xref: /openbmc/qemu/linux-user/elfload.c (revision 891f8dcd)
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include "qemu/osdep.h"
3 #include <sys/param.h>
4 
5 #include <sys/mman.h>
6 #include <sys/resource.h>
7 
8 #include "qemu.h"
9 #include "disas/disas.h"
10 #include "qemu/path.h"
11 
12 #ifdef _ARCH_PPC64
13 #undef ARCH_DLINFO
14 #undef ELF_PLATFORM
15 #undef ELF_HWCAP
16 #undef ELF_HWCAP2
17 #undef ELF_CLASS
18 #undef ELF_DATA
19 #undef ELF_ARCH
20 #endif
21 
22 #define ELF_OSABI   ELFOSABI_SYSV
23 
24 /* from personality.h */
25 
26 /*
27  * Flags for bug emulation.
28  *
29  * These occupy the top three bytes.
30  */
31 enum {
32     ADDR_NO_RANDOMIZE = 0x0040000,      /* disable randomization of VA space */
33     FDPIC_FUNCPTRS =    0x0080000,      /* userspace function ptrs point to
34                                            descriptors (signal handling) */
35     MMAP_PAGE_ZERO =    0x0100000,
36     ADDR_COMPAT_LAYOUT = 0x0200000,
37     READ_IMPLIES_EXEC = 0x0400000,
38     ADDR_LIMIT_32BIT =  0x0800000,
39     SHORT_INODE =       0x1000000,
40     WHOLE_SECONDS =     0x2000000,
41     STICKY_TIMEOUTS =   0x4000000,
42     ADDR_LIMIT_3GB =    0x8000000,
43 };
44 
45 /*
46  * Personality types.
47  *
48  * These go in the low byte.  Avoid using the top bit, it will
49  * conflict with error returns.
50  */
51 enum {
52     PER_LINUX =         0x0000,
53     PER_LINUX_32BIT =   0x0000 | ADDR_LIMIT_32BIT,
54     PER_LINUX_FDPIC =   0x0000 | FDPIC_FUNCPTRS,
55     PER_SVR4 =          0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
56     PER_SVR3 =          0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
57     PER_SCOSVR3 =       0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
58     PER_OSR5 =          0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
59     PER_WYSEV386 =      0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
60     PER_ISCR4 =         0x0005 | STICKY_TIMEOUTS,
61     PER_BSD =           0x0006,
62     PER_SUNOS =         0x0006 | STICKY_TIMEOUTS,
63     PER_XENIX =         0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
64     PER_LINUX32 =       0x0008,
65     PER_LINUX32_3GB =   0x0008 | ADDR_LIMIT_3GB,
66     PER_IRIX32 =        0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
67     PER_IRIXN32 =       0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
68     PER_IRIX64 =        0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
69     PER_RISCOS =        0x000c,
70     PER_SOLARIS =       0x000d | STICKY_TIMEOUTS,
71     PER_UW7 =           0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
72     PER_OSF4 =          0x000f,                  /* OSF/1 v4 */
73     PER_HPUX =          0x0010,
74     PER_MASK =          0x00ff,
75 };
76 
77 /*
78  * Return the base personality without flags.
79  */
80 #define personality(pers)       (pers & PER_MASK)
81 
82 /* this flag is uneffective under linux too, should be deleted */
83 #ifndef MAP_DENYWRITE
84 #define MAP_DENYWRITE 0
85 #endif
86 
87 /* should probably go in elf.h */
88 #ifndef ELIBBAD
89 #define ELIBBAD 80
90 #endif
91 
92 #ifdef TARGET_WORDS_BIGENDIAN
93 #define ELF_DATA        ELFDATA2MSB
94 #else
95 #define ELF_DATA        ELFDATA2LSB
96 #endif
97 
98 #ifdef TARGET_ABI_MIPSN32
99 typedef abi_ullong      target_elf_greg_t;
100 #define tswapreg(ptr)   tswap64(ptr)
101 #else
102 typedef abi_ulong       target_elf_greg_t;
103 #define tswapreg(ptr)   tswapal(ptr)
104 #endif
105 
106 #ifdef USE_UID16
107 typedef abi_ushort      target_uid_t;
108 typedef abi_ushort      target_gid_t;
109 #else
110 typedef abi_uint        target_uid_t;
111 typedef abi_uint        target_gid_t;
112 #endif
113 typedef abi_int         target_pid_t;
114 
115 #ifdef TARGET_I386
116 
117 #define ELF_PLATFORM get_elf_platform()
118 
119 static const char *get_elf_platform(void)
120 {
121     static char elf_platform[] = "i386";
122     int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL);
123     if (family > 6)
124         family = 6;
125     if (family >= 3)
126         elf_platform[1] = '0' + family;
127     return elf_platform;
128 }
129 
130 #define ELF_HWCAP get_elf_hwcap()
131 
132 static uint32_t get_elf_hwcap(void)
133 {
134     X86CPU *cpu = X86_CPU(thread_cpu);
135 
136     return cpu->env.features[FEAT_1_EDX];
137 }
138 
139 #ifdef TARGET_X86_64
140 #define ELF_START_MMAP 0x2aaaaab000ULL
141 
142 #define ELF_CLASS      ELFCLASS64
143 #define ELF_ARCH       EM_X86_64
144 
145 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
146 {
147     regs->rax = 0;
148     regs->rsp = infop->start_stack;
149     regs->rip = infop->entry;
150 }
151 
152 #define ELF_NREG    27
153 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
154 
155 /*
156  * Note that ELF_NREG should be 29 as there should be place for
157  * TRAPNO and ERR "registers" as well but linux doesn't dump
158  * those.
159  *
160  * See linux kernel: arch/x86/include/asm/elf.h
161  */
162 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
163 {
164     (*regs)[0] = env->regs[15];
165     (*regs)[1] = env->regs[14];
166     (*regs)[2] = env->regs[13];
167     (*regs)[3] = env->regs[12];
168     (*regs)[4] = env->regs[R_EBP];
169     (*regs)[5] = env->regs[R_EBX];
170     (*regs)[6] = env->regs[11];
171     (*regs)[7] = env->regs[10];
172     (*regs)[8] = env->regs[9];
173     (*regs)[9] = env->regs[8];
174     (*regs)[10] = env->regs[R_EAX];
175     (*regs)[11] = env->regs[R_ECX];
176     (*regs)[12] = env->regs[R_EDX];
177     (*regs)[13] = env->regs[R_ESI];
178     (*regs)[14] = env->regs[R_EDI];
179     (*regs)[15] = env->regs[R_EAX]; /* XXX */
180     (*regs)[16] = env->eip;
181     (*regs)[17] = env->segs[R_CS].selector & 0xffff;
182     (*regs)[18] = env->eflags;
183     (*regs)[19] = env->regs[R_ESP];
184     (*regs)[20] = env->segs[R_SS].selector & 0xffff;
185     (*regs)[21] = env->segs[R_FS].selector & 0xffff;
186     (*regs)[22] = env->segs[R_GS].selector & 0xffff;
187     (*regs)[23] = env->segs[R_DS].selector & 0xffff;
188     (*regs)[24] = env->segs[R_ES].selector & 0xffff;
189     (*regs)[25] = env->segs[R_FS].selector & 0xffff;
190     (*regs)[26] = env->segs[R_GS].selector & 0xffff;
191 }
192 
193 #else
194 
195 #define ELF_START_MMAP 0x80000000
196 
197 /*
198  * This is used to ensure we don't load something for the wrong architecture.
199  */
200 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 
202 /*
203  * These are used to set parameters in the core dumps.
204  */
205 #define ELF_CLASS       ELFCLASS32
206 #define ELF_ARCH        EM_386
207 
208 static inline void init_thread(struct target_pt_regs *regs,
209                                struct image_info *infop)
210 {
211     regs->esp = infop->start_stack;
212     regs->eip = infop->entry;
213 
214     /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
215        starts %edx contains a pointer to a function which might be
216        registered using `atexit'.  This provides a mean for the
217        dynamic linker to call DT_FINI functions for shared libraries
218        that have been loaded before the code runs.
219 
220        A value of 0 tells we have no such handler.  */
221     regs->edx = 0;
222 }
223 
224 #define ELF_NREG    17
225 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
226 
227 /*
228  * Note that ELF_NREG should be 19 as there should be place for
229  * TRAPNO and ERR "registers" as well but linux doesn't dump
230  * those.
231  *
232  * See linux kernel: arch/x86/include/asm/elf.h
233  */
234 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env)
235 {
236     (*regs)[0] = env->regs[R_EBX];
237     (*regs)[1] = env->regs[R_ECX];
238     (*regs)[2] = env->regs[R_EDX];
239     (*regs)[3] = env->regs[R_ESI];
240     (*regs)[4] = env->regs[R_EDI];
241     (*regs)[5] = env->regs[R_EBP];
242     (*regs)[6] = env->regs[R_EAX];
243     (*regs)[7] = env->segs[R_DS].selector & 0xffff;
244     (*regs)[8] = env->segs[R_ES].selector & 0xffff;
245     (*regs)[9] = env->segs[R_FS].selector & 0xffff;
246     (*regs)[10] = env->segs[R_GS].selector & 0xffff;
247     (*regs)[11] = env->regs[R_EAX]; /* XXX */
248     (*regs)[12] = env->eip;
249     (*regs)[13] = env->segs[R_CS].selector & 0xffff;
250     (*regs)[14] = env->eflags;
251     (*regs)[15] = env->regs[R_ESP];
252     (*regs)[16] = env->segs[R_SS].selector & 0xffff;
253 }
254 #endif
255 
256 #define USE_ELF_CORE_DUMP
257 #define ELF_EXEC_PAGESIZE       4096
258 
259 #endif
260 
261 #ifdef TARGET_ARM
262 
263 #ifndef TARGET_AARCH64
264 /* 32 bit ARM definitions */
265 
266 #define ELF_START_MMAP 0x80000000
267 
268 #define ELF_ARCH        EM_ARM
269 #define ELF_CLASS       ELFCLASS32
270 
271 static inline void init_thread(struct target_pt_regs *regs,
272                                struct image_info *infop)
273 {
274     abi_long stack = infop->start_stack;
275     memset(regs, 0, sizeof(*regs));
276 
277     regs->uregs[16] = ARM_CPU_MODE_USR;
278     if (infop->entry & 1) {
279         regs->uregs[16] |= CPSR_T;
280     }
281     regs->uregs[15] = infop->entry & 0xfffffffe;
282     regs->uregs[13] = infop->start_stack;
283     /* FIXME - what to for failure of get_user()? */
284     get_user_ual(regs->uregs[2], stack + 8); /* envp */
285     get_user_ual(regs->uregs[1], stack + 4); /* envp */
286     /* XXX: it seems that r0 is zeroed after ! */
287     regs->uregs[0] = 0;
288     /* For uClinux PIC binaries.  */
289     /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
290     regs->uregs[10] = infop->start_data;
291 }
292 
293 #define ELF_NREG    18
294 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
295 
296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env)
297 {
298     (*regs)[0] = tswapreg(env->regs[0]);
299     (*regs)[1] = tswapreg(env->regs[1]);
300     (*regs)[2] = tswapreg(env->regs[2]);
301     (*regs)[3] = tswapreg(env->regs[3]);
302     (*regs)[4] = tswapreg(env->regs[4]);
303     (*regs)[5] = tswapreg(env->regs[5]);
304     (*regs)[6] = tswapreg(env->regs[6]);
305     (*regs)[7] = tswapreg(env->regs[7]);
306     (*regs)[8] = tswapreg(env->regs[8]);
307     (*regs)[9] = tswapreg(env->regs[9]);
308     (*regs)[10] = tswapreg(env->regs[10]);
309     (*regs)[11] = tswapreg(env->regs[11]);
310     (*regs)[12] = tswapreg(env->regs[12]);
311     (*regs)[13] = tswapreg(env->regs[13]);
312     (*regs)[14] = tswapreg(env->regs[14]);
313     (*regs)[15] = tswapreg(env->regs[15]);
314 
315     (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env));
316     (*regs)[17] = tswapreg(env->regs[0]); /* XXX */
317 }
318 
319 #define USE_ELF_CORE_DUMP
320 #define ELF_EXEC_PAGESIZE       4096
321 
322 enum
323 {
324     ARM_HWCAP_ARM_SWP       = 1 << 0,
325     ARM_HWCAP_ARM_HALF      = 1 << 1,
326     ARM_HWCAP_ARM_THUMB     = 1 << 2,
327     ARM_HWCAP_ARM_26BIT     = 1 << 3,
328     ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
329     ARM_HWCAP_ARM_FPA       = 1 << 5,
330     ARM_HWCAP_ARM_VFP       = 1 << 6,
331     ARM_HWCAP_ARM_EDSP      = 1 << 7,
332     ARM_HWCAP_ARM_JAVA      = 1 << 8,
333     ARM_HWCAP_ARM_IWMMXT    = 1 << 9,
334     ARM_HWCAP_ARM_CRUNCH    = 1 << 10,
335     ARM_HWCAP_ARM_THUMBEE   = 1 << 11,
336     ARM_HWCAP_ARM_NEON      = 1 << 12,
337     ARM_HWCAP_ARM_VFPv3     = 1 << 13,
338     ARM_HWCAP_ARM_VFPv3D16  = 1 << 14,
339     ARM_HWCAP_ARM_TLS       = 1 << 15,
340     ARM_HWCAP_ARM_VFPv4     = 1 << 16,
341     ARM_HWCAP_ARM_IDIVA     = 1 << 17,
342     ARM_HWCAP_ARM_IDIVT     = 1 << 18,
343     ARM_HWCAP_ARM_VFPD32    = 1 << 19,
344     ARM_HWCAP_ARM_LPAE      = 1 << 20,
345     ARM_HWCAP_ARM_EVTSTRM   = 1 << 21,
346 };
347 
348 enum {
349     ARM_HWCAP2_ARM_AES      = 1 << 0,
350     ARM_HWCAP2_ARM_PMULL    = 1 << 1,
351     ARM_HWCAP2_ARM_SHA1     = 1 << 2,
352     ARM_HWCAP2_ARM_SHA2     = 1 << 3,
353     ARM_HWCAP2_ARM_CRC32    = 1 << 4,
354 };
355 
356 /* The commpage only exists for 32 bit kernels */
357 
358 #define TARGET_HAS_VALIDATE_GUEST_SPACE
359 /* Return 1 if the proposed guest space is suitable for the guest.
360  * Return 0 if the proposed guest space isn't suitable, but another
361  * address space should be tried.
362  * Return -1 if there is no way the proposed guest space can be
363  * valid regardless of the base.
364  * The guest code may leave a page mapped and populate it if the
365  * address is suitable.
366  */
367 static int validate_guest_space(unsigned long guest_base,
368                                 unsigned long guest_size)
369 {
370     unsigned long real_start, test_page_addr;
371 
372     /* We need to check that we can force a fault on access to the
373      * commpage at 0xffff0fxx
374      */
375     test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask);
376 
377     /* If the commpage lies within the already allocated guest space,
378      * then there is no way we can allocate it.
379      */
380     if (test_page_addr >= guest_base
381         && test_page_addr <= (guest_base + guest_size)) {
382         return -1;
383     }
384 
385     /* Note it needs to be writeable to let us initialise it */
386     real_start = (unsigned long)
387                  mmap((void *)test_page_addr, qemu_host_page_size,
388                      PROT_READ | PROT_WRITE,
389                      MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
390 
391     /* If we can't map it then try another address */
392     if (real_start == -1ul) {
393         return 0;
394     }
395 
396     if (real_start != test_page_addr) {
397         /* OS didn't put the page where we asked - unmap and reject */
398         munmap((void *)real_start, qemu_host_page_size);
399         return 0;
400     }
401 
402     /* Leave the page mapped
403      * Populate it (mmap should have left it all 0'd)
404      */
405 
406     /* Kernel helper versions */
407     __put_user(5, (uint32_t *)g2h(0xffff0ffcul));
408 
409     /* Now it's populated make it RO */
410     if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) {
411         perror("Protecting guest commpage");
412         exit(-1);
413     }
414 
415     return 1; /* All good */
416 }
417 
418 #define ELF_HWCAP get_elf_hwcap()
419 #define ELF_HWCAP2 get_elf_hwcap2()
420 
421 static uint32_t get_elf_hwcap(void)
422 {
423     ARMCPU *cpu = ARM_CPU(thread_cpu);
424     uint32_t hwcaps = 0;
425 
426     hwcaps |= ARM_HWCAP_ARM_SWP;
427     hwcaps |= ARM_HWCAP_ARM_HALF;
428     hwcaps |= ARM_HWCAP_ARM_THUMB;
429     hwcaps |= ARM_HWCAP_ARM_FAST_MULT;
430 
431     /* probe for the extra features */
432 #define GET_FEATURE(feat, hwcap) \
433     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
434     /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */
435     GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP);
436     GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP);
437     GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT);
438     GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE);
439     GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON);
440     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3);
441     GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS);
442     GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4);
443     GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA);
444     GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT);
445     /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c.
446      * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of
447      * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated
448      * to our VFP_FP16 feature bit.
449      */
450     GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32);
451     GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE);
452 
453     return hwcaps;
454 }
455 
456 static uint32_t get_elf_hwcap2(void)
457 {
458     ARMCPU *cpu = ARM_CPU(thread_cpu);
459     uint32_t hwcaps = 0;
460 
461     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES);
462     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL);
463     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1);
464     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2);
465     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32);
466     return hwcaps;
467 }
468 
469 #undef GET_FEATURE
470 
471 #else
472 /* 64 bit ARM definitions */
473 #define ELF_START_MMAP 0x80000000
474 
475 #define ELF_ARCH        EM_AARCH64
476 #define ELF_CLASS       ELFCLASS64
477 #define ELF_PLATFORM    "aarch64"
478 
479 static inline void init_thread(struct target_pt_regs *regs,
480                                struct image_info *infop)
481 {
482     abi_long stack = infop->start_stack;
483     memset(regs, 0, sizeof(*regs));
484 
485     regs->pc = infop->entry & ~0x3ULL;
486     regs->sp = stack;
487 }
488 
489 #define ELF_NREG    34
490 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
491 
492 static void elf_core_copy_regs(target_elf_gregset_t *regs,
493                                const CPUARMState *env)
494 {
495     int i;
496 
497     for (i = 0; i < 32; i++) {
498         (*regs)[i] = tswapreg(env->xregs[i]);
499     }
500     (*regs)[32] = tswapreg(env->pc);
501     (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env));
502 }
503 
504 #define USE_ELF_CORE_DUMP
505 #define ELF_EXEC_PAGESIZE       4096
506 
507 enum {
508     ARM_HWCAP_A64_FP            = 1 << 0,
509     ARM_HWCAP_A64_ASIMD         = 1 << 1,
510     ARM_HWCAP_A64_EVTSTRM       = 1 << 2,
511     ARM_HWCAP_A64_AES           = 1 << 3,
512     ARM_HWCAP_A64_PMULL         = 1 << 4,
513     ARM_HWCAP_A64_SHA1          = 1 << 5,
514     ARM_HWCAP_A64_SHA2          = 1 << 6,
515     ARM_HWCAP_A64_CRC32         = 1 << 7,
516 };
517 
518 #define ELF_HWCAP get_elf_hwcap()
519 
520 static uint32_t get_elf_hwcap(void)
521 {
522     ARMCPU *cpu = ARM_CPU(thread_cpu);
523     uint32_t hwcaps = 0;
524 
525     hwcaps |= ARM_HWCAP_A64_FP;
526     hwcaps |= ARM_HWCAP_A64_ASIMD;
527 
528     /* probe for the extra features */
529 #define GET_FEATURE(feat, hwcap) \
530     do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0)
531     GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES);
532     GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL);
533     GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1);
534     GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2);
535     GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32);
536 #undef GET_FEATURE
537 
538     return hwcaps;
539 }
540 
541 #endif /* not TARGET_AARCH64 */
542 #endif /* TARGET_ARM */
543 
544 #ifdef TARGET_UNICORE32
545 
546 #define ELF_START_MMAP          0x80000000
547 
548 #define ELF_CLASS               ELFCLASS32
549 #define ELF_DATA                ELFDATA2LSB
550 #define ELF_ARCH                EM_UNICORE32
551 
552 static inline void init_thread(struct target_pt_regs *regs,
553         struct image_info *infop)
554 {
555     abi_long stack = infop->start_stack;
556     memset(regs, 0, sizeof(*regs));
557     regs->UC32_REG_asr = 0x10;
558     regs->UC32_REG_pc = infop->entry & 0xfffffffe;
559     regs->UC32_REG_sp = infop->start_stack;
560     /* FIXME - what to for failure of get_user()? */
561     get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
562     get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
563     /* XXX: it seems that r0 is zeroed after ! */
564     regs->UC32_REG_00 = 0;
565 }
566 
567 #define ELF_NREG    34
568 typedef target_elf_greg_t  target_elf_gregset_t[ELF_NREG];
569 
570 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env)
571 {
572     (*regs)[0] = env->regs[0];
573     (*regs)[1] = env->regs[1];
574     (*regs)[2] = env->regs[2];
575     (*regs)[3] = env->regs[3];
576     (*regs)[4] = env->regs[4];
577     (*regs)[5] = env->regs[5];
578     (*regs)[6] = env->regs[6];
579     (*regs)[7] = env->regs[7];
580     (*regs)[8] = env->regs[8];
581     (*regs)[9] = env->regs[9];
582     (*regs)[10] = env->regs[10];
583     (*regs)[11] = env->regs[11];
584     (*regs)[12] = env->regs[12];
585     (*regs)[13] = env->regs[13];
586     (*regs)[14] = env->regs[14];
587     (*regs)[15] = env->regs[15];
588     (*regs)[16] = env->regs[16];
589     (*regs)[17] = env->regs[17];
590     (*regs)[18] = env->regs[18];
591     (*regs)[19] = env->regs[19];
592     (*regs)[20] = env->regs[20];
593     (*regs)[21] = env->regs[21];
594     (*regs)[22] = env->regs[22];
595     (*regs)[23] = env->regs[23];
596     (*regs)[24] = env->regs[24];
597     (*regs)[25] = env->regs[25];
598     (*regs)[26] = env->regs[26];
599     (*regs)[27] = env->regs[27];
600     (*regs)[28] = env->regs[28];
601     (*regs)[29] = env->regs[29];
602     (*regs)[30] = env->regs[30];
603     (*regs)[31] = env->regs[31];
604 
605     (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env);
606     (*regs)[33] = env->regs[0]; /* XXX */
607 }
608 
609 #define USE_ELF_CORE_DUMP
610 #define ELF_EXEC_PAGESIZE               4096
611 
612 #define ELF_HWCAP                       (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
613 
614 #endif
615 
616 #ifdef TARGET_SPARC
617 #ifdef TARGET_SPARC64
618 
619 #define ELF_START_MMAP 0x80000000
620 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
621                     | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9)
622 #ifndef TARGET_ABI32
623 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
624 #else
625 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
626 #endif
627 
628 #define ELF_CLASS   ELFCLASS64
629 #define ELF_ARCH    EM_SPARCV9
630 
631 #define STACK_BIAS              2047
632 
633 static inline void init_thread(struct target_pt_regs *regs,
634                                struct image_info *infop)
635 {
636 #ifndef TARGET_ABI32
637     regs->tstate = 0;
638 #endif
639     regs->pc = infop->entry;
640     regs->npc = regs->pc + 4;
641     regs->y = 0;
642 #ifdef TARGET_ABI32
643     regs->u_regs[14] = infop->start_stack - 16 * 4;
644 #else
645     if (personality(infop->personality) == PER_LINUX32)
646         regs->u_regs[14] = infop->start_stack - 16 * 4;
647     else
648         regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
649 #endif
650 }
651 
652 #else
653 #define ELF_START_MMAP 0x80000000
654 #define ELF_HWCAP  (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \
655                     | HWCAP_SPARC_MULDIV)
656 
657 #define ELF_CLASS   ELFCLASS32
658 #define ELF_ARCH    EM_SPARC
659 
660 static inline void init_thread(struct target_pt_regs *regs,
661                                struct image_info *infop)
662 {
663     regs->psr = 0;
664     regs->pc = infop->entry;
665     regs->npc = regs->pc + 4;
666     regs->y = 0;
667     regs->u_regs[14] = infop->start_stack - 16 * 4;
668 }
669 
670 #endif
671 #endif
672 
673 #ifdef TARGET_PPC
674 
675 #define ELF_MACHINE    PPC_ELF_MACHINE
676 #define ELF_START_MMAP 0x80000000
677 
678 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
679 
680 #define elf_check_arch(x) ( (x) == EM_PPC64 )
681 
682 #define ELF_CLASS       ELFCLASS64
683 
684 #else
685 
686 #define ELF_CLASS       ELFCLASS32
687 
688 #endif
689 
690 #define ELF_ARCH        EM_PPC
691 
692 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
693    See arch/powerpc/include/asm/cputable.h.  */
694 enum {
695     QEMU_PPC_FEATURE_32 = 0x80000000,
696     QEMU_PPC_FEATURE_64 = 0x40000000,
697     QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
698     QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
699     QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
700     QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
701     QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
702     QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
703     QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
704     QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
705     QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
706     QEMU_PPC_FEATURE_NO_TB = 0x00100000,
707     QEMU_PPC_FEATURE_POWER4 = 0x00080000,
708     QEMU_PPC_FEATURE_POWER5 = 0x00040000,
709     QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
710     QEMU_PPC_FEATURE_CELL = 0x00010000,
711     QEMU_PPC_FEATURE_BOOKE = 0x00008000,
712     QEMU_PPC_FEATURE_SMT = 0x00004000,
713     QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
714     QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
715     QEMU_PPC_FEATURE_PA6T = 0x00000800,
716     QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
717     QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
718     QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
719     QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
720     QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
721 
722     QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
723     QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
724 
725     /* Feature definitions in AT_HWCAP2.  */
726     QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */
727     QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */
728     QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */
729     QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */
730     QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */
731     QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */
732 };
733 
734 #define ELF_HWCAP get_elf_hwcap()
735 
736 static uint32_t get_elf_hwcap(void)
737 {
738     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
739     uint32_t features = 0;
740 
741     /* We don't have to be terribly complete here; the high points are
742        Altivec/FP/SPE support.  Anything else is just a bonus.  */
743 #define GET_FEATURE(flag, feature)                                      \
744     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
745 #define GET_FEATURE2(flag, feature)                                      \
746     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
747     GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
748     GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
749     GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
750     GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
751     GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
752     GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
753     GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
754     GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
755     GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP);
756     GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX);
757     GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 |
758                   PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206),
759                   QEMU_PPC_FEATURE_ARCH_2_06);
760 #undef GET_FEATURE
761 #undef GET_FEATURE2
762 
763     return features;
764 }
765 
766 #define ELF_HWCAP2 get_elf_hwcap2()
767 
768 static uint32_t get_elf_hwcap2(void)
769 {
770     PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);
771     uint32_t features = 0;
772 
773 #define GET_FEATURE(flag, feature)                                      \
774     do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0)
775 #define GET_FEATURE2(flag, feature)                                      \
776     do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0)
777 
778     GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL);
779     GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR);
780     GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 |
781                   PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07);
782 
783 #undef GET_FEATURE
784 #undef GET_FEATURE2
785 
786     return features;
787 }
788 
789 /*
790  * The requirements here are:
791  * - keep the final alignment of sp (sp & 0xf)
792  * - make sure the 32-bit value at the first 16 byte aligned position of
793  *   AUXV is greater than 16 for glibc compatibility.
794  *   AT_IGNOREPPC is used for that.
795  * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
796  *   even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
797  */
798 #define DLINFO_ARCH_ITEMS       5
799 #define ARCH_DLINFO                                     \
800     do {                                                \
801         PowerPCCPU *cpu = POWERPC_CPU(thread_cpu);              \
802         NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \
803         NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \
804         NEW_AUX_ENT(AT_UCACHEBSIZE, 0);                 \
805         /*                                              \
806          * Now handle glibc compatibility.              \
807          */                                             \
808         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
809         NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC);        \
810     } while (0)
811 
812 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
813 {
814     _regs->gpr[1] = infop->start_stack;
815 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
816     if (get_ppc64_abi(infop) < 2) {
817         uint64_t val;
818         get_user_u64(val, infop->entry + 8);
819         _regs->gpr[2] = val + infop->load_bias;
820         get_user_u64(val, infop->entry);
821         infop->entry = val + infop->load_bias;
822     } else {
823         _regs->gpr[12] = infop->entry;  /* r12 set to global entry address */
824     }
825 #endif
826     _regs->nip = infop->entry;
827 }
828 
829 /* See linux kernel: arch/powerpc/include/asm/elf.h.  */
830 #define ELF_NREG 48
831 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
832 
833 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env)
834 {
835     int i;
836     target_ulong ccr = 0;
837 
838     for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
839         (*regs)[i] = tswapreg(env->gpr[i]);
840     }
841 
842     (*regs)[32] = tswapreg(env->nip);
843     (*regs)[33] = tswapreg(env->msr);
844     (*regs)[35] = tswapreg(env->ctr);
845     (*regs)[36] = tswapreg(env->lr);
846     (*regs)[37] = tswapreg(env->xer);
847 
848     for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
849         ccr |= env->crf[i] << (32 - ((i + 1) * 4));
850     }
851     (*regs)[38] = tswapreg(ccr);
852 }
853 
854 #define USE_ELF_CORE_DUMP
855 #define ELF_EXEC_PAGESIZE       4096
856 
857 #endif
858 
859 #ifdef TARGET_MIPS
860 
861 #define ELF_START_MMAP 0x80000000
862 
863 #ifdef TARGET_MIPS64
864 #define ELF_CLASS   ELFCLASS64
865 #else
866 #define ELF_CLASS   ELFCLASS32
867 #endif
868 #define ELF_ARCH    EM_MIPS
869 
870 static inline void init_thread(struct target_pt_regs *regs,
871                                struct image_info *infop)
872 {
873     regs->cp0_status = 2 << CP0St_KSU;
874     regs->cp0_epc = infop->entry;
875     regs->regs[29] = infop->start_stack;
876 }
877 
878 /* See linux kernel: arch/mips/include/asm/elf.h.  */
879 #define ELF_NREG 45
880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
881 
882 /* See linux kernel: arch/mips/include/asm/reg.h.  */
883 enum {
884 #ifdef TARGET_MIPS64
885     TARGET_EF_R0 = 0,
886 #else
887     TARGET_EF_R0 = 6,
888 #endif
889     TARGET_EF_R26 = TARGET_EF_R0 + 26,
890     TARGET_EF_R27 = TARGET_EF_R0 + 27,
891     TARGET_EF_LO = TARGET_EF_R0 + 32,
892     TARGET_EF_HI = TARGET_EF_R0 + 33,
893     TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
894     TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
895     TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
896     TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
897 };
898 
899 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
900 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env)
901 {
902     int i;
903 
904     for (i = 0; i < TARGET_EF_R0; i++) {
905         (*regs)[i] = 0;
906     }
907     (*regs)[TARGET_EF_R0] = 0;
908 
909     for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
910         (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]);
911     }
912 
913     (*regs)[TARGET_EF_R26] = 0;
914     (*regs)[TARGET_EF_R27] = 0;
915     (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]);
916     (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]);
917     (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC);
918     (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr);
919     (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status);
920     (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause);
921 }
922 
923 #define USE_ELF_CORE_DUMP
924 #define ELF_EXEC_PAGESIZE        4096
925 
926 #endif /* TARGET_MIPS */
927 
928 #ifdef TARGET_MICROBLAZE
929 
930 #define ELF_START_MMAP 0x80000000
931 
932 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
933 
934 #define ELF_CLASS   ELFCLASS32
935 #define ELF_ARCH    EM_MICROBLAZE
936 
937 static inline void init_thread(struct target_pt_regs *regs,
938                                struct image_info *infop)
939 {
940     regs->pc = infop->entry;
941     regs->r1 = infop->start_stack;
942 
943 }
944 
945 #define ELF_EXEC_PAGESIZE        4096
946 
947 #define USE_ELF_CORE_DUMP
948 #define ELF_NREG 38
949 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
950 
951 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs.  */
952 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env)
953 {
954     int i, pos = 0;
955 
956     for (i = 0; i < 32; i++) {
957         (*regs)[pos++] = tswapreg(env->regs[i]);
958     }
959 
960     for (i = 0; i < 6; i++) {
961         (*regs)[pos++] = tswapreg(env->sregs[i]);
962     }
963 }
964 
965 #endif /* TARGET_MICROBLAZE */
966 
967 #ifdef TARGET_OPENRISC
968 
969 #define ELF_START_MMAP 0x08000000
970 
971 #define ELF_ARCH EM_OPENRISC
972 #define ELF_CLASS ELFCLASS32
973 #define ELF_DATA  ELFDATA2MSB
974 
975 static inline void init_thread(struct target_pt_regs *regs,
976                                struct image_info *infop)
977 {
978     regs->pc = infop->entry;
979     regs->gpr[1] = infop->start_stack;
980 }
981 
982 #define USE_ELF_CORE_DUMP
983 #define ELF_EXEC_PAGESIZE 8192
984 
985 /* See linux kernel arch/openrisc/include/asm/elf.h.  */
986 #define ELF_NREG 34 /* gprs and pc, sr */
987 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
988 
989 static void elf_core_copy_regs(target_elf_gregset_t *regs,
990                                const CPUOpenRISCState *env)
991 {
992     int i;
993 
994     for (i = 0; i < 32; i++) {
995         (*regs)[i] = tswapreg(env->gpr[i]);
996     }
997 
998     (*regs)[32] = tswapreg(env->pc);
999     (*regs)[33] = tswapreg(env->sr);
1000 }
1001 #define ELF_HWCAP 0
1002 #define ELF_PLATFORM NULL
1003 
1004 #endif /* TARGET_OPENRISC */
1005 
1006 #ifdef TARGET_SH4
1007 
1008 #define ELF_START_MMAP 0x80000000
1009 
1010 #define ELF_CLASS ELFCLASS32
1011 #define ELF_ARCH  EM_SH
1012 
1013 static inline void init_thread(struct target_pt_regs *regs,
1014                                struct image_info *infop)
1015 {
1016     /* Check other registers XXXXX */
1017     regs->pc = infop->entry;
1018     regs->regs[15] = infop->start_stack;
1019 }
1020 
1021 /* See linux kernel: arch/sh/include/asm/elf.h.  */
1022 #define ELF_NREG 23
1023 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1024 
1025 /* See linux kernel: arch/sh/include/asm/ptrace.h.  */
1026 enum {
1027     TARGET_REG_PC = 16,
1028     TARGET_REG_PR = 17,
1029     TARGET_REG_SR = 18,
1030     TARGET_REG_GBR = 19,
1031     TARGET_REG_MACH = 20,
1032     TARGET_REG_MACL = 21,
1033     TARGET_REG_SYSCALL = 22
1034 };
1035 
1036 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
1037                                       const CPUSH4State *env)
1038 {
1039     int i;
1040 
1041     for (i = 0; i < 16; i++) {
1042         (*regs[i]) = tswapreg(env->gregs[i]);
1043     }
1044 
1045     (*regs)[TARGET_REG_PC] = tswapreg(env->pc);
1046     (*regs)[TARGET_REG_PR] = tswapreg(env->pr);
1047     (*regs)[TARGET_REG_SR] = tswapreg(env->sr);
1048     (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr);
1049     (*regs)[TARGET_REG_MACH] = tswapreg(env->mach);
1050     (*regs)[TARGET_REG_MACL] = tswapreg(env->macl);
1051     (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
1052 }
1053 
1054 #define USE_ELF_CORE_DUMP
1055 #define ELF_EXEC_PAGESIZE        4096
1056 
1057 enum {
1058     SH_CPU_HAS_FPU            = 0x0001, /* Hardware FPU support */
1059     SH_CPU_HAS_P2_FLUSH_BUG   = 0x0002, /* Need to flush the cache in P2 area */
1060     SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */
1061     SH_CPU_HAS_DSP            = 0x0008, /* SH-DSP: DSP support */
1062     SH_CPU_HAS_PERF_COUNTER   = 0x0010, /* Hardware performance counters */
1063     SH_CPU_HAS_PTEA           = 0x0020, /* PTEA register */
1064     SH_CPU_HAS_LLSC           = 0x0040, /* movli.l/movco.l */
1065     SH_CPU_HAS_L2_CACHE       = 0x0080, /* Secondary cache / URAM */
1066     SH_CPU_HAS_OP32           = 0x0100, /* 32-bit instruction support */
1067     SH_CPU_HAS_PTEAEX         = 0x0200, /* PTE ASID Extension support */
1068 };
1069 
1070 #define ELF_HWCAP get_elf_hwcap()
1071 
1072 static uint32_t get_elf_hwcap(void)
1073 {
1074     SuperHCPU *cpu = SUPERH_CPU(thread_cpu);
1075     uint32_t hwcap = 0;
1076 
1077     hwcap |= SH_CPU_HAS_FPU;
1078 
1079     if (cpu->env.features & SH_FEATURE_SH4A) {
1080         hwcap |= SH_CPU_HAS_LLSC;
1081     }
1082 
1083     return hwcap;
1084 }
1085 
1086 #endif
1087 
1088 #ifdef TARGET_CRIS
1089 
1090 #define ELF_START_MMAP 0x80000000
1091 
1092 #define ELF_CLASS ELFCLASS32
1093 #define ELF_ARCH  EM_CRIS
1094 
1095 static inline void init_thread(struct target_pt_regs *regs,
1096                                struct image_info *infop)
1097 {
1098     regs->erp = infop->entry;
1099 }
1100 
1101 #define ELF_EXEC_PAGESIZE        8192
1102 
1103 #endif
1104 
1105 #ifdef TARGET_M68K
1106 
1107 #define ELF_START_MMAP 0x80000000
1108 
1109 #define ELF_CLASS       ELFCLASS32
1110 #define ELF_ARCH        EM_68K
1111 
1112 /* ??? Does this need to do anything?
1113    #define ELF_PLAT_INIT(_r) */
1114 
1115 static inline void init_thread(struct target_pt_regs *regs,
1116                                struct image_info *infop)
1117 {
1118     regs->usp = infop->start_stack;
1119     regs->sr = 0;
1120     regs->pc = infop->entry;
1121 }
1122 
1123 /* See linux kernel: arch/m68k/include/asm/elf.h.  */
1124 #define ELF_NREG 20
1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
1126 
1127 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env)
1128 {
1129     (*regs)[0] = tswapreg(env->dregs[1]);
1130     (*regs)[1] = tswapreg(env->dregs[2]);
1131     (*regs)[2] = tswapreg(env->dregs[3]);
1132     (*regs)[3] = tswapreg(env->dregs[4]);
1133     (*regs)[4] = tswapreg(env->dregs[5]);
1134     (*regs)[5] = tswapreg(env->dregs[6]);
1135     (*regs)[6] = tswapreg(env->dregs[7]);
1136     (*regs)[7] = tswapreg(env->aregs[0]);
1137     (*regs)[8] = tswapreg(env->aregs[1]);
1138     (*regs)[9] = tswapreg(env->aregs[2]);
1139     (*regs)[10] = tswapreg(env->aregs[3]);
1140     (*regs)[11] = tswapreg(env->aregs[4]);
1141     (*regs)[12] = tswapreg(env->aregs[5]);
1142     (*regs)[13] = tswapreg(env->aregs[6]);
1143     (*regs)[14] = tswapreg(env->dregs[0]);
1144     (*regs)[15] = tswapreg(env->aregs[7]);
1145     (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */
1146     (*regs)[17] = tswapreg(env->sr);
1147     (*regs)[18] = tswapreg(env->pc);
1148     (*regs)[19] = 0;  /* FIXME: regs->format | regs->vector */
1149 }
1150 
1151 #define USE_ELF_CORE_DUMP
1152 #define ELF_EXEC_PAGESIZE       8192
1153 
1154 #endif
1155 
1156 #ifdef TARGET_ALPHA
1157 
1158 #define ELF_START_MMAP (0x30000000000ULL)
1159 
1160 #define ELF_CLASS      ELFCLASS64
1161 #define ELF_ARCH       EM_ALPHA
1162 
1163 static inline void init_thread(struct target_pt_regs *regs,
1164                                struct image_info *infop)
1165 {
1166     regs->pc = infop->entry;
1167     regs->ps = 8;
1168     regs->usp = infop->start_stack;
1169 }
1170 
1171 #define ELF_EXEC_PAGESIZE        8192
1172 
1173 #endif /* TARGET_ALPHA */
1174 
1175 #ifdef TARGET_S390X
1176 
1177 #define ELF_START_MMAP (0x20000000000ULL)
1178 
1179 #define ELF_CLASS	ELFCLASS64
1180 #define ELF_DATA	ELFDATA2MSB
1181 #define ELF_ARCH	EM_S390
1182 
1183 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
1184 {
1185     regs->psw.addr = infop->entry;
1186     regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
1187     regs->gprs[15] = infop->start_stack;
1188 }
1189 
1190 #endif /* TARGET_S390X */
1191 
1192 #ifdef TARGET_TILEGX
1193 
1194 /* 42 bits real used address, a half for user mode */
1195 #define ELF_START_MMAP (0x00000020000000000ULL)
1196 
1197 #define elf_check_arch(x) ((x) == EM_TILEGX)
1198 
1199 #define ELF_CLASS   ELFCLASS64
1200 #define ELF_DATA    ELFDATA2LSB
1201 #define ELF_ARCH    EM_TILEGX
1202 
1203 static inline void init_thread(struct target_pt_regs *regs,
1204                                struct image_info *infop)
1205 {
1206     regs->pc = infop->entry;
1207     regs->sp = infop->start_stack;
1208 
1209 }
1210 
1211 #define ELF_EXEC_PAGESIZE        65536 /* TILE-Gx page size is 64KB */
1212 
1213 #endif /* TARGET_TILEGX */
1214 
1215 #ifndef ELF_PLATFORM
1216 #define ELF_PLATFORM (NULL)
1217 #endif
1218 
1219 #ifndef ELF_MACHINE
1220 #define ELF_MACHINE ELF_ARCH
1221 #endif
1222 
1223 #ifndef elf_check_arch
1224 #define elf_check_arch(x) ((x) == ELF_ARCH)
1225 #endif
1226 
1227 #ifndef ELF_HWCAP
1228 #define ELF_HWCAP 0
1229 #endif
1230 
1231 #ifdef TARGET_ABI32
1232 #undef ELF_CLASS
1233 #define ELF_CLASS ELFCLASS32
1234 #undef bswaptls
1235 #define bswaptls(ptr) bswap32s(ptr)
1236 #endif
1237 
1238 #include "elf.h"
1239 
1240 struct exec
1241 {
1242     unsigned int a_info;   /* Use macros N_MAGIC, etc for access */
1243     unsigned int a_text;   /* length of text, in bytes */
1244     unsigned int a_data;   /* length of data, in bytes */
1245     unsigned int a_bss;    /* length of uninitialized data area, in bytes */
1246     unsigned int a_syms;   /* length of symbol table data in file, in bytes */
1247     unsigned int a_entry;  /* start address */
1248     unsigned int a_trsize; /* length of relocation info for text, in bytes */
1249     unsigned int a_drsize; /* length of relocation info for data, in bytes */
1250 };
1251 
1252 
1253 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
1254 #define OMAGIC 0407
1255 #define NMAGIC 0410
1256 #define ZMAGIC 0413
1257 #define QMAGIC 0314
1258 
1259 /* Necessary parameters */
1260 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
1261 #define TARGET_ELF_PAGESTART(_v) ((_v) & \
1262                                  ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1))
1263 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
1264 
1265 #define DLINFO_ITEMS 14
1266 
1267 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
1268 {
1269     memcpy(to, from, n);
1270 }
1271 
1272 #ifdef BSWAP_NEEDED
1273 static void bswap_ehdr(struct elfhdr *ehdr)
1274 {
1275     bswap16s(&ehdr->e_type);            /* Object file type */
1276     bswap16s(&ehdr->e_machine);         /* Architecture */
1277     bswap32s(&ehdr->e_version);         /* Object file version */
1278     bswaptls(&ehdr->e_entry);           /* Entry point virtual address */
1279     bswaptls(&ehdr->e_phoff);           /* Program header table file offset */
1280     bswaptls(&ehdr->e_shoff);           /* Section header table file offset */
1281     bswap32s(&ehdr->e_flags);           /* Processor-specific flags */
1282     bswap16s(&ehdr->e_ehsize);          /* ELF header size in bytes */
1283     bswap16s(&ehdr->e_phentsize);       /* Program header table entry size */
1284     bswap16s(&ehdr->e_phnum);           /* Program header table entry count */
1285     bswap16s(&ehdr->e_shentsize);       /* Section header table entry size */
1286     bswap16s(&ehdr->e_shnum);           /* Section header table entry count */
1287     bswap16s(&ehdr->e_shstrndx);        /* Section header string table index */
1288 }
1289 
1290 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
1291 {
1292     int i;
1293     for (i = 0; i < phnum; ++i, ++phdr) {
1294         bswap32s(&phdr->p_type);        /* Segment type */
1295         bswap32s(&phdr->p_flags);       /* Segment flags */
1296         bswaptls(&phdr->p_offset);      /* Segment file offset */
1297         bswaptls(&phdr->p_vaddr);       /* Segment virtual address */
1298         bswaptls(&phdr->p_paddr);       /* Segment physical address */
1299         bswaptls(&phdr->p_filesz);      /* Segment size in file */
1300         bswaptls(&phdr->p_memsz);       /* Segment size in memory */
1301         bswaptls(&phdr->p_align);       /* Segment alignment */
1302     }
1303 }
1304 
1305 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
1306 {
1307     int i;
1308     for (i = 0; i < shnum; ++i, ++shdr) {
1309         bswap32s(&shdr->sh_name);
1310         bswap32s(&shdr->sh_type);
1311         bswaptls(&shdr->sh_flags);
1312         bswaptls(&shdr->sh_addr);
1313         bswaptls(&shdr->sh_offset);
1314         bswaptls(&shdr->sh_size);
1315         bswap32s(&shdr->sh_link);
1316         bswap32s(&shdr->sh_info);
1317         bswaptls(&shdr->sh_addralign);
1318         bswaptls(&shdr->sh_entsize);
1319     }
1320 }
1321 
1322 static void bswap_sym(struct elf_sym *sym)
1323 {
1324     bswap32s(&sym->st_name);
1325     bswaptls(&sym->st_value);
1326     bswaptls(&sym->st_size);
1327     bswap16s(&sym->st_shndx);
1328 }
1329 #else
1330 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
1331 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
1332 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
1333 static inline void bswap_sym(struct elf_sym *sym) { }
1334 #endif
1335 
1336 #ifdef USE_ELF_CORE_DUMP
1337 static int elf_core_dump(int, const CPUArchState *);
1338 #endif /* USE_ELF_CORE_DUMP */
1339 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1340 
1341 /* Verify the portions of EHDR within E_IDENT for the target.
1342    This can be performed before bswapping the entire header.  */
1343 static bool elf_check_ident(struct elfhdr *ehdr)
1344 {
1345     return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1346             && ehdr->e_ident[EI_MAG1] == ELFMAG1
1347             && ehdr->e_ident[EI_MAG2] == ELFMAG2
1348             && ehdr->e_ident[EI_MAG3] == ELFMAG3
1349             && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1350             && ehdr->e_ident[EI_DATA] == ELF_DATA
1351             && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1352 }
1353 
1354 /* Verify the portions of EHDR outside of E_IDENT for the target.
1355    This has to wait until after bswapping the header.  */
1356 static bool elf_check_ehdr(struct elfhdr *ehdr)
1357 {
1358     return (elf_check_arch(ehdr->e_machine)
1359             && ehdr->e_ehsize == sizeof(struct elfhdr)
1360             && ehdr->e_phentsize == sizeof(struct elf_phdr)
1361             && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1362 }
1363 
1364 /*
1365  * 'copy_elf_strings()' copies argument/envelope strings from user
1366  * memory to free pages in kernel mem. These are in a format ready
1367  * to be put directly into the top of new user memory.
1368  *
1369  */
1370 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch,
1371                                   abi_ulong p, abi_ulong stack_limit)
1372 {
1373     char *tmp;
1374     int len, offset;
1375     abi_ulong top = p;
1376 
1377     if (!p) {
1378         return 0;       /* bullet-proofing */
1379     }
1380 
1381     offset = ((p - 1) % TARGET_PAGE_SIZE) + 1;
1382 
1383     while (argc-- > 0) {
1384         tmp = argv[argc];
1385         if (!tmp) {
1386             fprintf(stderr, "VFS: argc is wrong");
1387             exit(-1);
1388         }
1389         len = strlen(tmp) + 1;
1390         tmp += len;
1391 
1392         if (len > (p - stack_limit)) {
1393             return 0;
1394         }
1395         while (len) {
1396             int bytes_to_copy = (len > offset) ? offset : len;
1397             tmp -= bytes_to_copy;
1398             p -= bytes_to_copy;
1399             offset -= bytes_to_copy;
1400             len -= bytes_to_copy;
1401 
1402             memcpy_fromfs(scratch + offset, tmp, bytes_to_copy);
1403 
1404             if (offset == 0) {
1405                 memcpy_to_target(p, scratch, top - p);
1406                 top = p;
1407                 offset = TARGET_PAGE_SIZE;
1408             }
1409         }
1410     }
1411     if (offset) {
1412         memcpy_to_target(p, scratch + offset, top - p);
1413     }
1414 
1415     return p;
1416 }
1417 
1418 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of
1419  * argument/environment space. Newer kernels (>2.6.33) allow more,
1420  * dependent on stack size, but guarantee at least 32 pages for
1421  * backwards compatibility.
1422  */
1423 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE)
1424 
1425 static abi_ulong setup_arg_pages(struct linux_binprm *bprm,
1426                                  struct image_info *info)
1427 {
1428     abi_ulong size, error, guard;
1429 
1430     size = guest_stack_size;
1431     if (size < STACK_LOWER_LIMIT) {
1432         size = STACK_LOWER_LIMIT;
1433     }
1434     guard = TARGET_PAGE_SIZE;
1435     if (guard < qemu_real_host_page_size) {
1436         guard = qemu_real_host_page_size;
1437     }
1438 
1439     error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1440                         MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1441     if (error == -1) {
1442         perror("mmap stack");
1443         exit(-1);
1444     }
1445 
1446     /* We reserve one extra page at the top of the stack as guard.  */
1447     target_mprotect(error, guard, PROT_NONE);
1448 
1449     info->stack_limit = error + guard;
1450 
1451     return info->stack_limit + size - sizeof(void *);
1452 }
1453 
1454 /* Map and zero the bss.  We need to explicitly zero any fractional pages
1455    after the data section (i.e. bss).  */
1456 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1457 {
1458     uintptr_t host_start, host_map_start, host_end;
1459 
1460     last_bss = TARGET_PAGE_ALIGN(last_bss);
1461 
1462     /* ??? There is confusion between qemu_real_host_page_size and
1463        qemu_host_page_size here and elsewhere in target_mmap, which
1464        may lead to the end of the data section mapping from the file
1465        not being mapped.  At least there was an explicit test and
1466        comment for that here, suggesting that "the file size must
1467        be known".  The comment probably pre-dates the introduction
1468        of the fstat system call in target_mmap which does in fact
1469        find out the size.  What isn't clear is if the workaround
1470        here is still actually needed.  For now, continue with it,
1471        but merge it with the "normal" mmap that would allocate the bss.  */
1472 
1473     host_start = (uintptr_t) g2h(elf_bss);
1474     host_end = (uintptr_t) g2h(last_bss);
1475     host_map_start = REAL_HOST_PAGE_ALIGN(host_start);
1476 
1477     if (host_map_start < host_end) {
1478         void *p = mmap((void *)host_map_start, host_end - host_map_start,
1479                        prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1480         if (p == MAP_FAILED) {
1481             perror("cannot mmap brk");
1482             exit(-1);
1483         }
1484     }
1485 
1486     /* Ensure that the bss page(s) are valid */
1487     if ((page_get_flags(last_bss-1) & prot) != prot) {
1488         page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID);
1489     }
1490 
1491     if (host_start < host_map_start) {
1492         memset((void *)host_start, 0, host_map_start - host_start);
1493     }
1494 }
1495 
1496 #ifdef CONFIG_USE_FDPIC
1497 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1498 {
1499     uint16_t n;
1500     struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1501 
1502     /* elf32_fdpic_loadseg */
1503     n = info->nsegs;
1504     while (n--) {
1505         sp -= 12;
1506         put_user_u32(loadsegs[n].addr, sp+0);
1507         put_user_u32(loadsegs[n].p_vaddr, sp+4);
1508         put_user_u32(loadsegs[n].p_memsz, sp+8);
1509     }
1510 
1511     /* elf32_fdpic_loadmap */
1512     sp -= 4;
1513     put_user_u16(0, sp+0); /* version */
1514     put_user_u16(info->nsegs, sp+2); /* nsegs */
1515 
1516     info->personality = PER_LINUX_FDPIC;
1517     info->loadmap_addr = sp;
1518 
1519     return sp;
1520 }
1521 #endif
1522 
1523 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1524                                    struct elfhdr *exec,
1525                                    struct image_info *info,
1526                                    struct image_info *interp_info)
1527 {
1528     abi_ulong sp;
1529     abi_ulong sp_auxv;
1530     int size;
1531     int i;
1532     abi_ulong u_rand_bytes;
1533     uint8_t k_rand_bytes[16];
1534     abi_ulong u_platform;
1535     const char *k_platform;
1536     const int n = sizeof(elf_addr_t);
1537 
1538     sp = p;
1539 
1540 #ifdef CONFIG_USE_FDPIC
1541     /* Needs to be before we load the env/argc/... */
1542     if (elf_is_fdpic(exec)) {
1543         /* Need 4 byte alignment for these structs */
1544         sp &= ~3;
1545         sp = loader_build_fdpic_loadmap(info, sp);
1546         info->other_info = interp_info;
1547         if (interp_info) {
1548             interp_info->other_info = info;
1549             sp = loader_build_fdpic_loadmap(interp_info, sp);
1550         }
1551     }
1552 #endif
1553 
1554     u_platform = 0;
1555     k_platform = ELF_PLATFORM;
1556     if (k_platform) {
1557         size_t len = strlen(k_platform) + 1;
1558         sp -= (len + n - 1) & ~(n - 1);
1559         u_platform = sp;
1560         /* FIXME - check return value of memcpy_to_target() for failure */
1561         memcpy_to_target(sp, k_platform, len);
1562     }
1563 
1564     /*
1565      * Generate 16 random bytes for userspace PRNG seeding (not
1566      * cryptically secure but it's not the aim of QEMU).
1567      */
1568     for (i = 0; i < 16; i++) {
1569         k_rand_bytes[i] = rand();
1570     }
1571     sp -= 16;
1572     u_rand_bytes = sp;
1573     /* FIXME - check return value of memcpy_to_target() for failure */
1574     memcpy_to_target(sp, k_rand_bytes, 16);
1575 
1576     /*
1577      * Force 16 byte _final_ alignment here for generality.
1578      */
1579     sp = sp &~ (abi_ulong)15;
1580     size = (DLINFO_ITEMS + 1) * 2;
1581     if (k_platform)
1582         size += 2;
1583 #ifdef DLINFO_ARCH_ITEMS
1584     size += DLINFO_ARCH_ITEMS * 2;
1585 #endif
1586 #ifdef ELF_HWCAP2
1587     size += 2;
1588 #endif
1589     size += envc + argc + 2;
1590     size += 1;  /* argc itself */
1591     size *= n;
1592     if (size & 15)
1593         sp -= 16 - (size & 15);
1594 
1595     /* This is correct because Linux defines
1596      * elf_addr_t as Elf32_Off / Elf64_Off
1597      */
1598 #define NEW_AUX_ENT(id, val) do {               \
1599         sp -= n; put_user_ual(val, sp);         \
1600         sp -= n; put_user_ual(id, sp);          \
1601     } while(0)
1602 
1603     sp_auxv = sp;
1604     NEW_AUX_ENT (AT_NULL, 0);
1605 
1606     /* There must be exactly DLINFO_ITEMS entries here.  */
1607     NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1608     NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1609     NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1610     NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize())));
1611     NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1612     NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1613     NEW_AUX_ENT(AT_ENTRY, info->entry);
1614     NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1615     NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1616     NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1617     NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1618     NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1619     NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1620     NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes);
1621 
1622 #ifdef ELF_HWCAP2
1623     NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2);
1624 #endif
1625 
1626     if (k_platform)
1627         NEW_AUX_ENT(AT_PLATFORM, u_platform);
1628 #ifdef ARCH_DLINFO
1629     /*
1630      * ARCH_DLINFO must come last so platform specific code can enforce
1631      * special alignment requirements on the AUXV if necessary (eg. PPC).
1632      */
1633     ARCH_DLINFO;
1634 #endif
1635 #undef NEW_AUX_ENT
1636 
1637     info->saved_auxv = sp;
1638     info->auxv_len = sp_auxv - sp;
1639 
1640     sp = loader_build_argptr(envc, argc, sp, p, 0);
1641     /* Check the right amount of stack was allocated for auxvec, envp & argv. */
1642     assert(sp_auxv - sp == size);
1643     return sp;
1644 }
1645 
1646 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE
1647 /* If the guest doesn't have a validation function just agree */
1648 static int validate_guest_space(unsigned long guest_base,
1649                                 unsigned long guest_size)
1650 {
1651     return 1;
1652 }
1653 #endif
1654 
1655 unsigned long init_guest_space(unsigned long host_start,
1656                                unsigned long host_size,
1657                                unsigned long guest_start,
1658                                bool fixed)
1659 {
1660     unsigned long current_start, real_start;
1661     int flags;
1662 
1663     assert(host_start || host_size);
1664 
1665     /* If just a starting address is given, then just verify that
1666      * address.  */
1667     if (host_start && !host_size) {
1668         if (validate_guest_space(host_start, host_size) == 1) {
1669             return host_start;
1670         } else {
1671             return (unsigned long)-1;
1672         }
1673     }
1674 
1675     /* Setup the initial flags and start address.  */
1676     current_start = host_start & qemu_host_page_mask;
1677     flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE;
1678     if (fixed) {
1679         flags |= MAP_FIXED;
1680     }
1681 
1682     /* Otherwise, a non-zero size region of memory needs to be mapped
1683      * and validated.  */
1684     while (1) {
1685         unsigned long real_size = host_size;
1686 
1687         /* Do not use mmap_find_vma here because that is limited to the
1688          * guest address space.  We are going to make the
1689          * guest address space fit whatever we're given.
1690          */
1691         real_start = (unsigned long)
1692             mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0);
1693         if (real_start == (unsigned long)-1) {
1694             return (unsigned long)-1;
1695         }
1696 
1697         /* Ensure the address is properly aligned.  */
1698         if (real_start & ~qemu_host_page_mask) {
1699             munmap((void *)real_start, host_size);
1700             real_size = host_size + qemu_host_page_size;
1701             real_start = (unsigned long)
1702                 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0);
1703             if (real_start == (unsigned long)-1) {
1704                 return (unsigned long)-1;
1705             }
1706             real_start = HOST_PAGE_ALIGN(real_start);
1707         }
1708 
1709         /* Check to see if the address is valid.  */
1710         if (!host_start || real_start == current_start) {
1711             int valid = validate_guest_space(real_start - guest_start,
1712                                              real_size);
1713             if (valid == 1) {
1714                 break;
1715             } else if (valid == -1) {
1716                 return (unsigned long)-1;
1717             }
1718             /* valid == 0, so try again. */
1719         }
1720 
1721         /* That address didn't work.  Unmap and try a different one.
1722          * The address the host picked because is typically right at
1723          * the top of the host address space and leaves the guest with
1724          * no usable address space.  Resort to a linear search.  We
1725          * already compensated for mmap_min_addr, so this should not
1726          * happen often.  Probably means we got unlucky and host
1727          * address space randomization put a shared library somewhere
1728          * inconvenient.
1729          */
1730         munmap((void *)real_start, host_size);
1731         current_start += qemu_host_page_size;
1732         if (host_start == current_start) {
1733             /* Theoretically possible if host doesn't have any suitably
1734              * aligned areas.  Normally the first mmap will fail.
1735              */
1736             return (unsigned long)-1;
1737         }
1738     }
1739 
1740     qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size);
1741 
1742     return real_start;
1743 }
1744 
1745 static void probe_guest_base(const char *image_name,
1746                              abi_ulong loaddr, abi_ulong hiaddr)
1747 {
1748     /* Probe for a suitable guest base address, if the user has not set
1749      * it explicitly, and set guest_base appropriately.
1750      * In case of error we will print a suitable message and exit.
1751      */
1752     const char *errmsg;
1753     if (!have_guest_base && !reserved_va) {
1754         unsigned long host_start, real_start, host_size;
1755 
1756         /* Round addresses to page boundaries.  */
1757         loaddr &= qemu_host_page_mask;
1758         hiaddr = HOST_PAGE_ALIGN(hiaddr);
1759 
1760         if (loaddr < mmap_min_addr) {
1761             host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1762         } else {
1763             host_start = loaddr;
1764             if (host_start != loaddr) {
1765                 errmsg = "Address overflow loading ELF binary";
1766                 goto exit_errmsg;
1767             }
1768         }
1769         host_size = hiaddr - loaddr;
1770 
1771         /* Setup the initial guest memory space with ranges gleaned from
1772          * the ELF image that is being loaded.
1773          */
1774         real_start = init_guest_space(host_start, host_size, loaddr, false);
1775         if (real_start == (unsigned long)-1) {
1776             errmsg = "Unable to find space for application";
1777             goto exit_errmsg;
1778         }
1779         guest_base = real_start - loaddr;
1780 
1781         qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x"
1782                       TARGET_ABI_FMT_lx " to 0x%lx\n",
1783                       loaddr, real_start);
1784     }
1785     return;
1786 
1787 exit_errmsg:
1788     fprintf(stderr, "%s: %s\n", image_name, errmsg);
1789     exit(-1);
1790 }
1791 
1792 
1793 /* Load an ELF image into the address space.
1794 
1795    IMAGE_NAME is the filename of the image, to use in error messages.
1796    IMAGE_FD is the open file descriptor for the image.
1797 
1798    BPRM_BUF is a copy of the beginning of the file; this of course
1799    contains the elf file header at offset 0.  It is assumed that this
1800    buffer is sufficiently aligned to present no problems to the host
1801    in accessing data at aligned offsets within the buffer.
1802 
1803    On return: INFO values will be filled in, as necessary or available.  */
1804 
1805 static void load_elf_image(const char *image_name, int image_fd,
1806                            struct image_info *info, char **pinterp_name,
1807                            char bprm_buf[BPRM_BUF_SIZE])
1808 {
1809     struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1810     struct elf_phdr *phdr;
1811     abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1812     int i, retval;
1813     const char *errmsg;
1814 
1815     /* First of all, some simple consistency checks */
1816     errmsg = "Invalid ELF image for this architecture";
1817     if (!elf_check_ident(ehdr)) {
1818         goto exit_errmsg;
1819     }
1820     bswap_ehdr(ehdr);
1821     if (!elf_check_ehdr(ehdr)) {
1822         goto exit_errmsg;
1823     }
1824 
1825     i = ehdr->e_phnum * sizeof(struct elf_phdr);
1826     if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1827         phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1828     } else {
1829         phdr = (struct elf_phdr *) alloca(i);
1830         retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1831         if (retval != i) {
1832             goto exit_read;
1833         }
1834     }
1835     bswap_phdr(phdr, ehdr->e_phnum);
1836 
1837 #ifdef CONFIG_USE_FDPIC
1838     info->nsegs = 0;
1839     info->pt_dynamic_addr = 0;
1840 #endif
1841 
1842     /* Find the maximum size of the image and allocate an appropriate
1843        amount of memory to handle that.  */
1844     loaddr = -1, hiaddr = 0;
1845     for (i = 0; i < ehdr->e_phnum; ++i) {
1846         if (phdr[i].p_type == PT_LOAD) {
1847             abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset;
1848             if (a < loaddr) {
1849                 loaddr = a;
1850             }
1851             a = phdr[i].p_vaddr + phdr[i].p_memsz;
1852             if (a > hiaddr) {
1853                 hiaddr = a;
1854             }
1855 #ifdef CONFIG_USE_FDPIC
1856             ++info->nsegs;
1857 #endif
1858         }
1859     }
1860 
1861     load_addr = loaddr;
1862     if (ehdr->e_type == ET_DYN) {
1863         /* The image indicates that it can be loaded anywhere.  Find a
1864            location that can hold the memory space required.  If the
1865            image is pre-linked, LOADDR will be non-zero.  Since we do
1866            not supply MAP_FIXED here we'll use that address if and
1867            only if it remains available.  */
1868         load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1869                                 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1870                                 -1, 0);
1871         if (load_addr == -1) {
1872             goto exit_perror;
1873         }
1874     } else if (pinterp_name != NULL) {
1875         /* This is the main executable.  Make sure that the low
1876            address does not conflict with MMAP_MIN_ADDR or the
1877            QEMU application itself.  */
1878         probe_guest_base(image_name, loaddr, hiaddr);
1879     }
1880     load_bias = load_addr - loaddr;
1881 
1882 #ifdef CONFIG_USE_FDPIC
1883     {
1884         struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1885             g_malloc(sizeof(*loadsegs) * info->nsegs);
1886 
1887         for (i = 0; i < ehdr->e_phnum; ++i) {
1888             switch (phdr[i].p_type) {
1889             case PT_DYNAMIC:
1890                 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1891                 break;
1892             case PT_LOAD:
1893                 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1894                 loadsegs->p_vaddr = phdr[i].p_vaddr;
1895                 loadsegs->p_memsz = phdr[i].p_memsz;
1896                 ++loadsegs;
1897                 break;
1898             }
1899         }
1900     }
1901 #endif
1902 
1903     info->load_bias = load_bias;
1904     info->load_addr = load_addr;
1905     info->entry = ehdr->e_entry + load_bias;
1906     info->start_code = -1;
1907     info->end_code = 0;
1908     info->start_data = -1;
1909     info->end_data = 0;
1910     info->brk = 0;
1911     info->elf_flags = ehdr->e_flags;
1912 
1913     for (i = 0; i < ehdr->e_phnum; i++) {
1914         struct elf_phdr *eppnt = phdr + i;
1915         if (eppnt->p_type == PT_LOAD) {
1916             abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1917             int elf_prot = 0;
1918 
1919             if (eppnt->p_flags & PF_R) elf_prot =  PROT_READ;
1920             if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1921             if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1922 
1923             vaddr = load_bias + eppnt->p_vaddr;
1924             vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1925             vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1926 
1927             error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1928                                 elf_prot, MAP_PRIVATE | MAP_FIXED,
1929                                 image_fd, eppnt->p_offset - vaddr_po);
1930             if (error == -1) {
1931                 goto exit_perror;
1932             }
1933 
1934             vaddr_ef = vaddr + eppnt->p_filesz;
1935             vaddr_em = vaddr + eppnt->p_memsz;
1936 
1937             /* If the load segment requests extra zeros (e.g. bss), map it.  */
1938             if (vaddr_ef < vaddr_em) {
1939                 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1940             }
1941 
1942             /* Find the full program boundaries.  */
1943             if (elf_prot & PROT_EXEC) {
1944                 if (vaddr < info->start_code) {
1945                     info->start_code = vaddr;
1946                 }
1947                 if (vaddr_ef > info->end_code) {
1948                     info->end_code = vaddr_ef;
1949                 }
1950             }
1951             if (elf_prot & PROT_WRITE) {
1952                 if (vaddr < info->start_data) {
1953                     info->start_data = vaddr;
1954                 }
1955                 if (vaddr_ef > info->end_data) {
1956                     info->end_data = vaddr_ef;
1957                 }
1958                 if (vaddr_em > info->brk) {
1959                     info->brk = vaddr_em;
1960                 }
1961             }
1962         } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1963             char *interp_name;
1964 
1965             if (*pinterp_name) {
1966                 errmsg = "Multiple PT_INTERP entries";
1967                 goto exit_errmsg;
1968             }
1969             interp_name = malloc(eppnt->p_filesz);
1970             if (!interp_name) {
1971                 goto exit_perror;
1972             }
1973 
1974             if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1975                 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1976                        eppnt->p_filesz);
1977             } else {
1978                 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1979                                eppnt->p_offset);
1980                 if (retval != eppnt->p_filesz) {
1981                     goto exit_perror;
1982                 }
1983             }
1984             if (interp_name[eppnt->p_filesz - 1] != 0) {
1985                 errmsg = "Invalid PT_INTERP entry";
1986                 goto exit_errmsg;
1987             }
1988             *pinterp_name = interp_name;
1989         }
1990     }
1991 
1992     if (info->end_data == 0) {
1993         info->start_data = info->end_code;
1994         info->end_data = info->end_code;
1995         info->brk = info->end_code;
1996     }
1997 
1998     if (qemu_log_enabled()) {
1999         load_symbols(ehdr, image_fd, load_bias);
2000     }
2001 
2002     close(image_fd);
2003     return;
2004 
2005  exit_read:
2006     if (retval >= 0) {
2007         errmsg = "Incomplete read of file header";
2008         goto exit_errmsg;
2009     }
2010  exit_perror:
2011     errmsg = strerror(errno);
2012  exit_errmsg:
2013     fprintf(stderr, "%s: %s\n", image_name, errmsg);
2014     exit(-1);
2015 }
2016 
2017 static void load_elf_interp(const char *filename, struct image_info *info,
2018                             char bprm_buf[BPRM_BUF_SIZE])
2019 {
2020     int fd, retval;
2021 
2022     fd = open(path(filename), O_RDONLY);
2023     if (fd < 0) {
2024         goto exit_perror;
2025     }
2026 
2027     retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
2028     if (retval < 0) {
2029         goto exit_perror;
2030     }
2031     if (retval < BPRM_BUF_SIZE) {
2032         memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
2033     }
2034 
2035     load_elf_image(filename, fd, info, NULL, bprm_buf);
2036     return;
2037 
2038  exit_perror:
2039     fprintf(stderr, "%s: %s\n", filename, strerror(errno));
2040     exit(-1);
2041 }
2042 
2043 static int symfind(const void *s0, const void *s1)
2044 {
2045     target_ulong addr = *(target_ulong *)s0;
2046     struct elf_sym *sym = (struct elf_sym *)s1;
2047     int result = 0;
2048     if (addr < sym->st_value) {
2049         result = -1;
2050     } else if (addr >= sym->st_value + sym->st_size) {
2051         result = 1;
2052     }
2053     return result;
2054 }
2055 
2056 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
2057 {
2058 #if ELF_CLASS == ELFCLASS32
2059     struct elf_sym *syms = s->disas_symtab.elf32;
2060 #else
2061     struct elf_sym *syms = s->disas_symtab.elf64;
2062 #endif
2063 
2064     // binary search
2065     struct elf_sym *sym;
2066 
2067     sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind);
2068     if (sym != NULL) {
2069         return s->disas_strtab + sym->st_name;
2070     }
2071 
2072     return "";
2073 }
2074 
2075 /* FIXME: This should use elf_ops.h  */
2076 static int symcmp(const void *s0, const void *s1)
2077 {
2078     struct elf_sym *sym0 = (struct elf_sym *)s0;
2079     struct elf_sym *sym1 = (struct elf_sym *)s1;
2080     return (sym0->st_value < sym1->st_value)
2081         ? -1
2082         : ((sym0->st_value > sym1->st_value) ? 1 : 0);
2083 }
2084 
2085 /* Best attempt to load symbols from this ELF object. */
2086 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
2087 {
2088     int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
2089     struct elf_shdr *shdr;
2090     char *strings = NULL;
2091     struct syminfo *s = NULL;
2092     struct elf_sym *new_syms, *syms = NULL;
2093 
2094     shnum = hdr->e_shnum;
2095     i = shnum * sizeof(struct elf_shdr);
2096     shdr = (struct elf_shdr *)alloca(i);
2097     if (pread(fd, shdr, i, hdr->e_shoff) != i) {
2098         return;
2099     }
2100 
2101     bswap_shdr(shdr, shnum);
2102     for (i = 0; i < shnum; ++i) {
2103         if (shdr[i].sh_type == SHT_SYMTAB) {
2104             sym_idx = i;
2105             str_idx = shdr[i].sh_link;
2106             goto found;
2107         }
2108     }
2109 
2110     /* There will be no symbol table if the file was stripped.  */
2111     return;
2112 
2113  found:
2114     /* Now know where the strtab and symtab are.  Snarf them.  */
2115     s = malloc(sizeof(*s));
2116     if (!s) {
2117         goto give_up;
2118     }
2119 
2120     i = shdr[str_idx].sh_size;
2121     s->disas_strtab = strings = malloc(i);
2122     if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
2123         goto give_up;
2124     }
2125 
2126     i = shdr[sym_idx].sh_size;
2127     syms = malloc(i);
2128     if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
2129         goto give_up;
2130     }
2131 
2132     nsyms = i / sizeof(struct elf_sym);
2133     for (i = 0; i < nsyms; ) {
2134         bswap_sym(syms + i);
2135         /* Throw away entries which we do not need.  */
2136         if (syms[i].st_shndx == SHN_UNDEF
2137             || syms[i].st_shndx >= SHN_LORESERVE
2138             || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
2139             if (i < --nsyms) {
2140                 syms[i] = syms[nsyms];
2141             }
2142         } else {
2143 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
2144             /* The bottom address bit marks a Thumb or MIPS16 symbol.  */
2145             syms[i].st_value &= ~(target_ulong)1;
2146 #endif
2147             syms[i].st_value += load_bias;
2148             i++;
2149         }
2150     }
2151 
2152     /* No "useful" symbol.  */
2153     if (nsyms == 0) {
2154         goto give_up;
2155     }
2156 
2157     /* Attempt to free the storage associated with the local symbols
2158        that we threw away.  Whether or not this has any effect on the
2159        memory allocation depends on the malloc implementation and how
2160        many symbols we managed to discard.  */
2161     new_syms = realloc(syms, nsyms * sizeof(*syms));
2162     if (new_syms == NULL) {
2163         goto give_up;
2164     }
2165     syms = new_syms;
2166 
2167     qsort(syms, nsyms, sizeof(*syms), symcmp);
2168 
2169     s->disas_num_syms = nsyms;
2170 #if ELF_CLASS == ELFCLASS32
2171     s->disas_symtab.elf32 = syms;
2172 #else
2173     s->disas_symtab.elf64 = syms;
2174 #endif
2175     s->lookup_symbol = lookup_symbolxx;
2176     s->next = syminfos;
2177     syminfos = s;
2178 
2179     return;
2180 
2181 give_up:
2182     free(s);
2183     free(strings);
2184     free(syms);
2185 }
2186 
2187 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info)
2188 {
2189     struct image_info interp_info;
2190     struct elfhdr elf_ex;
2191     char *elf_interpreter = NULL;
2192     char *scratch;
2193 
2194     info->start_mmap = (abi_ulong)ELF_START_MMAP;
2195 
2196     load_elf_image(bprm->filename, bprm->fd, info,
2197                    &elf_interpreter, bprm->buf);
2198 
2199     /* ??? We need a copy of the elf header for passing to create_elf_tables.
2200        If we do nothing, we'll have overwritten this when we re-use bprm->buf
2201        when we load the interpreter.  */
2202     elf_ex = *(struct elfhdr *)bprm->buf;
2203 
2204     /* Do this so that we can load the interpreter, if need be.  We will
2205        change some of these later */
2206     bprm->p = setup_arg_pages(bprm, info);
2207 
2208     scratch = g_new0(char, TARGET_PAGE_SIZE);
2209     bprm->p = copy_elf_strings(1, &bprm->filename, scratch,
2210                                bprm->p, info->stack_limit);
2211     bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch,
2212                                bprm->p, info->stack_limit);
2213     bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch,
2214                                bprm->p, info->stack_limit);
2215     g_free(scratch);
2216 
2217     if (!bprm->p) {
2218         fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
2219         exit(-1);
2220     }
2221 
2222     if (elf_interpreter) {
2223         load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
2224 
2225         /* If the program interpreter is one of these two, then assume
2226            an iBCS2 image.  Otherwise assume a native linux image.  */
2227 
2228         if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
2229             || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
2230             info->personality = PER_SVR4;
2231 
2232             /* Why this, you ask???  Well SVr4 maps page 0 as read-only,
2233                and some applications "depend" upon this behavior.  Since
2234                we do not have the power to recompile these, we emulate
2235                the SVr4 behavior.  Sigh.  */
2236             target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
2237                         MAP_FIXED | MAP_PRIVATE, -1, 0);
2238         }
2239     }
2240 
2241     bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
2242                                 info, (elf_interpreter ? &interp_info : NULL));
2243     info->start_stack = bprm->p;
2244 
2245     /* If we have an interpreter, set that as the program's entry point.
2246        Copy the load_bias as well, to help PPC64 interpret the entry
2247        point as a function descriptor.  Do this after creating elf tables
2248        so that we copy the original program entry point into the AUXV.  */
2249     if (elf_interpreter) {
2250         info->load_bias = interp_info.load_bias;
2251         info->entry = interp_info.entry;
2252         free(elf_interpreter);
2253     }
2254 
2255 #ifdef USE_ELF_CORE_DUMP
2256     bprm->core_dump = &elf_core_dump;
2257 #endif
2258 
2259     return 0;
2260 }
2261 
2262 #ifdef USE_ELF_CORE_DUMP
2263 /*
2264  * Definitions to generate Intel SVR4-like core files.
2265  * These mostly have the same names as the SVR4 types with "target_elf_"
2266  * tacked on the front to prevent clashes with linux definitions,
2267  * and the typedef forms have been avoided.  This is mostly like
2268  * the SVR4 structure, but more Linuxy, with things that Linux does
2269  * not support and which gdb doesn't really use excluded.
2270  *
2271  * Fields we don't dump (their contents is zero) in linux-user qemu
2272  * are marked with XXX.
2273  *
2274  * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
2275  *
2276  * Porting ELF coredump for target is (quite) simple process.  First you
2277  * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
2278  * the target resides):
2279  *
2280  * #define USE_ELF_CORE_DUMP
2281  *
2282  * Next you define type of register set used for dumping.  ELF specification
2283  * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
2284  *
2285  * typedef <target_regtype> target_elf_greg_t;
2286  * #define ELF_NREG <number of registers>
2287  * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
2288  *
2289  * Last step is to implement target specific function that copies registers
2290  * from given cpu into just specified register set.  Prototype is:
2291  *
2292  * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
2293  *                                const CPUArchState *env);
2294  *
2295  * Parameters:
2296  *     regs - copy register values into here (allocated and zeroed by caller)
2297  *     env - copy registers from here
2298  *
2299  * Example for ARM target is provided in this file.
2300  */
2301 
2302 /* An ELF note in memory */
2303 struct memelfnote {
2304     const char *name;
2305     size_t     namesz;
2306     size_t     namesz_rounded;
2307     int        type;
2308     size_t     datasz;
2309     size_t     datasz_rounded;
2310     void       *data;
2311     size_t     notesz;
2312 };
2313 
2314 struct target_elf_siginfo {
2315     abi_int    si_signo; /* signal number */
2316     abi_int    si_code;  /* extra code */
2317     abi_int    si_errno; /* errno */
2318 };
2319 
2320 struct target_elf_prstatus {
2321     struct target_elf_siginfo pr_info;      /* Info associated with signal */
2322     abi_short          pr_cursig;    /* Current signal */
2323     abi_ulong          pr_sigpend;   /* XXX */
2324     abi_ulong          pr_sighold;   /* XXX */
2325     target_pid_t       pr_pid;
2326     target_pid_t       pr_ppid;
2327     target_pid_t       pr_pgrp;
2328     target_pid_t       pr_sid;
2329     struct target_timeval pr_utime;  /* XXX User time */
2330     struct target_timeval pr_stime;  /* XXX System time */
2331     struct target_timeval pr_cutime; /* XXX Cumulative user time */
2332     struct target_timeval pr_cstime; /* XXX Cumulative system time */
2333     target_elf_gregset_t      pr_reg;       /* GP registers */
2334     abi_int            pr_fpvalid;   /* XXX */
2335 };
2336 
2337 #define ELF_PRARGSZ     (80) /* Number of chars for args */
2338 
2339 struct target_elf_prpsinfo {
2340     char         pr_state;       /* numeric process state */
2341     char         pr_sname;       /* char for pr_state */
2342     char         pr_zomb;        /* zombie */
2343     char         pr_nice;        /* nice val */
2344     abi_ulong    pr_flag;        /* flags */
2345     target_uid_t pr_uid;
2346     target_gid_t pr_gid;
2347     target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
2348     /* Lots missing */
2349     char    pr_fname[16];           /* filename of executable */
2350     char    pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
2351 };
2352 
2353 /* Here is the structure in which status of each thread is captured. */
2354 struct elf_thread_status {
2355     QTAILQ_ENTRY(elf_thread_status)  ets_link;
2356     struct target_elf_prstatus prstatus;   /* NT_PRSTATUS */
2357 #if 0
2358     elf_fpregset_t fpu;             /* NT_PRFPREG */
2359     struct task_struct *thread;
2360     elf_fpxregset_t xfpu;           /* ELF_CORE_XFPREG_TYPE */
2361 #endif
2362     struct memelfnote notes[1];
2363     int num_notes;
2364 };
2365 
2366 struct elf_note_info {
2367     struct memelfnote   *notes;
2368     struct target_elf_prstatus *prstatus;  /* NT_PRSTATUS */
2369     struct target_elf_prpsinfo *psinfo;    /* NT_PRPSINFO */
2370 
2371     QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
2372 #if 0
2373     /*
2374      * Current version of ELF coredump doesn't support
2375      * dumping fp regs etc.
2376      */
2377     elf_fpregset_t *fpu;
2378     elf_fpxregset_t *xfpu;
2379     int thread_status_size;
2380 #endif
2381     int notes_size;
2382     int numnote;
2383 };
2384 
2385 struct vm_area_struct {
2386     target_ulong   vma_start;  /* start vaddr of memory region */
2387     target_ulong   vma_end;    /* end vaddr of memory region */
2388     abi_ulong      vma_flags;  /* protection etc. flags for the region */
2389     QTAILQ_ENTRY(vm_area_struct) vma_link;
2390 };
2391 
2392 struct mm_struct {
2393     QTAILQ_HEAD(, vm_area_struct) mm_mmap;
2394     int mm_count;           /* number of mappings */
2395 };
2396 
2397 static struct mm_struct *vma_init(void);
2398 static void vma_delete(struct mm_struct *);
2399 static int vma_add_mapping(struct mm_struct *, target_ulong,
2400                            target_ulong, abi_ulong);
2401 static int vma_get_mapping_count(const struct mm_struct *);
2402 static struct vm_area_struct *vma_first(const struct mm_struct *);
2403 static struct vm_area_struct *vma_next(struct vm_area_struct *);
2404 static abi_ulong vma_dump_size(const struct vm_area_struct *);
2405 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2406                       unsigned long flags);
2407 
2408 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
2409 static void fill_note(struct memelfnote *, const char *, int,
2410                       unsigned int, void *);
2411 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
2412 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
2413 static void fill_auxv_note(struct memelfnote *, const TaskState *);
2414 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
2415 static size_t note_size(const struct memelfnote *);
2416 static void free_note_info(struct elf_note_info *);
2417 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *);
2418 static void fill_thread_info(struct elf_note_info *, const CPUArchState *);
2419 static int core_dump_filename(const TaskState *, char *, size_t);
2420 
2421 static int dump_write(int, const void *, size_t);
2422 static int write_note(struct memelfnote *, int);
2423 static int write_note_info(struct elf_note_info *, int);
2424 
2425 #ifdef BSWAP_NEEDED
2426 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
2427 {
2428     prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo);
2429     prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code);
2430     prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno);
2431     prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
2432     prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend);
2433     prstatus->pr_sighold = tswapal(prstatus->pr_sighold);
2434     prstatus->pr_pid = tswap32(prstatus->pr_pid);
2435     prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
2436     prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
2437     prstatus->pr_sid = tswap32(prstatus->pr_sid);
2438     /* cpu times are not filled, so we skip them */
2439     /* regs should be in correct format already */
2440     prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
2441 }
2442 
2443 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
2444 {
2445     psinfo->pr_flag = tswapal(psinfo->pr_flag);
2446     psinfo->pr_uid = tswap16(psinfo->pr_uid);
2447     psinfo->pr_gid = tswap16(psinfo->pr_gid);
2448     psinfo->pr_pid = tswap32(psinfo->pr_pid);
2449     psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
2450     psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
2451     psinfo->pr_sid = tswap32(psinfo->pr_sid);
2452 }
2453 
2454 static void bswap_note(struct elf_note *en)
2455 {
2456     bswap32s(&en->n_namesz);
2457     bswap32s(&en->n_descsz);
2458     bswap32s(&en->n_type);
2459 }
2460 #else
2461 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2462 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2463 static inline void bswap_note(struct elf_note *en) { }
2464 #endif /* BSWAP_NEEDED */
2465 
2466 /*
2467  * Minimal support for linux memory regions.  These are needed
2468  * when we are finding out what memory exactly belongs to
2469  * emulated process.  No locks needed here, as long as
2470  * thread that received the signal is stopped.
2471  */
2472 
2473 static struct mm_struct *vma_init(void)
2474 {
2475     struct mm_struct *mm;
2476 
2477     if ((mm = g_malloc(sizeof (*mm))) == NULL)
2478         return (NULL);
2479 
2480     mm->mm_count = 0;
2481     QTAILQ_INIT(&mm->mm_mmap);
2482 
2483     return (mm);
2484 }
2485 
2486 static void vma_delete(struct mm_struct *mm)
2487 {
2488     struct vm_area_struct *vma;
2489 
2490     while ((vma = vma_first(mm)) != NULL) {
2491         QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2492         g_free(vma);
2493     }
2494     g_free(mm);
2495 }
2496 
2497 static int vma_add_mapping(struct mm_struct *mm, target_ulong start,
2498                            target_ulong end, abi_ulong flags)
2499 {
2500     struct vm_area_struct *vma;
2501 
2502     if ((vma = g_malloc0(sizeof (*vma))) == NULL)
2503         return (-1);
2504 
2505     vma->vma_start = start;
2506     vma->vma_end = end;
2507     vma->vma_flags = flags;
2508 
2509     QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2510     mm->mm_count++;
2511 
2512     return (0);
2513 }
2514 
2515 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2516 {
2517     return (QTAILQ_FIRST(&mm->mm_mmap));
2518 }
2519 
2520 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2521 {
2522     return (QTAILQ_NEXT(vma, vma_link));
2523 }
2524 
2525 static int vma_get_mapping_count(const struct mm_struct *mm)
2526 {
2527     return (mm->mm_count);
2528 }
2529 
2530 /*
2531  * Calculate file (dump) size of given memory region.
2532  */
2533 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2534 {
2535     /* if we cannot even read the first page, skip it */
2536     if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2537         return (0);
2538 
2539     /*
2540      * Usually we don't dump executable pages as they contain
2541      * non-writable code that debugger can read directly from
2542      * target library etc.  However, thread stacks are marked
2543      * also executable so we read in first page of given region
2544      * and check whether it contains elf header.  If there is
2545      * no elf header, we dump it.
2546      */
2547     if (vma->vma_flags & PROT_EXEC) {
2548         char page[TARGET_PAGE_SIZE];
2549 
2550         copy_from_user(page, vma->vma_start, sizeof (page));
2551         if ((page[EI_MAG0] == ELFMAG0) &&
2552             (page[EI_MAG1] == ELFMAG1) &&
2553             (page[EI_MAG2] == ELFMAG2) &&
2554             (page[EI_MAG3] == ELFMAG3)) {
2555             /*
2556              * Mappings are possibly from ELF binary.  Don't dump
2557              * them.
2558              */
2559             return (0);
2560         }
2561     }
2562 
2563     return (vma->vma_end - vma->vma_start);
2564 }
2565 
2566 static int vma_walker(void *priv, target_ulong start, target_ulong end,
2567                       unsigned long flags)
2568 {
2569     struct mm_struct *mm = (struct mm_struct *)priv;
2570 
2571     vma_add_mapping(mm, start, end, flags);
2572     return (0);
2573 }
2574 
2575 static void fill_note(struct memelfnote *note, const char *name, int type,
2576                       unsigned int sz, void *data)
2577 {
2578     unsigned int namesz;
2579 
2580     namesz = strlen(name) + 1;
2581     note->name = name;
2582     note->namesz = namesz;
2583     note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2584     note->type = type;
2585     note->datasz = sz;
2586     note->datasz_rounded = roundup(sz, sizeof (int32_t));
2587 
2588     note->data = data;
2589 
2590     /*
2591      * We calculate rounded up note size here as specified by
2592      * ELF document.
2593      */
2594     note->notesz = sizeof (struct elf_note) +
2595         note->namesz_rounded + note->datasz_rounded;
2596 }
2597 
2598 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2599                             uint32_t flags)
2600 {
2601     (void) memset(elf, 0, sizeof(*elf));
2602 
2603     (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2604     elf->e_ident[EI_CLASS] = ELF_CLASS;
2605     elf->e_ident[EI_DATA] = ELF_DATA;
2606     elf->e_ident[EI_VERSION] = EV_CURRENT;
2607     elf->e_ident[EI_OSABI] = ELF_OSABI;
2608 
2609     elf->e_type = ET_CORE;
2610     elf->e_machine = machine;
2611     elf->e_version = EV_CURRENT;
2612     elf->e_phoff = sizeof(struct elfhdr);
2613     elf->e_flags = flags;
2614     elf->e_ehsize = sizeof(struct elfhdr);
2615     elf->e_phentsize = sizeof(struct elf_phdr);
2616     elf->e_phnum = segs;
2617 
2618     bswap_ehdr(elf);
2619 }
2620 
2621 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2622 {
2623     phdr->p_type = PT_NOTE;
2624     phdr->p_offset = offset;
2625     phdr->p_vaddr = 0;
2626     phdr->p_paddr = 0;
2627     phdr->p_filesz = sz;
2628     phdr->p_memsz = 0;
2629     phdr->p_flags = 0;
2630     phdr->p_align = 0;
2631 
2632     bswap_phdr(phdr, 1);
2633 }
2634 
2635 static size_t note_size(const struct memelfnote *note)
2636 {
2637     return (note->notesz);
2638 }
2639 
2640 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2641                           const TaskState *ts, int signr)
2642 {
2643     (void) memset(prstatus, 0, sizeof (*prstatus));
2644     prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2645     prstatus->pr_pid = ts->ts_tid;
2646     prstatus->pr_ppid = getppid();
2647     prstatus->pr_pgrp = getpgrp();
2648     prstatus->pr_sid = getsid(0);
2649 
2650     bswap_prstatus(prstatus);
2651 }
2652 
2653 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2654 {
2655     char *base_filename;
2656     unsigned int i, len;
2657 
2658     (void) memset(psinfo, 0, sizeof (*psinfo));
2659 
2660     len = ts->info->arg_end - ts->info->arg_start;
2661     if (len >= ELF_PRARGSZ)
2662         len = ELF_PRARGSZ - 1;
2663     if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2664         return -EFAULT;
2665     for (i = 0; i < len; i++)
2666         if (psinfo->pr_psargs[i] == 0)
2667             psinfo->pr_psargs[i] = ' ';
2668     psinfo->pr_psargs[len] = 0;
2669 
2670     psinfo->pr_pid = getpid();
2671     psinfo->pr_ppid = getppid();
2672     psinfo->pr_pgrp = getpgrp();
2673     psinfo->pr_sid = getsid(0);
2674     psinfo->pr_uid = getuid();
2675     psinfo->pr_gid = getgid();
2676 
2677     base_filename = g_path_get_basename(ts->bprm->filename);
2678     /*
2679      * Using strncpy here is fine: at max-length,
2680      * this field is not NUL-terminated.
2681      */
2682     (void) strncpy(psinfo->pr_fname, base_filename,
2683                    sizeof(psinfo->pr_fname));
2684 
2685     g_free(base_filename);
2686     bswap_psinfo(psinfo);
2687     return (0);
2688 }
2689 
2690 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2691 {
2692     elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2693     elf_addr_t orig_auxv = auxv;
2694     void *ptr;
2695     int len = ts->info->auxv_len;
2696 
2697     /*
2698      * Auxiliary vector is stored in target process stack.  It contains
2699      * {type, value} pairs that we need to dump into note.  This is not
2700      * strictly necessary but we do it here for sake of completeness.
2701      */
2702 
2703     /* read in whole auxv vector and copy it to memelfnote */
2704     ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2705     if (ptr != NULL) {
2706         fill_note(note, "CORE", NT_AUXV, len, ptr);
2707         unlock_user(ptr, auxv, len);
2708     }
2709 }
2710 
2711 /*
2712  * Constructs name of coredump file.  We have following convention
2713  * for the name:
2714  *     qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2715  *
2716  * Returns 0 in case of success, -1 otherwise (errno is set).
2717  */
2718 static int core_dump_filename(const TaskState *ts, char *buf,
2719                               size_t bufsize)
2720 {
2721     char timestamp[64];
2722     char *filename = NULL;
2723     char *base_filename = NULL;
2724     struct timeval tv;
2725     struct tm tm;
2726 
2727     assert(bufsize >= PATH_MAX);
2728 
2729     if (gettimeofday(&tv, NULL) < 0) {
2730         (void) fprintf(stderr, "unable to get current timestamp: %s",
2731                        strerror(errno));
2732         return (-1);
2733     }
2734 
2735     filename = strdup(ts->bprm->filename);
2736     base_filename = strdup(basename(filename));
2737     (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2738                     localtime_r(&tv.tv_sec, &tm));
2739     (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2740                     base_filename, timestamp, (int)getpid());
2741     free(base_filename);
2742     free(filename);
2743 
2744     return (0);
2745 }
2746 
2747 static int dump_write(int fd, const void *ptr, size_t size)
2748 {
2749     const char *bufp = (const char *)ptr;
2750     ssize_t bytes_written, bytes_left;
2751     struct rlimit dumpsize;
2752     off_t pos;
2753 
2754     bytes_written = 0;
2755     getrlimit(RLIMIT_CORE, &dumpsize);
2756     if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2757         if (errno == ESPIPE) { /* not a seekable stream */
2758             bytes_left = size;
2759         } else {
2760             return pos;
2761         }
2762     } else {
2763         if (dumpsize.rlim_cur <= pos) {
2764             return -1;
2765         } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2766             bytes_left = size;
2767         } else {
2768             size_t limit_left=dumpsize.rlim_cur - pos;
2769             bytes_left = limit_left >= size ? size : limit_left ;
2770         }
2771     }
2772 
2773     /*
2774      * In normal conditions, single write(2) should do but
2775      * in case of socket etc. this mechanism is more portable.
2776      */
2777     do {
2778         bytes_written = write(fd, bufp, bytes_left);
2779         if (bytes_written < 0) {
2780             if (errno == EINTR)
2781                 continue;
2782             return (-1);
2783         } else if (bytes_written == 0) { /* eof */
2784             return (-1);
2785         }
2786         bufp += bytes_written;
2787         bytes_left -= bytes_written;
2788     } while (bytes_left > 0);
2789 
2790     return (0);
2791 }
2792 
2793 static int write_note(struct memelfnote *men, int fd)
2794 {
2795     struct elf_note en;
2796 
2797     en.n_namesz = men->namesz;
2798     en.n_type = men->type;
2799     en.n_descsz = men->datasz;
2800 
2801     bswap_note(&en);
2802 
2803     if (dump_write(fd, &en, sizeof(en)) != 0)
2804         return (-1);
2805     if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2806         return (-1);
2807     if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2808         return (-1);
2809 
2810     return (0);
2811 }
2812 
2813 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env)
2814 {
2815     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2816     TaskState *ts = (TaskState *)cpu->opaque;
2817     struct elf_thread_status *ets;
2818 
2819     ets = g_malloc0(sizeof (*ets));
2820     ets->num_notes = 1; /* only prstatus is dumped */
2821     fill_prstatus(&ets->prstatus, ts, 0);
2822     elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2823     fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2824               &ets->prstatus);
2825 
2826     QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2827 
2828     info->notes_size += note_size(&ets->notes[0]);
2829 }
2830 
2831 static void init_note_info(struct elf_note_info *info)
2832 {
2833     /* Initialize the elf_note_info structure so that it is at
2834      * least safe to call free_note_info() on it. Must be
2835      * called before calling fill_note_info().
2836      */
2837     memset(info, 0, sizeof (*info));
2838     QTAILQ_INIT(&info->thread_list);
2839 }
2840 
2841 static int fill_note_info(struct elf_note_info *info,
2842                           long signr, const CPUArchState *env)
2843 {
2844 #define NUMNOTES 3
2845     CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2846     TaskState *ts = (TaskState *)cpu->opaque;
2847     int i;
2848 
2849     info->notes = g_new0(struct memelfnote, NUMNOTES);
2850     if (info->notes == NULL)
2851         return (-ENOMEM);
2852     info->prstatus = g_malloc0(sizeof (*info->prstatus));
2853     if (info->prstatus == NULL)
2854         return (-ENOMEM);
2855     info->psinfo = g_malloc0(sizeof (*info->psinfo));
2856     if (info->prstatus == NULL)
2857         return (-ENOMEM);
2858 
2859     /*
2860      * First fill in status (and registers) of current thread
2861      * including process info & aux vector.
2862      */
2863     fill_prstatus(info->prstatus, ts, signr);
2864     elf_core_copy_regs(&info->prstatus->pr_reg, env);
2865     fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2866               sizeof (*info->prstatus), info->prstatus);
2867     fill_psinfo(info->psinfo, ts);
2868     fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2869               sizeof (*info->psinfo), info->psinfo);
2870     fill_auxv_note(&info->notes[2], ts);
2871     info->numnote = 3;
2872 
2873     info->notes_size = 0;
2874     for (i = 0; i < info->numnote; i++)
2875         info->notes_size += note_size(&info->notes[i]);
2876 
2877     /* read and fill status of all threads */
2878     cpu_list_lock();
2879     CPU_FOREACH(cpu) {
2880         if (cpu == thread_cpu) {
2881             continue;
2882         }
2883         fill_thread_info(info, (CPUArchState *)cpu->env_ptr);
2884     }
2885     cpu_list_unlock();
2886 
2887     return (0);
2888 }
2889 
2890 static void free_note_info(struct elf_note_info *info)
2891 {
2892     struct elf_thread_status *ets;
2893 
2894     while (!QTAILQ_EMPTY(&info->thread_list)) {
2895         ets = QTAILQ_FIRST(&info->thread_list);
2896         QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2897         g_free(ets);
2898     }
2899 
2900     g_free(info->prstatus);
2901     g_free(info->psinfo);
2902     g_free(info->notes);
2903 }
2904 
2905 static int write_note_info(struct elf_note_info *info, int fd)
2906 {
2907     struct elf_thread_status *ets;
2908     int i, error = 0;
2909 
2910     /* write prstatus, psinfo and auxv for current thread */
2911     for (i = 0; i < info->numnote; i++)
2912         if ((error = write_note(&info->notes[i], fd)) != 0)
2913             return (error);
2914 
2915     /* write prstatus for each thread */
2916     QTAILQ_FOREACH(ets, &info->thread_list, ets_link) {
2917         if ((error = write_note(&ets->notes[0], fd)) != 0)
2918             return (error);
2919     }
2920 
2921     return (0);
2922 }
2923 
2924 /*
2925  * Write out ELF coredump.
2926  *
2927  * See documentation of ELF object file format in:
2928  * http://www.caldera.com/developers/devspecs/gabi41.pdf
2929  *
2930  * Coredump format in linux is following:
2931  *
2932  * 0   +----------------------+         \
2933  *     | ELF header           | ET_CORE  |
2934  *     +----------------------+          |
2935  *     | ELF program headers  |          |--- headers
2936  *     | - NOTE section       |          |
2937  *     | - PT_LOAD sections   |          |
2938  *     +----------------------+         /
2939  *     | NOTEs:               |
2940  *     | - NT_PRSTATUS        |
2941  *     | - NT_PRSINFO         |
2942  *     | - NT_AUXV            |
2943  *     +----------------------+ <-- aligned to target page
2944  *     | Process memory dump  |
2945  *     :                      :
2946  *     .                      .
2947  *     :                      :
2948  *     |                      |
2949  *     +----------------------+
2950  *
2951  * NT_PRSTATUS -> struct elf_prstatus (per thread)
2952  * NT_PRSINFO  -> struct elf_prpsinfo
2953  * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2954  *
2955  * Format follows System V format as close as possible.  Current
2956  * version limitations are as follows:
2957  *     - no floating point registers are dumped
2958  *
2959  * Function returns 0 in case of success, negative errno otherwise.
2960  *
2961  * TODO: make this work also during runtime: it should be
2962  * possible to force coredump from running process and then
2963  * continue processing.  For example qemu could set up SIGUSR2
2964  * handler (provided that target process haven't registered
2965  * handler for that) that does the dump when signal is received.
2966  */
2967 static int elf_core_dump(int signr, const CPUArchState *env)
2968 {
2969     const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env);
2970     const TaskState *ts = (const TaskState *)cpu->opaque;
2971     struct vm_area_struct *vma = NULL;
2972     char corefile[PATH_MAX];
2973     struct elf_note_info info;
2974     struct elfhdr elf;
2975     struct elf_phdr phdr;
2976     struct rlimit dumpsize;
2977     struct mm_struct *mm = NULL;
2978     off_t offset = 0, data_offset = 0;
2979     int segs = 0;
2980     int fd = -1;
2981 
2982     init_note_info(&info);
2983 
2984     errno = 0;
2985     getrlimit(RLIMIT_CORE, &dumpsize);
2986     if (dumpsize.rlim_cur == 0)
2987         return 0;
2988 
2989     if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2990         return (-errno);
2991 
2992     if ((fd = open(corefile, O_WRONLY | O_CREAT,
2993                    S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2994         return (-errno);
2995 
2996     /*
2997      * Walk through target process memory mappings and
2998      * set up structure containing this information.  After
2999      * this point vma_xxx functions can be used.
3000      */
3001     if ((mm = vma_init()) == NULL)
3002         goto out;
3003 
3004     walk_memory_regions(mm, vma_walker);
3005     segs = vma_get_mapping_count(mm);
3006 
3007     /*
3008      * Construct valid coredump ELF header.  We also
3009      * add one more segment for notes.
3010      */
3011     fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
3012     if (dump_write(fd, &elf, sizeof (elf)) != 0)
3013         goto out;
3014 
3015     /* fill in the in-memory version of notes */
3016     if (fill_note_info(&info, signr, env) < 0)
3017         goto out;
3018 
3019     offset += sizeof (elf);                             /* elf header */
3020     offset += (segs + 1) * sizeof (struct elf_phdr);    /* program headers */
3021 
3022     /* write out notes program header */
3023     fill_elf_note_phdr(&phdr, info.notes_size, offset);
3024 
3025     offset += info.notes_size;
3026     if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
3027         goto out;
3028 
3029     /*
3030      * ELF specification wants data to start at page boundary so
3031      * we align it here.
3032      */
3033     data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
3034 
3035     /*
3036      * Write program headers for memory regions mapped in
3037      * the target process.
3038      */
3039     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3040         (void) memset(&phdr, 0, sizeof (phdr));
3041 
3042         phdr.p_type = PT_LOAD;
3043         phdr.p_offset = offset;
3044         phdr.p_vaddr = vma->vma_start;
3045         phdr.p_paddr = 0;
3046         phdr.p_filesz = vma_dump_size(vma);
3047         offset += phdr.p_filesz;
3048         phdr.p_memsz = vma->vma_end - vma->vma_start;
3049         phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
3050         if (vma->vma_flags & PROT_WRITE)
3051             phdr.p_flags |= PF_W;
3052         if (vma->vma_flags & PROT_EXEC)
3053             phdr.p_flags |= PF_X;
3054         phdr.p_align = ELF_EXEC_PAGESIZE;
3055 
3056         bswap_phdr(&phdr, 1);
3057         dump_write(fd, &phdr, sizeof (phdr));
3058     }
3059 
3060     /*
3061      * Next we write notes just after program headers.  No
3062      * alignment needed here.
3063      */
3064     if (write_note_info(&info, fd) < 0)
3065         goto out;
3066 
3067     /* align data to page boundary */
3068     if (lseek(fd, data_offset, SEEK_SET) != data_offset)
3069         goto out;
3070 
3071     /*
3072      * Finally we can dump process memory into corefile as well.
3073      */
3074     for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
3075         abi_ulong addr;
3076         abi_ulong end;
3077 
3078         end = vma->vma_start + vma_dump_size(vma);
3079 
3080         for (addr = vma->vma_start; addr < end;
3081              addr += TARGET_PAGE_SIZE) {
3082             char page[TARGET_PAGE_SIZE];
3083             int error;
3084 
3085             /*
3086              *  Read in page from target process memory and
3087              *  write it to coredump file.
3088              */
3089             error = copy_from_user(page, addr, sizeof (page));
3090             if (error != 0) {
3091                 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
3092                                addr);
3093                 errno = -error;
3094                 goto out;
3095             }
3096             if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
3097                 goto out;
3098         }
3099     }
3100 
3101  out:
3102     free_note_info(&info);
3103     if (mm != NULL)
3104         vma_delete(mm);
3105     (void) close(fd);
3106 
3107     if (errno != 0)
3108         return (-errno);
3109     return (0);
3110 }
3111 #endif /* USE_ELF_CORE_DUMP */
3112 
3113 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
3114 {
3115     init_thread(regs, infop);
3116 }
3117