xref: /openbmc/qemu/linux-user/elfload.c (revision 89854803)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/resource.h>
6 
7 #include "qemu.h"
8 #include "disas/disas.h"
9 #include "qemu/path.h"
10 
11 #ifdef _ARCH_PPC64
12 #undef ARCH_DLINFO
13 #undef ELF_PLATFORM
14 #undef ELF_HWCAP
15 #undef ELF_HWCAP2
16 #undef ELF_CLASS
17 #undef ELF_DATA
18 #undef ELF_ARCH
19 #endif
20 
21 #define ELF_OSABI   ELFOSABI_SYSV
22 
23 /* from personality.h */
24 
25 /*
26  * Flags for bug emulation.
27  *
28  * These occupy the top three bytes.
29  */
30 enum {
31     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
32     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
33                                            descriptors (signal handling) */
34     MMAP_PAGE_ZERO =    0x0100000,
35     ADDR_COMPAT_LAYOUT = 0x0200000,
36     READ_IMPLIES_EXEC = 0x0400000,
37     ADDR_LIMIT_32BIT =  0x0800000,
38     SHORT_INODE =       0x1000000,
39     WHOLE_SECONDS =     0x2000000,
40     STICKY_TIMEOUTS =   0x4000000,
41     ADDR_LIMIT_3GB =    0x8000000,
42 };
43 
44 /*
45  * Personality types.
46  *
47  * These go in the low byte.  Avoid using the top bit, it will
48  * conflict with error returns.
49  */
50 enum {
51     PER_LINUX =         0x0000,
52     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
53     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
54     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
55     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
56     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
57     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
58     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
59     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
60     PER_BSD =           0x0006,
61     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
62     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
63     PER_LINUX32 =       0x0008,
64     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
65     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
66     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
67     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
68     PER_RISCOS =        0x000c,
69     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
70     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
71     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
72     PER_HPUX =          0x0010,
73     PER_MASK =          0x00ff,
74 };
75 
76 /*
77  * Return the base personality without flags.
78  */
79 #define personality(pers)       (pers & PER_MASK)
80 
81 int info_is_fdpic(struct image_info *info)
82 {
83     return info->personality == PER_LINUX_FDPIC;
84 }
85 
86 /* this flag is uneffective under linux too, should be deleted */
87 #ifndef MAP_DENYWRITE
88 #define MAP_DENYWRITE 0
89 #endif
90 
91 /* should probably go in elf.h */
92 #ifndef ELIBBAD
93 #define ELIBBAD 80
94 #endif
95 
96 #ifdef TARGET_WORDS_BIGENDIAN
97 #define ELF_DATA        ELFDATA2MSB
98 #else
99 #define ELF_DATA        ELFDATA2LSB
100 #endif
101 
102 #ifdef TARGET_ABI_MIPSN32
103 typedef abi_ullong      target_elf_greg_t;
104 #define tswapreg(ptr)   tswap64(ptr)
105 #else
106 typedef abi_ulong       target_elf_greg_t;
107 #define tswapreg(ptr)   tswapal(ptr)
108 #endif
109 
110 #ifdef USE_UID16
111 typedef abi_ushort      target_uid_t;
112 typedef abi_ushort      target_gid_t;
113 #else
114 typedef abi_uint        target_uid_t;
115 typedef abi_uint        target_gid_t;
116 #endif
117 typedef abi_int         target_pid_t;
118 
119 #ifdef TARGET_I386
120 
121 #define ELF_PLATFORM get_elf_platform()
122 
123 static const char *get_elf_platform(void)
124 {
125     static char elf_platform[] = "i386";
126     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
127     if (family > 6)
128         family = 6;
129     if (family >= 3)
130         elf_platform[1] = '0' + family;
131     return elf_platform;
132 }
133 
134 #define ELF_HWCAP get_elf_hwcap()
135 
136 static uint32_t get_elf_hwcap(void)
137 {
138     X86CPU *cpu = X86_CPU(thread_cpu);
139 
140     return cpu->env.features[FEAT_1_EDX];
141 }
142 
143 #ifdef TARGET_X86_64
144 #define ELF_START_MMAP 0x2aaaaab000ULL
145 
146 #define ELF_CLASS      ELFCLASS64
147 #define ELF_ARCH       EM_X86_64
148 
149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
150 {
151     regs->rax = 0;
152     regs->rsp = infop->start_stack;
153     regs->rip = infop->entry;
154 }
155 
156 #define ELF_NREG    27
157 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
158 
159 /*
160  * Note that ELF_NREG should be 29 as there should be place for
161  * TRAPNO and ERR "registers" as well but linux doesn't dump
162  * those.
163  *
164  * See linux kernel: arch/x86/include/asm/elf.h
165  */
166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
167 {
168     (*regs)[0] = env->regs[15];
169     (*regs)[1] = env->regs[14];
170     (*regs)[2] = env->regs[13];
171     (*regs)[3] = env->regs[12];
172     (*regs)[4] = env->regs[R_EBP];
173     (*regs)[5] = env->regs[R_EBX];
174     (*regs)[6] = env->regs[11];
175     (*regs)[7] = env->regs[10];
176     (*regs)[8] = env->regs[9];
177     (*regs)[9] = env->regs[8];
178     (*regs)[10] = env->regs[R_EAX];
179     (*regs)[11] = env->regs[R_ECX];
180     (*regs)[12] = env->regs[R_EDX];
181     (*regs)[13] = env->regs[R_ESI];
182     (*regs)[14] = env->regs[R_EDI];
183     (*regs)[15] = env->regs[R_EAX]; /* XXX */
184     (*regs)[16] = env->eip;
185     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
186     (*regs)[18] = env->eflags;
187     (*regs)[19] = env->regs[R_ESP];
188     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
189     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
191     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
192     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
193     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
194     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
195 }
196 
197 #else
198 
199 #define ELF_START_MMAP 0x80000000
200 
201 /*
202  * This is used to ensure we don't load something for the wrong architecture.
203  */
204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
205 
206 /*
207  * These are used to set parameters in the core dumps.
208  */
209 #define ELF_CLASS       ELFCLASS32
210 #define ELF_ARCH        EM_386
211 
212 static inline void init_thread(struct target_pt_regs *regs,
213                                struct image_info *infop)
214 {
215     regs->esp = infop->start_stack;
216     regs->eip = infop->entry;
217 
218     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
219        starts %edx contains a pointer to a function which might be
220        registered using `atexit'.  This provides a mean for the
221        dynamic linker to call DT_FINI functions for shared libraries
222        that have been loaded before the code runs.
223 
224        A value of 0 tells we have no such handler.  */
225     regs->edx = 0;
226 }
227 
228 #define ELF_NREG    17
229 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
230 
231 /*
232  * Note that ELF_NREG should be 19 as there should be place for
233  * TRAPNO and ERR "registers" as well but linux doesn't dump
234  * those.
235  *
236  * See linux kernel: arch/x86/include/asm/elf.h
237  */
238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
239 {
240     (*regs)[0] = env->regs[R_EBX];
241     (*regs)[1] = env->regs[R_ECX];
242     (*regs)[2] = env->regs[R_EDX];
243     (*regs)[3] = env->regs[R_ESI];
244     (*regs)[4] = env->regs[R_EDI];
245     (*regs)[5] = env->regs[R_EBP];
246     (*regs)[6] = env->regs[R_EAX];
247     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
248     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
249     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
250     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
251     (*regs)[11] = env->regs[R_EAX]; /* XXX */
252     (*regs)[12] = env->eip;
253     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
254     (*regs)[14] = env->eflags;
255     (*regs)[15] = env->regs[R_ESP];
256     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
257 }
258 #endif
259 
260 #define USE_ELF_CORE_DUMP
261 #define ELF_EXEC_PAGESIZE       4096
262 
263 #endif
264 
265 #ifdef TARGET_ARM
266 
267 #ifndef TARGET_AARCH64
268 /* 32 bit ARM definitions */
269 
270 #define ELF_START_MMAP 0x80000000
271 
272 #define ELF_ARCH        EM_ARM
273 #define ELF_CLASS       ELFCLASS32
274 
275 static inline void init_thread(struct target_pt_regs *regs,
276                                struct image_info *infop)
277 {
278     abi_long stack = infop->start_stack;
279     memset(regs, 0, sizeof(*regs));
280 
281     regs->uregs[16] = ARM_CPU_MODE_USR;
282     if (infop->entry & 1) {
283         regs->uregs[16] |= CPSR_T;
284     }
285     regs->uregs[15] = infop->entry & 0xfffffffe;
286     regs->uregs[13] = infop->start_stack;
287     /* FIXME - what to for failure of get_user()? */
288     get_user_ual(regs->uregs[2], stack + 8); /* envp */
289     get_user_ual(regs->uregs[1], stack + 4); /* envp */
290     /* XXX: it seems that r0 is zeroed after ! */
291     regs->uregs[0] = 0;
292     /* For uClinux PIC binaries.  */
293     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
294     regs->uregs[10] = infop->start_data;
295 
296     /* Support ARM FDPIC.  */
297     if (info_is_fdpic(infop)) {
298         /* As described in the ABI document, r7 points to the loadmap info
299          * prepared by the kernel. If an interpreter is needed, r8 points
300          * to the interpreter loadmap and r9 points to the interpreter
301          * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and
302          * r9 points to the main program PT_DYNAMIC info.
303          */
304         regs->uregs[7] = infop->loadmap_addr;
305         if (infop->interpreter_loadmap_addr) {
306             /* Executable is dynamically loaded.  */
307             regs->uregs[8] = infop->interpreter_loadmap_addr;
308             regs->uregs[9] = infop->interpreter_pt_dynamic_addr;
309         } else {
310             regs->uregs[8] = 0;
311             regs->uregs[9] = infop->pt_dynamic_addr;
312         }
313     }
314 }
315 
316 #define ELF_NREG    18
317 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
318 
319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
320 {
321     (*regs)[0] = tswapreg(env->regs[0]);
322     (*regs)[1] = tswapreg(env->regs[1]);
323     (*regs)[2] = tswapreg(env->regs[2]);
324     (*regs)[3] = tswapreg(env->regs[3]);
325     (*regs)[4] = tswapreg(env->regs[4]);
326     (*regs)[5] = tswapreg(env->regs[5]);
327     (*regs)[6] = tswapreg(env->regs[6]);
328     (*regs)[7] = tswapreg(env->regs[7]);
329     (*regs)[8] = tswapreg(env->regs[8]);
330     (*regs)[9] = tswapreg(env->regs[9]);
331     (*regs)[10] = tswapreg(env->regs[10]);
332     (*regs)[11] = tswapreg(env->regs[11]);
333     (*regs)[12] = tswapreg(env->regs[12]);
334     (*regs)[13] = tswapreg(env->regs[13]);
335     (*regs)[14] = tswapreg(env->regs[14]);
336     (*regs)[15] = tswapreg(env->regs[15]);
337 
338     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
339     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
340 }
341 
342 #define USE_ELF_CORE_DUMP
343 #define ELF_EXEC_PAGESIZE       4096
344 
345 enum
346 {
347     ARM_HWCAP_ARM_SWP       = 1 << 0,
348     ARM_HWCAP_ARM_HALF      = 1 << 1,
349     ARM_HWCAP_ARM_THUMB     = 1 << 2,
350     ARM_HWCAP_ARM_26BIT     = 1 << 3,
351     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
352     ARM_HWCAP_ARM_FPA       = 1 << 5,
353     ARM_HWCAP_ARM_VFP       = 1 << 6,
354     ARM_HWCAP_ARM_EDSP      = 1 << 7,
355     ARM_HWCAP_ARM_JAVA      = 1 << 8,
356     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
357     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
358     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
359     ARM_HWCAP_ARM_NEON      = 1 << 12,
360     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
361     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
362     ARM_HWCAP_ARM_TLS       = 1 << 15,
363     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
364     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
365     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
366     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
367     ARM_HWCAP_ARM_LPAE      = 1 << 20,
368     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
369 };
370 
371 enum {
372     ARM_HWCAP2_ARM_AES      = 1 << 0,
373     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
374     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
375     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
376     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
377 };
378 
379 /* The commpage only exists for 32 bit kernels */
380 
381 /* Return 1 if the proposed guest space is suitable for the guest.
382  * Return 0 if the proposed guest space isn't suitable, but another
383  * address space should be tried.
384  * Return -1 if there is no way the proposed guest space can be
385  * valid regardless of the base.
386  * The guest code may leave a page mapped and populate it if the
387  * address is suitable.
388  */
389 static int init_guest_commpage(unsigned long guest_base,
390                                unsigned long guest_size)
391 {
392     unsigned long real_start, test_page_addr;
393 
394     /* We need to check that we can force a fault on access to the
395      * commpage at 0xffff0fxx
396      */
397     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
398 
399     /* If the commpage lies within the already allocated guest space,
400      * then there is no way we can allocate it.
401      *
402      * You may be thinking that that this check is redundant because
403      * we already validated the guest size against MAX_RESERVED_VA;
404      * but if qemu_host_page_mask is unusually large, then
405      * test_page_addr may be lower.
406      */
407     if (test_page_addr >= guest_base
408         && test_page_addr < (guest_base + guest_size)) {
409         return -1;
410     }
411 
412     /* Note it needs to be writeable to let us initialise it */
413     real_start = (unsigned long)
414                  mmap((void *)test_page_addr, qemu_host_page_size,
415                      PROT_READ | PROT_WRITE,
416                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
417 
418     /* If we can't map it then try another address */
419     if (real_start == -1ul) {
420         return 0;
421     }
422 
423     if (real_start != test_page_addr) {
424         /* OS didn't put the page where we asked - unmap and reject */
425         munmap((void *)real_start, qemu_host_page_size);
426         return 0;
427     }
428 
429     /* Leave the page mapped
430      * Populate it (mmap should have left it all 0'd)
431      */
432 
433     /* Kernel helper versions */
434     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
435 
436     /* Now it's populated make it RO */
437     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
438         perror("Protecting guest commpage");
439         exit(-1);
440     }
441 
442     return 1; /* All good */
443 }
444 
445 #define ELF_HWCAP get_elf_hwcap()
446 #define ELF_HWCAP2 get_elf_hwcap2()
447 
448 static uint32_t get_elf_hwcap(void)
449 {
450     ARMCPU *cpu = ARM_CPU(thread_cpu);
451     uint32_t hwcaps = 0;
452 
453     hwcaps |= ARM_HWCAP_ARM_SWP;
454     hwcaps |= ARM_HWCAP_ARM_HALF;
455     hwcaps |= ARM_HWCAP_ARM_THUMB;
456     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
457 
458     /* probe for the extra features */
459 #define GET_FEATURE(feat, hwcap) \
460     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
461     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
462     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
463     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
464     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
465     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
466     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
467     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
468     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
469     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
470     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
471     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
472     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
473      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
474      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
475      * to our VFP_FP16 feature bit.
476      */
477     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
478     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
479 
480     return hwcaps;
481 }
482 
483 static uint32_t get_elf_hwcap2(void)
484 {
485     ARMCPU *cpu = ARM_CPU(thread_cpu);
486     uint32_t hwcaps = 0;
487 
488     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
489     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
490     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
491     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
492     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
493     return hwcaps;
494 }
495 
496 #undef GET_FEATURE
497 
498 #else
499 /* 64 bit ARM definitions */
500 #define ELF_START_MMAP 0x80000000
501 
502 #define ELF_ARCH        EM_AARCH64
503 #define ELF_CLASS       ELFCLASS64
504 #define ELF_PLATFORM    "aarch64"
505 
506 static inline void init_thread(struct target_pt_regs *regs,
507                                struct image_info *infop)
508 {
509     abi_long stack = infop->start_stack;
510     memset(regs, 0, sizeof(*regs));
511 
512     regs->pc = infop->entry & ~0x3ULL;
513     regs->sp = stack;
514 }
515 
516 #define ELF_NREG    34
517 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
518 
519 static void elf_core_copy_regs(target_elf_gregset_t *regs,
520                                const CPUARMState *env)
521 {
522     int i;
523 
524     for (i = 0; i < 32; i++) {
525         (*regs)[i] = tswapreg(env->xregs[i]);
526     }
527     (*regs)[32] = tswapreg(env->pc);
528     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
529 }
530 
531 #define USE_ELF_CORE_DUMP
532 #define ELF_EXEC_PAGESIZE       4096
533 
534 enum {
535     ARM_HWCAP_A64_FP            = 1 << 0,
536     ARM_HWCAP_A64_ASIMD         = 1 << 1,
537     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
538     ARM_HWCAP_A64_AES           = 1 << 3,
539     ARM_HWCAP_A64_PMULL         = 1 << 4,
540     ARM_HWCAP_A64_SHA1          = 1 << 5,
541     ARM_HWCAP_A64_SHA2          = 1 << 6,
542     ARM_HWCAP_A64_CRC32         = 1 << 7,
543     ARM_HWCAP_A64_ATOMICS       = 1 << 8,
544     ARM_HWCAP_A64_FPHP          = 1 << 9,
545     ARM_HWCAP_A64_ASIMDHP       = 1 << 10,
546     ARM_HWCAP_A64_CPUID         = 1 << 11,
547     ARM_HWCAP_A64_ASIMDRDM      = 1 << 12,
548     ARM_HWCAP_A64_JSCVT         = 1 << 13,
549     ARM_HWCAP_A64_FCMA          = 1 << 14,
550     ARM_HWCAP_A64_LRCPC         = 1 << 15,
551     ARM_HWCAP_A64_DCPOP         = 1 << 16,
552     ARM_HWCAP_A64_SHA3          = 1 << 17,
553     ARM_HWCAP_A64_SM3           = 1 << 18,
554     ARM_HWCAP_A64_SM4           = 1 << 19,
555     ARM_HWCAP_A64_ASIMDDP       = 1 << 20,
556     ARM_HWCAP_A64_SHA512        = 1 << 21,
557     ARM_HWCAP_A64_SVE           = 1 << 22,
558 };
559 
560 #define ELF_HWCAP get_elf_hwcap()
561 
562 static uint32_t get_elf_hwcap(void)
563 {
564     ARMCPU *cpu = ARM_CPU(thread_cpu);
565     uint32_t hwcaps = 0;
566 
567     hwcaps |= ARM_HWCAP_A64_FP;
568     hwcaps |= ARM_HWCAP_A64_ASIMD;
569 
570     /* probe for the extra features */
571 #define GET_FEATURE(feat, hwcap) \
572     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
573     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
574     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
575     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
576     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
577     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
578     GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3);
579     GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3);
580     GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4);
581     GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512);
582     GET_FEATURE(ARM_FEATURE_V8_FP16,
583                 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP);
584     GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM);
585     GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA);
586 #undef GET_FEATURE
587 
588     return hwcaps;
589 }
590 
591 #endif /* not TARGET_AARCH64 */
592 #endif /* TARGET_ARM */
593 
594 #ifdef TARGET_SPARC
595 #ifdef TARGET_SPARC64
596 
597 #define ELF_START_MMAP 0x80000000
598 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
599                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
600 #ifndef TARGET_ABI32
601 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
602 #else
603 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
604 #endif
605 
606 #define ELF_CLASS   ELFCLASS64
607 #define ELF_ARCH    EM_SPARCV9
608 
609 #define STACK_BIAS              2047
610 
611 static inline void init_thread(struct target_pt_regs *regs,
612                                struct image_info *infop)
613 {
614 #ifndef TARGET_ABI32
615     regs->tstate = 0;
616 #endif
617     regs->pc = infop->entry;
618     regs->npc = regs->pc + 4;
619     regs->y = 0;
620 #ifdef TARGET_ABI32
621     regs->u_regs[14] = infop->start_stack - 16 * 4;
622 #else
623     if (personality(infop->personality) == PER_LINUX32)
624         regs->u_regs[14] = infop->start_stack - 16 * 4;
625     else
626         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
627 #endif
628 }
629 
630 #else
631 #define ELF_START_MMAP 0x80000000
632 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
633                     | HWCAP_SPARC_MULDIV)
634 
635 #define ELF_CLASS   ELFCLASS32
636 #define ELF_ARCH    EM_SPARC
637 
638 static inline void init_thread(struct target_pt_regs *regs,
639                                struct image_info *infop)
640 {
641     regs->psr = 0;
642     regs->pc = infop->entry;
643     regs->npc = regs->pc + 4;
644     regs->y = 0;
645     regs->u_regs[14] = infop->start_stack - 16 * 4;
646 }
647 
648 #endif
649 #endif
650 
651 #ifdef TARGET_PPC
652 
653 #define ELF_MACHINE    PPC_ELF_MACHINE
654 #define ELF_START_MMAP 0x80000000
655 
656 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
657 
658 #define elf_check_arch(x) ( (x) == EM_PPC64 )
659 
660 #define ELF_CLASS       ELFCLASS64
661 
662 #else
663 
664 #define ELF_CLASS       ELFCLASS32
665 
666 #endif
667 
668 #define ELF_ARCH        EM_PPC
669 
670 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
671    See arch/powerpc/include/asm/cputable.h.  */
672 enum {
673     QEMU_PPC_FEATURE_32 = 0x80000000,
674     QEMU_PPC_FEATURE_64 = 0x40000000,
675     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
676     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
677     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
678     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
679     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
680     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
681     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
682     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
683     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
684     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
685     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
686     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
687     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
688     QEMU_PPC_FEATURE_CELL = 0x00010000,
689     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
690     QEMU_PPC_FEATURE_SMT = 0x00004000,
691     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
692     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
693     QEMU_PPC_FEATURE_PA6T = 0x00000800,
694     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
695     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
696     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
697     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
698     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
699 
700     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
701     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
702 
703     /* Feature definitions in AT_HWCAP2.  */
704     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
705     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
706     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
707     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
708     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
709     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
710 };
711 
712 #define ELF_HWCAP get_elf_hwcap()
713 
714 static uint32_t get_elf_hwcap(void)
715 {
716     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
717     uint32_t features = 0;
718 
719     /* We don't have to be terribly complete here; the high points are
720        Altivec/FP/SPE support.  Anything else is just a bonus.  */
721 #define GET_FEATURE(flag, feature)                                      \
722     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
723 #define GET_FEATURE2(flags, feature) \
724     do { \
725         if ((cpu->env.insns_flags2 & flags) == flags) { \
726             features |= feature; \
727         } \
728     } while (0)
729     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
730     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
731     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
732     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
733     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
734     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
735     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
736     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
737     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
738     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
739     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
740                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
741                   QEMU_PPC_FEATURE_ARCH_2_06);
742 #undef GET_FEATURE
743 #undef GET_FEATURE2
744 
745     return features;
746 }
747 
748 #define ELF_HWCAP2 get_elf_hwcap2()
749 
750 static uint32_t get_elf_hwcap2(void)
751 {
752     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
753     uint32_t features = 0;
754 
755 #define GET_FEATURE(flag, feature)                                      \
756     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
757 #define GET_FEATURE2(flag, feature)                                      \
758     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
759 
760     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
761     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
762     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
763                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
764 
765 #undef GET_FEATURE
766 #undef GET_FEATURE2
767 
768     return features;
769 }
770 
771 /*
772  * The requirements here are:
773  * - keep the final alignment of sp (sp & 0xf)
774  * - make sure the 32-bit value at the first 16 byte aligned position of
775  *   AUXV is greater than 16 for glibc compatibility.
776  *   AT_IGNOREPPC is used for that.
777  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
778  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
779  */
780 #define DLINFO_ARCH_ITEMS       5
781 #define ARCH_DLINFO                                     \
782     do {                                                \
783         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
784         /*                                              \
785          * Handle glibc compatibility: these magic entries must \
786          * be at the lowest addresses in the final auxv.        \
787          */                                             \
788         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
789         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
790         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
791         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
792         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
793     } while (0)
794 
795 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
796 {
797     _regs->gpr[1] = infop->start_stack;
798 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
799     if (get_ppc64_abi(infop) < 2) {
800         uint64_t val;
801         get_user_u64(val, infop->entry + 8);
802         _regs->gpr[2] = val + infop->load_bias;
803         get_user_u64(val, infop->entry);
804         infop->entry = val + infop->load_bias;
805     } else {
806         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
807     }
808 #endif
809     _regs->nip = infop->entry;
810 }
811 
812 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
813 #define ELF_NREG 48
814 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
815 
816 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
817 {
818     int i;
819     target_ulong ccr = 0;
820 
821     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
822         (*regs)[i] = tswapreg(env->gpr[i]);
823     }
824 
825     (*regs)[32] = tswapreg(env->nip);
826     (*regs)[33] = tswapreg(env->msr);
827     (*regs)[35] = tswapreg(env->ctr);
828     (*regs)[36] = tswapreg(env->lr);
829     (*regs)[37] = tswapreg(env->xer);
830 
831     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
832         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
833     }
834     (*regs)[38] = tswapreg(ccr);
835 }
836 
837 #define USE_ELF_CORE_DUMP
838 #define ELF_EXEC_PAGESIZE       4096
839 
840 #endif
841 
842 #ifdef TARGET_MIPS
843 
844 #define ELF_START_MMAP 0x80000000
845 
846 #ifdef TARGET_MIPS64
847 #define ELF_CLASS   ELFCLASS64
848 #else
849 #define ELF_CLASS   ELFCLASS32
850 #endif
851 #define ELF_ARCH    EM_MIPS
852 
853 static inline void init_thread(struct target_pt_regs *regs,
854                                struct image_info *infop)
855 {
856     regs->cp0_status = 2 << CP0St_KSU;
857     regs->cp0_epc = infop->entry;
858     regs->regs[29] = infop->start_stack;
859 }
860 
861 /* See linux kernel: arch/mips/include/asm/elf.h.  */
862 #define ELF_NREG 45
863 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
864 
865 /* See linux kernel: arch/mips/include/asm/reg.h.  */
866 enum {
867 #ifdef TARGET_MIPS64
868     TARGET_EF_R0 = 0,
869 #else
870     TARGET_EF_R0 = 6,
871 #endif
872     TARGET_EF_R26 = TARGET_EF_R0 + 26,
873     TARGET_EF_R27 = TARGET_EF_R0 + 27,
874     TARGET_EF_LO = TARGET_EF_R0 + 32,
875     TARGET_EF_HI = TARGET_EF_R0 + 33,
876     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
877     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
878     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
879     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
880 };
881 
882 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
883 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
884 {
885     int i;
886 
887     for (i = 0; i < TARGET_EF_R0; i++) {
888         (*regs)[i] = 0;
889     }
890     (*regs)[TARGET_EF_R0] = 0;
891 
892     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
893         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
894     }
895 
896     (*regs)[TARGET_EF_R26] = 0;
897     (*regs)[TARGET_EF_R27] = 0;
898     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
899     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
900     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
901     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
902     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
903     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
904 }
905 
906 #define USE_ELF_CORE_DUMP
907 #define ELF_EXEC_PAGESIZE        4096
908 
909 /* See arch/mips/include/uapi/asm/hwcap.h.  */
910 enum {
911     HWCAP_MIPS_R6           = (1 << 0),
912     HWCAP_MIPS_MSA          = (1 << 1),
913 };
914 
915 #define ELF_HWCAP get_elf_hwcap()
916 
917 static uint32_t get_elf_hwcap(void)
918 {
919     MIPSCPU *cpu = MIPS_CPU(thread_cpu);
920     uint32_t hwcaps = 0;
921 
922 #define GET_FEATURE(flag, hwcap) \
923     do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0)
924 
925     GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6);
926     GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA);
927 
928 #undef GET_FEATURE
929 
930     return hwcaps;
931 }
932 
933 #endif /* TARGET_MIPS */
934 
935 #ifdef TARGET_MICROBLAZE
936 
937 #define ELF_START_MMAP 0x80000000
938 
939 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
940 
941 #define ELF_CLASS   ELFCLASS32
942 #define ELF_ARCH    EM_MICROBLAZE
943 
944 static inline void init_thread(struct target_pt_regs *regs,
945                                struct image_info *infop)
946 {
947     regs->pc = infop->entry;
948     regs->r1 = infop->start_stack;
949 
950 }
951 
952 #define ELF_EXEC_PAGESIZE        4096
953 
954 #define USE_ELF_CORE_DUMP
955 #define ELF_NREG 38
956 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
957 
958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
960 {
961     int i, pos = 0;
962 
963     for (i = 0; i < 32; i++) {
964         (*regs)[pos++] = tswapreg(env->regs[i]);
965     }
966 
967     for (i = 0; i < 6; i++) {
968         (*regs)[pos++] = tswapreg(env->sregs[i]);
969     }
970 }
971 
972 #endif /* TARGET_MICROBLAZE */
973 
974 #ifdef TARGET_NIOS2
975 
976 #define ELF_START_MMAP 0x80000000
977 
978 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2)
979 
980 #define ELF_CLASS   ELFCLASS32
981 #define ELF_ARCH    EM_ALTERA_NIOS2
982 
983 static void init_thread(struct target_pt_regs *regs, struct image_info *infop)
984 {
985     regs->ea = infop->entry;
986     regs->sp = infop->start_stack;
987     regs->estatus = 0x3;
988 }
989 
990 #define ELF_EXEC_PAGESIZE        4096
991 
992 #define USE_ELF_CORE_DUMP
993 #define ELF_NREG 49
994 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
995 
996 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
997 static void elf_core_copy_regs(target_elf_gregset_t *regs,
998                                const CPUNios2State *env)
999 {
1000     int i;
1001 
1002     (*regs)[0] = -1;
1003     for (i = 1; i < 8; i++)    /* r0-r7 */
1004         (*regs)[i] = tswapreg(env->regs[i + 7]);
1005 
1006     for (i = 8; i < 16; i++)   /* r8-r15 */
1007         (*regs)[i] = tswapreg(env->regs[i - 8]);
1008 
1009     for (i = 16; i < 24; i++)  /* r16-r23 */
1010         (*regs)[i] = tswapreg(env->regs[i + 7]);
1011     (*regs)[24] = -1;    /* R_ET */
1012     (*regs)[25] = -1;    /* R_BT */
1013     (*regs)[26] = tswapreg(env->regs[R_GP]);
1014     (*regs)[27] = tswapreg(env->regs[R_SP]);
1015     (*regs)[28] = tswapreg(env->regs[R_FP]);
1016     (*regs)[29] = tswapreg(env->regs[R_EA]);
1017     (*regs)[30] = -1;    /* R_SSTATUS */
1018     (*regs)[31] = tswapreg(env->regs[R_RA]);
1019 
1020     (*regs)[32] = tswapreg(env->regs[R_PC]);
1021 
1022     (*regs)[33] = -1; /* R_STATUS */
1023     (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]);
1024 
1025     for (i = 35; i < 49; i++)    /* ... */
1026         (*regs)[i] = -1;
1027 }
1028 
1029 #endif /* TARGET_NIOS2 */
1030 
1031 #ifdef TARGET_OPENRISC
1032 
1033 #define ELF_START_MMAP 0x08000000
1034 
1035 #define ELF_ARCH EM_OPENRISC
1036 #define ELF_CLASS ELFCLASS32
1037 #define ELF_DATA  ELFDATA2MSB
1038 
1039 static inline void init_thread(struct target_pt_regs *regs,
1040                                struct image_info *infop)
1041 {
1042     regs->pc = infop->entry;
1043     regs->gpr[1] = infop->start_stack;
1044 }
1045 
1046 #define USE_ELF_CORE_DUMP
1047 #define ELF_EXEC_PAGESIZE 8192
1048 
1049 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
1050 #define ELF_NREG 34 /* gprs and pc, sr */
1051 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1052 
1053 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1054                                const CPUOpenRISCState *env)
1055 {
1056     int i;
1057 
1058     for (i = 0; i < 32; i++) {
1059         (*regs)[i] = tswapreg(cpu_get_gpr(env, i));
1060     }
1061     (*regs)[32] = tswapreg(env->pc);
1062     (*regs)[33] = tswapreg(cpu_get_sr(env));
1063 }
1064 #define ELF_HWCAP 0
1065 #define ELF_PLATFORM NULL
1066 
1067 #endif /* TARGET_OPENRISC */
1068 
1069 #ifdef TARGET_SH4
1070 
1071 #define ELF_START_MMAP 0x80000000
1072 
1073 #define ELF_CLASS ELFCLASS32
1074 #define ELF_ARCH  EM_SH
1075 
1076 static inline void init_thread(struct target_pt_regs *regs,
1077                                struct image_info *infop)
1078 {
1079     /* Check other registers XXXXX */
1080     regs->pc = infop->entry;
1081     regs->regs[15] = infop->start_stack;
1082 }
1083 
1084 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1085 #define ELF_NREG 23
1086 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1087 
1088 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1089 enum {
1090     TARGET_REG_PC = 16,
1091     TARGET_REG_PR = 17,
1092     TARGET_REG_SR = 18,
1093     TARGET_REG_GBR = 19,
1094     TARGET_REG_MACH = 20,
1095     TARGET_REG_MACL = 21,
1096     TARGET_REG_SYSCALL = 22
1097 };
1098 
1099 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1100                                       const CPUSH4State *env)
1101 {
1102     int i;
1103 
1104     for (i = 0; i < 16; i++) {
1105         (*regs)[i] = tswapreg(env->gregs[i]);
1106     }
1107 
1108     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1109     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1110     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1111     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1112     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1113     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1114     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1115 }
1116 
1117 #define USE_ELF_CORE_DUMP
1118 #define ELF_EXEC_PAGESIZE        4096
1119 
1120 enum {
1121     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1122     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1123     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1124     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1125     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1126     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1127     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1128     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1129     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1130     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1131 };
1132 
1133 #define ELF_HWCAP get_elf_hwcap()
1134 
1135 static uint32_t get_elf_hwcap(void)
1136 {
1137     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1138     uint32_t hwcap = 0;
1139 
1140     hwcap |= SH_CPU_HAS_FPU;
1141 
1142     if (cpu->env.features & SH_FEATURE_SH4A) {
1143         hwcap |= SH_CPU_HAS_LLSC;
1144     }
1145 
1146     return hwcap;
1147 }
1148 
1149 #endif
1150 
1151 #ifdef TARGET_CRIS
1152 
1153 #define ELF_START_MMAP 0x80000000
1154 
1155 #define ELF_CLASS ELFCLASS32
1156 #define ELF_ARCH  EM_CRIS
1157 
1158 static inline void init_thread(struct target_pt_regs *regs,
1159                                struct image_info *infop)
1160 {
1161     regs->erp = infop->entry;
1162 }
1163 
1164 #define ELF_EXEC_PAGESIZE        8192
1165 
1166 #endif
1167 
1168 #ifdef TARGET_M68K
1169 
1170 #define ELF_START_MMAP 0x80000000
1171 
1172 #define ELF_CLASS       ELFCLASS32
1173 #define ELF_ARCH        EM_68K
1174 
1175 /* ??? Does this need to do anything?
1176    #define ELF_PLAT_INIT(_r) */
1177 
1178 static inline void init_thread(struct target_pt_regs *regs,
1179                                struct image_info *infop)
1180 {
1181     regs->usp = infop->start_stack;
1182     regs->sr = 0;
1183     regs->pc = infop->entry;
1184 }
1185 
1186 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1187 #define ELF_NREG 20
1188 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1189 
1190 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1191 {
1192     (*regs)[0] = tswapreg(env->dregs[1]);
1193     (*regs)[1] = tswapreg(env->dregs[2]);
1194     (*regs)[2] = tswapreg(env->dregs[3]);
1195     (*regs)[3] = tswapreg(env->dregs[4]);
1196     (*regs)[4] = tswapreg(env->dregs[5]);
1197     (*regs)[5] = tswapreg(env->dregs[6]);
1198     (*regs)[6] = tswapreg(env->dregs[7]);
1199     (*regs)[7] = tswapreg(env->aregs[0]);
1200     (*regs)[8] = tswapreg(env->aregs[1]);
1201     (*regs)[9] = tswapreg(env->aregs[2]);
1202     (*regs)[10] = tswapreg(env->aregs[3]);
1203     (*regs)[11] = tswapreg(env->aregs[4]);
1204     (*regs)[12] = tswapreg(env->aregs[5]);
1205     (*regs)[13] = tswapreg(env->aregs[6]);
1206     (*regs)[14] = tswapreg(env->dregs[0]);
1207     (*regs)[15] = tswapreg(env->aregs[7]);
1208     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1209     (*regs)[17] = tswapreg(env->sr);
1210     (*regs)[18] = tswapreg(env->pc);
1211     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1212 }
1213 
1214 #define USE_ELF_CORE_DUMP
1215 #define ELF_EXEC_PAGESIZE       8192
1216 
1217 #endif
1218 
1219 #ifdef TARGET_ALPHA
1220 
1221 #define ELF_START_MMAP (0x30000000000ULL)
1222 
1223 #define ELF_CLASS      ELFCLASS64
1224 #define ELF_ARCH       EM_ALPHA
1225 
1226 static inline void init_thread(struct target_pt_regs *regs,
1227                                struct image_info *infop)
1228 {
1229     regs->pc = infop->entry;
1230     regs->ps = 8;
1231     regs->usp = infop->start_stack;
1232 }
1233 
1234 #define ELF_EXEC_PAGESIZE        8192
1235 
1236 #endif /* TARGET_ALPHA */
1237 
1238 #ifdef TARGET_S390X
1239 
1240 #define ELF_START_MMAP (0x20000000000ULL)
1241 
1242 #define ELF_CLASS	ELFCLASS64
1243 #define ELF_DATA	ELFDATA2MSB
1244 #define ELF_ARCH	EM_S390
1245 
1246 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1247 {
1248     regs->psw.addr = infop->entry;
1249     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1250     regs->gprs[15] = infop->start_stack;
1251 }
1252 
1253 #endif /* TARGET_S390X */
1254 
1255 #ifdef TARGET_TILEGX
1256 
1257 /* 42 bits real used address, a half for user mode */
1258 #define ELF_START_MMAP (0x00000020000000000ULL)
1259 
1260 #define elf_check_arch(x) ((x) == EM_TILEGX)
1261 
1262 #define ELF_CLASS   ELFCLASS64
1263 #define ELF_DATA    ELFDATA2LSB
1264 #define ELF_ARCH    EM_TILEGX
1265 
1266 static inline void init_thread(struct target_pt_regs *regs,
1267                                struct image_info *infop)
1268 {
1269     regs->pc = infop->entry;
1270     regs->sp = infop->start_stack;
1271 
1272 }
1273 
1274 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1275 
1276 #endif /* TARGET_TILEGX */
1277 
1278 #ifdef TARGET_RISCV
1279 
1280 #define ELF_START_MMAP 0x80000000
1281 #define ELF_ARCH  EM_RISCV
1282 
1283 #ifdef TARGET_RISCV32
1284 #define ELF_CLASS ELFCLASS32
1285 #else
1286 #define ELF_CLASS ELFCLASS64
1287 #endif
1288 
1289 static inline void init_thread(struct target_pt_regs *regs,
1290                                struct image_info *infop)
1291 {
1292     regs->sepc = infop->entry;
1293     regs->sp = infop->start_stack;
1294 }
1295 
1296 #define ELF_EXEC_PAGESIZE 4096
1297 
1298 #endif /* TARGET_RISCV */
1299 
1300 #ifdef TARGET_HPPA
1301 
1302 #define ELF_START_MMAP  0x80000000
1303 #define ELF_CLASS       ELFCLASS32
1304 #define ELF_ARCH        EM_PARISC
1305 #define ELF_PLATFORM    "PARISC"
1306 #define STACK_GROWS_DOWN 0
1307 #define STACK_ALIGNMENT  64
1308 
1309 static inline void init_thread(struct target_pt_regs *regs,
1310                                struct image_info *infop)
1311 {
1312     regs->iaoq[0] = infop->entry;
1313     regs->iaoq[1] = infop->entry + 4;
1314     regs->gr[23] = 0;
1315     regs->gr[24] = infop->arg_start;
1316     regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong);
1317     /* The top-of-stack contains a linkage buffer.  */
1318     regs->gr[30] = infop->start_stack + 64;
1319     regs->gr[31] = infop->entry;
1320 }
1321 
1322 #endif /* TARGET_HPPA */
1323 
1324 #ifdef TARGET_XTENSA
1325 
1326 #define ELF_START_MMAP 0x20000000
1327 
1328 #define ELF_CLASS       ELFCLASS32
1329 #define ELF_ARCH        EM_XTENSA
1330 
1331 static inline void init_thread(struct target_pt_regs *regs,
1332                                struct image_info *infop)
1333 {
1334     regs->windowbase = 0;
1335     regs->windowstart = 1;
1336     regs->areg[1] = infop->start_stack;
1337     regs->pc = infop->entry;
1338 }
1339 
1340 /* See linux kernel: arch/xtensa/include/asm/elf.h.  */
1341 #define ELF_NREG 128
1342 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1343 
1344 enum {
1345     TARGET_REG_PC,
1346     TARGET_REG_PS,
1347     TARGET_REG_LBEG,
1348     TARGET_REG_LEND,
1349     TARGET_REG_LCOUNT,
1350     TARGET_REG_SAR,
1351     TARGET_REG_WINDOWSTART,
1352     TARGET_REG_WINDOWBASE,
1353     TARGET_REG_THREADPTR,
1354     TARGET_REG_AR0 = 64,
1355 };
1356 
1357 static void elf_core_copy_regs(target_elf_gregset_t *regs,
1358                                const CPUXtensaState *env)
1359 {
1360     unsigned i;
1361 
1362     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1363     (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM);
1364     (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]);
1365     (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]);
1366     (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]);
1367     (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]);
1368     (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]);
1369     (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]);
1370     (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]);
1371     xtensa_sync_phys_from_window((CPUXtensaState *)env);
1372     for (i = 0; i < env->config->nareg; ++i) {
1373         (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]);
1374     }
1375 }
1376 
1377 #define USE_ELF_CORE_DUMP
1378 #define ELF_EXEC_PAGESIZE       4096
1379 
1380 #endif /* TARGET_XTENSA */
1381 
1382 #ifndef ELF_PLATFORM
1383 #define ELF_PLATFORM (NULL)
1384 #endif
1385 
1386 #ifndef ELF_MACHINE
1387 #define ELF_MACHINE ELF_ARCH
1388 #endif
1389 
1390 #ifndef elf_check_arch
1391 #define elf_check_arch(x) ((x) == ELF_ARCH)
1392 #endif
1393 
1394 #ifndef ELF_HWCAP
1395 #define ELF_HWCAP 0
1396 #endif
1397 
1398 #ifndef STACK_GROWS_DOWN
1399 #define STACK_GROWS_DOWN 1
1400 #endif
1401 
1402 #ifndef STACK_ALIGNMENT
1403 #define STACK_ALIGNMENT 16
1404 #endif
1405 
1406 #ifdef TARGET_ABI32
1407 #undef ELF_CLASS
1408 #define ELF_CLASS ELFCLASS32
1409 #undef bswaptls
1410 #define bswaptls(ptr) bswap32s(ptr)
1411 #endif
1412 
1413 #include "elf.h"
1414 
1415 struct exec
1416 {
1417     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1418     unsigned int a_text;   /* length of text, in bytes */
1419     unsigned int a_data;   /* length of data, in bytes */
1420     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1421     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1422     unsigned int a_entry;  /* start address */
1423     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1424     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1425 };
1426 
1427 
1428 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1429 #define OMAGIC 0407
1430 #define NMAGIC 0410
1431 #define ZMAGIC 0413
1432 #define QMAGIC 0314
1433 
1434 /* Necessary parameters */
1435 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1436 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1437                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1438 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1439 
1440 #define DLINFO_ITEMS 15
1441 
1442 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1443 {
1444     memcpy(to, from, n);
1445 }
1446 
1447 #ifdef BSWAP_NEEDED
1448 static void bswap_ehdr(struct elfhdr *ehdr)
1449 {
1450     bswap16s(&ehdr->e_type);            /* Object file type */
1451     bswap16s(&ehdr->e_machine);         /* Architecture */
1452     bswap32s(&ehdr->e_version);         /* Object file version */
1453     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1454     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1455     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1456     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1457     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1458     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1459     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1460     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1461     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1462     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1463 }
1464 
1465 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1466 {
1467     int i;
1468     for (i = 0; i < phnum; ++i, ++phdr) {
1469         bswap32s(&phdr->p_type);        /* Segment type */
1470         bswap32s(&phdr->p_flags);       /* Segment flags */
1471         bswaptls(&phdr->p_offset);      /* Segment file offset */
1472         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1473         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1474         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1475         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1476         bswaptls(&phdr->p_align);       /* Segment alignment */
1477     }
1478 }
1479 
1480 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1481 {
1482     int i;
1483     for (i = 0; i < shnum; ++i, ++shdr) {
1484         bswap32s(&shdr->sh_name);
1485         bswap32s(&shdr->sh_type);
1486         bswaptls(&shdr->sh_flags);
1487         bswaptls(&shdr->sh_addr);
1488         bswaptls(&shdr->sh_offset);
1489         bswaptls(&shdr->sh_size);
1490         bswap32s(&shdr->sh_link);
1491         bswap32s(&shdr->sh_info);
1492         bswaptls(&shdr->sh_addralign);
1493         bswaptls(&shdr->sh_entsize);
1494     }
1495 }
1496 
1497 static void bswap_sym(struct elf_sym *sym)
1498 {
1499     bswap32s(&sym->st_name);
1500     bswaptls(&sym->st_value);
1501     bswaptls(&sym->st_size);
1502     bswap16s(&sym->st_shndx);
1503 }
1504 #else
1505 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1506 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1507 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1508 static inline void bswap_sym(struct elf_sym *sym) { }
1509 #endif
1510 
1511 #ifdef USE_ELF_CORE_DUMP
1512 static int elf_core_dump(int, const CPUArchState *);
1513 #endif /* USE_ELF_CORE_DUMP */
1514 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1515 
1516 /* Verify the portions of EHDR within E_IDENT for the target.
1517    This can be performed before bswapping the entire header.  */
1518 static bool elf_check_ident(struct elfhdr *ehdr)
1519 {
1520     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1521             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1522             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1523             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1524             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1525             && ehdr->e_ident[EI_DATA] == ELF_DATA
1526             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1527 }
1528 
1529 /* Verify the portions of EHDR outside of E_IDENT for the target.
1530    This has to wait until after bswapping the header.  */
1531 static bool elf_check_ehdr(struct elfhdr *ehdr)
1532 {
1533     return (elf_check_arch(ehdr->e_machine)
1534             && ehdr->e_ehsize == sizeof(struct elfhdr)
1535             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1536             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1537 }
1538 
1539 /*
1540  * 'copy_elf_strings()' copies argument/envelope strings from user
1541  * memory to free pages in kernel mem. These are in a format ready
1542  * to be put directly into the top of new user memory.
1543  *
1544  */
1545 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1546                                   abi_ulong p, abi_ulong stack_limit)
1547 {
1548     char *tmp;
1549     int len, i;
1550     abi_ulong top = p;
1551 
1552     if (!p) {
1553         return 0;       /* bullet-proofing */
1554     }
1555 
1556     if (STACK_GROWS_DOWN) {
1557         int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1558         for (i = argc - 1; i >= 0; --i) {
1559             tmp = argv[i];
1560             if (!tmp) {
1561                 fprintf(stderr, "VFS: argc is wrong");
1562                 exit(-1);
1563             }
1564             len = strlen(tmp) + 1;
1565             tmp += len;
1566 
1567             if (len > (p - stack_limit)) {
1568                 return 0;
1569             }
1570             while (len) {
1571                 int bytes_to_copy = (len > offset) ? offset : len;
1572                 tmp -= bytes_to_copy;
1573                 p -= bytes_to_copy;
1574                 offset -= bytes_to_copy;
1575                 len -= bytes_to_copy;
1576 
1577                 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1578 
1579                 if (offset == 0) {
1580                     memcpy_to_target(p, scratch, top - p);
1581                     top = p;
1582                     offset = TARGET_PAGE_SIZE;
1583                 }
1584             }
1585         }
1586         if (p != top) {
1587             memcpy_to_target(p, scratch + offset, top - p);
1588         }
1589     } else {
1590         int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE);
1591         for (i = 0; i < argc; ++i) {
1592             tmp = argv[i];
1593             if (!tmp) {
1594                 fprintf(stderr, "VFS: argc is wrong");
1595                 exit(-1);
1596             }
1597             len = strlen(tmp) + 1;
1598             if (len > (stack_limit - p)) {
1599                 return 0;
1600             }
1601             while (len) {
1602                 int bytes_to_copy = (len > remaining) ? remaining : len;
1603 
1604                 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy);
1605 
1606                 tmp += bytes_to_copy;
1607                 remaining -= bytes_to_copy;
1608                 p += bytes_to_copy;
1609                 len -= bytes_to_copy;
1610 
1611                 if (remaining == 0) {
1612                     memcpy_to_target(top, scratch, p - top);
1613                     top = p;
1614                     remaining = TARGET_PAGE_SIZE;
1615                 }
1616             }
1617         }
1618         if (p != top) {
1619             memcpy_to_target(top, scratch, p - top);
1620         }
1621     }
1622 
1623     return p;
1624 }
1625 
1626 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1627  * argument/environment space. Newer kernels (>2.6.33) allow more,
1628  * dependent on stack size, but guarantee at least 32 pages for
1629  * backwards compatibility.
1630  */
1631 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1632 
1633 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1634                                  struct image_info *info)
1635 {
1636     abi_ulong size, error, guard;
1637 
1638     size = guest_stack_size;
1639     if (size < STACK_LOWER_LIMIT) {
1640         size = STACK_LOWER_LIMIT;
1641     }
1642     guard = TARGET_PAGE_SIZE;
1643     if (guard < qemu_real_host_page_size) {
1644         guard = qemu_real_host_page_size;
1645     }
1646 
1647     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1648                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1649     if (error == -1) {
1650         perror("mmap stack");
1651         exit(-1);
1652     }
1653 
1654     /* We reserve one extra page at the top of the stack as guard.  */
1655     if (STACK_GROWS_DOWN) {
1656         target_mprotect(error, guard, PROT_NONE);
1657         info->stack_limit = error + guard;
1658         return info->stack_limit + size - sizeof(void *);
1659     } else {
1660         target_mprotect(error + size, guard, PROT_NONE);
1661         info->stack_limit = error + size;
1662         return error;
1663     }
1664 }
1665 
1666 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1667    after the data section (i.e. bss).  */
1668 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1669 {
1670     uintptr_t host_start, host_map_start, host_end;
1671 
1672     last_bss = TARGET_PAGE_ALIGN(last_bss);
1673 
1674     /* ??? There is confusion between qemu_real_host_page_size and
1675        qemu_host_page_size here and elsewhere in target_mmap, which
1676        may lead to the end of the data section mapping from the file
1677        not being mapped.  At least there was an explicit test and
1678        comment for that here, suggesting that "the file size must
1679        be known".  The comment probably pre-dates the introduction
1680        of the fstat system call in target_mmap which does in fact
1681        find out the size.  What isn't clear is if the workaround
1682        here is still actually needed.  For now, continue with it,
1683        but merge it with the "normal" mmap that would allocate the bss.  */
1684 
1685     host_start = (uintptr_t) g2h(elf_bss);
1686     host_end = (uintptr_t) g2h(last_bss);
1687     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1688 
1689     if (host_map_start < host_end) {
1690         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1691                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1692         if (p == MAP_FAILED) {
1693             perror("cannot mmap brk");
1694             exit(-1);
1695         }
1696     }
1697 
1698     /* Ensure that the bss page(s) are valid */
1699     if ((page_get_flags(last_bss-1) & prot) != prot) {
1700         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1701     }
1702 
1703     if (host_start < host_map_start) {
1704         memset((void *)host_start, 0, host_map_start - host_start);
1705     }
1706 }
1707 
1708 #ifdef TARGET_ARM
1709 static int elf_is_fdpic(struct elfhdr *exec)
1710 {
1711     return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC;
1712 }
1713 #else
1714 /* Default implementation, always false.  */
1715 static int elf_is_fdpic(struct elfhdr *exec)
1716 {
1717     return 0;
1718 }
1719 #endif
1720 
1721 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1722 {
1723     uint16_t n;
1724     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1725 
1726     /* elf32_fdpic_loadseg */
1727     n = info->nsegs;
1728     while (n--) {
1729         sp -= 12;
1730         put_user_u32(loadsegs[n].addr, sp+0);
1731         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1732         put_user_u32(loadsegs[n].p_memsz, sp+8);
1733     }
1734 
1735     /* elf32_fdpic_loadmap */
1736     sp -= 4;
1737     put_user_u16(0, sp+0); /* version */
1738     put_user_u16(info->nsegs, sp+2); /* nsegs */
1739 
1740     info->personality = PER_LINUX_FDPIC;
1741     info->loadmap_addr = sp;
1742 
1743     return sp;
1744 }
1745 
1746 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1747                                    struct elfhdr *exec,
1748                                    struct image_info *info,
1749                                    struct image_info *interp_info)
1750 {
1751     abi_ulong sp;
1752     abi_ulong u_argc, u_argv, u_envp, u_auxv;
1753     int size;
1754     int i;
1755     abi_ulong u_rand_bytes;
1756     uint8_t k_rand_bytes[16];
1757     abi_ulong u_platform;
1758     const char *k_platform;
1759     const int n = sizeof(elf_addr_t);
1760 
1761     sp = p;
1762 
1763     /* Needs to be before we load the env/argc/... */
1764     if (elf_is_fdpic(exec)) {
1765         /* Need 4 byte alignment for these structs */
1766         sp &= ~3;
1767         sp = loader_build_fdpic_loadmap(info, sp);
1768         info->other_info = interp_info;
1769         if (interp_info) {
1770             interp_info->other_info = info;
1771             sp = loader_build_fdpic_loadmap(interp_info, sp);
1772             info->interpreter_loadmap_addr = interp_info->loadmap_addr;
1773             info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr;
1774         } else {
1775             info->interpreter_loadmap_addr = 0;
1776             info->interpreter_pt_dynamic_addr = 0;
1777         }
1778     }
1779 
1780     u_platform = 0;
1781     k_platform = ELF_PLATFORM;
1782     if (k_platform) {
1783         size_t len = strlen(k_platform) + 1;
1784         if (STACK_GROWS_DOWN) {
1785             sp -= (len + n - 1) & ~(n - 1);
1786             u_platform = sp;
1787             /* FIXME - check return value of memcpy_to_target() for failure */
1788             memcpy_to_target(sp, k_platform, len);
1789         } else {
1790             memcpy_to_target(sp, k_platform, len);
1791             u_platform = sp;
1792             sp += len + 1;
1793         }
1794     }
1795 
1796     /* Provide 16 byte alignment for the PRNG, and basic alignment for
1797      * the argv and envp pointers.
1798      */
1799     if (STACK_GROWS_DOWN) {
1800         sp = QEMU_ALIGN_DOWN(sp, 16);
1801     } else {
1802         sp = QEMU_ALIGN_UP(sp, 16);
1803     }
1804 
1805     /*
1806      * Generate 16 random bytes for userspace PRNG seeding (not
1807      * cryptically secure but it's not the aim of QEMU).
1808      */
1809     for (i = 0; i < 16; i++) {
1810         k_rand_bytes[i] = rand();
1811     }
1812     if (STACK_GROWS_DOWN) {
1813         sp -= 16;
1814         u_rand_bytes = sp;
1815         /* FIXME - check return value of memcpy_to_target() for failure */
1816         memcpy_to_target(sp, k_rand_bytes, 16);
1817     } else {
1818         memcpy_to_target(sp, k_rand_bytes, 16);
1819         u_rand_bytes = sp;
1820         sp += 16;
1821     }
1822 
1823     size = (DLINFO_ITEMS + 1) * 2;
1824     if (k_platform)
1825         size += 2;
1826 #ifdef DLINFO_ARCH_ITEMS
1827     size += DLINFO_ARCH_ITEMS * 2;
1828 #endif
1829 #ifdef ELF_HWCAP2
1830     size += 2;
1831 #endif
1832     info->auxv_len = size * n;
1833 
1834     size += envc + argc + 2;
1835     size += 1;  /* argc itself */
1836     size *= n;
1837 
1838     /* Allocate space and finalize stack alignment for entry now.  */
1839     if (STACK_GROWS_DOWN) {
1840         u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT);
1841         sp = u_argc;
1842     } else {
1843         u_argc = sp;
1844         sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT);
1845     }
1846 
1847     u_argv = u_argc + n;
1848     u_envp = u_argv + (argc + 1) * n;
1849     u_auxv = u_envp + (envc + 1) * n;
1850     info->saved_auxv = u_auxv;
1851     info->arg_start = u_argv;
1852     info->arg_end = u_argv + argc * n;
1853 
1854     /* This is correct because Linux defines
1855      * elf_addr_t as Elf32_Off / Elf64_Off
1856      */
1857 #define NEW_AUX_ENT(id, val) do {               \
1858         put_user_ual(id, u_auxv);  u_auxv += n; \
1859         put_user_ual(val, u_auxv); u_auxv += n; \
1860     } while(0)
1861 
1862 #ifdef ARCH_DLINFO
1863     /*
1864      * ARCH_DLINFO must come first so platform specific code can enforce
1865      * special alignment requirements on the AUXV if necessary (eg. PPC).
1866      */
1867     ARCH_DLINFO;
1868 #endif
1869     /* There must be exactly DLINFO_ITEMS entries here, or the assert
1870      * on info->auxv_len will trigger.
1871      */
1872     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1873     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1874     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1875     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1876     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1877     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1878     NEW_AUX_ENT(AT_ENTRY, info->entry);
1879     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1880     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1881     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1882     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1883     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1884     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1885     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1886     NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE));
1887 
1888 #ifdef ELF_HWCAP2
1889     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1890 #endif
1891 
1892     if (u_platform) {
1893         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1894     }
1895     NEW_AUX_ENT (AT_NULL, 0);
1896 #undef NEW_AUX_ENT
1897 
1898     /* Check that our initial calculation of the auxv length matches how much
1899      * we actually put into it.
1900      */
1901     assert(info->auxv_len == u_auxv - info->saved_auxv);
1902 
1903     put_user_ual(argc, u_argc);
1904 
1905     p = info->arg_strings;
1906     for (i = 0; i < argc; ++i) {
1907         put_user_ual(p, u_argv);
1908         u_argv += n;
1909         p += target_strlen(p) + 1;
1910     }
1911     put_user_ual(0, u_argv);
1912 
1913     p = info->env_strings;
1914     for (i = 0; i < envc; ++i) {
1915         put_user_ual(p, u_envp);
1916         u_envp += n;
1917         p += target_strlen(p) + 1;
1918     }
1919     put_user_ual(0, u_envp);
1920 
1921     return sp;
1922 }
1923 
1924 unsigned long init_guest_space(unsigned long host_start,
1925                                unsigned long host_size,
1926                                unsigned long guest_start,
1927                                bool fixed)
1928 {
1929     unsigned long current_start, aligned_start;
1930     int flags;
1931 
1932     assert(host_start || host_size);
1933 
1934     /* If just a starting address is given, then just verify that
1935      * address.  */
1936     if (host_start && !host_size) {
1937 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1938         if (init_guest_commpage(host_start, host_size) != 1) {
1939             return (unsigned long)-1;
1940         }
1941 #endif
1942         return host_start;
1943     }
1944 
1945     /* Setup the initial flags and start address.  */
1946     current_start = host_start & qemu_host_page_mask;
1947     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1948     if (fixed) {
1949         flags |= MAP_FIXED;
1950     }
1951 
1952     /* Otherwise, a non-zero size region of memory needs to be mapped
1953      * and validated.  */
1954 
1955 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
1956     /* On 32-bit ARM, we need to map not just the usable memory, but
1957      * also the commpage.  Try to find a suitable place by allocating
1958      * a big chunk for all of it.  If host_start, then the naive
1959      * strategy probably does good enough.
1960      */
1961     if (!host_start) {
1962         unsigned long guest_full_size, host_full_size, real_start;
1963 
1964         guest_full_size =
1965             (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size;
1966         host_full_size = guest_full_size - guest_start;
1967         real_start = (unsigned long)
1968             mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0);
1969         if (real_start == (unsigned long)-1) {
1970             if (host_size < host_full_size - qemu_host_page_size) {
1971                 /* We failed to map a continous segment, but we're
1972                  * allowed to have a gap between the usable memory and
1973                  * the commpage where other things can be mapped.
1974                  * This sparseness gives us more flexibility to find
1975                  * an address range.
1976                  */
1977                 goto naive;
1978             }
1979             return (unsigned long)-1;
1980         }
1981         munmap((void *)real_start, host_full_size);
1982         if (real_start & ~qemu_host_page_mask) {
1983             /* The same thing again, but with an extra qemu_host_page_size
1984              * so that we can shift around alignment.
1985              */
1986             unsigned long real_size = host_full_size + qemu_host_page_size;
1987             real_start = (unsigned long)
1988                 mmap(NULL, real_size, PROT_NONE, flags, -1, 0);
1989             if (real_start == (unsigned long)-1) {
1990                 if (host_size < host_full_size - qemu_host_page_size) {
1991                     goto naive;
1992                 }
1993                 return (unsigned long)-1;
1994             }
1995             munmap((void *)real_start, real_size);
1996             real_start = HOST_PAGE_ALIGN(real_start);
1997         }
1998         current_start = real_start;
1999     }
2000  naive:
2001 #endif
2002 
2003     while (1) {
2004         unsigned long real_start, real_size, aligned_size;
2005         aligned_size = real_size = host_size;
2006 
2007         /* Do not use mmap_find_vma here because that is limited to the
2008          * guest address space.  We are going to make the
2009          * guest address space fit whatever we're given.
2010          */
2011         real_start = (unsigned long)
2012             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
2013         if (real_start == (unsigned long)-1) {
2014             return (unsigned long)-1;
2015         }
2016 
2017         /* Check to see if the address is valid.  */
2018         if (host_start && real_start != current_start) {
2019             goto try_again;
2020         }
2021 
2022         /* Ensure the address is properly aligned.  */
2023         if (real_start & ~qemu_host_page_mask) {
2024             /* Ideally, we adjust like
2025              *
2026              *    pages: [  ][  ][  ][  ][  ]
2027              *      old:   [   real   ]
2028              *             [ aligned  ]
2029              *      new:   [     real     ]
2030              *               [ aligned  ]
2031              *
2032              * But if there is something else mapped right after it,
2033              * then obviously it won't have room to grow, and the
2034              * kernel will put the new larger real someplace else with
2035              * unknown alignment (if we made it to here, then
2036              * fixed=false).  Which is why we grow real by a full page
2037              * size, instead of by part of one; so that even if we get
2038              * moved, we can still guarantee alignment.  But this does
2039              * mean that there is a padding of < 1 page both before
2040              * and after the aligned range; the "after" could could
2041              * cause problems for ARM emulation where it could butt in
2042              * to where we need to put the commpage.
2043              */
2044             munmap((void *)real_start, host_size);
2045             real_size = aligned_size + qemu_host_page_size;
2046             real_start = (unsigned long)
2047                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
2048             if (real_start == (unsigned long)-1) {
2049                 return (unsigned long)-1;
2050             }
2051             aligned_start = HOST_PAGE_ALIGN(real_start);
2052         } else {
2053             aligned_start = real_start;
2054         }
2055 
2056 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64)
2057         /* On 32-bit ARM, we need to also be able to map the commpage.  */
2058         int valid = init_guest_commpage(aligned_start - guest_start,
2059                                         aligned_size + guest_start);
2060         if (valid == -1) {
2061             munmap((void *)real_start, real_size);
2062             return (unsigned long)-1;
2063         } else if (valid == 0) {
2064             goto try_again;
2065         }
2066 #endif
2067 
2068         /* If nothing has said `return -1` or `goto try_again` yet,
2069          * then the address we have is good.
2070          */
2071         break;
2072 
2073     try_again:
2074         /* That address didn't work.  Unmap and try a different one.
2075          * The address the host picked because is typically right at
2076          * the top of the host address space and leaves the guest with
2077          * no usable address space.  Resort to a linear search.  We
2078          * already compensated for mmap_min_addr, so this should not
2079          * happen often.  Probably means we got unlucky and host
2080          * address space randomization put a shared library somewhere
2081          * inconvenient.
2082          *
2083          * This is probably a good strategy if host_start, but is
2084          * probably a bad strategy if not, which means we got here
2085          * because of trouble with ARM commpage setup.
2086          */
2087         munmap((void *)real_start, real_size);
2088         current_start += qemu_host_page_size;
2089         if (host_start == current_start) {
2090             /* Theoretically possible if host doesn't have any suitably
2091              * aligned areas.  Normally the first mmap will fail.
2092              */
2093             return (unsigned long)-1;
2094         }
2095     }
2096 
2097     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
2098 
2099     return aligned_start;
2100 }
2101 
2102 static void probe_guest_base(const char *image_name,
2103                              abi_ulong loaddr, abi_ulong hiaddr)
2104 {
2105     /* Probe for a suitable guest base address, if the user has not set
2106      * it explicitly, and set guest_base appropriately.
2107      * In case of error we will print a suitable message and exit.
2108      */
2109     const char *errmsg;
2110     if (!have_guest_base && !reserved_va) {
2111         unsigned long host_start, real_start, host_size;
2112 
2113         /* Round addresses to page boundaries.  */
2114         loaddr &= qemu_host_page_mask;
2115         hiaddr = HOST_PAGE_ALIGN(hiaddr);
2116 
2117         if (loaddr < mmap_min_addr) {
2118             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
2119         } else {
2120             host_start = loaddr;
2121             if (host_start != loaddr) {
2122                 errmsg = "Address overflow loading ELF binary";
2123                 goto exit_errmsg;
2124             }
2125         }
2126         host_size = hiaddr - loaddr;
2127 
2128         /* Setup the initial guest memory space with ranges gleaned from
2129          * the ELF image that is being loaded.
2130          */
2131         real_start = init_guest_space(host_start, host_size, loaddr, false);
2132         if (real_start == (unsigned long)-1) {
2133             errmsg = "Unable to find space for application";
2134             goto exit_errmsg;
2135         }
2136         guest_base = real_start - loaddr;
2137 
2138         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
2139                       TARGET_ABI_FMT_lx " to 0x%lx\n",
2140                       loaddr, real_start);
2141     }
2142     return;
2143 
2144 exit_errmsg:
2145     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2146     exit(-1);
2147 }
2148 
2149 
2150 /* Load an ELF image into the address space.
2151 
2152    IMAGE_NAME is the filename of the image, to use in error messages.
2153    IMAGE_FD is the open file descriptor for the image.
2154 
2155    BPRM_BUF is a copy of the beginning of the file; this of course
2156    contains the elf file header at offset 0.  It is assumed that this
2157    buffer is sufficiently aligned to present no problems to the host
2158    in accessing data at aligned offsets within the buffer.
2159 
2160    On return: INFO values will be filled in, as necessary or available.  */
2161 
2162 static void load_elf_image(const char *image_name, int image_fd,
2163                            struct image_info *info, char **pinterp_name,
2164                            char bprm_buf[BPRM_BUF_SIZE])
2165 {
2166     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
2167     struct elf_phdr *phdr;
2168     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
2169     int i, retval;
2170     const char *errmsg;
2171 
2172     /* First of all, some simple consistency checks */
2173     errmsg = "Invalid ELF image for this architecture";
2174     if (!elf_check_ident(ehdr)) {
2175         goto exit_errmsg;
2176     }
2177     bswap_ehdr(ehdr);
2178     if (!elf_check_ehdr(ehdr)) {
2179         goto exit_errmsg;
2180     }
2181 
2182     i = ehdr->e_phnum * sizeof(struct elf_phdr);
2183     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
2184         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
2185     } else {
2186         phdr = (struct elf_phdr *) alloca(i);
2187         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
2188         if (retval != i) {
2189             goto exit_read;
2190         }
2191     }
2192     bswap_phdr(phdr, ehdr->e_phnum);
2193 
2194     info->nsegs = 0;
2195     info->pt_dynamic_addr = 0;
2196 
2197     mmap_lock();
2198 
2199     /* Find the maximum size of the image and allocate an appropriate
2200        amount of memory to handle that.  */
2201     loaddr = -1, hiaddr = 0;
2202     for (i = 0; i < ehdr->e_phnum; ++i) {
2203         if (phdr[i].p_type == PT_LOAD) {
2204             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
2205             if (a < loaddr) {
2206                 loaddr = a;
2207             }
2208             a = phdr[i].p_vaddr + phdr[i].p_memsz;
2209             if (a > hiaddr) {
2210                 hiaddr = a;
2211             }
2212             ++info->nsegs;
2213         }
2214     }
2215 
2216     load_addr = loaddr;
2217     if (ehdr->e_type == ET_DYN) {
2218         /* The image indicates that it can be loaded anywhere.  Find a
2219            location that can hold the memory space required.  If the
2220            image is pre-linked, LOADDR will be non-zero.  Since we do
2221            not supply MAP_FIXED here we'll use that address if and
2222            only if it remains available.  */
2223         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
2224                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
2225                                 -1, 0);
2226         if (load_addr == -1) {
2227             goto exit_perror;
2228         }
2229     } else if (pinterp_name != NULL) {
2230         /* This is the main executable.  Make sure that the low
2231            address does not conflict with MMAP_MIN_ADDR or the
2232            QEMU application itself.  */
2233         probe_guest_base(image_name, loaddr, hiaddr);
2234     }
2235     load_bias = load_addr - loaddr;
2236 
2237     if (elf_is_fdpic(ehdr)) {
2238         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
2239             g_malloc(sizeof(*loadsegs) * info->nsegs);
2240 
2241         for (i = 0; i < ehdr->e_phnum; ++i) {
2242             switch (phdr[i].p_type) {
2243             case PT_DYNAMIC:
2244                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
2245                 break;
2246             case PT_LOAD:
2247                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
2248                 loadsegs->p_vaddr = phdr[i].p_vaddr;
2249                 loadsegs->p_memsz = phdr[i].p_memsz;
2250                 ++loadsegs;
2251                 break;
2252             }
2253         }
2254     }
2255 
2256     info->load_bias = load_bias;
2257     info->load_addr = load_addr;
2258     info->entry = ehdr->e_entry + load_bias;
2259     info->start_code = -1;
2260     info->end_code = 0;
2261     info->start_data = -1;
2262     info->end_data = 0;
2263     info->brk = 0;
2264     info->elf_flags = ehdr->e_flags;
2265 
2266     for (i = 0; i < ehdr->e_phnum; i++) {
2267         struct elf_phdr *eppnt = phdr + i;
2268         if (eppnt->p_type == PT_LOAD) {
2269             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
2270             int elf_prot = 0;
2271 
2272             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
2273             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
2274             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
2275 
2276             vaddr = load_bias + eppnt->p_vaddr;
2277             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
2278             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
2279 
2280             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
2281                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
2282                                 image_fd, eppnt->p_offset - vaddr_po);
2283             if (error == -1) {
2284                 goto exit_perror;
2285             }
2286 
2287             vaddr_ef = vaddr + eppnt->p_filesz;
2288             vaddr_em = vaddr + eppnt->p_memsz;
2289 
2290             /* If the load segment requests extra zeros (e.g. bss), map it.  */
2291             if (vaddr_ef < vaddr_em) {
2292                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
2293             }
2294 
2295             /* Find the full program boundaries.  */
2296             if (elf_prot & PROT_EXEC) {
2297                 if (vaddr < info->start_code) {
2298                     info->start_code = vaddr;
2299                 }
2300                 if (vaddr_ef > info->end_code) {
2301                     info->end_code = vaddr_ef;
2302                 }
2303             }
2304             if (elf_prot & PROT_WRITE) {
2305                 if (vaddr < info->start_data) {
2306                     info->start_data = vaddr;
2307                 }
2308                 if (vaddr_ef > info->end_data) {
2309                     info->end_data = vaddr_ef;
2310                 }
2311                 if (vaddr_em > info->brk) {
2312                     info->brk = vaddr_em;
2313                 }
2314             }
2315         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
2316             char *interp_name;
2317 
2318             if (*pinterp_name) {
2319                 errmsg = "Multiple PT_INTERP entries";
2320                 goto exit_errmsg;
2321             }
2322             interp_name = malloc(eppnt->p_filesz);
2323             if (!interp_name) {
2324                 goto exit_perror;
2325             }
2326 
2327             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
2328                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
2329                        eppnt->p_filesz);
2330             } else {
2331                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
2332                                eppnt->p_offset);
2333                 if (retval != eppnt->p_filesz) {
2334                     goto exit_perror;
2335                 }
2336             }
2337             if (interp_name[eppnt->p_filesz - 1] != 0) {
2338                 errmsg = "Invalid PT_INTERP entry";
2339                 goto exit_errmsg;
2340             }
2341             *pinterp_name = interp_name;
2342         }
2343     }
2344 
2345     if (info->end_data == 0) {
2346         info->start_data = info->end_code;
2347         info->end_data = info->end_code;
2348         info->brk = info->end_code;
2349     }
2350 
2351     if (qemu_log_enabled()) {
2352         load_symbols(ehdr, image_fd, load_bias);
2353     }
2354 
2355     mmap_unlock();
2356 
2357     close(image_fd);
2358     return;
2359 
2360  exit_read:
2361     if (retval >= 0) {
2362         errmsg = "Incomplete read of file header";
2363         goto exit_errmsg;
2364     }
2365  exit_perror:
2366     errmsg = strerror(errno);
2367  exit_errmsg:
2368     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2369     exit(-1);
2370 }
2371 
2372 static void load_elf_interp(const char *filename, struct image_info *info,
2373                             char bprm_buf[BPRM_BUF_SIZE])
2374 {
2375     int fd, retval;
2376 
2377     fd = open(path(filename), O_RDONLY);
2378     if (fd < 0) {
2379         goto exit_perror;
2380     }
2381 
2382     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2383     if (retval < 0) {
2384         goto exit_perror;
2385     }
2386     if (retval < BPRM_BUF_SIZE) {
2387         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2388     }
2389 
2390     load_elf_image(filename, fd, info, NULL, bprm_buf);
2391     return;
2392 
2393  exit_perror:
2394     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2395     exit(-1);
2396 }
2397 
2398 static int symfind(const void *s0, const void *s1)
2399 {
2400     target_ulong addr = *(target_ulong *)s0;
2401     struct elf_sym *sym = (struct elf_sym *)s1;
2402     int result = 0;
2403     if (addr < sym->st_value) {
2404         result = -1;
2405     } else if (addr >= sym->st_value + sym->st_size) {
2406         result = 1;
2407     }
2408     return result;
2409 }
2410 
2411 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2412 {
2413 #if ELF_CLASS == ELFCLASS32
2414     struct elf_sym *syms = s->disas_symtab.elf32;
2415 #else
2416     struct elf_sym *syms = s->disas_symtab.elf64;
2417 #endif
2418 
2419     // binary search
2420     struct elf_sym *sym;
2421 
2422     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2423     if (sym != NULL) {
2424         return s->disas_strtab + sym->st_name;
2425     }
2426 
2427     return "";
2428 }
2429 
2430 /* FIXME: This should use elf_ops.h  */
2431 static int symcmp(const void *s0, const void *s1)
2432 {
2433     struct elf_sym *sym0 = (struct elf_sym *)s0;
2434     struct elf_sym *sym1 = (struct elf_sym *)s1;
2435     return (sym0->st_value < sym1->st_value)
2436         ? -1
2437         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2438 }
2439 
2440 /* Best attempt to load symbols from this ELF object. */
2441 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2442 {
2443     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2444     uint64_t segsz;
2445     struct elf_shdr *shdr;
2446     char *strings = NULL;
2447     struct syminfo *s = NULL;
2448     struct elf_sym *new_syms, *syms = NULL;
2449 
2450     shnum = hdr->e_shnum;
2451     i = shnum * sizeof(struct elf_shdr);
2452     shdr = (struct elf_shdr *)alloca(i);
2453     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2454         return;
2455     }
2456 
2457     bswap_shdr(shdr, shnum);
2458     for (i = 0; i < shnum; ++i) {
2459         if (shdr[i].sh_type == SHT_SYMTAB) {
2460             sym_idx = i;
2461             str_idx = shdr[i].sh_link;
2462             goto found;
2463         }
2464     }
2465 
2466     /* There will be no symbol table if the file was stripped.  */
2467     return;
2468 
2469  found:
2470     /* Now know where the strtab and symtab are.  Snarf them.  */
2471     s = g_try_new(struct syminfo, 1);
2472     if (!s) {
2473         goto give_up;
2474     }
2475 
2476     segsz = shdr[str_idx].sh_size;
2477     s->disas_strtab = strings = g_try_malloc(segsz);
2478     if (!strings ||
2479         pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) {
2480         goto give_up;
2481     }
2482 
2483     segsz = shdr[sym_idx].sh_size;
2484     syms = g_try_malloc(segsz);
2485     if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) {
2486         goto give_up;
2487     }
2488 
2489     if (segsz / sizeof(struct elf_sym) > INT_MAX) {
2490         /* Implausibly large symbol table: give up rather than ploughing
2491          * on with the number of symbols calculation overflowing
2492          */
2493         goto give_up;
2494     }
2495     nsyms = segsz / sizeof(struct elf_sym);
2496     for (i = 0; i < nsyms; ) {
2497         bswap_sym(syms + i);
2498         /* Throw away entries which we do not need.  */
2499         if (syms[i].st_shndx == SHN_UNDEF
2500             || syms[i].st_shndx >= SHN_LORESERVE
2501             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2502             if (i < --nsyms) {
2503                 syms[i] = syms[nsyms];
2504             }
2505         } else {
2506 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2507             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2508             syms[i].st_value &= ~(target_ulong)1;
2509 #endif
2510             syms[i].st_value += load_bias;
2511             i++;
2512         }
2513     }
2514 
2515     /* No "useful" symbol.  */
2516     if (nsyms == 0) {
2517         goto give_up;
2518     }
2519 
2520     /* Attempt to free the storage associated with the local symbols
2521        that we threw away.  Whether or not this has any effect on the
2522        memory allocation depends on the malloc implementation and how
2523        many symbols we managed to discard.  */
2524     new_syms = g_try_renew(struct elf_sym, syms, nsyms);
2525     if (new_syms == NULL) {
2526         goto give_up;
2527     }
2528     syms = new_syms;
2529 
2530     qsort(syms, nsyms, sizeof(*syms), symcmp);
2531 
2532     s->disas_num_syms = nsyms;
2533 #if ELF_CLASS == ELFCLASS32
2534     s->disas_symtab.elf32 = syms;
2535 #else
2536     s->disas_symtab.elf64 = syms;
2537 #endif
2538     s->lookup_symbol = lookup_symbolxx;
2539     s->next = syminfos;
2540     syminfos = s;
2541 
2542     return;
2543 
2544 give_up:
2545     g_free(s);
2546     g_free(strings);
2547     g_free(syms);
2548 }
2549 
2550 uint32_t get_elf_eflags(int fd)
2551 {
2552     struct elfhdr ehdr;
2553     off_t offset;
2554     int ret;
2555 
2556     /* Read ELF header */
2557     offset = lseek(fd, 0, SEEK_SET);
2558     if (offset == (off_t) -1) {
2559         return 0;
2560     }
2561     ret = read(fd, &ehdr, sizeof(ehdr));
2562     if (ret < sizeof(ehdr)) {
2563         return 0;
2564     }
2565     offset = lseek(fd, offset, SEEK_SET);
2566     if (offset == (off_t) -1) {
2567         return 0;
2568     }
2569 
2570     /* Check ELF signature */
2571     if (!elf_check_ident(&ehdr)) {
2572         return 0;
2573     }
2574 
2575     /* check header */
2576     bswap_ehdr(&ehdr);
2577     if (!elf_check_ehdr(&ehdr)) {
2578         return 0;
2579     }
2580 
2581     /* return architecture id */
2582     return ehdr.e_flags;
2583 }
2584 
2585 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2586 {
2587     struct image_info interp_info;
2588     struct elfhdr elf_ex;
2589     char *elf_interpreter = NULL;
2590     char *scratch;
2591 
2592     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2593 
2594     load_elf_image(bprm->filename, bprm->fd, info,
2595                    &elf_interpreter, bprm->buf);
2596 
2597     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2598        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2599        when we load the interpreter.  */
2600     elf_ex = *(struct elfhdr *)bprm->buf;
2601 
2602     /* Do this so that we can load the interpreter, if need be.  We will
2603        change some of these later */
2604     bprm->p = setup_arg_pages(bprm, info);
2605 
2606     scratch = g_new0(char, TARGET_PAGE_SIZE);
2607     if (STACK_GROWS_DOWN) {
2608         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2609                                    bprm->p, info->stack_limit);
2610         info->file_string = bprm->p;
2611         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2612                                    bprm->p, info->stack_limit);
2613         info->env_strings = bprm->p;
2614         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2615                                    bprm->p, info->stack_limit);
2616         info->arg_strings = bprm->p;
2617     } else {
2618         info->arg_strings = bprm->p;
2619         bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2620                                    bprm->p, info->stack_limit);
2621         info->env_strings = bprm->p;
2622         bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2623                                    bprm->p, info->stack_limit);
2624         info->file_string = bprm->p;
2625         bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2626                                    bprm->p, info->stack_limit);
2627     }
2628 
2629     g_free(scratch);
2630 
2631     if (!bprm->p) {
2632         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2633         exit(-1);
2634     }
2635 
2636     if (elf_interpreter) {
2637         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2638 
2639         /* If the program interpreter is one of these two, then assume
2640            an iBCS2 image.  Otherwise assume a native linux image.  */
2641 
2642         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2643             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2644             info->personality = PER_SVR4;
2645 
2646             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2647                and some applications "depend" upon this behavior.  Since
2648                we do not have the power to recompile these, we emulate
2649                the SVr4 behavior.  Sigh.  */
2650             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2651                         MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
2652         }
2653     }
2654 
2655     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2656                                 info, (elf_interpreter ? &interp_info : NULL));
2657     info->start_stack = bprm->p;
2658 
2659     /* If we have an interpreter, set that as the program's entry point.
2660        Copy the load_bias as well, to help PPC64 interpret the entry
2661        point as a function descriptor.  Do this after creating elf tables
2662        so that we copy the original program entry point into the AUXV.  */
2663     if (elf_interpreter) {
2664         info->load_bias = interp_info.load_bias;
2665         info->entry = interp_info.entry;
2666         free(elf_interpreter);
2667     }
2668 
2669 #ifdef USE_ELF_CORE_DUMP
2670     bprm->core_dump = &elf_core_dump;
2671 #endif
2672 
2673     return 0;
2674 }
2675 
2676 #ifdef USE_ELF_CORE_DUMP
2677 /*
2678  * Definitions to generate Intel SVR4-like core files.
2679  * These mostly have the same names as the SVR4 types with "target_elf_"
2680  * tacked on the front to prevent clashes with linux definitions,
2681  * and the typedef forms have been avoided.  This is mostly like
2682  * the SVR4 structure, but more Linuxy, with things that Linux does
2683  * not support and which gdb doesn't really use excluded.
2684  *
2685  * Fields we don't dump (their contents is zero) in linux-user qemu
2686  * are marked with XXX.
2687  *
2688  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2689  *
2690  * Porting ELF coredump for target is (quite) simple process.  First you
2691  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2692  * the target resides):
2693  *
2694  * #define USE_ELF_CORE_DUMP
2695  *
2696  * Next you define type of register set used for dumping.  ELF specification
2697  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2698  *
2699  * typedef <target_regtype> target_elf_greg_t;
2700  * #define ELF_NREG <number of registers>
2701  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2702  *
2703  * Last step is to implement target specific function that copies registers
2704  * from given cpu into just specified register set.  Prototype is:
2705  *
2706  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2707  *                                const CPUArchState *env);
2708  *
2709  * Parameters:
2710  *     regs - copy register values into here (allocated and zeroed by caller)
2711  *     env - copy registers from here
2712  *
2713  * Example for ARM target is provided in this file.
2714  */
2715 
2716 /* An ELF note in memory */
2717 struct memelfnote {
2718     const char *name;
2719     size_t     namesz;
2720     size_t     namesz_rounded;
2721     int        type;
2722     size_t     datasz;
2723     size_t     datasz_rounded;
2724     void       *data;
2725     size_t     notesz;
2726 };
2727 
2728 struct target_elf_siginfo {
2729     abi_int    si_signo; /* signal number */
2730     abi_int    si_code;  /* extra code */
2731     abi_int    si_errno; /* errno */
2732 };
2733 
2734 struct target_elf_prstatus {
2735     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2736     abi_short          pr_cursig;    /* Current signal */
2737     abi_ulong          pr_sigpend;   /* XXX */
2738     abi_ulong          pr_sighold;   /* XXX */
2739     target_pid_t       pr_pid;
2740     target_pid_t       pr_ppid;
2741     target_pid_t       pr_pgrp;
2742     target_pid_t       pr_sid;
2743     struct target_timeval pr_utime;  /* XXX User time */
2744     struct target_timeval pr_stime;  /* XXX System time */
2745     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2746     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2747     target_elf_gregset_t      pr_reg;       /* GP registers */
2748     abi_int            pr_fpvalid;   /* XXX */
2749 };
2750 
2751 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2752 
2753 struct target_elf_prpsinfo {
2754     char         pr_state;       /* numeric process state */
2755     char         pr_sname;       /* char for pr_state */
2756     char         pr_zomb;        /* zombie */
2757     char         pr_nice;        /* nice val */
2758     abi_ulong    pr_flag;        /* flags */
2759     target_uid_t pr_uid;
2760     target_gid_t pr_gid;
2761     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2762     /* Lots missing */
2763     char    pr_fname[16];           /* filename of executable */
2764     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2765 };
2766 
2767 /* Here is the structure in which status of each thread is captured. */
2768 struct elf_thread_status {
2769     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2770     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2771 #if 0
2772     elf_fpregset_t fpu;             /* NT_PRFPREG */
2773     struct task_struct *thread;
2774     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2775 #endif
2776     struct memelfnote notes[1];
2777     int num_notes;
2778 };
2779 
2780 struct elf_note_info {
2781     struct memelfnote   *notes;
2782     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2783     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2784 
2785     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2786 #if 0
2787     /*
2788      * Current version of ELF coredump doesn't support
2789      * dumping fp regs etc.
2790      */
2791     elf_fpregset_t *fpu;
2792     elf_fpxregset_t *xfpu;
2793     int thread_status_size;
2794 #endif
2795     int notes_size;
2796     int numnote;
2797 };
2798 
2799 struct vm_area_struct {
2800     target_ulong   vma_start;  /* start vaddr of memory region */
2801     target_ulong   vma_end;    /* end vaddr of memory region */
2802     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2803     QTAILQ_ENTRY(vm_area_struct) vma_link;
2804 };
2805 
2806 struct mm_struct {
2807     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2808     int mm_count;           /* number of mappings */
2809 };
2810 
2811 static struct mm_struct *vma_init(void);
2812 static void vma_delete(struct mm_struct *);
2813 static int vma_add_mapping(struct mm_struct *, target_ulong,
2814                            target_ulong, abi_ulong);
2815 static int vma_get_mapping_count(const struct mm_struct *);
2816 static struct vm_area_struct *vma_first(const struct mm_struct *);
2817 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2818 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2819 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2820                       unsigned long flags);
2821 
2822 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2823 static void fill_note(struct memelfnote *, const char *, int,
2824                       unsigned int, void *);
2825 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2826 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2827 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2828 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2829 static size_t note_size(const struct memelfnote *);
2830 static void free_note_info(struct elf_note_info *);
2831 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2832 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2833 static int core_dump_filename(const TaskState *, char *, size_t);
2834 
2835 static int dump_write(int, const void *, size_t);
2836 static int write_note(struct memelfnote *, int);
2837 static int write_note_info(struct elf_note_info *, int);
2838 
2839 #ifdef BSWAP_NEEDED
2840 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2841 {
2842     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2843     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2844     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2845     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2846     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2847     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2848     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2849     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2850     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2851     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2852     /* cpu times are not filled, so we skip them */
2853     /* regs should be in correct format already */
2854     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2855 }
2856 
2857 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2858 {
2859     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2860     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2861     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2862     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2863     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2864     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2865     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2866 }
2867 
2868 static void bswap_note(struct elf_note *en)
2869 {
2870     bswap32s(&en->n_namesz);
2871     bswap32s(&en->n_descsz);
2872     bswap32s(&en->n_type);
2873 }
2874 #else
2875 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2876 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2877 static inline void bswap_note(struct elf_note *en) { }
2878 #endif /* BSWAP_NEEDED */
2879 
2880 /*
2881  * Minimal support for linux memory regions.  These are needed
2882  * when we are finding out what memory exactly belongs to
2883  * emulated process.  No locks needed here, as long as
2884  * thread that received the signal is stopped.
2885  */
2886 
2887 static struct mm_struct *vma_init(void)
2888 {
2889     struct mm_struct *mm;
2890 
2891     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2892         return (NULL);
2893 
2894     mm->mm_count = 0;
2895     QTAILQ_INIT(&mm->mm_mmap);
2896 
2897     return (mm);
2898 }
2899 
2900 static void vma_delete(struct mm_struct *mm)
2901 {
2902     struct vm_area_struct *vma;
2903 
2904     while ((vma = vma_first(mm)) != NULL) {
2905         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2906         g_free(vma);
2907     }
2908     g_free(mm);
2909 }
2910 
2911 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2912                            target_ulong end, abi_ulong flags)
2913 {
2914     struct vm_area_struct *vma;
2915 
2916     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2917         return (-1);
2918 
2919     vma->vma_start = start;
2920     vma->vma_end = end;
2921     vma->vma_flags = flags;
2922 
2923     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2924     mm->mm_count++;
2925 
2926     return (0);
2927 }
2928 
2929 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2930 {
2931     return (QTAILQ_FIRST(&mm->mm_mmap));
2932 }
2933 
2934 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2935 {
2936     return (QTAILQ_NEXT(vma, vma_link));
2937 }
2938 
2939 static int vma_get_mapping_count(const struct mm_struct *mm)
2940 {
2941     return (mm->mm_count);
2942 }
2943 
2944 /*
2945  * Calculate file (dump) size of given memory region.
2946  */
2947 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2948 {
2949     /* if we cannot even read the first page, skip it */
2950     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2951         return (0);
2952 
2953     /*
2954      * Usually we don't dump executable pages as they contain
2955      * non-writable code that debugger can read directly from
2956      * target library etc.  However, thread stacks are marked
2957      * also executable so we read in first page of given region
2958      * and check whether it contains elf header.  If there is
2959      * no elf header, we dump it.
2960      */
2961     if (vma->vma_flags & PROT_EXEC) {
2962         char page[TARGET_PAGE_SIZE];
2963 
2964         copy_from_user(page, vma->vma_start, sizeof (page));
2965         if ((page[EI_MAG0] == ELFMAG0) &&
2966             (page[EI_MAG1] == ELFMAG1) &&
2967             (page[EI_MAG2] == ELFMAG2) &&
2968             (page[EI_MAG3] == ELFMAG3)) {
2969             /*
2970              * Mappings are possibly from ELF binary.  Don't dump
2971              * them.
2972              */
2973             return (0);
2974         }
2975     }
2976 
2977     return (vma->vma_end - vma->vma_start);
2978 }
2979 
2980 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2981                       unsigned long flags)
2982 {
2983     struct mm_struct *mm = (struct mm_struct *)priv;
2984 
2985     vma_add_mapping(mm, start, end, flags);
2986     return (0);
2987 }
2988 
2989 static void fill_note(struct memelfnote *note, const char *name, int type,
2990                       unsigned int sz, void *data)
2991 {
2992     unsigned int namesz;
2993 
2994     namesz = strlen(name) + 1;
2995     note->name = name;
2996     note->namesz = namesz;
2997     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2998     note->type = type;
2999     note->datasz = sz;
3000     note->datasz_rounded = roundup(sz, sizeof (int32_t));
3001 
3002     note->data = data;
3003 
3004     /*
3005      * We calculate rounded up note size here as specified by
3006      * ELF document.
3007      */
3008     note->notesz = sizeof (struct elf_note) +
3009         note->namesz_rounded + note->datasz_rounded;
3010 }
3011 
3012 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
3013                             uint32_t flags)
3014 {
3015     (void) memset(elf, 0, sizeof(*elf));
3016 
3017     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
3018     elf->e_ident[EI_CLASS] = ELF_CLASS;
3019     elf->e_ident[EI_DATA] = ELF_DATA;
3020     elf->e_ident[EI_VERSION] = EV_CURRENT;
3021     elf->e_ident[EI_OSABI] = ELF_OSABI;
3022 
3023     elf->e_type = ET_CORE;
3024     elf->e_machine = machine;
3025     elf->e_version = EV_CURRENT;
3026     elf->e_phoff = sizeof(struct elfhdr);
3027     elf->e_flags = flags;
3028     elf->e_ehsize = sizeof(struct elfhdr);
3029     elf->e_phentsize = sizeof(struct elf_phdr);
3030     elf->e_phnum = segs;
3031 
3032     bswap_ehdr(elf);
3033 }
3034 
3035 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
3036 {
3037     phdr->p_type = PT_NOTE;
3038     phdr->p_offset = offset;
3039     phdr->p_vaddr = 0;
3040     phdr->p_paddr = 0;
3041     phdr->p_filesz = sz;
3042     phdr->p_memsz = 0;
3043     phdr->p_flags = 0;
3044     phdr->p_align = 0;
3045 
3046     bswap_phdr(phdr, 1);
3047 }
3048 
3049 static size_t note_size(const struct memelfnote *note)
3050 {
3051     return (note->notesz);
3052 }
3053 
3054 static void fill_prstatus(struct target_elf_prstatus *prstatus,
3055                           const TaskState *ts, int signr)
3056 {
3057     (void) memset(prstatus, 0, sizeof (*prstatus));
3058     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
3059     prstatus->pr_pid = ts->ts_tid;
3060     prstatus->pr_ppid = getppid();
3061     prstatus->pr_pgrp = getpgrp();
3062     prstatus->pr_sid = getsid(0);
3063 
3064     bswap_prstatus(prstatus);
3065 }
3066 
3067 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
3068 {
3069     char *base_filename;
3070     unsigned int i, len;
3071 
3072     (void) memset(psinfo, 0, sizeof (*psinfo));
3073 
3074     len = ts->info->arg_end - ts->info->arg_start;
3075     if (len >= ELF_PRARGSZ)
3076         len = ELF_PRARGSZ - 1;
3077     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
3078         return -EFAULT;
3079     for (i = 0; i < len; i++)
3080         if (psinfo->pr_psargs[i] == 0)
3081             psinfo->pr_psargs[i] = ' ';
3082     psinfo->pr_psargs[len] = 0;
3083 
3084     psinfo->pr_pid = getpid();
3085     psinfo->pr_ppid = getppid();
3086     psinfo->pr_pgrp = getpgrp();
3087     psinfo->pr_sid = getsid(0);
3088     psinfo->pr_uid = getuid();
3089     psinfo->pr_gid = getgid();
3090 
3091     base_filename = g_path_get_basename(ts->bprm->filename);
3092     /*
3093      * Using strncpy here is fine: at max-length,
3094      * this field is not NUL-terminated.
3095      */
3096     (void) strncpy(psinfo->pr_fname, base_filename,
3097                    sizeof(psinfo->pr_fname));
3098 
3099     g_free(base_filename);
3100     bswap_psinfo(psinfo);
3101     return (0);
3102 }
3103 
3104 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
3105 {
3106     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
3107     elf_addr_t orig_auxv = auxv;
3108     void *ptr;
3109     int len = ts->info->auxv_len;
3110 
3111     /*
3112      * Auxiliary vector is stored in target process stack.  It contains
3113      * {type, value} pairs that we need to dump into note.  This is not
3114      * strictly necessary but we do it here for sake of completeness.
3115      */
3116 
3117     /* read in whole auxv vector and copy it to memelfnote */
3118     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
3119     if (ptr != NULL) {
3120         fill_note(note, "CORE", NT_AUXV, len, ptr);
3121         unlock_user(ptr, auxv, len);
3122     }
3123 }
3124 
3125 /*
3126  * Constructs name of coredump file.  We have following convention
3127  * for the name:
3128  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
3129  *
3130  * Returns 0 in case of success, -1 otherwise (errno is set).
3131  */
3132 static int core_dump_filename(const TaskState *ts, char *buf,
3133                               size_t bufsize)
3134 {
3135     char timestamp[64];
3136     char *base_filename = NULL;
3137     struct timeval tv;
3138     struct tm tm;
3139 
3140     assert(bufsize >= PATH_MAX);
3141 
3142     if (gettimeofday(&tv, NULL) < 0) {
3143         (void) fprintf(stderr, "unable to get current timestamp: %s",
3144                        strerror(errno));
3145         return (-1);
3146     }
3147 
3148     base_filename = g_path_get_basename(ts->bprm->filename);
3149     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
3150                     localtime_r(&tv.tv_sec, &tm));
3151     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
3152                     base_filename, timestamp, (int)getpid());
3153     g_free(base_filename);
3154 
3155     return (0);
3156 }
3157 
3158 static int dump_write(int fd, const void *ptr, size_t size)
3159 {
3160     const char *bufp = (const char *)ptr;
3161     ssize_t bytes_written, bytes_left;
3162     struct rlimit dumpsize;
3163     off_t pos;
3164 
3165     bytes_written = 0;
3166     getrlimit(RLIMIT_CORE, &dumpsize);
3167     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
3168         if (errno == ESPIPE) { /* not a seekable stream */
3169             bytes_left = size;
3170         } else {
3171             return pos;
3172         }
3173     } else {
3174         if (dumpsize.rlim_cur <= pos) {
3175             return -1;
3176         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
3177             bytes_left = size;
3178         } else {
3179             size_t limit_left=dumpsize.rlim_cur - pos;
3180             bytes_left = limit_left >= size ? size : limit_left ;
3181         }
3182     }
3183 
3184     /*
3185      * In normal conditions, single write(2) should do but
3186      * in case of socket etc. this mechanism is more portable.
3187      */
3188     do {
3189         bytes_written = write(fd, bufp, bytes_left);
3190         if (bytes_written < 0) {
3191             if (errno == EINTR)
3192                 continue;
3193             return (-1);
3194         } else if (bytes_written == 0) { /* eof */
3195             return (-1);
3196         }
3197         bufp += bytes_written;
3198         bytes_left -= bytes_written;
3199     } while (bytes_left > 0);
3200 
3201     return (0);
3202 }
3203 
3204 static int write_note(struct memelfnote *men, int fd)
3205 {
3206     struct elf_note en;
3207 
3208     en.n_namesz = men->namesz;
3209     en.n_type = men->type;
3210     en.n_descsz = men->datasz;
3211 
3212     bswap_note(&en);
3213 
3214     if (dump_write(fd, &en, sizeof(en)) != 0)
3215         return (-1);
3216     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
3217         return (-1);
3218     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
3219         return (-1);
3220 
3221     return (0);
3222 }
3223 
3224 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
3225 {
3226     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3227     TaskState *ts = (TaskState *)cpu->opaque;
3228     struct elf_thread_status *ets;
3229 
3230     ets = g_malloc0(sizeof (*ets));
3231     ets->num_notes = 1; /* only prstatus is dumped */
3232     fill_prstatus(&ets->prstatus, ts, 0);
3233     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
3234     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
3235               &ets->prstatus);
3236 
3237     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
3238 
3239     info->notes_size += note_size(&ets->notes[0]);
3240 }
3241 
3242 static void init_note_info(struct elf_note_info *info)
3243 {
3244     /* Initialize the elf_note_info structure so that it is at
3245      * least safe to call free_note_info() on it. Must be
3246      * called before calling fill_note_info().
3247      */
3248     memset(info, 0, sizeof (*info));
3249     QTAILQ_INIT(&info->thread_list);
3250 }
3251 
3252 static int fill_note_info(struct elf_note_info *info,
3253                           long signr, const CPUArchState *env)
3254 {
3255 #define NUMNOTES 3
3256     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3257     TaskState *ts = (TaskState *)cpu->opaque;
3258     int i;
3259 
3260     info->notes = g_new0(struct memelfnote, NUMNOTES);
3261     if (info->notes == NULL)
3262         return (-ENOMEM);
3263     info->prstatus = g_malloc0(sizeof (*info->prstatus));
3264     if (info->prstatus == NULL)
3265         return (-ENOMEM);
3266     info->psinfo = g_malloc0(sizeof (*info->psinfo));
3267     if (info->prstatus == NULL)
3268         return (-ENOMEM);
3269 
3270     /*
3271      * First fill in status (and registers) of current thread
3272      * including process info & aux vector.
3273      */
3274     fill_prstatus(info->prstatus, ts, signr);
3275     elf_core_copy_regs(&info->prstatus->pr_reg, env);
3276     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
3277               sizeof (*info->prstatus), info->prstatus);
3278     fill_psinfo(info->psinfo, ts);
3279     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
3280               sizeof (*info->psinfo), info->psinfo);
3281     fill_auxv_note(&info->notes[2], ts);
3282     info->numnote = 3;
3283 
3284     info->notes_size = 0;
3285     for (i = 0; i < info->numnote; i++)
3286         info->notes_size += note_size(&info->notes[i]);
3287 
3288     /* read and fill status of all threads */
3289     cpu_list_lock();
3290     CPU_FOREACH(cpu) {
3291         if (cpu == thread_cpu) {
3292             continue;
3293         }
3294         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
3295     }
3296     cpu_list_unlock();
3297 
3298     return (0);
3299 }
3300 
3301 static void free_note_info(struct elf_note_info *info)
3302 {
3303     struct elf_thread_status *ets;
3304 
3305     while (!QTAILQ_EMPTY(&info->thread_list)) {
3306         ets = QTAILQ_FIRST(&info->thread_list);
3307         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
3308         g_free(ets);
3309     }
3310 
3311     g_free(info->prstatus);
3312     g_free(info->psinfo);
3313     g_free(info->notes);
3314 }
3315 
3316 static int write_note_info(struct elf_note_info *info, int fd)
3317 {
3318     struct elf_thread_status *ets;
3319     int i, error = 0;
3320 
3321     /* write prstatus, psinfo and auxv for current thread */
3322     for (i = 0; i < info->numnote; i++)
3323         if ((error = write_note(&info->notes[i], fd)) != 0)
3324             return (error);
3325 
3326     /* write prstatus for each thread */
3327     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
3328         if ((error = write_note(&ets->notes[0], fd)) != 0)
3329             return (error);
3330     }
3331 
3332     return (0);
3333 }
3334 
3335 /*
3336  * Write out ELF coredump.
3337  *
3338  * See documentation of ELF object file format in:
3339  * http://www.caldera.com/developers/devspecs/gabi41.pdf
3340  *
3341  * Coredump format in linux is following:
3342  *
3343  * 0   +----------------------+         \
3344  *     | ELF header           | ET_CORE  |
3345  *     +----------------------+          |
3346  *     | ELF program headers  |          |--- headers
3347  *     | - NOTE section       |          |
3348  *     | - PT_LOAD sections   |          |
3349  *     +----------------------+         /
3350  *     | NOTEs:               |
3351  *     | - NT_PRSTATUS        |
3352  *     | - NT_PRSINFO         |
3353  *     | - NT_AUXV            |
3354  *     +----------------------+ <-- aligned to target page
3355  *     | Process memory dump  |
3356  *     :                      :
3357  *     .                      .
3358  *     :                      :
3359  *     |                      |
3360  *     +----------------------+
3361  *
3362  * NT_PRSTATUS -> struct elf_prstatus (per thread)
3363  * NT_PRSINFO  -> struct elf_prpsinfo
3364  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
3365  *
3366  * Format follows System V format as close as possible.  Current
3367  * version limitations are as follows:
3368  *     - no floating point registers are dumped
3369  *
3370  * Function returns 0 in case of success, negative errno otherwise.
3371  *
3372  * TODO: make this work also during runtime: it should be
3373  * possible to force coredump from running process and then
3374  * continue processing.  For example qemu could set up SIGUSR2
3375  * handler (provided that target process haven't registered
3376  * handler for that) that does the dump when signal is received.
3377  */
3378 static int elf_core_dump(int signr, const CPUArchState *env)
3379 {
3380     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
3381     const TaskState *ts = (const TaskState *)cpu->opaque;
3382     struct vm_area_struct *vma = NULL;
3383     char corefile[PATH_MAX];
3384     struct elf_note_info info;
3385     struct elfhdr elf;
3386     struct elf_phdr phdr;
3387     struct rlimit dumpsize;
3388     struct mm_struct *mm = NULL;
3389     off_t offset = 0, data_offset = 0;
3390     int segs = 0;
3391     int fd = -1;
3392 
3393     init_note_info(&info);
3394 
3395     errno = 0;
3396     getrlimit(RLIMIT_CORE, &dumpsize);
3397     if (dumpsize.rlim_cur == 0)
3398         return 0;
3399 
3400     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
3401         return (-errno);
3402 
3403     if ((fd = open(corefile, O_WRONLY | O_CREAT,
3404                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
3405         return (-errno);
3406 
3407     /*
3408      * Walk through target process memory mappings and
3409      * set up structure containing this information.  After
3410      * this point vma_xxx functions can be used.
3411      */
3412     if ((mm = vma_init()) == NULL)
3413         goto out;
3414 
3415     walk_memory_regions(mm, vma_walker);
3416     segs = vma_get_mapping_count(mm);
3417 
3418     /*
3419      * Construct valid coredump ELF header.  We also
3420      * add one more segment for notes.
3421      */
3422     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3423     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3424         goto out;
3425 
3426     /* fill in the in-memory version of notes */
3427     if (fill_note_info(&info, signr, env) < 0)
3428         goto out;
3429 
3430     offset += sizeof (elf);                             /* elf header */
3431     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3432 
3433     /* write out notes program header */
3434     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3435 
3436     offset += info.notes_size;
3437     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3438         goto out;
3439 
3440     /*
3441      * ELF specification wants data to start at page boundary so
3442      * we align it here.
3443      */
3444     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3445 
3446     /*
3447      * Write program headers for memory regions mapped in
3448      * the target process.
3449      */
3450     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3451         (void) memset(&phdr, 0, sizeof (phdr));
3452 
3453         phdr.p_type = PT_LOAD;
3454         phdr.p_offset = offset;
3455         phdr.p_vaddr = vma->vma_start;
3456         phdr.p_paddr = 0;
3457         phdr.p_filesz = vma_dump_size(vma);
3458         offset += phdr.p_filesz;
3459         phdr.p_memsz = vma->vma_end - vma->vma_start;
3460         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3461         if (vma->vma_flags & PROT_WRITE)
3462             phdr.p_flags |= PF_W;
3463         if (vma->vma_flags & PROT_EXEC)
3464             phdr.p_flags |= PF_X;
3465         phdr.p_align = ELF_EXEC_PAGESIZE;
3466 
3467         bswap_phdr(&phdr, 1);
3468         if (dump_write(fd, &phdr, sizeof(phdr)) != 0) {
3469             goto out;
3470         }
3471     }
3472 
3473     /*
3474      * Next we write notes just after program headers.  No
3475      * alignment needed here.
3476      */
3477     if (write_note_info(&info, fd) < 0)
3478         goto out;
3479 
3480     /* align data to page boundary */
3481     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3482         goto out;
3483 
3484     /*
3485      * Finally we can dump process memory into corefile as well.
3486      */
3487     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3488         abi_ulong addr;
3489         abi_ulong end;
3490 
3491         end = vma->vma_start + vma_dump_size(vma);
3492 
3493         for (addr = vma->vma_start; addr < end;
3494              addr += TARGET_PAGE_SIZE) {
3495             char page[TARGET_PAGE_SIZE];
3496             int error;
3497 
3498             /*
3499              *  Read in page from target process memory and
3500              *  write it to coredump file.
3501              */
3502             error = copy_from_user(page, addr, sizeof (page));
3503             if (error != 0) {
3504                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3505                                addr);
3506                 errno = -error;
3507                 goto out;
3508             }
3509             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3510                 goto out;
3511         }
3512     }
3513 
3514  out:
3515     free_note_info(&info);
3516     if (mm != NULL)
3517         vma_delete(mm);
3518     (void) close(fd);
3519 
3520     if (errno != 0)
3521         return (-errno);
3522     return (0);
3523 }
3524 #endif /* USE_ELF_CORE_DUMP */
3525 
3526 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3527 {
3528     init_thread(regs, infop);
3529 }
3530