1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 #include <sys/shm.h> 7 8 #include "qemu.h" 9 #include "user-internals.h" 10 #include "signal-common.h" 11 #include "loader.h" 12 #include "user-mmap.h" 13 #include "disas/disas.h" 14 #include "qemu/bitops.h" 15 #include "qemu/path.h" 16 #include "qemu/queue.h" 17 #include "qemu/guest-random.h" 18 #include "qemu/units.h" 19 #include "qemu/selfmap.h" 20 #include "qapi/error.h" 21 #include "target_signal.h" 22 23 #ifdef _ARCH_PPC64 24 #undef ARCH_DLINFO 25 #undef ELF_PLATFORM 26 #undef ELF_HWCAP 27 #undef ELF_HWCAP2 28 #undef ELF_CLASS 29 #undef ELF_DATA 30 #undef ELF_ARCH 31 #endif 32 33 #define ELF_OSABI ELFOSABI_SYSV 34 35 /* from personality.h */ 36 37 /* 38 * Flags for bug emulation. 39 * 40 * These occupy the top three bytes. 41 */ 42 enum { 43 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 44 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 45 descriptors (signal handling) */ 46 MMAP_PAGE_ZERO = 0x0100000, 47 ADDR_COMPAT_LAYOUT = 0x0200000, 48 READ_IMPLIES_EXEC = 0x0400000, 49 ADDR_LIMIT_32BIT = 0x0800000, 50 SHORT_INODE = 0x1000000, 51 WHOLE_SECONDS = 0x2000000, 52 STICKY_TIMEOUTS = 0x4000000, 53 ADDR_LIMIT_3GB = 0x8000000, 54 }; 55 56 /* 57 * Personality types. 58 * 59 * These go in the low byte. Avoid using the top bit, it will 60 * conflict with error returns. 61 */ 62 enum { 63 PER_LINUX = 0x0000, 64 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 65 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 66 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 67 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 68 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 69 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 70 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 71 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 72 PER_BSD = 0x0006, 73 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 74 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 75 PER_LINUX32 = 0x0008, 76 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 77 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 78 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 79 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 80 PER_RISCOS = 0x000c, 81 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 82 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 83 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 84 PER_HPUX = 0x0010, 85 PER_MASK = 0x00ff, 86 }; 87 88 /* 89 * Return the base personality without flags. 90 */ 91 #define personality(pers) (pers & PER_MASK) 92 93 int info_is_fdpic(struct image_info *info) 94 { 95 return info->personality == PER_LINUX_FDPIC; 96 } 97 98 /* this flag is uneffective under linux too, should be deleted */ 99 #ifndef MAP_DENYWRITE 100 #define MAP_DENYWRITE 0 101 #endif 102 103 /* should probably go in elf.h */ 104 #ifndef ELIBBAD 105 #define ELIBBAD 80 106 #endif 107 108 #if TARGET_BIG_ENDIAN 109 #define ELF_DATA ELFDATA2MSB 110 #else 111 #define ELF_DATA ELFDATA2LSB 112 #endif 113 114 #ifdef TARGET_ABI_MIPSN32 115 typedef abi_ullong target_elf_greg_t; 116 #define tswapreg(ptr) tswap64(ptr) 117 #else 118 typedef abi_ulong target_elf_greg_t; 119 #define tswapreg(ptr) tswapal(ptr) 120 #endif 121 122 #ifdef USE_UID16 123 typedef abi_ushort target_uid_t; 124 typedef abi_ushort target_gid_t; 125 #else 126 typedef abi_uint target_uid_t; 127 typedef abi_uint target_gid_t; 128 #endif 129 typedef abi_int target_pid_t; 130 131 #ifdef TARGET_I386 132 133 #define ELF_HWCAP get_elf_hwcap() 134 135 static uint32_t get_elf_hwcap(void) 136 { 137 X86CPU *cpu = X86_CPU(thread_cpu); 138 139 return cpu->env.features[FEAT_1_EDX]; 140 } 141 142 #ifdef TARGET_X86_64 143 #define ELF_START_MMAP 0x2aaaaab000ULL 144 145 #define ELF_CLASS ELFCLASS64 146 #define ELF_ARCH EM_X86_64 147 148 #define ELF_PLATFORM "x86_64" 149 150 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 151 { 152 regs->rax = 0; 153 regs->rsp = infop->start_stack; 154 regs->rip = infop->entry; 155 } 156 157 #define ELF_NREG 27 158 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 159 160 /* 161 * Note that ELF_NREG should be 29 as there should be place for 162 * TRAPNO and ERR "registers" as well but linux doesn't dump 163 * those. 164 * 165 * See linux kernel: arch/x86/include/asm/elf.h 166 */ 167 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 168 { 169 (*regs)[0] = tswapreg(env->regs[15]); 170 (*regs)[1] = tswapreg(env->regs[14]); 171 (*regs)[2] = tswapreg(env->regs[13]); 172 (*regs)[3] = tswapreg(env->regs[12]); 173 (*regs)[4] = tswapreg(env->regs[R_EBP]); 174 (*regs)[5] = tswapreg(env->regs[R_EBX]); 175 (*regs)[6] = tswapreg(env->regs[11]); 176 (*regs)[7] = tswapreg(env->regs[10]); 177 (*regs)[8] = tswapreg(env->regs[9]); 178 (*regs)[9] = tswapreg(env->regs[8]); 179 (*regs)[10] = tswapreg(env->regs[R_EAX]); 180 (*regs)[11] = tswapreg(env->regs[R_ECX]); 181 (*regs)[12] = tswapreg(env->regs[R_EDX]); 182 (*regs)[13] = tswapreg(env->regs[R_ESI]); 183 (*regs)[14] = tswapreg(env->regs[R_EDI]); 184 (*regs)[15] = tswapreg(env->regs[R_EAX]); /* XXX */ 185 (*regs)[16] = tswapreg(env->eip); 186 (*regs)[17] = tswapreg(env->segs[R_CS].selector & 0xffff); 187 (*regs)[18] = tswapreg(env->eflags); 188 (*regs)[19] = tswapreg(env->regs[R_ESP]); 189 (*regs)[20] = tswapreg(env->segs[R_SS].selector & 0xffff); 190 (*regs)[21] = tswapreg(env->segs[R_FS].selector & 0xffff); 191 (*regs)[22] = tswapreg(env->segs[R_GS].selector & 0xffff); 192 (*regs)[23] = tswapreg(env->segs[R_DS].selector & 0xffff); 193 (*regs)[24] = tswapreg(env->segs[R_ES].selector & 0xffff); 194 (*regs)[25] = tswapreg(env->segs[R_FS].selector & 0xffff); 195 (*regs)[26] = tswapreg(env->segs[R_GS].selector & 0xffff); 196 } 197 198 #if ULONG_MAX > UINT32_MAX 199 #define INIT_GUEST_COMMPAGE 200 static bool init_guest_commpage(void) 201 { 202 /* 203 * The vsyscall page is at a high negative address aka kernel space, 204 * which means that we cannot actually allocate it with target_mmap. 205 * We still should be able to use page_set_flags, unless the user 206 * has specified -R reserved_va, which would trigger an assert(). 207 */ 208 if (reserved_va != 0 && 209 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE >= reserved_va) { 210 error_report("Cannot allocate vsyscall page"); 211 exit(EXIT_FAILURE); 212 } 213 page_set_flags(TARGET_VSYSCALL_PAGE, 214 TARGET_VSYSCALL_PAGE + TARGET_PAGE_SIZE, 215 PAGE_EXEC | PAGE_VALID); 216 return true; 217 } 218 #endif 219 #else 220 221 #define ELF_START_MMAP 0x80000000 222 223 /* 224 * This is used to ensure we don't load something for the wrong architecture. 225 */ 226 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 227 228 /* 229 * These are used to set parameters in the core dumps. 230 */ 231 #define ELF_CLASS ELFCLASS32 232 #define ELF_ARCH EM_386 233 234 #define ELF_PLATFORM get_elf_platform() 235 #define EXSTACK_DEFAULT true 236 237 static const char *get_elf_platform(void) 238 { 239 static char elf_platform[] = "i386"; 240 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 241 if (family > 6) { 242 family = 6; 243 } 244 if (family >= 3) { 245 elf_platform[1] = '0' + family; 246 } 247 return elf_platform; 248 } 249 250 static inline void init_thread(struct target_pt_regs *regs, 251 struct image_info *infop) 252 { 253 regs->esp = infop->start_stack; 254 regs->eip = infop->entry; 255 256 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 257 starts %edx contains a pointer to a function which might be 258 registered using `atexit'. This provides a mean for the 259 dynamic linker to call DT_FINI functions for shared libraries 260 that have been loaded before the code runs. 261 262 A value of 0 tells we have no such handler. */ 263 regs->edx = 0; 264 } 265 266 #define ELF_NREG 17 267 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 268 269 /* 270 * Note that ELF_NREG should be 19 as there should be place for 271 * TRAPNO and ERR "registers" as well but linux doesn't dump 272 * those. 273 * 274 * See linux kernel: arch/x86/include/asm/elf.h 275 */ 276 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 277 { 278 (*regs)[0] = tswapreg(env->regs[R_EBX]); 279 (*regs)[1] = tswapreg(env->regs[R_ECX]); 280 (*regs)[2] = tswapreg(env->regs[R_EDX]); 281 (*regs)[3] = tswapreg(env->regs[R_ESI]); 282 (*regs)[4] = tswapreg(env->regs[R_EDI]); 283 (*regs)[5] = tswapreg(env->regs[R_EBP]); 284 (*regs)[6] = tswapreg(env->regs[R_EAX]); 285 (*regs)[7] = tswapreg(env->segs[R_DS].selector & 0xffff); 286 (*regs)[8] = tswapreg(env->segs[R_ES].selector & 0xffff); 287 (*regs)[9] = tswapreg(env->segs[R_FS].selector & 0xffff); 288 (*regs)[10] = tswapreg(env->segs[R_GS].selector & 0xffff); 289 (*regs)[11] = tswapreg(env->regs[R_EAX]); /* XXX */ 290 (*regs)[12] = tswapreg(env->eip); 291 (*regs)[13] = tswapreg(env->segs[R_CS].selector & 0xffff); 292 (*regs)[14] = tswapreg(env->eflags); 293 (*regs)[15] = tswapreg(env->regs[R_ESP]); 294 (*regs)[16] = tswapreg(env->segs[R_SS].selector & 0xffff); 295 } 296 #endif 297 298 #define USE_ELF_CORE_DUMP 299 #define ELF_EXEC_PAGESIZE 4096 300 301 #endif 302 303 #ifdef TARGET_ARM 304 305 #ifndef TARGET_AARCH64 306 /* 32 bit ARM definitions */ 307 308 #define ELF_START_MMAP 0x80000000 309 310 #define ELF_ARCH EM_ARM 311 #define ELF_CLASS ELFCLASS32 312 #define EXSTACK_DEFAULT true 313 314 static inline void init_thread(struct target_pt_regs *regs, 315 struct image_info *infop) 316 { 317 abi_long stack = infop->start_stack; 318 memset(regs, 0, sizeof(*regs)); 319 320 regs->uregs[16] = ARM_CPU_MODE_USR; 321 if (infop->entry & 1) { 322 regs->uregs[16] |= CPSR_T; 323 } 324 regs->uregs[15] = infop->entry & 0xfffffffe; 325 regs->uregs[13] = infop->start_stack; 326 /* FIXME - what to for failure of get_user()? */ 327 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 328 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 329 /* XXX: it seems that r0 is zeroed after ! */ 330 regs->uregs[0] = 0; 331 /* For uClinux PIC binaries. */ 332 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 333 regs->uregs[10] = infop->start_data; 334 335 /* Support ARM FDPIC. */ 336 if (info_is_fdpic(infop)) { 337 /* As described in the ABI document, r7 points to the loadmap info 338 * prepared by the kernel. If an interpreter is needed, r8 points 339 * to the interpreter loadmap and r9 points to the interpreter 340 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 341 * r9 points to the main program PT_DYNAMIC info. 342 */ 343 regs->uregs[7] = infop->loadmap_addr; 344 if (infop->interpreter_loadmap_addr) { 345 /* Executable is dynamically loaded. */ 346 regs->uregs[8] = infop->interpreter_loadmap_addr; 347 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 348 } else { 349 regs->uregs[8] = 0; 350 regs->uregs[9] = infop->pt_dynamic_addr; 351 } 352 } 353 } 354 355 #define ELF_NREG 18 356 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 357 358 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 359 { 360 (*regs)[0] = tswapreg(env->regs[0]); 361 (*regs)[1] = tswapreg(env->regs[1]); 362 (*regs)[2] = tswapreg(env->regs[2]); 363 (*regs)[3] = tswapreg(env->regs[3]); 364 (*regs)[4] = tswapreg(env->regs[4]); 365 (*regs)[5] = tswapreg(env->regs[5]); 366 (*regs)[6] = tswapreg(env->regs[6]); 367 (*regs)[7] = tswapreg(env->regs[7]); 368 (*regs)[8] = tswapreg(env->regs[8]); 369 (*regs)[9] = tswapreg(env->regs[9]); 370 (*regs)[10] = tswapreg(env->regs[10]); 371 (*regs)[11] = tswapreg(env->regs[11]); 372 (*regs)[12] = tswapreg(env->regs[12]); 373 (*regs)[13] = tswapreg(env->regs[13]); 374 (*regs)[14] = tswapreg(env->regs[14]); 375 (*regs)[15] = tswapreg(env->regs[15]); 376 377 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 378 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 379 } 380 381 #define USE_ELF_CORE_DUMP 382 #define ELF_EXEC_PAGESIZE 4096 383 384 enum 385 { 386 ARM_HWCAP_ARM_SWP = 1 << 0, 387 ARM_HWCAP_ARM_HALF = 1 << 1, 388 ARM_HWCAP_ARM_THUMB = 1 << 2, 389 ARM_HWCAP_ARM_26BIT = 1 << 3, 390 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 391 ARM_HWCAP_ARM_FPA = 1 << 5, 392 ARM_HWCAP_ARM_VFP = 1 << 6, 393 ARM_HWCAP_ARM_EDSP = 1 << 7, 394 ARM_HWCAP_ARM_JAVA = 1 << 8, 395 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 396 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 397 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 398 ARM_HWCAP_ARM_NEON = 1 << 12, 399 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 400 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 401 ARM_HWCAP_ARM_TLS = 1 << 15, 402 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 403 ARM_HWCAP_ARM_IDIVA = 1 << 17, 404 ARM_HWCAP_ARM_IDIVT = 1 << 18, 405 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 406 ARM_HWCAP_ARM_LPAE = 1 << 20, 407 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 408 }; 409 410 enum { 411 ARM_HWCAP2_ARM_AES = 1 << 0, 412 ARM_HWCAP2_ARM_PMULL = 1 << 1, 413 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 414 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 415 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 416 }; 417 418 /* The commpage only exists for 32 bit kernels */ 419 420 #define HI_COMMPAGE (intptr_t)0xffff0f00u 421 422 static bool init_guest_commpage(void) 423 { 424 abi_ptr commpage = HI_COMMPAGE & -qemu_host_page_size; 425 void *want = g2h_untagged(commpage); 426 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 427 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 428 429 if (addr == MAP_FAILED) { 430 perror("Allocating guest commpage"); 431 exit(EXIT_FAILURE); 432 } 433 if (addr != want) { 434 return false; 435 } 436 437 /* Set kernel helper versions; rest of page is 0. */ 438 __put_user(5, (uint32_t *)g2h_untagged(0xffff0ffcu)); 439 440 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 441 perror("Protecting guest commpage"); 442 exit(EXIT_FAILURE); 443 } 444 445 page_set_flags(commpage, commpage + qemu_host_page_size, 446 PAGE_READ | PAGE_EXEC | PAGE_VALID); 447 return true; 448 } 449 450 #define ELF_HWCAP get_elf_hwcap() 451 #define ELF_HWCAP2 get_elf_hwcap2() 452 453 static uint32_t get_elf_hwcap(void) 454 { 455 ARMCPU *cpu = ARM_CPU(thread_cpu); 456 uint32_t hwcaps = 0; 457 458 hwcaps |= ARM_HWCAP_ARM_SWP; 459 hwcaps |= ARM_HWCAP_ARM_HALF; 460 hwcaps |= ARM_HWCAP_ARM_THUMB; 461 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 462 463 /* probe for the extra features */ 464 #define GET_FEATURE(feat, hwcap) \ 465 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 466 467 #define GET_FEATURE_ID(feat, hwcap) \ 468 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 469 470 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 471 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 472 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 473 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 474 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 475 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 476 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 477 GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA); 478 GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT); 479 GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP); 480 481 if (cpu_isar_feature(aa32_fpsp_v3, cpu) || 482 cpu_isar_feature(aa32_fpdp_v3, cpu)) { 483 hwcaps |= ARM_HWCAP_ARM_VFPv3; 484 if (cpu_isar_feature(aa32_simd_r32, cpu)) { 485 hwcaps |= ARM_HWCAP_ARM_VFPD32; 486 } else { 487 hwcaps |= ARM_HWCAP_ARM_VFPv3D16; 488 } 489 } 490 GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4); 491 492 return hwcaps; 493 } 494 495 static uint32_t get_elf_hwcap2(void) 496 { 497 ARMCPU *cpu = ARM_CPU(thread_cpu); 498 uint32_t hwcaps = 0; 499 500 GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES); 501 GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL); 502 GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1); 503 GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2); 504 GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32); 505 return hwcaps; 506 } 507 508 #undef GET_FEATURE 509 #undef GET_FEATURE_ID 510 511 #define ELF_PLATFORM get_elf_platform() 512 513 static const char *get_elf_platform(void) 514 { 515 CPUARMState *env = thread_cpu->env_ptr; 516 517 #if TARGET_BIG_ENDIAN 518 # define END "b" 519 #else 520 # define END "l" 521 #endif 522 523 if (arm_feature(env, ARM_FEATURE_V8)) { 524 return "v8" END; 525 } else if (arm_feature(env, ARM_FEATURE_V7)) { 526 if (arm_feature(env, ARM_FEATURE_M)) { 527 return "v7m" END; 528 } else { 529 return "v7" END; 530 } 531 } else if (arm_feature(env, ARM_FEATURE_V6)) { 532 return "v6" END; 533 } else if (arm_feature(env, ARM_FEATURE_V5)) { 534 return "v5" END; 535 } else { 536 return "v4" END; 537 } 538 539 #undef END 540 } 541 542 #else 543 /* 64 bit ARM definitions */ 544 #define ELF_START_MMAP 0x80000000 545 546 #define ELF_ARCH EM_AARCH64 547 #define ELF_CLASS ELFCLASS64 548 #if TARGET_BIG_ENDIAN 549 # define ELF_PLATFORM "aarch64_be" 550 #else 551 # define ELF_PLATFORM "aarch64" 552 #endif 553 554 static inline void init_thread(struct target_pt_regs *regs, 555 struct image_info *infop) 556 { 557 abi_long stack = infop->start_stack; 558 memset(regs, 0, sizeof(*regs)); 559 560 regs->pc = infop->entry & ~0x3ULL; 561 regs->sp = stack; 562 } 563 564 #define ELF_NREG 34 565 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 566 567 static void elf_core_copy_regs(target_elf_gregset_t *regs, 568 const CPUARMState *env) 569 { 570 int i; 571 572 for (i = 0; i < 32; i++) { 573 (*regs)[i] = tswapreg(env->xregs[i]); 574 } 575 (*regs)[32] = tswapreg(env->pc); 576 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 577 } 578 579 #define USE_ELF_CORE_DUMP 580 #define ELF_EXEC_PAGESIZE 4096 581 582 enum { 583 ARM_HWCAP_A64_FP = 1 << 0, 584 ARM_HWCAP_A64_ASIMD = 1 << 1, 585 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 586 ARM_HWCAP_A64_AES = 1 << 3, 587 ARM_HWCAP_A64_PMULL = 1 << 4, 588 ARM_HWCAP_A64_SHA1 = 1 << 5, 589 ARM_HWCAP_A64_SHA2 = 1 << 6, 590 ARM_HWCAP_A64_CRC32 = 1 << 7, 591 ARM_HWCAP_A64_ATOMICS = 1 << 8, 592 ARM_HWCAP_A64_FPHP = 1 << 9, 593 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 594 ARM_HWCAP_A64_CPUID = 1 << 11, 595 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 596 ARM_HWCAP_A64_JSCVT = 1 << 13, 597 ARM_HWCAP_A64_FCMA = 1 << 14, 598 ARM_HWCAP_A64_LRCPC = 1 << 15, 599 ARM_HWCAP_A64_DCPOP = 1 << 16, 600 ARM_HWCAP_A64_SHA3 = 1 << 17, 601 ARM_HWCAP_A64_SM3 = 1 << 18, 602 ARM_HWCAP_A64_SM4 = 1 << 19, 603 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 604 ARM_HWCAP_A64_SHA512 = 1 << 21, 605 ARM_HWCAP_A64_SVE = 1 << 22, 606 ARM_HWCAP_A64_ASIMDFHM = 1 << 23, 607 ARM_HWCAP_A64_DIT = 1 << 24, 608 ARM_HWCAP_A64_USCAT = 1 << 25, 609 ARM_HWCAP_A64_ILRCPC = 1 << 26, 610 ARM_HWCAP_A64_FLAGM = 1 << 27, 611 ARM_HWCAP_A64_SSBS = 1 << 28, 612 ARM_HWCAP_A64_SB = 1 << 29, 613 ARM_HWCAP_A64_PACA = 1 << 30, 614 ARM_HWCAP_A64_PACG = 1UL << 31, 615 616 ARM_HWCAP2_A64_DCPODP = 1 << 0, 617 ARM_HWCAP2_A64_SVE2 = 1 << 1, 618 ARM_HWCAP2_A64_SVEAES = 1 << 2, 619 ARM_HWCAP2_A64_SVEPMULL = 1 << 3, 620 ARM_HWCAP2_A64_SVEBITPERM = 1 << 4, 621 ARM_HWCAP2_A64_SVESHA3 = 1 << 5, 622 ARM_HWCAP2_A64_SVESM4 = 1 << 6, 623 ARM_HWCAP2_A64_FLAGM2 = 1 << 7, 624 ARM_HWCAP2_A64_FRINT = 1 << 8, 625 ARM_HWCAP2_A64_SVEI8MM = 1 << 9, 626 ARM_HWCAP2_A64_SVEF32MM = 1 << 10, 627 ARM_HWCAP2_A64_SVEF64MM = 1 << 11, 628 ARM_HWCAP2_A64_SVEBF16 = 1 << 12, 629 ARM_HWCAP2_A64_I8MM = 1 << 13, 630 ARM_HWCAP2_A64_BF16 = 1 << 14, 631 ARM_HWCAP2_A64_DGH = 1 << 15, 632 ARM_HWCAP2_A64_RNG = 1 << 16, 633 ARM_HWCAP2_A64_BTI = 1 << 17, 634 ARM_HWCAP2_A64_MTE = 1 << 18, 635 ARM_HWCAP2_A64_ECV = 1 << 19, 636 ARM_HWCAP2_A64_AFP = 1 << 20, 637 ARM_HWCAP2_A64_RPRES = 1 << 21, 638 ARM_HWCAP2_A64_MTE3 = 1 << 22, 639 ARM_HWCAP2_A64_SME = 1 << 23, 640 ARM_HWCAP2_A64_SME_I16I64 = 1 << 24, 641 ARM_HWCAP2_A64_SME_F64F64 = 1 << 25, 642 ARM_HWCAP2_A64_SME_I8I32 = 1 << 26, 643 ARM_HWCAP2_A64_SME_F16F32 = 1 << 27, 644 ARM_HWCAP2_A64_SME_B16F32 = 1 << 28, 645 ARM_HWCAP2_A64_SME_F32F32 = 1 << 29, 646 ARM_HWCAP2_A64_SME_FA64 = 1 << 30, 647 }; 648 649 #define ELF_HWCAP get_elf_hwcap() 650 #define ELF_HWCAP2 get_elf_hwcap2() 651 652 #define GET_FEATURE_ID(feat, hwcap) \ 653 do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0) 654 655 static uint32_t get_elf_hwcap(void) 656 { 657 ARMCPU *cpu = ARM_CPU(thread_cpu); 658 uint32_t hwcaps = 0; 659 660 hwcaps |= ARM_HWCAP_A64_FP; 661 hwcaps |= ARM_HWCAP_A64_ASIMD; 662 hwcaps |= ARM_HWCAP_A64_CPUID; 663 664 /* probe for the extra features */ 665 666 GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES); 667 GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL); 668 GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1); 669 GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2); 670 GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512); 671 GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32); 672 GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3); 673 GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3); 674 GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4); 675 GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 676 GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS); 677 GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM); 678 GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP); 679 GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA); 680 GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE); 681 GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG); 682 GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM); 683 GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT); 684 GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB); 685 GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM); 686 GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP); 687 GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC); 688 GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC); 689 690 return hwcaps; 691 } 692 693 static uint32_t get_elf_hwcap2(void) 694 { 695 ARMCPU *cpu = ARM_CPU(thread_cpu); 696 uint32_t hwcaps = 0; 697 698 GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP); 699 GET_FEATURE_ID(aa64_sve2, ARM_HWCAP2_A64_SVE2); 700 GET_FEATURE_ID(aa64_sve2_aes, ARM_HWCAP2_A64_SVEAES); 701 GET_FEATURE_ID(aa64_sve2_pmull128, ARM_HWCAP2_A64_SVEPMULL); 702 GET_FEATURE_ID(aa64_sve2_bitperm, ARM_HWCAP2_A64_SVEBITPERM); 703 GET_FEATURE_ID(aa64_sve2_sha3, ARM_HWCAP2_A64_SVESHA3); 704 GET_FEATURE_ID(aa64_sve2_sm4, ARM_HWCAP2_A64_SVESM4); 705 GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2); 706 GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT); 707 GET_FEATURE_ID(aa64_sve_i8mm, ARM_HWCAP2_A64_SVEI8MM); 708 GET_FEATURE_ID(aa64_sve_f32mm, ARM_HWCAP2_A64_SVEF32MM); 709 GET_FEATURE_ID(aa64_sve_f64mm, ARM_HWCAP2_A64_SVEF64MM); 710 GET_FEATURE_ID(aa64_sve_bf16, ARM_HWCAP2_A64_SVEBF16); 711 GET_FEATURE_ID(aa64_i8mm, ARM_HWCAP2_A64_I8MM); 712 GET_FEATURE_ID(aa64_bf16, ARM_HWCAP2_A64_BF16); 713 GET_FEATURE_ID(aa64_rndr, ARM_HWCAP2_A64_RNG); 714 GET_FEATURE_ID(aa64_bti, ARM_HWCAP2_A64_BTI); 715 GET_FEATURE_ID(aa64_mte, ARM_HWCAP2_A64_MTE); 716 GET_FEATURE_ID(aa64_sme, (ARM_HWCAP2_A64_SME | 717 ARM_HWCAP2_A64_SME_F32F32 | 718 ARM_HWCAP2_A64_SME_B16F32 | 719 ARM_HWCAP2_A64_SME_F16F32 | 720 ARM_HWCAP2_A64_SME_I8I32)); 721 GET_FEATURE_ID(aa64_sme_f64f64, ARM_HWCAP2_A64_SME_F64F64); 722 GET_FEATURE_ID(aa64_sme_i16i64, ARM_HWCAP2_A64_SME_I16I64); 723 GET_FEATURE_ID(aa64_sme_fa64, ARM_HWCAP2_A64_SME_FA64); 724 725 return hwcaps; 726 } 727 728 #undef GET_FEATURE_ID 729 730 #endif /* not TARGET_AARCH64 */ 731 #endif /* TARGET_ARM */ 732 733 #ifdef TARGET_SPARC 734 #ifdef TARGET_SPARC64 735 736 #define ELF_START_MMAP 0x80000000 737 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 738 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 739 #ifndef TARGET_ABI32 740 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 741 #else 742 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 743 #endif 744 745 #define ELF_CLASS ELFCLASS64 746 #define ELF_ARCH EM_SPARCV9 747 #else 748 #define ELF_START_MMAP 0x80000000 749 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 750 | HWCAP_SPARC_MULDIV) 751 #define ELF_CLASS ELFCLASS32 752 #define ELF_ARCH EM_SPARC 753 #endif /* TARGET_SPARC64 */ 754 755 static inline void init_thread(struct target_pt_regs *regs, 756 struct image_info *infop) 757 { 758 /* Note that target_cpu_copy_regs does not read psr/tstate. */ 759 regs->pc = infop->entry; 760 regs->npc = regs->pc + 4; 761 regs->y = 0; 762 regs->u_regs[14] = (infop->start_stack - 16 * sizeof(abi_ulong) 763 - TARGET_STACK_BIAS); 764 } 765 #endif /* TARGET_SPARC */ 766 767 #ifdef TARGET_PPC 768 769 #define ELF_MACHINE PPC_ELF_MACHINE 770 #define ELF_START_MMAP 0x80000000 771 772 #if defined(TARGET_PPC64) 773 774 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 775 776 #define ELF_CLASS ELFCLASS64 777 778 #else 779 780 #define ELF_CLASS ELFCLASS32 781 #define EXSTACK_DEFAULT true 782 783 #endif 784 785 #define ELF_ARCH EM_PPC 786 787 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 788 See arch/powerpc/include/asm/cputable.h. */ 789 enum { 790 QEMU_PPC_FEATURE_32 = 0x80000000, 791 QEMU_PPC_FEATURE_64 = 0x40000000, 792 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 793 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 794 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 795 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 796 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 797 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 798 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 799 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 800 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 801 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 802 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 803 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 804 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 805 QEMU_PPC_FEATURE_CELL = 0x00010000, 806 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 807 QEMU_PPC_FEATURE_SMT = 0x00004000, 808 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 809 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 810 QEMU_PPC_FEATURE_PA6T = 0x00000800, 811 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 812 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 813 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 814 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 815 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 816 817 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 818 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 819 820 /* Feature definitions in AT_HWCAP2. */ 821 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 822 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 823 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 824 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 825 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 826 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 827 QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000, 828 QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000, 829 QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */ 830 QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */ 831 QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */ 832 QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */ 833 QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */ 834 QEMU_PPC_FEATURE2_ARCH_3_1 = 0x00040000, /* ISA 3.1 */ 835 QEMU_PPC_FEATURE2_MMA = 0x00020000, /* Matrix-Multiply Assist */ 836 }; 837 838 #define ELF_HWCAP get_elf_hwcap() 839 840 static uint32_t get_elf_hwcap(void) 841 { 842 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 843 uint32_t features = 0; 844 845 /* We don't have to be terribly complete here; the high points are 846 Altivec/FP/SPE support. Anything else is just a bonus. */ 847 #define GET_FEATURE(flag, feature) \ 848 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 849 #define GET_FEATURE2(flags, feature) \ 850 do { \ 851 if ((cpu->env.insns_flags2 & flags) == flags) { \ 852 features |= feature; \ 853 } \ 854 } while (0) 855 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 856 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 857 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 858 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 859 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 860 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 861 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 862 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 863 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 864 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 865 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 866 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 867 QEMU_PPC_FEATURE_ARCH_2_06); 868 #undef GET_FEATURE 869 #undef GET_FEATURE2 870 871 return features; 872 } 873 874 #define ELF_HWCAP2 get_elf_hwcap2() 875 876 static uint32_t get_elf_hwcap2(void) 877 { 878 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 879 uint32_t features = 0; 880 881 #define GET_FEATURE(flag, feature) \ 882 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 883 #define GET_FEATURE2(flag, feature) \ 884 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 885 886 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 887 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 888 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 889 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 | 890 QEMU_PPC_FEATURE2_VEC_CRYPTO); 891 GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 | 892 QEMU_PPC_FEATURE2_DARN | QEMU_PPC_FEATURE2_HAS_IEEE128); 893 GET_FEATURE2(PPC2_ISA310, QEMU_PPC_FEATURE2_ARCH_3_1 | 894 QEMU_PPC_FEATURE2_MMA); 895 896 #undef GET_FEATURE 897 #undef GET_FEATURE2 898 899 return features; 900 } 901 902 /* 903 * The requirements here are: 904 * - keep the final alignment of sp (sp & 0xf) 905 * - make sure the 32-bit value at the first 16 byte aligned position of 906 * AUXV is greater than 16 for glibc compatibility. 907 * AT_IGNOREPPC is used for that. 908 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 909 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 910 */ 911 #define DLINFO_ARCH_ITEMS 5 912 #define ARCH_DLINFO \ 913 do { \ 914 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 915 /* \ 916 * Handle glibc compatibility: these magic entries must \ 917 * be at the lowest addresses in the final auxv. \ 918 */ \ 919 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 920 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 921 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 922 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 923 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 924 } while (0) 925 926 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 927 { 928 _regs->gpr[1] = infop->start_stack; 929 #if defined(TARGET_PPC64) 930 if (get_ppc64_abi(infop) < 2) { 931 uint64_t val; 932 get_user_u64(val, infop->entry + 8); 933 _regs->gpr[2] = val + infop->load_bias; 934 get_user_u64(val, infop->entry); 935 infop->entry = val + infop->load_bias; 936 } else { 937 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 938 } 939 #endif 940 _regs->nip = infop->entry; 941 } 942 943 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 944 #define ELF_NREG 48 945 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 946 947 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 948 { 949 int i; 950 target_ulong ccr = 0; 951 952 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 953 (*regs)[i] = tswapreg(env->gpr[i]); 954 } 955 956 (*regs)[32] = tswapreg(env->nip); 957 (*regs)[33] = tswapreg(env->msr); 958 (*regs)[35] = tswapreg(env->ctr); 959 (*regs)[36] = tswapreg(env->lr); 960 (*regs)[37] = tswapreg(cpu_read_xer(env)); 961 962 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 963 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 964 } 965 (*regs)[38] = tswapreg(ccr); 966 } 967 968 #define USE_ELF_CORE_DUMP 969 #define ELF_EXEC_PAGESIZE 4096 970 971 #endif 972 973 #ifdef TARGET_LOONGARCH64 974 975 #define ELF_START_MMAP 0x80000000 976 977 #define ELF_CLASS ELFCLASS64 978 #define ELF_ARCH EM_LOONGARCH 979 #define EXSTACK_DEFAULT true 980 981 #define elf_check_arch(x) ((x) == EM_LOONGARCH) 982 983 static inline void init_thread(struct target_pt_regs *regs, 984 struct image_info *infop) 985 { 986 /*Set crmd PG,DA = 1,0 */ 987 regs->csr.crmd = 2 << 3; 988 regs->csr.era = infop->entry; 989 regs->regs[3] = infop->start_stack; 990 } 991 992 /* See linux kernel: arch/loongarch/include/asm/elf.h */ 993 #define ELF_NREG 45 994 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 995 996 enum { 997 TARGET_EF_R0 = 0, 998 TARGET_EF_CSR_ERA = TARGET_EF_R0 + 33, 999 TARGET_EF_CSR_BADV = TARGET_EF_R0 + 34, 1000 }; 1001 1002 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1003 const CPULoongArchState *env) 1004 { 1005 int i; 1006 1007 (*regs)[TARGET_EF_R0] = 0; 1008 1009 for (i = 1; i < ARRAY_SIZE(env->gpr); i++) { 1010 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->gpr[i]); 1011 } 1012 1013 (*regs)[TARGET_EF_CSR_ERA] = tswapreg(env->pc); 1014 (*regs)[TARGET_EF_CSR_BADV] = tswapreg(env->CSR_BADV); 1015 } 1016 1017 #define USE_ELF_CORE_DUMP 1018 #define ELF_EXEC_PAGESIZE 4096 1019 1020 #define ELF_HWCAP get_elf_hwcap() 1021 1022 /* See arch/loongarch/include/uapi/asm/hwcap.h */ 1023 enum { 1024 HWCAP_LOONGARCH_CPUCFG = (1 << 0), 1025 HWCAP_LOONGARCH_LAM = (1 << 1), 1026 HWCAP_LOONGARCH_UAL = (1 << 2), 1027 HWCAP_LOONGARCH_FPU = (1 << 3), 1028 HWCAP_LOONGARCH_LSX = (1 << 4), 1029 HWCAP_LOONGARCH_LASX = (1 << 5), 1030 HWCAP_LOONGARCH_CRC32 = (1 << 6), 1031 HWCAP_LOONGARCH_COMPLEX = (1 << 7), 1032 HWCAP_LOONGARCH_CRYPTO = (1 << 8), 1033 HWCAP_LOONGARCH_LVZ = (1 << 9), 1034 HWCAP_LOONGARCH_LBT_X86 = (1 << 10), 1035 HWCAP_LOONGARCH_LBT_ARM = (1 << 11), 1036 HWCAP_LOONGARCH_LBT_MIPS = (1 << 12), 1037 }; 1038 1039 static uint32_t get_elf_hwcap(void) 1040 { 1041 LoongArchCPU *cpu = LOONGARCH_CPU(thread_cpu); 1042 uint32_t hwcaps = 0; 1043 1044 hwcaps |= HWCAP_LOONGARCH_CRC32; 1045 1046 if (FIELD_EX32(cpu->env.cpucfg[1], CPUCFG1, UAL)) { 1047 hwcaps |= HWCAP_LOONGARCH_UAL; 1048 } 1049 1050 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, FP)) { 1051 hwcaps |= HWCAP_LOONGARCH_FPU; 1052 } 1053 1054 if (FIELD_EX32(cpu->env.cpucfg[2], CPUCFG2, LAM)) { 1055 hwcaps |= HWCAP_LOONGARCH_LAM; 1056 } 1057 1058 return hwcaps; 1059 } 1060 1061 #define ELF_PLATFORM "loongarch" 1062 1063 #endif /* TARGET_LOONGARCH64 */ 1064 1065 #ifdef TARGET_MIPS 1066 1067 #define ELF_START_MMAP 0x80000000 1068 1069 #ifdef TARGET_MIPS64 1070 #define ELF_CLASS ELFCLASS64 1071 #else 1072 #define ELF_CLASS ELFCLASS32 1073 #endif 1074 #define ELF_ARCH EM_MIPS 1075 #define EXSTACK_DEFAULT true 1076 1077 #ifdef TARGET_ABI_MIPSN32 1078 #define elf_check_abi(x) ((x) & EF_MIPS_ABI2) 1079 #else 1080 #define elf_check_abi(x) (!((x) & EF_MIPS_ABI2)) 1081 #endif 1082 1083 static inline void init_thread(struct target_pt_regs *regs, 1084 struct image_info *infop) 1085 { 1086 regs->cp0_status = 2 << CP0St_KSU; 1087 regs->cp0_epc = infop->entry; 1088 regs->regs[29] = infop->start_stack; 1089 } 1090 1091 /* See linux kernel: arch/mips/include/asm/elf.h. */ 1092 #define ELF_NREG 45 1093 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1094 1095 /* See linux kernel: arch/mips/include/asm/reg.h. */ 1096 enum { 1097 #ifdef TARGET_MIPS64 1098 TARGET_EF_R0 = 0, 1099 #else 1100 TARGET_EF_R0 = 6, 1101 #endif 1102 TARGET_EF_R26 = TARGET_EF_R0 + 26, 1103 TARGET_EF_R27 = TARGET_EF_R0 + 27, 1104 TARGET_EF_LO = TARGET_EF_R0 + 32, 1105 TARGET_EF_HI = TARGET_EF_R0 + 33, 1106 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 1107 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 1108 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 1109 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 1110 }; 1111 1112 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1113 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 1114 { 1115 int i; 1116 1117 for (i = 0; i < TARGET_EF_R0; i++) { 1118 (*regs)[i] = 0; 1119 } 1120 (*regs)[TARGET_EF_R0] = 0; 1121 1122 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 1123 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 1124 } 1125 1126 (*regs)[TARGET_EF_R26] = 0; 1127 (*regs)[TARGET_EF_R27] = 0; 1128 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 1129 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 1130 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 1131 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 1132 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 1133 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 1134 } 1135 1136 #define USE_ELF_CORE_DUMP 1137 #define ELF_EXEC_PAGESIZE 4096 1138 1139 /* See arch/mips/include/uapi/asm/hwcap.h. */ 1140 enum { 1141 HWCAP_MIPS_R6 = (1 << 0), 1142 HWCAP_MIPS_MSA = (1 << 1), 1143 HWCAP_MIPS_CRC32 = (1 << 2), 1144 HWCAP_MIPS_MIPS16 = (1 << 3), 1145 HWCAP_MIPS_MDMX = (1 << 4), 1146 HWCAP_MIPS_MIPS3D = (1 << 5), 1147 HWCAP_MIPS_SMARTMIPS = (1 << 6), 1148 HWCAP_MIPS_DSP = (1 << 7), 1149 HWCAP_MIPS_DSP2 = (1 << 8), 1150 HWCAP_MIPS_DSP3 = (1 << 9), 1151 HWCAP_MIPS_MIPS16E2 = (1 << 10), 1152 HWCAP_LOONGSON_MMI = (1 << 11), 1153 HWCAP_LOONGSON_EXT = (1 << 12), 1154 HWCAP_LOONGSON_EXT2 = (1 << 13), 1155 HWCAP_LOONGSON_CPUCFG = (1 << 14), 1156 }; 1157 1158 #define ELF_HWCAP get_elf_hwcap() 1159 1160 #define GET_FEATURE_INSN(_flag, _hwcap) \ 1161 do { if (cpu->env.insn_flags & (_flag)) { hwcaps |= _hwcap; } } while (0) 1162 1163 #define GET_FEATURE_REG_SET(_reg, _mask, _hwcap) \ 1164 do { if (cpu->env._reg & (_mask)) { hwcaps |= _hwcap; } } while (0) 1165 1166 #define GET_FEATURE_REG_EQU(_reg, _start, _length, _val, _hwcap) \ 1167 do { \ 1168 if (extract32(cpu->env._reg, (_start), (_length)) == (_val)) { \ 1169 hwcaps |= _hwcap; \ 1170 } \ 1171 } while (0) 1172 1173 static uint32_t get_elf_hwcap(void) 1174 { 1175 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 1176 uint32_t hwcaps = 0; 1177 1178 GET_FEATURE_REG_EQU(CP0_Config0, CP0C0_AR, CP0C0_AR_LENGTH, 1179 2, HWCAP_MIPS_R6); 1180 GET_FEATURE_REG_SET(CP0_Config3, 1 << CP0C3_MSAP, HWCAP_MIPS_MSA); 1181 GET_FEATURE_INSN(ASE_LMMI, HWCAP_LOONGSON_MMI); 1182 GET_FEATURE_INSN(ASE_LEXT, HWCAP_LOONGSON_EXT); 1183 1184 return hwcaps; 1185 } 1186 1187 #undef GET_FEATURE_REG_EQU 1188 #undef GET_FEATURE_REG_SET 1189 #undef GET_FEATURE_INSN 1190 1191 #endif /* TARGET_MIPS */ 1192 1193 #ifdef TARGET_MICROBLAZE 1194 1195 #define ELF_START_MMAP 0x80000000 1196 1197 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 1198 1199 #define ELF_CLASS ELFCLASS32 1200 #define ELF_ARCH EM_MICROBLAZE 1201 1202 static inline void init_thread(struct target_pt_regs *regs, 1203 struct image_info *infop) 1204 { 1205 regs->pc = infop->entry; 1206 regs->r1 = infop->start_stack; 1207 1208 } 1209 1210 #define ELF_EXEC_PAGESIZE 4096 1211 1212 #define USE_ELF_CORE_DUMP 1213 #define ELF_NREG 38 1214 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1215 1216 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1217 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 1218 { 1219 int i, pos = 0; 1220 1221 for (i = 0; i < 32; i++) { 1222 (*regs)[pos++] = tswapreg(env->regs[i]); 1223 } 1224 1225 (*regs)[pos++] = tswapreg(env->pc); 1226 (*regs)[pos++] = tswapreg(mb_cpu_read_msr(env)); 1227 (*regs)[pos++] = 0; 1228 (*regs)[pos++] = tswapreg(env->ear); 1229 (*regs)[pos++] = 0; 1230 (*regs)[pos++] = tswapreg(env->esr); 1231 } 1232 1233 #endif /* TARGET_MICROBLAZE */ 1234 1235 #ifdef TARGET_NIOS2 1236 1237 #define ELF_START_MMAP 0x80000000 1238 1239 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 1240 1241 #define ELF_CLASS ELFCLASS32 1242 #define ELF_ARCH EM_ALTERA_NIOS2 1243 1244 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1245 { 1246 regs->ea = infop->entry; 1247 regs->sp = infop->start_stack; 1248 } 1249 1250 #define LO_COMMPAGE TARGET_PAGE_SIZE 1251 1252 static bool init_guest_commpage(void) 1253 { 1254 static const uint8_t kuser_page[4 + 2 * 64] = { 1255 /* __kuser_helper_version */ 1256 [0x00] = 0x02, 0x00, 0x00, 0x00, 1257 1258 /* __kuser_cmpxchg */ 1259 [0x04] = 0x3a, 0x6c, 0x3b, 0x00, /* trap 16 */ 1260 0x3a, 0x28, 0x00, 0xf8, /* ret */ 1261 1262 /* __kuser_sigtramp */ 1263 [0x44] = 0xc4, 0x22, 0x80, 0x00, /* movi r2, __NR_rt_sigreturn */ 1264 0x3a, 0x68, 0x3b, 0x00, /* trap 0 */ 1265 }; 1266 1267 void *want = g2h_untagged(LO_COMMPAGE & -qemu_host_page_size); 1268 void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE, 1269 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1270 1271 if (addr == MAP_FAILED) { 1272 perror("Allocating guest commpage"); 1273 exit(EXIT_FAILURE); 1274 } 1275 if (addr != want) { 1276 return false; 1277 } 1278 1279 memcpy(addr, kuser_page, sizeof(kuser_page)); 1280 1281 if (mprotect(addr, qemu_host_page_size, PROT_READ)) { 1282 perror("Protecting guest commpage"); 1283 exit(EXIT_FAILURE); 1284 } 1285 1286 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1287 PAGE_READ | PAGE_EXEC | PAGE_VALID); 1288 return true; 1289 } 1290 1291 #define ELF_EXEC_PAGESIZE 4096 1292 1293 #define USE_ELF_CORE_DUMP 1294 #define ELF_NREG 49 1295 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1296 1297 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 1298 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1299 const CPUNios2State *env) 1300 { 1301 int i; 1302 1303 (*regs)[0] = -1; 1304 for (i = 1; i < 8; i++) /* r0-r7 */ 1305 (*regs)[i] = tswapreg(env->regs[i + 7]); 1306 1307 for (i = 8; i < 16; i++) /* r8-r15 */ 1308 (*regs)[i] = tswapreg(env->regs[i - 8]); 1309 1310 for (i = 16; i < 24; i++) /* r16-r23 */ 1311 (*regs)[i] = tswapreg(env->regs[i + 7]); 1312 (*regs)[24] = -1; /* R_ET */ 1313 (*regs)[25] = -1; /* R_BT */ 1314 (*regs)[26] = tswapreg(env->regs[R_GP]); 1315 (*regs)[27] = tswapreg(env->regs[R_SP]); 1316 (*regs)[28] = tswapreg(env->regs[R_FP]); 1317 (*regs)[29] = tswapreg(env->regs[R_EA]); 1318 (*regs)[30] = -1; /* R_SSTATUS */ 1319 (*regs)[31] = tswapreg(env->regs[R_RA]); 1320 1321 (*regs)[32] = tswapreg(env->pc); 1322 1323 (*regs)[33] = -1; /* R_STATUS */ 1324 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1325 1326 for (i = 35; i < 49; i++) /* ... */ 1327 (*regs)[i] = -1; 1328 } 1329 1330 #endif /* TARGET_NIOS2 */ 1331 1332 #ifdef TARGET_OPENRISC 1333 1334 #define ELF_START_MMAP 0x08000000 1335 1336 #define ELF_ARCH EM_OPENRISC 1337 #define ELF_CLASS ELFCLASS32 1338 #define ELF_DATA ELFDATA2MSB 1339 1340 static inline void init_thread(struct target_pt_regs *regs, 1341 struct image_info *infop) 1342 { 1343 regs->pc = infop->entry; 1344 regs->gpr[1] = infop->start_stack; 1345 } 1346 1347 #define USE_ELF_CORE_DUMP 1348 #define ELF_EXEC_PAGESIZE 8192 1349 1350 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1351 #define ELF_NREG 34 /* gprs and pc, sr */ 1352 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1353 1354 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1355 const CPUOpenRISCState *env) 1356 { 1357 int i; 1358 1359 for (i = 0; i < 32; i++) { 1360 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1361 } 1362 (*regs)[32] = tswapreg(env->pc); 1363 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1364 } 1365 #define ELF_HWCAP 0 1366 #define ELF_PLATFORM NULL 1367 1368 #endif /* TARGET_OPENRISC */ 1369 1370 #ifdef TARGET_SH4 1371 1372 #define ELF_START_MMAP 0x80000000 1373 1374 #define ELF_CLASS ELFCLASS32 1375 #define ELF_ARCH EM_SH 1376 1377 static inline void init_thread(struct target_pt_regs *regs, 1378 struct image_info *infop) 1379 { 1380 /* Check other registers XXXXX */ 1381 regs->pc = infop->entry; 1382 regs->regs[15] = infop->start_stack; 1383 } 1384 1385 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1386 #define ELF_NREG 23 1387 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1388 1389 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1390 enum { 1391 TARGET_REG_PC = 16, 1392 TARGET_REG_PR = 17, 1393 TARGET_REG_SR = 18, 1394 TARGET_REG_GBR = 19, 1395 TARGET_REG_MACH = 20, 1396 TARGET_REG_MACL = 21, 1397 TARGET_REG_SYSCALL = 22 1398 }; 1399 1400 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1401 const CPUSH4State *env) 1402 { 1403 int i; 1404 1405 for (i = 0; i < 16; i++) { 1406 (*regs)[i] = tswapreg(env->gregs[i]); 1407 } 1408 1409 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1410 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1411 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1412 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1413 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1414 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1415 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1416 } 1417 1418 #define USE_ELF_CORE_DUMP 1419 #define ELF_EXEC_PAGESIZE 4096 1420 1421 enum { 1422 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1423 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1424 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1425 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1426 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1427 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1428 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1429 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1430 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1431 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1432 }; 1433 1434 #define ELF_HWCAP get_elf_hwcap() 1435 1436 static uint32_t get_elf_hwcap(void) 1437 { 1438 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1439 uint32_t hwcap = 0; 1440 1441 hwcap |= SH_CPU_HAS_FPU; 1442 1443 if (cpu->env.features & SH_FEATURE_SH4A) { 1444 hwcap |= SH_CPU_HAS_LLSC; 1445 } 1446 1447 return hwcap; 1448 } 1449 1450 #endif 1451 1452 #ifdef TARGET_CRIS 1453 1454 #define ELF_START_MMAP 0x80000000 1455 1456 #define ELF_CLASS ELFCLASS32 1457 #define ELF_ARCH EM_CRIS 1458 1459 static inline void init_thread(struct target_pt_regs *regs, 1460 struct image_info *infop) 1461 { 1462 regs->erp = infop->entry; 1463 } 1464 1465 #define ELF_EXEC_PAGESIZE 8192 1466 1467 #endif 1468 1469 #ifdef TARGET_M68K 1470 1471 #define ELF_START_MMAP 0x80000000 1472 1473 #define ELF_CLASS ELFCLASS32 1474 #define ELF_ARCH EM_68K 1475 1476 /* ??? Does this need to do anything? 1477 #define ELF_PLAT_INIT(_r) */ 1478 1479 static inline void init_thread(struct target_pt_regs *regs, 1480 struct image_info *infop) 1481 { 1482 regs->usp = infop->start_stack; 1483 regs->sr = 0; 1484 regs->pc = infop->entry; 1485 } 1486 1487 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1488 #define ELF_NREG 20 1489 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1490 1491 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1492 { 1493 (*regs)[0] = tswapreg(env->dregs[1]); 1494 (*regs)[1] = tswapreg(env->dregs[2]); 1495 (*regs)[2] = tswapreg(env->dregs[3]); 1496 (*regs)[3] = tswapreg(env->dregs[4]); 1497 (*regs)[4] = tswapreg(env->dregs[5]); 1498 (*regs)[5] = tswapreg(env->dregs[6]); 1499 (*regs)[6] = tswapreg(env->dregs[7]); 1500 (*regs)[7] = tswapreg(env->aregs[0]); 1501 (*regs)[8] = tswapreg(env->aregs[1]); 1502 (*regs)[9] = tswapreg(env->aregs[2]); 1503 (*regs)[10] = tswapreg(env->aregs[3]); 1504 (*regs)[11] = tswapreg(env->aregs[4]); 1505 (*regs)[12] = tswapreg(env->aregs[5]); 1506 (*regs)[13] = tswapreg(env->aregs[6]); 1507 (*regs)[14] = tswapreg(env->dregs[0]); 1508 (*regs)[15] = tswapreg(env->aregs[7]); 1509 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1510 (*regs)[17] = tswapreg(env->sr); 1511 (*regs)[18] = tswapreg(env->pc); 1512 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1513 } 1514 1515 #define USE_ELF_CORE_DUMP 1516 #define ELF_EXEC_PAGESIZE 8192 1517 1518 #endif 1519 1520 #ifdef TARGET_ALPHA 1521 1522 #define ELF_START_MMAP (0x30000000000ULL) 1523 1524 #define ELF_CLASS ELFCLASS64 1525 #define ELF_ARCH EM_ALPHA 1526 1527 static inline void init_thread(struct target_pt_regs *regs, 1528 struct image_info *infop) 1529 { 1530 regs->pc = infop->entry; 1531 regs->ps = 8; 1532 regs->usp = infop->start_stack; 1533 } 1534 1535 #define ELF_EXEC_PAGESIZE 8192 1536 1537 #endif /* TARGET_ALPHA */ 1538 1539 #ifdef TARGET_S390X 1540 1541 #define ELF_START_MMAP (0x20000000000ULL) 1542 1543 #define ELF_CLASS ELFCLASS64 1544 #define ELF_DATA ELFDATA2MSB 1545 #define ELF_ARCH EM_S390 1546 1547 #include "elf.h" 1548 1549 #define ELF_HWCAP get_elf_hwcap() 1550 1551 #define GET_FEATURE(_feat, _hwcap) \ 1552 do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0) 1553 1554 static uint32_t get_elf_hwcap(void) 1555 { 1556 /* 1557 * Let's assume we always have esan3 and zarch. 1558 * 31-bit processes can use 64-bit registers (high gprs). 1559 */ 1560 uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS; 1561 1562 GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE); 1563 GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA); 1564 GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP); 1565 GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM); 1566 if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) && 1567 s390_has_feat(S390_FEAT_ETF3_ENH)) { 1568 hwcap |= HWCAP_S390_ETF3EH; 1569 } 1570 GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS); 1571 GET_FEATURE(S390_FEAT_VECTOR_ENH, HWCAP_S390_VXRS_EXT); 1572 1573 return hwcap; 1574 } 1575 1576 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1577 { 1578 regs->psw.addr = infop->entry; 1579 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1580 regs->gprs[15] = infop->start_stack; 1581 } 1582 1583 /* See linux kernel: arch/s390/include/uapi/asm/ptrace.h (s390_regs). */ 1584 #define ELF_NREG 27 1585 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1586 1587 enum { 1588 TARGET_REG_PSWM = 0, 1589 TARGET_REG_PSWA = 1, 1590 TARGET_REG_GPRS = 2, 1591 TARGET_REG_ARS = 18, 1592 TARGET_REG_ORIG_R2 = 26, 1593 }; 1594 1595 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1596 const CPUS390XState *env) 1597 { 1598 int i; 1599 uint32_t *aregs; 1600 1601 (*regs)[TARGET_REG_PSWM] = tswapreg(env->psw.mask); 1602 (*regs)[TARGET_REG_PSWA] = tswapreg(env->psw.addr); 1603 for (i = 0; i < 16; i++) { 1604 (*regs)[TARGET_REG_GPRS + i] = tswapreg(env->regs[i]); 1605 } 1606 aregs = (uint32_t *)&((*regs)[TARGET_REG_ARS]); 1607 for (i = 0; i < 16; i++) { 1608 aregs[i] = tswap32(env->aregs[i]); 1609 } 1610 (*regs)[TARGET_REG_ORIG_R2] = 0; 1611 } 1612 1613 #define USE_ELF_CORE_DUMP 1614 #define ELF_EXEC_PAGESIZE 4096 1615 1616 #endif /* TARGET_S390X */ 1617 1618 #ifdef TARGET_RISCV 1619 1620 #define ELF_START_MMAP 0x80000000 1621 #define ELF_ARCH EM_RISCV 1622 1623 #ifdef TARGET_RISCV32 1624 #define ELF_CLASS ELFCLASS32 1625 #else 1626 #define ELF_CLASS ELFCLASS64 1627 #endif 1628 1629 #define ELF_HWCAP get_elf_hwcap() 1630 1631 static uint32_t get_elf_hwcap(void) 1632 { 1633 #define MISA_BIT(EXT) (1 << (EXT - 'A')) 1634 RISCVCPU *cpu = RISCV_CPU(thread_cpu); 1635 uint32_t mask = MISA_BIT('I') | MISA_BIT('M') | MISA_BIT('A') 1636 | MISA_BIT('F') | MISA_BIT('D') | MISA_BIT('C'); 1637 1638 return cpu->env.misa_ext & mask; 1639 #undef MISA_BIT 1640 } 1641 1642 static inline void init_thread(struct target_pt_regs *regs, 1643 struct image_info *infop) 1644 { 1645 regs->sepc = infop->entry; 1646 regs->sp = infop->start_stack; 1647 } 1648 1649 #define ELF_EXEC_PAGESIZE 4096 1650 1651 #endif /* TARGET_RISCV */ 1652 1653 #ifdef TARGET_HPPA 1654 1655 #define ELF_START_MMAP 0x80000000 1656 #define ELF_CLASS ELFCLASS32 1657 #define ELF_ARCH EM_PARISC 1658 #define ELF_PLATFORM "PARISC" 1659 #define STACK_GROWS_DOWN 0 1660 #define STACK_ALIGNMENT 64 1661 1662 static inline void init_thread(struct target_pt_regs *regs, 1663 struct image_info *infop) 1664 { 1665 regs->iaoq[0] = infop->entry; 1666 regs->iaoq[1] = infop->entry + 4; 1667 regs->gr[23] = 0; 1668 regs->gr[24] = infop->argv; 1669 regs->gr[25] = infop->argc; 1670 /* The top-of-stack contains a linkage buffer. */ 1671 regs->gr[30] = infop->start_stack + 64; 1672 regs->gr[31] = infop->entry; 1673 } 1674 1675 #define LO_COMMPAGE 0 1676 1677 static bool init_guest_commpage(void) 1678 { 1679 void *want = g2h_untagged(LO_COMMPAGE); 1680 void *addr = mmap(want, qemu_host_page_size, PROT_NONE, 1681 MAP_ANONYMOUS | MAP_PRIVATE | MAP_FIXED, -1, 0); 1682 1683 if (addr == MAP_FAILED) { 1684 perror("Allocating guest commpage"); 1685 exit(EXIT_FAILURE); 1686 } 1687 if (addr != want) { 1688 return false; 1689 } 1690 1691 /* 1692 * On Linux, page zero is normally marked execute only + gateway. 1693 * Normal read or write is supposed to fail (thus PROT_NONE above), 1694 * but specific offsets have kernel code mapped to raise permissions 1695 * and implement syscalls. Here, simply mark the page executable. 1696 * Special case the entry points during translation (see do_page_zero). 1697 */ 1698 page_set_flags(LO_COMMPAGE, LO_COMMPAGE + TARGET_PAGE_SIZE, 1699 PAGE_EXEC | PAGE_VALID); 1700 return true; 1701 } 1702 1703 #endif /* TARGET_HPPA */ 1704 1705 #ifdef TARGET_XTENSA 1706 1707 #define ELF_START_MMAP 0x20000000 1708 1709 #define ELF_CLASS ELFCLASS32 1710 #define ELF_ARCH EM_XTENSA 1711 1712 static inline void init_thread(struct target_pt_regs *regs, 1713 struct image_info *infop) 1714 { 1715 regs->windowbase = 0; 1716 regs->windowstart = 1; 1717 regs->areg[1] = infop->start_stack; 1718 regs->pc = infop->entry; 1719 } 1720 1721 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1722 #define ELF_NREG 128 1723 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1724 1725 enum { 1726 TARGET_REG_PC, 1727 TARGET_REG_PS, 1728 TARGET_REG_LBEG, 1729 TARGET_REG_LEND, 1730 TARGET_REG_LCOUNT, 1731 TARGET_REG_SAR, 1732 TARGET_REG_WINDOWSTART, 1733 TARGET_REG_WINDOWBASE, 1734 TARGET_REG_THREADPTR, 1735 TARGET_REG_AR0 = 64, 1736 }; 1737 1738 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1739 const CPUXtensaState *env) 1740 { 1741 unsigned i; 1742 1743 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1744 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1745 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1746 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1747 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1748 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1749 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1750 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1751 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1752 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1753 for (i = 0; i < env->config->nareg; ++i) { 1754 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1755 } 1756 } 1757 1758 #define USE_ELF_CORE_DUMP 1759 #define ELF_EXEC_PAGESIZE 4096 1760 1761 #endif /* TARGET_XTENSA */ 1762 1763 #ifdef TARGET_HEXAGON 1764 1765 #define ELF_START_MMAP 0x20000000 1766 1767 #define ELF_CLASS ELFCLASS32 1768 #define ELF_ARCH EM_HEXAGON 1769 1770 static inline void init_thread(struct target_pt_regs *regs, 1771 struct image_info *infop) 1772 { 1773 regs->sepc = infop->entry; 1774 regs->sp = infop->start_stack; 1775 } 1776 1777 #endif /* TARGET_HEXAGON */ 1778 1779 #ifndef ELF_PLATFORM 1780 #define ELF_PLATFORM (NULL) 1781 #endif 1782 1783 #ifndef ELF_MACHINE 1784 #define ELF_MACHINE ELF_ARCH 1785 #endif 1786 1787 #ifndef elf_check_arch 1788 #define elf_check_arch(x) ((x) == ELF_ARCH) 1789 #endif 1790 1791 #ifndef elf_check_abi 1792 #define elf_check_abi(x) (1) 1793 #endif 1794 1795 #ifndef ELF_HWCAP 1796 #define ELF_HWCAP 0 1797 #endif 1798 1799 #ifndef STACK_GROWS_DOWN 1800 #define STACK_GROWS_DOWN 1 1801 #endif 1802 1803 #ifndef STACK_ALIGNMENT 1804 #define STACK_ALIGNMENT 16 1805 #endif 1806 1807 #ifdef TARGET_ABI32 1808 #undef ELF_CLASS 1809 #define ELF_CLASS ELFCLASS32 1810 #undef bswaptls 1811 #define bswaptls(ptr) bswap32s(ptr) 1812 #endif 1813 1814 #ifndef EXSTACK_DEFAULT 1815 #define EXSTACK_DEFAULT false 1816 #endif 1817 1818 #include "elf.h" 1819 1820 /* We must delay the following stanzas until after "elf.h". */ 1821 #if defined(TARGET_AARCH64) 1822 1823 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1824 const uint32_t *data, 1825 struct image_info *info, 1826 Error **errp) 1827 { 1828 if (pr_type == GNU_PROPERTY_AARCH64_FEATURE_1_AND) { 1829 if (pr_datasz != sizeof(uint32_t)) { 1830 error_setg(errp, "Ill-formed GNU_PROPERTY_AARCH64_FEATURE_1_AND"); 1831 return false; 1832 } 1833 /* We will extract GNU_PROPERTY_AARCH64_FEATURE_1_BTI later. */ 1834 info->note_flags = *data; 1835 } 1836 return true; 1837 } 1838 #define ARCH_USE_GNU_PROPERTY 1 1839 1840 #else 1841 1842 static bool arch_parse_elf_property(uint32_t pr_type, uint32_t pr_datasz, 1843 const uint32_t *data, 1844 struct image_info *info, 1845 Error **errp) 1846 { 1847 g_assert_not_reached(); 1848 } 1849 #define ARCH_USE_GNU_PROPERTY 0 1850 1851 #endif 1852 1853 struct exec 1854 { 1855 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1856 unsigned int a_text; /* length of text, in bytes */ 1857 unsigned int a_data; /* length of data, in bytes */ 1858 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1859 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1860 unsigned int a_entry; /* start address */ 1861 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1862 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1863 }; 1864 1865 1866 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1867 #define OMAGIC 0407 1868 #define NMAGIC 0410 1869 #define ZMAGIC 0413 1870 #define QMAGIC 0314 1871 1872 /* Necessary parameters */ 1873 #define TARGET_ELF_EXEC_PAGESIZE \ 1874 (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \ 1875 TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE)) 1876 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE) 1877 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1878 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1879 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1880 1881 #define DLINFO_ITEMS 16 1882 1883 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1884 { 1885 memcpy(to, from, n); 1886 } 1887 1888 #ifdef BSWAP_NEEDED 1889 static void bswap_ehdr(struct elfhdr *ehdr) 1890 { 1891 bswap16s(&ehdr->e_type); /* Object file type */ 1892 bswap16s(&ehdr->e_machine); /* Architecture */ 1893 bswap32s(&ehdr->e_version); /* Object file version */ 1894 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1895 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1896 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1897 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1898 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1899 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1900 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1901 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1902 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1903 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1904 } 1905 1906 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1907 { 1908 int i; 1909 for (i = 0; i < phnum; ++i, ++phdr) { 1910 bswap32s(&phdr->p_type); /* Segment type */ 1911 bswap32s(&phdr->p_flags); /* Segment flags */ 1912 bswaptls(&phdr->p_offset); /* Segment file offset */ 1913 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1914 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1915 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1916 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1917 bswaptls(&phdr->p_align); /* Segment alignment */ 1918 } 1919 } 1920 1921 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1922 { 1923 int i; 1924 for (i = 0; i < shnum; ++i, ++shdr) { 1925 bswap32s(&shdr->sh_name); 1926 bswap32s(&shdr->sh_type); 1927 bswaptls(&shdr->sh_flags); 1928 bswaptls(&shdr->sh_addr); 1929 bswaptls(&shdr->sh_offset); 1930 bswaptls(&shdr->sh_size); 1931 bswap32s(&shdr->sh_link); 1932 bswap32s(&shdr->sh_info); 1933 bswaptls(&shdr->sh_addralign); 1934 bswaptls(&shdr->sh_entsize); 1935 } 1936 } 1937 1938 static void bswap_sym(struct elf_sym *sym) 1939 { 1940 bswap32s(&sym->st_name); 1941 bswaptls(&sym->st_value); 1942 bswaptls(&sym->st_size); 1943 bswap16s(&sym->st_shndx); 1944 } 1945 1946 #ifdef TARGET_MIPS 1947 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) 1948 { 1949 bswap16s(&abiflags->version); 1950 bswap32s(&abiflags->ases); 1951 bswap32s(&abiflags->isa_ext); 1952 bswap32s(&abiflags->flags1); 1953 bswap32s(&abiflags->flags2); 1954 } 1955 #endif 1956 #else 1957 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1958 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1959 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1960 static inline void bswap_sym(struct elf_sym *sym) { } 1961 #ifdef TARGET_MIPS 1962 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { } 1963 #endif 1964 #endif 1965 1966 #ifdef USE_ELF_CORE_DUMP 1967 static int elf_core_dump(int, const CPUArchState *); 1968 #endif /* USE_ELF_CORE_DUMP */ 1969 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1970 1971 /* Verify the portions of EHDR within E_IDENT for the target. 1972 This can be performed before bswapping the entire header. */ 1973 static bool elf_check_ident(struct elfhdr *ehdr) 1974 { 1975 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1976 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1977 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1978 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1979 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1980 && ehdr->e_ident[EI_DATA] == ELF_DATA 1981 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1982 } 1983 1984 /* Verify the portions of EHDR outside of E_IDENT for the target. 1985 This has to wait until after bswapping the header. */ 1986 static bool elf_check_ehdr(struct elfhdr *ehdr) 1987 { 1988 return (elf_check_arch(ehdr->e_machine) 1989 && elf_check_abi(ehdr->e_flags) 1990 && ehdr->e_ehsize == sizeof(struct elfhdr) 1991 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1992 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1993 } 1994 1995 /* 1996 * 'copy_elf_strings()' copies argument/envelope strings from user 1997 * memory to free pages in kernel mem. These are in a format ready 1998 * to be put directly into the top of new user memory. 1999 * 2000 */ 2001 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 2002 abi_ulong p, abi_ulong stack_limit) 2003 { 2004 char *tmp; 2005 int len, i; 2006 abi_ulong top = p; 2007 2008 if (!p) { 2009 return 0; /* bullet-proofing */ 2010 } 2011 2012 if (STACK_GROWS_DOWN) { 2013 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 2014 for (i = argc - 1; i >= 0; --i) { 2015 tmp = argv[i]; 2016 if (!tmp) { 2017 fprintf(stderr, "VFS: argc is wrong"); 2018 exit(-1); 2019 } 2020 len = strlen(tmp) + 1; 2021 tmp += len; 2022 2023 if (len > (p - stack_limit)) { 2024 return 0; 2025 } 2026 while (len) { 2027 int bytes_to_copy = (len > offset) ? offset : len; 2028 tmp -= bytes_to_copy; 2029 p -= bytes_to_copy; 2030 offset -= bytes_to_copy; 2031 len -= bytes_to_copy; 2032 2033 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 2034 2035 if (offset == 0) { 2036 memcpy_to_target(p, scratch, top - p); 2037 top = p; 2038 offset = TARGET_PAGE_SIZE; 2039 } 2040 } 2041 } 2042 if (p != top) { 2043 memcpy_to_target(p, scratch + offset, top - p); 2044 } 2045 } else { 2046 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 2047 for (i = 0; i < argc; ++i) { 2048 tmp = argv[i]; 2049 if (!tmp) { 2050 fprintf(stderr, "VFS: argc is wrong"); 2051 exit(-1); 2052 } 2053 len = strlen(tmp) + 1; 2054 if (len > (stack_limit - p)) { 2055 return 0; 2056 } 2057 while (len) { 2058 int bytes_to_copy = (len > remaining) ? remaining : len; 2059 2060 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 2061 2062 tmp += bytes_to_copy; 2063 remaining -= bytes_to_copy; 2064 p += bytes_to_copy; 2065 len -= bytes_to_copy; 2066 2067 if (remaining == 0) { 2068 memcpy_to_target(top, scratch, p - top); 2069 top = p; 2070 remaining = TARGET_PAGE_SIZE; 2071 } 2072 } 2073 } 2074 if (p != top) { 2075 memcpy_to_target(top, scratch, p - top); 2076 } 2077 } 2078 2079 return p; 2080 } 2081 2082 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 2083 * argument/environment space. Newer kernels (>2.6.33) allow more, 2084 * dependent on stack size, but guarantee at least 32 pages for 2085 * backwards compatibility. 2086 */ 2087 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 2088 2089 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 2090 struct image_info *info) 2091 { 2092 abi_ulong size, error, guard; 2093 int prot; 2094 2095 size = guest_stack_size; 2096 if (size < STACK_LOWER_LIMIT) { 2097 size = STACK_LOWER_LIMIT; 2098 } 2099 guard = TARGET_PAGE_SIZE; 2100 if (guard < qemu_real_host_page_size()) { 2101 guard = qemu_real_host_page_size(); 2102 } 2103 2104 prot = PROT_READ | PROT_WRITE; 2105 if (info->exec_stack) { 2106 prot |= PROT_EXEC; 2107 } 2108 error = target_mmap(0, size + guard, prot, 2109 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2110 if (error == -1) { 2111 perror("mmap stack"); 2112 exit(-1); 2113 } 2114 2115 /* We reserve one extra page at the top of the stack as guard. */ 2116 if (STACK_GROWS_DOWN) { 2117 target_mprotect(error, guard, PROT_NONE); 2118 info->stack_limit = error + guard; 2119 return info->stack_limit + size - sizeof(void *); 2120 } else { 2121 target_mprotect(error + size, guard, PROT_NONE); 2122 info->stack_limit = error + size; 2123 return error; 2124 } 2125 } 2126 2127 /* Map and zero the bss. We need to explicitly zero any fractional pages 2128 after the data section (i.e. bss). */ 2129 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 2130 { 2131 uintptr_t host_start, host_map_start, host_end; 2132 2133 last_bss = TARGET_PAGE_ALIGN(last_bss); 2134 2135 /* ??? There is confusion between qemu_real_host_page_size and 2136 qemu_host_page_size here and elsewhere in target_mmap, which 2137 may lead to the end of the data section mapping from the file 2138 not being mapped. At least there was an explicit test and 2139 comment for that here, suggesting that "the file size must 2140 be known". The comment probably pre-dates the introduction 2141 of the fstat system call in target_mmap which does in fact 2142 find out the size. What isn't clear is if the workaround 2143 here is still actually needed. For now, continue with it, 2144 but merge it with the "normal" mmap that would allocate the bss. */ 2145 2146 host_start = (uintptr_t) g2h_untagged(elf_bss); 2147 host_end = (uintptr_t) g2h_untagged(last_bss); 2148 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 2149 2150 if (host_map_start < host_end) { 2151 void *p = mmap((void *)host_map_start, host_end - host_map_start, 2152 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2153 if (p == MAP_FAILED) { 2154 perror("cannot mmap brk"); 2155 exit(-1); 2156 } 2157 } 2158 2159 /* Ensure that the bss page(s) are valid */ 2160 if ((page_get_flags(last_bss-1) & prot) != prot) { 2161 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 2162 } 2163 2164 if (host_start < host_map_start) { 2165 memset((void *)host_start, 0, host_map_start - host_start); 2166 } 2167 } 2168 2169 #ifdef TARGET_ARM 2170 static int elf_is_fdpic(struct elfhdr *exec) 2171 { 2172 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 2173 } 2174 #else 2175 /* Default implementation, always false. */ 2176 static int elf_is_fdpic(struct elfhdr *exec) 2177 { 2178 return 0; 2179 } 2180 #endif 2181 2182 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 2183 { 2184 uint16_t n; 2185 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 2186 2187 /* elf32_fdpic_loadseg */ 2188 n = info->nsegs; 2189 while (n--) { 2190 sp -= 12; 2191 put_user_u32(loadsegs[n].addr, sp+0); 2192 put_user_u32(loadsegs[n].p_vaddr, sp+4); 2193 put_user_u32(loadsegs[n].p_memsz, sp+8); 2194 } 2195 2196 /* elf32_fdpic_loadmap */ 2197 sp -= 4; 2198 put_user_u16(0, sp+0); /* version */ 2199 put_user_u16(info->nsegs, sp+2); /* nsegs */ 2200 2201 info->personality = PER_LINUX_FDPIC; 2202 info->loadmap_addr = sp; 2203 2204 return sp; 2205 } 2206 2207 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 2208 struct elfhdr *exec, 2209 struct image_info *info, 2210 struct image_info *interp_info) 2211 { 2212 abi_ulong sp; 2213 abi_ulong u_argc, u_argv, u_envp, u_auxv; 2214 int size; 2215 int i; 2216 abi_ulong u_rand_bytes; 2217 uint8_t k_rand_bytes[16]; 2218 abi_ulong u_platform; 2219 const char *k_platform; 2220 const int n = sizeof(elf_addr_t); 2221 2222 sp = p; 2223 2224 /* Needs to be before we load the env/argc/... */ 2225 if (elf_is_fdpic(exec)) { 2226 /* Need 4 byte alignment for these structs */ 2227 sp &= ~3; 2228 sp = loader_build_fdpic_loadmap(info, sp); 2229 info->other_info = interp_info; 2230 if (interp_info) { 2231 interp_info->other_info = info; 2232 sp = loader_build_fdpic_loadmap(interp_info, sp); 2233 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 2234 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 2235 } else { 2236 info->interpreter_loadmap_addr = 0; 2237 info->interpreter_pt_dynamic_addr = 0; 2238 } 2239 } 2240 2241 u_platform = 0; 2242 k_platform = ELF_PLATFORM; 2243 if (k_platform) { 2244 size_t len = strlen(k_platform) + 1; 2245 if (STACK_GROWS_DOWN) { 2246 sp -= (len + n - 1) & ~(n - 1); 2247 u_platform = sp; 2248 /* FIXME - check return value of memcpy_to_target() for failure */ 2249 memcpy_to_target(sp, k_platform, len); 2250 } else { 2251 memcpy_to_target(sp, k_platform, len); 2252 u_platform = sp; 2253 sp += len + 1; 2254 } 2255 } 2256 2257 /* Provide 16 byte alignment for the PRNG, and basic alignment for 2258 * the argv and envp pointers. 2259 */ 2260 if (STACK_GROWS_DOWN) { 2261 sp = QEMU_ALIGN_DOWN(sp, 16); 2262 } else { 2263 sp = QEMU_ALIGN_UP(sp, 16); 2264 } 2265 2266 /* 2267 * Generate 16 random bytes for userspace PRNG seeding. 2268 */ 2269 qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes)); 2270 if (STACK_GROWS_DOWN) { 2271 sp -= 16; 2272 u_rand_bytes = sp; 2273 /* FIXME - check return value of memcpy_to_target() for failure */ 2274 memcpy_to_target(sp, k_rand_bytes, 16); 2275 } else { 2276 memcpy_to_target(sp, k_rand_bytes, 16); 2277 u_rand_bytes = sp; 2278 sp += 16; 2279 } 2280 2281 size = (DLINFO_ITEMS + 1) * 2; 2282 if (k_platform) 2283 size += 2; 2284 #ifdef DLINFO_ARCH_ITEMS 2285 size += DLINFO_ARCH_ITEMS * 2; 2286 #endif 2287 #ifdef ELF_HWCAP2 2288 size += 2; 2289 #endif 2290 info->auxv_len = size * n; 2291 2292 size += envc + argc + 2; 2293 size += 1; /* argc itself */ 2294 size *= n; 2295 2296 /* Allocate space and finalize stack alignment for entry now. */ 2297 if (STACK_GROWS_DOWN) { 2298 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 2299 sp = u_argc; 2300 } else { 2301 u_argc = sp; 2302 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 2303 } 2304 2305 u_argv = u_argc + n; 2306 u_envp = u_argv + (argc + 1) * n; 2307 u_auxv = u_envp + (envc + 1) * n; 2308 info->saved_auxv = u_auxv; 2309 info->argc = argc; 2310 info->envc = envc; 2311 info->argv = u_argv; 2312 info->envp = u_envp; 2313 2314 /* This is correct because Linux defines 2315 * elf_addr_t as Elf32_Off / Elf64_Off 2316 */ 2317 #define NEW_AUX_ENT(id, val) do { \ 2318 put_user_ual(id, u_auxv); u_auxv += n; \ 2319 put_user_ual(val, u_auxv); u_auxv += n; \ 2320 } while(0) 2321 2322 #ifdef ARCH_DLINFO 2323 /* 2324 * ARCH_DLINFO must come first so platform specific code can enforce 2325 * special alignment requirements on the AUXV if necessary (eg. PPC). 2326 */ 2327 ARCH_DLINFO; 2328 #endif 2329 /* There must be exactly DLINFO_ITEMS entries here, or the assert 2330 * on info->auxv_len will trigger. 2331 */ 2332 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 2333 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 2334 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 2335 if ((info->alignment & ~qemu_host_page_mask) != 0) { 2336 /* Target doesn't support host page size alignment */ 2337 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE)); 2338 } else { 2339 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, 2340 qemu_host_page_size))); 2341 } 2342 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 2343 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 2344 NEW_AUX_ENT(AT_ENTRY, info->entry); 2345 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 2346 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 2347 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 2348 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 2349 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 2350 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 2351 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 2352 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 2353 NEW_AUX_ENT(AT_EXECFN, info->file_string); 2354 2355 #ifdef ELF_HWCAP2 2356 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 2357 #endif 2358 2359 if (u_platform) { 2360 NEW_AUX_ENT(AT_PLATFORM, u_platform); 2361 } 2362 NEW_AUX_ENT (AT_NULL, 0); 2363 #undef NEW_AUX_ENT 2364 2365 /* Check that our initial calculation of the auxv length matches how much 2366 * we actually put into it. 2367 */ 2368 assert(info->auxv_len == u_auxv - info->saved_auxv); 2369 2370 put_user_ual(argc, u_argc); 2371 2372 p = info->arg_strings; 2373 for (i = 0; i < argc; ++i) { 2374 put_user_ual(p, u_argv); 2375 u_argv += n; 2376 p += target_strlen(p) + 1; 2377 } 2378 put_user_ual(0, u_argv); 2379 2380 p = info->env_strings; 2381 for (i = 0; i < envc; ++i) { 2382 put_user_ual(p, u_envp); 2383 u_envp += n; 2384 p += target_strlen(p) + 1; 2385 } 2386 put_user_ual(0, u_envp); 2387 2388 return sp; 2389 } 2390 2391 #if defined(HI_COMMPAGE) 2392 #define LO_COMMPAGE -1 2393 #elif defined(LO_COMMPAGE) 2394 #define HI_COMMPAGE 0 2395 #else 2396 #define HI_COMMPAGE 0 2397 #define LO_COMMPAGE -1 2398 #ifndef INIT_GUEST_COMMPAGE 2399 #define init_guest_commpage() true 2400 #endif 2401 #endif 2402 2403 static void pgb_fail_in_use(const char *image_name) 2404 { 2405 error_report("%s: requires virtual address space that is in use " 2406 "(omit the -B option or choose a different value)", 2407 image_name); 2408 exit(EXIT_FAILURE); 2409 } 2410 2411 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr, 2412 abi_ulong guest_hiaddr, long align) 2413 { 2414 const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2415 void *addr, *test; 2416 2417 if (!QEMU_IS_ALIGNED(guest_base, align)) { 2418 fprintf(stderr, "Requested guest base %p does not satisfy " 2419 "host minimum alignment (0x%lx)\n", 2420 (void *)guest_base, align); 2421 exit(EXIT_FAILURE); 2422 } 2423 2424 /* Sanity check the guest binary. */ 2425 if (reserved_va) { 2426 if (guest_hiaddr > reserved_va) { 2427 error_report("%s: requires more than reserved virtual " 2428 "address space (0x%" PRIx64 " > 0x%lx)", 2429 image_name, (uint64_t)guest_hiaddr, reserved_va); 2430 exit(EXIT_FAILURE); 2431 } 2432 } else { 2433 #if HOST_LONG_BITS < TARGET_ABI_BITS 2434 if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) { 2435 error_report("%s: requires more virtual address space " 2436 "than the host can provide (0x%" PRIx64 ")", 2437 image_name, (uint64_t)guest_hiaddr - guest_base); 2438 exit(EXIT_FAILURE); 2439 } 2440 #endif 2441 } 2442 2443 /* 2444 * Expand the allocation to the entire reserved_va. 2445 * Exclude the mmap_min_addr hole. 2446 */ 2447 if (reserved_va) { 2448 guest_loaddr = (guest_base >= mmap_min_addr ? 0 2449 : mmap_min_addr - guest_base); 2450 guest_hiaddr = reserved_va; 2451 } 2452 2453 /* Reserve the address space for the binary, or reserved_va. */ 2454 test = g2h_untagged(guest_loaddr); 2455 addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0); 2456 if (test != addr) { 2457 pgb_fail_in_use(image_name); 2458 } 2459 qemu_log_mask(CPU_LOG_PAGE, 2460 "%s: base @ %p for " TARGET_ABI_FMT_ld " bytes\n", 2461 __func__, addr, guest_hiaddr - guest_loaddr); 2462 } 2463 2464 /** 2465 * pgd_find_hole_fallback: potential mmap address 2466 * @guest_size: size of available space 2467 * @brk: location of break 2468 * @align: memory alignment 2469 * 2470 * This is a fallback method for finding a hole in the host address 2471 * space if we don't have the benefit of being able to access 2472 * /proc/self/map. It can potentially take a very long time as we can 2473 * only dumbly iterate up the host address space seeing if the 2474 * allocation would work. 2475 */ 2476 static uintptr_t pgd_find_hole_fallback(uintptr_t guest_size, uintptr_t brk, 2477 long align, uintptr_t offset) 2478 { 2479 uintptr_t base; 2480 2481 /* Start (aligned) at the bottom and work our way up */ 2482 base = ROUND_UP(mmap_min_addr, align); 2483 2484 while (true) { 2485 uintptr_t align_start, end; 2486 align_start = ROUND_UP(base, align); 2487 end = align_start + guest_size + offset; 2488 2489 /* if brk is anywhere in the range give ourselves some room to grow. */ 2490 if (align_start <= brk && brk < end) { 2491 base = brk + (16 * MiB); 2492 continue; 2493 } else if (align_start + guest_size < align_start) { 2494 /* we have run out of space */ 2495 return -1; 2496 } else { 2497 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE | 2498 MAP_FIXED_NOREPLACE; 2499 void * mmap_start = mmap((void *) align_start, guest_size, 2500 PROT_NONE, flags, -1, 0); 2501 if (mmap_start != MAP_FAILED) { 2502 munmap(mmap_start, guest_size); 2503 if (mmap_start == (void *) align_start) { 2504 qemu_log_mask(CPU_LOG_PAGE, 2505 "%s: base @ %p for %" PRIdPTR" bytes\n", 2506 __func__, mmap_start + offset, guest_size); 2507 return (uintptr_t) mmap_start + offset; 2508 } 2509 } 2510 base += qemu_host_page_size; 2511 } 2512 } 2513 } 2514 2515 /* Return value for guest_base, or -1 if no hole found. */ 2516 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size, 2517 long align, uintptr_t offset) 2518 { 2519 GSList *maps, *iter; 2520 uintptr_t this_start, this_end, next_start, brk; 2521 intptr_t ret = -1; 2522 2523 assert(QEMU_IS_ALIGNED(guest_loaddr, align)); 2524 2525 maps = read_self_maps(); 2526 2527 /* Read brk after we've read the maps, which will malloc. */ 2528 brk = (uintptr_t)sbrk(0); 2529 2530 if (!maps) { 2531 return pgd_find_hole_fallback(guest_size, brk, align, offset); 2532 } 2533 2534 /* The first hole is before the first map entry. */ 2535 this_start = mmap_min_addr; 2536 2537 for (iter = maps; iter; 2538 this_start = next_start, iter = g_slist_next(iter)) { 2539 uintptr_t align_start, hole_size; 2540 2541 this_end = ((MapInfo *)iter->data)->start; 2542 next_start = ((MapInfo *)iter->data)->end; 2543 align_start = ROUND_UP(this_start + offset, align); 2544 2545 /* Skip holes that are too small. */ 2546 if (align_start >= this_end) { 2547 continue; 2548 } 2549 hole_size = this_end - align_start; 2550 if (hole_size < guest_size) { 2551 continue; 2552 } 2553 2554 /* If this hole contains brk, give ourselves some room to grow. */ 2555 if (this_start <= brk && brk < this_end) { 2556 hole_size -= guest_size; 2557 if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) { 2558 align_start += 1 * GiB; 2559 } else if (hole_size >= 16 * MiB) { 2560 align_start += 16 * MiB; 2561 } else { 2562 align_start = (this_end - guest_size) & -align; 2563 if (align_start < this_start) { 2564 continue; 2565 } 2566 } 2567 } 2568 2569 /* Record the lowest successful match. */ 2570 if (ret < 0) { 2571 ret = align_start; 2572 } 2573 /* If this hole contains the identity map, select it. */ 2574 if (align_start <= guest_loaddr && 2575 guest_loaddr + guest_size <= this_end) { 2576 ret = 0; 2577 } 2578 /* If this hole ends above the identity map, stop looking. */ 2579 if (this_end >= guest_loaddr) { 2580 break; 2581 } 2582 } 2583 free_self_maps(maps); 2584 2585 if (ret != -1) { 2586 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %" PRIxPTR 2587 " for %" PRIuPTR " bytes\n", 2588 __func__, ret, guest_size); 2589 } 2590 2591 return ret; 2592 } 2593 2594 static void pgb_static(const char *image_name, abi_ulong orig_loaddr, 2595 abi_ulong orig_hiaddr, long align) 2596 { 2597 uintptr_t loaddr = orig_loaddr; 2598 uintptr_t hiaddr = orig_hiaddr; 2599 uintptr_t offset = 0; 2600 uintptr_t addr; 2601 2602 if (hiaddr != orig_hiaddr) { 2603 error_report("%s: requires virtual address space that the " 2604 "host cannot provide (0x%" PRIx64 ")", 2605 image_name, (uint64_t)orig_hiaddr); 2606 exit(EXIT_FAILURE); 2607 } 2608 2609 loaddr &= -align; 2610 if (HI_COMMPAGE) { 2611 /* 2612 * Extend the allocation to include the commpage. 2613 * For a 64-bit host, this is just 4GiB; for a 32-bit host we 2614 * need to ensure there is space bellow the guest_base so we 2615 * can map the commpage in the place needed when the address 2616 * arithmetic wraps around. 2617 */ 2618 if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) { 2619 hiaddr = (uintptr_t) 4 << 30; 2620 } else { 2621 offset = -(HI_COMMPAGE & -align); 2622 } 2623 } else if (LO_COMMPAGE != -1) { 2624 loaddr = MIN(loaddr, LO_COMMPAGE & -align); 2625 } 2626 2627 addr = pgb_find_hole(loaddr, hiaddr - loaddr, align, offset); 2628 if (addr == -1) { 2629 /* 2630 * If HI_COMMPAGE, there *might* be a non-consecutive allocation 2631 * that can satisfy both. But as the normal arm32 link base address 2632 * is ~32k, and we extend down to include the commpage, making the 2633 * overhead only ~96k, this is unlikely. 2634 */ 2635 error_report("%s: Unable to allocate %#zx bytes of " 2636 "virtual address space", image_name, 2637 (size_t)(hiaddr - loaddr)); 2638 exit(EXIT_FAILURE); 2639 } 2640 2641 guest_base = addr; 2642 2643 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %"PRIxPTR" for %" PRIuPTR" bytes\n", 2644 __func__, addr, hiaddr - loaddr); 2645 } 2646 2647 static void pgb_dynamic(const char *image_name, long align) 2648 { 2649 /* 2650 * The executable is dynamic and does not require a fixed address. 2651 * All we need is a commpage that satisfies align. 2652 * If we do not need a commpage, leave guest_base == 0. 2653 */ 2654 if (HI_COMMPAGE) { 2655 uintptr_t addr, commpage; 2656 2657 /* 64-bit hosts should have used reserved_va. */ 2658 assert(sizeof(uintptr_t) == 4); 2659 2660 /* 2661 * By putting the commpage at the first hole, that puts guest_base 2662 * just above that, and maximises the positive guest addresses. 2663 */ 2664 commpage = HI_COMMPAGE & -align; 2665 addr = pgb_find_hole(commpage, -commpage, align, 0); 2666 assert(addr != -1); 2667 guest_base = addr; 2668 } 2669 } 2670 2671 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr, 2672 abi_ulong guest_hiaddr, long align) 2673 { 2674 int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 2675 void *addr, *test; 2676 2677 if (guest_hiaddr > reserved_va) { 2678 error_report("%s: requires more than reserved virtual " 2679 "address space (0x%" PRIx64 " > 0x%lx)", 2680 image_name, (uint64_t)guest_hiaddr, reserved_va); 2681 exit(EXIT_FAILURE); 2682 } 2683 2684 /* Widen the "image" to the entire reserved address space. */ 2685 pgb_static(image_name, 0, reserved_va, align); 2686 2687 /* osdep.h defines this as 0 if it's missing */ 2688 flags |= MAP_FIXED_NOREPLACE; 2689 2690 /* Reserve the memory on the host. */ 2691 assert(guest_base != 0); 2692 test = g2h_untagged(0); 2693 addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0); 2694 if (addr == MAP_FAILED || addr != test) { 2695 error_report("Unable to reserve 0x%lx bytes of virtual address " 2696 "space at %p (%s) for use as guest address space (check your " 2697 "virtual memory ulimit setting, min_mmap_addr or reserve less " 2698 "using -R option)", reserved_va, test, strerror(errno)); 2699 exit(EXIT_FAILURE); 2700 } 2701 2702 qemu_log_mask(CPU_LOG_PAGE, "%s: base @ %p for %lu bytes\n", 2703 __func__, addr, reserved_va); 2704 } 2705 2706 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr, 2707 abi_ulong guest_hiaddr) 2708 { 2709 /* In order to use host shmat, we must be able to honor SHMLBA. */ 2710 uintptr_t align = MAX(SHMLBA, qemu_host_page_size); 2711 2712 if (have_guest_base) { 2713 pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align); 2714 } else if (reserved_va) { 2715 pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align); 2716 } else if (guest_loaddr) { 2717 pgb_static(image_name, guest_loaddr, guest_hiaddr, align); 2718 } else { 2719 pgb_dynamic(image_name, align); 2720 } 2721 2722 /* Reserve and initialize the commpage. */ 2723 if (!init_guest_commpage()) { 2724 /* 2725 * With have_guest_base, the user has selected the address and 2726 * we are trying to work with that. Otherwise, we have selected 2727 * free space and init_guest_commpage must succeeded. 2728 */ 2729 assert(have_guest_base); 2730 pgb_fail_in_use(image_name); 2731 } 2732 2733 assert(QEMU_IS_ALIGNED(guest_base, align)); 2734 qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space " 2735 "@ 0x%" PRIx64 "\n", (uint64_t)guest_base); 2736 } 2737 2738 enum { 2739 /* The string "GNU\0" as a magic number. */ 2740 GNU0_MAGIC = const_le32('G' | 'N' << 8 | 'U' << 16), 2741 NOTE_DATA_SZ = 1 * KiB, 2742 NOTE_NAME_SZ = 4, 2743 ELF_GNU_PROPERTY_ALIGN = ELF_CLASS == ELFCLASS32 ? 4 : 8, 2744 }; 2745 2746 /* 2747 * Process a single gnu_property entry. 2748 * Return false for error. 2749 */ 2750 static bool parse_elf_property(const uint32_t *data, int *off, int datasz, 2751 struct image_info *info, bool have_prev_type, 2752 uint32_t *prev_type, Error **errp) 2753 { 2754 uint32_t pr_type, pr_datasz, step; 2755 2756 if (*off > datasz || !QEMU_IS_ALIGNED(*off, ELF_GNU_PROPERTY_ALIGN)) { 2757 goto error_data; 2758 } 2759 datasz -= *off; 2760 data += *off / sizeof(uint32_t); 2761 2762 if (datasz < 2 * sizeof(uint32_t)) { 2763 goto error_data; 2764 } 2765 pr_type = data[0]; 2766 pr_datasz = data[1]; 2767 data += 2; 2768 datasz -= 2 * sizeof(uint32_t); 2769 step = ROUND_UP(pr_datasz, ELF_GNU_PROPERTY_ALIGN); 2770 if (step > datasz) { 2771 goto error_data; 2772 } 2773 2774 /* Properties are supposed to be unique and sorted on pr_type. */ 2775 if (have_prev_type && pr_type <= *prev_type) { 2776 if (pr_type == *prev_type) { 2777 error_setg(errp, "Duplicate property in PT_GNU_PROPERTY"); 2778 } else { 2779 error_setg(errp, "Unsorted property in PT_GNU_PROPERTY"); 2780 } 2781 return false; 2782 } 2783 *prev_type = pr_type; 2784 2785 if (!arch_parse_elf_property(pr_type, pr_datasz, data, info, errp)) { 2786 return false; 2787 } 2788 2789 *off += 2 * sizeof(uint32_t) + step; 2790 return true; 2791 2792 error_data: 2793 error_setg(errp, "Ill-formed property in PT_GNU_PROPERTY"); 2794 return false; 2795 } 2796 2797 /* Process NT_GNU_PROPERTY_TYPE_0. */ 2798 static bool parse_elf_properties(int image_fd, 2799 struct image_info *info, 2800 const struct elf_phdr *phdr, 2801 char bprm_buf[BPRM_BUF_SIZE], 2802 Error **errp) 2803 { 2804 union { 2805 struct elf_note nhdr; 2806 uint32_t data[NOTE_DATA_SZ / sizeof(uint32_t)]; 2807 } note; 2808 2809 int n, off, datasz; 2810 bool have_prev_type; 2811 uint32_t prev_type; 2812 2813 /* Unless the arch requires properties, ignore them. */ 2814 if (!ARCH_USE_GNU_PROPERTY) { 2815 return true; 2816 } 2817 2818 /* If the properties are crazy large, that's too bad. */ 2819 n = phdr->p_filesz; 2820 if (n > sizeof(note)) { 2821 error_setg(errp, "PT_GNU_PROPERTY too large"); 2822 return false; 2823 } 2824 if (n < sizeof(note.nhdr)) { 2825 error_setg(errp, "PT_GNU_PROPERTY too small"); 2826 return false; 2827 } 2828 2829 if (phdr->p_offset + n <= BPRM_BUF_SIZE) { 2830 memcpy(¬e, bprm_buf + phdr->p_offset, n); 2831 } else { 2832 ssize_t len = pread(image_fd, ¬e, n, phdr->p_offset); 2833 if (len != n) { 2834 error_setg_errno(errp, errno, "Error reading file header"); 2835 return false; 2836 } 2837 } 2838 2839 /* 2840 * The contents of a valid PT_GNU_PROPERTY is a sequence 2841 * of uint32_t -- swap them all now. 2842 */ 2843 #ifdef BSWAP_NEEDED 2844 for (int i = 0; i < n / 4; i++) { 2845 bswap32s(note.data + i); 2846 } 2847 #endif 2848 2849 /* 2850 * Note that nhdr is 3 words, and that the "name" described by namesz 2851 * immediately follows nhdr and is thus at the 4th word. Further, all 2852 * of the inputs to the kernel's round_up are multiples of 4. 2853 */ 2854 if (note.nhdr.n_type != NT_GNU_PROPERTY_TYPE_0 || 2855 note.nhdr.n_namesz != NOTE_NAME_SZ || 2856 note.data[3] != GNU0_MAGIC) { 2857 error_setg(errp, "Invalid note in PT_GNU_PROPERTY"); 2858 return false; 2859 } 2860 off = sizeof(note.nhdr) + NOTE_NAME_SZ; 2861 2862 datasz = note.nhdr.n_descsz + off; 2863 if (datasz > n) { 2864 error_setg(errp, "Invalid note size in PT_GNU_PROPERTY"); 2865 return false; 2866 } 2867 2868 have_prev_type = false; 2869 prev_type = 0; 2870 while (1) { 2871 if (off == datasz) { 2872 return true; /* end, exit ok */ 2873 } 2874 if (!parse_elf_property(note.data, &off, datasz, info, 2875 have_prev_type, &prev_type, errp)) { 2876 return false; 2877 } 2878 have_prev_type = true; 2879 } 2880 } 2881 2882 /* Load an ELF image into the address space. 2883 2884 IMAGE_NAME is the filename of the image, to use in error messages. 2885 IMAGE_FD is the open file descriptor for the image. 2886 2887 BPRM_BUF is a copy of the beginning of the file; this of course 2888 contains the elf file header at offset 0. It is assumed that this 2889 buffer is sufficiently aligned to present no problems to the host 2890 in accessing data at aligned offsets within the buffer. 2891 2892 On return: INFO values will be filled in, as necessary or available. */ 2893 2894 static void load_elf_image(const char *image_name, int image_fd, 2895 struct image_info *info, char **pinterp_name, 2896 char bprm_buf[BPRM_BUF_SIZE]) 2897 { 2898 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2899 struct elf_phdr *phdr; 2900 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2901 int i, retval, prot_exec; 2902 Error *err = NULL; 2903 2904 /* First of all, some simple consistency checks */ 2905 if (!elf_check_ident(ehdr)) { 2906 error_setg(&err, "Invalid ELF image for this architecture"); 2907 goto exit_errmsg; 2908 } 2909 bswap_ehdr(ehdr); 2910 if (!elf_check_ehdr(ehdr)) { 2911 error_setg(&err, "Invalid ELF image for this architecture"); 2912 goto exit_errmsg; 2913 } 2914 2915 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2916 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2917 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2918 } else { 2919 phdr = (struct elf_phdr *) alloca(i); 2920 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2921 if (retval != i) { 2922 goto exit_read; 2923 } 2924 } 2925 bswap_phdr(phdr, ehdr->e_phnum); 2926 2927 info->nsegs = 0; 2928 info->pt_dynamic_addr = 0; 2929 2930 mmap_lock(); 2931 2932 /* 2933 * Find the maximum size of the image and allocate an appropriate 2934 * amount of memory to handle that. Locate the interpreter, if any. 2935 */ 2936 loaddr = -1, hiaddr = 0; 2937 info->alignment = 0; 2938 info->exec_stack = EXSTACK_DEFAULT; 2939 for (i = 0; i < ehdr->e_phnum; ++i) { 2940 struct elf_phdr *eppnt = phdr + i; 2941 if (eppnt->p_type == PT_LOAD) { 2942 abi_ulong a = eppnt->p_vaddr - eppnt->p_offset; 2943 if (a < loaddr) { 2944 loaddr = a; 2945 } 2946 a = eppnt->p_vaddr + eppnt->p_memsz; 2947 if (a > hiaddr) { 2948 hiaddr = a; 2949 } 2950 ++info->nsegs; 2951 info->alignment |= eppnt->p_align; 2952 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2953 g_autofree char *interp_name = NULL; 2954 2955 if (*pinterp_name) { 2956 error_setg(&err, "Multiple PT_INTERP entries"); 2957 goto exit_errmsg; 2958 } 2959 2960 interp_name = g_malloc(eppnt->p_filesz); 2961 2962 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2963 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2964 eppnt->p_filesz); 2965 } else { 2966 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2967 eppnt->p_offset); 2968 if (retval != eppnt->p_filesz) { 2969 goto exit_read; 2970 } 2971 } 2972 if (interp_name[eppnt->p_filesz - 1] != 0) { 2973 error_setg(&err, "Invalid PT_INTERP entry"); 2974 goto exit_errmsg; 2975 } 2976 *pinterp_name = g_steal_pointer(&interp_name); 2977 } else if (eppnt->p_type == PT_GNU_PROPERTY) { 2978 if (!parse_elf_properties(image_fd, info, eppnt, bprm_buf, &err)) { 2979 goto exit_errmsg; 2980 } 2981 } else if (eppnt->p_type == PT_GNU_STACK) { 2982 info->exec_stack = eppnt->p_flags & PF_X; 2983 } 2984 } 2985 2986 if (pinterp_name != NULL) { 2987 /* 2988 * This is the main executable. 2989 * 2990 * Reserve extra space for brk. 2991 * We hold on to this space while placing the interpreter 2992 * and the stack, lest they be placed immediately after 2993 * the data segment and block allocation from the brk. 2994 * 2995 * 16MB is chosen as "large enough" without being so large as 2996 * to allow the result to not fit with a 32-bit guest on a 2997 * 32-bit host. However some 64 bit guests (e.g. s390x) 2998 * attempt to place their heap further ahead and currently 2999 * nothing stops them smashing into QEMUs address space. 3000 */ 3001 #if TARGET_LONG_BITS == 64 3002 info->reserve_brk = 32 * MiB; 3003 #else 3004 info->reserve_brk = 16 * MiB; 3005 #endif 3006 hiaddr += info->reserve_brk; 3007 3008 if (ehdr->e_type == ET_EXEC) { 3009 /* 3010 * Make sure that the low address does not conflict with 3011 * MMAP_MIN_ADDR or the QEMU application itself. 3012 */ 3013 probe_guest_base(image_name, loaddr, hiaddr); 3014 } else { 3015 /* 3016 * The binary is dynamic, but we still need to 3017 * select guest_base. In this case we pass a size. 3018 */ 3019 probe_guest_base(image_name, 0, hiaddr - loaddr); 3020 } 3021 } 3022 3023 /* 3024 * Reserve address space for all of this. 3025 * 3026 * In the case of ET_EXEC, we supply MAP_FIXED so that we get 3027 * exactly the address range that is required. 3028 * 3029 * Otherwise this is ET_DYN, and we are searching for a location 3030 * that can hold the memory space required. If the image is 3031 * pre-linked, LOADDR will be non-zero, and the kernel should 3032 * honor that address if it happens to be free. 3033 * 3034 * In both cases, we will overwrite pages in this range with mappings 3035 * from the executable. 3036 */ 3037 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 3038 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE | 3039 (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0), 3040 -1, 0); 3041 if (load_addr == -1) { 3042 goto exit_mmap; 3043 } 3044 load_bias = load_addr - loaddr; 3045 3046 if (elf_is_fdpic(ehdr)) { 3047 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 3048 g_malloc(sizeof(*loadsegs) * info->nsegs); 3049 3050 for (i = 0; i < ehdr->e_phnum; ++i) { 3051 switch (phdr[i].p_type) { 3052 case PT_DYNAMIC: 3053 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 3054 break; 3055 case PT_LOAD: 3056 loadsegs->addr = phdr[i].p_vaddr + load_bias; 3057 loadsegs->p_vaddr = phdr[i].p_vaddr; 3058 loadsegs->p_memsz = phdr[i].p_memsz; 3059 ++loadsegs; 3060 break; 3061 } 3062 } 3063 } 3064 3065 info->load_bias = load_bias; 3066 info->code_offset = load_bias; 3067 info->data_offset = load_bias; 3068 info->load_addr = load_addr; 3069 info->entry = ehdr->e_entry + load_bias; 3070 info->start_code = -1; 3071 info->end_code = 0; 3072 info->start_data = -1; 3073 info->end_data = 0; 3074 info->brk = 0; 3075 info->elf_flags = ehdr->e_flags; 3076 3077 prot_exec = PROT_EXEC; 3078 #ifdef TARGET_AARCH64 3079 /* 3080 * If the BTI feature is present, this indicates that the executable 3081 * pages of the startup binary should be mapped with PROT_BTI, so that 3082 * branch targets are enforced. 3083 * 3084 * The startup binary is either the interpreter or the static executable. 3085 * The interpreter is responsible for all pages of a dynamic executable. 3086 * 3087 * Elf notes are backward compatible to older cpus. 3088 * Do not enable BTI unless it is supported. 3089 */ 3090 if ((info->note_flags & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) 3091 && (pinterp_name == NULL || *pinterp_name == 0) 3092 && cpu_isar_feature(aa64_bti, ARM_CPU(thread_cpu))) { 3093 prot_exec |= TARGET_PROT_BTI; 3094 } 3095 #endif 3096 3097 for (i = 0; i < ehdr->e_phnum; i++) { 3098 struct elf_phdr *eppnt = phdr + i; 3099 if (eppnt->p_type == PT_LOAD) { 3100 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len; 3101 int elf_prot = 0; 3102 3103 if (eppnt->p_flags & PF_R) { 3104 elf_prot |= PROT_READ; 3105 } 3106 if (eppnt->p_flags & PF_W) { 3107 elf_prot |= PROT_WRITE; 3108 } 3109 if (eppnt->p_flags & PF_X) { 3110 elf_prot |= prot_exec; 3111 } 3112 3113 vaddr = load_bias + eppnt->p_vaddr; 3114 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 3115 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 3116 3117 vaddr_ef = vaddr + eppnt->p_filesz; 3118 vaddr_em = vaddr + eppnt->p_memsz; 3119 3120 /* 3121 * Some segments may be completely empty, with a non-zero p_memsz 3122 * but no backing file segment. 3123 */ 3124 if (eppnt->p_filesz != 0) { 3125 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po); 3126 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3127 MAP_PRIVATE | MAP_FIXED, 3128 image_fd, eppnt->p_offset - vaddr_po); 3129 3130 if (error == -1) { 3131 goto exit_mmap; 3132 } 3133 3134 /* 3135 * If the load segment requests extra zeros (e.g. bss), map it. 3136 */ 3137 if (eppnt->p_filesz < eppnt->p_memsz) { 3138 zero_bss(vaddr_ef, vaddr_em, elf_prot); 3139 } 3140 } else if (eppnt->p_memsz != 0) { 3141 vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_memsz + vaddr_po); 3142 error = target_mmap(vaddr_ps, vaddr_len, elf_prot, 3143 MAP_PRIVATE | MAP_FIXED | MAP_ANONYMOUS, 3144 -1, 0); 3145 3146 if (error == -1) { 3147 goto exit_mmap; 3148 } 3149 } 3150 3151 /* Find the full program boundaries. */ 3152 if (elf_prot & PROT_EXEC) { 3153 if (vaddr < info->start_code) { 3154 info->start_code = vaddr; 3155 } 3156 if (vaddr_ef > info->end_code) { 3157 info->end_code = vaddr_ef; 3158 } 3159 } 3160 if (elf_prot & PROT_WRITE) { 3161 if (vaddr < info->start_data) { 3162 info->start_data = vaddr; 3163 } 3164 if (vaddr_ef > info->end_data) { 3165 info->end_data = vaddr_ef; 3166 } 3167 } 3168 if (vaddr_em > info->brk) { 3169 info->brk = vaddr_em; 3170 } 3171 #ifdef TARGET_MIPS 3172 } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) { 3173 Mips_elf_abiflags_v0 abiflags; 3174 if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) { 3175 error_setg(&err, "Invalid PT_MIPS_ABIFLAGS entry"); 3176 goto exit_errmsg; 3177 } 3178 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 3179 memcpy(&abiflags, bprm_buf + eppnt->p_offset, 3180 sizeof(Mips_elf_abiflags_v0)); 3181 } else { 3182 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0), 3183 eppnt->p_offset); 3184 if (retval != sizeof(Mips_elf_abiflags_v0)) { 3185 goto exit_read; 3186 } 3187 } 3188 bswap_mips_abiflags(&abiflags); 3189 info->fp_abi = abiflags.fp_abi; 3190 #endif 3191 } 3192 } 3193 3194 if (info->end_data == 0) { 3195 info->start_data = info->end_code; 3196 info->end_data = info->end_code; 3197 } 3198 3199 if (qemu_log_enabled()) { 3200 load_symbols(ehdr, image_fd, load_bias); 3201 } 3202 3203 mmap_unlock(); 3204 3205 close(image_fd); 3206 return; 3207 3208 exit_read: 3209 if (retval >= 0) { 3210 error_setg(&err, "Incomplete read of file header"); 3211 } else { 3212 error_setg_errno(&err, errno, "Error reading file header"); 3213 } 3214 goto exit_errmsg; 3215 exit_mmap: 3216 error_setg_errno(&err, errno, "Error mapping file"); 3217 goto exit_errmsg; 3218 exit_errmsg: 3219 error_reportf_err(err, "%s: ", image_name); 3220 exit(-1); 3221 } 3222 3223 static void load_elf_interp(const char *filename, struct image_info *info, 3224 char bprm_buf[BPRM_BUF_SIZE]) 3225 { 3226 int fd, retval; 3227 Error *err = NULL; 3228 3229 fd = open(path(filename), O_RDONLY); 3230 if (fd < 0) { 3231 error_setg_file_open(&err, errno, filename); 3232 error_report_err(err); 3233 exit(-1); 3234 } 3235 3236 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 3237 if (retval < 0) { 3238 error_setg_errno(&err, errno, "Error reading file header"); 3239 error_reportf_err(err, "%s: ", filename); 3240 exit(-1); 3241 } 3242 3243 if (retval < BPRM_BUF_SIZE) { 3244 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 3245 } 3246 3247 load_elf_image(filename, fd, info, NULL, bprm_buf); 3248 } 3249 3250 static int symfind(const void *s0, const void *s1) 3251 { 3252 target_ulong addr = *(target_ulong *)s0; 3253 struct elf_sym *sym = (struct elf_sym *)s1; 3254 int result = 0; 3255 if (addr < sym->st_value) { 3256 result = -1; 3257 } else if (addr >= sym->st_value + sym->st_size) { 3258 result = 1; 3259 } 3260 return result; 3261 } 3262 3263 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 3264 { 3265 #if ELF_CLASS == ELFCLASS32 3266 struct elf_sym *syms = s->disas_symtab.elf32; 3267 #else 3268 struct elf_sym *syms = s->disas_symtab.elf64; 3269 #endif 3270 3271 // binary search 3272 struct elf_sym *sym; 3273 3274 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 3275 if (sym != NULL) { 3276 return s->disas_strtab + sym->st_name; 3277 } 3278 3279 return ""; 3280 } 3281 3282 /* FIXME: This should use elf_ops.h */ 3283 static int symcmp(const void *s0, const void *s1) 3284 { 3285 struct elf_sym *sym0 = (struct elf_sym *)s0; 3286 struct elf_sym *sym1 = (struct elf_sym *)s1; 3287 return (sym0->st_value < sym1->st_value) 3288 ? -1 3289 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 3290 } 3291 3292 /* Best attempt to load symbols from this ELF object. */ 3293 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 3294 { 3295 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 3296 uint64_t segsz; 3297 struct elf_shdr *shdr; 3298 char *strings = NULL; 3299 struct syminfo *s = NULL; 3300 struct elf_sym *new_syms, *syms = NULL; 3301 3302 shnum = hdr->e_shnum; 3303 i = shnum * sizeof(struct elf_shdr); 3304 shdr = (struct elf_shdr *)alloca(i); 3305 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 3306 return; 3307 } 3308 3309 bswap_shdr(shdr, shnum); 3310 for (i = 0; i < shnum; ++i) { 3311 if (shdr[i].sh_type == SHT_SYMTAB) { 3312 sym_idx = i; 3313 str_idx = shdr[i].sh_link; 3314 goto found; 3315 } 3316 } 3317 3318 /* There will be no symbol table if the file was stripped. */ 3319 return; 3320 3321 found: 3322 /* Now know where the strtab and symtab are. Snarf them. */ 3323 s = g_try_new(struct syminfo, 1); 3324 if (!s) { 3325 goto give_up; 3326 } 3327 3328 segsz = shdr[str_idx].sh_size; 3329 s->disas_strtab = strings = g_try_malloc(segsz); 3330 if (!strings || 3331 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 3332 goto give_up; 3333 } 3334 3335 segsz = shdr[sym_idx].sh_size; 3336 syms = g_try_malloc(segsz); 3337 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 3338 goto give_up; 3339 } 3340 3341 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 3342 /* Implausibly large symbol table: give up rather than ploughing 3343 * on with the number of symbols calculation overflowing 3344 */ 3345 goto give_up; 3346 } 3347 nsyms = segsz / sizeof(struct elf_sym); 3348 for (i = 0; i < nsyms; ) { 3349 bswap_sym(syms + i); 3350 /* Throw away entries which we do not need. */ 3351 if (syms[i].st_shndx == SHN_UNDEF 3352 || syms[i].st_shndx >= SHN_LORESERVE 3353 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 3354 if (i < --nsyms) { 3355 syms[i] = syms[nsyms]; 3356 } 3357 } else { 3358 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 3359 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 3360 syms[i].st_value &= ~(target_ulong)1; 3361 #endif 3362 syms[i].st_value += load_bias; 3363 i++; 3364 } 3365 } 3366 3367 /* No "useful" symbol. */ 3368 if (nsyms == 0) { 3369 goto give_up; 3370 } 3371 3372 /* Attempt to free the storage associated with the local symbols 3373 that we threw away. Whether or not this has any effect on the 3374 memory allocation depends on the malloc implementation and how 3375 many symbols we managed to discard. */ 3376 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 3377 if (new_syms == NULL) { 3378 goto give_up; 3379 } 3380 syms = new_syms; 3381 3382 qsort(syms, nsyms, sizeof(*syms), symcmp); 3383 3384 s->disas_num_syms = nsyms; 3385 #if ELF_CLASS == ELFCLASS32 3386 s->disas_symtab.elf32 = syms; 3387 #else 3388 s->disas_symtab.elf64 = syms; 3389 #endif 3390 s->lookup_symbol = lookup_symbolxx; 3391 s->next = syminfos; 3392 syminfos = s; 3393 3394 return; 3395 3396 give_up: 3397 g_free(s); 3398 g_free(strings); 3399 g_free(syms); 3400 } 3401 3402 uint32_t get_elf_eflags(int fd) 3403 { 3404 struct elfhdr ehdr; 3405 off_t offset; 3406 int ret; 3407 3408 /* Read ELF header */ 3409 offset = lseek(fd, 0, SEEK_SET); 3410 if (offset == (off_t) -1) { 3411 return 0; 3412 } 3413 ret = read(fd, &ehdr, sizeof(ehdr)); 3414 if (ret < sizeof(ehdr)) { 3415 return 0; 3416 } 3417 offset = lseek(fd, offset, SEEK_SET); 3418 if (offset == (off_t) -1) { 3419 return 0; 3420 } 3421 3422 /* Check ELF signature */ 3423 if (!elf_check_ident(&ehdr)) { 3424 return 0; 3425 } 3426 3427 /* check header */ 3428 bswap_ehdr(&ehdr); 3429 if (!elf_check_ehdr(&ehdr)) { 3430 return 0; 3431 } 3432 3433 /* return architecture id */ 3434 return ehdr.e_flags; 3435 } 3436 3437 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 3438 { 3439 struct image_info interp_info; 3440 struct elfhdr elf_ex; 3441 char *elf_interpreter = NULL; 3442 char *scratch; 3443 3444 memset(&interp_info, 0, sizeof(interp_info)); 3445 #ifdef TARGET_MIPS 3446 interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN; 3447 #endif 3448 3449 info->start_mmap = (abi_ulong)ELF_START_MMAP; 3450 3451 load_elf_image(bprm->filename, bprm->fd, info, 3452 &elf_interpreter, bprm->buf); 3453 3454 /* ??? We need a copy of the elf header for passing to create_elf_tables. 3455 If we do nothing, we'll have overwritten this when we re-use bprm->buf 3456 when we load the interpreter. */ 3457 elf_ex = *(struct elfhdr *)bprm->buf; 3458 3459 /* Do this so that we can load the interpreter, if need be. We will 3460 change some of these later */ 3461 bprm->p = setup_arg_pages(bprm, info); 3462 3463 scratch = g_new0(char, TARGET_PAGE_SIZE); 3464 if (STACK_GROWS_DOWN) { 3465 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3466 bprm->p, info->stack_limit); 3467 info->file_string = bprm->p; 3468 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3469 bprm->p, info->stack_limit); 3470 info->env_strings = bprm->p; 3471 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3472 bprm->p, info->stack_limit); 3473 info->arg_strings = bprm->p; 3474 } else { 3475 info->arg_strings = bprm->p; 3476 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 3477 bprm->p, info->stack_limit); 3478 info->env_strings = bprm->p; 3479 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 3480 bprm->p, info->stack_limit); 3481 info->file_string = bprm->p; 3482 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 3483 bprm->p, info->stack_limit); 3484 } 3485 3486 g_free(scratch); 3487 3488 if (!bprm->p) { 3489 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 3490 exit(-1); 3491 } 3492 3493 if (elf_interpreter) { 3494 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 3495 3496 /* If the program interpreter is one of these two, then assume 3497 an iBCS2 image. Otherwise assume a native linux image. */ 3498 3499 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 3500 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 3501 info->personality = PER_SVR4; 3502 3503 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 3504 and some applications "depend" upon this behavior. Since 3505 we do not have the power to recompile these, we emulate 3506 the SVr4 behavior. Sigh. */ 3507 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 3508 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 3509 } 3510 #ifdef TARGET_MIPS 3511 info->interp_fp_abi = interp_info.fp_abi; 3512 #endif 3513 } 3514 3515 /* 3516 * TODO: load a vdso, which would also contain the signal trampolines. 3517 * Otherwise, allocate a private page to hold them. 3518 */ 3519 if (TARGET_ARCH_HAS_SIGTRAMP_PAGE) { 3520 abi_long tramp_page = target_mmap(0, TARGET_PAGE_SIZE, 3521 PROT_READ | PROT_WRITE, 3522 MAP_PRIVATE | MAP_ANON, -1, 0); 3523 if (tramp_page == -1) { 3524 return -errno; 3525 } 3526 3527 setup_sigtramp(tramp_page); 3528 target_mprotect(tramp_page, TARGET_PAGE_SIZE, PROT_READ | PROT_EXEC); 3529 } 3530 3531 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 3532 info, (elf_interpreter ? &interp_info : NULL)); 3533 info->start_stack = bprm->p; 3534 3535 /* If we have an interpreter, set that as the program's entry point. 3536 Copy the load_bias as well, to help PPC64 interpret the entry 3537 point as a function descriptor. Do this after creating elf tables 3538 so that we copy the original program entry point into the AUXV. */ 3539 if (elf_interpreter) { 3540 info->load_bias = interp_info.load_bias; 3541 info->entry = interp_info.entry; 3542 g_free(elf_interpreter); 3543 } 3544 3545 #ifdef USE_ELF_CORE_DUMP 3546 bprm->core_dump = &elf_core_dump; 3547 #endif 3548 3549 /* 3550 * If we reserved extra space for brk, release it now. 3551 * The implementation of do_brk in syscalls.c expects to be able 3552 * to mmap pages in this space. 3553 */ 3554 if (info->reserve_brk) { 3555 abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk); 3556 abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk); 3557 target_munmap(start_brk, end_brk - start_brk); 3558 } 3559 3560 return 0; 3561 } 3562 3563 #ifdef USE_ELF_CORE_DUMP 3564 /* 3565 * Definitions to generate Intel SVR4-like core files. 3566 * These mostly have the same names as the SVR4 types with "target_elf_" 3567 * tacked on the front to prevent clashes with linux definitions, 3568 * and the typedef forms have been avoided. This is mostly like 3569 * the SVR4 structure, but more Linuxy, with things that Linux does 3570 * not support and which gdb doesn't really use excluded. 3571 * 3572 * Fields we don't dump (their contents is zero) in linux-user qemu 3573 * are marked with XXX. 3574 * 3575 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 3576 * 3577 * Porting ELF coredump for target is (quite) simple process. First you 3578 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 3579 * the target resides): 3580 * 3581 * #define USE_ELF_CORE_DUMP 3582 * 3583 * Next you define type of register set used for dumping. ELF specification 3584 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 3585 * 3586 * typedef <target_regtype> target_elf_greg_t; 3587 * #define ELF_NREG <number of registers> 3588 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 3589 * 3590 * Last step is to implement target specific function that copies registers 3591 * from given cpu into just specified register set. Prototype is: 3592 * 3593 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 3594 * const CPUArchState *env); 3595 * 3596 * Parameters: 3597 * regs - copy register values into here (allocated and zeroed by caller) 3598 * env - copy registers from here 3599 * 3600 * Example for ARM target is provided in this file. 3601 */ 3602 3603 /* An ELF note in memory */ 3604 struct memelfnote { 3605 const char *name; 3606 size_t namesz; 3607 size_t namesz_rounded; 3608 int type; 3609 size_t datasz; 3610 size_t datasz_rounded; 3611 void *data; 3612 size_t notesz; 3613 }; 3614 3615 struct target_elf_siginfo { 3616 abi_int si_signo; /* signal number */ 3617 abi_int si_code; /* extra code */ 3618 abi_int si_errno; /* errno */ 3619 }; 3620 3621 struct target_elf_prstatus { 3622 struct target_elf_siginfo pr_info; /* Info associated with signal */ 3623 abi_short pr_cursig; /* Current signal */ 3624 abi_ulong pr_sigpend; /* XXX */ 3625 abi_ulong pr_sighold; /* XXX */ 3626 target_pid_t pr_pid; 3627 target_pid_t pr_ppid; 3628 target_pid_t pr_pgrp; 3629 target_pid_t pr_sid; 3630 struct target_timeval pr_utime; /* XXX User time */ 3631 struct target_timeval pr_stime; /* XXX System time */ 3632 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 3633 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 3634 target_elf_gregset_t pr_reg; /* GP registers */ 3635 abi_int pr_fpvalid; /* XXX */ 3636 }; 3637 3638 #define ELF_PRARGSZ (80) /* Number of chars for args */ 3639 3640 struct target_elf_prpsinfo { 3641 char pr_state; /* numeric process state */ 3642 char pr_sname; /* char for pr_state */ 3643 char pr_zomb; /* zombie */ 3644 char pr_nice; /* nice val */ 3645 abi_ulong pr_flag; /* flags */ 3646 target_uid_t pr_uid; 3647 target_gid_t pr_gid; 3648 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 3649 /* Lots missing */ 3650 char pr_fname[16] QEMU_NONSTRING; /* filename of executable */ 3651 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 3652 }; 3653 3654 /* Here is the structure in which status of each thread is captured. */ 3655 struct elf_thread_status { 3656 QTAILQ_ENTRY(elf_thread_status) ets_link; 3657 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 3658 #if 0 3659 elf_fpregset_t fpu; /* NT_PRFPREG */ 3660 struct task_struct *thread; 3661 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 3662 #endif 3663 struct memelfnote notes[1]; 3664 int num_notes; 3665 }; 3666 3667 struct elf_note_info { 3668 struct memelfnote *notes; 3669 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 3670 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 3671 3672 QTAILQ_HEAD(, elf_thread_status) thread_list; 3673 #if 0 3674 /* 3675 * Current version of ELF coredump doesn't support 3676 * dumping fp regs etc. 3677 */ 3678 elf_fpregset_t *fpu; 3679 elf_fpxregset_t *xfpu; 3680 int thread_status_size; 3681 #endif 3682 int notes_size; 3683 int numnote; 3684 }; 3685 3686 struct vm_area_struct { 3687 target_ulong vma_start; /* start vaddr of memory region */ 3688 target_ulong vma_end; /* end vaddr of memory region */ 3689 abi_ulong vma_flags; /* protection etc. flags for the region */ 3690 QTAILQ_ENTRY(vm_area_struct) vma_link; 3691 }; 3692 3693 struct mm_struct { 3694 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 3695 int mm_count; /* number of mappings */ 3696 }; 3697 3698 static struct mm_struct *vma_init(void); 3699 static void vma_delete(struct mm_struct *); 3700 static int vma_add_mapping(struct mm_struct *, target_ulong, 3701 target_ulong, abi_ulong); 3702 static int vma_get_mapping_count(const struct mm_struct *); 3703 static struct vm_area_struct *vma_first(const struct mm_struct *); 3704 static struct vm_area_struct *vma_next(struct vm_area_struct *); 3705 static abi_ulong vma_dump_size(const struct vm_area_struct *); 3706 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3707 unsigned long flags); 3708 3709 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 3710 static void fill_note(struct memelfnote *, const char *, int, 3711 unsigned int, void *); 3712 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 3713 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 3714 static void fill_auxv_note(struct memelfnote *, const TaskState *); 3715 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 3716 static size_t note_size(const struct memelfnote *); 3717 static void free_note_info(struct elf_note_info *); 3718 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 3719 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 3720 3721 static int dump_write(int, const void *, size_t); 3722 static int write_note(struct memelfnote *, int); 3723 static int write_note_info(struct elf_note_info *, int); 3724 3725 #ifdef BSWAP_NEEDED 3726 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 3727 { 3728 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 3729 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 3730 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 3731 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 3732 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 3733 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 3734 prstatus->pr_pid = tswap32(prstatus->pr_pid); 3735 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 3736 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 3737 prstatus->pr_sid = tswap32(prstatus->pr_sid); 3738 /* cpu times are not filled, so we skip them */ 3739 /* regs should be in correct format already */ 3740 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 3741 } 3742 3743 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 3744 { 3745 psinfo->pr_flag = tswapal(psinfo->pr_flag); 3746 psinfo->pr_uid = tswap16(psinfo->pr_uid); 3747 psinfo->pr_gid = tswap16(psinfo->pr_gid); 3748 psinfo->pr_pid = tswap32(psinfo->pr_pid); 3749 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 3750 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 3751 psinfo->pr_sid = tswap32(psinfo->pr_sid); 3752 } 3753 3754 static void bswap_note(struct elf_note *en) 3755 { 3756 bswap32s(&en->n_namesz); 3757 bswap32s(&en->n_descsz); 3758 bswap32s(&en->n_type); 3759 } 3760 #else 3761 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 3762 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 3763 static inline void bswap_note(struct elf_note *en) { } 3764 #endif /* BSWAP_NEEDED */ 3765 3766 /* 3767 * Minimal support for linux memory regions. These are needed 3768 * when we are finding out what memory exactly belongs to 3769 * emulated process. No locks needed here, as long as 3770 * thread that received the signal is stopped. 3771 */ 3772 3773 static struct mm_struct *vma_init(void) 3774 { 3775 struct mm_struct *mm; 3776 3777 if ((mm = g_malloc(sizeof (*mm))) == NULL) 3778 return (NULL); 3779 3780 mm->mm_count = 0; 3781 QTAILQ_INIT(&mm->mm_mmap); 3782 3783 return (mm); 3784 } 3785 3786 static void vma_delete(struct mm_struct *mm) 3787 { 3788 struct vm_area_struct *vma; 3789 3790 while ((vma = vma_first(mm)) != NULL) { 3791 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 3792 g_free(vma); 3793 } 3794 g_free(mm); 3795 } 3796 3797 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 3798 target_ulong end, abi_ulong flags) 3799 { 3800 struct vm_area_struct *vma; 3801 3802 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 3803 return (-1); 3804 3805 vma->vma_start = start; 3806 vma->vma_end = end; 3807 vma->vma_flags = flags; 3808 3809 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 3810 mm->mm_count++; 3811 3812 return (0); 3813 } 3814 3815 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 3816 { 3817 return (QTAILQ_FIRST(&mm->mm_mmap)); 3818 } 3819 3820 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 3821 { 3822 return (QTAILQ_NEXT(vma, vma_link)); 3823 } 3824 3825 static int vma_get_mapping_count(const struct mm_struct *mm) 3826 { 3827 return (mm->mm_count); 3828 } 3829 3830 /* 3831 * Calculate file (dump) size of given memory region. 3832 */ 3833 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 3834 { 3835 /* if we cannot even read the first page, skip it */ 3836 if (!access_ok_untagged(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 3837 return (0); 3838 3839 /* 3840 * Usually we don't dump executable pages as they contain 3841 * non-writable code that debugger can read directly from 3842 * target library etc. However, thread stacks are marked 3843 * also executable so we read in first page of given region 3844 * and check whether it contains elf header. If there is 3845 * no elf header, we dump it. 3846 */ 3847 if (vma->vma_flags & PROT_EXEC) { 3848 char page[TARGET_PAGE_SIZE]; 3849 3850 if (copy_from_user(page, vma->vma_start, sizeof (page))) { 3851 return 0; 3852 } 3853 if ((page[EI_MAG0] == ELFMAG0) && 3854 (page[EI_MAG1] == ELFMAG1) && 3855 (page[EI_MAG2] == ELFMAG2) && 3856 (page[EI_MAG3] == ELFMAG3)) { 3857 /* 3858 * Mappings are possibly from ELF binary. Don't dump 3859 * them. 3860 */ 3861 return (0); 3862 } 3863 } 3864 3865 return (vma->vma_end - vma->vma_start); 3866 } 3867 3868 static int vma_walker(void *priv, target_ulong start, target_ulong end, 3869 unsigned long flags) 3870 { 3871 struct mm_struct *mm = (struct mm_struct *)priv; 3872 3873 vma_add_mapping(mm, start, end, flags); 3874 return (0); 3875 } 3876 3877 static void fill_note(struct memelfnote *note, const char *name, int type, 3878 unsigned int sz, void *data) 3879 { 3880 unsigned int namesz; 3881 3882 namesz = strlen(name) + 1; 3883 note->name = name; 3884 note->namesz = namesz; 3885 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 3886 note->type = type; 3887 note->datasz = sz; 3888 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3889 3890 note->data = data; 3891 3892 /* 3893 * We calculate rounded up note size here as specified by 3894 * ELF document. 3895 */ 3896 note->notesz = sizeof (struct elf_note) + 3897 note->namesz_rounded + note->datasz_rounded; 3898 } 3899 3900 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3901 uint32_t flags) 3902 { 3903 (void) memset(elf, 0, sizeof(*elf)); 3904 3905 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3906 elf->e_ident[EI_CLASS] = ELF_CLASS; 3907 elf->e_ident[EI_DATA] = ELF_DATA; 3908 elf->e_ident[EI_VERSION] = EV_CURRENT; 3909 elf->e_ident[EI_OSABI] = ELF_OSABI; 3910 3911 elf->e_type = ET_CORE; 3912 elf->e_machine = machine; 3913 elf->e_version = EV_CURRENT; 3914 elf->e_phoff = sizeof(struct elfhdr); 3915 elf->e_flags = flags; 3916 elf->e_ehsize = sizeof(struct elfhdr); 3917 elf->e_phentsize = sizeof(struct elf_phdr); 3918 elf->e_phnum = segs; 3919 3920 bswap_ehdr(elf); 3921 } 3922 3923 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3924 { 3925 phdr->p_type = PT_NOTE; 3926 phdr->p_offset = offset; 3927 phdr->p_vaddr = 0; 3928 phdr->p_paddr = 0; 3929 phdr->p_filesz = sz; 3930 phdr->p_memsz = 0; 3931 phdr->p_flags = 0; 3932 phdr->p_align = 0; 3933 3934 bswap_phdr(phdr, 1); 3935 } 3936 3937 static size_t note_size(const struct memelfnote *note) 3938 { 3939 return (note->notesz); 3940 } 3941 3942 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3943 const TaskState *ts, int signr) 3944 { 3945 (void) memset(prstatus, 0, sizeof (*prstatus)); 3946 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3947 prstatus->pr_pid = ts->ts_tid; 3948 prstatus->pr_ppid = getppid(); 3949 prstatus->pr_pgrp = getpgrp(); 3950 prstatus->pr_sid = getsid(0); 3951 3952 bswap_prstatus(prstatus); 3953 } 3954 3955 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3956 { 3957 char *base_filename; 3958 unsigned int i, len; 3959 3960 (void) memset(psinfo, 0, sizeof (*psinfo)); 3961 3962 len = ts->info->env_strings - ts->info->arg_strings; 3963 if (len >= ELF_PRARGSZ) 3964 len = ELF_PRARGSZ - 1; 3965 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_strings, len)) { 3966 return -EFAULT; 3967 } 3968 for (i = 0; i < len; i++) 3969 if (psinfo->pr_psargs[i] == 0) 3970 psinfo->pr_psargs[i] = ' '; 3971 psinfo->pr_psargs[len] = 0; 3972 3973 psinfo->pr_pid = getpid(); 3974 psinfo->pr_ppid = getppid(); 3975 psinfo->pr_pgrp = getpgrp(); 3976 psinfo->pr_sid = getsid(0); 3977 psinfo->pr_uid = getuid(); 3978 psinfo->pr_gid = getgid(); 3979 3980 base_filename = g_path_get_basename(ts->bprm->filename); 3981 /* 3982 * Using strncpy here is fine: at max-length, 3983 * this field is not NUL-terminated. 3984 */ 3985 (void) strncpy(psinfo->pr_fname, base_filename, 3986 sizeof(psinfo->pr_fname)); 3987 3988 g_free(base_filename); 3989 bswap_psinfo(psinfo); 3990 return (0); 3991 } 3992 3993 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3994 { 3995 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3996 elf_addr_t orig_auxv = auxv; 3997 void *ptr; 3998 int len = ts->info->auxv_len; 3999 4000 /* 4001 * Auxiliary vector is stored in target process stack. It contains 4002 * {type, value} pairs that we need to dump into note. This is not 4003 * strictly necessary but we do it here for sake of completeness. 4004 */ 4005 4006 /* read in whole auxv vector and copy it to memelfnote */ 4007 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 4008 if (ptr != NULL) { 4009 fill_note(note, "CORE", NT_AUXV, len, ptr); 4010 unlock_user(ptr, auxv, len); 4011 } 4012 } 4013 4014 /* 4015 * Constructs name of coredump file. We have following convention 4016 * for the name: 4017 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 4018 * 4019 * Returns the filename 4020 */ 4021 static char *core_dump_filename(const TaskState *ts) 4022 { 4023 g_autoptr(GDateTime) now = g_date_time_new_now_local(); 4024 g_autofree char *nowstr = g_date_time_format(now, "%Y%m%d-%H%M%S"); 4025 g_autofree char *base_filename = g_path_get_basename(ts->bprm->filename); 4026 4027 return g_strdup_printf("qemu_%s_%s_%d.core", 4028 base_filename, nowstr, (int)getpid()); 4029 } 4030 4031 static int dump_write(int fd, const void *ptr, size_t size) 4032 { 4033 const char *bufp = (const char *)ptr; 4034 ssize_t bytes_written, bytes_left; 4035 struct rlimit dumpsize; 4036 off_t pos; 4037 4038 bytes_written = 0; 4039 getrlimit(RLIMIT_CORE, &dumpsize); 4040 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 4041 if (errno == ESPIPE) { /* not a seekable stream */ 4042 bytes_left = size; 4043 } else { 4044 return pos; 4045 } 4046 } else { 4047 if (dumpsize.rlim_cur <= pos) { 4048 return -1; 4049 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 4050 bytes_left = size; 4051 } else { 4052 size_t limit_left=dumpsize.rlim_cur - pos; 4053 bytes_left = limit_left >= size ? size : limit_left ; 4054 } 4055 } 4056 4057 /* 4058 * In normal conditions, single write(2) should do but 4059 * in case of socket etc. this mechanism is more portable. 4060 */ 4061 do { 4062 bytes_written = write(fd, bufp, bytes_left); 4063 if (bytes_written < 0) { 4064 if (errno == EINTR) 4065 continue; 4066 return (-1); 4067 } else if (bytes_written == 0) { /* eof */ 4068 return (-1); 4069 } 4070 bufp += bytes_written; 4071 bytes_left -= bytes_written; 4072 } while (bytes_left > 0); 4073 4074 return (0); 4075 } 4076 4077 static int write_note(struct memelfnote *men, int fd) 4078 { 4079 struct elf_note en; 4080 4081 en.n_namesz = men->namesz; 4082 en.n_type = men->type; 4083 en.n_descsz = men->datasz; 4084 4085 bswap_note(&en); 4086 4087 if (dump_write(fd, &en, sizeof(en)) != 0) 4088 return (-1); 4089 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 4090 return (-1); 4091 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 4092 return (-1); 4093 4094 return (0); 4095 } 4096 4097 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 4098 { 4099 CPUState *cpu = env_cpu((CPUArchState *)env); 4100 TaskState *ts = (TaskState *)cpu->opaque; 4101 struct elf_thread_status *ets; 4102 4103 ets = g_malloc0(sizeof (*ets)); 4104 ets->num_notes = 1; /* only prstatus is dumped */ 4105 fill_prstatus(&ets->prstatus, ts, 0); 4106 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 4107 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 4108 &ets->prstatus); 4109 4110 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 4111 4112 info->notes_size += note_size(&ets->notes[0]); 4113 } 4114 4115 static void init_note_info(struct elf_note_info *info) 4116 { 4117 /* Initialize the elf_note_info structure so that it is at 4118 * least safe to call free_note_info() on it. Must be 4119 * called before calling fill_note_info(). 4120 */ 4121 memset(info, 0, sizeof (*info)); 4122 QTAILQ_INIT(&info->thread_list); 4123 } 4124 4125 static int fill_note_info(struct elf_note_info *info, 4126 long signr, const CPUArchState *env) 4127 { 4128 #define NUMNOTES 3 4129 CPUState *cpu = env_cpu((CPUArchState *)env); 4130 TaskState *ts = (TaskState *)cpu->opaque; 4131 int i; 4132 4133 info->notes = g_new0(struct memelfnote, NUMNOTES); 4134 if (info->notes == NULL) 4135 return (-ENOMEM); 4136 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 4137 if (info->prstatus == NULL) 4138 return (-ENOMEM); 4139 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 4140 if (info->prstatus == NULL) 4141 return (-ENOMEM); 4142 4143 /* 4144 * First fill in status (and registers) of current thread 4145 * including process info & aux vector. 4146 */ 4147 fill_prstatus(info->prstatus, ts, signr); 4148 elf_core_copy_regs(&info->prstatus->pr_reg, env); 4149 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 4150 sizeof (*info->prstatus), info->prstatus); 4151 fill_psinfo(info->psinfo, ts); 4152 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 4153 sizeof (*info->psinfo), info->psinfo); 4154 fill_auxv_note(&info->notes[2], ts); 4155 info->numnote = 3; 4156 4157 info->notes_size = 0; 4158 for (i = 0; i < info->numnote; i++) 4159 info->notes_size += note_size(&info->notes[i]); 4160 4161 /* read and fill status of all threads */ 4162 cpu_list_lock(); 4163 CPU_FOREACH(cpu) { 4164 if (cpu == thread_cpu) { 4165 continue; 4166 } 4167 fill_thread_info(info, cpu->env_ptr); 4168 } 4169 cpu_list_unlock(); 4170 4171 return (0); 4172 } 4173 4174 static void free_note_info(struct elf_note_info *info) 4175 { 4176 struct elf_thread_status *ets; 4177 4178 while (!QTAILQ_EMPTY(&info->thread_list)) { 4179 ets = QTAILQ_FIRST(&info->thread_list); 4180 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 4181 g_free(ets); 4182 } 4183 4184 g_free(info->prstatus); 4185 g_free(info->psinfo); 4186 g_free(info->notes); 4187 } 4188 4189 static int write_note_info(struct elf_note_info *info, int fd) 4190 { 4191 struct elf_thread_status *ets; 4192 int i, error = 0; 4193 4194 /* write prstatus, psinfo and auxv for current thread */ 4195 for (i = 0; i < info->numnote; i++) 4196 if ((error = write_note(&info->notes[i], fd)) != 0) 4197 return (error); 4198 4199 /* write prstatus for each thread */ 4200 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 4201 if ((error = write_note(&ets->notes[0], fd)) != 0) 4202 return (error); 4203 } 4204 4205 return (0); 4206 } 4207 4208 /* 4209 * Write out ELF coredump. 4210 * 4211 * See documentation of ELF object file format in: 4212 * http://www.caldera.com/developers/devspecs/gabi41.pdf 4213 * 4214 * Coredump format in linux is following: 4215 * 4216 * 0 +----------------------+ \ 4217 * | ELF header | ET_CORE | 4218 * +----------------------+ | 4219 * | ELF program headers | |--- headers 4220 * | - NOTE section | | 4221 * | - PT_LOAD sections | | 4222 * +----------------------+ / 4223 * | NOTEs: | 4224 * | - NT_PRSTATUS | 4225 * | - NT_PRSINFO | 4226 * | - NT_AUXV | 4227 * +----------------------+ <-- aligned to target page 4228 * | Process memory dump | 4229 * : : 4230 * . . 4231 * : : 4232 * | | 4233 * +----------------------+ 4234 * 4235 * NT_PRSTATUS -> struct elf_prstatus (per thread) 4236 * NT_PRSINFO -> struct elf_prpsinfo 4237 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 4238 * 4239 * Format follows System V format as close as possible. Current 4240 * version limitations are as follows: 4241 * - no floating point registers are dumped 4242 * 4243 * Function returns 0 in case of success, negative errno otherwise. 4244 * 4245 * TODO: make this work also during runtime: it should be 4246 * possible to force coredump from running process and then 4247 * continue processing. For example qemu could set up SIGUSR2 4248 * handler (provided that target process haven't registered 4249 * handler for that) that does the dump when signal is received. 4250 */ 4251 static int elf_core_dump(int signr, const CPUArchState *env) 4252 { 4253 const CPUState *cpu = env_cpu((CPUArchState *)env); 4254 const TaskState *ts = (const TaskState *)cpu->opaque; 4255 struct vm_area_struct *vma = NULL; 4256 g_autofree char *corefile = NULL; 4257 struct elf_note_info info; 4258 struct elfhdr elf; 4259 struct elf_phdr phdr; 4260 struct rlimit dumpsize; 4261 struct mm_struct *mm = NULL; 4262 off_t offset = 0, data_offset = 0; 4263 int segs = 0; 4264 int fd = -1; 4265 4266 init_note_info(&info); 4267 4268 errno = 0; 4269 getrlimit(RLIMIT_CORE, &dumpsize); 4270 if (dumpsize.rlim_cur == 0) 4271 return 0; 4272 4273 corefile = core_dump_filename(ts); 4274 4275 if ((fd = open(corefile, O_WRONLY | O_CREAT, 4276 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 4277 return (-errno); 4278 4279 /* 4280 * Walk through target process memory mappings and 4281 * set up structure containing this information. After 4282 * this point vma_xxx functions can be used. 4283 */ 4284 if ((mm = vma_init()) == NULL) 4285 goto out; 4286 4287 walk_memory_regions(mm, vma_walker); 4288 segs = vma_get_mapping_count(mm); 4289 4290 /* 4291 * Construct valid coredump ELF header. We also 4292 * add one more segment for notes. 4293 */ 4294 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 4295 if (dump_write(fd, &elf, sizeof (elf)) != 0) 4296 goto out; 4297 4298 /* fill in the in-memory version of notes */ 4299 if (fill_note_info(&info, signr, env) < 0) 4300 goto out; 4301 4302 offset += sizeof (elf); /* elf header */ 4303 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 4304 4305 /* write out notes program header */ 4306 fill_elf_note_phdr(&phdr, info.notes_size, offset); 4307 4308 offset += info.notes_size; 4309 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 4310 goto out; 4311 4312 /* 4313 * ELF specification wants data to start at page boundary so 4314 * we align it here. 4315 */ 4316 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 4317 4318 /* 4319 * Write program headers for memory regions mapped in 4320 * the target process. 4321 */ 4322 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4323 (void) memset(&phdr, 0, sizeof (phdr)); 4324 4325 phdr.p_type = PT_LOAD; 4326 phdr.p_offset = offset; 4327 phdr.p_vaddr = vma->vma_start; 4328 phdr.p_paddr = 0; 4329 phdr.p_filesz = vma_dump_size(vma); 4330 offset += phdr.p_filesz; 4331 phdr.p_memsz = vma->vma_end - vma->vma_start; 4332 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 4333 if (vma->vma_flags & PROT_WRITE) 4334 phdr.p_flags |= PF_W; 4335 if (vma->vma_flags & PROT_EXEC) 4336 phdr.p_flags |= PF_X; 4337 phdr.p_align = ELF_EXEC_PAGESIZE; 4338 4339 bswap_phdr(&phdr, 1); 4340 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 4341 goto out; 4342 } 4343 } 4344 4345 /* 4346 * Next we write notes just after program headers. No 4347 * alignment needed here. 4348 */ 4349 if (write_note_info(&info, fd) < 0) 4350 goto out; 4351 4352 /* align data to page boundary */ 4353 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 4354 goto out; 4355 4356 /* 4357 * Finally we can dump process memory into corefile as well. 4358 */ 4359 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 4360 abi_ulong addr; 4361 abi_ulong end; 4362 4363 end = vma->vma_start + vma_dump_size(vma); 4364 4365 for (addr = vma->vma_start; addr < end; 4366 addr += TARGET_PAGE_SIZE) { 4367 char page[TARGET_PAGE_SIZE]; 4368 int error; 4369 4370 /* 4371 * Read in page from target process memory and 4372 * write it to coredump file. 4373 */ 4374 error = copy_from_user(page, addr, sizeof (page)); 4375 if (error != 0) { 4376 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 4377 addr); 4378 errno = -error; 4379 goto out; 4380 } 4381 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 4382 goto out; 4383 } 4384 } 4385 4386 out: 4387 free_note_info(&info); 4388 if (mm != NULL) 4389 vma_delete(mm); 4390 (void) close(fd); 4391 4392 if (errno != 0) 4393 return (-errno); 4394 return (0); 4395 } 4396 #endif /* USE_ELF_CORE_DUMP */ 4397 4398 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 4399 { 4400 init_thread(regs, infop); 4401 } 4402