xref: /openbmc/qemu/linux-user/elfload.c (revision 8a49b300)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 #include <sys/shm.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 #include "qemu/queue.h"
12 #include "qemu/guest-random.h"
13 #include "qemu/units.h"
14 #include "qemu/selfmap.h"
15 
16 #ifdef _ARCH_PPC64
17 #undef ARCH_DLINFO
18 #undef ELF_PLATFORM
19 #undef ELF_HWCAP
20 #undef ELF_HWCAP2
21 #undef ELF_CLASS
22 #undef ELF_DATA
23 #undef ELF_ARCH
24 #endif
25 
26 #define ELF_OSABI   ELFOSABI_SYSV
27 
28 /* from personality.h */
29 
30 /*
31  * Flags for bug emulation.
32  *
33  * These occupy the top three bytes.
34  */
35 enum {
36     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
37     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
38                                            descriptors (signal handling) */
39     MMAP_PAGE_ZERO =    0x0100000,
40     ADDR_COMPAT_LAYOUT = 0x0200000,
41     READ_IMPLIES_EXEC = 0x0400000,
42     ADDR_LIMIT_32BIT =  0x0800000,
43     SHORT_INODE =       0x1000000,
44     WHOLE_SECONDS =     0x2000000,
45     STICKY_TIMEOUTS =   0x4000000,
46     ADDR_LIMIT_3GB =    0x8000000,
47 };
48 
49 /*
50  * Personality types.
51  *
52  * These go in the low byte.  Avoid using the top bit, it will
53  * conflict with error returns.
54  */
55 enum {
56     PER_LINUX =         0x0000,
57     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
58     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
59     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
60     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
61     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
62     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
63     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
65     PER_BSD =           0x0006,
66     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
67     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
68     PER_LINUX32 =       0x0008,
69     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
70     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
71     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
72     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
73     PER_RISCOS =        0x000c,
74     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
75     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
76     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
77     PER_HPUX =          0x0010,
78     PER_MASK =          0x00ff,
79 };
80 
81 /*
82  * Return the base personality without flags.
83  */
84 #define personality(pers)       (pers & PER_MASK)
85 
86 int info_is_fdpic(struct image_info *info)
87 {
88     return info->personality == PER_LINUX_FDPIC;
89 }
90 
91 /* this flag is uneffective under linux too, should be deleted */
92 #ifndef MAP_DENYWRITE
93 #define MAP_DENYWRITE 0
94 #endif
95 
96 /* should probably go in elf.h */
97 #ifndef ELIBBAD
98 #define ELIBBAD 80
99 #endif
100 
101 #ifdef TARGET_WORDS_BIGENDIAN
102 #define ELF_DATA        ELFDATA2MSB
103 #else
104 #define ELF_DATA        ELFDATA2LSB
105 #endif
106 
107 #ifdef TARGET_ABI_MIPSN32
108 typedef abi_ullong      target_elf_greg_t;
109 #define tswapreg(ptr)   tswap64(ptr)
110 #else
111 typedef abi_ulong       target_elf_greg_t;
112 #define tswapreg(ptr)   tswapal(ptr)
113 #endif
114 
115 #ifdef USE_UID16
116 typedef abi_ushort      target_uid_t;
117 typedef abi_ushort      target_gid_t;
118 #else
119 typedef abi_uint        target_uid_t;
120 typedef abi_uint        target_gid_t;
121 #endif
122 typedef abi_int         target_pid_t;
123 
124 #ifdef TARGET_I386
125 
126 #define ELF_PLATFORM get_elf_platform()
127 
128 static const char *get_elf_platform(void)
129 {
130     static char elf_platform[] = "i386";
131     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
132     if (family > 6)
133         family = 6;
134     if (family >= 3)
135         elf_platform[1] = '0' + family;
136     return elf_platform;
137 }
138 
139 #define ELF_HWCAP get_elf_hwcap()
140 
141 static uint32_t get_elf_hwcap(void)
142 {
143     X86CPU *cpu = X86_CPU(thread_cpu);
144 
145     return cpu->env.features[FEAT_1_EDX];
146 }
147 
148 #ifdef TARGET_X86_64
149 #define ELF_START_MMAP 0x2aaaaab000ULL
150 
151 #define ELF_CLASS      ELFCLASS64
152 #define ELF_ARCH       EM_X86_64
153 
154 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
155 {
156     regs->rax = 0;
157     regs->rsp = infop->start_stack;
158     regs->rip = infop->entry;
159 }
160 
161 #define ELF_NREG    27
162 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
163 
164 /*
165  * Note that ELF_NREG should be 29 as there should be place for
166  * TRAPNO and ERR "registers" as well but linux doesn't dump
167  * those.
168  *
169  * See linux kernel: arch/x86/include/asm/elf.h
170  */
171 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
172 {
173     (*regs)[0] = env->regs[15];
174     (*regs)[1] = env->regs[14];
175     (*regs)[2] = env->regs[13];
176     (*regs)[3] = env->regs[12];
177     (*regs)[4] = env->regs[R_EBP];
178     (*regs)[5] = env->regs[R_EBX];
179     (*regs)[6] = env->regs[11];
180     (*regs)[7] = env->regs[10];
181     (*regs)[8] = env->regs[9];
182     (*regs)[9] = env->regs[8];
183     (*regs)[10] = env->regs[R_EAX];
184     (*regs)[11] = env->regs[R_ECX];
185     (*regs)[12] = env->regs[R_EDX];
186     (*regs)[13] = env->regs[R_ESI];
187     (*regs)[14] = env->regs[R_EDI];
188     (*regs)[15] = env->regs[R_EAX]; /* XXX */
189     (*regs)[16] = env->eip;
190     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
191     (*regs)[18] = env->eflags;
192     (*regs)[19] = env->regs[R_ESP];
193     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
194     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
195     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
196     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
197     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
198     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
199     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
200 }
201 
202 #else
203 
204 #define ELF_START_MMAP 0x80000000
205 
206 /*
207  * This is used to ensure we don't load something for the wrong architecture.
208  */
209 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
210 
211 /*
212  * These are used to set parameters in the core dumps.
213  */
214 #define ELF_CLASS       ELFCLASS32
215 #define ELF_ARCH        EM_386
216 
217 static inline void init_thread(struct target_pt_regs *regs,
218                                struct image_info *infop)
219 {
220     regs->esp = infop->start_stack;
221     regs->eip = infop->entry;
222 
223     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
224        starts %edx contains a pointer to a function which might be
225        registered using `atexit'.  This provides a mean for the
226        dynamic linker to call DT_FINI functions for shared libraries
227        that have been loaded before the code runs.
228 
229        A value of 0 tells we have no such handler.  */
230     regs->edx = 0;
231 }
232 
233 #define ELF_NREG    17
234 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
235 
236 /*
237  * Note that ELF_NREG should be 19 as there should be place for
238  * TRAPNO and ERR "registers" as well but linux doesn't dump
239  * those.
240  *
241  * See linux kernel: arch/x86/include/asm/elf.h
242  */
243 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
244 {
245     (*regs)[0] = env->regs[R_EBX];
246     (*regs)[1] = env->regs[R_ECX];
247     (*regs)[2] = env->regs[R_EDX];
248     (*regs)[3] = env->regs[R_ESI];
249     (*regs)[4] = env->regs[R_EDI];
250     (*regs)[5] = env->regs[R_EBP];
251     (*regs)[6] = env->regs[R_EAX];
252     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
253     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
254     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
255     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
256     (*regs)[11] = env->regs[R_EAX]; /* XXX */
257     (*regs)[12] = env->eip;
258     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
259     (*regs)[14] = env->eflags;
260     (*regs)[15] = env->regs[R_ESP];
261     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
262 }
263 #endif
264 
265 #define USE_ELF_CORE_DUMP
266 #define ELF_EXEC_PAGESIZE       4096
267 
268 #endif
269 
270 #ifdef TARGET_ARM
271 
272 #ifndef TARGET_AARCH64
273 /* 32 bit ARM definitions */
274 
275 #define ELF_START_MMAP 0x80000000
276 
277 #define ELF_ARCH        EM_ARM
278 #define ELF_CLASS       ELFCLASS32
279 
280 static inline void init_thread(struct target_pt_regs *regs,
281                                struct image_info *infop)
282 {
283     abi_long stack = infop->start_stack;
284     memset(regs, 0, sizeof(*regs));
285 
286     regs->uregs[16] = ARM_CPU_MODE_USR;
287     if (infop->entry & 1) {
288         regs->uregs[16] |= CPSR_T;
289     }
290     regs->uregs[15] = infop->entry & 0xfffffffe;
291     regs->uregs[13] = infop->start_stack;
292     /* FIXME - what to for failure of get_user()? */
293     get_user_ual(regs->uregs[2], stack + 8); /* envp */
294     get_user_ual(regs->uregs[1], stack + 4); /* envp */
295     /* XXX: it seems that r0 is zeroed after ! */
296     regs->uregs[0] = 0;
297     /* For uClinux PIC binaries.  */
298     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
299     regs->uregs[10] = infop->start_data;
300 
301     /* Support ARM FDPIC.  */
302     if (info_is_fdpic(infop)) {
303         /* As described in the ABI document, r7 points to the loadmap info
304          * prepared by the kernel. If an interpreter is needed, r8 points
305          * to the interpreter loadmap and r9 points to the interpreter
306          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
307          * r9 points to the main program PT_DYNAMIC info.
308          */
309         regs->uregs[7] = infop->loadmap_addr;
310         if (infop->interpreter_loadmap_addr) {
311             /* Executable is dynamically loaded.  */
312             regs->uregs[8] = infop->interpreter_loadmap_addr;
313             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
314         } else {
315             regs->uregs[8] = 0;
316             regs->uregs[9] = infop->pt_dynamic_addr;
317         }
318     }
319 }
320 
321 #define ELF_NREG    18
322 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
323 
324 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
325 {
326     (*regs)[0] = tswapreg(env->regs[0]);
327     (*regs)[1] = tswapreg(env->regs[1]);
328     (*regs)[2] = tswapreg(env->regs[2]);
329     (*regs)[3] = tswapreg(env->regs[3]);
330     (*regs)[4] = tswapreg(env->regs[4]);
331     (*regs)[5] = tswapreg(env->regs[5]);
332     (*regs)[6] = tswapreg(env->regs[6]);
333     (*regs)[7] = tswapreg(env->regs[7]);
334     (*regs)[8] = tswapreg(env->regs[8]);
335     (*regs)[9] = tswapreg(env->regs[9]);
336     (*regs)[10] = tswapreg(env->regs[10]);
337     (*regs)[11] = tswapreg(env->regs[11]);
338     (*regs)[12] = tswapreg(env->regs[12]);
339     (*regs)[13] = tswapreg(env->regs[13]);
340     (*regs)[14] = tswapreg(env->regs[14]);
341     (*regs)[15] = tswapreg(env->regs[15]);
342 
343     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
344     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
345 }
346 
347 #define USE_ELF_CORE_DUMP
348 #define ELF_EXEC_PAGESIZE       4096
349 
350 enum
351 {
352     ARM_HWCAP_ARM_SWP       = 1 << 0,
353     ARM_HWCAP_ARM_HALF      = 1 << 1,
354     ARM_HWCAP_ARM_THUMB     = 1 << 2,
355     ARM_HWCAP_ARM_26BIT     = 1 << 3,
356     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
357     ARM_HWCAP_ARM_FPA       = 1 << 5,
358     ARM_HWCAP_ARM_VFP       = 1 << 6,
359     ARM_HWCAP_ARM_EDSP      = 1 << 7,
360     ARM_HWCAP_ARM_JAVA      = 1 << 8,
361     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
362     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
363     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
364     ARM_HWCAP_ARM_NEON      = 1 << 12,
365     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
366     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
367     ARM_HWCAP_ARM_TLS       = 1 << 15,
368     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
369     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
370     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
371     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
372     ARM_HWCAP_ARM_LPAE      = 1 << 20,
373     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
374 };
375 
376 enum {
377     ARM_HWCAP2_ARM_AES      = 1 << 0,
378     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
379     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
380     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
381     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
382 };
383 
384 /* The commpage only exists for 32 bit kernels */
385 
386 #define ARM_COMMPAGE (intptr_t)0xffff0f00u
387 
388 static bool init_guest_commpage(void)
389 {
390     void *want = g2h(ARM_COMMPAGE & -qemu_host_page_size);
391     void *addr = mmap(want, qemu_host_page_size, PROT_READ | PROT_WRITE,
392                       MAP_ANONYMOUS | MAP_PRIVATE, -1, 0);
393 
394     if (addr == MAP_FAILED) {
395         perror("Allocating guest commpage");
396         exit(EXIT_FAILURE);
397     }
398     if (addr != want) {
399         return false;
400     }
401 
402     /* Set kernel helper versions; rest of page is 0.  */
403     __put_user(5, (uint32_t *)g2h(0xffff0ffcu));
404 
405     if (mprotect(addr, qemu_host_page_size, PROT_READ)) {
406         perror("Protecting guest commpage");
407         exit(EXIT_FAILURE);
408     }
409     return true;
410 }
411 
412 #define ELF_HWCAP get_elf_hwcap()
413 #define ELF_HWCAP2 get_elf_hwcap2()
414 
415 static uint32_t get_elf_hwcap(void)
416 {
417     ARMCPU *cpu = ARM_CPU(thread_cpu);
418     uint32_t hwcaps = 0;
419 
420     hwcaps |= ARM_HWCAP_ARM_SWP;
421     hwcaps |= ARM_HWCAP_ARM_HALF;
422     hwcaps |= ARM_HWCAP_ARM_THUMB;
423     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
424 
425     /* probe for the extra features */
426 #define GET_FEATURE(feat, hwcap) \
427     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
428 
429 #define GET_FEATURE_ID(feat, hwcap) \
430     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
431 
432     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
433     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
434     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
435     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
436     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
437     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
438     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
439     GET_FEATURE_ID(aa32_arm_div, ARM_HWCAP_ARM_IDIVA);
440     GET_FEATURE_ID(aa32_thumb_div, ARM_HWCAP_ARM_IDIVT);
441     GET_FEATURE_ID(aa32_vfp, ARM_HWCAP_ARM_VFP);
442 
443     if (cpu_isar_feature(aa32_fpsp_v3, cpu) ||
444         cpu_isar_feature(aa32_fpdp_v3, cpu)) {
445         hwcaps |= ARM_HWCAP_ARM_VFPv3;
446         if (cpu_isar_feature(aa32_simd_r32, cpu)) {
447             hwcaps |= ARM_HWCAP_ARM_VFPD32;
448         } else {
449             hwcaps |= ARM_HWCAP_ARM_VFPv3D16;
450         }
451     }
452     GET_FEATURE_ID(aa32_simdfmac, ARM_HWCAP_ARM_VFPv4);
453 
454     return hwcaps;
455 }
456 
457 static uint32_t get_elf_hwcap2(void)
458 {
459     ARMCPU *cpu = ARM_CPU(thread_cpu);
460     uint32_t hwcaps = 0;
461 
462     GET_FEATURE_ID(aa32_aes, ARM_HWCAP2_ARM_AES);
463     GET_FEATURE_ID(aa32_pmull, ARM_HWCAP2_ARM_PMULL);
464     GET_FEATURE_ID(aa32_sha1, ARM_HWCAP2_ARM_SHA1);
465     GET_FEATURE_ID(aa32_sha2, ARM_HWCAP2_ARM_SHA2);
466     GET_FEATURE_ID(aa32_crc32, ARM_HWCAP2_ARM_CRC32);
467     return hwcaps;
468 }
469 
470 #undef GET_FEATURE
471 #undef GET_FEATURE_ID
472 
473 #define ELF_PLATFORM get_elf_platform()
474 
475 static const char *get_elf_platform(void)
476 {
477     CPUARMState *env = thread_cpu->env_ptr;
478 
479 #ifdef TARGET_WORDS_BIGENDIAN
480 # define END  "b"
481 #else
482 # define END  "l"
483 #endif
484 
485     if (arm_feature(env, ARM_FEATURE_V8)) {
486         return "v8" END;
487     } else if (arm_feature(env, ARM_FEATURE_V7)) {
488         if (arm_feature(env, ARM_FEATURE_M)) {
489             return "v7m" END;
490         } else {
491             return "v7" END;
492         }
493     } else if (arm_feature(env, ARM_FEATURE_V6)) {
494         return "v6" END;
495     } else if (arm_feature(env, ARM_FEATURE_V5)) {
496         return "v5" END;
497     } else {
498         return "v4" END;
499     }
500 
501 #undef END
502 }
503 
504 #else
505 /* 64 bit ARM definitions */
506 #define ELF_START_MMAP 0x80000000
507 
508 #define ELF_ARCH        EM_AARCH64
509 #define ELF_CLASS       ELFCLASS64
510 #ifdef TARGET_WORDS_BIGENDIAN
511 # define ELF_PLATFORM    "aarch64_be"
512 #else
513 # define ELF_PLATFORM    "aarch64"
514 #endif
515 
516 static inline void init_thread(struct target_pt_regs *regs,
517                                struct image_info *infop)
518 {
519     abi_long stack = infop->start_stack;
520     memset(regs, 0, sizeof(*regs));
521 
522     regs->pc = infop->entry & ~0x3ULL;
523     regs->sp = stack;
524 }
525 
526 #define ELF_NREG    34
527 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
528 
529 static void elf_core_copy_regs(target_elf_gregset_t *regs,
530                                const CPUARMState *env)
531 {
532     int i;
533 
534     for (i = 0; i < 32; i++) {
535         (*regs)[i] = tswapreg(env->xregs[i]);
536     }
537     (*regs)[32] = tswapreg(env->pc);
538     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
539 }
540 
541 #define USE_ELF_CORE_DUMP
542 #define ELF_EXEC_PAGESIZE       4096
543 
544 enum {
545     ARM_HWCAP_A64_FP            = 1 << 0,
546     ARM_HWCAP_A64_ASIMD         = 1 << 1,
547     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
548     ARM_HWCAP_A64_AES           = 1 << 3,
549     ARM_HWCAP_A64_PMULL         = 1 << 4,
550     ARM_HWCAP_A64_SHA1          = 1 << 5,
551     ARM_HWCAP_A64_SHA2          = 1 << 6,
552     ARM_HWCAP_A64_CRC32         = 1 << 7,
553     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
554     ARM_HWCAP_A64_FPHP          = 1 << 9,
555     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
556     ARM_HWCAP_A64_CPUID         = 1 << 11,
557     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
558     ARM_HWCAP_A64_JSCVT         = 1 << 13,
559     ARM_HWCAP_A64_FCMA          = 1 << 14,
560     ARM_HWCAP_A64_LRCPC         = 1 << 15,
561     ARM_HWCAP_A64_DCPOP         = 1 << 16,
562     ARM_HWCAP_A64_SHA3          = 1 << 17,
563     ARM_HWCAP_A64_SM3           = 1 << 18,
564     ARM_HWCAP_A64_SM4           = 1 << 19,
565     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
566     ARM_HWCAP_A64_SHA512        = 1 << 21,
567     ARM_HWCAP_A64_SVE           = 1 << 22,
568     ARM_HWCAP_A64_ASIMDFHM      = 1 << 23,
569     ARM_HWCAP_A64_DIT           = 1 << 24,
570     ARM_HWCAP_A64_USCAT         = 1 << 25,
571     ARM_HWCAP_A64_ILRCPC        = 1 << 26,
572     ARM_HWCAP_A64_FLAGM         = 1 << 27,
573     ARM_HWCAP_A64_SSBS          = 1 << 28,
574     ARM_HWCAP_A64_SB            = 1 << 29,
575     ARM_HWCAP_A64_PACA          = 1 << 30,
576     ARM_HWCAP_A64_PACG          = 1UL << 31,
577 
578     ARM_HWCAP2_A64_DCPODP       = 1 << 0,
579     ARM_HWCAP2_A64_SVE2         = 1 << 1,
580     ARM_HWCAP2_A64_SVEAES       = 1 << 2,
581     ARM_HWCAP2_A64_SVEPMULL     = 1 << 3,
582     ARM_HWCAP2_A64_SVEBITPERM   = 1 << 4,
583     ARM_HWCAP2_A64_SVESHA3      = 1 << 5,
584     ARM_HWCAP2_A64_SVESM4       = 1 << 6,
585     ARM_HWCAP2_A64_FLAGM2       = 1 << 7,
586     ARM_HWCAP2_A64_FRINT        = 1 << 8,
587 };
588 
589 #define ELF_HWCAP   get_elf_hwcap()
590 #define ELF_HWCAP2  get_elf_hwcap2()
591 
592 #define GET_FEATURE_ID(feat, hwcap) \
593     do { if (cpu_isar_feature(feat, cpu)) { hwcaps |= hwcap; } } while (0)
594 
595 static uint32_t get_elf_hwcap(void)
596 {
597     ARMCPU *cpu = ARM_CPU(thread_cpu);
598     uint32_t hwcaps = 0;
599 
600     hwcaps |= ARM_HWCAP_A64_FP;
601     hwcaps |= ARM_HWCAP_A64_ASIMD;
602     hwcaps |= ARM_HWCAP_A64_CPUID;
603 
604     /* probe for the extra features */
605 
606     GET_FEATURE_ID(aa64_aes, ARM_HWCAP_A64_AES);
607     GET_FEATURE_ID(aa64_pmull, ARM_HWCAP_A64_PMULL);
608     GET_FEATURE_ID(aa64_sha1, ARM_HWCAP_A64_SHA1);
609     GET_FEATURE_ID(aa64_sha256, ARM_HWCAP_A64_SHA2);
610     GET_FEATURE_ID(aa64_sha512, ARM_HWCAP_A64_SHA512);
611     GET_FEATURE_ID(aa64_crc32, ARM_HWCAP_A64_CRC32);
612     GET_FEATURE_ID(aa64_sha3, ARM_HWCAP_A64_SHA3);
613     GET_FEATURE_ID(aa64_sm3, ARM_HWCAP_A64_SM3);
614     GET_FEATURE_ID(aa64_sm4, ARM_HWCAP_A64_SM4);
615     GET_FEATURE_ID(aa64_fp16, ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
616     GET_FEATURE_ID(aa64_atomics, ARM_HWCAP_A64_ATOMICS);
617     GET_FEATURE_ID(aa64_rdm, ARM_HWCAP_A64_ASIMDRDM);
618     GET_FEATURE_ID(aa64_dp, ARM_HWCAP_A64_ASIMDDP);
619     GET_FEATURE_ID(aa64_fcma, ARM_HWCAP_A64_FCMA);
620     GET_FEATURE_ID(aa64_sve, ARM_HWCAP_A64_SVE);
621     GET_FEATURE_ID(aa64_pauth, ARM_HWCAP_A64_PACA | ARM_HWCAP_A64_PACG);
622     GET_FEATURE_ID(aa64_fhm, ARM_HWCAP_A64_ASIMDFHM);
623     GET_FEATURE_ID(aa64_jscvt, ARM_HWCAP_A64_JSCVT);
624     GET_FEATURE_ID(aa64_sb, ARM_HWCAP_A64_SB);
625     GET_FEATURE_ID(aa64_condm_4, ARM_HWCAP_A64_FLAGM);
626     GET_FEATURE_ID(aa64_dcpop, ARM_HWCAP_A64_DCPOP);
627     GET_FEATURE_ID(aa64_rcpc_8_3, ARM_HWCAP_A64_LRCPC);
628     GET_FEATURE_ID(aa64_rcpc_8_4, ARM_HWCAP_A64_ILRCPC);
629 
630     return hwcaps;
631 }
632 
633 static uint32_t get_elf_hwcap2(void)
634 {
635     ARMCPU *cpu = ARM_CPU(thread_cpu);
636     uint32_t hwcaps = 0;
637 
638     GET_FEATURE_ID(aa64_dcpodp, ARM_HWCAP2_A64_DCPODP);
639     GET_FEATURE_ID(aa64_condm_5, ARM_HWCAP2_A64_FLAGM2);
640     GET_FEATURE_ID(aa64_frint, ARM_HWCAP2_A64_FRINT);
641 
642     return hwcaps;
643 }
644 
645 #undef GET_FEATURE_ID
646 
647 #endif /* not TARGET_AARCH64 */
648 #endif /* TARGET_ARM */
649 
650 #ifdef TARGET_SPARC
651 #ifdef TARGET_SPARC64
652 
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
656 #ifndef TARGET_ABI32
657 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
658 #else
659 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
660 #endif
661 
662 #define ELF_CLASS   ELFCLASS64
663 #define ELF_ARCH    EM_SPARCV9
664 
665 #define STACK_BIAS              2047
666 
667 static inline void init_thread(struct target_pt_regs *regs,
668                                struct image_info *infop)
669 {
670 #ifndef TARGET_ABI32
671     regs->tstate = 0;
672 #endif
673     regs->pc = infop->entry;
674     regs->npc = regs->pc + 4;
675     regs->y = 0;
676 #ifdef TARGET_ABI32
677     regs->u_regs[14] = infop->start_stack - 16 * 4;
678 #else
679     if (personality(infop->personality) == PER_LINUX32)
680         regs->u_regs[14] = infop->start_stack - 16 * 4;
681     else
682         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
683 #endif
684 }
685 
686 #else
687 #define ELF_START_MMAP 0x80000000
688 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
689                     | HWCAP_SPARC_MULDIV)
690 
691 #define ELF_CLASS   ELFCLASS32
692 #define ELF_ARCH    EM_SPARC
693 
694 static inline void init_thread(struct target_pt_regs *regs,
695                                struct image_info *infop)
696 {
697     regs->psr = 0;
698     regs->pc = infop->entry;
699     regs->npc = regs->pc + 4;
700     regs->y = 0;
701     regs->u_regs[14] = infop->start_stack - 16 * 4;
702 }
703 
704 #endif
705 #endif
706 
707 #ifdef TARGET_PPC
708 
709 #define ELF_MACHINE    PPC_ELF_MACHINE
710 #define ELF_START_MMAP 0x80000000
711 
712 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
713 
714 #define elf_check_arch(x) ( (x) == EM_PPC64 )
715 
716 #define ELF_CLASS       ELFCLASS64
717 
718 #else
719 
720 #define ELF_CLASS       ELFCLASS32
721 
722 #endif
723 
724 #define ELF_ARCH        EM_PPC
725 
726 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
727    See arch/powerpc/include/asm/cputable.h.  */
728 enum {
729     QEMU_PPC_FEATURE_32 = 0x80000000,
730     QEMU_PPC_FEATURE_64 = 0x40000000,
731     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
732     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
733     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
734     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
735     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
736     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
737     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
738     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
739     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
740     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
741     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
742     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
743     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
744     QEMU_PPC_FEATURE_CELL = 0x00010000,
745     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
746     QEMU_PPC_FEATURE_SMT = 0x00004000,
747     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
748     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
749     QEMU_PPC_FEATURE_PA6T = 0x00000800,
750     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
751     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
752     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
753     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
754     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
755 
756     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
757     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
758 
759     /* Feature definitions in AT_HWCAP2.  */
760     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
761     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
762     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
763     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
764     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
765     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
766     QEMU_PPC_FEATURE2_VEC_CRYPTO = 0x02000000,
767     QEMU_PPC_FEATURE2_HTM_NOSC = 0x01000000,
768     QEMU_PPC_FEATURE2_ARCH_3_00 = 0x00800000, /* ISA 3.00 */
769     QEMU_PPC_FEATURE2_HAS_IEEE128 = 0x00400000, /* VSX IEEE Bin Float 128-bit */
770     QEMU_PPC_FEATURE2_DARN = 0x00200000, /* darn random number insn */
771     QEMU_PPC_FEATURE2_SCV = 0x00100000, /* scv syscall */
772     QEMU_PPC_FEATURE2_HTM_NO_SUSPEND = 0x00080000, /* TM w/o suspended state */
773 };
774 
775 #define ELF_HWCAP get_elf_hwcap()
776 
777 static uint32_t get_elf_hwcap(void)
778 {
779     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
780     uint32_t features = 0;
781 
782     /* We don't have to be terribly complete here; the high points are
783        Altivec/FP/SPE support.  Anything else is just a bonus.  */
784 #define GET_FEATURE(flag, feature)                                      \
785     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
786 #define GET_FEATURE2(flags, feature) \
787     do { \
788         if ((cpu->env.insns_flags2 & flags) == flags) { \
789             features |= feature; \
790         } \
791     } while (0)
792     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
793     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
794     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
795     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
796     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
797     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
798     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
799     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
800     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
801     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
802     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
803                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
804                   QEMU_PPC_FEATURE_ARCH_2_06);
805 #undef GET_FEATURE
806 #undef GET_FEATURE2
807 
808     return features;
809 }
810 
811 #define ELF_HWCAP2 get_elf_hwcap2()
812 
813 static uint32_t get_elf_hwcap2(void)
814 {
815     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
816     uint32_t features = 0;
817 
818 #define GET_FEATURE(flag, feature)                                      \
819     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
820 #define GET_FEATURE2(flag, feature)                                      \
821     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
822 
823     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
824     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
825     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
826                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07 |
827                   QEMU_PPC_FEATURE2_VEC_CRYPTO);
828     GET_FEATURE2(PPC2_ISA300, QEMU_PPC_FEATURE2_ARCH_3_00 |
829                  QEMU_PPC_FEATURE2_DARN);
830 
831 #undef GET_FEATURE
832 #undef GET_FEATURE2
833 
834     return features;
835 }
836 
837 /*
838  * The requirements here are:
839  * - keep the final alignment of sp (sp & 0xf)
840  * - make sure the 32-bit value at the first 16 byte aligned position of
841  *   AUXV is greater than 16 for glibc compatibility.
842  *   AT_IGNOREPPC is used for that.
843  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
844  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
845  */
846 #define DLINFO_ARCH_ITEMS       5
847 #define ARCH_DLINFO                                     \
848     do {                                                \
849         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
850         /*                                              \
851          * Handle glibc compatibility: these magic entries must \
852          * be at the lowest addresses in the final auxv.        \
853          */                                             \
854         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
855         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
856         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
857         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
858         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
859     } while (0)
860 
861 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
862 {
863     _regs->gpr[1] = infop->start_stack;
864 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
865     if (get_ppc64_abi(infop) < 2) {
866         uint64_t val;
867         get_user_u64(val, infop->entry + 8);
868         _regs->gpr[2] = val + infop->load_bias;
869         get_user_u64(val, infop->entry);
870         infop->entry = val + infop->load_bias;
871     } else {
872         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
873     }
874 #endif
875     _regs->nip = infop->entry;
876 }
877 
878 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
879 #define ELF_NREG 48
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881 
882 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
883 {
884     int i;
885     target_ulong ccr = 0;
886 
887     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
888         (*regs)[i] = tswapreg(env->gpr[i]);
889     }
890 
891     (*regs)[32] = tswapreg(env->nip);
892     (*regs)[33] = tswapreg(env->msr);
893     (*regs)[35] = tswapreg(env->ctr);
894     (*regs)[36] = tswapreg(env->lr);
895     (*regs)[37] = tswapreg(env->xer);
896 
897     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
898         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
899     }
900     (*regs)[38] = tswapreg(ccr);
901 }
902 
903 #define USE_ELF_CORE_DUMP
904 #define ELF_EXEC_PAGESIZE       4096
905 
906 #endif
907 
908 #ifdef TARGET_MIPS
909 
910 #define ELF_START_MMAP 0x80000000
911 
912 #ifdef TARGET_MIPS64
913 #define ELF_CLASS   ELFCLASS64
914 #else
915 #define ELF_CLASS   ELFCLASS32
916 #endif
917 #define ELF_ARCH    EM_MIPS
918 
919 #define elf_check_arch(x) ((x) == EM_MIPS || (x) == EM_NANOMIPS)
920 
921 static inline void init_thread(struct target_pt_regs *regs,
922                                struct image_info *infop)
923 {
924     regs->cp0_status = 2 << CP0St_KSU;
925     regs->cp0_epc = infop->entry;
926     regs->regs[29] = infop->start_stack;
927 }
928 
929 /* See linux kernel: arch/mips/include/asm/elf.h.  */
930 #define ELF_NREG 45
931 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
932 
933 /* See linux kernel: arch/mips/include/asm/reg.h.  */
934 enum {
935 #ifdef TARGET_MIPS64
936     TARGET_EF_R0 = 0,
937 #else
938     TARGET_EF_R0 = 6,
939 #endif
940     TARGET_EF_R26 = TARGET_EF_R0 + 26,
941     TARGET_EF_R27 = TARGET_EF_R0 + 27,
942     TARGET_EF_LO = TARGET_EF_R0 + 32,
943     TARGET_EF_HI = TARGET_EF_R0 + 33,
944     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
945     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
946     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
947     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
948 };
949 
950 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
951 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
952 {
953     int i;
954 
955     for (i = 0; i < TARGET_EF_R0; i++) {
956         (*regs)[i] = 0;
957     }
958     (*regs)[TARGET_EF_R0] = 0;
959 
960     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
961         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
962     }
963 
964     (*regs)[TARGET_EF_R26] = 0;
965     (*regs)[TARGET_EF_R27] = 0;
966     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
967     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
968     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
969     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
970     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
971     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
972 }
973 
974 #define USE_ELF_CORE_DUMP
975 #define ELF_EXEC_PAGESIZE        4096
976 
977 /* See arch/mips/include/uapi/asm/hwcap.h.  */
978 enum {
979     HWCAP_MIPS_R6           = (1 << 0),
980     HWCAP_MIPS_MSA          = (1 << 1),
981 };
982 
983 #define ELF_HWCAP get_elf_hwcap()
984 
985 static uint32_t get_elf_hwcap(void)
986 {
987     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
988     uint32_t hwcaps = 0;
989 
990 #define GET_FEATURE(flag, hwcap) \
991     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
992 
993     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
994     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
995 
996 #undef GET_FEATURE
997 
998     return hwcaps;
999 }
1000 
1001 #endif /* TARGET_MIPS */
1002 
1003 #ifdef TARGET_MICROBLAZE
1004 
1005 #define ELF_START_MMAP 0x80000000
1006 
1007 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
1008 
1009 #define ELF_CLASS   ELFCLASS32
1010 #define ELF_ARCH    EM_MICROBLAZE
1011 
1012 static inline void init_thread(struct target_pt_regs *regs,
1013                                struct image_info *infop)
1014 {
1015     regs->pc = infop->entry;
1016     regs->r1 = infop->start_stack;
1017 
1018 }
1019 
1020 #define ELF_EXEC_PAGESIZE        4096
1021 
1022 #define USE_ELF_CORE_DUMP
1023 #define ELF_NREG 38
1024 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1025 
1026 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1027 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
1028 {
1029     int i, pos = 0;
1030 
1031     for (i = 0; i < 32; i++) {
1032         (*regs)[pos++] = tswapreg(env->regs[i]);
1033     }
1034 
1035     for (i = 0; i < 6; i++) {
1036         (*regs)[pos++] = tswapreg(env->sregs[i]);
1037     }
1038 }
1039 
1040 #endif /* TARGET_MICROBLAZE */
1041 
1042 #ifdef TARGET_NIOS2
1043 
1044 #define ELF_START_MMAP 0x80000000
1045 
1046 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
1047 
1048 #define ELF_CLASS   ELFCLASS32
1049 #define ELF_ARCH    EM_ALTERA_NIOS2
1050 
1051 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1052 {
1053     regs->ea = infop->entry;
1054     regs->sp = infop->start_stack;
1055     regs->estatus = 0x3;
1056 }
1057 
1058 #define ELF_EXEC_PAGESIZE        4096
1059 
1060 #define USE_ELF_CORE_DUMP
1061 #define ELF_NREG 49
1062 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1063 
1064 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
1065 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1066                                const CPUNios2State *env)
1067 {
1068     int i;
1069 
1070     (*regs)[0] = -1;
1071     for (i = 1; i < 8; i++)    /* r0-r7 */
1072         (*regs)[i] = tswapreg(env->regs[i + 7]);
1073 
1074     for (i = 8; i < 16; i++)   /* r8-r15 */
1075         (*regs)[i] = tswapreg(env->regs[i - 8]);
1076 
1077     for (i = 16; i < 24; i++)  /* r16-r23 */
1078         (*regs)[i] = tswapreg(env->regs[i + 7]);
1079     (*regs)[24] = -1;    /* R_ET */
1080     (*regs)[25] = -1;    /* R_BT */
1081     (*regs)[26] = tswapreg(env->regs[R_GP]);
1082     (*regs)[27] = tswapreg(env->regs[R_SP]);
1083     (*regs)[28] = tswapreg(env->regs[R_FP]);
1084     (*regs)[29] = tswapreg(env->regs[R_EA]);
1085     (*regs)[30] = -1;    /* R_SSTATUS */
1086     (*regs)[31] = tswapreg(env->regs[R_RA]);
1087 
1088     (*regs)[32] = tswapreg(env->regs[R_PC]);
1089 
1090     (*regs)[33] = -1; /* R_STATUS */
1091     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1092 
1093     for (i = 35; i < 49; i++)    /* ... */
1094         (*regs)[i] = -1;
1095 }
1096 
1097 #endif /* TARGET_NIOS2 */
1098 
1099 #ifdef TARGET_OPENRISC
1100 
1101 #define ELF_START_MMAP 0x08000000
1102 
1103 #define ELF_ARCH EM_OPENRISC
1104 #define ELF_CLASS ELFCLASS32
1105 #define ELF_DATA  ELFDATA2MSB
1106 
1107 static inline void init_thread(struct target_pt_regs *regs,
1108                                struct image_info *infop)
1109 {
1110     regs->pc = infop->entry;
1111     regs->gpr[1] = infop->start_stack;
1112 }
1113 
1114 #define USE_ELF_CORE_DUMP
1115 #define ELF_EXEC_PAGESIZE 8192
1116 
1117 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1118 #define ELF_NREG 34 /* gprs and pc, sr */
1119 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1120 
1121 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1122                                const CPUOpenRISCState *env)
1123 {
1124     int i;
1125 
1126     for (i = 0; i < 32; i++) {
1127         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1128     }
1129     (*regs)[32] = tswapreg(env->pc);
1130     (*regs)[33] = tswapreg(cpu_get_sr(env));
1131 }
1132 #define ELF_HWCAP 0
1133 #define ELF_PLATFORM NULL
1134 
1135 #endif /* TARGET_OPENRISC */
1136 
1137 #ifdef TARGET_SH4
1138 
1139 #define ELF_START_MMAP 0x80000000
1140 
1141 #define ELF_CLASS ELFCLASS32
1142 #define ELF_ARCH  EM_SH
1143 
1144 static inline void init_thread(struct target_pt_regs *regs,
1145                                struct image_info *infop)
1146 {
1147     /* Check other registers XXXXX */
1148     regs->pc = infop->entry;
1149     regs->regs[15] = infop->start_stack;
1150 }
1151 
1152 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1153 #define ELF_NREG 23
1154 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1155 
1156 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1157 enum {
1158     TARGET_REG_PC = 16,
1159     TARGET_REG_PR = 17,
1160     TARGET_REG_SR = 18,
1161     TARGET_REG_GBR = 19,
1162     TARGET_REG_MACH = 20,
1163     TARGET_REG_MACL = 21,
1164     TARGET_REG_SYSCALL = 22
1165 };
1166 
1167 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1168                                       const CPUSH4State *env)
1169 {
1170     int i;
1171 
1172     for (i = 0; i < 16; i++) {
1173         (*regs)[i] = tswapreg(env->gregs[i]);
1174     }
1175 
1176     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1177     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1178     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1179     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1180     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1181     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1182     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1183 }
1184 
1185 #define USE_ELF_CORE_DUMP
1186 #define ELF_EXEC_PAGESIZE        4096
1187 
1188 enum {
1189     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1190     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1191     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1192     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1193     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1194     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1195     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1196     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1197     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1198     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1199 };
1200 
1201 #define ELF_HWCAP get_elf_hwcap()
1202 
1203 static uint32_t get_elf_hwcap(void)
1204 {
1205     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1206     uint32_t hwcap = 0;
1207 
1208     hwcap |= SH_CPU_HAS_FPU;
1209 
1210     if (cpu->env.features & SH_FEATURE_SH4A) {
1211         hwcap |= SH_CPU_HAS_LLSC;
1212     }
1213 
1214     return hwcap;
1215 }
1216 
1217 #endif
1218 
1219 #ifdef TARGET_CRIS
1220 
1221 #define ELF_START_MMAP 0x80000000
1222 
1223 #define ELF_CLASS ELFCLASS32
1224 #define ELF_ARCH  EM_CRIS
1225 
1226 static inline void init_thread(struct target_pt_regs *regs,
1227                                struct image_info *infop)
1228 {
1229     regs->erp = infop->entry;
1230 }
1231 
1232 #define ELF_EXEC_PAGESIZE        8192
1233 
1234 #endif
1235 
1236 #ifdef TARGET_M68K
1237 
1238 #define ELF_START_MMAP 0x80000000
1239 
1240 #define ELF_CLASS       ELFCLASS32
1241 #define ELF_ARCH        EM_68K
1242 
1243 /* ??? Does this need to do anything?
1244    #define ELF_PLAT_INIT(_r) */
1245 
1246 static inline void init_thread(struct target_pt_regs *regs,
1247                                struct image_info *infop)
1248 {
1249     regs->usp = infop->start_stack;
1250     regs->sr = 0;
1251     regs->pc = infop->entry;
1252 }
1253 
1254 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1255 #define ELF_NREG 20
1256 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1257 
1258 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1259 {
1260     (*regs)[0] = tswapreg(env->dregs[1]);
1261     (*regs)[1] = tswapreg(env->dregs[2]);
1262     (*regs)[2] = tswapreg(env->dregs[3]);
1263     (*regs)[3] = tswapreg(env->dregs[4]);
1264     (*regs)[4] = tswapreg(env->dregs[5]);
1265     (*regs)[5] = tswapreg(env->dregs[6]);
1266     (*regs)[6] = tswapreg(env->dregs[7]);
1267     (*regs)[7] = tswapreg(env->aregs[0]);
1268     (*regs)[8] = tswapreg(env->aregs[1]);
1269     (*regs)[9] = tswapreg(env->aregs[2]);
1270     (*regs)[10] = tswapreg(env->aregs[3]);
1271     (*regs)[11] = tswapreg(env->aregs[4]);
1272     (*regs)[12] = tswapreg(env->aregs[5]);
1273     (*regs)[13] = tswapreg(env->aregs[6]);
1274     (*regs)[14] = tswapreg(env->dregs[0]);
1275     (*regs)[15] = tswapreg(env->aregs[7]);
1276     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1277     (*regs)[17] = tswapreg(env->sr);
1278     (*regs)[18] = tswapreg(env->pc);
1279     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1280 }
1281 
1282 #define USE_ELF_CORE_DUMP
1283 #define ELF_EXEC_PAGESIZE       8192
1284 
1285 #endif
1286 
1287 #ifdef TARGET_ALPHA
1288 
1289 #define ELF_START_MMAP (0x30000000000ULL)
1290 
1291 #define ELF_CLASS      ELFCLASS64
1292 #define ELF_ARCH       EM_ALPHA
1293 
1294 static inline void init_thread(struct target_pt_regs *regs,
1295                                struct image_info *infop)
1296 {
1297     regs->pc = infop->entry;
1298     regs->ps = 8;
1299     regs->usp = infop->start_stack;
1300 }
1301 
1302 #define ELF_EXEC_PAGESIZE        8192
1303 
1304 #endif /* TARGET_ALPHA */
1305 
1306 #ifdef TARGET_S390X
1307 
1308 #define ELF_START_MMAP (0x20000000000ULL)
1309 
1310 #define ELF_CLASS	ELFCLASS64
1311 #define ELF_DATA	ELFDATA2MSB
1312 #define ELF_ARCH	EM_S390
1313 
1314 #include "elf.h"
1315 
1316 #define ELF_HWCAP get_elf_hwcap()
1317 
1318 #define GET_FEATURE(_feat, _hwcap) \
1319     do { if (s390_has_feat(_feat)) { hwcap |= _hwcap; } } while (0)
1320 
1321 static uint32_t get_elf_hwcap(void)
1322 {
1323     /*
1324      * Let's assume we always have esan3 and zarch.
1325      * 31-bit processes can use 64-bit registers (high gprs).
1326      */
1327     uint32_t hwcap = HWCAP_S390_ESAN3 | HWCAP_S390_ZARCH | HWCAP_S390_HIGH_GPRS;
1328 
1329     GET_FEATURE(S390_FEAT_STFLE, HWCAP_S390_STFLE);
1330     GET_FEATURE(S390_FEAT_MSA, HWCAP_S390_MSA);
1331     GET_FEATURE(S390_FEAT_LONG_DISPLACEMENT, HWCAP_S390_LDISP);
1332     GET_FEATURE(S390_FEAT_EXTENDED_IMMEDIATE, HWCAP_S390_EIMM);
1333     if (s390_has_feat(S390_FEAT_EXTENDED_TRANSLATION_3) &&
1334         s390_has_feat(S390_FEAT_ETF3_ENH)) {
1335         hwcap |= HWCAP_S390_ETF3EH;
1336     }
1337     GET_FEATURE(S390_FEAT_VECTOR, HWCAP_S390_VXRS);
1338 
1339     return hwcap;
1340 }
1341 
1342 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1343 {
1344     regs->psw.addr = infop->entry;
1345     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1346     regs->gprs[15] = infop->start_stack;
1347 }
1348 
1349 #endif /* TARGET_S390X */
1350 
1351 #ifdef TARGET_TILEGX
1352 
1353 /* 42 bits real used address, a half for user mode */
1354 #define ELF_START_MMAP (0x00000020000000000ULL)
1355 
1356 #define elf_check_arch(x) ((x) == EM_TILEGX)
1357 
1358 #define ELF_CLASS   ELFCLASS64
1359 #define ELF_DATA    ELFDATA2LSB
1360 #define ELF_ARCH    EM_TILEGX
1361 
1362 static inline void init_thread(struct target_pt_regs *regs,
1363                                struct image_info *infop)
1364 {
1365     regs->pc = infop->entry;
1366     regs->sp = infop->start_stack;
1367 
1368 }
1369 
1370 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1371 
1372 #endif /* TARGET_TILEGX */
1373 
1374 #ifdef TARGET_RISCV
1375 
1376 #define ELF_START_MMAP 0x80000000
1377 #define ELF_ARCH  EM_RISCV
1378 
1379 #ifdef TARGET_RISCV32
1380 #define ELF_CLASS ELFCLASS32
1381 #else
1382 #define ELF_CLASS ELFCLASS64
1383 #endif
1384 
1385 static inline void init_thread(struct target_pt_regs *regs,
1386                                struct image_info *infop)
1387 {
1388     regs->sepc = infop->entry;
1389     regs->sp = infop->start_stack;
1390 }
1391 
1392 #define ELF_EXEC_PAGESIZE 4096
1393 
1394 #endif /* TARGET_RISCV */
1395 
1396 #ifdef TARGET_HPPA
1397 
1398 #define ELF_START_MMAP  0x80000000
1399 #define ELF_CLASS       ELFCLASS32
1400 #define ELF_ARCH        EM_PARISC
1401 #define ELF_PLATFORM    "PARISC"
1402 #define STACK_GROWS_DOWN 0
1403 #define STACK_ALIGNMENT  64
1404 
1405 static inline void init_thread(struct target_pt_regs *regs,
1406                                struct image_info *infop)
1407 {
1408     regs->iaoq[0] = infop->entry;
1409     regs->iaoq[1] = infop->entry + 4;
1410     regs->gr[23] = 0;
1411     regs->gr[24] = infop->arg_start;
1412     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1413     /* The top-of-stack contains a linkage buffer.  */
1414     regs->gr[30] = infop->start_stack + 64;
1415     regs->gr[31] = infop->entry;
1416 }
1417 
1418 #endif /* TARGET_HPPA */
1419 
1420 #ifdef TARGET_XTENSA
1421 
1422 #define ELF_START_MMAP 0x20000000
1423 
1424 #define ELF_CLASS       ELFCLASS32
1425 #define ELF_ARCH        EM_XTENSA
1426 
1427 static inline void init_thread(struct target_pt_regs *regs,
1428                                struct image_info *infop)
1429 {
1430     regs->windowbase = 0;
1431     regs->windowstart = 1;
1432     regs->areg[1] = infop->start_stack;
1433     regs->pc = infop->entry;
1434 }
1435 
1436 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1437 #define ELF_NREG 128
1438 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1439 
1440 enum {
1441     TARGET_REG_PC,
1442     TARGET_REG_PS,
1443     TARGET_REG_LBEG,
1444     TARGET_REG_LEND,
1445     TARGET_REG_LCOUNT,
1446     TARGET_REG_SAR,
1447     TARGET_REG_WINDOWSTART,
1448     TARGET_REG_WINDOWBASE,
1449     TARGET_REG_THREADPTR,
1450     TARGET_REG_AR0 = 64,
1451 };
1452 
1453 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1454                                const CPUXtensaState *env)
1455 {
1456     unsigned i;
1457 
1458     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1459     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1460     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1461     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1462     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1463     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1464     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1465     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1466     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1467     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1468     for (i = 0; i < env->config->nareg; ++i) {
1469         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1470     }
1471 }
1472 
1473 #define USE_ELF_CORE_DUMP
1474 #define ELF_EXEC_PAGESIZE       4096
1475 
1476 #endif /* TARGET_XTENSA */
1477 
1478 #ifndef ELF_PLATFORM
1479 #define ELF_PLATFORM (NULL)
1480 #endif
1481 
1482 #ifndef ELF_MACHINE
1483 #define ELF_MACHINE ELF_ARCH
1484 #endif
1485 
1486 #ifndef elf_check_arch
1487 #define elf_check_arch(x) ((x) == ELF_ARCH)
1488 #endif
1489 
1490 #ifndef ELF_HWCAP
1491 #define ELF_HWCAP 0
1492 #endif
1493 
1494 #ifndef STACK_GROWS_DOWN
1495 #define STACK_GROWS_DOWN 1
1496 #endif
1497 
1498 #ifndef STACK_ALIGNMENT
1499 #define STACK_ALIGNMENT 16
1500 #endif
1501 
1502 #ifdef TARGET_ABI32
1503 #undef ELF_CLASS
1504 #define ELF_CLASS ELFCLASS32
1505 #undef bswaptls
1506 #define bswaptls(ptr) bswap32s(ptr)
1507 #endif
1508 
1509 #include "elf.h"
1510 
1511 struct exec
1512 {
1513     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1514     unsigned int a_text;   /* length of text, in bytes */
1515     unsigned int a_data;   /* length of data, in bytes */
1516     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1517     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1518     unsigned int a_entry;  /* start address */
1519     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1520     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1521 };
1522 
1523 
1524 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1525 #define OMAGIC 0407
1526 #define NMAGIC 0410
1527 #define ZMAGIC 0413
1528 #define QMAGIC 0314
1529 
1530 /* Necessary parameters */
1531 #define TARGET_ELF_EXEC_PAGESIZE \
1532         (((eppnt->p_align & ~qemu_host_page_mask) != 0) ? \
1533          TARGET_PAGE_SIZE : MAX(qemu_host_page_size, TARGET_PAGE_SIZE))
1534 #define TARGET_ELF_PAGELENGTH(_v) ROUND_UP((_v), TARGET_ELF_EXEC_PAGESIZE)
1535 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1536                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1537 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1538 
1539 #define DLINFO_ITEMS 16
1540 
1541 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1542 {
1543     memcpy(to, from, n);
1544 }
1545 
1546 #ifdef BSWAP_NEEDED
1547 static void bswap_ehdr(struct elfhdr *ehdr)
1548 {
1549     bswap16s(&ehdr->e_type);            /* Object file type */
1550     bswap16s(&ehdr->e_machine);         /* Architecture */
1551     bswap32s(&ehdr->e_version);         /* Object file version */
1552     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1553     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1554     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1555     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1556     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1557     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1558     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1559     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1560     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1561     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1562 }
1563 
1564 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1565 {
1566     int i;
1567     for (i = 0; i < phnum; ++i, ++phdr) {
1568         bswap32s(&phdr->p_type);        /* Segment type */
1569         bswap32s(&phdr->p_flags);       /* Segment flags */
1570         bswaptls(&phdr->p_offset);      /* Segment file offset */
1571         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1572         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1573         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1574         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1575         bswaptls(&phdr->p_align);       /* Segment alignment */
1576     }
1577 }
1578 
1579 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1580 {
1581     int i;
1582     for (i = 0; i < shnum; ++i, ++shdr) {
1583         bswap32s(&shdr->sh_name);
1584         bswap32s(&shdr->sh_type);
1585         bswaptls(&shdr->sh_flags);
1586         bswaptls(&shdr->sh_addr);
1587         bswaptls(&shdr->sh_offset);
1588         bswaptls(&shdr->sh_size);
1589         bswap32s(&shdr->sh_link);
1590         bswap32s(&shdr->sh_info);
1591         bswaptls(&shdr->sh_addralign);
1592         bswaptls(&shdr->sh_entsize);
1593     }
1594 }
1595 
1596 static void bswap_sym(struct elf_sym *sym)
1597 {
1598     bswap32s(&sym->st_name);
1599     bswaptls(&sym->st_value);
1600     bswaptls(&sym->st_size);
1601     bswap16s(&sym->st_shndx);
1602 }
1603 
1604 #ifdef TARGET_MIPS
1605 static void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags)
1606 {
1607     bswap16s(&abiflags->version);
1608     bswap32s(&abiflags->ases);
1609     bswap32s(&abiflags->isa_ext);
1610     bswap32s(&abiflags->flags1);
1611     bswap32s(&abiflags->flags2);
1612 }
1613 #endif
1614 #else
1615 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1616 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1617 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1618 static inline void bswap_sym(struct elf_sym *sym) { }
1619 #ifdef TARGET_MIPS
1620 static inline void bswap_mips_abiflags(Mips_elf_abiflags_v0 *abiflags) { }
1621 #endif
1622 #endif
1623 
1624 #ifdef USE_ELF_CORE_DUMP
1625 static int elf_core_dump(int, const CPUArchState *);
1626 #endif /* USE_ELF_CORE_DUMP */
1627 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1628 
1629 /* Verify the portions of EHDR within E_IDENT for the target.
1630    This can be performed before bswapping the entire header.  */
1631 static bool elf_check_ident(struct elfhdr *ehdr)
1632 {
1633     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1634             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1635             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1636             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1637             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1638             && ehdr->e_ident[EI_DATA] == ELF_DATA
1639             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1640 }
1641 
1642 /* Verify the portions of EHDR outside of E_IDENT for the target.
1643    This has to wait until after bswapping the header.  */
1644 static bool elf_check_ehdr(struct elfhdr *ehdr)
1645 {
1646     return (elf_check_arch(ehdr->e_machine)
1647             && ehdr->e_ehsize == sizeof(struct elfhdr)
1648             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1649             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1650 }
1651 
1652 /*
1653  * 'copy_elf_strings()' copies argument/envelope strings from user
1654  * memory to free pages in kernel mem. These are in a format ready
1655  * to be put directly into the top of new user memory.
1656  *
1657  */
1658 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1659                                   abi_ulong p, abi_ulong stack_limit)
1660 {
1661     char *tmp;
1662     int len, i;
1663     abi_ulong top = p;
1664 
1665     if (!p) {
1666         return 0;       /* bullet-proofing */
1667     }
1668 
1669     if (STACK_GROWS_DOWN) {
1670         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1671         for (i = argc - 1; i >= 0; --i) {
1672             tmp = argv[i];
1673             if (!tmp) {
1674                 fprintf(stderr, "VFS: argc is wrong");
1675                 exit(-1);
1676             }
1677             len = strlen(tmp) + 1;
1678             tmp += len;
1679 
1680             if (len > (p - stack_limit)) {
1681                 return 0;
1682             }
1683             while (len) {
1684                 int bytes_to_copy = (len > offset) ? offset : len;
1685                 tmp -= bytes_to_copy;
1686                 p -= bytes_to_copy;
1687                 offset -= bytes_to_copy;
1688                 len -= bytes_to_copy;
1689 
1690                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1691 
1692                 if (offset == 0) {
1693                     memcpy_to_target(p, scratch, top - p);
1694                     top = p;
1695                     offset = TARGET_PAGE_SIZE;
1696                 }
1697             }
1698         }
1699         if (p != top) {
1700             memcpy_to_target(p, scratch + offset, top - p);
1701         }
1702     } else {
1703         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1704         for (i = 0; i < argc; ++i) {
1705             tmp = argv[i];
1706             if (!tmp) {
1707                 fprintf(stderr, "VFS: argc is wrong");
1708                 exit(-1);
1709             }
1710             len = strlen(tmp) + 1;
1711             if (len > (stack_limit - p)) {
1712                 return 0;
1713             }
1714             while (len) {
1715                 int bytes_to_copy = (len > remaining) ? remaining : len;
1716 
1717                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1718 
1719                 tmp += bytes_to_copy;
1720                 remaining -= bytes_to_copy;
1721                 p += bytes_to_copy;
1722                 len -= bytes_to_copy;
1723 
1724                 if (remaining == 0) {
1725                     memcpy_to_target(top, scratch, p - top);
1726                     top = p;
1727                     remaining = TARGET_PAGE_SIZE;
1728                 }
1729             }
1730         }
1731         if (p != top) {
1732             memcpy_to_target(top, scratch, p - top);
1733         }
1734     }
1735 
1736     return p;
1737 }
1738 
1739 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1740  * argument/environment space. Newer kernels (>2.6.33) allow more,
1741  * dependent on stack size, but guarantee at least 32 pages for
1742  * backwards compatibility.
1743  */
1744 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1745 
1746 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1747                                  struct image_info *info)
1748 {
1749     abi_ulong size, error, guard;
1750 
1751     size = guest_stack_size;
1752     if (size < STACK_LOWER_LIMIT) {
1753         size = STACK_LOWER_LIMIT;
1754     }
1755     guard = TARGET_PAGE_SIZE;
1756     if (guard < qemu_real_host_page_size) {
1757         guard = qemu_real_host_page_size;
1758     }
1759 
1760     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1761                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1762     if (error == -1) {
1763         perror("mmap stack");
1764         exit(-1);
1765     }
1766 
1767     /* We reserve one extra page at the top of the stack as guard.  */
1768     if (STACK_GROWS_DOWN) {
1769         target_mprotect(error, guard, PROT_NONE);
1770         info->stack_limit = error + guard;
1771         return info->stack_limit + size - sizeof(void *);
1772     } else {
1773         target_mprotect(error + size, guard, PROT_NONE);
1774         info->stack_limit = error + size;
1775         return error;
1776     }
1777 }
1778 
1779 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1780    after the data section (i.e. bss).  */
1781 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1782 {
1783     uintptr_t host_start, host_map_start, host_end;
1784 
1785     last_bss = TARGET_PAGE_ALIGN(last_bss);
1786 
1787     /* ??? There is confusion between qemu_real_host_page_size and
1788        qemu_host_page_size here and elsewhere in target_mmap, which
1789        may lead to the end of the data section mapping from the file
1790        not being mapped.  At least there was an explicit test and
1791        comment for that here, suggesting that "the file size must
1792        be known".  The comment probably pre-dates the introduction
1793        of the fstat system call in target_mmap which does in fact
1794        find out the size.  What isn't clear is if the workaround
1795        here is still actually needed.  For now, continue with it,
1796        but merge it with the "normal" mmap that would allocate the bss.  */
1797 
1798     host_start = (uintptr_t) g2h(elf_bss);
1799     host_end = (uintptr_t) g2h(last_bss);
1800     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1801 
1802     if (host_map_start < host_end) {
1803         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1804                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1805         if (p == MAP_FAILED) {
1806             perror("cannot mmap brk");
1807             exit(-1);
1808         }
1809     }
1810 
1811     /* Ensure that the bss page(s) are valid */
1812     if ((page_get_flags(last_bss-1) & prot) != prot) {
1813         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1814     }
1815 
1816     if (host_start < host_map_start) {
1817         memset((void *)host_start, 0, host_map_start - host_start);
1818     }
1819 }
1820 
1821 #ifdef TARGET_ARM
1822 static int elf_is_fdpic(struct elfhdr *exec)
1823 {
1824     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1825 }
1826 #else
1827 /* Default implementation, always false.  */
1828 static int elf_is_fdpic(struct elfhdr *exec)
1829 {
1830     return 0;
1831 }
1832 #endif
1833 
1834 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1835 {
1836     uint16_t n;
1837     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1838 
1839     /* elf32_fdpic_loadseg */
1840     n = info->nsegs;
1841     while (n--) {
1842         sp -= 12;
1843         put_user_u32(loadsegs[n].addr, sp+0);
1844         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1845         put_user_u32(loadsegs[n].p_memsz, sp+8);
1846     }
1847 
1848     /* elf32_fdpic_loadmap */
1849     sp -= 4;
1850     put_user_u16(0, sp+0); /* version */
1851     put_user_u16(info->nsegs, sp+2); /* nsegs */
1852 
1853     info->personality = PER_LINUX_FDPIC;
1854     info->loadmap_addr = sp;
1855 
1856     return sp;
1857 }
1858 
1859 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1860                                    struct elfhdr *exec,
1861                                    struct image_info *info,
1862                                    struct image_info *interp_info)
1863 {
1864     abi_ulong sp;
1865     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1866     int size;
1867     int i;
1868     abi_ulong u_rand_bytes;
1869     uint8_t k_rand_bytes[16];
1870     abi_ulong u_platform;
1871     const char *k_platform;
1872     const int n = sizeof(elf_addr_t);
1873 
1874     sp = p;
1875 
1876     /* Needs to be before we load the env/argc/... */
1877     if (elf_is_fdpic(exec)) {
1878         /* Need 4 byte alignment for these structs */
1879         sp &= ~3;
1880         sp = loader_build_fdpic_loadmap(info, sp);
1881         info->other_info = interp_info;
1882         if (interp_info) {
1883             interp_info->other_info = info;
1884             sp = loader_build_fdpic_loadmap(interp_info, sp);
1885             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1886             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1887         } else {
1888             info->interpreter_loadmap_addr = 0;
1889             info->interpreter_pt_dynamic_addr = 0;
1890         }
1891     }
1892 
1893     u_platform = 0;
1894     k_platform = ELF_PLATFORM;
1895     if (k_platform) {
1896         size_t len = strlen(k_platform) + 1;
1897         if (STACK_GROWS_DOWN) {
1898             sp -= (len + n - 1) & ~(n - 1);
1899             u_platform = sp;
1900             /* FIXME - check return value of memcpy_to_target() for failure */
1901             memcpy_to_target(sp, k_platform, len);
1902         } else {
1903             memcpy_to_target(sp, k_platform, len);
1904             u_platform = sp;
1905             sp += len + 1;
1906         }
1907     }
1908 
1909     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1910      * the argv and envp pointers.
1911      */
1912     if (STACK_GROWS_DOWN) {
1913         sp = QEMU_ALIGN_DOWN(sp, 16);
1914     } else {
1915         sp = QEMU_ALIGN_UP(sp, 16);
1916     }
1917 
1918     /*
1919      * Generate 16 random bytes for userspace PRNG seeding.
1920      */
1921     qemu_guest_getrandom_nofail(k_rand_bytes, sizeof(k_rand_bytes));
1922     if (STACK_GROWS_DOWN) {
1923         sp -= 16;
1924         u_rand_bytes = sp;
1925         /* FIXME - check return value of memcpy_to_target() for failure */
1926         memcpy_to_target(sp, k_rand_bytes, 16);
1927     } else {
1928         memcpy_to_target(sp, k_rand_bytes, 16);
1929         u_rand_bytes = sp;
1930         sp += 16;
1931     }
1932 
1933     size = (DLINFO_ITEMS + 1) * 2;
1934     if (k_platform)
1935         size += 2;
1936 #ifdef DLINFO_ARCH_ITEMS
1937     size += DLINFO_ARCH_ITEMS * 2;
1938 #endif
1939 #ifdef ELF_HWCAP2
1940     size += 2;
1941 #endif
1942     info->auxv_len = size * n;
1943 
1944     size += envc + argc + 2;
1945     size += 1;  /* argc itself */
1946     size *= n;
1947 
1948     /* Allocate space and finalize stack alignment for entry now.  */
1949     if (STACK_GROWS_DOWN) {
1950         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1951         sp = u_argc;
1952     } else {
1953         u_argc = sp;
1954         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1955     }
1956 
1957     u_argv = u_argc + n;
1958     u_envp = u_argv + (argc + 1) * n;
1959     u_auxv = u_envp + (envc + 1) * n;
1960     info->saved_auxv = u_auxv;
1961     info->arg_start = u_argv;
1962     info->arg_end = u_argv + argc * n;
1963 
1964     /* This is correct because Linux defines
1965      * elf_addr_t as Elf32_Off / Elf64_Off
1966      */
1967 #define NEW_AUX_ENT(id, val) do {               \
1968         put_user_ual(id, u_auxv);  u_auxv += n; \
1969         put_user_ual(val, u_auxv); u_auxv += n; \
1970     } while(0)
1971 
1972 #ifdef ARCH_DLINFO
1973     /*
1974      * ARCH_DLINFO must come first so platform specific code can enforce
1975      * special alignment requirements on the AUXV if necessary (eg. PPC).
1976      */
1977     ARCH_DLINFO;
1978 #endif
1979     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1980      * on info->auxv_len will trigger.
1981      */
1982     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1983     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1984     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1985     if ((info->alignment & ~qemu_host_page_mask) != 0) {
1986         /* Target doesn't support host page size alignment */
1987         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1988     } else {
1989         NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE,
1990                                                qemu_host_page_size)));
1991     }
1992     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1993     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1994     NEW_AUX_ENT(AT_ENTRY, info->entry);
1995     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1996     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1997     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1998     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1999     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
2000     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
2001     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
2002     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
2003     NEW_AUX_ENT(AT_EXECFN, info->file_string);
2004 
2005 #ifdef ELF_HWCAP2
2006     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
2007 #endif
2008 
2009     if (u_platform) {
2010         NEW_AUX_ENT(AT_PLATFORM, u_platform);
2011     }
2012     NEW_AUX_ENT (AT_NULL, 0);
2013 #undef NEW_AUX_ENT
2014 
2015     /* Check that our initial calculation of the auxv length matches how much
2016      * we actually put into it.
2017      */
2018     assert(info->auxv_len == u_auxv - info->saved_auxv);
2019 
2020     put_user_ual(argc, u_argc);
2021 
2022     p = info->arg_strings;
2023     for (i = 0; i < argc; ++i) {
2024         put_user_ual(p, u_argv);
2025         u_argv += n;
2026         p += target_strlen(p) + 1;
2027     }
2028     put_user_ual(0, u_argv);
2029 
2030     p = info->env_strings;
2031     for (i = 0; i < envc; ++i) {
2032         put_user_ual(p, u_envp);
2033         u_envp += n;
2034         p += target_strlen(p) + 1;
2035     }
2036     put_user_ual(0, u_envp);
2037 
2038     return sp;
2039 }
2040 
2041 #ifndef ARM_COMMPAGE
2042 #define ARM_COMMPAGE 0
2043 #define init_guest_commpage() true
2044 #endif
2045 
2046 static void pgb_fail_in_use(const char *image_name)
2047 {
2048     error_report("%s: requires virtual address space that is in use "
2049                  "(omit the -B option or choose a different value)",
2050                  image_name);
2051     exit(EXIT_FAILURE);
2052 }
2053 
2054 static void pgb_have_guest_base(const char *image_name, abi_ulong guest_loaddr,
2055                                 abi_ulong guest_hiaddr, long align)
2056 {
2057     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2058     void *addr, *test;
2059 
2060     if (!QEMU_IS_ALIGNED(guest_base, align)) {
2061         fprintf(stderr, "Requested guest base 0x%lx does not satisfy "
2062                 "host minimum alignment (0x%lx)\n",
2063                 guest_base, align);
2064         exit(EXIT_FAILURE);
2065     }
2066 
2067     /* Sanity check the guest binary. */
2068     if (reserved_va) {
2069         if (guest_hiaddr > reserved_va) {
2070             error_report("%s: requires more than reserved virtual "
2071                          "address space (0x%" PRIx64 " > 0x%lx)",
2072                          image_name, (uint64_t)guest_hiaddr, reserved_va);
2073             exit(EXIT_FAILURE);
2074         }
2075     } else {
2076 #if HOST_LONG_BITS < TARGET_ABI_BITS
2077         if ((guest_hiaddr - guest_base) > ~(uintptr_t)0) {
2078             error_report("%s: requires more virtual address space "
2079                          "than the host can provide (0x%" PRIx64 ")",
2080                          image_name, (uint64_t)guest_hiaddr - guest_base);
2081             exit(EXIT_FAILURE);
2082         }
2083 #endif
2084     }
2085 
2086     /*
2087      * Expand the allocation to the entire reserved_va.
2088      * Exclude the mmap_min_addr hole.
2089      */
2090     if (reserved_va) {
2091         guest_loaddr = (guest_base >= mmap_min_addr ? 0
2092                         : mmap_min_addr - guest_base);
2093         guest_hiaddr = reserved_va;
2094     }
2095 
2096     /* Reserve the address space for the binary, or reserved_va. */
2097     test = g2h(guest_loaddr);
2098     addr = mmap(test, guest_hiaddr - guest_loaddr, PROT_NONE, flags, -1, 0);
2099     if (test != addr) {
2100         pgb_fail_in_use(image_name);
2101     }
2102 }
2103 
2104 /* Return value for guest_base, or -1 if no hole found. */
2105 static uintptr_t pgb_find_hole(uintptr_t guest_loaddr, uintptr_t guest_size,
2106                                long align)
2107 {
2108     GSList *maps, *iter;
2109     uintptr_t this_start, this_end, next_start, brk;
2110     intptr_t ret = -1;
2111 
2112     assert(QEMU_IS_ALIGNED(guest_loaddr, align));
2113 
2114     maps = read_self_maps();
2115 
2116     /* Read brk after we've read the maps, which will malloc. */
2117     brk = (uintptr_t)sbrk(0);
2118 
2119     /* The first hole is before the first map entry. */
2120     this_start = mmap_min_addr;
2121 
2122     for (iter = maps; iter;
2123          this_start = next_start, iter = g_slist_next(iter)) {
2124         uintptr_t align_start, hole_size;
2125 
2126         this_end = ((MapInfo *)iter->data)->start;
2127         next_start = ((MapInfo *)iter->data)->end;
2128         align_start = ROUND_UP(this_start, align);
2129 
2130         /* Skip holes that are too small. */
2131         if (align_start >= this_end) {
2132             continue;
2133         }
2134         hole_size = this_end - align_start;
2135         if (hole_size < guest_size) {
2136             continue;
2137         }
2138 
2139         /* If this hole contains brk, give ourselves some room to grow. */
2140         if (this_start <= brk && brk < this_end) {
2141             hole_size -= guest_size;
2142             if (sizeof(uintptr_t) == 8 && hole_size >= 1 * GiB) {
2143                 align_start += 1 * GiB;
2144             } else if (hole_size >= 16 * MiB) {
2145                 align_start += 16 * MiB;
2146             } else {
2147                 align_start = (this_end - guest_size) & -align;
2148                 if (align_start < this_start) {
2149                     continue;
2150                 }
2151             }
2152         }
2153 
2154         /* Record the lowest successful match. */
2155         if (ret < 0) {
2156             ret = align_start - guest_loaddr;
2157         }
2158         /* If this hole contains the identity map, select it. */
2159         if (align_start <= guest_loaddr &&
2160             guest_loaddr + guest_size <= this_end) {
2161             ret = 0;
2162         }
2163         /* If this hole ends above the identity map, stop looking. */
2164         if (this_end >= guest_loaddr) {
2165             break;
2166         }
2167     }
2168     free_self_maps(maps);
2169 
2170     return ret;
2171 }
2172 
2173 static void pgb_static(const char *image_name, abi_ulong orig_loaddr,
2174                        abi_ulong orig_hiaddr, long align)
2175 {
2176     uintptr_t loaddr = orig_loaddr;
2177     uintptr_t hiaddr = orig_hiaddr;
2178     uintptr_t addr;
2179 
2180     if (hiaddr != orig_hiaddr) {
2181         error_report("%s: requires virtual address space that the "
2182                      "host cannot provide (0x%" PRIx64 ")",
2183                      image_name, (uint64_t)orig_hiaddr);
2184         exit(EXIT_FAILURE);
2185     }
2186 
2187     loaddr &= -align;
2188     if (ARM_COMMPAGE) {
2189         /*
2190          * Extend the allocation to include the commpage.
2191          * For a 64-bit host, this is just 4GiB; for a 32-bit host,
2192          * the address arithmetic will wrap around, but the difference
2193          * will produce the correct allocation size.
2194          */
2195         if (sizeof(uintptr_t) == 8 || loaddr >= 0x80000000u) {
2196             hiaddr = (uintptr_t)4 << 30;
2197         } else {
2198             loaddr = ARM_COMMPAGE & -align;
2199         }
2200     }
2201 
2202     addr = pgb_find_hole(loaddr, hiaddr - loaddr, align);
2203     if (addr == -1) {
2204         /*
2205          * If ARM_COMMPAGE, there *might* be a non-consecutive allocation
2206          * that can satisfy both.  But as the normal arm32 link base address
2207          * is ~32k, and we extend down to include the commpage, making the
2208          * overhead only ~96k, this is unlikely.
2209          */
2210         error_report("%s: Unable to allocate %#zx bytes of "
2211                      "virtual address space", image_name,
2212                      (size_t)(hiaddr - loaddr));
2213         exit(EXIT_FAILURE);
2214     }
2215 
2216     guest_base = addr;
2217 }
2218 
2219 static void pgb_dynamic(const char *image_name, long align)
2220 {
2221     /*
2222      * The executable is dynamic and does not require a fixed address.
2223      * All we need is a commpage that satisfies align.
2224      * If we do not need a commpage, leave guest_base == 0.
2225      */
2226     if (ARM_COMMPAGE) {
2227         uintptr_t addr, commpage;
2228 
2229         /* 64-bit hosts should have used reserved_va. */
2230         assert(sizeof(uintptr_t) == 4);
2231 
2232         /*
2233          * By putting the commpage at the first hole, that puts guest_base
2234          * just above that, and maximises the positive guest addresses.
2235          */
2236         commpage = ARM_COMMPAGE & -align;
2237         addr = pgb_find_hole(commpage, -commpage, align);
2238         assert(addr != -1);
2239         guest_base = addr;
2240     }
2241 }
2242 
2243 static void pgb_reserved_va(const char *image_name, abi_ulong guest_loaddr,
2244                             abi_ulong guest_hiaddr, long align)
2245 {
2246     const int flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
2247     void *addr, *test;
2248 
2249     if (guest_hiaddr > reserved_va) {
2250         error_report("%s: requires more than reserved virtual "
2251                      "address space (0x%" PRIx64 " > 0x%lx)",
2252                      image_name, (uint64_t)guest_hiaddr, reserved_va);
2253         exit(EXIT_FAILURE);
2254     }
2255 
2256     /* Widen the "image" to the entire reserved address space. */
2257     pgb_static(image_name, 0, reserved_va, align);
2258 
2259     /* Reserve the memory on the host. */
2260     assert(guest_base != 0);
2261     test = g2h(0);
2262     addr = mmap(test, reserved_va, PROT_NONE, flags, -1, 0);
2263     if (addr == MAP_FAILED) {
2264         error_report("Unable to reserve 0x%lx bytes of virtual address "
2265                      "space for use as guest address space (check your "
2266                      "virtual memory ulimit setting or reserve less "
2267                      "using -R option)", reserved_va);
2268         exit(EXIT_FAILURE);
2269     }
2270     assert(addr == test);
2271 }
2272 
2273 void probe_guest_base(const char *image_name, abi_ulong guest_loaddr,
2274                       abi_ulong guest_hiaddr)
2275 {
2276     /* In order to use host shmat, we must be able to honor SHMLBA.  */
2277     uintptr_t align = MAX(SHMLBA, qemu_host_page_size);
2278 
2279     if (have_guest_base) {
2280         pgb_have_guest_base(image_name, guest_loaddr, guest_hiaddr, align);
2281     } else if (reserved_va) {
2282         pgb_reserved_va(image_name, guest_loaddr, guest_hiaddr, align);
2283     } else if (guest_loaddr) {
2284         pgb_static(image_name, guest_loaddr, guest_hiaddr, align);
2285     } else {
2286         pgb_dynamic(image_name, align);
2287     }
2288 
2289     /* Reserve and initialize the commpage. */
2290     if (!init_guest_commpage()) {
2291         /*
2292          * With have_guest_base, the user has selected the address and
2293          * we are trying to work with that.  Otherwise, we have selected
2294          * free space and init_guest_commpage must succeeded.
2295          */
2296         assert(have_guest_base);
2297         pgb_fail_in_use(image_name);
2298     }
2299 
2300     assert(QEMU_IS_ALIGNED(guest_base, align));
2301     qemu_log_mask(CPU_LOG_PAGE, "Locating guest address space "
2302                   "@ 0x%" PRIx64 "\n", (uint64_t)guest_base);
2303 }
2304 
2305 /* Load an ELF image into the address space.
2306 
2307    IMAGE_NAME is the filename of the image, to use in error messages.
2308    IMAGE_FD is the open file descriptor for the image.
2309 
2310    BPRM_BUF is a copy of the beginning of the file; this of course
2311    contains the elf file header at offset 0.  It is assumed that this
2312    buffer is sufficiently aligned to present no problems to the host
2313    in accessing data at aligned offsets within the buffer.
2314 
2315    On return: INFO values will be filled in, as necessary or available.  */
2316 
2317 static void load_elf_image(const char *image_name, int image_fd,
2318                            struct image_info *info, char **pinterp_name,
2319                            char bprm_buf[BPRM_BUF_SIZE])
2320 {
2321     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2322     struct elf_phdr *phdr;
2323     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2324     int i, retval;
2325     const char *errmsg;
2326 
2327     /* First of all, some simple consistency checks */
2328     errmsg = "Invalid ELF image for this architecture";
2329     if (!elf_check_ident(ehdr)) {
2330         goto exit_errmsg;
2331     }
2332     bswap_ehdr(ehdr);
2333     if (!elf_check_ehdr(ehdr)) {
2334         goto exit_errmsg;
2335     }
2336 
2337     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2338     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2339         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2340     } else {
2341         phdr = (struct elf_phdr *) alloca(i);
2342         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2343         if (retval != i) {
2344             goto exit_read;
2345         }
2346     }
2347     bswap_phdr(phdr, ehdr->e_phnum);
2348 
2349     info->nsegs = 0;
2350     info->pt_dynamic_addr = 0;
2351 
2352     mmap_lock();
2353 
2354     /* Find the maximum size of the image and allocate an appropriate
2355        amount of memory to handle that.  */
2356     loaddr = -1, hiaddr = 0;
2357     info->alignment = 0;
2358     for (i = 0; i < ehdr->e_phnum; ++i) {
2359         if (phdr[i].p_type == PT_LOAD) {
2360             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2361             if (a < loaddr) {
2362                 loaddr = a;
2363             }
2364             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2365             if (a > hiaddr) {
2366                 hiaddr = a;
2367             }
2368             ++info->nsegs;
2369             info->alignment |= phdr[i].p_align;
2370         }
2371     }
2372 
2373     if (pinterp_name != NULL) {
2374         /*
2375          * This is the main executable.
2376          *
2377          * Reserve extra space for brk.
2378          * We hold on to this space while placing the interpreter
2379          * and the stack, lest they be placed immediately after
2380          * the data segment and block allocation from the brk.
2381          *
2382          * 16MB is chosen as "large enough" without being so large
2383          * as to allow the result to not fit with a 32-bit guest on
2384          * a 32-bit host.
2385          */
2386         info->reserve_brk = 16 * MiB;
2387         hiaddr += info->reserve_brk;
2388 
2389         if (ehdr->e_type == ET_EXEC) {
2390             /*
2391              * Make sure that the low address does not conflict with
2392              * MMAP_MIN_ADDR or the QEMU application itself.
2393              */
2394             probe_guest_base(image_name, loaddr, hiaddr);
2395         } else {
2396             /*
2397              * The binary is dynamic, but we still need to
2398              * select guest_base.  In this case we pass a size.
2399              */
2400             probe_guest_base(image_name, 0, hiaddr - loaddr);
2401         }
2402     }
2403 
2404     /*
2405      * Reserve address space for all of this.
2406      *
2407      * In the case of ET_EXEC, we supply MAP_FIXED so that we get
2408      * exactly the address range that is required.
2409      *
2410      * Otherwise this is ET_DYN, and we are searching for a location
2411      * that can hold the memory space required.  If the image is
2412      * pre-linked, LOADDR will be non-zero, and the kernel should
2413      * honor that address if it happens to be free.
2414      *
2415      * In both cases, we will overwrite pages in this range with mappings
2416      * from the executable.
2417      */
2418     load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2419                             MAP_PRIVATE | MAP_ANON | MAP_NORESERVE |
2420                             (ehdr->e_type == ET_EXEC ? MAP_FIXED : 0),
2421                             -1, 0);
2422     if (load_addr == -1) {
2423         goto exit_perror;
2424     }
2425     load_bias = load_addr - loaddr;
2426 
2427     if (elf_is_fdpic(ehdr)) {
2428         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2429             g_malloc(sizeof(*loadsegs) * info->nsegs);
2430 
2431         for (i = 0; i < ehdr->e_phnum; ++i) {
2432             switch (phdr[i].p_type) {
2433             case PT_DYNAMIC:
2434                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2435                 break;
2436             case PT_LOAD:
2437                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2438                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2439                 loadsegs->p_memsz = phdr[i].p_memsz;
2440                 ++loadsegs;
2441                 break;
2442             }
2443         }
2444     }
2445 
2446     info->load_bias = load_bias;
2447     info->code_offset = load_bias;
2448     info->data_offset = load_bias;
2449     info->load_addr = load_addr;
2450     info->entry = ehdr->e_entry + load_bias;
2451     info->start_code = -1;
2452     info->end_code = 0;
2453     info->start_data = -1;
2454     info->end_data = 0;
2455     info->brk = 0;
2456     info->elf_flags = ehdr->e_flags;
2457 
2458     for (i = 0; i < ehdr->e_phnum; i++) {
2459         struct elf_phdr *eppnt = phdr + i;
2460         if (eppnt->p_type == PT_LOAD) {
2461             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em, vaddr_len;
2462             int elf_prot = 0;
2463 
2464             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2465             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2466             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2467 
2468             vaddr = load_bias + eppnt->p_vaddr;
2469             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2470             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2471             vaddr_len = TARGET_ELF_PAGELENGTH(eppnt->p_filesz + vaddr_po);
2472 
2473             /*
2474              * Some segments may be completely empty without any backing file
2475              * segment, in that case just let zero_bss allocate an empty buffer
2476              * for it.
2477              */
2478             if (eppnt->p_filesz != 0) {
2479                 error = target_mmap(vaddr_ps, vaddr_len, elf_prot,
2480                                     MAP_PRIVATE | MAP_FIXED,
2481                                     image_fd, eppnt->p_offset - vaddr_po);
2482 
2483                 if (error == -1) {
2484                     goto exit_perror;
2485                 }
2486             }
2487 
2488             vaddr_ef = vaddr + eppnt->p_filesz;
2489             vaddr_em = vaddr + eppnt->p_memsz;
2490 
2491             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2492             if (vaddr_ef < vaddr_em) {
2493                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2494             }
2495 
2496             /* Find the full program boundaries.  */
2497             if (elf_prot & PROT_EXEC) {
2498                 if (vaddr < info->start_code) {
2499                     info->start_code = vaddr;
2500                 }
2501                 if (vaddr_ef > info->end_code) {
2502                     info->end_code = vaddr_ef;
2503                 }
2504             }
2505             if (elf_prot & PROT_WRITE) {
2506                 if (vaddr < info->start_data) {
2507                     info->start_data = vaddr;
2508                 }
2509                 if (vaddr_ef > info->end_data) {
2510                     info->end_data = vaddr_ef;
2511                 }
2512                 if (vaddr_em > info->brk) {
2513                     info->brk = vaddr_em;
2514                 }
2515             }
2516         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2517             char *interp_name;
2518 
2519             if (*pinterp_name) {
2520                 errmsg = "Multiple PT_INTERP entries";
2521                 goto exit_errmsg;
2522             }
2523             interp_name = malloc(eppnt->p_filesz);
2524             if (!interp_name) {
2525                 goto exit_perror;
2526             }
2527 
2528             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2529                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2530                        eppnt->p_filesz);
2531             } else {
2532                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2533                                eppnt->p_offset);
2534                 if (retval != eppnt->p_filesz) {
2535                     goto exit_perror;
2536                 }
2537             }
2538             if (interp_name[eppnt->p_filesz - 1] != 0) {
2539                 errmsg = "Invalid PT_INTERP entry";
2540                 goto exit_errmsg;
2541             }
2542             *pinterp_name = interp_name;
2543 #ifdef TARGET_MIPS
2544         } else if (eppnt->p_type == PT_MIPS_ABIFLAGS) {
2545             Mips_elf_abiflags_v0 abiflags;
2546             if (eppnt->p_filesz < sizeof(Mips_elf_abiflags_v0)) {
2547                 errmsg = "Invalid PT_MIPS_ABIFLAGS entry";
2548                 goto exit_errmsg;
2549             }
2550             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2551                 memcpy(&abiflags, bprm_buf + eppnt->p_offset,
2552                        sizeof(Mips_elf_abiflags_v0));
2553             } else {
2554                 retval = pread(image_fd, &abiflags, sizeof(Mips_elf_abiflags_v0),
2555                                eppnt->p_offset);
2556                 if (retval != sizeof(Mips_elf_abiflags_v0)) {
2557                     goto exit_perror;
2558                 }
2559             }
2560             bswap_mips_abiflags(&abiflags);
2561             info->fp_abi = abiflags.fp_abi;
2562 #endif
2563         }
2564     }
2565 
2566     if (info->end_data == 0) {
2567         info->start_data = info->end_code;
2568         info->end_data = info->end_code;
2569         info->brk = info->end_code;
2570     }
2571 
2572     if (qemu_log_enabled()) {
2573         load_symbols(ehdr, image_fd, load_bias);
2574     }
2575 
2576     mmap_unlock();
2577 
2578     close(image_fd);
2579     return;
2580 
2581  exit_read:
2582     if (retval >= 0) {
2583         errmsg = "Incomplete read of file header";
2584         goto exit_errmsg;
2585     }
2586  exit_perror:
2587     errmsg = strerror(errno);
2588  exit_errmsg:
2589     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2590     exit(-1);
2591 }
2592 
2593 static void load_elf_interp(const char *filename, struct image_info *info,
2594                             char bprm_buf[BPRM_BUF_SIZE])
2595 {
2596     int fd, retval;
2597 
2598     fd = open(path(filename), O_RDONLY);
2599     if (fd < 0) {
2600         goto exit_perror;
2601     }
2602 
2603     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2604     if (retval < 0) {
2605         goto exit_perror;
2606     }
2607     if (retval < BPRM_BUF_SIZE) {
2608         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2609     }
2610 
2611     load_elf_image(filename, fd, info, NULL, bprm_buf);
2612     return;
2613 
2614  exit_perror:
2615     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2616     exit(-1);
2617 }
2618 
2619 static int symfind(const void *s0, const void *s1)
2620 {
2621     target_ulong addr = *(target_ulong *)s0;
2622     struct elf_sym *sym = (struct elf_sym *)s1;
2623     int result = 0;
2624     if (addr < sym->st_value) {
2625         result = -1;
2626     } else if (addr >= sym->st_value + sym->st_size) {
2627         result = 1;
2628     }
2629     return result;
2630 }
2631 
2632 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2633 {
2634 #if ELF_CLASS == ELFCLASS32
2635     struct elf_sym *syms = s->disas_symtab.elf32;
2636 #else
2637     struct elf_sym *syms = s->disas_symtab.elf64;
2638 #endif
2639 
2640     // binary search
2641     struct elf_sym *sym;
2642 
2643     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2644     if (sym != NULL) {
2645         return s->disas_strtab + sym->st_name;
2646     }
2647 
2648     return "";
2649 }
2650 
2651 /* FIXME: This should use elf_ops.h  */
2652 static int symcmp(const void *s0, const void *s1)
2653 {
2654     struct elf_sym *sym0 = (struct elf_sym *)s0;
2655     struct elf_sym *sym1 = (struct elf_sym *)s1;
2656     return (sym0->st_value < sym1->st_value)
2657         ? -1
2658         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2659 }
2660 
2661 /* Best attempt to load symbols from this ELF object. */
2662 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2663 {
2664     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2665     uint64_t segsz;
2666     struct elf_shdr *shdr;
2667     char *strings = NULL;
2668     struct syminfo *s = NULL;
2669     struct elf_sym *new_syms, *syms = NULL;
2670 
2671     shnum = hdr->e_shnum;
2672     i = shnum * sizeof(struct elf_shdr);
2673     shdr = (struct elf_shdr *)alloca(i);
2674     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2675         return;
2676     }
2677 
2678     bswap_shdr(shdr, shnum);
2679     for (i = 0; i < shnum; ++i) {
2680         if (shdr[i].sh_type == SHT_SYMTAB) {
2681             sym_idx = i;
2682             str_idx = shdr[i].sh_link;
2683             goto found;
2684         }
2685     }
2686 
2687     /* There will be no symbol table if the file was stripped.  */
2688     return;
2689 
2690  found:
2691     /* Now know where the strtab and symtab are.  Snarf them.  */
2692     s = g_try_new(struct syminfo, 1);
2693     if (!s) {
2694         goto give_up;
2695     }
2696 
2697     segsz = shdr[str_idx].sh_size;
2698     s->disas_strtab = strings = g_try_malloc(segsz);
2699     if (!strings ||
2700         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2701         goto give_up;
2702     }
2703 
2704     segsz = shdr[sym_idx].sh_size;
2705     syms = g_try_malloc(segsz);
2706     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2707         goto give_up;
2708     }
2709 
2710     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2711         /* Implausibly large symbol table: give up rather than ploughing
2712          * on with the number of symbols calculation overflowing
2713          */
2714         goto give_up;
2715     }
2716     nsyms = segsz / sizeof(struct elf_sym);
2717     for (i = 0; i < nsyms; ) {
2718         bswap_sym(syms + i);
2719         /* Throw away entries which we do not need.  */
2720         if (syms[i].st_shndx == SHN_UNDEF
2721             || syms[i].st_shndx >= SHN_LORESERVE
2722             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2723             if (i < --nsyms) {
2724                 syms[i] = syms[nsyms];
2725             }
2726         } else {
2727 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2728             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2729             syms[i].st_value &= ~(target_ulong)1;
2730 #endif
2731             syms[i].st_value += load_bias;
2732             i++;
2733         }
2734     }
2735 
2736     /* No "useful" symbol.  */
2737     if (nsyms == 0) {
2738         goto give_up;
2739     }
2740 
2741     /* Attempt to free the storage associated with the local symbols
2742        that we threw away.  Whether or not this has any effect on the
2743        memory allocation depends on the malloc implementation and how
2744        many symbols we managed to discard.  */
2745     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2746     if (new_syms == NULL) {
2747         goto give_up;
2748     }
2749     syms = new_syms;
2750 
2751     qsort(syms, nsyms, sizeof(*syms), symcmp);
2752 
2753     s->disas_num_syms = nsyms;
2754 #if ELF_CLASS == ELFCLASS32
2755     s->disas_symtab.elf32 = syms;
2756 #else
2757     s->disas_symtab.elf64 = syms;
2758 #endif
2759     s->lookup_symbol = lookup_symbolxx;
2760     s->next = syminfos;
2761     syminfos = s;
2762 
2763     return;
2764 
2765 give_up:
2766     g_free(s);
2767     g_free(strings);
2768     g_free(syms);
2769 }
2770 
2771 uint32_t get_elf_eflags(int fd)
2772 {
2773     struct elfhdr ehdr;
2774     off_t offset;
2775     int ret;
2776 
2777     /* Read ELF header */
2778     offset = lseek(fd, 0, SEEK_SET);
2779     if (offset == (off_t) -1) {
2780         return 0;
2781     }
2782     ret = read(fd, &ehdr, sizeof(ehdr));
2783     if (ret < sizeof(ehdr)) {
2784         return 0;
2785     }
2786     offset = lseek(fd, offset, SEEK_SET);
2787     if (offset == (off_t) -1) {
2788         return 0;
2789     }
2790 
2791     /* Check ELF signature */
2792     if (!elf_check_ident(&ehdr)) {
2793         return 0;
2794     }
2795 
2796     /* check header */
2797     bswap_ehdr(&ehdr);
2798     if (!elf_check_ehdr(&ehdr)) {
2799         return 0;
2800     }
2801 
2802     /* return architecture id */
2803     return ehdr.e_flags;
2804 }
2805 
2806 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2807 {
2808     struct image_info interp_info;
2809     struct elfhdr elf_ex;
2810     char *elf_interpreter = NULL;
2811     char *scratch;
2812 
2813     memset(&interp_info, 0, sizeof(interp_info));
2814 #ifdef TARGET_MIPS
2815     interp_info.fp_abi = MIPS_ABI_FP_UNKNOWN;
2816 #endif
2817 
2818     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2819 
2820     load_elf_image(bprm->filename, bprm->fd, info,
2821                    &elf_interpreter, bprm->buf);
2822 
2823     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2824        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2825        when we load the interpreter.  */
2826     elf_ex = *(struct elfhdr *)bprm->buf;
2827 
2828     /* Do this so that we can load the interpreter, if need be.  We will
2829        change some of these later */
2830     bprm->p = setup_arg_pages(bprm, info);
2831 
2832     scratch = g_new0(char, TARGET_PAGE_SIZE);
2833     if (STACK_GROWS_DOWN) {
2834         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2835                                    bprm->p, info->stack_limit);
2836         info->file_string = bprm->p;
2837         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2838                                    bprm->p, info->stack_limit);
2839         info->env_strings = bprm->p;
2840         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2841                                    bprm->p, info->stack_limit);
2842         info->arg_strings = bprm->p;
2843     } else {
2844         info->arg_strings = bprm->p;
2845         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2846                                    bprm->p, info->stack_limit);
2847         info->env_strings = bprm->p;
2848         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2849                                    bprm->p, info->stack_limit);
2850         info->file_string = bprm->p;
2851         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2852                                    bprm->p, info->stack_limit);
2853     }
2854 
2855     g_free(scratch);
2856 
2857     if (!bprm->p) {
2858         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2859         exit(-1);
2860     }
2861 
2862     if (elf_interpreter) {
2863         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2864 
2865         /* If the program interpreter is one of these two, then assume
2866            an iBCS2 image.  Otherwise assume a native linux image.  */
2867 
2868         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2869             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2870             info->personality = PER_SVR4;
2871 
2872             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2873                and some applications "depend" upon this behavior.  Since
2874                we do not have the power to recompile these, we emulate
2875                the SVr4 behavior.  Sigh.  */
2876             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2877                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2878         }
2879 #ifdef TARGET_MIPS
2880         info->interp_fp_abi = interp_info.fp_abi;
2881 #endif
2882     }
2883 
2884     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2885                                 info, (elf_interpreter ? &interp_info : NULL));
2886     info->start_stack = bprm->p;
2887 
2888     /* If we have an interpreter, set that as the program's entry point.
2889        Copy the load_bias as well, to help PPC64 interpret the entry
2890        point as a function descriptor.  Do this after creating elf tables
2891        so that we copy the original program entry point into the AUXV.  */
2892     if (elf_interpreter) {
2893         info->load_bias = interp_info.load_bias;
2894         info->entry = interp_info.entry;
2895         free(elf_interpreter);
2896     }
2897 
2898 #ifdef USE_ELF_CORE_DUMP
2899     bprm->core_dump = &elf_core_dump;
2900 #endif
2901 
2902     /*
2903      * If we reserved extra space for brk, release it now.
2904      * The implementation of do_brk in syscalls.c expects to be able
2905      * to mmap pages in this space.
2906      */
2907     if (info->reserve_brk) {
2908         abi_ulong start_brk = HOST_PAGE_ALIGN(info->brk);
2909         abi_ulong end_brk = HOST_PAGE_ALIGN(info->brk + info->reserve_brk);
2910         target_munmap(start_brk, end_brk - start_brk);
2911     }
2912 
2913     return 0;
2914 }
2915 
2916 #ifdef USE_ELF_CORE_DUMP
2917 /*
2918  * Definitions to generate Intel SVR4-like core files.
2919  * These mostly have the same names as the SVR4 types with "target_elf_"
2920  * tacked on the front to prevent clashes with linux definitions,
2921  * and the typedef forms have been avoided.  This is mostly like
2922  * the SVR4 structure, but more Linuxy, with things that Linux does
2923  * not support and which gdb doesn't really use excluded.
2924  *
2925  * Fields we don't dump (their contents is zero) in linux-user qemu
2926  * are marked with XXX.
2927  *
2928  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2929  *
2930  * Porting ELF coredump for target is (quite) simple process.  First you
2931  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2932  * the target resides):
2933  *
2934  * #define USE_ELF_CORE_DUMP
2935  *
2936  * Next you define type of register set used for dumping.  ELF specification
2937  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2938  *
2939  * typedef <target_regtype> target_elf_greg_t;
2940  * #define ELF_NREG <number of registers>
2941  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2942  *
2943  * Last step is to implement target specific function that copies registers
2944  * from given cpu into just specified register set.  Prototype is:
2945  *
2946  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2947  *                                const CPUArchState *env);
2948  *
2949  * Parameters:
2950  *     regs - copy register values into here (allocated and zeroed by caller)
2951  *     env - copy registers from here
2952  *
2953  * Example for ARM target is provided in this file.
2954  */
2955 
2956 /* An ELF note in memory */
2957 struct memelfnote {
2958     const char *name;
2959     size_t     namesz;
2960     size_t     namesz_rounded;
2961     int        type;
2962     size_t     datasz;
2963     size_t     datasz_rounded;
2964     void       *data;
2965     size_t     notesz;
2966 };
2967 
2968 struct target_elf_siginfo {
2969     abi_int    si_signo; /* signal number */
2970     abi_int    si_code;  /* extra code */
2971     abi_int    si_errno; /* errno */
2972 };
2973 
2974 struct target_elf_prstatus {
2975     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2976     abi_short          pr_cursig;    /* Current signal */
2977     abi_ulong          pr_sigpend;   /* XXX */
2978     abi_ulong          pr_sighold;   /* XXX */
2979     target_pid_t       pr_pid;
2980     target_pid_t       pr_ppid;
2981     target_pid_t       pr_pgrp;
2982     target_pid_t       pr_sid;
2983     struct target_timeval pr_utime;  /* XXX User time */
2984     struct target_timeval pr_stime;  /* XXX System time */
2985     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2986     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2987     target_elf_gregset_t      pr_reg;       /* GP registers */
2988     abi_int            pr_fpvalid;   /* XXX */
2989 };
2990 
2991 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2992 
2993 struct target_elf_prpsinfo {
2994     char         pr_state;       /* numeric process state */
2995     char         pr_sname;       /* char for pr_state */
2996     char         pr_zomb;        /* zombie */
2997     char         pr_nice;        /* nice val */
2998     abi_ulong    pr_flag;        /* flags */
2999     target_uid_t pr_uid;
3000     target_gid_t pr_gid;
3001     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
3002     /* Lots missing */
3003     char    pr_fname[16] QEMU_NONSTRING; /* filename of executable */
3004     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
3005 };
3006 
3007 /* Here is the structure in which status of each thread is captured. */
3008 struct elf_thread_status {
3009     QTAILQ_ENTRY(elf_thread_status)  ets_link;
3010     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
3011 #if 0
3012     elf_fpregset_t fpu;             /* NT_PRFPREG */
3013     struct task_struct *thread;
3014     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
3015 #endif
3016     struct memelfnote notes[1];
3017     int num_notes;
3018 };
3019 
3020 struct elf_note_info {
3021     struct memelfnote   *notes;
3022     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
3023     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
3024 
3025     QTAILQ_HEAD(, elf_thread_status) thread_list;
3026 #if 0
3027     /*
3028      * Current version of ELF coredump doesn't support
3029      * dumping fp regs etc.
3030      */
3031     elf_fpregset_t *fpu;
3032     elf_fpxregset_t *xfpu;
3033     int thread_status_size;
3034 #endif
3035     int notes_size;
3036     int numnote;
3037 };
3038 
3039 struct vm_area_struct {
3040     target_ulong   vma_start;  /* start vaddr of memory region */
3041     target_ulong   vma_end;    /* end vaddr of memory region */
3042     abi_ulong      vma_flags;  /* protection etc. flags for the region */
3043     QTAILQ_ENTRY(vm_area_struct) vma_link;
3044 };
3045 
3046 struct mm_struct {
3047     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
3048     int mm_count;           /* number of mappings */
3049 };
3050 
3051 static struct mm_struct *vma_init(void);
3052 static void vma_delete(struct mm_struct *);
3053 static int vma_add_mapping(struct mm_struct *, target_ulong,
3054                            target_ulong, abi_ulong);
3055 static int vma_get_mapping_count(const struct mm_struct *);
3056 static struct vm_area_struct *vma_first(const struct mm_struct *);
3057 static struct vm_area_struct *vma_next(struct vm_area_struct *);
3058 static abi_ulong vma_dump_size(const struct vm_area_struct *);
3059 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3060                       unsigned long flags);
3061 
3062 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
3063 static void fill_note(struct memelfnote *, const char *, int,
3064                       unsigned int, void *);
3065 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
3066 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
3067 static void fill_auxv_note(struct memelfnote *, const TaskState *);
3068 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
3069 static size_t note_size(const struct memelfnote *);
3070 static void free_note_info(struct elf_note_info *);
3071 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
3072 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
3073 static int core_dump_filename(const TaskState *, char *, size_t);
3074 
3075 static int dump_write(int, const void *, size_t);
3076 static int write_note(struct memelfnote *, int);
3077 static int write_note_info(struct elf_note_info *, int);
3078 
3079 #ifdef BSWAP_NEEDED
3080 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
3081 {
3082     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
3083     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
3084     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
3085     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
3086     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
3087     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
3088     prstatus->pr_pid = tswap32(prstatus->pr_pid);
3089     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
3090     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
3091     prstatus->pr_sid = tswap32(prstatus->pr_sid);
3092     /* cpu times are not filled, so we skip them */
3093     /* regs should be in correct format already */
3094     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
3095 }
3096 
3097 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
3098 {
3099     psinfo->pr_flag = tswapal(psinfo->pr_flag);
3100     psinfo->pr_uid = tswap16(psinfo->pr_uid);
3101     psinfo->pr_gid = tswap16(psinfo->pr_gid);
3102     psinfo->pr_pid = tswap32(psinfo->pr_pid);
3103     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
3104     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
3105     psinfo->pr_sid = tswap32(psinfo->pr_sid);
3106 }
3107 
3108 static void bswap_note(struct elf_note *en)
3109 {
3110     bswap32s(&en->n_namesz);
3111     bswap32s(&en->n_descsz);
3112     bswap32s(&en->n_type);
3113 }
3114 #else
3115 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
3116 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
3117 static inline void bswap_note(struct elf_note *en) { }
3118 #endif /* BSWAP_NEEDED */
3119 
3120 /*
3121  * Minimal support for linux memory regions.  These are needed
3122  * when we are finding out what memory exactly belongs to
3123  * emulated process.  No locks needed here, as long as
3124  * thread that received the signal is stopped.
3125  */
3126 
3127 static struct mm_struct *vma_init(void)
3128 {
3129     struct mm_struct *mm;
3130 
3131     if ((mm = g_malloc(sizeof (*mm))) == NULL)
3132         return (NULL);
3133 
3134     mm->mm_count = 0;
3135     QTAILQ_INIT(&mm->mm_mmap);
3136 
3137     return (mm);
3138 }
3139 
3140 static void vma_delete(struct mm_struct *mm)
3141 {
3142     struct vm_area_struct *vma;
3143 
3144     while ((vma = vma_first(mm)) != NULL) {
3145         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
3146         g_free(vma);
3147     }
3148     g_free(mm);
3149 }
3150 
3151 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
3152                            target_ulong end, abi_ulong flags)
3153 {
3154     struct vm_area_struct *vma;
3155 
3156     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
3157         return (-1);
3158 
3159     vma->vma_start = start;
3160     vma->vma_end = end;
3161     vma->vma_flags = flags;
3162 
3163     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
3164     mm->mm_count++;
3165 
3166     return (0);
3167 }
3168 
3169 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
3170 {
3171     return (QTAILQ_FIRST(&mm->mm_mmap));
3172 }
3173 
3174 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
3175 {
3176     return (QTAILQ_NEXT(vma, vma_link));
3177 }
3178 
3179 static int vma_get_mapping_count(const struct mm_struct *mm)
3180 {
3181     return (mm->mm_count);
3182 }
3183 
3184 /*
3185  * Calculate file (dump) size of given memory region.
3186  */
3187 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
3188 {
3189     /* if we cannot even read the first page, skip it */
3190     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
3191         return (0);
3192 
3193     /*
3194      * Usually we don't dump executable pages as they contain
3195      * non-writable code that debugger can read directly from
3196      * target library etc.  However, thread stacks are marked
3197      * also executable so we read in first page of given region
3198      * and check whether it contains elf header.  If there is
3199      * no elf header, we dump it.
3200      */
3201     if (vma->vma_flags & PROT_EXEC) {
3202         char page[TARGET_PAGE_SIZE];
3203 
3204         copy_from_user(page, vma->vma_start, sizeof (page));
3205         if ((page[EI_MAG0] == ELFMAG0) &&
3206             (page[EI_MAG1] == ELFMAG1) &&
3207             (page[EI_MAG2] == ELFMAG2) &&
3208             (page[EI_MAG3] == ELFMAG3)) {
3209             /*
3210              * Mappings are possibly from ELF binary.  Don't dump
3211              * them.
3212              */
3213             return (0);
3214         }
3215     }
3216 
3217     return (vma->vma_end - vma->vma_start);
3218 }
3219 
3220 static int vma_walker(void *priv, target_ulong start, target_ulong end,
3221                       unsigned long flags)
3222 {
3223     struct mm_struct *mm = (struct mm_struct *)priv;
3224 
3225     vma_add_mapping(mm, start, end, flags);
3226     return (0);
3227 }
3228 
3229 static void fill_note(struct memelfnote *note, const char *name, int type,
3230                       unsigned int sz, void *data)
3231 {
3232     unsigned int namesz;
3233 
3234     namesz = strlen(name) + 1;
3235     note->name = name;
3236     note->namesz = namesz;
3237     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
3238     note->type = type;
3239     note->datasz = sz;
3240     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3241 
3242     note->data = data;
3243 
3244     /*
3245      * We calculate rounded up note size here as specified by
3246      * ELF document.
3247      */
3248     note->notesz = sizeof (struct elf_note) +
3249         note->namesz_rounded + note->datasz_rounded;
3250 }
3251 
3252 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3253                             uint32_t flags)
3254 {
3255     (void) memset(elf, 0, sizeof(*elf));
3256 
3257     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3258     elf->e_ident[EI_CLASS] = ELF_CLASS;
3259     elf->e_ident[EI_DATA] = ELF_DATA;
3260     elf->e_ident[EI_VERSION] = EV_CURRENT;
3261     elf->e_ident[EI_OSABI] = ELF_OSABI;
3262 
3263     elf->e_type = ET_CORE;
3264     elf->e_machine = machine;
3265     elf->e_version = EV_CURRENT;
3266     elf->e_phoff = sizeof(struct elfhdr);
3267     elf->e_flags = flags;
3268     elf->e_ehsize = sizeof(struct elfhdr);
3269     elf->e_phentsize = sizeof(struct elf_phdr);
3270     elf->e_phnum = segs;
3271 
3272     bswap_ehdr(elf);
3273 }
3274 
3275 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3276 {
3277     phdr->p_type = PT_NOTE;
3278     phdr->p_offset = offset;
3279     phdr->p_vaddr = 0;
3280     phdr->p_paddr = 0;
3281     phdr->p_filesz = sz;
3282     phdr->p_memsz = 0;
3283     phdr->p_flags = 0;
3284     phdr->p_align = 0;
3285 
3286     bswap_phdr(phdr, 1);
3287 }
3288 
3289 static size_t note_size(const struct memelfnote *note)
3290 {
3291     return (note->notesz);
3292 }
3293 
3294 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3295                           const TaskState *ts, int signr)
3296 {
3297     (void) memset(prstatus, 0, sizeof (*prstatus));
3298     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3299     prstatus->pr_pid = ts->ts_tid;
3300     prstatus->pr_ppid = getppid();
3301     prstatus->pr_pgrp = getpgrp();
3302     prstatus->pr_sid = getsid(0);
3303 
3304     bswap_prstatus(prstatus);
3305 }
3306 
3307 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3308 {
3309     char *base_filename;
3310     unsigned int i, len;
3311 
3312     (void) memset(psinfo, 0, sizeof (*psinfo));
3313 
3314     len = ts->info->arg_end - ts->info->arg_start;
3315     if (len >= ELF_PRARGSZ)
3316         len = ELF_PRARGSZ - 1;
3317     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3318         return -EFAULT;
3319     for (i = 0; i < len; i++)
3320         if (psinfo->pr_psargs[i] == 0)
3321             psinfo->pr_psargs[i] = ' ';
3322     psinfo->pr_psargs[len] = 0;
3323 
3324     psinfo->pr_pid = getpid();
3325     psinfo->pr_ppid = getppid();
3326     psinfo->pr_pgrp = getpgrp();
3327     psinfo->pr_sid = getsid(0);
3328     psinfo->pr_uid = getuid();
3329     psinfo->pr_gid = getgid();
3330 
3331     base_filename = g_path_get_basename(ts->bprm->filename);
3332     /*
3333      * Using strncpy here is fine: at max-length,
3334      * this field is not NUL-terminated.
3335      */
3336     (void) strncpy(psinfo->pr_fname, base_filename,
3337                    sizeof(psinfo->pr_fname));
3338 
3339     g_free(base_filename);
3340     bswap_psinfo(psinfo);
3341     return (0);
3342 }
3343 
3344 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3345 {
3346     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3347     elf_addr_t orig_auxv = auxv;
3348     void *ptr;
3349     int len = ts->info->auxv_len;
3350 
3351     /*
3352      * Auxiliary vector is stored in target process stack.  It contains
3353      * {type, value} pairs that we need to dump into note.  This is not
3354      * strictly necessary but we do it here for sake of completeness.
3355      */
3356 
3357     /* read in whole auxv vector and copy it to memelfnote */
3358     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3359     if (ptr != NULL) {
3360         fill_note(note, "CORE", NT_AUXV, len, ptr);
3361         unlock_user(ptr, auxv, len);
3362     }
3363 }
3364 
3365 /*
3366  * Constructs name of coredump file.  We have following convention
3367  * for the name:
3368  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3369  *
3370  * Returns 0 in case of success, -1 otherwise (errno is set).
3371  */
3372 static int core_dump_filename(const TaskState *ts, char *buf,
3373                               size_t bufsize)
3374 {
3375     char timestamp[64];
3376     char *base_filename = NULL;
3377     struct timeval tv;
3378     struct tm tm;
3379 
3380     assert(bufsize >= PATH_MAX);
3381 
3382     if (gettimeofday(&tv, NULL) < 0) {
3383         (void) fprintf(stderr, "unable to get current timestamp: %s",
3384                        strerror(errno));
3385         return (-1);
3386     }
3387 
3388     base_filename = g_path_get_basename(ts->bprm->filename);
3389     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3390                     localtime_r(&tv.tv_sec, &tm));
3391     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3392                     base_filename, timestamp, (int)getpid());
3393     g_free(base_filename);
3394 
3395     return (0);
3396 }
3397 
3398 static int dump_write(int fd, const void *ptr, size_t size)
3399 {
3400     const char *bufp = (const char *)ptr;
3401     ssize_t bytes_written, bytes_left;
3402     struct rlimit dumpsize;
3403     off_t pos;
3404 
3405     bytes_written = 0;
3406     getrlimit(RLIMIT_CORE, &dumpsize);
3407     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3408         if (errno == ESPIPE) { /* not a seekable stream */
3409             bytes_left = size;
3410         } else {
3411             return pos;
3412         }
3413     } else {
3414         if (dumpsize.rlim_cur <= pos) {
3415             return -1;
3416         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3417             bytes_left = size;
3418         } else {
3419             size_t limit_left=dumpsize.rlim_cur - pos;
3420             bytes_left = limit_left >= size ? size : limit_left ;
3421         }
3422     }
3423 
3424     /*
3425      * In normal conditions, single write(2) should do but
3426      * in case of socket etc. this mechanism is more portable.
3427      */
3428     do {
3429         bytes_written = write(fd, bufp, bytes_left);
3430         if (bytes_written < 0) {
3431             if (errno == EINTR)
3432                 continue;
3433             return (-1);
3434         } else if (bytes_written == 0) { /* eof */
3435             return (-1);
3436         }
3437         bufp += bytes_written;
3438         bytes_left -= bytes_written;
3439     } while (bytes_left > 0);
3440 
3441     return (0);
3442 }
3443 
3444 static int write_note(struct memelfnote *men, int fd)
3445 {
3446     struct elf_note en;
3447 
3448     en.n_namesz = men->namesz;
3449     en.n_type = men->type;
3450     en.n_descsz = men->datasz;
3451 
3452     bswap_note(&en);
3453 
3454     if (dump_write(fd, &en, sizeof(en)) != 0)
3455         return (-1);
3456     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3457         return (-1);
3458     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3459         return (-1);
3460 
3461     return (0);
3462 }
3463 
3464 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3465 {
3466     CPUState *cpu = env_cpu((CPUArchState *)env);
3467     TaskState *ts = (TaskState *)cpu->opaque;
3468     struct elf_thread_status *ets;
3469 
3470     ets = g_malloc0(sizeof (*ets));
3471     ets->num_notes = 1; /* only prstatus is dumped */
3472     fill_prstatus(&ets->prstatus, ts, 0);
3473     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3474     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3475               &ets->prstatus);
3476 
3477     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3478 
3479     info->notes_size += note_size(&ets->notes[0]);
3480 }
3481 
3482 static void init_note_info(struct elf_note_info *info)
3483 {
3484     /* Initialize the elf_note_info structure so that it is at
3485      * least safe to call free_note_info() on it. Must be
3486      * called before calling fill_note_info().
3487      */
3488     memset(info, 0, sizeof (*info));
3489     QTAILQ_INIT(&info->thread_list);
3490 }
3491 
3492 static int fill_note_info(struct elf_note_info *info,
3493                           long signr, const CPUArchState *env)
3494 {
3495 #define NUMNOTES 3
3496     CPUState *cpu = env_cpu((CPUArchState *)env);
3497     TaskState *ts = (TaskState *)cpu->opaque;
3498     int i;
3499 
3500     info->notes = g_new0(struct memelfnote, NUMNOTES);
3501     if (info->notes == NULL)
3502         return (-ENOMEM);
3503     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3504     if (info->prstatus == NULL)
3505         return (-ENOMEM);
3506     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3507     if (info->prstatus == NULL)
3508         return (-ENOMEM);
3509 
3510     /*
3511      * First fill in status (and registers) of current thread
3512      * including process info & aux vector.
3513      */
3514     fill_prstatus(info->prstatus, ts, signr);
3515     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3516     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3517               sizeof (*info->prstatus), info->prstatus);
3518     fill_psinfo(info->psinfo, ts);
3519     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3520               sizeof (*info->psinfo), info->psinfo);
3521     fill_auxv_note(&info->notes[2], ts);
3522     info->numnote = 3;
3523 
3524     info->notes_size = 0;
3525     for (i = 0; i < info->numnote; i++)
3526         info->notes_size += note_size(&info->notes[i]);
3527 
3528     /* read and fill status of all threads */
3529     cpu_list_lock();
3530     CPU_FOREACH(cpu) {
3531         if (cpu == thread_cpu) {
3532             continue;
3533         }
3534         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3535     }
3536     cpu_list_unlock();
3537 
3538     return (0);
3539 }
3540 
3541 static void free_note_info(struct elf_note_info *info)
3542 {
3543     struct elf_thread_status *ets;
3544 
3545     while (!QTAILQ_EMPTY(&info->thread_list)) {
3546         ets = QTAILQ_FIRST(&info->thread_list);
3547         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3548         g_free(ets);
3549     }
3550 
3551     g_free(info->prstatus);
3552     g_free(info->psinfo);
3553     g_free(info->notes);
3554 }
3555 
3556 static int write_note_info(struct elf_note_info *info, int fd)
3557 {
3558     struct elf_thread_status *ets;
3559     int i, error = 0;
3560 
3561     /* write prstatus, psinfo and auxv for current thread */
3562     for (i = 0; i < info->numnote; i++)
3563         if ((error = write_note(&info->notes[i], fd)) != 0)
3564             return (error);
3565 
3566     /* write prstatus for each thread */
3567     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3568         if ((error = write_note(&ets->notes[0], fd)) != 0)
3569             return (error);
3570     }
3571 
3572     return (0);
3573 }
3574 
3575 /*
3576  * Write out ELF coredump.
3577  *
3578  * See documentation of ELF object file format in:
3579  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3580  *
3581  * Coredump format in linux is following:
3582  *
3583  * 0   +----------------------+         \
3584  *     | ELF header           | ET_CORE  |
3585  *     +----------------------+          |
3586  *     | ELF program headers  |          |--- headers
3587  *     | - NOTE section       |          |
3588  *     | - PT_LOAD sections   |          |
3589  *     +----------------------+         /
3590  *     | NOTEs:               |
3591  *     | - NT_PRSTATUS        |
3592  *     | - NT_PRSINFO         |
3593  *     | - NT_AUXV            |
3594  *     +----------------------+ <-- aligned to target page
3595  *     | Process memory dump  |
3596  *     :                      :
3597  *     .                      .
3598  *     :                      :
3599  *     |                      |
3600  *     +----------------------+
3601  *
3602  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3603  * NT_PRSINFO  -> struct elf_prpsinfo
3604  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3605  *
3606  * Format follows System V format as close as possible.  Current
3607  * version limitations are as follows:
3608  *     - no floating point registers are dumped
3609  *
3610  * Function returns 0 in case of success, negative errno otherwise.
3611  *
3612  * TODO: make this work also during runtime: it should be
3613  * possible to force coredump from running process and then
3614  * continue processing.  For example qemu could set up SIGUSR2
3615  * handler (provided that target process haven't registered
3616  * handler for that) that does the dump when signal is received.
3617  */
3618 static int elf_core_dump(int signr, const CPUArchState *env)
3619 {
3620     const CPUState *cpu = env_cpu((CPUArchState *)env);
3621     const TaskState *ts = (const TaskState *)cpu->opaque;
3622     struct vm_area_struct *vma = NULL;
3623     char corefile[PATH_MAX];
3624     struct elf_note_info info;
3625     struct elfhdr elf;
3626     struct elf_phdr phdr;
3627     struct rlimit dumpsize;
3628     struct mm_struct *mm = NULL;
3629     off_t offset = 0, data_offset = 0;
3630     int segs = 0;
3631     int fd = -1;
3632 
3633     init_note_info(&info);
3634 
3635     errno = 0;
3636     getrlimit(RLIMIT_CORE, &dumpsize);
3637     if (dumpsize.rlim_cur == 0)
3638         return 0;
3639 
3640     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3641         return (-errno);
3642 
3643     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3644                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3645         return (-errno);
3646 
3647     /*
3648      * Walk through target process memory mappings and
3649      * set up structure containing this information.  After
3650      * this point vma_xxx functions can be used.
3651      */
3652     if ((mm = vma_init()) == NULL)
3653         goto out;
3654 
3655     walk_memory_regions(mm, vma_walker);
3656     segs = vma_get_mapping_count(mm);
3657 
3658     /*
3659      * Construct valid coredump ELF header.  We also
3660      * add one more segment for notes.
3661      */
3662     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3663     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3664         goto out;
3665 
3666     /* fill in the in-memory version of notes */
3667     if (fill_note_info(&info, signr, env) < 0)
3668         goto out;
3669 
3670     offset += sizeof (elf);                             /* elf header */
3671     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3672 
3673     /* write out notes program header */
3674     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3675 
3676     offset += info.notes_size;
3677     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3678         goto out;
3679 
3680     /*
3681      * ELF specification wants data to start at page boundary so
3682      * we align it here.
3683      */
3684     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3685 
3686     /*
3687      * Write program headers for memory regions mapped in
3688      * the target process.
3689      */
3690     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3691         (void) memset(&phdr, 0, sizeof (phdr));
3692 
3693         phdr.p_type = PT_LOAD;
3694         phdr.p_offset = offset;
3695         phdr.p_vaddr = vma->vma_start;
3696         phdr.p_paddr = 0;
3697         phdr.p_filesz = vma_dump_size(vma);
3698         offset += phdr.p_filesz;
3699         phdr.p_memsz = vma->vma_end - vma->vma_start;
3700         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3701         if (vma->vma_flags & PROT_WRITE)
3702             phdr.p_flags |= PF_W;
3703         if (vma->vma_flags & PROT_EXEC)
3704             phdr.p_flags |= PF_X;
3705         phdr.p_align = ELF_EXEC_PAGESIZE;
3706 
3707         bswap_phdr(&phdr, 1);
3708         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3709             goto out;
3710         }
3711     }
3712 
3713     /*
3714      * Next we write notes just after program headers.  No
3715      * alignment needed here.
3716      */
3717     if (write_note_info(&info, fd) < 0)
3718         goto out;
3719 
3720     /* align data to page boundary */
3721     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3722         goto out;
3723 
3724     /*
3725      * Finally we can dump process memory into corefile as well.
3726      */
3727     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3728         abi_ulong addr;
3729         abi_ulong end;
3730 
3731         end = vma->vma_start + vma_dump_size(vma);
3732 
3733         for (addr = vma->vma_start; addr < end;
3734              addr += TARGET_PAGE_SIZE) {
3735             char page[TARGET_PAGE_SIZE];
3736             int error;
3737 
3738             /*
3739              *  Read in page from target process memory and
3740              *  write it to coredump file.
3741              */
3742             error = copy_from_user(page, addr, sizeof (page));
3743             if (error != 0) {
3744                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3745                                addr);
3746                 errno = -error;
3747                 goto out;
3748             }
3749             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3750                 goto out;
3751         }
3752     }
3753 
3754  out:
3755     free_note_info(&info);
3756     if (mm != NULL)
3757         vma_delete(mm);
3758     (void) close(fd);
3759 
3760     if (errno != 0)
3761         return (-errno);
3762     return (0);
3763 }
3764 #endif /* USE_ELF_CORE_DUMP */
3765 
3766 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3767 {
3768     init_thread(regs, infop);
3769 }
3770