414 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 415 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 416 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 417 }; 418 419 /* The commpage only exists for 32 bit kernels */ 420 421 #define HI_COMMPAGE (intptr_t)0xffff0f00u 422 423 static bool init_guest_commpage(void) 424 { 425 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 426 void *want = g2h_untagged(commpage); 427 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 428 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 429 430 if (addr == MAP_FAILED) { 431 perror("Allocating guest commpage"); 432 exit(EXIT_FAILURE); 433 } 434 if (addr != want) { 435 return false; 436 } 437 438 /* Set kernel helper versions; rest of page is 0. */ 439 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 440 441 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 442 perror("Protecting guest commpage"); 443 exit(EXIT_FAILURE); 444 } 445 446 page_set_flags(commpage, commpage + qemu_host_page_size, 447 PAGE_READ | PAGE_EXEC | PAGE_VALID); 448 return true; 449 } 450 451 #define ELF_HWCAP get_elf_hwcap() 452 #define ELF_HWCAP2 get_elf_hwcap2() 453 454 static uint32_t get_elf_hwcap(void) 455 { 456 ARMCPU *cpu = ARM_CPU(thread_cpu); 457 uint32_t hwcaps = 0; 458 459 hwcaps |= ARM_HWCAP_ARM_SWP; 460 hwcaps |= ARM_HWCAP_ARM_HALF; 461 hwcaps |= ARM_HWCAP_ARM_THUMB; 462 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 463 464 /* probe for the extra features */ 465 #define GET_FEATURE(feat, hwcap) \ 466 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 467 468 #define GET_FEATURE_ID(feat, hwcap) \ 469 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 470 471 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 472 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 473 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 474 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 475 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 476 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 477 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 478 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 479 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 480 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 481 482 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 483 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 484 hwcaps |= ARM_HWCAP_ARM_VFPv3; 485 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 486 hwcaps |= ARM_HWCAP_ARM_VFPD32; 487 } else { 488 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 489 } 490 } 491 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 492 493 return hwcaps; 494 } 495 496 static uint32_t get_elf_hwcap2(void) 497 { 498 ARMCPU *cpu = ARM_CPU(thread_cpu); 499 uint32_t hwcaps = 0; 500 501 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 502 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 503 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 504 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 505 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 506 return hwcaps; 507 } 508 509 #undef GET_FEATURE 510 #undef GET_FEATURE_ID 511 512 #define ELF_PLATFORM get_elf_platform() 513 514 static const char *get_elf_platform(void) 515 { 516 CPUARMState *env = thread_cpu->env_ptr; 517 518 #if TARGET_BIG_ENDIAN 519 # define END "b" 520 #else 521 # define END "l" 522 #endif 523 524 if (arm_feature(env, ARM_FEATURE_V8)) { 525 return "v8" END; 526 } else if (arm_feature(env, ARM_FEATURE_V7)) { 527 if (arm_feature(env, ARM_FEATURE_M)) { 528 return "v7m" END; 529 } else { 530 return "v7" END; 531 } 532 } else if (arm_feature(env, ARM_FEATURE_V6)) { 533 return "v6" END; 534 } else if (arm_feature(env, ARM_FEATURE_V5)) { 535 return "v5" END; 536 } else { 537 return "v4" END; 538 } 539 540 #undef END 541 } 542 543 #else 544 /* 64 bit ARM definitions */ 545 #define ELF_START_MMAP 0x80000000 546 547 #define ELF_ARCH EM_AARCH64 548 #define ELF_CLASS ELFCLASS64 549 #if TARGET_BIG_ENDIAN 550 # define ELF_PLATFORM "aarch64_be" 551 #else 552 # define ELF_PLATFORM "aarch64" 553 #endif 554 555 static inline void init_thread(struct target_pt_regs *regs, 556 struct image_info *infop) 557 { 558 abi_long stack = infop->start_stack; 559 memset(regs, 0, sizeof(*regs)); 560 561 regs->pc = infop->entry & ~0x3ULL; 562 regs->sp = stack; 563 } 564 565 #define ELF_NREG 34 566 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 567 568 static void elf_core_copy_regs(target_elf_gregset_t *regs, 569 const CPUARMState *env) 570 { 571 int i; 572 573 for (i = 0; i < 32; i++) { 574 (*regs)[i] = tswapreg(env->xregs[i]); 575 } 576 (*regs)[32] = tswapreg(env->pc); 577 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 578 } 579 580 #define USE_ELF_CORE_DUMP 581 #define ELF_EXEC_PAGESIZE 4096 582 583 enum { 584 ARM_HWCAP_A64_FP = 1 << 0, 585 ARM_HWCAP_A64_ASIMD = 1 << 1, 586 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 587 ARM_HWCAP_A64_AES = 1 << 3, 588 ARM_HWCAP_A64_PMULL = 1 << 4, 589 ARM_HWCAP_A64_SHA1 = 1 << 5, 590 ARM_HWCAP_A64_SHA2 = 1 << 6, 591 ARM_HWCAP_A64_CRC32 = 1 << 7, 592 ARM_HWCAP_A64_ATOMICS = 1 << 8, 593 ARM_HWCAP_A64_FPHP = 1 << 9, 594 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 595 ARM_HWCAP_A64_CPUID = 1 << 11, 596 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 597 ARM_HWCAP_A64_JSCVT = 1 << 13, 598 ARM_HWCAP_A64_FCMA = 1 << 14, 599 ARM_HWCAP_A64_LRCPC = 1 << 15, 600 ARM_HWCAP_A64_DCPOP = 1 << 16, 601 ARM_HWCAP_A64_SHA3 = 1 << 17, 602 ARM_HWCAP_A64_SM3 = 1 << 18, 603 ARM_HWCAP_A64_SM4 = 1 << 19, 604 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 605 ARM_HWCAP_A64_SHA512 = 1 << 21, 606 ARM_HWCAP_A64_SVE = 1 << 22, 607 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 608 ARM_HWCAP_A64_DIT = 1 << 24, 609 ARM_HWCAP_A64_USCAT = 1 << 25, 610 ARM_HWCAP_A64_ILRCPC = 1 << 26, 611 ARM_HWCAP_A64_FLAGM = 1 << 27, 612 ARM_HWCAP_A64_SSBS = 1 << 28, 613 ARM_HWCAP_A64_SB = 1 << 29, 614 ARM_HWCAP_A64_PACA = 1 << 30, 615 ARM_HWCAP_A64_PACG = 1UL << 31, 616 617 ARM_HWCAP2_A64_DCPODP = 1 << 0, 618 ARM_HWCAP2_A64_SVE2 = 1 << 1, 619 ARM_HWCAP2_A64_SVEAES = 1 << 2, 620 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 621 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 622 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 623 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 624 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 625 ARM_HWCAP2_A64_FRINT = 1 << 8, 626 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 627 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 628 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 629 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 630 ARM_HWCAP2_A64_I8MM = 1 << 13, 631 ARM_HWCAP2_A64_BF16 = 1 << 14, 632 ARM_HWCAP2_A64_DGH = 1 << 15, 633 ARM_HWCAP2_A64_RNG = 1 << 16, 634 ARM_HWCAP2_A64_BTI = 1 << 17, 635 ARM_HWCAP2_A64_MTE = 1 << 18, 636 ARM_HWCAP2_A64_ECV = 1 << 19, 637 ARM_HWCAP2_A64_AFP = 1 << 20, 638 ARM_HWCAP2_A64_RPRES = 1 << 21, 639 ARM_HWCAP2_A64_MTE3 = 1 << 22, 640 ARM_HWCAP2_A64_SME = 1 << 23, 641 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 642 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 643 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 644 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 645 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 646 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 647 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 648 }; 649 650 #define ELF_HWCAP get_elf_hwcap() 651 #define ELF_HWCAP2 get_elf_hwcap2() 652 653 #define GET_FEATURE_ID(feat, hwcap) \ 654 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 655 656 static uint32_t get_elf_hwcap(void) 657 { 658 ARMCPU *cpu = ARM_CPU(thread_cpu); 659 uint32_t hwcaps = 0; 660 661 hwcaps |= ARM_HWCAP_A64_FP; 662 hwcaps |= ARM_HWCAP_A64_ASIMD; 663 hwcaps |= ARM_HWCAP_A64_CPUID; 664 665 /* probe for the extra features */ 666 667 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 668 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 669 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 670 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 671 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 672 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 673 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 674 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 675 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 676 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 677 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 678 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 679 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 680 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 681 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 682 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 683 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 684 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 685 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 686 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 687 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 688 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 689 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 690 691 return hwcaps; 692 } 693 694 static uint32_t get_elf_hwcap2(void) 695 { 696 ARMCPU *cpu = ARM_CPU(thread_cpu); 697 uint32_t hwcaps = 0; 698 699 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 700 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 701 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 702 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 703 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 704 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 705 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 706 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 707 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 708 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 709 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 710 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 711 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 712 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 713 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 714 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 715 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 716 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 717 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 718 ARM_HWCAP2_A64_SME_F32F32 | 719 ARM_HWCAP2_A64_SME_B16F32 | 720 ARM_HWCAP2_A64_SME_F16F32 | 721 ARM_HWCAP2_A64_SME_I8I32)); 722 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 723 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 724 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 725 726 return hwcaps; 727 } 728 729 #undef GET_FEATURE_ID 730 731 #endif /* not TARGET_AARCH64 */ 732 #endif /* TARGET_ARM */ 733 734 #ifdef TARGET_SPARC 735 #ifdef TARGET_SPARC64 736 737 #define ELF_START_MMAP 0x80000000 738 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 739 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 740 #ifndef TARGET_ABI32 741 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 742 #else 743 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 744 #endif 745 746 #define ELF_CLASS ELFCLASS64 747 #define ELF_ARCH EM_SPARCV9 748 #else 749 #define ELF_START_MMAP 0x80000000 750 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 751 | HWCAP_SPARC_MULDIV) 752 #define ELF_CLASS ELFCLASS32 753 #define ELF_ARCH EM_SPARC 754 #endif /* TARGET_SPARC64 */ 755 756 static inline void init_thread(struct target_pt_regs *regs, 757 struct image_info *infop) 758 { 759 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 760 regs->pc = infop->entry; 761 regs->npc = regs->pc + 4; 762 regs->y = 0; 763 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 764 - TARGET_STACK_BIAS); 765 } 766 #endif /* TARGET_SPARC */ 767 768 #ifdef TARGET_PPC 769 770 #define ELF_MACHINE PPC_ELF_MACHINE 771 #define ELF_START_MMAP 0x80000000 772 773 #if defined(TARGET_PPC64) 774 775 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 776 777 #define ELF_CLASS ELFCLASS64 778 779 #else 780 781 #define ELF_CLASS ELFCLASS32 782 #define EXSTACK_DEFAULT true 783 784 #endif 785 786 #define ELF_ARCH EM_PPC 787 788 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 789 See arch/powerpc/include/asm/cputable.h. */ 790 enum { 791 QEMU_PPC_FEATURE_32 = 0x80000000, 792 QEMU_PPC_FEATURE_64 = 0x40000000, 793 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 794 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 795 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 796 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 797 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 798 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 799 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 800 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 801 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 802 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 803 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 804 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 805 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 806 QEMU_PPC_FEATURE_CELL = 0x00010000, 807 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 808 QEMU_PPC_FEATURE_SMT = 0x00004000, 809 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 810 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 811 QEMU_PPC_FEATURE_PA6T = 0x00000800, 812 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 813 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 814 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 815 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 816 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 817 818 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 819 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 820 821 /* Feature definitions in AT_HWCAP2. */ 822 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 823 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 824 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 825 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 826 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 827 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 828 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 829 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 830 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 831 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 832 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 833 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 834 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 835 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 836 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 837 }; 838 839 #define ELF_HWCAP get_elf_hwcap() 840 841 static uint32_t get_elf_hwcap(void) 842 { 843 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 844 uint32_t features = 0; 845 846 /* We don't have to be terribly complete here; the high points are 847 Altivec/FP/SPE support. Anything else is just a bonus. */ 848 #define GET_FEATURE(flag, feature) \ 849 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 850 #define GET_FEATURE2(flags, feature) \ 851 do { \ 852 if ((cpu->env.insns_flags2 & flags) == flags) { \ 853 features |= feature; \ 854 } \ 855 } while (0) 856 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 857 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 858 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 859 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 860 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 861 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 862 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 863 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 864 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 865 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 866 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 867 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 868 QEMU_PPC_FEATURE_ARCH_2_06); 869 #undef GET_FEATURE 870 #undef GET_FEATURE2 871 872 return features; 873 } 874 875 #define ELF_HWCAP2 get_elf_hwcap2() 876 877 static uint32_t get_elf_hwcap2(void) 878 { 879 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 880 uint32_t features = 0; 881 882 #define GET_FEATURE(flag, feature) \ 883 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 884 #define GET_FEATURE2(flag, feature) \ 885 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 886 887 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 888 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 889 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 890 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 891 QEMU_PPC_FEATURE2_VEC_CRYPTO); 892 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 893 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 894 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 895 QEMU_PPC_FEATURE2_MMA); 896 897 #undef GET_FEATURE 898 #undef GET_FEATURE2 899 900 return features; 901 } 902 903 /* 904 * The requirements here are: 905 * - keep the final alignment of sp (sp & 0xf) 906 * - make sure the 32-bit value at the first 16 byte aligned position of 907 * AUXV is greater than 16 for glibc compatibility. 908 * AT_IGNOREPPC is used for that. 909 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 910 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 911 */ 912 #define DLINFO_ARCH_ITEMS 5 913 #define ARCH_DLINFO \ 914 do { \ 915 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 916 /* \ 917 * Handle glibc compatibility: these magic entries must \ 918 * be at the lowest addresses in the final auxv. \ 919 */ \ 920 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 921 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 922 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 923 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 924 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 925 } while (0) 926 927 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 928 { 929 _regs->gpr[1] = infop->start_stack; 930 #if defined(TARGET_PPC64) 931 if (get_ppc64_abi(infop) < 2) { 932 uint64_t val; 933 get_user_u64(val, infop->entry + 8); 934 _regs->gpr[2] = val + infop->load_bias; 935 get_user_u64(val, infop->entry); 936 infop->entry = val + infop->load_bias; 937 } else { 938 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 939 } 940 #endif 941 _regs->nip = infop->entry; 942 } 943 944 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 945 #define ELF_NREG 48 946 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 947 948 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 949 { 950 int i; 951 target_ulong ccr = 0; 952 953 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 954 (*regs)[i] = tswapreg(env->gpr[i]); 955 } 956 957 (*regs)[32] = tswapreg(env->nip); 958 (*regs)[33] = tswapreg(env->msr); 959 (*regs)[35] = tswapreg(env->ctr); 960 (*regs)[36] = tswapreg(env->lr); 961 (*regs)[37] = tswapreg(cpu_read_xer(env)); 962 963 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 964 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 965 } 966 (*regs)[38] = tswapreg(ccr); 967 } 968 969 #define USE_ELF_CORE_DUMP 970 #define ELF_EXEC_PAGESIZE 4096 971 972 #endif 973 974 #ifdef TARGET_LOONGARCH64 975 976 #define ELF_START_MMAP 0x80000000 977 978 #define ELF_CLASS ELFCLASS64 979 #define ELF_ARCH EM_LOONGARCH 980 #define EXSTACK_DEFAULT true 981 982 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 983 984 static inline void init_thread(struct target_pt_regs *regs, 985 struct image_info *infop) 986 { 987 /*Set crmd PG,DA = 1,0 */ 988 regs->csr.crmd = 2 << 3; 989 regs->csr.era = infop->entry; 990 regs->regs[3] = infop->start_stack; 991 } 992 993 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 994 #define ELF_NREG 45 995 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 996 997 enum { 998 TARGET_EF_R0 = 0, 999 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 1000 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1001 }; 1002 1003 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1004 const CPULoongArchState *env) 1005 { 1006 int i; 1007 1008 (*regs)[TARGET_EF_R0] = 0; 1009 1010 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1011 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1012 } 1013 1014 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1015 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1016 } 1017 1018 #define USE_ELF_CORE_DUMP 1019 #define ELF_EXEC_PAGESIZE 4096 1020 1021 #define ELF_HWCAP get_elf_hwcap() 1022 1023 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1024 enum { 1025 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1026 HWCAP_LOONGARCH_LAM = (1 << 1), 1027 HWCAP_LOONGARCH_UAL = (1 << 2), 1028 HWCAP_LOONGARCH_FPU = (1 << 3), 1029 HWCAP_LOONGARCH_LSX = (1 << 4), 1030 HWCAP_LOONGARCH_LASX = (1 << 5), 1031 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1032 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1033 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1034 HWCAP_LOONGARCH_LVZ = (1 << 9), 1035 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1036 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1037 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1038 }; 1039 1040 static uint32_t get_elf_hwcap(void) 1041 { 1042 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1043 uint32_t hwcaps = 0; 1044 1045 hwcaps |= HWCAP_LOONGARCH_CRC32; 1046 1047 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1048 hwcaps |= HWCAP_LOONGARCH_UAL; 1049 } 1050 1051 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1052 hwcaps |= HWCAP_LOONGARCH_FPU; 1053 } 1054 1055 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1056 hwcaps |= HWCAP_LOONGARCH_LAM; 1057 } 1058 1059 return hwcaps; 1060 } 1061 1062 #define ELF_PLATFORM "loongarch" 1063 1064 #endif /* TARGET_LOONGARCH64 */ 1065 1066 #ifdef TARGET_MIPS 1067 1068 #define ELF_START_MMAP 0x80000000 1069 1070 #ifdef TARGET_MIPS64 1071 #define ELF_CLASS ELFCLASS64 1072 #else 1073 #define ELF_CLASS ELFCLASS32 1074 #endif 1075 #define ELF_ARCH EM_MIPS 1076 #define EXSTACK_DEFAULT true 1077 1078 #ifdef TARGET_ABI_MIPSN32 1079 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1080 #else 1081 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1082 #endif 1083 1084 #define ELF_BASE_PLATFORM get_elf_base_platform() 1085 1086 #define MATCH_PLATFORM_INSN(_flags, _base_platform) \ 1087 do { if ((cpu->env.insn_flags & (_flags)) == _flags) \ 1088 { return _base_platform; } } while (0) 1089 1090 static const char *get_elf_base_platform(void) 1091 { 1092 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1093 1094 /* 64 bit ISAs goes first */ 1095 MATCH_PLATFORM_INSN(CPU_MIPS64R6, "mips64r6"); 1096 MATCH_PLATFORM_INSN(CPU_MIPS64R5, "mips64r5"); 1097 MATCH_PLATFORM_INSN(CPU_MIPS64R2, "mips64r2"); 1098 MATCH_PLATFORM_INSN(CPU_MIPS64R1, "mips64"); 1099 MATCH_PLATFORM_INSN(CPU_MIPS5, "mips5"); 1100 MATCH_PLATFORM_INSN(CPU_MIPS4, "mips4"); 1101 MATCH_PLATFORM_INSN(CPU_MIPS3, "mips3"); 1102 1103 /* 32 bit ISAs */ 1104 MATCH_PLATFORM_INSN(CPU_MIPS32R6, "mips32r6"); 1105 MATCH_PLATFORM_INSN(CPU_MIPS32R5, "mips32r5"); 1106 MATCH_PLATFORM_INSN(CPU_MIPS32R2, "mips32r2"); 1107 MATCH_PLATFORM_INSN(CPU_MIPS32R1, "mips32"); 1108 MATCH_PLATFORM_INSN(CPU_MIPS2, "mips2"); 1109 1110 /* Fallback */ 1111 return "mips"; 1112 } 1113 #undef MATCH_PLATFORM_INSN 1114 1115 static inline void init_thread(struct target_pt_regs *regs, 1116 struct image_info *infop) 1117 { 1118 regs->cp0_status = 2 << CP0St_KSU; 1119 regs->cp0_epc = infop->entry; 1120 regs->regs[29] = infop->start_stack; 1121 } 1122 1123 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1124 #define ELF_NREG 45 1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1126 1127 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1128 enum { 1129 #ifdef TARGET_MIPS64 1130 TARGET_EF_R0 = 0, 1131 #else 1132 TARGET_EF_R0 = 6, 1133 #endif 1134 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1135 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1136 TARGET_EF_LO = TARGET_EF_R0 + 32, 1137 TARGET_EF_HI = TARGET_EF_R0 + 33, 1138 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1139 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1140 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1141 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1142 }; 1143 1144 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1145 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1146 { 1147 int i; 1148 1149 for (i = 0; i < TARGET_EF_R0; i++) { 1150 (*regs)[i] = 0; 1151 } 1152 (*regs)[TARGET_EF_R0] = 0; 1153 1154 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1155 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1156 } 1157 1158 (*regs)[TARGET_EF_R26] = 0; 1159 (*regs)[TARGET_EF_R27] = 0; 1160 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1161 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1162 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1163 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1164 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1165 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1166 } 1167 1168 #define USE_ELF_CORE_DUMP 1169 #define ELF_EXEC_PAGESIZE 4096 1170 1171 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1172 enum { 1173 HWCAP_MIPS_R6 = (1 << 0), 1174 HWCAP_MIPS_MSA = (1 << 1), 1175 HWCAP_MIPS_CRC32 = (1 << 2), 1176 HWCAP_MIPS_MIPS16 = (1 << 3), 1177 HWCAP_MIPS_MDMX = (1 << 4), 1178 HWCAP_MIPS_MIPS3D = (1 << 5), 1179 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1180 HWCAP_MIPS_DSP = (1 << 7), 1181 HWCAP_MIPS_DSP2 = (1 << 8), 1182 HWCAP_MIPS_DSP3 = (1 << 9), 1183 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1184 HWCAP_LOONGSON_MMI = (1 << 11), 1185 HWCAP_LOONGSON_EXT = (1 << 12), 1186 HWCAP_LOONGSON_EXT2 = (1 << 13), 1187 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1188 }; 1189 1190 #define ELF_HWCAP get_elf_hwcap() 1191 1192 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1193 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1194 1195 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1196 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1197 1198 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1199 do { \ 1200 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1201 hwcaps |= _hwcap; \ 1202 } \ 1203 } while (0) 1204 1205 static uint32_t get_elf_hwcap(void) 1206 { 1207 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1208 uint32_t hwcaps = 0; 1209 1210 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1211 2, HWCAP_MIPS_R6); 1212 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1213 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1214 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1215 1216 return hwcaps; 1217 } 1218 1219 #undef GET_FEATURE_REG_EQU 1220 #undef GET_FEATURE_REG_SET 1221 #undef GET_FEATURE_INSN 1222 1223 #endif /* TARGET_MIPS */ 1224 1225 #ifdef TARGET_MICROBLAZE 1226 1227 #define ELF_START_MMAP 0x80000000 1228 1229 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1230 1231 #define ELF_CLASS ELFCLASS32 1232 #define ELF_ARCH EM_MICROBLAZE 1233 1234 static inline void init_thread(struct target_pt_regs *regs, 1235 struct image_info *infop) 1236 { 1237 regs->pc = infop->entry; 1238 regs->r1 = infop->start_stack; 1239 1240 } 1241 1242 #define ELF_EXEC_PAGESIZE 4096 1243 1244 #define USE_ELF_CORE_DUMP 1245 #define ELF_NREG 38 1246 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1247 1248 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1249 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1250 { 1251 int i, pos = 0; 1252 1253 for (i = 0; i < 32; i++) { 1254 (*regs)[pos++] = tswapreg(env->regs[i]); 1255 } 1256 1257 (*regs)[pos++] = tswapreg(env->pc); 1258 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1259 (*regs)[pos++] = 0; 1260 (*regs)[pos++] = tswapreg(env->ear); 1261 (*regs)[pos++] = 0; 1262 (*regs)[pos++] = tswapreg(env->esr); 1263 } 1264 1265 #endif /* TARGET_MICROBLAZE */ 1266 1267 #ifdef TARGET_NIOS2 1268 1269 #define ELF_START_MMAP 0x80000000 1270 1271 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1272 1273 #define ELF_CLASS ELFCLASS32 1274 #define ELF_ARCH EM_ALTERA_NIOS2 1275 1276 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1277 { 1278 regs->ea = infop->entry; 1279 regs->sp = infop->start_stack; 1280 } 1281 1282 #define LO_COMMPAGE TARGET_PAGE_SIZE 1283 1284 static bool init_guest_commpage(void) 1285 { 1286 static const uint8_t kuser_page[4 + 2 * 64] = { 1287 /* __kuser_helper_version */ 1288 [0x00] = 0x02, 0x00, 0x00, 0x00, 1289 1290 /* __kuser_cmpxchg */ 1291 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1292 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1293 1294 /* __kuser_sigtramp */ 1295 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1296 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1297 }; 1298 1299 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1300 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1301 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1302 1303 if (addr == MAP_FAILED) { 1304 perror("Allocating guest commpage"); 1305 exit(EXIT_FAILURE); 1306 } 1307 if (addr != want) { 1308 return false; 1309 } 1310 1311 memcpy(addr, kuser_page, sizeof(kuser_page)); 1312 1313 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1314 perror("Protecting guest commpage"); 1315 exit(EXIT_FAILURE); 1316 } 1317 1318 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1319 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1320 return true; 1321 } 1322 1323 #define ELF_EXEC_PAGESIZE 4096 1324 1325 #define USE_ELF_CORE_DUMP 1326 #define ELF_NREG 49 1327 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1328 1329 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1330 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1331 const CPUNios2State *env) 1332 { 1333 int i; 1334 1335 (*regs)[0] = -1; 1336 for (i = 1; i < 8; i++) /* r0-r7 */ 1337 (*regs)[i] = tswapreg(env->regs[i + 7]); 1338 1339 for (i = 8; i < 16; i++) /* r8-r15 */ 1340 (*regs)[i] = tswapreg(env->regs[i - 8]); 1341 1342 for (i = 16; i < 24; i++) /* r16-r23 */ 1343 (*regs)[i] = tswapreg(env->regs[i + 7]); 1344 (*regs)[24] = -1; /* R_ET */ 1345 (*regs)[25] = -1; /* R_BT */ 1346 (*regs)[26] = tswapreg(env->regs[R_GP]); 1347 (*regs)[27] = tswapreg(env->regs[R_SP]); 1348 (*regs)[28] = tswapreg(env->regs[R_FP]); 1349 (*regs)[29] = tswapreg(env->regs[R_EA]); 1350 (*regs)[30] = -1; /* R_SSTATUS */ 1351 (*regs)[31] = tswapreg(env->regs[R_RA]); 1352 1353 (*regs)[32] = tswapreg(env->pc); 1354 1355 (*regs)[33] = -1; /* R_STATUS */ 1356 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1357 1358 for (i = 35; i < 49; i++) /* ... */ 1359 (*regs)[i] = -1; 1360 } 1361 1362 #endif /* TARGET_NIOS2 */ 1363 1364 #ifdef TARGET_OPENRISC 1365 1366 #define ELF_START_MMAP 0x08000000 1367 1368 #define ELF_ARCH EM_OPENRISC 1369 #define ELF_CLASS ELFCLASS32 1370 #define ELF_DATA ELFDATA2MSB 1371 1372 static inline void init_thread(struct target_pt_regs *regs, 1373 struct image_info *infop) 1374 { 1375 regs->pc = infop->entry; 1376 regs->gpr[1] = infop->start_stack; 1377 } 1378 1379 #define USE_ELF_CORE_DUMP 1380 #define ELF_EXEC_PAGESIZE 8192 1381 1382 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1383 #define ELF_NREG 34 /* gprs and pc, sr */ 1384 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1385 1386 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1387 const CPUOpenRISCState *env) 1388 { 1389 int i; 1390 1391 for (i = 0; i < 32; i++) { 1392 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1393 } 1394 (*regs)[32] = tswapreg(env->pc); 1395 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1396 } 1397 #define ELF_HWCAP 0 1398 #define ELF_PLATFORM NULL 1399 1400 #endif /* TARGET_OPENRISC */ 1401 1402 #ifdef TARGET_SH4 1403 1404 #define ELF_START_MMAP 0x80000000 1405 1406 #define ELF_CLASS ELFCLASS32 1407 #define ELF_ARCH EM_SH 1408 1409 static inline void init_thread(struct target_pt_regs *regs, 1410 struct image_info *infop) 1411 { 1412 /* Check other registers XXXXX */ 1413 regs->pc = infop->entry; 1414 regs->regs[15] = infop->start_stack; 1415 } 1416 1417 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1418 #define ELF_NREG 23 1419 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1420 1421 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1422 enum { 1423 TARGET_REG_PC = 16, 1424 TARGET_REG_PR = 17, 1425 TARGET_REG_SR = 18, 1426 TARGET_REG_GBR = 19, 1427 TARGET_REG_MACH = 20, 1428 TARGET_REG_MACL = 21, 1429 TARGET_REG_SYSCALL = 22 1430 }; 1431 1432 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1433 const CPUSH4State *env) 1434 { 1435 int i; 1436 1437 for (i = 0; i < 16; i++) { 1438 (*regs)[i] = tswapreg(env->gregs[i]); 1439 } 1440 1441 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1442 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1443 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1444 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1445 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1446 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1447 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1448 } 1449 1450 #define USE_ELF_CORE_DUMP 1451 #define ELF_EXEC_PAGESIZE 4096 1452 1453 enum { 1454 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1455 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1456 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1457 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1458 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1459 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1460 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1461 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1462 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1463 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1464 }; 1465 1466 #define ELF_HWCAP get_elf_hwcap() 1467 1468 static uint32_t get_elf_hwcap(void) 1469 { 1470 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1471 uint32_t hwcap = 0; 1472 1473 hwcap |= SH_CPU_HAS_FPU; 1474 1475 if (cpu->env.features & SH_FEATURE_SH4A) { 1476 hwcap |= SH_CPU_HAS_LLSC; 1477 } 1478 1479 return hwcap; 1480 } 1481 1482 #endif 1483 1484 #ifdef TARGET_CRIS 1485 1486 #define ELF_START_MMAP 0x80000000 1487 1488 #define ELF_CLASS ELFCLASS32 1489 #define ELF_ARCH EM_CRIS 1490 1491 static inline void init_thread(struct target_pt_regs *regs, 1492 struct image_info *infop) 1493 { 1494 regs->erp = infop->entry; 1495 } 1496 1497 #define ELF_EXEC_PAGESIZE 8192 1498 1499 #endif 1500 1501 #ifdef TARGET_M68K 1502 1503 #define ELF_START_MMAP 0x80000000 1504 1505 #define ELF_CLASS ELFCLASS32 1506 #define ELF_ARCH EM_68K 1507 1508 /* ??? Does this need to do anything? 1509 #define ELF_PLAT_INIT(_r) */ 1510 1511 static inline void init_thread(struct target_pt_regs *regs, 1512 struct image_info *infop) 1513 { 1514 regs->usp = infop->start_stack; 1515 regs->sr = 0; 1516 regs->pc = infop->entry; 1517 } 1518 1519 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1520 #define ELF_NREG 20 1521 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1522 1523 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1524 { 1525 (*regs)[0] = tswapreg(env->dregs[1]); 1526 (*regs)[1] = tswapreg(env->dregs[2]); 1527 (*regs)[2] = tswapreg(env->dregs[3]); 1528 (*regs)[3] = tswapreg(env->dregs[4]); 1529 (*regs)[4] = tswapreg(env->dregs[5]); 1530 (*regs)[5] = tswapreg(env->dregs[6]); 1531 (*regs)[6] = tswapreg(env->dregs[7]); 1532 (*regs)[7] = tswapreg(env->aregs[0]); 1533 (*regs)[8] = tswapreg(env->aregs[1]); 1534 (*regs)[9] = tswapreg(env->aregs[2]); 1535 (*regs)[10] = tswapreg(env->aregs[3]); 1536 (*regs)[11] = tswapreg(env->aregs[4]); 1537 (*regs)[12] = tswapreg(env->aregs[5]); 1538 (*regs)[13] = tswapreg(env->aregs[6]); 1539 (*regs)[14] = tswapreg(env->dregs[0]); 1540 (*regs)[15] = tswapreg(env->aregs[7]); 1541 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1542 (*regs)[17] = tswapreg(env->sr); 1543 (*regs)[18] = tswapreg(env->pc); 1544 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1545 } 1546 1547 #define USE_ELF_CORE_DUMP 1548 #define ELF_EXEC_PAGESIZE 8192 1549 1550 #endif 1551 1552 #ifdef TARGET_ALPHA 1553 1554 #define ELF_START_MMAP (0x30000000000ULL) 1555 1556 #define ELF_CLASS ELFCLASS64 1557 #define ELF_ARCH EM_ALPHA 1558 1559 static inline void init_thread(struct target_pt_regs *regs, 1560 struct image_info *infop) 1561 { 1562 regs->pc = infop->entry; 1563 regs->ps = 8; 1564 regs->usp = infop->start_stack; 1565 } 1566 1567 #define ELF_EXEC_PAGESIZE 8192 1568 1569 #endif /* TARGET_ALPHA */ 1570 1571 #ifdef TARGET_S390X 1572 1573 #define ELF_START_MMAP (0x20000000000ULL) 1574 1575 #define ELF_CLASS ELFCLASS64 1576 #define ELF_DATA ELFDATA2MSB 1577 #define ELF_ARCH EM_S390 1578 1579 #include "elf.h" 1580 1581 #define ELF_HWCAP get_elf_hwcap() 1582 1583 #define GET_FEATURE(_feat, _hwcap) \ 1584 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1585 1586 static uint32_t get_elf_hwcap(void) 1587 { 1588 /* 1589 * Let's assume we always have esan3 and zarch. 1590 * 31-bit processes can use 64-bit registers (high gprs). 1591 */ 1592 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1593 1594 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1595 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1596 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1597 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1598 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1599 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1600 hwcap |= HWCAP_S390_ETF3EH; 1601 } 1602 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1603 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1604 1605 return hwcap; 1606 } 1607 1608 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1609 { 1610 regs->psw.addr = infop->entry; 1611 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1612 regs->gprs[15] = infop->start_stack; 1613 } 1614 1615 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1616 #define ELF_NREG 27 1617 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1618 1619 enum { 1620 TARGET_REG_PSWM = 0, 1621 TARGET_REG_PSWA = 1, 1622 TARGET_REG_GPRS = 2, 1623 TARGET_REG_ARS = 18, 1624 TARGET_REG_ORIG_R2 = 26, 1625 }; 1626 1627 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1628 const CPUS390XState *env) 1629 { 1630 int i; 1631 uint32_t *aregs; 1632 1633 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1634 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1635 for (i = 0; i < 16; i++) { 1636 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1637 } 1638 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1639 for (i = 0; i < 16; i++) { 1640 aregs[i] = tswap32(env->aregs[i]); 1641 } 1642 (*regs)[TARGET_REG_ORIG_R2] = 0; 1643 } 1644 1645 #define USE_ELF_CORE_DUMP 1646 #define ELF_EXEC_PAGESIZE 4096 1647 1648 #endif /* TARGET_S390X */ 1649 1650 #ifdef TARGET_RISCV 1651 1652 #define ELF_START_MMAP 0x80000000 1653 #define ELF_ARCH EM_RISCV 1654 1655 #ifdef TARGET_RISCV32 1656 #define ELF_CLASS ELFCLASS32 1657 #else 1658 #define ELF_CLASS ELFCLASS64 1659 #endif 1660 1661 #define ELF_HWCAP get_elf_hwcap() 1662 1663 static uint32_t get_elf_hwcap(void) 1664 { 1665 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1666 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1667 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1668 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1669 1670 return cpu->env.misa_ext & mask; 1671 #undef MISA_BIT 1672 } 1673 1674 static inline void init_thread(struct target_pt_regs *regs, 1675 struct image_info *infop) 1676 { 1677 regs->sepc = infop->entry; 1678 regs->sp = infop->start_stack; 1679 } 1680 1681 #define ELF_EXEC_PAGESIZE 4096 1682 1683 #endif /* TARGET_RISCV */ 1684 1685 #ifdef TARGET_HPPA 1686 1687 #define ELF_START_MMAP 0x80000000 1688 #define ELF_CLASS ELFCLASS32 1689 #define ELF_ARCH EM_PARISC 1690 #define ELF_PLATFORM "PARISC" 1691 #define STACK_GROWS_DOWN 0 1692 #define STACK_ALIGNMENT 64 1693 1694 static inline void init_thread(struct target_pt_regs *regs, 1695 struct image_info *infop) 1696 { 1697 regs->iaoq[0] = infop->entry; 1698 regs->iaoq[1] = infop->entry + 4; 1699 regs->gr[23] = 0; 1700 regs->gr[24] = infop->argv; 1701 regs->gr[25] = infop->argc; 1702 /* The top-of-stack contains a linkage buffer. */ 1703 regs->gr[30] = infop->start_stack + 64; 1704 regs->gr[31] = infop->entry; 1705 } 1706 1707 #define LO_COMMPAGE 0 1708 1709 static bool init_guest_commpage(void) 1710 { 1711 void *want = g2h_untagged(LO_COMMPAGE); 1712 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1713 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1714 1715 if (addr == MAP_FAILED) { 1716 perror("Allocating guest commpage"); 1717 exit(EXIT_FAILURE); 1718 } 1719 if (addr != want) { 1720 return false; 1721 } 1722 1723 /* 1724 * On Linux, page zero is normally marked execute only + gateway. 1725 * Normal read or write is supposed to fail (thus PROT_NONE above), 1726 * but specific offsets have kernel code mapped to raise permissions 1727 * and implement syscalls. Here, simply mark the page executable. 1728 * Special case the entry points during translation (see do_page_zero). 1729 */ 1730 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1731 PAGE_EXEC | PAGE_VALID); 1732 return true; 1733 } 1734 1735 #endif /* TARGET_HPPA */ 1736 1737 #ifdef TARGET_XTENSA 1738 1739 #define ELF_START_MMAP 0x20000000 1740 1741 #define ELF_CLASS ELFCLASS32 1742 #define ELF_ARCH EM_XTENSA 1743 1744 static inline void init_thread(struct target_pt_regs *regs, 1745 struct image_info *infop) 1746 { 1747 regs->windowbase = 0; 1748 regs->windowstart = 1; 1749 regs->areg[1] = infop->start_stack; 1750 regs->pc = infop->entry; 1751 } 1752 1753 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1754 #define ELF_NREG 128 1755 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1756 1757 enum { 1758 TARGET_REG_PC, 1759 TARGET_REG_PS, 1760 TARGET_REG_LBEG, 1761 TARGET_REG_LEND, 1762 TARGET_REG_LCOUNT, 1763 TARGET_REG_SAR, 1764 TARGET_REG_WINDOWSTART, 1765 TARGET_REG_WINDOWBASE, 1766 TARGET_REG_THREADPTR, 1767 TARGET_REG_AR0 = 64, 1768 }; 1769 1770 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1771 const CPUXtensaState *env) 1772 { 1773 unsigned i; 1774 1775 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1776 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1777 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1778 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1779 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1780 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1781 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1782 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1783 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1784 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1785 for (i = 0; i < env->config->nareg; ++i) { 1786 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1787 } 1788 } 1789 1790 #define USE_ELF_CORE_DUMP 1791 #define ELF_EXEC_PAGESIZE 4096 1792 1793 #endif /* TARGET_XTENSA */ 1794 1795 #ifdef TARGET_HEXAGON 1796 1797 #define ELF_START_MMAP 0x20000000 1798 1799 #define ELF_CLASS ELFCLASS32 1800 #define ELF_ARCH EM_HEXAGON 1801 1802 static inline void init_thread(struct target_pt_regs *regs, 1803 struct image_info *infop) 1804 { 1805 regs->sepc = infop->entry; 1806 regs->sp = infop->start_stack; 1807 } 1808 1809 #endif /* TARGET_HEXAGON */ 1810 1811 #ifndef ELF_BASE_PLATFORM 1812 #define ELF_BASE_PLATFORM (NULL) 1813 #endif 1814 1815 #ifndef ELF_PLATFORM 1816 #define ELF_PLATFORM (NULL) 1817 #endif 1818 1819 #ifndef ELF_MACHINE 1820 #define ELF_MACHINE ELF_ARCH 1821 #endif 1822 1823 #ifndef elf_check_arch 1824 #define elf_check_arch(x) ((x) == ELF_ARCH) 1825 #endif 1826 1827 #ifndef elf_check_abi 1828 #define elf_check_abi(x) (1) 1829 #endif 1830 1831 #ifndef ELF_HWCAP 1832 #define ELF_HWCAP 0 1833 #endif 1834 1835 #ifndef STACK_GROWS_DOWN 1836 #define STACK_GROWS_DOWN 1 1837 #endif 1838 1839 #ifndef STACK_ALIGNMENT 1840 #define STACK_ALIGNMENT 16 1841 #endif 1842 1843 #ifdef TARGET_ABI32 1844 #undef ELF_CLASS 1845 #define ELF_CLASS ELFCLASS32 1846 #undef bswaptls 1847 #define bswaptls(ptr) bswap32s(ptr) 1848 #endif 1849 1850 #ifndef EXSTACK_DEFAULT 1851 #define EXSTACK_DEFAULT false 1852 #endif 1853 1854 #include "elf.h" 1855 1856 /* We must delay the following stanzas until after "elf.h". */ 1857 #if defined(TARGET_AARCH64) 1858 1859 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1860 const uint32_t *data, 1861 struct image_info *info, 1862 Error **errp) 1863 { 1864 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1865 if (pr_datasz != sizeof(uint32_t)) { 1866 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1867 return false; 1868 } 1869 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1870 info->note_flags = *data; 1871 } 1872 return true; 1873 } 1874 #define ARCH_USE_GNU_PROPERTY 1 1875 1876 #else 1877 1878 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1879 const uint32_t *data, 1880 struct image_info *info, 1881 Error **errp) 1882 { 1883 g_assert_not_reached(); 1884 } 1885 #define ARCH_USE_GNU_PROPERTY 0 1886 1887 #endif 1888 1889 struct exec 1890 { 1891 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1892 unsigned int a_text; /* length of text, in bytes */ 1893 unsigned int a_data; /* length of data, in bytes */ 1894 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1895 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1896 unsigned int a_entry; /* start address */ 1897 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1898 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1899 }; 1900 1901 1902 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1903 #define OMAGIC 0407 1904 #define NMAGIC 0410 1905 #define ZMAGIC 0413 1906 #define QMAGIC 0314 1907 1908 /* Necessary parameters */ 1909 #define TARGET_ELF_EXEC_PAGESIZE \ 1910 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1911 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1912 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1913 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1914 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1915 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1916 1917 #define DLINFO_ITEMS 16 1918 1919 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1920 { 1921 memcpy(to, from, n); 1922 } 1923 1924 #ifdef BSWAP_NEEDED 1925 static void bswap_ehdr(struct elfhdr *ehdr) 1926 { 1927 bswap16s(&ehdr->e_type); /* Object file type */ 1928 bswap16s(&ehdr->e_machine); /* Architecture */ 1929 bswap32s(&ehdr->e_version); /* Object file version */ 1930 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1931 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1932 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1933 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1934 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1935 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1936 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1937 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1938 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1939 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1940 } 1941 1942 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1943 { 1944 int i; 1945 for (i = 0; i < phnum; ++i, ++phdr) { 1946 bswap32s(&phdr->p_type); /* Segment type */ 1947 bswap32s(&phdr->p_flags); /* Segment flags */ 1948 bswaptls(&phdr->p_offset); /* Segment file offset */ 1949 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1950 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1951 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1952 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1953 bswaptls(&phdr->p_align); /* Segment alignment */ 1954 } 1955 } 1956 1957 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1958 { 1959 int i; 1960 for (i = 0; i < shnum; ++i, ++shdr) { 1961 bswap32s(&shdr->sh_name); 1962 bswap32s(&shdr->sh_type); 1963 bswaptls(&shdr->sh_flags); 1964 bswaptls(&shdr->sh_addr); 1965 bswaptls(&shdr->sh_offset); 1966 bswaptls(&shdr->sh_size); 1967 bswap32s(&shdr->sh_link); 1968 bswap32s(&shdr->sh_info); 1969 bswaptls(&shdr->sh_addralign); 1970 bswaptls(&shdr->sh_entsize); 1971 } 1972 } 1973 1974 static void bswap_sym(struct elf_sym *sym) 1975 { 1976 bswap32s(&sym->st_name); 1977 bswaptls(&sym->st_value); 1978 bswaptls(&sym->st_size); 1979 bswap16s(&sym->st_shndx); 1980 } 1981 1982 #ifdef TARGET_MIPS 1983 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1984 { 1985 bswap16s(&abiflags->version); 1986 bswap32s(&abiflags->ases); 1987 bswap32s(&abiflags->isa_ext); 1988 bswap32s(&abiflags->flags1); 1989 bswap32s(&abiflags->flags2); 1990 } 1991 #endif 1992 #else 1993 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1994 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1995 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1996 static inline void bswap_sym(struct elf_sym *sym) { } 1997 #ifdef TARGET_MIPS 1998 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1999 #endif 2000 #endif 2001 2002 #ifdef USE_ELF_CORE_DUMP 2003 static int elf_core_dump(int, const CPUArchState *); 2004 #endif /* USE_ELF_CORE_DUMP */ 2005 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 2006 2007 /* Verify the portions of EHDR within E_IDENT for the target. 2008 This can be performed before bswapping the entire header. */ 2009 static bool elf_check_ident(struct elfhdr *ehdr) 2010 { 2011 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 2012 && ehdr->e_ident[EI_MAG1] == ELFMAG1 2013 && ehdr->e_ident[EI_MAG2] == ELFMAG2 2014 && ehdr->e_ident[EI_MAG3] == ELFMAG3 2015 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 2016 && ehdr->e_ident[EI_DATA] == ELF_DATA 2017 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 2018 } 2019 2020 /* Verify the portions of EHDR outside of E_IDENT for the target. 2021 This has to wait until after bswapping the header. */ 2022 static bool elf_check_ehdr(struct elfhdr *ehdr) 2023 { 2024 return (elf_check_arch(ehdr->e_machine) 2025 && elf_check_abi(ehdr->e_flags) 2026 && ehdr->e_ehsize == sizeof(struct elfhdr) 2027 && ehdr->e_phentsize == sizeof(struct elf_phdr) 2028 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 2029 } 2030 2031 /* 2032 * 'copy_elf_strings()' copies argument/envelope strings from user 2033 * memory to free pages in kernel mem. These are in a format ready 2034 * to be put directly into the top of new user memory. 2035 * 2036 */ 2037 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2038 abi_ulong p, abi_ulong stack_limit) 2039 { 2040 char *tmp; 2041 int len, i; 2042 abi_ulong top = p; 2043 2044 if (!p) { 2045 return 0; /* bullet-proofing */ 2046 } 2047 2048 if (STACK_GROWS_DOWN) { 2049 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2050 for (i = argc - 1; i >= 0; --i) { 2051 tmp = argv[i]; 2052 if (!tmp) { 2053 fprintf(stderr, "VFS: argc is wrong"); 2054 exit(-1); 2055 } 2056 len = strlen(tmp) + 1; 2057 tmp += len; 2058 2059 if (len > (p - stack_limit)) { 2060 return 0; 2061 } 2062 while (len) { 2063 int bytes_to_copy = (len > offset) ? offset : len; 2064 tmp -= bytes_to_copy; 2065 p -= bytes_to_copy; 2066 offset -= bytes_to_copy; 2067 len -= bytes_to_copy; 2068 2069 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2070 2071 if (offset == 0) { 2072 memcpy_to_target(p, scratch, top - p); 2073 top = p; 2074 offset = TARGET_PAGE_SIZE; 2075 } 2076 } 2077 } 2078 if (p != top) { 2079 memcpy_to_target(p, scratch + offset, top - p); 2080 } 2081 } else { 2082 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2083 for (i = 0; i < argc; ++i) { 2084 tmp = argv[i]; 2085 if (!tmp) { 2086 fprintf(stderr, "VFS: argc is wrong"); 2087 exit(-1); 2088 } 2089 len = strlen(tmp) + 1; 2090 if (len > (stack_limit - p)) { 2091 return 0; 2092 } 2093 while (len) { 2094 int bytes_to_copy = (len > remaining) ? remaining : len; 2095 2096 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2097 2098 tmp += bytes_to_copy; 2099 remaining -= bytes_to_copy; 2100 p += bytes_to_copy; 2101 len -= bytes_to_copy; 2102 2103 if (remaining == 0) { 2104 memcpy_to_target(top, scratch, p - top); 2105 top = p; 2106 remaining = TARGET_PAGE_SIZE; 2107 } 2108 } 2109 } 2110 if (p != top) { 2111 memcpy_to_target(top, scratch, p - top); 2112 } 2113 } 2114 2115 return p; 2116 } 2117 2118 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2119 * argument/environment space. Newer kernels (>2.6.33) allow more, 2120 * dependent on stack size, but guarantee at least 32 pages for 2121 * backwards compatibility. 2122 */ 2123 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2124 2125 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2126 struct image_info *info) 2127 { 2128 abi_ulong size, error, guard; 2129 int prot; 2130 2131 size = guest_stack_size; 2132 if (size < STACK_LOWER_LIMIT) { 2133 size = STACK_LOWER_LIMIT; 2134 } 2135 2136 if (STACK_GROWS_DOWN) { 2137 guard = TARGET_PAGE_SIZE; 2138 if (guard < qemu_real_host_page_size()) { 2139 guard = qemu_real_host_page_size(); 2140 } 2141 } else { 2142 /* no guard page for hppa target where stack grows upwards. */ 2143 guard = 0; 2144 } 2145 2146 prot = PROT_READ | PROT_WRITE; 2147 if (info->exec_stack) { 2148 prot |= PROT_EXEC; 2149 } 2150 error = target_mmap(0, size + guard, prot, 2151 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2152 if (error == -1) { 2153 perror("mmap stack"); 2154 exit(-1); 2155 } 2156 2157 /* We reserve one extra page at the top of the stack as guard. */ 2158 if (STACK_GROWS_DOWN) { 2159 target_mprotect(error, guard, PROT_NONE); 2160 info->stack_limit = error + guard; 2161 return info->stack_limit + size - sizeof(void *); 2162 } else { 2163 info->stack_limit = error + size; 2164 return error; 2165 } 2166 } 2167 2168 /* Map and zero the bss. We need to explicitly zero any fractional pages 2169 after the data section (i.e. bss). */ 2170 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2171 { 2172 uintptr_t host_start, host_map_start, host_end; 2173 2174 last_bss = TARGET_PAGE_ALIGN(last_bss); 2175 2176 /* ??? There is confusion between qemu_real_host_page_size and 2177 qemu_host_page_size here and elsewhere in target_mmap, which 2178 may lead to the end of the data section mapping from the file 2179 not being mapped. At least there was an explicit test and 2180 comment for that here, suggesting that "the file size must 2181 be known". The comment probably pre-dates the introduction 2182 of the fstat system call in target_mmap which does in fact 2183 find out the size. What isn't clear is if the workaround 2184 here is still actually needed. For now, continue with it, 2185 but merge it with the "normal" mmap that would allocate the bss. */ 2186 2187 host_start = (uintptr_t) g2h_untagged(elf_bss); 2188 host_end = (uintptr_t) g2h_untagged(last_bss); 2189 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2190 2191 if (host_map_start < host_end) { 2192 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2193 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2194 if (p == MAP_FAILED) { 2195 perror("cannot mmap brk"); 2196 exit(-1); 2197 } 2198 } 2199 2200 /* Ensure that the bss page(s) are valid */ 2201 if ((page_get_flags(last_bss-1) & prot) != prot) { 2202 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2203 } 2204 2205 if (host_start < host_map_start) { 2206 memset((void *)host_start, 0, host_map_start - host_start); 2207 } 2208 } 2209 2210 #ifdef TARGET_ARM 2211 static int elf_is_fdpic(struct elfhdr *exec) 2212 { 2213 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2214 } 2215 #else 2216 /* Default implementation, always false. */ 2217 static int elf_is_fdpic(struct elfhdr *exec) 2218 { 2219 return 0; 2220 } 2221 #endif 2222 2223 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2224 { 2225 uint16_t n; 2226 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2227 2228 /* elf32_fdpic_loadseg */ 2229 n = info->nsegs; 2230 while (n--) { 2231 sp -= 12; 2232 put_user_u32(loadsegs[n].addr, sp+0); 2233 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2234 put_user_u32(loadsegs[n].p_memsz, sp+8); 2235 } 2236 2237 /* elf32_fdpic_loadmap */ 2238 sp -= 4; 2239 put_user_u16(0, sp+0); /* version */ 2240 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2241 2242 info->personality = PER_LINUX_FDPIC; 2243 info->loadmap_addr = sp; 2244 2245 return sp; 2246 } 2247 2248 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2249 struct elfhdr *exec, 2250 struct image_info *info, 2251 struct image_info *interp_info) 2252 { 2253 abi_ulong sp; 2254 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2255 int size; 2256 int i; 2257 abi_ulong u_rand_bytes; 2258 uint8_t k_rand_bytes[16]; 2259 abi_ulong u_platform, u_base_platform; 2260 const char *k_platform, *k_base_platform; 2261 const int n = sizeof(elf_addr_t); 2262 2263 sp = p; 2264 2265 /* Needs to be before we load the env/argc/... */ 2266 if (elf_is_fdpic(exec)) { 2267 /* Need 4 byte alignment for these structs */ 2268 sp &= ~3; 2269 sp = loader_build_fdpic_loadmap(info, sp); 2270 info->other_info = interp_info; 2271 if (interp_info) { 2272 interp_info->other_info = info; 2273 sp = loader_build_fdpic_loadmap(interp_info, sp); 2274 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2275 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2276 } else { 2277 info->interpreter_loadmap_addr = 0; 2278 info->interpreter_pt_dynamic_addr = 0; 2279 } 2280 } 2281 2282 u_base_platform = 0; 2283 k_base_platform = ELF_BASE_PLATFORM; 2284 if (k_base_platform) { 2285 size_t len = strlen(k_base_platform) + 1; 2286 if (STACK_GROWS_DOWN) { 2287 sp -= (len + n - 1) & ~(n - 1); 2288 u_base_platform = sp; 2289 /* FIXME - check return value of memcpy_to_target() for failure */ 2290 memcpy_to_target(sp, k_base_platform, len); 2291 } else { 2292 memcpy_to_target(sp, k_base_platform, len); 2293 u_base_platform = sp; 2294 sp += len + 1; 2295 } 2296 } 2297 2298 u_platform = 0; 2299 k_platform = ELF_PLATFORM; 2300 if (k_platform) { 2301 size_t len = strlen(k_platform) + 1; 2302 if (STACK_GROWS_DOWN) { 2303 sp -= (len + n - 1) & ~(n - 1); 2304 u_platform = sp; 2305 /* FIXME - check return value of memcpy_to_target() for failure */ 2306 memcpy_to_target(sp, k_platform, len); 2307 } else { 2308 memcpy_to_target(sp, k_platform, len); 2309 u_platform = sp; 2310 sp += len + 1; 2311 } 2312 } 2313 2314 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2315 * the argv and envp pointers. 2316 */ 2317 if (STACK_GROWS_DOWN) { 2318 sp = QEMU_ALIGN_DOWN(sp, 16); 2319 } else { 2320 sp = QEMU_ALIGN_UP(sp, 16); 2321 } 2322 2323 /* 2324 * Generate 16 random bytes for userspace PRNG seeding. 2325 */ 2326 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2327 if (STACK_GROWS_DOWN) { 2328 sp -= 16; 2329 u_rand_bytes = sp; 2330 /* FIXME - check return value of memcpy_to_target() for failure */ 2331 memcpy_to_target(sp, k_rand_bytes, 16); 2332 } else { 2333 memcpy_to_target(sp, k_rand_bytes, 16); 2334 u_rand_bytes = sp; 2335 sp += 16; 2336 } 2337 2338 size = (DLINFO_ITEMS + 1) * 2; 2339 if (k_base_platform) 2340 size += 2; 2341 if (k_platform) 2342 size += 2; 2343 #ifdef DLINFO_ARCH_ITEMS 2344 size += DLINFO_ARCH_ITEMS * 2; 2345 #endif 2346 #ifdef ELF_HWCAP2 2347 size += 2; 2348 #endif 2349 info->auxv_len = size * n; 2350 2351 size += envc + argc + 2; 2352 size += 1; /* argc itself */ 2353 size *= n; 2354 2355 /* Allocate space and finalize stack alignment for entry now. */ 2356 if (STACK_GROWS_DOWN) { 2357 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2358 sp = u_argc; 2359 } else { 2360 u_argc = sp; 2361 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2362 } 2363 2364 u_argv = u_argc + n; 2365 u_envp = u_argv + (argc + 1) * n; 2366 u_auxv = u_envp + (envc + 1) * n; 2367 info->saved_auxv = u_auxv; 2368 info->argc = argc; 2369 info->envc = envc; 2370 info->argv = u_argv; 2371 info->envp = u_envp; 2372 2373 /* This is correct because Linux defines 2374 * elf_addr_t as Elf32_Off / Elf64_Off 2375 */ 2376 #define NEW_AUX_ENT(id, val) do { \ 2377 put_user_ual(id, u_auxv); u_auxv += n; \ 2378 put_user_ual(val, u_auxv); u_auxv += n; \ 2379 } while(0) 2380 2381 #ifdef ARCH_DLINFO 2382 /* 2383 * ARCH_DLINFO must come first so platform specific code can enforce 2384 * special alignment requirements on the AUXV if necessary (eg. PPC). 2385 */ 2386 ARCH_DLINFO; 2387 #endif 2388 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2389 * on info->auxv_len will trigger. 2390 */ 2391 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2392 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2393 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2394 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2395 /* Target doesn't support host page size alignment */ 2396 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2397 } else { 2398 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2399 qemu_host_page_size))); 2400 } 2401 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2402 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2403 NEW_AUX_ENT(AT_ENTRY, info->entry); 2404 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2405 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2406 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2407 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2408 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2409 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2410 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2411 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2412 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2413 2414 #ifdef ELF_HWCAP2 2415 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2416 #endif 2417 2418 if (u_base_platform) { 2419 NEW_AUX_ENT(AT_BASE_PLATFORM, u_base_platform); 2420 } 2421 if (u_platform) { 2422 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2423 } 2424 NEW_AUX_ENT (AT_NULL, 0); 2425 #undef NEW_AUX_ENT 2426 2427 /* Check that our initial calculation of the auxv length matches how much 2428 * we actually put into it. 2429 */ 2430 assert(info->auxv_len == u_auxv - info->saved_auxv); 2431 2432 put_user_ual(argc, u_argc); 2433 2434 p = info->arg_strings; 2435 for (i = 0; i < argc; ++i) { 2436 put_user_ual(p, u_argv); 2437 u_argv += n; 2438 p += target_strlen(p) + 1; 2439 } 2440 put_user_ual(0, u_argv); 2441 2442 p = info->env_strings; 2443 for (i = 0; i < envc; ++i) { 2444 put_user_ual(p, u_envp); 2445 u_envp += n; 2446 p += target_strlen(p) + 1; 2447 } 2448 put_user_ual(0, u_envp); 2449 2450 return sp; 2451 } 2452 2453 #if defined(HI_COMMPAGE) 2454 #define LO_COMMPAGE -1 2455 #elif defined(LO_COMMPAGE) 2456 #define HI_COMMPAGE 0 2457 #else 2458 #define HI_COMMPAGE 0 2459 #define LO_COMMPAGE -1 2460 #ifndef INIT_GUEST_COMMPAGE 2461 #define init_guest_commpage() true 2462 #endif 2463 #endif 2464 2465 static void pgb_fail_in_use(const char *image_name) 2466 { 2467 error_report("%s: requires virtual address space that is in use " 2468 "(omit the -B option or choose a different value)", 2469 image_name); 2470 exit(EXIT_FAILURE); 2471 } 2472 2473 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2474 abi_ulong guest_hiaddr, long align) 2475 { 2476 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2477 void *addr, *test; 2478 2479 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2480 fprintf(stderr, "Requested guest base %p does not satisfy " 2481 "host minimum alignment (0x%lx)\n", 2482 (void *)guest_base, align); 2483 exit(EXIT_FAILURE); 2484 } 2485 2486 /* Sanity check the guest binary. */ 2487 if (reserved_va) { 2488 if (guest_hiaddr > reserved_va) { 2489 error_report("%s: requires more than reserved virtual " 2490 "address space (0x%" PRIx64 " > 0x%lx)", 2491 image_name, (uint64_t)guest_hiaddr, reserved_va); 2492 exit(EXIT_FAILURE); 2493 } 2494 } else { 2495 #if HOST_LONG_BITS < TARGET_ABI_BITS 2496 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2497 error_report("%s: requires more virtual address space " 2498 "than the host can provide (0x%" PRIx64 ")", 2499 image_name, (uint64_t)guest_hiaddr - guest_base); 2500 exit(EXIT_FAILURE); 2501 } 2502 #endif 2503 } 2504 2505 /* 2506 * Expand the allocation to the entire reserved_va. 2507 * Exclude the mmap_min_addr hole. 2508 */ 2509 if (reserved_va) { 2510 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2511 : mmap_min_addr - guest_base); 2512 guest_hiaddr = reserved_va; 2513 } 2514 2515 /* Reserve the address space for the binary, or reserved_va. */ 2516 test = g2h_untagged(guest_loaddr); 2517 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2518 if (test != addr) { 2519 pgb_fail_in_use(image_name); 2520 } 2521 qemu_log_mask(CPU_LOG_PAGE, 2522 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2523 __func__, addr, guest_hiaddr - guest_loaddr); 2524 } 2525 2526 /** 2527 * pgd_find_hole_fallback: potential mmap address 2528 * @guest_size: size of available space 2529 * @brk: location of break 2530 * @align: memory alignment 2531 * 2532 * This is a fallback method for finding a hole in the host address 2533 * space if we don't have the benefit of being able to access 2534 * /proc/self/map. It can potentially take a very long time as we can 2535 * only dumbly iterate up the host address space seeing if the 2536 * allocation would work. 2537 */ 2538 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2539 long align, uintptr_t offset) 2540 { 2541 uintptr_t base; 2542 2543 /* Start (aligned) at the bottom and work our way up */ 2544 base = ROUND_UP(mmap_min_addr, align); 2545 2546 while (true) { 2547 uintptr_t align_start, end; 2548 align_start = ROUND_UP(base, align); 2549 end = align_start + guest_size + offset; 2550 2551 /* if brk is anywhere in the range give ourselves some room to grow. */ 2552 if (align_start <= brk && brk < end) { 2553 base = brk + (16 * MiB); 2554 continue; 2555 } else if (align_start + guest_size < align_start) { 2556 /* we have run out of space */ 2557 return -1; 2558 } else { 2559 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2560 MAP_FIXED_NOREPLACE; 2561 void * mmap_start = mmap((void *) align_start, guest_size, 2562 PROT_NONE, flags, -1, 0); 2563 if (mmap_start != MAP_FAILED) { 2564 munmap(mmap_start, guest_size); 2565 if (mmap_start == (void *) align_start) { 2566 qemu_log_mask(CPU_LOG_PAGE, 2567 "%s: base @ %p for %" PRIdPTR" bytes\n", 2568 __func__, mmap_start + offset, guest_size); 2569 return (uintptr_t) mmap_start + offset; 2570 } 2571 } 2572 base += qemu_host_page_size; 2573 } 2574 } 2575 } 2576 2577 /* Return value for guest_base, or -1 if no hole found. */ 2578 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2579 long align, uintptr_t offset) 2580 { 2581 GSList *maps, *iter; 2582 uintptr_t this_start, this_end, next_start, brk; 2583 intptr_t ret = -1; 2584 2585 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2586 2587 maps = read_self_maps(); 2588 2589 /* Read brk after we've read the maps, which will malloc. */ 2590 brk = (uintptr_t)sbrk(0); 2591 2592 if (!maps) { 2593 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2594 } 2595 2596 /* The first hole is before the first map entry. */ 2597 this_start = mmap_min_addr; 2598 2599 for (iter = maps; iter; 2600 this_start = next_start, iter = g_slist_next(iter)) { 2601 uintptr_t align_start, hole_size; 2602 2603 this_end = ((MapInfo *)iter->data)->start; 2604 next_start = ((MapInfo *)iter->data)->end; 2605 align_start = ROUND_UP(this_start + offset, align); 2606 2607 /* Skip holes that are too small. */ 2608 if (align_start >= this_end) { 2609 continue; 2610 } 2611 hole_size = this_end - align_start; 2612 if (hole_size < guest_size) { 2613 continue; 2614 } 2615 2616 /* If this hole contains brk, give ourselves some room to grow. */ 2617 if (this_start <= brk && brk < this_end) { 2618 hole_size -= guest_size; 2619 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2620 align_start += 1 * GiB; 2621 } else if (hole_size >= 16 * MiB) { 2622 align_start += 16 * MiB; 2623 } else { 2624 align_start = (this_end - guest_size) & -align; 2625 if (align_start < this_start) { 2626 continue; 2627 } 2628 } 2629 } 2630 2631 /* Record the lowest successful match. */ 2632 if (ret < 0) { 2633 ret = align_start; 2634 } 2635 /* If this hole contains the identity map, select it. */ 2636 if (align_start <= guest_loaddr && 2637 guest_loaddr + guest_size <= this_end) { 2638 ret = 0; 2639 } 2640 /* If this hole ends above the identity map, stop looking. */ 2641 if (this_end >= guest_loaddr) { 2642 break; 2643 } 2644 } 2645 free_self_maps(maps); 2646 2647 if (ret != -1) { 2648 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2649 " for %" PRIuPTR " bytes\n", 2650 __func__, ret, guest_size); 2651 } 2652 2653 return ret; 2654 } 2655 2656 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2657 abi_ulong orig_hiaddr, long align) 2658 { 2659 uintptr_t loaddr = orig_loaddr; 2660 uintptr_t hiaddr = orig_hiaddr; 2661 uintptr_t offset = 0; 2662 uintptr_t addr; 2663 2664 if (hiaddr != orig_hiaddr) { 2665 error_report("%s: requires virtual address space that the " 2666 "host cannot provide (0x%" PRIx64 ")", 2667 image_name, (uint64_t)orig_hiaddr); 2668 exit(EXIT_FAILURE); 2669 } 2670 2671 loaddr &= -align; 2672 if (HI_COMMPAGE) { 2673 /* 2674 * Extend the allocation to include the commpage. 2675 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2676 * need to ensure there is space bellow the guest_base so we 2677 * can map the commpage in the place needed when the address 2678 * arithmetic wraps around. 2679 */ 2680 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2681 hiaddr = (uintptr_t) 4 << 30; 2682 } else { 2683 offset = -(HI_COMMPAGE & -align); 2684 } 2685 } else if (LO_COMMPAGE != -1) { 2686 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2687 } 2688 2689 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2690 if (addr == -1) { 2691 /* 2692 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2693 * that can satisfy both. But as the normal arm32 link base address 2694 * is ~32k, and we extend down to include the commpage, making the 2695 * overhead only ~96k, this is unlikely. 2696 */ 2697 error_report("%s: Unable to allocate %#zx bytes of " 2698 "virtual address space", image_name, 2699 (size_t)(hiaddr - loaddr)); 2700 exit(EXIT_FAILURE); 2701 } 2702 2703 guest_base = addr; 2704 2705 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2706 __func__, addr, hiaddr - loaddr); 2707 } 2708 2709 static void pgb_dynamic(const char *image_name, long align) 2710 { 2711 /* 2712 * The executable is dynamic and does not require a fixed address. 2713 * All we need is a commpage that satisfies align. 2714 * If we do not need a commpage, leave guest_base == 0. 2715 */ 2716 if (HI_COMMPAGE) { 2717 uintptr_t addr, commpage; 2718 2719 /* 64-bit hosts should have used reserved_va. */ 2720 assert(sizeof(uintptr_t) == 4); 2721 2722 /* 2723 * By putting the commpage at the first hole, that puts guest_base 2724 * just above that, and maximises the positive guest addresses. 2725 */ 2726 commpage = HI_COMMPAGE & -align; 2727 addr = pgb_find_hole(commpage, -commpage, align, 0); 2728 assert(addr != -1); 2729 guest_base = addr; 2730 } 2731 } 2732 2733 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2734 abi_ulong guest_hiaddr, long align) 2735 { 2736 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2737 void *addr, *test; 2738 2739 if (guest_hiaddr > reserved_va) { 2740 error_report("%s: requires more than reserved virtual " 2741 "address space (0x%" PRIx64 " > 0x%lx)", 2742 image_name, (uint64_t)guest_hiaddr, reserved_va); 2743 exit(EXIT_FAILURE); 2744 } 2745 2746 /* Widen the "image" to the entire reserved address space. */ 2747 pgb_static(image_name, 0, reserved_va, align); 2748 2749 /* osdep.h defines this as 0 if it's missing */ 2750 flags |= MAP_FIXED_NOREPLACE; 2751 2752 /* Reserve the memory on the host. */ 2753 assert(guest_base != 0); 2754 test = g2h_untagged(0); 2755 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2756 if (addr == MAP_FAILED || addr != test) { 2757 error_report("Unable to reserve 0x%lx bytes of virtual address " 2758 "space at %p (%s) for use as guest address space (check your " 2759 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2760 "using -R option)", reserved_va, test, strerror(errno)); 2761 exit(EXIT_FAILURE); 2762 } 2763 2764 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2765 __func__, addr, reserved_va); 2766 } 2767 2768 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2769 abi_ulong guest_hiaddr) 2770 { 2771 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2772 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2773 2774 if (have_guest_base) { 2775 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2776 } else if (reserved_va) { 2777 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2778 } else if (guest_loaddr) { 2779 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2780 } else { 2781 pgb_dynamic(image_name, align); 2782 } 2783 2784 /* Reserve and initialize the commpage. */ 2785 if (!init_guest_commpage()) { 2786 /* 2787 * With have_guest_base, the user has selected the address and 2788 * we are trying to work with that. Otherwise, we have selected 2789 * free space and init_guest_commpage must succeeded. 2790 */ 2791 assert(have_guest_base); 2792 pgb_fail_in_use(image_name); 2793 } 2794 2795 assert(QEMU_IS_ALIGNED(guest_base, align)); 2796 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2797 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2798 } 2799 2800 enum { 2801 /* The string "GNU\0" as a magic number. */ 2802 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2803 NOTE_DATA_SZ = 1 * KiB, 2804 NOTE_NAME_SZ = 4, 2805 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2806 }; 2807 2808 /* 2809 * Process a single gnu_property entry. 2810 * Return false for error. 2811 */ 2812 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2813 struct image_info *info, bool have_prev_type, 2814 uint32_t *prev_type, Error **errp) 2815 { 2816 uint32_t pr_type, pr_datasz, step; 2817 2818 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2819 goto error_data; 2820 } 2821 datasz -= *off; 2822 data += *off / sizeof(uint32_t); 2823 2824 if (datasz < 2 * sizeof(uint32_t)) { 2825 goto error_data; 2826 } 2827 pr_type = data[0]; 2828 pr_datasz = data[1]; 2829 data += 2; 2830 datasz -= 2 * sizeof(uint32_t); 2831 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2832 if (step > datasz) { 2833 goto error_data; 2834 } 2835 2836 /* Properties are supposed to be unique and sorted on pr_type. */ 2837 if (have_prev_type && pr_type <= *prev_type) { 2838 if (pr_type == *prev_type) { 2839 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2840 } else { 2841 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2842 } 2843 return false; 2844 } 2845 *prev_type = pr_type; 2846 2847 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2848 return false; 2849 } 2850 2851 *off += 2 * sizeof(uint32_t) + step; 2852 return true; 2853 2854 error_data: 2855 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2856 return false; 2857 } 2858 2859 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2860 static bool parse_elf_properties(int image_fd, 2861 struct image_info *info, 2862 const struct elf_phdr *phdr, 2863 char bprm_buf[BPRM_BUF_SIZE], 2864 Error **errp) 2865 { 2866 union { 2867 struct elf_note nhdr; 2868 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2869 } note; 2870 2871 int n, off, datasz; 2872 bool have_prev_type; 2873 uint32_t prev_type; 2874 2875 /* Unless the arch requires properties, ignore them. */ 2876 if (!ARCH_USE_GNU_PROPERTY) { 2877 return true; 2878 } 2879 2880 /* If the properties are crazy large, that's too bad. */ 2881 n = phdr->p_filesz; 2882 if (n > sizeof(note)) { 2883 error_setg(errp, "PT_GNU_PROPERTY too large"); 2884 return false; 2885 } 2886 if (n < sizeof(note.nhdr)) { 2887 error_setg(errp, "PT_GNU_PROPERTY too small"); 2888 return false; 2889 } 2890 2891 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2892 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2893 } else { 2894 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2895 if (len != n) { 2896 error_setg_errno(errp, errno, "Error reading file header"); 2897 return false; 2898 } 2899 } 2900 2901 /* 2902 * The contents of a valid PT_GNU_PROPERTY is a sequence 2903 * of uint32_t -- swap them all now. 2904 */ 2905 #ifdef BSWAP_NEEDED 2906 for (int i = 0; i < n / 4; i++) { 2907 bswap32s(note.data + i); 2908 } 2909 #endif 2910 2911 /* 2912 * Note that nhdr is 3 words, and that the "name" described by namesz 2913 * immediately follows nhdr and is thus at the 4th word. Further, all 2914 * of the inputs to the kernel's round_up are multiples of 4. 2915 */ 2916 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2917 note.nhdr.n_namesz != NOTE_NAME_SZ || 2918 note.data[3] != GNU0_MAGIC) { 2919 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2920 return false; 2921 } 2922 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2923 2924 datasz = note.nhdr.n_descsz + off; 2925 if (datasz > n) { 2926 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2927 return false; 2928 } 2929 2930 have_prev_type = false; 2931 prev_type = 0; 2932 while (1) { 2933 if (off == datasz) { 2934 return true; /* end, exit ok */ 2935 } 2936 if (!parse_elf_property(note.data, &off, datasz, info, 2937 have_prev_type, &prev_type, errp)) { 2938 return false; 2939 } 2940 have_prev_type = true; 2941 } 2942 } 2943 2944 /* Load an ELF image into the address space. 2945 2946 IMAGE_NAME is the filename of the image, to use in error messages. 2947 IMAGE_FD is the open file descriptor for the image. 2948 2949 BPRM_BUF is a copy of the beginning of the file; this of course 2950 contains the elf file header at offset 0. It is assumed that this 2951 buffer is sufficiently aligned to present no problems to the host 2952 in accessing data at aligned offsets within the buffer. 2953 2954 On return: INFO values will be filled in, as necessary or available. */ 2955 2956 static void load_elf_image(const char *image_name, int image_fd, 2957 struct image_info *info, char **pinterp_name, 2958 char bprm_buf[BPRM_BUF_SIZE]) 2959 { 2960 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2961 struct elf_phdr *phdr; 2962 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2963 int i, retval, prot_exec; 2964 Error *err = NULL; 2965 2966 /* First of all, some simple consistency checks */ 2967 if (!elf_check_ident(ehdr)) { 2968 error_setg(&err, "Invalid ELF image for this architecture"); 2969 goto exit_errmsg; 2970 } 2971 bswap_ehdr(ehdr); 2972 if (!elf_check_ehdr(ehdr)) { 2973 error_setg(&err, "Invalid ELF image for this architecture"); 2974 goto exit_errmsg; 2975 } 2976 2977 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2978 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2979 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2980 } else { 2981 phdr = (struct elf_phdr *) alloca(i); 2982 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2983 if (retval != i) { 2984 goto exit_read; 2985 } 2986 } 2987 bswap_phdr(phdr, ehdr->e_phnum); 2988 2989 info->nsegs = 0; 2990 info->pt_dynamic_addr = 0; 2991 2992 mmap_lock(); 2993 2994 /* 2995 * Find the maximum size of the image and allocate an appropriate 2996 * amount of memory to handle that. Locate the interpreter, if any. 2997 */ 2998 loaddr = -1, hiaddr = 0; 2999 info->alignment = 0; 3000 info->exec_stack = EXSTACK_DEFAULT; 3001 for (i = 0; i < ehdr->e_phnum; ++i) { 3002 struct elf_phdr *eppnt = phdr + i; 3003 if (eppnt->p_type == PT_LOAD) { 3004 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 3005 if (a < loaddr) { 3006 loaddr = a; 3007 } 3008 a = eppnt->p_vaddr + eppnt->p_memsz; 3009 if (a > hiaddr) { 3010 hiaddr = a; 3011 } 3012 ++info->nsegs; 3013 info->alignment |= eppnt->p_align; 3014 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 3015 g_autofree char *interp_name = NULL; 3016 3017 if (*pinterp_name) { 3018 error_setg(&err, "Multiple PT_INTERP entries"); 3019 goto exit_errmsg; 3020 } 3021 3022 interp_name = g_malloc(eppnt->p_filesz); 3023 3024 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3025 memcpy(interp_name, bprm_buf + eppnt->p_offset, 3026 eppnt->p_filesz); 3027 } else { 3028 retval = pread(image_fd, interp_name, eppnt->p_filesz, 3029 eppnt->p_offset); 3030 if (retval != eppnt->p_filesz) { 3031 goto exit_read; 3032 } 3033 } 3034 if (interp_name[eppnt->p_filesz - 1] != 0) { 3035 error_setg(&err, "Invalid PT_INTERP entry"); 3036 goto exit_errmsg; 3037 } 3038 *pinterp_name = g_steal_pointer(&interp_name); 3039 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 3040 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 3041 goto exit_errmsg; 3042 } 3043 } else if (eppnt->p_type == PT_GNU_STACK) { 3044 info->exec_stack = eppnt->p_flags & PF_X; 3045 } 3046 } 3047 3048 if (pinterp_name != NULL) { 3049 /* 3050 * This is the main executable. 3051 * 3052 * Reserve extra space for brk. 3053 * We hold on to this space while placing the interpreter 3054 * and the stack, lest they be placed immediately after 3055 * the data segment and block allocation from the brk. 3056 * 3057 * 16MB is chosen as "large enough" without being so large as 3058 * to allow the result to not fit with a 32-bit guest on a 3059 * 32-bit host. However some 64 bit guests (e.g. s390x) 3060 * attempt to place their heap further ahead and currently 3061 * nothing stops them smashing into QEMUs address space. 3062 */ 3063 #if TARGET_LONG_BITS == 64 3064 info->reserve_brk = 32 * MiB; 3065 #else 3066 info->reserve_brk = 16 * MiB; 3067 #endif 3068 hiaddr += info->reserve_brk; 3069 3070 if (ehdr->e_type == ET_EXEC) { 3071 /* 3072 * Make sure that the low address does not conflict with 3073 * MMAP_MIN_ADDR or the QEMU application itself. 3074 */ 3075 probe_guest_base(image_name, loaddr, hiaddr); 3076 } else { 3077 /* 3078 * The binary is dynamic, but we still need to 3079 * select guest_base. In this case we pass a size. 3080 */ 3081 probe_guest_base(image_name, 0, hiaddr - loaddr); 3082 } 3083 } 3084 3085 /* 3086 * Reserve address space for all of this. 3087 * 3088 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3089 * exactly the address range that is required. 3090 * 3091 * Otherwise this is ET_DYN, and we are searching for a location 3092 * that can hold the memory space required. If the image is 3093 * pre-linked, LOADDR will be non-zero, and the kernel should 3094 * honor that address if it happens to be free. 3095 * 3096 * In both cases, we will overwrite pages in this range with mappings 3097 * from the executable. 3098 */ 3099 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 3100 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3101 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3102 -1, 0); 3103 if (load_addr == -1) { 3104 goto exit_mmap; 3105 } 3106 load_bias = load_addr - loaddr; 3107 3108 if (elf_is_fdpic(ehdr)) { 3109 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3110 g_malloc(sizeof(*loadsegs) * info->nsegs); 3111 3112 for (i = 0; i < ehdr->e_phnum; ++i) { 3113 switch (phdr[i].p_type) { 3114 case PT_DYNAMIC: 3115 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3116 break; 3117 case PT_LOAD: 3118 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3119 loadsegs->p_vaddr = phdr[i].p_vaddr; 3120 loadsegs->p_memsz = phdr[i].p_memsz; 3121 ++loadsegs; 3122 break; 3123 } 3124 } 3125 } 3126 3127 info->load_bias = load_bias; 3128 info->code_offset = load_bias; 3129 info->data_offset = load_bias; 3130 info->load_addr = load_addr; 3131 info->entry = ehdr->e_entry + load_bias; 3132 info->start_code = -1; 3133 info->end_code = 0; 3134 info->start_data = -1; 3135 info->end_data = 0; 3136 info->brk = 0; 3137 info->elf_flags = ehdr->e_flags; 3138 3139 prot_exec = PROT_EXEC; 3140 #ifdef TARGET_AARCH64 3141 /* 3142 * If the BTI feature is present, this indicates that the executable 3143 * pages of the startup binary should be mapped with PROT_BTI, so that 3144 * branch targets are enforced. 3145 * 3146 * The startup binary is either the interpreter or the static executable. 3147 * The interpreter is responsible for all pages of a dynamic executable. 3148 * 3149 * Elf notes are backward compatible to older cpus. 3150 * Do not enable BTI unless it is supported. 3151 */ 3152 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3153 && (pinterp_name == NULL || *pinterp_name == 0) 3154 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3155 prot_exec |= TARGET_PROT_BTI; 3156 } 3157 #endif 3158 3159 for (i = 0; i < ehdr->e_phnum; i++) { 3160 struct elf_phdr *eppnt = phdr + i; 3161 if (eppnt->p_type == PT_LOAD) { 3162 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3163 int elf_prot = 0; 3164 3165 if (eppnt->p_flags & PF_R) { 3166 elf_prot |= PROT_READ; 3167 } 3168 if (eppnt->p_flags & PF_W) { 3169 elf_prot |= PROT_WRITE; 3170 } 3171 if (eppnt->p_flags & PF_X) { 3172 elf_prot |= prot_exec; 3173 } 3174 3175 vaddr = load_bias + eppnt->p_vaddr; 3176 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3177 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3178 3179 vaddr_ef = vaddr + eppnt->p_filesz; 3180 vaddr_em = vaddr + eppnt->p_memsz; 3181 3182 /* 3183 * Some segments may be completely empty, with a non-zero p_memsz 3184 * but no backing file segment. 3185 */ 3186 if (eppnt->p_filesz != 0) { 3187 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3188 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3189 MAP_PRIVATE | MAP_FIXED, 3190 image_fd, eppnt->p_offset - vaddr_po); 3191 3192 if (error == -1) { 3193 goto exit_mmap; 3194 } 3195 3196 /* 3197 * If the load segment requests extra zeros (e.g. bss), map it. 3198 */ 3199 if (eppnt->p_filesz < eppnt->p_memsz) { 3200 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3201 } 3202 } else if (eppnt->p_memsz != 0) { 3203 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3204 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3205 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3206 -1, 0); 3207 3208 if (error == -1) { 3209 goto exit_mmap; 3210 } 3211 } 3212 3213 /* Find the full program boundaries. */ 3214 if (elf_prot & PROT_EXEC) { 3215 if (vaddr < info->start_code) { 3216 info->start_code = vaddr; 3217 } 3218 if (vaddr_ef > info->end_code) { 3219 info->end_code = vaddr_ef; 3220 } 3221 } 3222 if (elf_prot & PROT_WRITE) { 3223 if (vaddr < info->start_data) { 3224 info->start_data = vaddr; 3225 } 3226 if (vaddr_ef > info->end_data) { 3227 info->end_data = vaddr_ef; 3228 } 3229 } 3230 if (vaddr_em > info->brk) { 3231 info->brk = vaddr_em; 3232 } 3233 #ifdef TARGET_MIPS 3234 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3235 Mips_elf_abiflags_v0 abiflags; 3236 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3237 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3238 goto exit_errmsg; 3239 } 3240 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3241 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3242 sizeof(Mips_elf_abiflags_v0)); 3243 } else { 3244 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3245 eppnt->p_offset); 3246 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3247 goto exit_read; 3248 } 3249 } 3250 bswap_mips_abiflags(&abiflags); 3251 info->fp_abi = abiflags.fp_abi; 3252 #endif 3253 } 3254 } 3255 3256 if (info->end_data == 0) { 3257 info->start_data = info->end_code; 3258 info->end_data = info->end_code; 3259 } 3260 3261 if (qemu_log_enabled()) { 3262 load_symbols(ehdr, image_fd, load_bias); 3263 } 3264 3265 debuginfo_report_elf(image_name, image_fd, load_bias); 3266 3267 mmap_unlock(); 3268 3269 close(image_fd); 3270 return; 3271 3272 exit_read: 3273 if (retval >= 0) { 3274 error_setg(&err, "Incomplete read of file header"); 3275 } else { 3276 error_setg_errno(&err, errno, "Error reading file header"); 3277 } 3278 goto exit_errmsg; 3279 exit_mmap: 3280 error_setg_errno(&err, errno, "Error mapping file"); 3281 goto exit_errmsg; 3282 exit_errmsg: 3283 error_reportf_err(err, "%s: ", image_name); 3284 exit(-1); 3285 } 3286 3287 static void load_elf_interp(const char *filename, struct image_info *info, 3288 char bprm_buf[BPRM_BUF_SIZE]) 3289 { 3290 int fd, retval; 3291 Error *err = NULL; 3292 3293 fd = open(path(filename), O_RDONLY); 3294 if (fd < 0) { 3295 error_setg_file_open(&err, errno, filename); 3296 error_report_err(err); 3297 exit(-1); 3298 } 3299 3300 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3301 if (retval < 0) { 3302 error_setg_errno(&err, errno, "Error reading file header"); 3303 error_reportf_err(err, "%s: ", filename); 3304 exit(-1); 3305 } 3306 3307 if (retval < BPRM_BUF_SIZE) { 3308 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3309 } 3310 3311 load_elf_image(filename, fd, info, NULL, bprm_buf); 3312 } 3313 3314 static int symfind(const void *s0, const void *s1) 3315 { 3316 target_ulong addr = *(target_ulong *)s0; 3317 struct elf_sym *sym = (struct elf_sym *)s1; 3318 int result = 0; 3319 if (addr < sym->st_value) { 3320 result = -1; 3321 } else if (addr >= sym->st_value + sym->st_size) { 3322 result = 1; 3323 } 3324 return result; 3325 } 3326 3327 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3328 { 3329 #if ELF_CLASS == ELFCLASS32 3330 struct elf_sym *syms = s->disas_symtab.elf32; 3331 #else 3332 struct elf_sym *syms = s->disas_symtab.elf64; 3333 #endif 3334 3335 // binary search 3336 struct elf_sym *sym; 3337 3338 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3339 if (sym != NULL) { 3340 return s->disas_strtab + sym->st_name; 3341 } 3342 3343 return ""; 3344 } 3345 3346 /* FIXME: This should use elf_ops.h */ 3347 static int symcmp(const void *s0, const void *s1) 3348 { 3349 struct elf_sym *sym0 = (struct elf_sym *)s0; 3350 struct elf_sym *sym1 = (struct elf_sym *)s1; 3351 return (sym0->st_value < sym1->st_value) 3352 ? -1 3353 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3354 } 3355 3356 /* Best attempt to load symbols from this ELF object. */ 3357 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3358 { 3359 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3360 uint64_t segsz; 3361 struct elf_shdr *shdr; 3362 char *strings = NULL; 3363 struct syminfo *s = NULL; 3364 struct elf_sym *new_syms, *syms = NULL; 3365 3366 shnum = hdr->e_shnum; 3367 i = shnum * sizeof(struct elf_shdr); 3368 shdr = (struct elf_shdr *)alloca(i); 3369 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3370 return; 3371 } 3372 3373 bswap_shdr(shdr, shnum); 3374 for (i = 0; i < shnum; ++i) { 3375 if (shdr[i].sh_type == SHT_SYMTAB) { 3376 sym_idx = i; 3377 str_idx = shdr[i].sh_link; 3378 goto found; 3379 } 3380 } 3381 3382 /* There will be no symbol table if the file was stripped. */ 3383 return; 3384 3385 found: 3386 /* Now know where the strtab and symtab are. Snarf them. */ 3387 s = g_try_new(struct syminfo, 1); 3388 if (!s) { 3389 goto give_up; 3390 } 3391 3392 segsz = shdr[str_idx].sh_size; 3393 s->disas_strtab = strings = g_try_malloc(segsz); 3394 if (!strings || 3395 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3396 goto give_up; 3397 } 3398 3399 segsz = shdr[sym_idx].sh_size; 3400 syms = g_try_malloc(segsz); 3401 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3402 goto give_up; 3403 } 3404 3405 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3406 /* Implausibly large symbol table: give up rather than ploughing 3407 * on with the number of symbols calculation overflowing 3408 */ 3409 goto give_up; 3410 } 3411 nsyms = segsz / sizeof(struct elf_sym); 3412 for (i = 0; i < nsyms; ) { 3413 bswap_sym(syms + i); 3414 /* Throw away entries which we do not need. */ 3415 if (syms[i].st_shndx == SHN_UNDEF 3416 || syms[i].st_shndx >= SHN_LORESERVE 3417 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3418 if (i < --nsyms) { 3419 syms[i] = syms[nsyms]; 3420 } 3421 } else { 3422 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3423 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3424 syms[i].st_value &= ~(target_ulong)1; 3425 #endif 3426 syms[i].st_value += load_bias; 3427 i++; 3428 } 3429 } 3430 3431 /* No "useful" symbol. */ 3432 if (nsyms == 0) { 3433 goto give_up; 3434 } 3435 3436 /* Attempt to free the storage associated with the local symbols 3437 that we threw away. Whether or not this has any effect on the 3438 memory allocation depends on the malloc implementation and how 3439 many symbols we managed to discard. */ 3440 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3441 if (new_syms == NULL) { 3442 goto give_up; 3443 } 3444 syms = new_syms; 3445 3446 qsort(syms, nsyms, sizeof(*syms), symcmp); 3447 3448 s->disas_num_syms = nsyms; 3449 #if ELF_CLASS == ELFCLASS32 3450 s->disas_symtab.elf32 = syms; 3451 #else 3452 s->disas_symtab.elf64 = syms; 3453 #endif 3454 s->lookup_symbol = lookup_symbolxx; 3455 s->next = syminfos; 3456 syminfos = s; 3457 3458 return; 3459 3460 give_up: 3461 g_free(s); 3462 g_free(strings); 3463 g_free(syms); 3464 } 3465 3466 uint32_t get_elf_eflags(int fd) 3467 { 3468 struct elfhdr ehdr; 3469 off_t offset; 3470 int ret; 3471 3472 /* Read ELF header */ 3473 offset = lseek(fd, 0, SEEK_SET); 3474 if (offset == (off_t) -1) { 3475 return 0; 3476 } 3477 ret = read(fd, &ehdr, sizeof(ehdr)); 3478 if (ret < sizeof(ehdr)) { 3479 return 0; 3480 } 3481 offset = lseek(fd, offset, SEEK_SET); 3482 if (offset == (off_t) -1) { 3483 return 0; 3484 } 3485 3486 /* Check ELF signature */ 3487 if (!elf_check_ident(&ehdr)) { 3488 return 0; 3489 } 3490 3491 /* check header */ 3492 bswap_ehdr(&ehdr); 3493 if (!elf_check_ehdr(&ehdr)) { 3494 return 0; 3495 } 3496 3497 /* return architecture id */ 3498 return ehdr.e_flags; 3499 } 3500 3501 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3502 { 3503 struct image_info interp_info; 3504 struct elfhdr elf_ex; 3505 char *elf_interpreter = NULL; 3506 char *scratch; 3507 3508 memset(&interp_info, 0, sizeof(interp_info)); 3509 #ifdef TARGET_MIPS 3510 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3511 #endif 3512 3513 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3514 3515 load_elf_image(bprm->filename, bprm->fd, info, 3516 &elf_interpreter, bprm->buf); 3517 3518 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3519 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3520 when we load the interpreter. */ 3521 elf_ex = *(struct elfhdr *)bprm->buf; 3522 3523 /* Do this so that we can load the interpreter, if need be. We will 3524 change some of these later */ 3525 bprm->p = setup_arg_pages(bprm, info); 3526 3527 scratch = g_new0(char, TARGET_PAGE_SIZE); 3528 if (STACK_GROWS_DOWN) { 3529 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3530 bprm->p, info->stack_limit); 3531 info->file_string = bprm->p; 3532 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3533 bprm->p, info->stack_limit); 3534 info->env_strings = bprm->p; 3535 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3536 bprm->p, info->stack_limit); 3537 info->arg_strings = bprm->p; 3538 } else { 3539 info->arg_strings = bprm->p; 3540 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3541 bprm->p, info->stack_limit); 3542 info->env_strings = bprm->p; 3543 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3544 bprm->p, info->stack_limit); 3545 info->file_string = bprm->p; 3546 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3547 bprm->p, info->stack_limit); 3548 } 3549 3550 g_free(scratch); 3551 3552 if (!bprm->p) { 3553 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3554 exit(-1); 3555 } 3556 3557 if (elf_interpreter) { 3558 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3559 3560 /* If the program interpreter is one of these two, then assume 3561 an iBCS2 image. Otherwise assume a native linux image. */ 3562 3563 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3564 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3565 info->personality = PER_SVR4; 3566 3567 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3568 and some applications "depend" upon this behavior. Since 3569 we do not have the power to recompile these, we emulate 3570 the SVr4 behavior. Sigh. */ 3571 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3572 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3573 } 3574 #ifdef TARGET_MIPS 3575 info->interp_fp_abi = interp_info.fp_abi; 3576 #endif 3577 } 3578 3579 /* 3580 * TODO: load a vdso, which would also contain the signal trampolines. 3581 * Otherwise, allocate a private page to hold them. 3582 */ 3583 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3584 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3585 PROT_READ | PROT_WRITE, 3586 MAP_PRIVATE | MAP_ANON, -1, 0); 3587 if (tramp_page == -1) { 3588 return -errno; 3589 } 3590 3591 setup_sigtramp(tramp_page); 3592 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3593 } 3594 3595 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3596 info, (elf_interpreter ? &interp_info : NULL)); 3597 info->start_stack = bprm->p; 3598 3599 /* If we have an interpreter, set that as the program's entry point. 3600 Copy the load_bias as well, to help PPC64 interpret the entry 3601 point as a function descriptor. Do this after creating elf tables 3602 so that we copy the original program entry point into the AUXV. */ 3603 if (elf_interpreter) { 3604 info->load_bias = interp_info.load_bias; 3605 info->entry = interp_info.entry; 3606 g_free(elf_interpreter); 3607 } 3608 3609 #ifdef USE_ELF_CORE_DUMP 3610 bprm->core_dump = &elf_core_dump; 3611 #endif 3612 3613 /* 3614 * If we reserved extra space for brk, release it now. 3615 * The implementation of do_brk in syscalls.c expects to be able 3616 * to mmap pages in this space. 3617 */ 3618 if (info->reserve_brk) { 3619 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3620 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3621 target_munmap(start_brk, end_brk - start_brk); 3622 } 3623 3624 return 0; 3625 } 3626 3627 #ifdef USE_ELF_CORE_DUMP 3628 /* 3629 * Definitions to generate Intel SVR4-like core files. 3630 * These mostly have the same names as the SVR4 types with "target_elf_" 3631 * tacked on the front to prevent clashes with linux definitions, 3632 * and the typedef forms have been avoided. This is mostly like 3633 * the SVR4 structure, but more Linuxy, with things that Linux does 3634 * not support and which gdb doesn't really use excluded. 3635 * 3636 * Fields we don't dump (their contents is zero) in linux-user qemu 3637 * are marked with XXX. 3638 * 3639 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3640 * 3641 * Porting ELF coredump for target is (quite) simple process. First you 3642 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3643 * the target resides): 3644 * 3645 * #define USE_ELF_CORE_DUMP 3646 * 3647 * Next you define type of register set used for dumping. ELF specification 3648 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3649 * 3650 * typedef <target_regtype> target_elf_greg_t; 3651 * #define ELF_NREG <number of registers> 3652 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3653 * 3654 * Last step is to implement target specific function that copies registers 3655 * from given cpu into just specified register set. Prototype is: 3656 * 3657 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3658 * const CPUArchState *env); 3659 * 3660 * Parameters: 3661 * regs - copy register values into here (allocated and zeroed by caller) 3662 * env - copy registers from here 3663 * 3664 * Example for ARM target is provided in this file. 3665 */ 3666 3667 /* An ELF note in memory */ 3668 struct memelfnote { 3669 const char *name; 3670 size_t namesz; 3671 size_t namesz_rounded; 3672 int type; 3673 size_t datasz; 3674 size_t datasz_rounded; 3675 void *data; 3676 size_t notesz; 3677 }; 3678 3679 struct target_elf_siginfo { 3680 abi_int si_signo; /* signal number */ 3681 abi_int si_code; /* extra code */ 3682 abi_int si_errno; /* errno */ 3683 }; 3684 3685 struct target_elf_prstatus { 3686 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3687 abi_short pr_cursig; /* Current signal */ 3688 abi_ulong pr_sigpend; /* XXX */ 3689 abi_ulong pr_sighold; /* XXX */ 3690 target_pid_t pr_pid; 3691 target_pid_t pr_ppid; 3692 target_pid_t pr_pgrp; 3693 target_pid_t pr_sid; 3694 struct target_timeval pr_utime; /* XXX User time */ 3695 struct target_timeval pr_stime; /* XXX System time */ 3696 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3697 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3698 target_elf_gregset_t pr_reg; /* GP registers */ 3699 abi_int pr_fpvalid; /* XXX */ 3700 }; 3701 3702 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3703 3704 struct target_elf_prpsinfo { 3705 char pr_state; /* numeric process state */ 3706 char pr_sname; /* char for pr_state */ 3707 char pr_zomb; /* zombie */ 3708 char pr_nice; /* nice val */ 3709 abi_ulong pr_flag; /* flags */ 3710 target_uid_t pr_uid; 3711 target_gid_t pr_gid; 3712 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3713 /* Lots missing */ 3714 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3715 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3716 }; 3717 3718 /* Here is the structure in which status of each thread is captured. */ 3719 struct elf_thread_status { 3720 QTAILQ_ENTRY(elf_thread_status) ets_link; 3721 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3722 #if 0 3723 elf_fpregset_t fpu; /* NT_PRFPREG */ 3724 struct task_struct *thread; 3725 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3726 #endif 3727 struct memelfnote notes[1]; 3728 int num_notes; 3729 }; 3730 3731 struct elf_note_info { 3732 struct memelfnote *notes; 3733 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3734 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3735 3736 QTAILQ_HEAD(, elf_thread_status) thread_list; 3737 #if 0 3738 /* 3739 * Current version of ELF coredump doesn't support 3740 * dumping fp regs etc. 3741 */ 3742 elf_fpregset_t *fpu; 3743 elf_fpxregset_t *xfpu; 3744 int thread_status_size; 3745 #endif 3746 int notes_size; 3747 int numnote; 3748 }; 3749 3750 struct vm_area_struct { 3751 target_ulong vma_start; /* start vaddr of memory region */ 3752 target_ulong vma_end; /* end vaddr of memory region */ 3753 abi_ulong vma_flags; /* protection etc. flags for the region */ 3754 QTAILQ_ENTRY(vm_area_struct) vma_link; 3755 }; 3756 3757 struct mm_struct { 3758 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3759 int mm_count; /* number of mappings */ 3760 }; 3761 3762 static struct mm_struct *vma_init(void); 3763 static void vma_delete(struct mm_struct *); 3764 static int vma_add_mapping(struct mm_struct *, target_ulong, 3765 target_ulong, abi_ulong); 3766 static int vma_get_mapping_count(const struct mm_struct *); 3767 static struct vm_area_struct *vma_first(const struct mm_struct *); 3768 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3769 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3770 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3771 unsigned long flags); 3772 3773 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3774 static void fill_note(struct memelfnote *, const char *, int, 3775 unsigned int, void *); 3776 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3777 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3778 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3779 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3780 static size_t note_size(const struct memelfnote *); 3781 static void free_note_info(struct elf_note_info *); 3782 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3783 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3784 3785 static int dump_write(int, const void *, size_t); 3786 static int write_note(struct memelfnote *, int); 3787 static int write_note_info(struct elf_note_info *, int); 3788 3789 #ifdef BSWAP_NEEDED 3790 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3791 { 3792 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3793 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3794 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3795 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3796 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3797 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3798 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3799 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3800 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3801 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3802 /* cpu times are not filled, so we skip them */ 3803 /* regs should be in correct format already */ 3804 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3805 } 3806 3807 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3808 { 3809 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3810 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3811 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3812 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3813 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3814 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3815 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3816 } 3817 3818 static void bswap_note(struct elf_note *en) 3819 { 3820 bswap32s(&en->n_namesz); 3821 bswap32s(&en->n_descsz); 3822 bswap32s(&en->n_type); 3823 } 3824 #else 3825 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3826 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3827 static inline void bswap_note(struct elf_note *en) { } 3828 #endif /* BSWAP_NEEDED */ 3829 3830 /* 3831 * Minimal support for linux memory regions. These are needed 3832 * when we are finding out what memory exactly belongs to 3833 * emulated process. No locks needed here, as long as 3834 * thread that received the signal is stopped. 3835 */ 3836 3837 static struct mm_struct *vma_init(void) 3838 { 3839 struct mm_struct *mm; 3840 3841 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3842 return (NULL); 3843 3844 mm->mm_count = 0; 3845 QTAILQ_INIT(&mm->mm_mmap); 3846 3847 return (mm); 3848 } 3849 3850 static void vma_delete(struct mm_struct *mm) 3851 { 3852 struct vm_area_struct *vma; 3853 3854 while ((vma = vma_first(mm)) != NULL) { 3855 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3856 g_free(vma); 3857 } 3858 g_free(mm); 3859 } 3860 3861 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3862 target_ulong end, abi_ulong flags) 3863 { 3864 struct vm_area_struct *vma; 3865 3866 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3867 return (-1); 3868 3869 vma->vma_start = start; 3870 vma->vma_end = end; 3871 vma->vma_flags = flags; 3872 3873 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3874 mm->mm_count++; 3875 3876 return (0); 3877 } 3878 3879 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3880 { 3881 return (QTAILQ_FIRST(&mm->mm_mmap)); 3882 } 3883 3884 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3885 { 3886 return (QTAILQ_NEXT(vma, vma_link)); 3887 } 3888 3889 static int vma_get_mapping_count(const struct mm_struct *mm) 3890 { 3891 return (mm->mm_count); 3892 } 3893 3894 /* 3895 * Calculate file (dump) size of given memory region. 3896 */ 3897 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3898 { 3899 /* if we cannot even read the first page, skip it */ 3900 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3901 return (0); 3902 3903 /* 3904 * Usually we don't dump executable pages as they contain 3905 * non-writable code that debugger can read directly from 3906 * target library etc. However, thread stacks are marked 3907 * also executable so we read in first page of given region 3908 * and check whether it contains elf header. If there is 3909 * no elf header, we dump it. 3910 */ 3911 if (vma->vma_flags & PROT_EXEC) { 3912 char page[TARGET_PAGE_SIZE]; 3913 3914 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3915 return 0; 3916 } 3917 if ((page[EI_MAG0] == ELFMAG0) && 3918 (page[EI_MAG1] == ELFMAG1) && 3919 (page[EI_MAG2] == ELFMAG2) && 3920 (page[EI_MAG3] == ELFMAG3)) { 3921 /* 3922 * Mappings are possibly from ELF binary. Don't dump 3923 * them. 3924 */ 3925 return (0); 3926 } 3927 } 3928 3929 return (vma->vma_end - vma->vma_start); 3930 } 3931 3932 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3933 unsigned long flags) 3934 { 3935 struct mm_struct *mm = (struct mm_struct *)priv; 3936 3937 vma_add_mapping(mm, start, end, flags); 3938 return (0); 3939 } 3940 3941 static void fill_note(struct memelfnote *note, const char *name, int type, 3942 unsigned int sz, void *data) 3943 { 3944 unsigned int namesz; 3945 3946 namesz = strlen(name) + 1; 3947 note->name = name; 3948 note->namesz = namesz; 3949 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3950 note->type = type; 3951 note->datasz = sz; 3952 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3953 3954 note->data = data; 3955 3956 /* 3957 * We calculate rounded up note size here as specified by 3958 * ELF document. 3959 */ 3960 note->notesz = sizeof (struct elf_note) + 3961 note->namesz_rounded + note->datasz_rounded; 3962 } 3963 3964 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3965 uint32_t flags) 3966 { 3967 (void) memset(elf, 0, sizeof(*elf)); 3968 3969 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3970 elf->e_ident[EI_CLASS] = ELF_CLASS; 3971 elf->e_ident[EI_DATA] = ELF_DATA; 3972 elf->e_ident[EI_VERSION] = EV_CURRENT; 3973 elf->e_ident[EI_OSABI] = ELF_OSABI; 3974 3975 elf->e_type = ET_CORE; 3976 elf->e_machine = machine; 3977 elf->e_version = EV_CURRENT; 3978 elf->e_phoff = sizeof(struct elfhdr); 3979 elf->e_flags = flags; 3980 elf->e_ehsize = sizeof(struct elfhdr); 3981 elf->e_phentsize = sizeof(struct elf_phdr); 3982 elf->e_phnum = segs; 3983 3984 bswap_ehdr(elf); 3985 } 3986 3987 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3988 { 3989 phdr->p_type = PT_NOTE; 3990 phdr->p_offset = offset; 3991 phdr->p_vaddr = 0; 3992 phdr->p_paddr = 0; 3993 phdr->p_filesz = sz; 3994 phdr->p_memsz = 0; 3995 phdr->p_flags = 0; 3996 phdr->p_align = 0; 3997 3998 bswap_phdr(phdr, 1); 3999 } 4000 4001 static size_t note_size(const struct memelfnote *note) 4002 { 4003 return (note->notesz); 4004 } 4005 4006 static void fill_prstatus(struct target_elf_prstatus *prstatus, 4007 const TaskState *ts, int signr) 4008 { 4009 (void) memset(prstatus, 0, sizeof (*prstatus)); 4010 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 4011 prstatus->pr_pid = ts->ts_tid; 4012 prstatus->pr_ppid = getppid(); 4013 prstatus->pr_pgrp = getpgrp(); 4014 prstatus->pr_sid = getsid(0); 4015 4016 bswap_prstatus(prstatus); 4017 } 4018 4019 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 4020 { 4021 char *base_filename; 4022 unsigned int i, len; 4023 4024 (void) memset(psinfo, 0, sizeof (*psinfo)); 4025 4026 len = ts->info->env_strings - ts->info->arg_strings; 4027 if (len >= ELF_PRARGSZ) 4028 len = ELF_PRARGSZ - 1; 4029 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 4030 return -EFAULT; 4031 } 4032 for (i = 0; i < len; i++) 4033 if (psinfo->pr_psargs[i] == 0) 4034 psinfo->pr_psargs[i] = ' '; 4035 psinfo->pr_psargs[len] = 0; 4036 4037 psinfo->pr_pid = getpid(); 4038 psinfo->pr_ppid = getppid(); 4039 psinfo->pr_pgrp = getpgrp(); 4040 psinfo->pr_sid = getsid(0); 4041 psinfo->pr_uid = getuid(); 4042 psinfo->pr_gid = getgid(); 4043 4044 base_filename = g_path_get_basename(ts->bprm->filename); 4045 /* 4046 * Using strncpy here is fine: at max-length, 4047 * this field is not NUL-terminated. 4048 */ 4049 (void) strncpy(psinfo->pr_fname, base_filename, 4050 sizeof(psinfo->pr_fname)); 4051 4052 g_free(base_filename); 4053 bswap_psinfo(psinfo); 4054 return (0); 4055 } 4056 4057 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 4058 { 4059 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 4060 elf_addr_t orig_auxv = auxv; 4061 void *ptr; 4062 int len = ts->info->auxv_len; 4063 4064 /* 4065 * Auxiliary vector is stored in target process stack. It contains 4066 * {type, value} pairs that we need to dump into note. This is not 4067 * strictly necessary but we do it here for sake of completeness. 4068 */ 4069 4070 /* read in whole auxv vector and copy it to memelfnote */ 4071 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4072 if (ptr != NULL) { 4073 fill_note(note, "CORE", NT_AUXV, len, ptr); 4074 unlock_user(ptr, auxv, len); 4075 } 4076 } 4077 4078 /* 4079 * Constructs name of coredump file. We have following convention 4080 * for the name: 4081 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4082 * 4083 * Returns the filename 4084 */ 4085 static char *core_dump_filename(const TaskState *ts) 4086 { 4087 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4088 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4089 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4090 4091 return g_strdup_printf("qemu_%s_%s_%d.core", 4092 base_filename, nowstr, (int)getpid()); 4093 } 4094 4095 static int dump_write(int fd, const void *ptr, size_t size) 4096 { 4097 const char *bufp = (const char *)ptr; 4098 ssize_t bytes_written, bytes_left; 4099 struct rlimit dumpsize; 4100 off_t pos; 4101 4102 bytes_written = 0; 4103 getrlimit(RLIMIT_CORE, &dumpsize); 4104 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4105 if (errno == ESPIPE) { /* not a seekable stream */ 4106 bytes_left = size; 4107 } else { 4108 return pos; 4109 } 4110 } else { 4111 if (dumpsize.rlim_cur <= pos) { 4112 return -1; 4113 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4114 bytes_left = size; 4115 } else { 4116 size_t limit_left=dumpsize.rlim_cur - pos; 4117 bytes_left = limit_left >= size ? size : limit_left ; 4118 } 4119 } 4120 4121 /* 4122 * In normal conditions, single write(2) should do but 4123 * in case of socket etc. this mechanism is more portable. 4124 */ 4125 do { 4126 bytes_written = write(fd, bufp, bytes_left); 4127 if (bytes_written < 0) { 4128 if (errno == EINTR) 4129 continue; 4130 return (-1); 4131 } else if (bytes_written == 0) { /* eof */ 4132 return (-1); 4133 } 4134 bufp += bytes_written; 4135 bytes_left -= bytes_written; 4136 } while (bytes_left > 0); 4137 4138 return (0); 4139 } 4140 4141 static int write_note(struct memelfnote *men, int fd) 4142 { 4143 struct elf_note en; 4144 4145 en.n_namesz = men->namesz; 4146 en.n_type = men->type; 4147 en.n_descsz = men->datasz; 4148 4149 bswap_note(&en); 4150 4151 if (dump_write(fd, &en, sizeof(en)) != 0) 4152 return (-1); 4153 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4154 return (-1); 4155 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4156 return (-1); 4157 4158 return (0); 4159 } 4160 4161 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4162 { 4163 CPUState *cpu = env_cpu((CPUArchState *)env); 4164 TaskState *ts = (TaskState *)cpu->opaque; 4165 struct elf_thread_status *ets; 4166 4167 ets = g_malloc0(sizeof (*ets)); 4168 ets->num_notes = 1; /* only prstatus is dumped */ 4169 fill_prstatus(&ets->prstatus, ts, 0); 4170 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4171 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4172 &ets->prstatus); 4173 4174 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4175 4176 info->notes_size += note_size(&ets->notes[0]); 4177 } 4178 4179 static void init_note_info(struct elf_note_info *info) 4180 { 4181 /* Initialize the elf_note_info structure so that it is at 4182 * least safe to call free_note_info() on it. Must be 4183 * called before calling fill_note_info(). 4184 */ 4185 memset(info, 0, sizeof (*info)); 4186 QTAILQ_INIT(&info->thread_list); 4187 } 4188 4189 static int fill_note_info(struct elf_note_info *info, 4190 long signr, const CPUArchState *env) 4191 { 4192 #define NUMNOTES 3 4193 CPUState *cpu = env_cpu((CPUArchState *)env); 4194 TaskState *ts = (TaskState *)cpu->opaque; 4195 int i; 4196 4197 info->notes = g_new0(struct memelfnote, NUMNOTES); 4198 if (info->notes == NULL) 4199 return (-ENOMEM); 4200 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4201 if (info->prstatus == NULL) 4202 return (-ENOMEM); 4203 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4204 if (info->prstatus == NULL) 4205 return (-ENOMEM); 4206 4207 /* 4208 * First fill in status (and registers) of current thread 4209 * including process info & aux vector. 4210 */ 4211 fill_prstatus(info->prstatus, ts, signr); 4212 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4213 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4214 sizeof (*info->prstatus), info->prstatus); 4215 fill_psinfo(info->psinfo, ts); 4216 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4217 sizeof (*info->psinfo), info->psinfo); 4218 fill_auxv_note(&info->notes[2], ts); 4219 info->numnote = 3; 4220 4221 info->notes_size = 0; 4222 for (i = 0; i < info->numnote; i++) 4223 info->notes_size += note_size(&info->notes[i]); 4224 4225 /* read and fill status of all threads */ 4226 cpu_list_lock(); 4227 CPU_FOREACH(cpu) { 4228 if (cpu == thread_cpu) { 4229 continue; 4230 } 4231 fill_thread_info(info, cpu->env_ptr); 4232 } 4233 cpu_list_unlock(); 4234 4235 return (0); 4236 } 4237 4238 static void free_note_info(struct elf_note_info *info) 4239 { 4240 struct elf_thread_status *ets; 4241 4242 while (!QTAILQ_EMPTY(&info->thread_list)) { 4243 ets = QTAILQ_FIRST(&info->thread_list); 4244 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4245 g_free(ets); 4246 } 4247 4248 g_free(info->prstatus); 4249 g_free(info->psinfo); 4250 g_free(info->notes); 4251 } 4252 4253 static int write_note_info(struct elf_note_info *info, int fd) 4254 { 4255 struct elf_thread_status *ets; 4256 int i, error = 0; 4257 4258 /* write prstatus, psinfo and auxv for current thread */ 4259 for (i = 0; i < info->numnote; i++) 4260 if ((error = write_note(&info->notes[i], fd)) != 0) 4261 return (error); 4262 4263 /* write prstatus for each thread */ 4264 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4265 if ((error = write_note(&ets->notes[0], fd)) != 0) 4266 return (error); 4267 } 4268 4269 return (0); 4270 } 4271 4272 /* 4273 * Write out ELF coredump. 4274 * 4275 * See documentation of ELF object file format in: 4276 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4277 * 4278 * Coredump format in linux is following: 4279 * 4280 * 0 +----------------------+ \ 4281 * | ELF header | ET_CORE | 4282 * +----------------------+ | 4283 * | ELF program headers | |--- headers 4284 * | - NOTE section | | 4285 * | - PT_LOAD sections | | 4286 * +----------------------+ / 4287 * | NOTEs: | 4288 * | - NT_PRSTATUS | 4289 * | - NT_PRSINFO | 4290 * | - NT_AUXV | 4291 * +----------------------+ <-- aligned to target page 4292 * | Process memory dump | 4293 * : : 4294 * . . 4295 * : : 4296 * | | 4297 * +----------------------+ 4298 * 4299 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4300 * NT_PRSINFO -> struct elf_prpsinfo 4301 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4302 * 4303 * Format follows System V format as close as possible. Current 4304 * version limitations are as follows: 4305 * - no floating point registers are dumped 4306 * 4307 * Function returns 0 in case of success, negative errno otherwise. 4308 * 4309 * TODO: make this work also during runtime: it should be 4310 * possible to force coredump from running process and then 4311 * continue processing. For example qemu could set up SIGUSR2 4312 * handler (provided that target process haven't registered 4313 * handler for that) that does the dump when signal is received. 4314 */ 4315 static int elf_core_dump(int signr, const CPUArchState *env) 4316 { 4317 const CPUState *cpu = env_cpu((CPUArchState *)env); 4318 const TaskState *ts = (const TaskState *)cpu->opaque; 4319 struct vm_area_struct *vma = NULL; 4320 g_autofree char *corefile = NULL; 4321 struct elf_note_info info; 4322 struct elfhdr elf; 4323 struct elf_phdr phdr; 4324 struct rlimit dumpsize; 4325 struct mm_struct *mm = NULL; 4326 off_t offset = 0, data_offset = 0; 4327 int segs = 0; 4328 int fd = -1; 4329 4330 init_note_info(&info); 4331 4332 errno = 0; 4333 getrlimit(RLIMIT_CORE, &dumpsize); 4334 if (dumpsize.rlim_cur == 0) 4335 return 0; 4336 4337 corefile = core_dump_filename(ts); 4338 4339 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4340 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4341 return (-errno); 4342 4343 /* 4344 * Walk through target process memory mappings and 4345 * set up structure containing this information. After 4346 * this point vma_xxx functions can be used. 4347 */ 4348 if ((mm = vma_init()) == NULL) 4349 goto out; 4350 4351 walk_memory_regions(mm, vma_walker); 4352 segs = vma_get_mapping_count(mm); 4353 4354 /* 4355 * Construct valid coredump ELF header. We also 4356 * add one more segment for notes. 4357 */ 4358 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4359 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4360 goto out; 4361 4362 /* fill in the in-memory version of notes */ 4363 if (fill_note_info(&info, signr, env) < 0) 4364 goto out; 4365 4366 offset += sizeof (elf); /* elf header */ 4367 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4368 4369 /* write out notes program header */ 4370 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4371 4372 offset += info.notes_size; 4373 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4374 goto out; 4375 4376 /* 4377 * ELF specification wants data to start at page boundary so 4378 * we align it here. 4379 */ 4380 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4381 4382 /* 4383 * Write program headers for memory regions mapped in 4384 * the target process. 4385 */ 4386 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4387 (void) memset(&phdr, 0, sizeof (phdr)); 4388 4389 phdr.p_type = PT_LOAD; 4390 phdr.p_offset = offset; 4391 phdr.p_vaddr = vma->vma_start; 4392 phdr.p_paddr = 0; 4393 phdr.p_filesz = vma_dump_size(vma); 4394 offset += phdr.p_filesz; 4395 phdr.p_memsz = vma->vma_end - vma->vma_start; 4396 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4397 if (vma->vma_flags & PROT_WRITE) 4398 phdr.p_flags |= PF_W; 4399 if (vma->vma_flags & PROT_EXEC) 4400 phdr.p_flags |= PF_X; 4401 phdr.p_align = ELF_EXEC_PAGESIZE; 4402 4403 bswap_phdr(&phdr, 1); 4404 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4405 goto out; 4406 } 4407 } 4408 4409 /* 4410 * Next we write notes just after program headers. No 4411 * alignment needed here. 4412 */ 4413 if (write_note_info(&info, fd) < 0) 4414 goto out; 4415 4416 /* align data to page boundary */ 4417 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4418 goto out; 4419 4420 /* 4421 * Finally we can dump process memory into corefile as well. 4422 */ 4423 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4424 abi_ulong addr; 4425 abi_ulong end; 4426 4427 end = vma->vma_start + vma_dump_size(vma); 4428 4429 for (addr = vma->vma_start; addr < end; 4430 addr += TARGET_PAGE_SIZE) { 4431 char page[TARGET_PAGE_SIZE]; 4432 int error; 4433 4434 /* 4435 * Read in page from target process memory and 4436 * write it to coredump file. 4437 */ 4438 error = copy_from_user(page, addr, sizeof (page)); 4439 if (error != 0) { 4440 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4441 addr); 4442 errno = -error; 4443 goto out; 4444 } 4445 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4446 goto out; 4447 } 4448 } 4449 4450 out: 4451 free_note_info(&info); 4452 if (mm != NULL) 4453 vma_delete(mm); 4454 (void) close(fd); 4455 4456 if (errno != 0) 4457 return (-errno); 4458 return (0); 4459 } 4460 #endif /* USE_ELF_CORE_DUMP */ 4461 4462 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4463 { 4464 init_thread(regs, infop); 4465 } 4466