1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/resource.h> 6 7 #include "qemu.h" 8 #include "disas/disas.h" 9 #include "qemu/path.h" 10 11 #ifdef _ARCH_PPC64 12 #undef ARCH_DLINFO 13 #undef ELF_PLATFORM 14 #undef ELF_HWCAP 15 #undef ELF_HWCAP2 16 #undef ELF_CLASS 17 #undef ELF_DATA 18 #undef ELF_ARCH 19 #endif 20 21 #define ELF_OSABI ELFOSABI_SYSV 22 23 /* from personality.h */ 24 25 /* 26 * Flags for bug emulation. 27 * 28 * These occupy the top three bytes. 29 */ 30 enum { 31 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 32 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 33 descriptors (signal handling) */ 34 MMAP_PAGE_ZERO = 0x0100000, 35 ADDR_COMPAT_LAYOUT = 0x0200000, 36 READ_IMPLIES_EXEC = 0x0400000, 37 ADDR_LIMIT_32BIT = 0x0800000, 38 SHORT_INODE = 0x1000000, 39 WHOLE_SECONDS = 0x2000000, 40 STICKY_TIMEOUTS = 0x4000000, 41 ADDR_LIMIT_3GB = 0x8000000, 42 }; 43 44 /* 45 * Personality types. 46 * 47 * These go in the low byte. Avoid using the top bit, it will 48 * conflict with error returns. 49 */ 50 enum { 51 PER_LINUX = 0x0000, 52 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 53 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 54 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 55 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 56 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 57 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 58 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 59 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 60 PER_BSD = 0x0006, 61 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 62 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 63 PER_LINUX32 = 0x0008, 64 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 65 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 66 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 67 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 68 PER_RISCOS = 0x000c, 69 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 70 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 71 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 72 PER_HPUX = 0x0010, 73 PER_MASK = 0x00ff, 74 }; 75 76 /* 77 * Return the base personality without flags. 78 */ 79 #define personality(pers) (pers & PER_MASK) 80 81 int info_is_fdpic(struct image_info *info) 82 { 83 return info->personality == PER_LINUX_FDPIC; 84 } 85 86 /* this flag is uneffective under linux too, should be deleted */ 87 #ifndef MAP_DENYWRITE 88 #define MAP_DENYWRITE 0 89 #endif 90 91 /* should probably go in elf.h */ 92 #ifndef ELIBBAD 93 #define ELIBBAD 80 94 #endif 95 96 #ifdef TARGET_WORDS_BIGENDIAN 97 #define ELF_DATA ELFDATA2MSB 98 #else 99 #define ELF_DATA ELFDATA2LSB 100 #endif 101 102 #ifdef TARGET_ABI_MIPSN32 103 typedef abi_ullong target_elf_greg_t; 104 #define tswapreg(ptr) tswap64(ptr) 105 #else 106 typedef abi_ulong target_elf_greg_t; 107 #define tswapreg(ptr) tswapal(ptr) 108 #endif 109 110 #ifdef USE_UID16 111 typedef abi_ushort target_uid_t; 112 typedef abi_ushort target_gid_t; 113 #else 114 typedef abi_uint target_uid_t; 115 typedef abi_uint target_gid_t; 116 #endif 117 typedef abi_int target_pid_t; 118 119 #ifdef TARGET_I386 120 121 #define ELF_PLATFORM get_elf_platform() 122 123 static const char *get_elf_platform(void) 124 { 125 static char elf_platform[] = "i386"; 126 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 127 if (family > 6) 128 family = 6; 129 if (family >= 3) 130 elf_platform[1] = '0' + family; 131 return elf_platform; 132 } 133 134 #define ELF_HWCAP get_elf_hwcap() 135 136 static uint32_t get_elf_hwcap(void) 137 { 138 X86CPU *cpu = X86_CPU(thread_cpu); 139 140 return cpu->env.features[FEAT_1_EDX]; 141 } 142 143 #ifdef TARGET_X86_64 144 #define ELF_START_MMAP 0x2aaaaab000ULL 145 146 #define ELF_CLASS ELFCLASS64 147 #define ELF_ARCH EM_X86_64 148 149 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 150 { 151 regs->rax = 0; 152 regs->rsp = infop->start_stack; 153 regs->rip = infop->entry; 154 } 155 156 #define ELF_NREG 27 157 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 158 159 /* 160 * Note that ELF_NREG should be 29 as there should be place for 161 * TRAPNO and ERR "registers" as well but linux doesn't dump 162 * those. 163 * 164 * See linux kernel: arch/x86/include/asm/elf.h 165 */ 166 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 167 { 168 (*regs)[0] = env->regs[15]; 169 (*regs)[1] = env->regs[14]; 170 (*regs)[2] = env->regs[13]; 171 (*regs)[3] = env->regs[12]; 172 (*regs)[4] = env->regs[R_EBP]; 173 (*regs)[5] = env->regs[R_EBX]; 174 (*regs)[6] = env->regs[11]; 175 (*regs)[7] = env->regs[10]; 176 (*regs)[8] = env->regs[9]; 177 (*regs)[9] = env->regs[8]; 178 (*regs)[10] = env->regs[R_EAX]; 179 (*regs)[11] = env->regs[R_ECX]; 180 (*regs)[12] = env->regs[R_EDX]; 181 (*regs)[13] = env->regs[R_ESI]; 182 (*regs)[14] = env->regs[R_EDI]; 183 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 184 (*regs)[16] = env->eip; 185 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 186 (*regs)[18] = env->eflags; 187 (*regs)[19] = env->regs[R_ESP]; 188 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 189 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 191 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 192 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 193 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 194 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 195 } 196 197 #else 198 199 #define ELF_START_MMAP 0x80000000 200 201 /* 202 * This is used to ensure we don't load something for the wrong architecture. 203 */ 204 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 205 206 /* 207 * These are used to set parameters in the core dumps. 208 */ 209 #define ELF_CLASS ELFCLASS32 210 #define ELF_ARCH EM_386 211 212 static inline void init_thread(struct target_pt_regs *regs, 213 struct image_info *infop) 214 { 215 regs->esp = infop->start_stack; 216 regs->eip = infop->entry; 217 218 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 219 starts %edx contains a pointer to a function which might be 220 registered using `atexit'. This provides a mean for the 221 dynamic linker to call DT_FINI functions for shared libraries 222 that have been loaded before the code runs. 223 224 A value of 0 tells we have no such handler. */ 225 regs->edx = 0; 226 } 227 228 #define ELF_NREG 17 229 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 230 231 /* 232 * Note that ELF_NREG should be 19 as there should be place for 233 * TRAPNO and ERR "registers" as well but linux doesn't dump 234 * those. 235 * 236 * See linux kernel: arch/x86/include/asm/elf.h 237 */ 238 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 239 { 240 (*regs)[0] = env->regs[R_EBX]; 241 (*regs)[1] = env->regs[R_ECX]; 242 (*regs)[2] = env->regs[R_EDX]; 243 (*regs)[3] = env->regs[R_ESI]; 244 (*regs)[4] = env->regs[R_EDI]; 245 (*regs)[5] = env->regs[R_EBP]; 246 (*regs)[6] = env->regs[R_EAX]; 247 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 248 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 249 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 250 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 251 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 252 (*regs)[12] = env->eip; 253 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 254 (*regs)[14] = env->eflags; 255 (*regs)[15] = env->regs[R_ESP]; 256 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 257 } 258 #endif 259 260 #define USE_ELF_CORE_DUMP 261 #define ELF_EXEC_PAGESIZE 4096 262 263 #endif 264 265 #ifdef TARGET_ARM 266 267 #ifndef TARGET_AARCH64 268 /* 32 bit ARM definitions */ 269 270 #define ELF_START_MMAP 0x80000000 271 272 #define ELF_ARCH EM_ARM 273 #define ELF_CLASS ELFCLASS32 274 275 static inline void init_thread(struct target_pt_regs *regs, 276 struct image_info *infop) 277 { 278 abi_long stack = infop->start_stack; 279 memset(regs, 0, sizeof(*regs)); 280 281 regs->uregs[16] = ARM_CPU_MODE_USR; 282 if (infop->entry & 1) { 283 regs->uregs[16] |= CPSR_T; 284 } 285 regs->uregs[15] = infop->entry & 0xfffffffe; 286 regs->uregs[13] = infop->start_stack; 287 /* FIXME - what to for failure of get_user()? */ 288 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 289 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 290 /* XXX: it seems that r0 is zeroed after ! */ 291 regs->uregs[0] = 0; 292 /* For uClinux PIC binaries. */ 293 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 294 regs->uregs[10] = infop->start_data; 295 296 /* Support ARM FDPIC. */ 297 if (info_is_fdpic(infop)) { 298 /* As described in the ABI document, r7 points to the loadmap info 299 * prepared by the kernel. If an interpreter is needed, r8 points 300 * to the interpreter loadmap and r9 points to the interpreter 301 * PT_DYNAMIC info. If no interpreter is needed, r8 is zero, and 302 * r9 points to the main program PT_DYNAMIC info. 303 */ 304 regs->uregs[7] = infop->loadmap_addr; 305 if (infop->interpreter_loadmap_addr) { 306 /* Executable is dynamically loaded. */ 307 regs->uregs[8] = infop->interpreter_loadmap_addr; 308 regs->uregs[9] = infop->interpreter_pt_dynamic_addr; 309 } else { 310 regs->uregs[8] = 0; 311 regs->uregs[9] = infop->pt_dynamic_addr; 312 } 313 } 314 } 315 316 #define ELF_NREG 18 317 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 318 319 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 320 { 321 (*regs)[0] = tswapreg(env->regs[0]); 322 (*regs)[1] = tswapreg(env->regs[1]); 323 (*regs)[2] = tswapreg(env->regs[2]); 324 (*regs)[3] = tswapreg(env->regs[3]); 325 (*regs)[4] = tswapreg(env->regs[4]); 326 (*regs)[5] = tswapreg(env->regs[5]); 327 (*regs)[6] = tswapreg(env->regs[6]); 328 (*regs)[7] = tswapreg(env->regs[7]); 329 (*regs)[8] = tswapreg(env->regs[8]); 330 (*regs)[9] = tswapreg(env->regs[9]); 331 (*regs)[10] = tswapreg(env->regs[10]); 332 (*regs)[11] = tswapreg(env->regs[11]); 333 (*regs)[12] = tswapreg(env->regs[12]); 334 (*regs)[13] = tswapreg(env->regs[13]); 335 (*regs)[14] = tswapreg(env->regs[14]); 336 (*regs)[15] = tswapreg(env->regs[15]); 337 338 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 339 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 340 } 341 342 #define USE_ELF_CORE_DUMP 343 #define ELF_EXEC_PAGESIZE 4096 344 345 enum 346 { 347 ARM_HWCAP_ARM_SWP = 1 << 0, 348 ARM_HWCAP_ARM_HALF = 1 << 1, 349 ARM_HWCAP_ARM_THUMB = 1 << 2, 350 ARM_HWCAP_ARM_26BIT = 1 << 3, 351 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 352 ARM_HWCAP_ARM_FPA = 1 << 5, 353 ARM_HWCAP_ARM_VFP = 1 << 6, 354 ARM_HWCAP_ARM_EDSP = 1 << 7, 355 ARM_HWCAP_ARM_JAVA = 1 << 8, 356 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 357 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 358 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 359 ARM_HWCAP_ARM_NEON = 1 << 12, 360 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 361 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 362 ARM_HWCAP_ARM_TLS = 1 << 15, 363 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 364 ARM_HWCAP_ARM_IDIVA = 1 << 17, 365 ARM_HWCAP_ARM_IDIVT = 1 << 18, 366 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 367 ARM_HWCAP_ARM_LPAE = 1 << 20, 368 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 369 }; 370 371 enum { 372 ARM_HWCAP2_ARM_AES = 1 << 0, 373 ARM_HWCAP2_ARM_PMULL = 1 << 1, 374 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 375 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 376 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 377 }; 378 379 /* The commpage only exists for 32 bit kernels */ 380 381 /* Return 1 if the proposed guest space is suitable for the guest. 382 * Return 0 if the proposed guest space isn't suitable, but another 383 * address space should be tried. 384 * Return -1 if there is no way the proposed guest space can be 385 * valid regardless of the base. 386 * The guest code may leave a page mapped and populate it if the 387 * address is suitable. 388 */ 389 static int init_guest_commpage(unsigned long guest_base, 390 unsigned long guest_size) 391 { 392 unsigned long real_start, test_page_addr; 393 394 /* We need to check that we can force a fault on access to the 395 * commpage at 0xffff0fxx 396 */ 397 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 398 399 /* If the commpage lies within the already allocated guest space, 400 * then there is no way we can allocate it. 401 * 402 * You may be thinking that that this check is redundant because 403 * we already validated the guest size against MAX_RESERVED_VA; 404 * but if qemu_host_page_mask is unusually large, then 405 * test_page_addr may be lower. 406 */ 407 if (test_page_addr >= guest_base 408 && test_page_addr < (guest_base + guest_size)) { 409 return -1; 410 } 411 412 /* Note it needs to be writeable to let us initialise it */ 413 real_start = (unsigned long) 414 mmap((void *)test_page_addr, qemu_host_page_size, 415 PROT_READ | PROT_WRITE, 416 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 417 418 /* If we can't map it then try another address */ 419 if (real_start == -1ul) { 420 return 0; 421 } 422 423 if (real_start != test_page_addr) { 424 /* OS didn't put the page where we asked - unmap and reject */ 425 munmap((void *)real_start, qemu_host_page_size); 426 return 0; 427 } 428 429 /* Leave the page mapped 430 * Populate it (mmap should have left it all 0'd) 431 */ 432 433 /* Kernel helper versions */ 434 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 435 436 /* Now it's populated make it RO */ 437 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 438 perror("Protecting guest commpage"); 439 exit(-1); 440 } 441 442 return 1; /* All good */ 443 } 444 445 #define ELF_HWCAP get_elf_hwcap() 446 #define ELF_HWCAP2 get_elf_hwcap2() 447 448 static uint32_t get_elf_hwcap(void) 449 { 450 ARMCPU *cpu = ARM_CPU(thread_cpu); 451 uint32_t hwcaps = 0; 452 453 hwcaps |= ARM_HWCAP_ARM_SWP; 454 hwcaps |= ARM_HWCAP_ARM_HALF; 455 hwcaps |= ARM_HWCAP_ARM_THUMB; 456 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 457 458 /* probe for the extra features */ 459 #define GET_FEATURE(feat, hwcap) \ 460 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 461 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 462 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 463 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 464 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 465 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 466 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 467 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 468 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 469 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 470 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 471 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 472 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 473 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 474 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 475 * to our VFP_FP16 feature bit. 476 */ 477 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 478 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 479 480 return hwcaps; 481 } 482 483 static uint32_t get_elf_hwcap2(void) 484 { 485 ARMCPU *cpu = ARM_CPU(thread_cpu); 486 uint32_t hwcaps = 0; 487 488 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 489 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 490 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 491 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 492 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 493 return hwcaps; 494 } 495 496 #undef GET_FEATURE 497 498 #else 499 /* 64 bit ARM definitions */ 500 #define ELF_START_MMAP 0x80000000 501 502 #define ELF_ARCH EM_AARCH64 503 #define ELF_CLASS ELFCLASS64 504 #define ELF_PLATFORM "aarch64" 505 506 static inline void init_thread(struct target_pt_regs *regs, 507 struct image_info *infop) 508 { 509 abi_long stack = infop->start_stack; 510 memset(regs, 0, sizeof(*regs)); 511 512 regs->pc = infop->entry & ~0x3ULL; 513 regs->sp = stack; 514 } 515 516 #define ELF_NREG 34 517 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 518 519 static void elf_core_copy_regs(target_elf_gregset_t *regs, 520 const CPUARMState *env) 521 { 522 int i; 523 524 for (i = 0; i < 32; i++) { 525 (*regs)[i] = tswapreg(env->xregs[i]); 526 } 527 (*regs)[32] = tswapreg(env->pc); 528 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 529 } 530 531 #define USE_ELF_CORE_DUMP 532 #define ELF_EXEC_PAGESIZE 4096 533 534 enum { 535 ARM_HWCAP_A64_FP = 1 << 0, 536 ARM_HWCAP_A64_ASIMD = 1 << 1, 537 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 538 ARM_HWCAP_A64_AES = 1 << 3, 539 ARM_HWCAP_A64_PMULL = 1 << 4, 540 ARM_HWCAP_A64_SHA1 = 1 << 5, 541 ARM_HWCAP_A64_SHA2 = 1 << 6, 542 ARM_HWCAP_A64_CRC32 = 1 << 7, 543 ARM_HWCAP_A64_ATOMICS = 1 << 8, 544 ARM_HWCAP_A64_FPHP = 1 << 9, 545 ARM_HWCAP_A64_ASIMDHP = 1 << 10, 546 ARM_HWCAP_A64_CPUID = 1 << 11, 547 ARM_HWCAP_A64_ASIMDRDM = 1 << 12, 548 ARM_HWCAP_A64_JSCVT = 1 << 13, 549 ARM_HWCAP_A64_FCMA = 1 << 14, 550 ARM_HWCAP_A64_LRCPC = 1 << 15, 551 ARM_HWCAP_A64_DCPOP = 1 << 16, 552 ARM_HWCAP_A64_SHA3 = 1 << 17, 553 ARM_HWCAP_A64_SM3 = 1 << 18, 554 ARM_HWCAP_A64_SM4 = 1 << 19, 555 ARM_HWCAP_A64_ASIMDDP = 1 << 20, 556 ARM_HWCAP_A64_SHA512 = 1 << 21, 557 ARM_HWCAP_A64_SVE = 1 << 22, 558 }; 559 560 #define ELF_HWCAP get_elf_hwcap() 561 562 static uint32_t get_elf_hwcap(void) 563 { 564 ARMCPU *cpu = ARM_CPU(thread_cpu); 565 uint32_t hwcaps = 0; 566 567 hwcaps |= ARM_HWCAP_A64_FP; 568 hwcaps |= ARM_HWCAP_A64_ASIMD; 569 570 /* probe for the extra features */ 571 #define GET_FEATURE(feat, hwcap) \ 572 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 573 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 574 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 575 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 576 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 577 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 578 GET_FEATURE(ARM_FEATURE_V8_SHA3, ARM_HWCAP_A64_SHA3); 579 GET_FEATURE(ARM_FEATURE_V8_SM3, ARM_HWCAP_A64_SM3); 580 GET_FEATURE(ARM_FEATURE_V8_SM4, ARM_HWCAP_A64_SM4); 581 GET_FEATURE(ARM_FEATURE_V8_SHA512, ARM_HWCAP_A64_SHA512); 582 GET_FEATURE(ARM_FEATURE_V8_FP16, 583 ARM_HWCAP_A64_FPHP | ARM_HWCAP_A64_ASIMDHP); 584 GET_FEATURE(ARM_FEATURE_V8_RDM, ARM_HWCAP_A64_ASIMDRDM); 585 GET_FEATURE(ARM_FEATURE_V8_FCMA, ARM_HWCAP_A64_FCMA); 586 #undef GET_FEATURE 587 588 return hwcaps; 589 } 590 591 #endif /* not TARGET_AARCH64 */ 592 #endif /* TARGET_ARM */ 593 594 #ifdef TARGET_SPARC 595 #ifdef TARGET_SPARC64 596 597 #define ELF_START_MMAP 0x80000000 598 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 599 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 600 #ifndef TARGET_ABI32 601 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 602 #else 603 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 604 #endif 605 606 #define ELF_CLASS ELFCLASS64 607 #define ELF_ARCH EM_SPARCV9 608 609 #define STACK_BIAS 2047 610 611 static inline void init_thread(struct target_pt_regs *regs, 612 struct image_info *infop) 613 { 614 #ifndef TARGET_ABI32 615 regs->tstate = 0; 616 #endif 617 regs->pc = infop->entry; 618 regs->npc = regs->pc + 4; 619 regs->y = 0; 620 #ifdef TARGET_ABI32 621 regs->u_regs[14] = infop->start_stack - 16 * 4; 622 #else 623 if (personality(infop->personality) == PER_LINUX32) 624 regs->u_regs[14] = infop->start_stack - 16 * 4; 625 else 626 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 627 #endif 628 } 629 630 #else 631 #define ELF_START_MMAP 0x80000000 632 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 633 | HWCAP_SPARC_MULDIV) 634 635 #define ELF_CLASS ELFCLASS32 636 #define ELF_ARCH EM_SPARC 637 638 static inline void init_thread(struct target_pt_regs *regs, 639 struct image_info *infop) 640 { 641 regs->psr = 0; 642 regs->pc = infop->entry; 643 regs->npc = regs->pc + 4; 644 regs->y = 0; 645 regs->u_regs[14] = infop->start_stack - 16 * 4; 646 } 647 648 #endif 649 #endif 650 651 #ifdef TARGET_PPC 652 653 #define ELF_MACHINE PPC_ELF_MACHINE 654 #define ELF_START_MMAP 0x80000000 655 656 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 657 658 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 659 660 #define ELF_CLASS ELFCLASS64 661 662 #else 663 664 #define ELF_CLASS ELFCLASS32 665 666 #endif 667 668 #define ELF_ARCH EM_PPC 669 670 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 671 See arch/powerpc/include/asm/cputable.h. */ 672 enum { 673 QEMU_PPC_FEATURE_32 = 0x80000000, 674 QEMU_PPC_FEATURE_64 = 0x40000000, 675 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 676 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 677 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 678 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 679 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 680 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 681 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 682 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 683 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 684 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 685 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 686 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 687 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 688 QEMU_PPC_FEATURE_CELL = 0x00010000, 689 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 690 QEMU_PPC_FEATURE_SMT = 0x00004000, 691 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 692 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 693 QEMU_PPC_FEATURE_PA6T = 0x00000800, 694 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 695 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 696 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 697 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 698 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 699 700 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 701 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 702 703 /* Feature definitions in AT_HWCAP2. */ 704 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 705 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 706 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 707 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 708 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 709 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 710 }; 711 712 #define ELF_HWCAP get_elf_hwcap() 713 714 static uint32_t get_elf_hwcap(void) 715 { 716 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 717 uint32_t features = 0; 718 719 /* We don't have to be terribly complete here; the high points are 720 Altivec/FP/SPE support. Anything else is just a bonus. */ 721 #define GET_FEATURE(flag, feature) \ 722 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 723 #define GET_FEATURE2(flags, feature) \ 724 do { \ 725 if ((cpu->env.insns_flags2 & flags) == flags) { \ 726 features |= feature; \ 727 } \ 728 } while (0) 729 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 730 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 731 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 732 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 733 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 734 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 735 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 736 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 737 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 738 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 739 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 740 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 741 QEMU_PPC_FEATURE_ARCH_2_06); 742 #undef GET_FEATURE 743 #undef GET_FEATURE2 744 745 return features; 746 } 747 748 #define ELF_HWCAP2 get_elf_hwcap2() 749 750 static uint32_t get_elf_hwcap2(void) 751 { 752 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 753 uint32_t features = 0; 754 755 #define GET_FEATURE(flag, feature) \ 756 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 757 #define GET_FEATURE2(flag, feature) \ 758 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 759 760 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 761 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 762 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 763 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 764 765 #undef GET_FEATURE 766 #undef GET_FEATURE2 767 768 return features; 769 } 770 771 /* 772 * The requirements here are: 773 * - keep the final alignment of sp (sp & 0xf) 774 * - make sure the 32-bit value at the first 16 byte aligned position of 775 * AUXV is greater than 16 for glibc compatibility. 776 * AT_IGNOREPPC is used for that. 777 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 778 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 779 */ 780 #define DLINFO_ARCH_ITEMS 5 781 #define ARCH_DLINFO \ 782 do { \ 783 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 784 /* \ 785 * Handle glibc compatibility: these magic entries must \ 786 * be at the lowest addresses in the final auxv. \ 787 */ \ 788 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 789 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 790 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 791 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 792 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 793 } while (0) 794 795 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 796 { 797 _regs->gpr[1] = infop->start_stack; 798 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 799 if (get_ppc64_abi(infop) < 2) { 800 uint64_t val; 801 get_user_u64(val, infop->entry + 8); 802 _regs->gpr[2] = val + infop->load_bias; 803 get_user_u64(val, infop->entry); 804 infop->entry = val + infop->load_bias; 805 } else { 806 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 807 } 808 #endif 809 _regs->nip = infop->entry; 810 } 811 812 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 813 #define ELF_NREG 48 814 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 815 816 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 817 { 818 int i; 819 target_ulong ccr = 0; 820 821 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 822 (*regs)[i] = tswapreg(env->gpr[i]); 823 } 824 825 (*regs)[32] = tswapreg(env->nip); 826 (*regs)[33] = tswapreg(env->msr); 827 (*regs)[35] = tswapreg(env->ctr); 828 (*regs)[36] = tswapreg(env->lr); 829 (*regs)[37] = tswapreg(env->xer); 830 831 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 832 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 833 } 834 (*regs)[38] = tswapreg(ccr); 835 } 836 837 #define USE_ELF_CORE_DUMP 838 #define ELF_EXEC_PAGESIZE 4096 839 840 #endif 841 842 #ifdef TARGET_MIPS 843 844 #define ELF_START_MMAP 0x80000000 845 846 #ifdef TARGET_MIPS64 847 #define ELF_CLASS ELFCLASS64 848 #else 849 #define ELF_CLASS ELFCLASS32 850 #endif 851 #define ELF_ARCH EM_MIPS 852 853 static inline void init_thread(struct target_pt_regs *regs, 854 struct image_info *infop) 855 { 856 regs->cp0_status = 2 << CP0St_KSU; 857 regs->cp0_epc = infop->entry; 858 regs->regs[29] = infop->start_stack; 859 } 860 861 /* See linux kernel: arch/mips/include/asm/elf.h. */ 862 #define ELF_NREG 45 863 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 864 865 /* See linux kernel: arch/mips/include/asm/reg.h. */ 866 enum { 867 #ifdef TARGET_MIPS64 868 TARGET_EF_R0 = 0, 869 #else 870 TARGET_EF_R0 = 6, 871 #endif 872 TARGET_EF_R26 = TARGET_EF_R0 + 26, 873 TARGET_EF_R27 = TARGET_EF_R0 + 27, 874 TARGET_EF_LO = TARGET_EF_R0 + 32, 875 TARGET_EF_HI = TARGET_EF_R0 + 33, 876 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 877 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 878 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 879 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 880 }; 881 882 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 883 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 884 { 885 int i; 886 887 for (i = 0; i < TARGET_EF_R0; i++) { 888 (*regs)[i] = 0; 889 } 890 (*regs)[TARGET_EF_R0] = 0; 891 892 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 893 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 894 } 895 896 (*regs)[TARGET_EF_R26] = 0; 897 (*regs)[TARGET_EF_R27] = 0; 898 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 899 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 900 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 901 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 902 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 903 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 904 } 905 906 #define USE_ELF_CORE_DUMP 907 #define ELF_EXEC_PAGESIZE 4096 908 909 /* See arch/mips/include/uapi/asm/hwcap.h. */ 910 enum { 911 HWCAP_MIPS_R6 = (1 << 0), 912 HWCAP_MIPS_MSA = (1 << 1), 913 }; 914 915 #define ELF_HWCAP get_elf_hwcap() 916 917 static uint32_t get_elf_hwcap(void) 918 { 919 MIPSCPU *cpu = MIPS_CPU(thread_cpu); 920 uint32_t hwcaps = 0; 921 922 #define GET_FEATURE(flag, hwcap) \ 923 do { if (cpu->env.insn_flags & (flag)) { hwcaps |= hwcap; } } while (0) 924 925 GET_FEATURE(ISA_MIPS32R6 | ISA_MIPS64R6, HWCAP_MIPS_R6); 926 GET_FEATURE(ASE_MSA, HWCAP_MIPS_MSA); 927 928 #undef GET_FEATURE 929 930 return hwcaps; 931 } 932 933 #endif /* TARGET_MIPS */ 934 935 #ifdef TARGET_MICROBLAZE 936 937 #define ELF_START_MMAP 0x80000000 938 939 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 940 941 #define ELF_CLASS ELFCLASS32 942 #define ELF_ARCH EM_MICROBLAZE 943 944 static inline void init_thread(struct target_pt_regs *regs, 945 struct image_info *infop) 946 { 947 regs->pc = infop->entry; 948 regs->r1 = infop->start_stack; 949 950 } 951 952 #define ELF_EXEC_PAGESIZE 4096 953 954 #define USE_ELF_CORE_DUMP 955 #define ELF_NREG 38 956 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 957 958 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 959 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 960 { 961 int i, pos = 0; 962 963 for (i = 0; i < 32; i++) { 964 (*regs)[pos++] = tswapreg(env->regs[i]); 965 } 966 967 for (i = 0; i < 6; i++) { 968 (*regs)[pos++] = tswapreg(env->sregs[i]); 969 } 970 } 971 972 #endif /* TARGET_MICROBLAZE */ 973 974 #ifdef TARGET_NIOS2 975 976 #define ELF_START_MMAP 0x80000000 977 978 #define elf_check_arch(x) ((x) == EM_ALTERA_NIOS2) 979 980 #define ELF_CLASS ELFCLASS32 981 #define ELF_ARCH EM_ALTERA_NIOS2 982 983 static void init_thread(struct target_pt_regs *regs, struct image_info *infop) 984 { 985 regs->ea = infop->entry; 986 regs->sp = infop->start_stack; 987 regs->estatus = 0x3; 988 } 989 990 #define ELF_EXEC_PAGESIZE 4096 991 992 #define USE_ELF_CORE_DUMP 993 #define ELF_NREG 49 994 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 995 996 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 997 static void elf_core_copy_regs(target_elf_gregset_t *regs, 998 const CPUNios2State *env) 999 { 1000 int i; 1001 1002 (*regs)[0] = -1; 1003 for (i = 1; i < 8; i++) /* r0-r7 */ 1004 (*regs)[i] = tswapreg(env->regs[i + 7]); 1005 1006 for (i = 8; i < 16; i++) /* r8-r15 */ 1007 (*regs)[i] = tswapreg(env->regs[i - 8]); 1008 1009 for (i = 16; i < 24; i++) /* r16-r23 */ 1010 (*regs)[i] = tswapreg(env->regs[i + 7]); 1011 (*regs)[24] = -1; /* R_ET */ 1012 (*regs)[25] = -1; /* R_BT */ 1013 (*regs)[26] = tswapreg(env->regs[R_GP]); 1014 (*regs)[27] = tswapreg(env->regs[R_SP]); 1015 (*regs)[28] = tswapreg(env->regs[R_FP]); 1016 (*regs)[29] = tswapreg(env->regs[R_EA]); 1017 (*regs)[30] = -1; /* R_SSTATUS */ 1018 (*regs)[31] = tswapreg(env->regs[R_RA]); 1019 1020 (*regs)[32] = tswapreg(env->regs[R_PC]); 1021 1022 (*regs)[33] = -1; /* R_STATUS */ 1023 (*regs)[34] = tswapreg(env->regs[CR_ESTATUS]); 1024 1025 for (i = 35; i < 49; i++) /* ... */ 1026 (*regs)[i] = -1; 1027 } 1028 1029 #endif /* TARGET_NIOS2 */ 1030 1031 #ifdef TARGET_OPENRISC 1032 1033 #define ELF_START_MMAP 0x08000000 1034 1035 #define ELF_ARCH EM_OPENRISC 1036 #define ELF_CLASS ELFCLASS32 1037 #define ELF_DATA ELFDATA2MSB 1038 1039 static inline void init_thread(struct target_pt_regs *regs, 1040 struct image_info *infop) 1041 { 1042 regs->pc = infop->entry; 1043 regs->gpr[1] = infop->start_stack; 1044 } 1045 1046 #define USE_ELF_CORE_DUMP 1047 #define ELF_EXEC_PAGESIZE 8192 1048 1049 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 1050 #define ELF_NREG 34 /* gprs and pc, sr */ 1051 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1052 1053 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1054 const CPUOpenRISCState *env) 1055 { 1056 int i; 1057 1058 for (i = 0; i < 32; i++) { 1059 (*regs)[i] = tswapreg(cpu_get_gpr(env, i)); 1060 } 1061 (*regs)[32] = tswapreg(env->pc); 1062 (*regs)[33] = tswapreg(cpu_get_sr(env)); 1063 } 1064 #define ELF_HWCAP 0 1065 #define ELF_PLATFORM NULL 1066 1067 #endif /* TARGET_OPENRISC */ 1068 1069 #ifdef TARGET_SH4 1070 1071 #define ELF_START_MMAP 0x80000000 1072 1073 #define ELF_CLASS ELFCLASS32 1074 #define ELF_ARCH EM_SH 1075 1076 static inline void init_thread(struct target_pt_regs *regs, 1077 struct image_info *infop) 1078 { 1079 /* Check other registers XXXXX */ 1080 regs->pc = infop->entry; 1081 regs->regs[15] = infop->start_stack; 1082 } 1083 1084 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1085 #define ELF_NREG 23 1086 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1087 1088 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1089 enum { 1090 TARGET_REG_PC = 16, 1091 TARGET_REG_PR = 17, 1092 TARGET_REG_SR = 18, 1093 TARGET_REG_GBR = 19, 1094 TARGET_REG_MACH = 20, 1095 TARGET_REG_MACL = 21, 1096 TARGET_REG_SYSCALL = 22 1097 }; 1098 1099 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1100 const CPUSH4State *env) 1101 { 1102 int i; 1103 1104 for (i = 0; i < 16; i++) { 1105 (*regs)[i] = tswapreg(env->gregs[i]); 1106 } 1107 1108 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1109 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1110 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1111 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1112 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1113 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1114 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1115 } 1116 1117 #define USE_ELF_CORE_DUMP 1118 #define ELF_EXEC_PAGESIZE 4096 1119 1120 enum { 1121 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1122 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1123 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1124 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1125 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1126 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1127 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1128 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1129 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1130 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1131 }; 1132 1133 #define ELF_HWCAP get_elf_hwcap() 1134 1135 static uint32_t get_elf_hwcap(void) 1136 { 1137 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1138 uint32_t hwcap = 0; 1139 1140 hwcap |= SH_CPU_HAS_FPU; 1141 1142 if (cpu->env.features & SH_FEATURE_SH4A) { 1143 hwcap |= SH_CPU_HAS_LLSC; 1144 } 1145 1146 return hwcap; 1147 } 1148 1149 #endif 1150 1151 #ifdef TARGET_CRIS 1152 1153 #define ELF_START_MMAP 0x80000000 1154 1155 #define ELF_CLASS ELFCLASS32 1156 #define ELF_ARCH EM_CRIS 1157 1158 static inline void init_thread(struct target_pt_regs *regs, 1159 struct image_info *infop) 1160 { 1161 regs->erp = infop->entry; 1162 } 1163 1164 #define ELF_EXEC_PAGESIZE 8192 1165 1166 #endif 1167 1168 #ifdef TARGET_M68K 1169 1170 #define ELF_START_MMAP 0x80000000 1171 1172 #define ELF_CLASS ELFCLASS32 1173 #define ELF_ARCH EM_68K 1174 1175 /* ??? Does this need to do anything? 1176 #define ELF_PLAT_INIT(_r) */ 1177 1178 static inline void init_thread(struct target_pt_regs *regs, 1179 struct image_info *infop) 1180 { 1181 regs->usp = infop->start_stack; 1182 regs->sr = 0; 1183 regs->pc = infop->entry; 1184 } 1185 1186 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1187 #define ELF_NREG 20 1188 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1189 1190 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1191 { 1192 (*regs)[0] = tswapreg(env->dregs[1]); 1193 (*regs)[1] = tswapreg(env->dregs[2]); 1194 (*regs)[2] = tswapreg(env->dregs[3]); 1195 (*regs)[3] = tswapreg(env->dregs[4]); 1196 (*regs)[4] = tswapreg(env->dregs[5]); 1197 (*regs)[5] = tswapreg(env->dregs[6]); 1198 (*regs)[6] = tswapreg(env->dregs[7]); 1199 (*regs)[7] = tswapreg(env->aregs[0]); 1200 (*regs)[8] = tswapreg(env->aregs[1]); 1201 (*regs)[9] = tswapreg(env->aregs[2]); 1202 (*regs)[10] = tswapreg(env->aregs[3]); 1203 (*regs)[11] = tswapreg(env->aregs[4]); 1204 (*regs)[12] = tswapreg(env->aregs[5]); 1205 (*regs)[13] = tswapreg(env->aregs[6]); 1206 (*regs)[14] = tswapreg(env->dregs[0]); 1207 (*regs)[15] = tswapreg(env->aregs[7]); 1208 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1209 (*regs)[17] = tswapreg(env->sr); 1210 (*regs)[18] = tswapreg(env->pc); 1211 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1212 } 1213 1214 #define USE_ELF_CORE_DUMP 1215 #define ELF_EXEC_PAGESIZE 8192 1216 1217 #endif 1218 1219 #ifdef TARGET_ALPHA 1220 1221 #define ELF_START_MMAP (0x30000000000ULL) 1222 1223 #define ELF_CLASS ELFCLASS64 1224 #define ELF_ARCH EM_ALPHA 1225 1226 static inline void init_thread(struct target_pt_regs *regs, 1227 struct image_info *infop) 1228 { 1229 regs->pc = infop->entry; 1230 regs->ps = 8; 1231 regs->usp = infop->start_stack; 1232 } 1233 1234 #define ELF_EXEC_PAGESIZE 8192 1235 1236 #endif /* TARGET_ALPHA */ 1237 1238 #ifdef TARGET_S390X 1239 1240 #define ELF_START_MMAP (0x20000000000ULL) 1241 1242 #define ELF_CLASS ELFCLASS64 1243 #define ELF_DATA ELFDATA2MSB 1244 #define ELF_ARCH EM_S390 1245 1246 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1247 { 1248 regs->psw.addr = infop->entry; 1249 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1250 regs->gprs[15] = infop->start_stack; 1251 } 1252 1253 #endif /* TARGET_S390X */ 1254 1255 #ifdef TARGET_TILEGX 1256 1257 /* 42 bits real used address, a half for user mode */ 1258 #define ELF_START_MMAP (0x00000020000000000ULL) 1259 1260 #define elf_check_arch(x) ((x) == EM_TILEGX) 1261 1262 #define ELF_CLASS ELFCLASS64 1263 #define ELF_DATA ELFDATA2LSB 1264 #define ELF_ARCH EM_TILEGX 1265 1266 static inline void init_thread(struct target_pt_regs *regs, 1267 struct image_info *infop) 1268 { 1269 regs->pc = infop->entry; 1270 regs->sp = infop->start_stack; 1271 1272 } 1273 1274 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1275 1276 #endif /* TARGET_TILEGX */ 1277 1278 #ifdef TARGET_RISCV 1279 1280 #define ELF_START_MMAP 0x80000000 1281 #define ELF_ARCH EM_RISCV 1282 1283 #ifdef TARGET_RISCV32 1284 #define ELF_CLASS ELFCLASS32 1285 #else 1286 #define ELF_CLASS ELFCLASS64 1287 #endif 1288 1289 static inline void init_thread(struct target_pt_regs *regs, 1290 struct image_info *infop) 1291 { 1292 regs->sepc = infop->entry; 1293 regs->sp = infop->start_stack; 1294 } 1295 1296 #define ELF_EXEC_PAGESIZE 4096 1297 1298 #endif /* TARGET_RISCV */ 1299 1300 #ifdef TARGET_HPPA 1301 1302 #define ELF_START_MMAP 0x80000000 1303 #define ELF_CLASS ELFCLASS32 1304 #define ELF_ARCH EM_PARISC 1305 #define ELF_PLATFORM "PARISC" 1306 #define STACK_GROWS_DOWN 0 1307 #define STACK_ALIGNMENT 64 1308 1309 static inline void init_thread(struct target_pt_regs *regs, 1310 struct image_info *infop) 1311 { 1312 regs->iaoq[0] = infop->entry; 1313 regs->iaoq[1] = infop->entry + 4; 1314 regs->gr[23] = 0; 1315 regs->gr[24] = infop->arg_start; 1316 regs->gr[25] = (infop->arg_end - infop->arg_start) / sizeof(abi_ulong); 1317 /* The top-of-stack contains a linkage buffer. */ 1318 regs->gr[30] = infop->start_stack + 64; 1319 regs->gr[31] = infop->entry; 1320 } 1321 1322 #endif /* TARGET_HPPA */ 1323 1324 #ifdef TARGET_XTENSA 1325 1326 #define ELF_START_MMAP 0x20000000 1327 1328 #define ELF_CLASS ELFCLASS32 1329 #define ELF_ARCH EM_XTENSA 1330 1331 static inline void init_thread(struct target_pt_regs *regs, 1332 struct image_info *infop) 1333 { 1334 regs->windowbase = 0; 1335 regs->windowstart = 1; 1336 regs->areg[1] = infop->start_stack; 1337 regs->pc = infop->entry; 1338 } 1339 1340 /* See linux kernel: arch/xtensa/include/asm/elf.h. */ 1341 #define ELF_NREG 128 1342 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1343 1344 enum { 1345 TARGET_REG_PC, 1346 TARGET_REG_PS, 1347 TARGET_REG_LBEG, 1348 TARGET_REG_LEND, 1349 TARGET_REG_LCOUNT, 1350 TARGET_REG_SAR, 1351 TARGET_REG_WINDOWSTART, 1352 TARGET_REG_WINDOWBASE, 1353 TARGET_REG_THREADPTR, 1354 TARGET_REG_AR0 = 64, 1355 }; 1356 1357 static void elf_core_copy_regs(target_elf_gregset_t *regs, 1358 const CPUXtensaState *env) 1359 { 1360 unsigned i; 1361 1362 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1363 (*regs)[TARGET_REG_PS] = tswapreg(env->sregs[PS] & ~PS_EXCM); 1364 (*regs)[TARGET_REG_LBEG] = tswapreg(env->sregs[LBEG]); 1365 (*regs)[TARGET_REG_LEND] = tswapreg(env->sregs[LEND]); 1366 (*regs)[TARGET_REG_LCOUNT] = tswapreg(env->sregs[LCOUNT]); 1367 (*regs)[TARGET_REG_SAR] = tswapreg(env->sregs[SAR]); 1368 (*regs)[TARGET_REG_WINDOWSTART] = tswapreg(env->sregs[WINDOW_START]); 1369 (*regs)[TARGET_REG_WINDOWBASE] = tswapreg(env->sregs[WINDOW_BASE]); 1370 (*regs)[TARGET_REG_THREADPTR] = tswapreg(env->uregs[THREADPTR]); 1371 xtensa_sync_phys_from_window((CPUXtensaState *)env); 1372 for (i = 0; i < env->config->nareg; ++i) { 1373 (*regs)[TARGET_REG_AR0 + i] = tswapreg(env->phys_regs[i]); 1374 } 1375 } 1376 1377 #define USE_ELF_CORE_DUMP 1378 #define ELF_EXEC_PAGESIZE 4096 1379 1380 #endif /* TARGET_XTENSA */ 1381 1382 #ifndef ELF_PLATFORM 1383 #define ELF_PLATFORM (NULL) 1384 #endif 1385 1386 #ifndef ELF_MACHINE 1387 #define ELF_MACHINE ELF_ARCH 1388 #endif 1389 1390 #ifndef elf_check_arch 1391 #define elf_check_arch(x) ((x) == ELF_ARCH) 1392 #endif 1393 1394 #ifndef ELF_HWCAP 1395 #define ELF_HWCAP 0 1396 #endif 1397 1398 #ifndef STACK_GROWS_DOWN 1399 #define STACK_GROWS_DOWN 1 1400 #endif 1401 1402 #ifndef STACK_ALIGNMENT 1403 #define STACK_ALIGNMENT 16 1404 #endif 1405 1406 #ifdef TARGET_ABI32 1407 #undef ELF_CLASS 1408 #define ELF_CLASS ELFCLASS32 1409 #undef bswaptls 1410 #define bswaptls(ptr) bswap32s(ptr) 1411 #endif 1412 1413 #include "elf.h" 1414 1415 struct exec 1416 { 1417 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1418 unsigned int a_text; /* length of text, in bytes */ 1419 unsigned int a_data; /* length of data, in bytes */ 1420 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1421 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1422 unsigned int a_entry; /* start address */ 1423 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1424 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1425 }; 1426 1427 1428 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1429 #define OMAGIC 0407 1430 #define NMAGIC 0410 1431 #define ZMAGIC 0413 1432 #define QMAGIC 0314 1433 1434 /* Necessary parameters */ 1435 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1436 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1437 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1438 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1439 1440 #define DLINFO_ITEMS 15 1441 1442 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1443 { 1444 memcpy(to, from, n); 1445 } 1446 1447 #ifdef BSWAP_NEEDED 1448 static void bswap_ehdr(struct elfhdr *ehdr) 1449 { 1450 bswap16s(&ehdr->e_type); /* Object file type */ 1451 bswap16s(&ehdr->e_machine); /* Architecture */ 1452 bswap32s(&ehdr->e_version); /* Object file version */ 1453 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1454 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1455 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1456 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1457 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1458 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1459 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1460 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1461 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1462 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1463 } 1464 1465 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1466 { 1467 int i; 1468 for (i = 0; i < phnum; ++i, ++phdr) { 1469 bswap32s(&phdr->p_type); /* Segment type */ 1470 bswap32s(&phdr->p_flags); /* Segment flags */ 1471 bswaptls(&phdr->p_offset); /* Segment file offset */ 1472 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1473 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1474 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1475 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1476 bswaptls(&phdr->p_align); /* Segment alignment */ 1477 } 1478 } 1479 1480 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1481 { 1482 int i; 1483 for (i = 0; i < shnum; ++i, ++shdr) { 1484 bswap32s(&shdr->sh_name); 1485 bswap32s(&shdr->sh_type); 1486 bswaptls(&shdr->sh_flags); 1487 bswaptls(&shdr->sh_addr); 1488 bswaptls(&shdr->sh_offset); 1489 bswaptls(&shdr->sh_size); 1490 bswap32s(&shdr->sh_link); 1491 bswap32s(&shdr->sh_info); 1492 bswaptls(&shdr->sh_addralign); 1493 bswaptls(&shdr->sh_entsize); 1494 } 1495 } 1496 1497 static void bswap_sym(struct elf_sym *sym) 1498 { 1499 bswap32s(&sym->st_name); 1500 bswaptls(&sym->st_value); 1501 bswaptls(&sym->st_size); 1502 bswap16s(&sym->st_shndx); 1503 } 1504 #else 1505 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1506 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1507 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1508 static inline void bswap_sym(struct elf_sym *sym) { } 1509 #endif 1510 1511 #ifdef USE_ELF_CORE_DUMP 1512 static int elf_core_dump(int, const CPUArchState *); 1513 #endif /* USE_ELF_CORE_DUMP */ 1514 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1515 1516 /* Verify the portions of EHDR within E_IDENT for the target. 1517 This can be performed before bswapping the entire header. */ 1518 static bool elf_check_ident(struct elfhdr *ehdr) 1519 { 1520 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1521 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1522 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1523 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1524 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1525 && ehdr->e_ident[EI_DATA] == ELF_DATA 1526 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1527 } 1528 1529 /* Verify the portions of EHDR outside of E_IDENT for the target. 1530 This has to wait until after bswapping the header. */ 1531 static bool elf_check_ehdr(struct elfhdr *ehdr) 1532 { 1533 return (elf_check_arch(ehdr->e_machine) 1534 && ehdr->e_ehsize == sizeof(struct elfhdr) 1535 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1536 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1537 } 1538 1539 /* 1540 * 'copy_elf_strings()' copies argument/envelope strings from user 1541 * memory to free pages in kernel mem. These are in a format ready 1542 * to be put directly into the top of new user memory. 1543 * 1544 */ 1545 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1546 abi_ulong p, abi_ulong stack_limit) 1547 { 1548 char *tmp; 1549 int len, i; 1550 abi_ulong top = p; 1551 1552 if (!p) { 1553 return 0; /* bullet-proofing */ 1554 } 1555 1556 if (STACK_GROWS_DOWN) { 1557 int offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1558 for (i = argc - 1; i >= 0; --i) { 1559 tmp = argv[i]; 1560 if (!tmp) { 1561 fprintf(stderr, "VFS: argc is wrong"); 1562 exit(-1); 1563 } 1564 len = strlen(tmp) + 1; 1565 tmp += len; 1566 1567 if (len > (p - stack_limit)) { 1568 return 0; 1569 } 1570 while (len) { 1571 int bytes_to_copy = (len > offset) ? offset : len; 1572 tmp -= bytes_to_copy; 1573 p -= bytes_to_copy; 1574 offset -= bytes_to_copy; 1575 len -= bytes_to_copy; 1576 1577 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1578 1579 if (offset == 0) { 1580 memcpy_to_target(p, scratch, top - p); 1581 top = p; 1582 offset = TARGET_PAGE_SIZE; 1583 } 1584 } 1585 } 1586 if (p != top) { 1587 memcpy_to_target(p, scratch + offset, top - p); 1588 } 1589 } else { 1590 int remaining = TARGET_PAGE_SIZE - (p % TARGET_PAGE_SIZE); 1591 for (i = 0; i < argc; ++i) { 1592 tmp = argv[i]; 1593 if (!tmp) { 1594 fprintf(stderr, "VFS: argc is wrong"); 1595 exit(-1); 1596 } 1597 len = strlen(tmp) + 1; 1598 if (len > (stack_limit - p)) { 1599 return 0; 1600 } 1601 while (len) { 1602 int bytes_to_copy = (len > remaining) ? remaining : len; 1603 1604 memcpy_fromfs(scratch + (p - top), tmp, bytes_to_copy); 1605 1606 tmp += bytes_to_copy; 1607 remaining -= bytes_to_copy; 1608 p += bytes_to_copy; 1609 len -= bytes_to_copy; 1610 1611 if (remaining == 0) { 1612 memcpy_to_target(top, scratch, p - top); 1613 top = p; 1614 remaining = TARGET_PAGE_SIZE; 1615 } 1616 } 1617 } 1618 if (p != top) { 1619 memcpy_to_target(top, scratch, p - top); 1620 } 1621 } 1622 1623 return p; 1624 } 1625 1626 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1627 * argument/environment space. Newer kernels (>2.6.33) allow more, 1628 * dependent on stack size, but guarantee at least 32 pages for 1629 * backwards compatibility. 1630 */ 1631 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1632 1633 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1634 struct image_info *info) 1635 { 1636 abi_ulong size, error, guard; 1637 1638 size = guest_stack_size; 1639 if (size < STACK_LOWER_LIMIT) { 1640 size = STACK_LOWER_LIMIT; 1641 } 1642 guard = TARGET_PAGE_SIZE; 1643 if (guard < qemu_real_host_page_size) { 1644 guard = qemu_real_host_page_size; 1645 } 1646 1647 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1648 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1649 if (error == -1) { 1650 perror("mmap stack"); 1651 exit(-1); 1652 } 1653 1654 /* We reserve one extra page at the top of the stack as guard. */ 1655 if (STACK_GROWS_DOWN) { 1656 target_mprotect(error, guard, PROT_NONE); 1657 info->stack_limit = error + guard; 1658 return info->stack_limit + size - sizeof(void *); 1659 } else { 1660 target_mprotect(error + size, guard, PROT_NONE); 1661 info->stack_limit = error + size; 1662 return error; 1663 } 1664 } 1665 1666 /* Map and zero the bss. We need to explicitly zero any fractional pages 1667 after the data section (i.e. bss). */ 1668 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1669 { 1670 uintptr_t host_start, host_map_start, host_end; 1671 1672 last_bss = TARGET_PAGE_ALIGN(last_bss); 1673 1674 /* ??? There is confusion between qemu_real_host_page_size and 1675 qemu_host_page_size here and elsewhere in target_mmap, which 1676 may lead to the end of the data section mapping from the file 1677 not being mapped. At least there was an explicit test and 1678 comment for that here, suggesting that "the file size must 1679 be known". The comment probably pre-dates the introduction 1680 of the fstat system call in target_mmap which does in fact 1681 find out the size. What isn't clear is if the workaround 1682 here is still actually needed. For now, continue with it, 1683 but merge it with the "normal" mmap that would allocate the bss. */ 1684 1685 host_start = (uintptr_t) g2h(elf_bss); 1686 host_end = (uintptr_t) g2h(last_bss); 1687 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1688 1689 if (host_map_start < host_end) { 1690 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1691 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1692 if (p == MAP_FAILED) { 1693 perror("cannot mmap brk"); 1694 exit(-1); 1695 } 1696 } 1697 1698 /* Ensure that the bss page(s) are valid */ 1699 if ((page_get_flags(last_bss-1) & prot) != prot) { 1700 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1701 } 1702 1703 if (host_start < host_map_start) { 1704 memset((void *)host_start, 0, host_map_start - host_start); 1705 } 1706 } 1707 1708 #ifdef TARGET_ARM 1709 static int elf_is_fdpic(struct elfhdr *exec) 1710 { 1711 return exec->e_ident[EI_OSABI] == ELFOSABI_ARM_FDPIC; 1712 } 1713 #else 1714 /* Default implementation, always false. */ 1715 static int elf_is_fdpic(struct elfhdr *exec) 1716 { 1717 return 0; 1718 } 1719 #endif 1720 1721 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1722 { 1723 uint16_t n; 1724 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1725 1726 /* elf32_fdpic_loadseg */ 1727 n = info->nsegs; 1728 while (n--) { 1729 sp -= 12; 1730 put_user_u32(loadsegs[n].addr, sp+0); 1731 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1732 put_user_u32(loadsegs[n].p_memsz, sp+8); 1733 } 1734 1735 /* elf32_fdpic_loadmap */ 1736 sp -= 4; 1737 put_user_u16(0, sp+0); /* version */ 1738 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1739 1740 info->personality = PER_LINUX_FDPIC; 1741 info->loadmap_addr = sp; 1742 1743 return sp; 1744 } 1745 1746 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1747 struct elfhdr *exec, 1748 struct image_info *info, 1749 struct image_info *interp_info) 1750 { 1751 abi_ulong sp; 1752 abi_ulong u_argc, u_argv, u_envp, u_auxv; 1753 int size; 1754 int i; 1755 abi_ulong u_rand_bytes; 1756 uint8_t k_rand_bytes[16]; 1757 abi_ulong u_platform; 1758 const char *k_platform; 1759 const int n = sizeof(elf_addr_t); 1760 1761 sp = p; 1762 1763 /* Needs to be before we load the env/argc/... */ 1764 if (elf_is_fdpic(exec)) { 1765 /* Need 4 byte alignment for these structs */ 1766 sp &= ~3; 1767 sp = loader_build_fdpic_loadmap(info, sp); 1768 info->other_info = interp_info; 1769 if (interp_info) { 1770 interp_info->other_info = info; 1771 sp = loader_build_fdpic_loadmap(interp_info, sp); 1772 info->interpreter_loadmap_addr = interp_info->loadmap_addr; 1773 info->interpreter_pt_dynamic_addr = interp_info->pt_dynamic_addr; 1774 } else { 1775 info->interpreter_loadmap_addr = 0; 1776 info->interpreter_pt_dynamic_addr = 0; 1777 } 1778 } 1779 1780 u_platform = 0; 1781 k_platform = ELF_PLATFORM; 1782 if (k_platform) { 1783 size_t len = strlen(k_platform) + 1; 1784 if (STACK_GROWS_DOWN) { 1785 sp -= (len + n - 1) & ~(n - 1); 1786 u_platform = sp; 1787 /* FIXME - check return value of memcpy_to_target() for failure */ 1788 memcpy_to_target(sp, k_platform, len); 1789 } else { 1790 memcpy_to_target(sp, k_platform, len); 1791 u_platform = sp; 1792 sp += len + 1; 1793 } 1794 } 1795 1796 /* Provide 16 byte alignment for the PRNG, and basic alignment for 1797 * the argv and envp pointers. 1798 */ 1799 if (STACK_GROWS_DOWN) { 1800 sp = QEMU_ALIGN_DOWN(sp, 16); 1801 } else { 1802 sp = QEMU_ALIGN_UP(sp, 16); 1803 } 1804 1805 /* 1806 * Generate 16 random bytes for userspace PRNG seeding (not 1807 * cryptically secure but it's not the aim of QEMU). 1808 */ 1809 for (i = 0; i < 16; i++) { 1810 k_rand_bytes[i] = rand(); 1811 } 1812 if (STACK_GROWS_DOWN) { 1813 sp -= 16; 1814 u_rand_bytes = sp; 1815 /* FIXME - check return value of memcpy_to_target() for failure */ 1816 memcpy_to_target(sp, k_rand_bytes, 16); 1817 } else { 1818 memcpy_to_target(sp, k_rand_bytes, 16); 1819 u_rand_bytes = sp; 1820 sp += 16; 1821 } 1822 1823 size = (DLINFO_ITEMS + 1) * 2; 1824 if (k_platform) 1825 size += 2; 1826 #ifdef DLINFO_ARCH_ITEMS 1827 size += DLINFO_ARCH_ITEMS * 2; 1828 #endif 1829 #ifdef ELF_HWCAP2 1830 size += 2; 1831 #endif 1832 info->auxv_len = size * n; 1833 1834 size += envc + argc + 2; 1835 size += 1; /* argc itself */ 1836 size *= n; 1837 1838 /* Allocate space and finalize stack alignment for entry now. */ 1839 if (STACK_GROWS_DOWN) { 1840 u_argc = QEMU_ALIGN_DOWN(sp - size, STACK_ALIGNMENT); 1841 sp = u_argc; 1842 } else { 1843 u_argc = sp; 1844 sp = QEMU_ALIGN_UP(sp + size, STACK_ALIGNMENT); 1845 } 1846 1847 u_argv = u_argc + n; 1848 u_envp = u_argv + (argc + 1) * n; 1849 u_auxv = u_envp + (envc + 1) * n; 1850 info->saved_auxv = u_auxv; 1851 info->arg_start = u_argv; 1852 info->arg_end = u_argv + argc * n; 1853 1854 /* This is correct because Linux defines 1855 * elf_addr_t as Elf32_Off / Elf64_Off 1856 */ 1857 #define NEW_AUX_ENT(id, val) do { \ 1858 put_user_ual(id, u_auxv); u_auxv += n; \ 1859 put_user_ual(val, u_auxv); u_auxv += n; \ 1860 } while(0) 1861 1862 #ifdef ARCH_DLINFO 1863 /* 1864 * ARCH_DLINFO must come first so platform specific code can enforce 1865 * special alignment requirements on the AUXV if necessary (eg. PPC). 1866 */ 1867 ARCH_DLINFO; 1868 #endif 1869 /* There must be exactly DLINFO_ITEMS entries here, or the assert 1870 * on info->auxv_len will trigger. 1871 */ 1872 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1873 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1874 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1875 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1876 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1877 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1878 NEW_AUX_ENT(AT_ENTRY, info->entry); 1879 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1880 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1881 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1882 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1883 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1884 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1885 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1886 NEW_AUX_ENT(AT_SECURE, (abi_ulong) qemu_getauxval(AT_SECURE)); 1887 1888 #ifdef ELF_HWCAP2 1889 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1890 #endif 1891 1892 if (u_platform) { 1893 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1894 } 1895 NEW_AUX_ENT (AT_NULL, 0); 1896 #undef NEW_AUX_ENT 1897 1898 /* Check that our initial calculation of the auxv length matches how much 1899 * we actually put into it. 1900 */ 1901 assert(info->auxv_len == u_auxv - info->saved_auxv); 1902 1903 put_user_ual(argc, u_argc); 1904 1905 p = info->arg_strings; 1906 for (i = 0; i < argc; ++i) { 1907 put_user_ual(p, u_argv); 1908 u_argv += n; 1909 p += target_strlen(p) + 1; 1910 } 1911 put_user_ual(0, u_argv); 1912 1913 p = info->env_strings; 1914 for (i = 0; i < envc; ++i) { 1915 put_user_ual(p, u_envp); 1916 u_envp += n; 1917 p += target_strlen(p) + 1; 1918 } 1919 put_user_ual(0, u_envp); 1920 1921 return sp; 1922 } 1923 1924 unsigned long init_guest_space(unsigned long host_start, 1925 unsigned long host_size, 1926 unsigned long guest_start, 1927 bool fixed) 1928 { 1929 unsigned long current_start, aligned_start; 1930 int flags; 1931 1932 assert(host_start || host_size); 1933 1934 /* If just a starting address is given, then just verify that 1935 * address. */ 1936 if (host_start && !host_size) { 1937 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1938 if (init_guest_commpage(host_start, host_size) != 1) { 1939 return (unsigned long)-1; 1940 } 1941 #endif 1942 return host_start; 1943 } 1944 1945 /* Setup the initial flags and start address. */ 1946 current_start = host_start & qemu_host_page_mask; 1947 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1948 if (fixed) { 1949 flags |= MAP_FIXED; 1950 } 1951 1952 /* Otherwise, a non-zero size region of memory needs to be mapped 1953 * and validated. */ 1954 1955 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 1956 /* On 32-bit ARM, we need to map not just the usable memory, but 1957 * also the commpage. Try to find a suitable place by allocating 1958 * a big chunk for all of it. If host_start, then the naive 1959 * strategy probably does good enough. 1960 */ 1961 if (!host_start) { 1962 unsigned long guest_full_size, host_full_size, real_start; 1963 1964 guest_full_size = 1965 (0xffff0f00 & qemu_host_page_mask) + qemu_host_page_size; 1966 host_full_size = guest_full_size - guest_start; 1967 real_start = (unsigned long) 1968 mmap(NULL, host_full_size, PROT_NONE, flags, -1, 0); 1969 if (real_start == (unsigned long)-1) { 1970 if (host_size < host_full_size - qemu_host_page_size) { 1971 /* We failed to map a continous segment, but we're 1972 * allowed to have a gap between the usable memory and 1973 * the commpage where other things can be mapped. 1974 * This sparseness gives us more flexibility to find 1975 * an address range. 1976 */ 1977 goto naive; 1978 } 1979 return (unsigned long)-1; 1980 } 1981 munmap((void *)real_start, host_full_size); 1982 if (real_start & ~qemu_host_page_mask) { 1983 /* The same thing again, but with an extra qemu_host_page_size 1984 * so that we can shift around alignment. 1985 */ 1986 unsigned long real_size = host_full_size + qemu_host_page_size; 1987 real_start = (unsigned long) 1988 mmap(NULL, real_size, PROT_NONE, flags, -1, 0); 1989 if (real_start == (unsigned long)-1) { 1990 if (host_size < host_full_size - qemu_host_page_size) { 1991 goto naive; 1992 } 1993 return (unsigned long)-1; 1994 } 1995 munmap((void *)real_start, real_size); 1996 real_start = HOST_PAGE_ALIGN(real_start); 1997 } 1998 current_start = real_start; 1999 } 2000 naive: 2001 #endif 2002 2003 while (1) { 2004 unsigned long real_start, real_size, aligned_size; 2005 aligned_size = real_size = host_size; 2006 2007 /* Do not use mmap_find_vma here because that is limited to the 2008 * guest address space. We are going to make the 2009 * guest address space fit whatever we're given. 2010 */ 2011 real_start = (unsigned long) 2012 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 2013 if (real_start == (unsigned long)-1) { 2014 return (unsigned long)-1; 2015 } 2016 2017 /* Check to see if the address is valid. */ 2018 if (host_start && real_start != current_start) { 2019 goto try_again; 2020 } 2021 2022 /* Ensure the address is properly aligned. */ 2023 if (real_start & ~qemu_host_page_mask) { 2024 /* Ideally, we adjust like 2025 * 2026 * pages: [ ][ ][ ][ ][ ] 2027 * old: [ real ] 2028 * [ aligned ] 2029 * new: [ real ] 2030 * [ aligned ] 2031 * 2032 * But if there is something else mapped right after it, 2033 * then obviously it won't have room to grow, and the 2034 * kernel will put the new larger real someplace else with 2035 * unknown alignment (if we made it to here, then 2036 * fixed=false). Which is why we grow real by a full page 2037 * size, instead of by part of one; so that even if we get 2038 * moved, we can still guarantee alignment. But this does 2039 * mean that there is a padding of < 1 page both before 2040 * and after the aligned range; the "after" could could 2041 * cause problems for ARM emulation where it could butt in 2042 * to where we need to put the commpage. 2043 */ 2044 munmap((void *)real_start, host_size); 2045 real_size = aligned_size + qemu_host_page_size; 2046 real_start = (unsigned long) 2047 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 2048 if (real_start == (unsigned long)-1) { 2049 return (unsigned long)-1; 2050 } 2051 aligned_start = HOST_PAGE_ALIGN(real_start); 2052 } else { 2053 aligned_start = real_start; 2054 } 2055 2056 #if defined(TARGET_ARM) && !defined(TARGET_AARCH64) 2057 /* On 32-bit ARM, we need to also be able to map the commpage. */ 2058 int valid = init_guest_commpage(aligned_start - guest_start, 2059 aligned_size + guest_start); 2060 if (valid == -1) { 2061 munmap((void *)real_start, real_size); 2062 return (unsigned long)-1; 2063 } else if (valid == 0) { 2064 goto try_again; 2065 } 2066 #endif 2067 2068 /* If nothing has said `return -1` or `goto try_again` yet, 2069 * then the address we have is good. 2070 */ 2071 break; 2072 2073 try_again: 2074 /* That address didn't work. Unmap and try a different one. 2075 * The address the host picked because is typically right at 2076 * the top of the host address space and leaves the guest with 2077 * no usable address space. Resort to a linear search. We 2078 * already compensated for mmap_min_addr, so this should not 2079 * happen often. Probably means we got unlucky and host 2080 * address space randomization put a shared library somewhere 2081 * inconvenient. 2082 * 2083 * This is probably a good strategy if host_start, but is 2084 * probably a bad strategy if not, which means we got here 2085 * because of trouble with ARM commpage setup. 2086 */ 2087 munmap((void *)real_start, real_size); 2088 current_start += qemu_host_page_size; 2089 if (host_start == current_start) { 2090 /* Theoretically possible if host doesn't have any suitably 2091 * aligned areas. Normally the first mmap will fail. 2092 */ 2093 return (unsigned long)-1; 2094 } 2095 } 2096 2097 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 2098 2099 return aligned_start; 2100 } 2101 2102 static void probe_guest_base(const char *image_name, 2103 abi_ulong loaddr, abi_ulong hiaddr) 2104 { 2105 /* Probe for a suitable guest base address, if the user has not set 2106 * it explicitly, and set guest_base appropriately. 2107 * In case of error we will print a suitable message and exit. 2108 */ 2109 const char *errmsg; 2110 if (!have_guest_base && !reserved_va) { 2111 unsigned long host_start, real_start, host_size; 2112 2113 /* Round addresses to page boundaries. */ 2114 loaddr &= qemu_host_page_mask; 2115 hiaddr = HOST_PAGE_ALIGN(hiaddr); 2116 2117 if (loaddr < mmap_min_addr) { 2118 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 2119 } else { 2120 host_start = loaddr; 2121 if (host_start != loaddr) { 2122 errmsg = "Address overflow loading ELF binary"; 2123 goto exit_errmsg; 2124 } 2125 } 2126 host_size = hiaddr - loaddr; 2127 2128 /* Setup the initial guest memory space with ranges gleaned from 2129 * the ELF image that is being loaded. 2130 */ 2131 real_start = init_guest_space(host_start, host_size, loaddr, false); 2132 if (real_start == (unsigned long)-1) { 2133 errmsg = "Unable to find space for application"; 2134 goto exit_errmsg; 2135 } 2136 guest_base = real_start - loaddr; 2137 2138 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 2139 TARGET_ABI_FMT_lx " to 0x%lx\n", 2140 loaddr, real_start); 2141 } 2142 return; 2143 2144 exit_errmsg: 2145 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2146 exit(-1); 2147 } 2148 2149 2150 /* Load an ELF image into the address space. 2151 2152 IMAGE_NAME is the filename of the image, to use in error messages. 2153 IMAGE_FD is the open file descriptor for the image. 2154 2155 BPRM_BUF is a copy of the beginning of the file; this of course 2156 contains the elf file header at offset 0. It is assumed that this 2157 buffer is sufficiently aligned to present no problems to the host 2158 in accessing data at aligned offsets within the buffer. 2159 2160 On return: INFO values will be filled in, as necessary or available. */ 2161 2162 static void load_elf_image(const char *image_name, int image_fd, 2163 struct image_info *info, char **pinterp_name, 2164 char bprm_buf[BPRM_BUF_SIZE]) 2165 { 2166 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 2167 struct elf_phdr *phdr; 2168 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 2169 int i, retval; 2170 const char *errmsg; 2171 2172 /* First of all, some simple consistency checks */ 2173 errmsg = "Invalid ELF image for this architecture"; 2174 if (!elf_check_ident(ehdr)) { 2175 goto exit_errmsg; 2176 } 2177 bswap_ehdr(ehdr); 2178 if (!elf_check_ehdr(ehdr)) { 2179 goto exit_errmsg; 2180 } 2181 2182 i = ehdr->e_phnum * sizeof(struct elf_phdr); 2183 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 2184 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 2185 } else { 2186 phdr = (struct elf_phdr *) alloca(i); 2187 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 2188 if (retval != i) { 2189 goto exit_read; 2190 } 2191 } 2192 bswap_phdr(phdr, ehdr->e_phnum); 2193 2194 info->nsegs = 0; 2195 info->pt_dynamic_addr = 0; 2196 2197 mmap_lock(); 2198 2199 /* Find the maximum size of the image and allocate an appropriate 2200 amount of memory to handle that. */ 2201 loaddr = -1, hiaddr = 0; 2202 for (i = 0; i < ehdr->e_phnum; ++i) { 2203 if (phdr[i].p_type == PT_LOAD) { 2204 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 2205 if (a < loaddr) { 2206 loaddr = a; 2207 } 2208 a = phdr[i].p_vaddr + phdr[i].p_memsz; 2209 if (a > hiaddr) { 2210 hiaddr = a; 2211 } 2212 ++info->nsegs; 2213 } 2214 } 2215 2216 load_addr = loaddr; 2217 if (ehdr->e_type == ET_DYN) { 2218 /* The image indicates that it can be loaded anywhere. Find a 2219 location that can hold the memory space required. If the 2220 image is pre-linked, LOADDR will be non-zero. Since we do 2221 not supply MAP_FIXED here we'll use that address if and 2222 only if it remains available. */ 2223 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 2224 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 2225 -1, 0); 2226 if (load_addr == -1) { 2227 goto exit_perror; 2228 } 2229 } else if (pinterp_name != NULL) { 2230 /* This is the main executable. Make sure that the low 2231 address does not conflict with MMAP_MIN_ADDR or the 2232 QEMU application itself. */ 2233 probe_guest_base(image_name, loaddr, hiaddr); 2234 } 2235 load_bias = load_addr - loaddr; 2236 2237 if (elf_is_fdpic(ehdr)) { 2238 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 2239 g_malloc(sizeof(*loadsegs) * info->nsegs); 2240 2241 for (i = 0; i < ehdr->e_phnum; ++i) { 2242 switch (phdr[i].p_type) { 2243 case PT_DYNAMIC: 2244 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 2245 break; 2246 case PT_LOAD: 2247 loadsegs->addr = phdr[i].p_vaddr + load_bias; 2248 loadsegs->p_vaddr = phdr[i].p_vaddr; 2249 loadsegs->p_memsz = phdr[i].p_memsz; 2250 ++loadsegs; 2251 break; 2252 } 2253 } 2254 } 2255 2256 info->load_bias = load_bias; 2257 info->load_addr = load_addr; 2258 info->entry = ehdr->e_entry + load_bias; 2259 info->start_code = -1; 2260 info->end_code = 0; 2261 info->start_data = -1; 2262 info->end_data = 0; 2263 info->brk = 0; 2264 info->elf_flags = ehdr->e_flags; 2265 2266 for (i = 0; i < ehdr->e_phnum; i++) { 2267 struct elf_phdr *eppnt = phdr + i; 2268 if (eppnt->p_type == PT_LOAD) { 2269 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 2270 int elf_prot = 0; 2271 2272 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 2273 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 2274 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 2275 2276 vaddr = load_bias + eppnt->p_vaddr; 2277 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 2278 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 2279 2280 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 2281 elf_prot, MAP_PRIVATE | MAP_FIXED, 2282 image_fd, eppnt->p_offset - vaddr_po); 2283 if (error == -1) { 2284 goto exit_perror; 2285 } 2286 2287 vaddr_ef = vaddr + eppnt->p_filesz; 2288 vaddr_em = vaddr + eppnt->p_memsz; 2289 2290 /* If the load segment requests extra zeros (e.g. bss), map it. */ 2291 if (vaddr_ef < vaddr_em) { 2292 zero_bss(vaddr_ef, vaddr_em, elf_prot); 2293 } 2294 2295 /* Find the full program boundaries. */ 2296 if (elf_prot & PROT_EXEC) { 2297 if (vaddr < info->start_code) { 2298 info->start_code = vaddr; 2299 } 2300 if (vaddr_ef > info->end_code) { 2301 info->end_code = vaddr_ef; 2302 } 2303 } 2304 if (elf_prot & PROT_WRITE) { 2305 if (vaddr < info->start_data) { 2306 info->start_data = vaddr; 2307 } 2308 if (vaddr_ef > info->end_data) { 2309 info->end_data = vaddr_ef; 2310 } 2311 if (vaddr_em > info->brk) { 2312 info->brk = vaddr_em; 2313 } 2314 } 2315 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 2316 char *interp_name; 2317 2318 if (*pinterp_name) { 2319 errmsg = "Multiple PT_INTERP entries"; 2320 goto exit_errmsg; 2321 } 2322 interp_name = malloc(eppnt->p_filesz); 2323 if (!interp_name) { 2324 goto exit_perror; 2325 } 2326 2327 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 2328 memcpy(interp_name, bprm_buf + eppnt->p_offset, 2329 eppnt->p_filesz); 2330 } else { 2331 retval = pread(image_fd, interp_name, eppnt->p_filesz, 2332 eppnt->p_offset); 2333 if (retval != eppnt->p_filesz) { 2334 goto exit_perror; 2335 } 2336 } 2337 if (interp_name[eppnt->p_filesz - 1] != 0) { 2338 errmsg = "Invalid PT_INTERP entry"; 2339 goto exit_errmsg; 2340 } 2341 *pinterp_name = interp_name; 2342 } 2343 } 2344 2345 if (info->end_data == 0) { 2346 info->start_data = info->end_code; 2347 info->end_data = info->end_code; 2348 info->brk = info->end_code; 2349 } 2350 2351 if (qemu_log_enabled()) { 2352 load_symbols(ehdr, image_fd, load_bias); 2353 } 2354 2355 mmap_unlock(); 2356 2357 close(image_fd); 2358 return; 2359 2360 exit_read: 2361 if (retval >= 0) { 2362 errmsg = "Incomplete read of file header"; 2363 goto exit_errmsg; 2364 } 2365 exit_perror: 2366 errmsg = strerror(errno); 2367 exit_errmsg: 2368 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2369 exit(-1); 2370 } 2371 2372 static void load_elf_interp(const char *filename, struct image_info *info, 2373 char bprm_buf[BPRM_BUF_SIZE]) 2374 { 2375 int fd, retval; 2376 2377 fd = open(path(filename), O_RDONLY); 2378 if (fd < 0) { 2379 goto exit_perror; 2380 } 2381 2382 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2383 if (retval < 0) { 2384 goto exit_perror; 2385 } 2386 if (retval < BPRM_BUF_SIZE) { 2387 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2388 } 2389 2390 load_elf_image(filename, fd, info, NULL, bprm_buf); 2391 return; 2392 2393 exit_perror: 2394 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2395 exit(-1); 2396 } 2397 2398 static int symfind(const void *s0, const void *s1) 2399 { 2400 target_ulong addr = *(target_ulong *)s0; 2401 struct elf_sym *sym = (struct elf_sym *)s1; 2402 int result = 0; 2403 if (addr < sym->st_value) { 2404 result = -1; 2405 } else if (addr >= sym->st_value + sym->st_size) { 2406 result = 1; 2407 } 2408 return result; 2409 } 2410 2411 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2412 { 2413 #if ELF_CLASS == ELFCLASS32 2414 struct elf_sym *syms = s->disas_symtab.elf32; 2415 #else 2416 struct elf_sym *syms = s->disas_symtab.elf64; 2417 #endif 2418 2419 // binary search 2420 struct elf_sym *sym; 2421 2422 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2423 if (sym != NULL) { 2424 return s->disas_strtab + sym->st_name; 2425 } 2426 2427 return ""; 2428 } 2429 2430 /* FIXME: This should use elf_ops.h */ 2431 static int symcmp(const void *s0, const void *s1) 2432 { 2433 struct elf_sym *sym0 = (struct elf_sym *)s0; 2434 struct elf_sym *sym1 = (struct elf_sym *)s1; 2435 return (sym0->st_value < sym1->st_value) 2436 ? -1 2437 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2438 } 2439 2440 /* Best attempt to load symbols from this ELF object. */ 2441 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2442 { 2443 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2444 uint64_t segsz; 2445 struct elf_shdr *shdr; 2446 char *strings = NULL; 2447 struct syminfo *s = NULL; 2448 struct elf_sym *new_syms, *syms = NULL; 2449 2450 shnum = hdr->e_shnum; 2451 i = shnum * sizeof(struct elf_shdr); 2452 shdr = (struct elf_shdr *)alloca(i); 2453 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2454 return; 2455 } 2456 2457 bswap_shdr(shdr, shnum); 2458 for (i = 0; i < shnum; ++i) { 2459 if (shdr[i].sh_type == SHT_SYMTAB) { 2460 sym_idx = i; 2461 str_idx = shdr[i].sh_link; 2462 goto found; 2463 } 2464 } 2465 2466 /* There will be no symbol table if the file was stripped. */ 2467 return; 2468 2469 found: 2470 /* Now know where the strtab and symtab are. Snarf them. */ 2471 s = g_try_new(struct syminfo, 1); 2472 if (!s) { 2473 goto give_up; 2474 } 2475 2476 segsz = shdr[str_idx].sh_size; 2477 s->disas_strtab = strings = g_try_malloc(segsz); 2478 if (!strings || 2479 pread(fd, strings, segsz, shdr[str_idx].sh_offset) != segsz) { 2480 goto give_up; 2481 } 2482 2483 segsz = shdr[sym_idx].sh_size; 2484 syms = g_try_malloc(segsz); 2485 if (!syms || pread(fd, syms, segsz, shdr[sym_idx].sh_offset) != segsz) { 2486 goto give_up; 2487 } 2488 2489 if (segsz / sizeof(struct elf_sym) > INT_MAX) { 2490 /* Implausibly large symbol table: give up rather than ploughing 2491 * on with the number of symbols calculation overflowing 2492 */ 2493 goto give_up; 2494 } 2495 nsyms = segsz / sizeof(struct elf_sym); 2496 for (i = 0; i < nsyms; ) { 2497 bswap_sym(syms + i); 2498 /* Throw away entries which we do not need. */ 2499 if (syms[i].st_shndx == SHN_UNDEF 2500 || syms[i].st_shndx >= SHN_LORESERVE 2501 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2502 if (i < --nsyms) { 2503 syms[i] = syms[nsyms]; 2504 } 2505 } else { 2506 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2507 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2508 syms[i].st_value &= ~(target_ulong)1; 2509 #endif 2510 syms[i].st_value += load_bias; 2511 i++; 2512 } 2513 } 2514 2515 /* No "useful" symbol. */ 2516 if (nsyms == 0) { 2517 goto give_up; 2518 } 2519 2520 /* Attempt to free the storage associated with the local symbols 2521 that we threw away. Whether or not this has any effect on the 2522 memory allocation depends on the malloc implementation and how 2523 many symbols we managed to discard. */ 2524 new_syms = g_try_renew(struct elf_sym, syms, nsyms); 2525 if (new_syms == NULL) { 2526 goto give_up; 2527 } 2528 syms = new_syms; 2529 2530 qsort(syms, nsyms, sizeof(*syms), symcmp); 2531 2532 s->disas_num_syms = nsyms; 2533 #if ELF_CLASS == ELFCLASS32 2534 s->disas_symtab.elf32 = syms; 2535 #else 2536 s->disas_symtab.elf64 = syms; 2537 #endif 2538 s->lookup_symbol = lookup_symbolxx; 2539 s->next = syminfos; 2540 syminfos = s; 2541 2542 return; 2543 2544 give_up: 2545 g_free(s); 2546 g_free(strings); 2547 g_free(syms); 2548 } 2549 2550 uint32_t get_elf_eflags(int fd) 2551 { 2552 struct elfhdr ehdr; 2553 off_t offset; 2554 int ret; 2555 2556 /* Read ELF header */ 2557 offset = lseek(fd, 0, SEEK_SET); 2558 if (offset == (off_t) -1) { 2559 return 0; 2560 } 2561 ret = read(fd, &ehdr, sizeof(ehdr)); 2562 if (ret < sizeof(ehdr)) { 2563 return 0; 2564 } 2565 offset = lseek(fd, offset, SEEK_SET); 2566 if (offset == (off_t) -1) { 2567 return 0; 2568 } 2569 2570 /* Check ELF signature */ 2571 if (!elf_check_ident(&ehdr)) { 2572 return 0; 2573 } 2574 2575 /* check header */ 2576 bswap_ehdr(&ehdr); 2577 if (!elf_check_ehdr(&ehdr)) { 2578 return 0; 2579 } 2580 2581 /* return architecture id */ 2582 return ehdr.e_flags; 2583 } 2584 2585 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2586 { 2587 struct image_info interp_info; 2588 struct elfhdr elf_ex; 2589 char *elf_interpreter = NULL; 2590 char *scratch; 2591 2592 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2593 2594 load_elf_image(bprm->filename, bprm->fd, info, 2595 &elf_interpreter, bprm->buf); 2596 2597 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2598 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2599 when we load the interpreter. */ 2600 elf_ex = *(struct elfhdr *)bprm->buf; 2601 2602 /* Do this so that we can load the interpreter, if need be. We will 2603 change some of these later */ 2604 bprm->p = setup_arg_pages(bprm, info); 2605 2606 scratch = g_new0(char, TARGET_PAGE_SIZE); 2607 if (STACK_GROWS_DOWN) { 2608 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2609 bprm->p, info->stack_limit); 2610 info->file_string = bprm->p; 2611 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2612 bprm->p, info->stack_limit); 2613 info->env_strings = bprm->p; 2614 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2615 bprm->p, info->stack_limit); 2616 info->arg_strings = bprm->p; 2617 } else { 2618 info->arg_strings = bprm->p; 2619 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2620 bprm->p, info->stack_limit); 2621 info->env_strings = bprm->p; 2622 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2623 bprm->p, info->stack_limit); 2624 info->file_string = bprm->p; 2625 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2626 bprm->p, info->stack_limit); 2627 } 2628 2629 g_free(scratch); 2630 2631 if (!bprm->p) { 2632 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2633 exit(-1); 2634 } 2635 2636 if (elf_interpreter) { 2637 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2638 2639 /* If the program interpreter is one of these two, then assume 2640 an iBCS2 image. Otherwise assume a native linux image. */ 2641 2642 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2643 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2644 info->personality = PER_SVR4; 2645 2646 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2647 and some applications "depend" upon this behavior. Since 2648 we do not have the power to recompile these, we emulate 2649 the SVr4 behavior. Sigh. */ 2650 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2651 MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 2652 } 2653 } 2654 2655 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2656 info, (elf_interpreter ? &interp_info : NULL)); 2657 info->start_stack = bprm->p; 2658 2659 /* If we have an interpreter, set that as the program's entry point. 2660 Copy the load_bias as well, to help PPC64 interpret the entry 2661 point as a function descriptor. Do this after creating elf tables 2662 so that we copy the original program entry point into the AUXV. */ 2663 if (elf_interpreter) { 2664 info->load_bias = interp_info.load_bias; 2665 info->entry = interp_info.entry; 2666 free(elf_interpreter); 2667 } 2668 2669 #ifdef USE_ELF_CORE_DUMP 2670 bprm->core_dump = &elf_core_dump; 2671 #endif 2672 2673 return 0; 2674 } 2675 2676 #ifdef USE_ELF_CORE_DUMP 2677 /* 2678 * Definitions to generate Intel SVR4-like core files. 2679 * These mostly have the same names as the SVR4 types with "target_elf_" 2680 * tacked on the front to prevent clashes with linux definitions, 2681 * and the typedef forms have been avoided. This is mostly like 2682 * the SVR4 structure, but more Linuxy, with things that Linux does 2683 * not support and which gdb doesn't really use excluded. 2684 * 2685 * Fields we don't dump (their contents is zero) in linux-user qemu 2686 * are marked with XXX. 2687 * 2688 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2689 * 2690 * Porting ELF coredump for target is (quite) simple process. First you 2691 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2692 * the target resides): 2693 * 2694 * #define USE_ELF_CORE_DUMP 2695 * 2696 * Next you define type of register set used for dumping. ELF specification 2697 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2698 * 2699 * typedef <target_regtype> target_elf_greg_t; 2700 * #define ELF_NREG <number of registers> 2701 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2702 * 2703 * Last step is to implement target specific function that copies registers 2704 * from given cpu into just specified register set. Prototype is: 2705 * 2706 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2707 * const CPUArchState *env); 2708 * 2709 * Parameters: 2710 * regs - copy register values into here (allocated and zeroed by caller) 2711 * env - copy registers from here 2712 * 2713 * Example for ARM target is provided in this file. 2714 */ 2715 2716 /* An ELF note in memory */ 2717 struct memelfnote { 2718 const char *name; 2719 size_t namesz; 2720 size_t namesz_rounded; 2721 int type; 2722 size_t datasz; 2723 size_t datasz_rounded; 2724 void *data; 2725 size_t notesz; 2726 }; 2727 2728 struct target_elf_siginfo { 2729 abi_int si_signo; /* signal number */ 2730 abi_int si_code; /* extra code */ 2731 abi_int si_errno; /* errno */ 2732 }; 2733 2734 struct target_elf_prstatus { 2735 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2736 abi_short pr_cursig; /* Current signal */ 2737 abi_ulong pr_sigpend; /* XXX */ 2738 abi_ulong pr_sighold; /* XXX */ 2739 target_pid_t pr_pid; 2740 target_pid_t pr_ppid; 2741 target_pid_t pr_pgrp; 2742 target_pid_t pr_sid; 2743 struct target_timeval pr_utime; /* XXX User time */ 2744 struct target_timeval pr_stime; /* XXX System time */ 2745 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2746 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2747 target_elf_gregset_t pr_reg; /* GP registers */ 2748 abi_int pr_fpvalid; /* XXX */ 2749 }; 2750 2751 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2752 2753 struct target_elf_prpsinfo { 2754 char pr_state; /* numeric process state */ 2755 char pr_sname; /* char for pr_state */ 2756 char pr_zomb; /* zombie */ 2757 char pr_nice; /* nice val */ 2758 abi_ulong pr_flag; /* flags */ 2759 target_uid_t pr_uid; 2760 target_gid_t pr_gid; 2761 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2762 /* Lots missing */ 2763 char pr_fname[16]; /* filename of executable */ 2764 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2765 }; 2766 2767 /* Here is the structure in which status of each thread is captured. */ 2768 struct elf_thread_status { 2769 QTAILQ_ENTRY(elf_thread_status) ets_link; 2770 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2771 #if 0 2772 elf_fpregset_t fpu; /* NT_PRFPREG */ 2773 struct task_struct *thread; 2774 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2775 #endif 2776 struct memelfnote notes[1]; 2777 int num_notes; 2778 }; 2779 2780 struct elf_note_info { 2781 struct memelfnote *notes; 2782 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2783 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2784 2785 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2786 #if 0 2787 /* 2788 * Current version of ELF coredump doesn't support 2789 * dumping fp regs etc. 2790 */ 2791 elf_fpregset_t *fpu; 2792 elf_fpxregset_t *xfpu; 2793 int thread_status_size; 2794 #endif 2795 int notes_size; 2796 int numnote; 2797 }; 2798 2799 struct vm_area_struct { 2800 target_ulong vma_start; /* start vaddr of memory region */ 2801 target_ulong vma_end; /* end vaddr of memory region */ 2802 abi_ulong vma_flags; /* protection etc. flags for the region */ 2803 QTAILQ_ENTRY(vm_area_struct) vma_link; 2804 }; 2805 2806 struct mm_struct { 2807 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2808 int mm_count; /* number of mappings */ 2809 }; 2810 2811 static struct mm_struct *vma_init(void); 2812 static void vma_delete(struct mm_struct *); 2813 static int vma_add_mapping(struct mm_struct *, target_ulong, 2814 target_ulong, abi_ulong); 2815 static int vma_get_mapping_count(const struct mm_struct *); 2816 static struct vm_area_struct *vma_first(const struct mm_struct *); 2817 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2818 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2819 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2820 unsigned long flags); 2821 2822 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2823 static void fill_note(struct memelfnote *, const char *, int, 2824 unsigned int, void *); 2825 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2826 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2827 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2828 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2829 static size_t note_size(const struct memelfnote *); 2830 static void free_note_info(struct elf_note_info *); 2831 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2832 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2833 static int core_dump_filename(const TaskState *, char *, size_t); 2834 2835 static int dump_write(int, const void *, size_t); 2836 static int write_note(struct memelfnote *, int); 2837 static int write_note_info(struct elf_note_info *, int); 2838 2839 #ifdef BSWAP_NEEDED 2840 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2841 { 2842 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2843 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2844 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2845 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2846 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2847 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2848 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2849 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2850 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2851 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2852 /* cpu times are not filled, so we skip them */ 2853 /* regs should be in correct format already */ 2854 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2855 } 2856 2857 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2858 { 2859 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2860 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2861 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2862 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2863 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2864 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2865 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2866 } 2867 2868 static void bswap_note(struct elf_note *en) 2869 { 2870 bswap32s(&en->n_namesz); 2871 bswap32s(&en->n_descsz); 2872 bswap32s(&en->n_type); 2873 } 2874 #else 2875 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2876 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2877 static inline void bswap_note(struct elf_note *en) { } 2878 #endif /* BSWAP_NEEDED */ 2879 2880 /* 2881 * Minimal support for linux memory regions. These are needed 2882 * when we are finding out what memory exactly belongs to 2883 * emulated process. No locks needed here, as long as 2884 * thread that received the signal is stopped. 2885 */ 2886 2887 static struct mm_struct *vma_init(void) 2888 { 2889 struct mm_struct *mm; 2890 2891 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2892 return (NULL); 2893 2894 mm->mm_count = 0; 2895 QTAILQ_INIT(&mm->mm_mmap); 2896 2897 return (mm); 2898 } 2899 2900 static void vma_delete(struct mm_struct *mm) 2901 { 2902 struct vm_area_struct *vma; 2903 2904 while ((vma = vma_first(mm)) != NULL) { 2905 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2906 g_free(vma); 2907 } 2908 g_free(mm); 2909 } 2910 2911 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2912 target_ulong end, abi_ulong flags) 2913 { 2914 struct vm_area_struct *vma; 2915 2916 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2917 return (-1); 2918 2919 vma->vma_start = start; 2920 vma->vma_end = end; 2921 vma->vma_flags = flags; 2922 2923 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2924 mm->mm_count++; 2925 2926 return (0); 2927 } 2928 2929 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2930 { 2931 return (QTAILQ_FIRST(&mm->mm_mmap)); 2932 } 2933 2934 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2935 { 2936 return (QTAILQ_NEXT(vma, vma_link)); 2937 } 2938 2939 static int vma_get_mapping_count(const struct mm_struct *mm) 2940 { 2941 return (mm->mm_count); 2942 } 2943 2944 /* 2945 * Calculate file (dump) size of given memory region. 2946 */ 2947 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2948 { 2949 /* if we cannot even read the first page, skip it */ 2950 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2951 return (0); 2952 2953 /* 2954 * Usually we don't dump executable pages as they contain 2955 * non-writable code that debugger can read directly from 2956 * target library etc. However, thread stacks are marked 2957 * also executable so we read in first page of given region 2958 * and check whether it contains elf header. If there is 2959 * no elf header, we dump it. 2960 */ 2961 if (vma->vma_flags & PROT_EXEC) { 2962 char page[TARGET_PAGE_SIZE]; 2963 2964 copy_from_user(page, vma->vma_start, sizeof (page)); 2965 if ((page[EI_MAG0] == ELFMAG0) && 2966 (page[EI_MAG1] == ELFMAG1) && 2967 (page[EI_MAG2] == ELFMAG2) && 2968 (page[EI_MAG3] == ELFMAG3)) { 2969 /* 2970 * Mappings are possibly from ELF binary. Don't dump 2971 * them. 2972 */ 2973 return (0); 2974 } 2975 } 2976 2977 return (vma->vma_end - vma->vma_start); 2978 } 2979 2980 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2981 unsigned long flags) 2982 { 2983 struct mm_struct *mm = (struct mm_struct *)priv; 2984 2985 vma_add_mapping(mm, start, end, flags); 2986 return (0); 2987 } 2988 2989 static void fill_note(struct memelfnote *note, const char *name, int type, 2990 unsigned int sz, void *data) 2991 { 2992 unsigned int namesz; 2993 2994 namesz = strlen(name) + 1; 2995 note->name = name; 2996 note->namesz = namesz; 2997 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2998 note->type = type; 2999 note->datasz = sz; 3000 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 3001 3002 note->data = data; 3003 3004 /* 3005 * We calculate rounded up note size here as specified by 3006 * ELF document. 3007 */ 3008 note->notesz = sizeof (struct elf_note) + 3009 note->namesz_rounded + note->datasz_rounded; 3010 } 3011 3012 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 3013 uint32_t flags) 3014 { 3015 (void) memset(elf, 0, sizeof(*elf)); 3016 3017 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 3018 elf->e_ident[EI_CLASS] = ELF_CLASS; 3019 elf->e_ident[EI_DATA] = ELF_DATA; 3020 elf->e_ident[EI_VERSION] = EV_CURRENT; 3021 elf->e_ident[EI_OSABI] = ELF_OSABI; 3022 3023 elf->e_type = ET_CORE; 3024 elf->e_machine = machine; 3025 elf->e_version = EV_CURRENT; 3026 elf->e_phoff = sizeof(struct elfhdr); 3027 elf->e_flags = flags; 3028 elf->e_ehsize = sizeof(struct elfhdr); 3029 elf->e_phentsize = sizeof(struct elf_phdr); 3030 elf->e_phnum = segs; 3031 3032 bswap_ehdr(elf); 3033 } 3034 3035 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 3036 { 3037 phdr->p_type = PT_NOTE; 3038 phdr->p_offset = offset; 3039 phdr->p_vaddr = 0; 3040 phdr->p_paddr = 0; 3041 phdr->p_filesz = sz; 3042 phdr->p_memsz = 0; 3043 phdr->p_flags = 0; 3044 phdr->p_align = 0; 3045 3046 bswap_phdr(phdr, 1); 3047 } 3048 3049 static size_t note_size(const struct memelfnote *note) 3050 { 3051 return (note->notesz); 3052 } 3053 3054 static void fill_prstatus(struct target_elf_prstatus *prstatus, 3055 const TaskState *ts, int signr) 3056 { 3057 (void) memset(prstatus, 0, sizeof (*prstatus)); 3058 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 3059 prstatus->pr_pid = ts->ts_tid; 3060 prstatus->pr_ppid = getppid(); 3061 prstatus->pr_pgrp = getpgrp(); 3062 prstatus->pr_sid = getsid(0); 3063 3064 bswap_prstatus(prstatus); 3065 } 3066 3067 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 3068 { 3069 char *base_filename; 3070 unsigned int i, len; 3071 3072 (void) memset(psinfo, 0, sizeof (*psinfo)); 3073 3074 len = ts->info->arg_end - ts->info->arg_start; 3075 if (len >= ELF_PRARGSZ) 3076 len = ELF_PRARGSZ - 1; 3077 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 3078 return -EFAULT; 3079 for (i = 0; i < len; i++) 3080 if (psinfo->pr_psargs[i] == 0) 3081 psinfo->pr_psargs[i] = ' '; 3082 psinfo->pr_psargs[len] = 0; 3083 3084 psinfo->pr_pid = getpid(); 3085 psinfo->pr_ppid = getppid(); 3086 psinfo->pr_pgrp = getpgrp(); 3087 psinfo->pr_sid = getsid(0); 3088 psinfo->pr_uid = getuid(); 3089 psinfo->pr_gid = getgid(); 3090 3091 base_filename = g_path_get_basename(ts->bprm->filename); 3092 /* 3093 * Using strncpy here is fine: at max-length, 3094 * this field is not NUL-terminated. 3095 */ 3096 (void) strncpy(psinfo->pr_fname, base_filename, 3097 sizeof(psinfo->pr_fname)); 3098 3099 g_free(base_filename); 3100 bswap_psinfo(psinfo); 3101 return (0); 3102 } 3103 3104 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 3105 { 3106 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 3107 elf_addr_t orig_auxv = auxv; 3108 void *ptr; 3109 int len = ts->info->auxv_len; 3110 3111 /* 3112 * Auxiliary vector is stored in target process stack. It contains 3113 * {type, value} pairs that we need to dump into note. This is not 3114 * strictly necessary but we do it here for sake of completeness. 3115 */ 3116 3117 /* read in whole auxv vector and copy it to memelfnote */ 3118 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 3119 if (ptr != NULL) { 3120 fill_note(note, "CORE", NT_AUXV, len, ptr); 3121 unlock_user(ptr, auxv, len); 3122 } 3123 } 3124 3125 /* 3126 * Constructs name of coredump file. We have following convention 3127 * for the name: 3128 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 3129 * 3130 * Returns 0 in case of success, -1 otherwise (errno is set). 3131 */ 3132 static int core_dump_filename(const TaskState *ts, char *buf, 3133 size_t bufsize) 3134 { 3135 char timestamp[64]; 3136 char *base_filename = NULL; 3137 struct timeval tv; 3138 struct tm tm; 3139 3140 assert(bufsize >= PATH_MAX); 3141 3142 if (gettimeofday(&tv, NULL) < 0) { 3143 (void) fprintf(stderr, "unable to get current timestamp: %s", 3144 strerror(errno)); 3145 return (-1); 3146 } 3147 3148 base_filename = g_path_get_basename(ts->bprm->filename); 3149 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 3150 localtime_r(&tv.tv_sec, &tm)); 3151 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 3152 base_filename, timestamp, (int)getpid()); 3153 g_free(base_filename); 3154 3155 return (0); 3156 } 3157 3158 static int dump_write(int fd, const void *ptr, size_t size) 3159 { 3160 const char *bufp = (const char *)ptr; 3161 ssize_t bytes_written, bytes_left; 3162 struct rlimit dumpsize; 3163 off_t pos; 3164 3165 bytes_written = 0; 3166 getrlimit(RLIMIT_CORE, &dumpsize); 3167 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 3168 if (errno == ESPIPE) { /* not a seekable stream */ 3169 bytes_left = size; 3170 } else { 3171 return pos; 3172 } 3173 } else { 3174 if (dumpsize.rlim_cur <= pos) { 3175 return -1; 3176 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 3177 bytes_left = size; 3178 } else { 3179 size_t limit_left=dumpsize.rlim_cur - pos; 3180 bytes_left = limit_left >= size ? size : limit_left ; 3181 } 3182 } 3183 3184 /* 3185 * In normal conditions, single write(2) should do but 3186 * in case of socket etc. this mechanism is more portable. 3187 */ 3188 do { 3189 bytes_written = write(fd, bufp, bytes_left); 3190 if (bytes_written < 0) { 3191 if (errno == EINTR) 3192 continue; 3193 return (-1); 3194 } else if (bytes_written == 0) { /* eof */ 3195 return (-1); 3196 } 3197 bufp += bytes_written; 3198 bytes_left -= bytes_written; 3199 } while (bytes_left > 0); 3200 3201 return (0); 3202 } 3203 3204 static int write_note(struct memelfnote *men, int fd) 3205 { 3206 struct elf_note en; 3207 3208 en.n_namesz = men->namesz; 3209 en.n_type = men->type; 3210 en.n_descsz = men->datasz; 3211 3212 bswap_note(&en); 3213 3214 if (dump_write(fd, &en, sizeof(en)) != 0) 3215 return (-1); 3216 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 3217 return (-1); 3218 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 3219 return (-1); 3220 3221 return (0); 3222 } 3223 3224 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 3225 { 3226 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3227 TaskState *ts = (TaskState *)cpu->opaque; 3228 struct elf_thread_status *ets; 3229 3230 ets = g_malloc0(sizeof (*ets)); 3231 ets->num_notes = 1; /* only prstatus is dumped */ 3232 fill_prstatus(&ets->prstatus, ts, 0); 3233 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 3234 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 3235 &ets->prstatus); 3236 3237 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 3238 3239 info->notes_size += note_size(&ets->notes[0]); 3240 } 3241 3242 static void init_note_info(struct elf_note_info *info) 3243 { 3244 /* Initialize the elf_note_info structure so that it is at 3245 * least safe to call free_note_info() on it. Must be 3246 * called before calling fill_note_info(). 3247 */ 3248 memset(info, 0, sizeof (*info)); 3249 QTAILQ_INIT(&info->thread_list); 3250 } 3251 3252 static int fill_note_info(struct elf_note_info *info, 3253 long signr, const CPUArchState *env) 3254 { 3255 #define NUMNOTES 3 3256 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3257 TaskState *ts = (TaskState *)cpu->opaque; 3258 int i; 3259 3260 info->notes = g_new0(struct memelfnote, NUMNOTES); 3261 if (info->notes == NULL) 3262 return (-ENOMEM); 3263 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 3264 if (info->prstatus == NULL) 3265 return (-ENOMEM); 3266 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 3267 if (info->prstatus == NULL) 3268 return (-ENOMEM); 3269 3270 /* 3271 * First fill in status (and registers) of current thread 3272 * including process info & aux vector. 3273 */ 3274 fill_prstatus(info->prstatus, ts, signr); 3275 elf_core_copy_regs(&info->prstatus->pr_reg, env); 3276 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 3277 sizeof (*info->prstatus), info->prstatus); 3278 fill_psinfo(info->psinfo, ts); 3279 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 3280 sizeof (*info->psinfo), info->psinfo); 3281 fill_auxv_note(&info->notes[2], ts); 3282 info->numnote = 3; 3283 3284 info->notes_size = 0; 3285 for (i = 0; i < info->numnote; i++) 3286 info->notes_size += note_size(&info->notes[i]); 3287 3288 /* read and fill status of all threads */ 3289 cpu_list_lock(); 3290 CPU_FOREACH(cpu) { 3291 if (cpu == thread_cpu) { 3292 continue; 3293 } 3294 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 3295 } 3296 cpu_list_unlock(); 3297 3298 return (0); 3299 } 3300 3301 static void free_note_info(struct elf_note_info *info) 3302 { 3303 struct elf_thread_status *ets; 3304 3305 while (!QTAILQ_EMPTY(&info->thread_list)) { 3306 ets = QTAILQ_FIRST(&info->thread_list); 3307 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 3308 g_free(ets); 3309 } 3310 3311 g_free(info->prstatus); 3312 g_free(info->psinfo); 3313 g_free(info->notes); 3314 } 3315 3316 static int write_note_info(struct elf_note_info *info, int fd) 3317 { 3318 struct elf_thread_status *ets; 3319 int i, error = 0; 3320 3321 /* write prstatus, psinfo and auxv for current thread */ 3322 for (i = 0; i < info->numnote; i++) 3323 if ((error = write_note(&info->notes[i], fd)) != 0) 3324 return (error); 3325 3326 /* write prstatus for each thread */ 3327 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 3328 if ((error = write_note(&ets->notes[0], fd)) != 0) 3329 return (error); 3330 } 3331 3332 return (0); 3333 } 3334 3335 /* 3336 * Write out ELF coredump. 3337 * 3338 * See documentation of ELF object file format in: 3339 * http://www.caldera.com/developers/devspecs/gabi41.pdf 3340 * 3341 * Coredump format in linux is following: 3342 * 3343 * 0 +----------------------+ \ 3344 * | ELF header | ET_CORE | 3345 * +----------------------+ | 3346 * | ELF program headers | |--- headers 3347 * | - NOTE section | | 3348 * | - PT_LOAD sections | | 3349 * +----------------------+ / 3350 * | NOTEs: | 3351 * | - NT_PRSTATUS | 3352 * | - NT_PRSINFO | 3353 * | - NT_AUXV | 3354 * +----------------------+ <-- aligned to target page 3355 * | Process memory dump | 3356 * : : 3357 * . . 3358 * : : 3359 * | | 3360 * +----------------------+ 3361 * 3362 * NT_PRSTATUS -> struct elf_prstatus (per thread) 3363 * NT_PRSINFO -> struct elf_prpsinfo 3364 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 3365 * 3366 * Format follows System V format as close as possible. Current 3367 * version limitations are as follows: 3368 * - no floating point registers are dumped 3369 * 3370 * Function returns 0 in case of success, negative errno otherwise. 3371 * 3372 * TODO: make this work also during runtime: it should be 3373 * possible to force coredump from running process and then 3374 * continue processing. For example qemu could set up SIGUSR2 3375 * handler (provided that target process haven't registered 3376 * handler for that) that does the dump when signal is received. 3377 */ 3378 static int elf_core_dump(int signr, const CPUArchState *env) 3379 { 3380 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 3381 const TaskState *ts = (const TaskState *)cpu->opaque; 3382 struct vm_area_struct *vma = NULL; 3383 char corefile[PATH_MAX]; 3384 struct elf_note_info info; 3385 struct elfhdr elf; 3386 struct elf_phdr phdr; 3387 struct rlimit dumpsize; 3388 struct mm_struct *mm = NULL; 3389 off_t offset = 0, data_offset = 0; 3390 int segs = 0; 3391 int fd = -1; 3392 3393 init_note_info(&info); 3394 3395 errno = 0; 3396 getrlimit(RLIMIT_CORE, &dumpsize); 3397 if (dumpsize.rlim_cur == 0) 3398 return 0; 3399 3400 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 3401 return (-errno); 3402 3403 if ((fd = open(corefile, O_WRONLY | O_CREAT, 3404 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 3405 return (-errno); 3406 3407 /* 3408 * Walk through target process memory mappings and 3409 * set up structure containing this information. After 3410 * this point vma_xxx functions can be used. 3411 */ 3412 if ((mm = vma_init()) == NULL) 3413 goto out; 3414 3415 walk_memory_regions(mm, vma_walker); 3416 segs = vma_get_mapping_count(mm); 3417 3418 /* 3419 * Construct valid coredump ELF header. We also 3420 * add one more segment for notes. 3421 */ 3422 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3423 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3424 goto out; 3425 3426 /* fill in the in-memory version of notes */ 3427 if (fill_note_info(&info, signr, env) < 0) 3428 goto out; 3429 3430 offset += sizeof (elf); /* elf header */ 3431 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3432 3433 /* write out notes program header */ 3434 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3435 3436 offset += info.notes_size; 3437 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3438 goto out; 3439 3440 /* 3441 * ELF specification wants data to start at page boundary so 3442 * we align it here. 3443 */ 3444 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3445 3446 /* 3447 * Write program headers for memory regions mapped in 3448 * the target process. 3449 */ 3450 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3451 (void) memset(&phdr, 0, sizeof (phdr)); 3452 3453 phdr.p_type = PT_LOAD; 3454 phdr.p_offset = offset; 3455 phdr.p_vaddr = vma->vma_start; 3456 phdr.p_paddr = 0; 3457 phdr.p_filesz = vma_dump_size(vma); 3458 offset += phdr.p_filesz; 3459 phdr.p_memsz = vma->vma_end - vma->vma_start; 3460 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3461 if (vma->vma_flags & PROT_WRITE) 3462 phdr.p_flags |= PF_W; 3463 if (vma->vma_flags & PROT_EXEC) 3464 phdr.p_flags |= PF_X; 3465 phdr.p_align = ELF_EXEC_PAGESIZE; 3466 3467 bswap_phdr(&phdr, 1); 3468 if (dump_write(fd, &phdr, sizeof(phdr)) != 0) { 3469 goto out; 3470 } 3471 } 3472 3473 /* 3474 * Next we write notes just after program headers. No 3475 * alignment needed here. 3476 */ 3477 if (write_note_info(&info, fd) < 0) 3478 goto out; 3479 3480 /* align data to page boundary */ 3481 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3482 goto out; 3483 3484 /* 3485 * Finally we can dump process memory into corefile as well. 3486 */ 3487 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3488 abi_ulong addr; 3489 abi_ulong end; 3490 3491 end = vma->vma_start + vma_dump_size(vma); 3492 3493 for (addr = vma->vma_start; addr < end; 3494 addr += TARGET_PAGE_SIZE) { 3495 char page[TARGET_PAGE_SIZE]; 3496 int error; 3497 3498 /* 3499 * Read in page from target process memory and 3500 * write it to coredump file. 3501 */ 3502 error = copy_from_user(page, addr, sizeof (page)); 3503 if (error != 0) { 3504 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3505 addr); 3506 errno = -error; 3507 goto out; 3508 } 3509 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3510 goto out; 3511 } 3512 } 3513 3514 out: 3515 free_note_info(&info); 3516 if (mm != NULL) 3517 vma_delete(mm); 3518 (void) close(fd); 3519 3520 if (errno != 0) 3521 return (-errno); 3522 return (0); 3523 } 3524 #endif /* USE_ELF_CORE_DUMP */ 3525 3526 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3527 { 3528 init_thread(regs, infop); 3529 } 3530