1 /* This is the Linux kernel elf-loading code, ported into user space */ 2 #include "qemu/osdep.h" 3 #include <sys/param.h> 4 5 #include <sys/mman.h> 6 #include <sys/resource.h> 7 8 #include "qemu.h" 9 #include "disas/disas.h" 10 #include "qemu/path.h" 11 12 #ifdef _ARCH_PPC64 13 #undef ARCH_DLINFO 14 #undef ELF_PLATFORM 15 #undef ELF_HWCAP 16 #undef ELF_HWCAP2 17 #undef ELF_CLASS 18 #undef ELF_DATA 19 #undef ELF_ARCH 20 #endif 21 22 #define ELF_OSABI ELFOSABI_SYSV 23 24 /* from personality.h */ 25 26 /* 27 * Flags for bug emulation. 28 * 29 * These occupy the top three bytes. 30 */ 31 enum { 32 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */ 33 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to 34 descriptors (signal handling) */ 35 MMAP_PAGE_ZERO = 0x0100000, 36 ADDR_COMPAT_LAYOUT = 0x0200000, 37 READ_IMPLIES_EXEC = 0x0400000, 38 ADDR_LIMIT_32BIT = 0x0800000, 39 SHORT_INODE = 0x1000000, 40 WHOLE_SECONDS = 0x2000000, 41 STICKY_TIMEOUTS = 0x4000000, 42 ADDR_LIMIT_3GB = 0x8000000, 43 }; 44 45 /* 46 * Personality types. 47 * 48 * These go in the low byte. Avoid using the top bit, it will 49 * conflict with error returns. 50 */ 51 enum { 52 PER_LINUX = 0x0000, 53 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT, 54 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS, 55 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 56 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE, 57 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE, 58 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS, 59 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE, 60 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS, 61 PER_BSD = 0x0006, 62 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS, 63 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE, 64 PER_LINUX32 = 0x0008, 65 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB, 66 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */ 67 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */ 68 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */ 69 PER_RISCOS = 0x000c, 70 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS, 71 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO, 72 PER_OSF4 = 0x000f, /* OSF/1 v4 */ 73 PER_HPUX = 0x0010, 74 PER_MASK = 0x00ff, 75 }; 76 77 /* 78 * Return the base personality without flags. 79 */ 80 #define personality(pers) (pers & PER_MASK) 81 82 /* this flag is uneffective under linux too, should be deleted */ 83 #ifndef MAP_DENYWRITE 84 #define MAP_DENYWRITE 0 85 #endif 86 87 /* should probably go in elf.h */ 88 #ifndef ELIBBAD 89 #define ELIBBAD 80 90 #endif 91 92 #ifdef TARGET_WORDS_BIGENDIAN 93 #define ELF_DATA ELFDATA2MSB 94 #else 95 #define ELF_DATA ELFDATA2LSB 96 #endif 97 98 #ifdef TARGET_ABI_MIPSN32 99 typedef abi_ullong target_elf_greg_t; 100 #define tswapreg(ptr) tswap64(ptr) 101 #else 102 typedef abi_ulong target_elf_greg_t; 103 #define tswapreg(ptr) tswapal(ptr) 104 #endif 105 106 #ifdef USE_UID16 107 typedef abi_ushort target_uid_t; 108 typedef abi_ushort target_gid_t; 109 #else 110 typedef abi_uint target_uid_t; 111 typedef abi_uint target_gid_t; 112 #endif 113 typedef abi_int target_pid_t; 114 115 #ifdef TARGET_I386 116 117 #define ELF_PLATFORM get_elf_platform() 118 119 static const char *get_elf_platform(void) 120 { 121 static char elf_platform[] = "i386"; 122 int family = object_property_get_int(OBJECT(thread_cpu), "family", NULL); 123 if (family > 6) 124 family = 6; 125 if (family >= 3) 126 elf_platform[1] = '0' + family; 127 return elf_platform; 128 } 129 130 #define ELF_HWCAP get_elf_hwcap() 131 132 static uint32_t get_elf_hwcap(void) 133 { 134 X86CPU *cpu = X86_CPU(thread_cpu); 135 136 return cpu->env.features[FEAT_1_EDX]; 137 } 138 139 #ifdef TARGET_X86_64 140 #define ELF_START_MMAP 0x2aaaaab000ULL 141 142 #define ELF_CLASS ELFCLASS64 143 #define ELF_ARCH EM_X86_64 144 145 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 146 { 147 regs->rax = 0; 148 regs->rsp = infop->start_stack; 149 regs->rip = infop->entry; 150 } 151 152 #define ELF_NREG 27 153 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 154 155 /* 156 * Note that ELF_NREG should be 29 as there should be place for 157 * TRAPNO and ERR "registers" as well but linux doesn't dump 158 * those. 159 * 160 * See linux kernel: arch/x86/include/asm/elf.h 161 */ 162 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 163 { 164 (*regs)[0] = env->regs[15]; 165 (*regs)[1] = env->regs[14]; 166 (*regs)[2] = env->regs[13]; 167 (*regs)[3] = env->regs[12]; 168 (*regs)[4] = env->regs[R_EBP]; 169 (*regs)[5] = env->regs[R_EBX]; 170 (*regs)[6] = env->regs[11]; 171 (*regs)[7] = env->regs[10]; 172 (*regs)[8] = env->regs[9]; 173 (*regs)[9] = env->regs[8]; 174 (*regs)[10] = env->regs[R_EAX]; 175 (*regs)[11] = env->regs[R_ECX]; 176 (*regs)[12] = env->regs[R_EDX]; 177 (*regs)[13] = env->regs[R_ESI]; 178 (*regs)[14] = env->regs[R_EDI]; 179 (*regs)[15] = env->regs[R_EAX]; /* XXX */ 180 (*regs)[16] = env->eip; 181 (*regs)[17] = env->segs[R_CS].selector & 0xffff; 182 (*regs)[18] = env->eflags; 183 (*regs)[19] = env->regs[R_ESP]; 184 (*regs)[20] = env->segs[R_SS].selector & 0xffff; 185 (*regs)[21] = env->segs[R_FS].selector & 0xffff; 186 (*regs)[22] = env->segs[R_GS].selector & 0xffff; 187 (*regs)[23] = env->segs[R_DS].selector & 0xffff; 188 (*regs)[24] = env->segs[R_ES].selector & 0xffff; 189 (*regs)[25] = env->segs[R_FS].selector & 0xffff; 190 (*regs)[26] = env->segs[R_GS].selector & 0xffff; 191 } 192 193 #else 194 195 #define ELF_START_MMAP 0x80000000 196 197 /* 198 * This is used to ensure we don't load something for the wrong architecture. 199 */ 200 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) ) 201 202 /* 203 * These are used to set parameters in the core dumps. 204 */ 205 #define ELF_CLASS ELFCLASS32 206 #define ELF_ARCH EM_386 207 208 static inline void init_thread(struct target_pt_regs *regs, 209 struct image_info *infop) 210 { 211 regs->esp = infop->start_stack; 212 regs->eip = infop->entry; 213 214 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program 215 starts %edx contains a pointer to a function which might be 216 registered using `atexit'. This provides a mean for the 217 dynamic linker to call DT_FINI functions for shared libraries 218 that have been loaded before the code runs. 219 220 A value of 0 tells we have no such handler. */ 221 regs->edx = 0; 222 } 223 224 #define ELF_NREG 17 225 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 226 227 /* 228 * Note that ELF_NREG should be 19 as there should be place for 229 * TRAPNO and ERR "registers" as well but linux doesn't dump 230 * those. 231 * 232 * See linux kernel: arch/x86/include/asm/elf.h 233 */ 234 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUX86State *env) 235 { 236 (*regs)[0] = env->regs[R_EBX]; 237 (*regs)[1] = env->regs[R_ECX]; 238 (*regs)[2] = env->regs[R_EDX]; 239 (*regs)[3] = env->regs[R_ESI]; 240 (*regs)[4] = env->regs[R_EDI]; 241 (*regs)[5] = env->regs[R_EBP]; 242 (*regs)[6] = env->regs[R_EAX]; 243 (*regs)[7] = env->segs[R_DS].selector & 0xffff; 244 (*regs)[8] = env->segs[R_ES].selector & 0xffff; 245 (*regs)[9] = env->segs[R_FS].selector & 0xffff; 246 (*regs)[10] = env->segs[R_GS].selector & 0xffff; 247 (*regs)[11] = env->regs[R_EAX]; /* XXX */ 248 (*regs)[12] = env->eip; 249 (*regs)[13] = env->segs[R_CS].selector & 0xffff; 250 (*regs)[14] = env->eflags; 251 (*regs)[15] = env->regs[R_ESP]; 252 (*regs)[16] = env->segs[R_SS].selector & 0xffff; 253 } 254 #endif 255 256 #define USE_ELF_CORE_DUMP 257 #define ELF_EXEC_PAGESIZE 4096 258 259 #endif 260 261 #ifdef TARGET_ARM 262 263 #ifndef TARGET_AARCH64 264 /* 32 bit ARM definitions */ 265 266 #define ELF_START_MMAP 0x80000000 267 268 #define ELF_ARCH EM_ARM 269 #define ELF_CLASS ELFCLASS32 270 271 static inline void init_thread(struct target_pt_regs *regs, 272 struct image_info *infop) 273 { 274 abi_long stack = infop->start_stack; 275 memset(regs, 0, sizeof(*regs)); 276 277 regs->uregs[16] = ARM_CPU_MODE_USR; 278 if (infop->entry & 1) { 279 regs->uregs[16] |= CPSR_T; 280 } 281 regs->uregs[15] = infop->entry & 0xfffffffe; 282 regs->uregs[13] = infop->start_stack; 283 /* FIXME - what to for failure of get_user()? */ 284 get_user_ual(regs->uregs[2], stack + 8); /* envp */ 285 get_user_ual(regs->uregs[1], stack + 4); /* envp */ 286 /* XXX: it seems that r0 is zeroed after ! */ 287 regs->uregs[0] = 0; 288 /* For uClinux PIC binaries. */ 289 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */ 290 regs->uregs[10] = infop->start_data; 291 } 292 293 #define ELF_NREG 18 294 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 295 296 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUARMState *env) 297 { 298 (*regs)[0] = tswapreg(env->regs[0]); 299 (*regs)[1] = tswapreg(env->regs[1]); 300 (*regs)[2] = tswapreg(env->regs[2]); 301 (*regs)[3] = tswapreg(env->regs[3]); 302 (*regs)[4] = tswapreg(env->regs[4]); 303 (*regs)[5] = tswapreg(env->regs[5]); 304 (*regs)[6] = tswapreg(env->regs[6]); 305 (*regs)[7] = tswapreg(env->regs[7]); 306 (*regs)[8] = tswapreg(env->regs[8]); 307 (*regs)[9] = tswapreg(env->regs[9]); 308 (*regs)[10] = tswapreg(env->regs[10]); 309 (*regs)[11] = tswapreg(env->regs[11]); 310 (*regs)[12] = tswapreg(env->regs[12]); 311 (*regs)[13] = tswapreg(env->regs[13]); 312 (*regs)[14] = tswapreg(env->regs[14]); 313 (*regs)[15] = tswapreg(env->regs[15]); 314 315 (*regs)[16] = tswapreg(cpsr_read((CPUARMState *)env)); 316 (*regs)[17] = tswapreg(env->regs[0]); /* XXX */ 317 } 318 319 #define USE_ELF_CORE_DUMP 320 #define ELF_EXEC_PAGESIZE 4096 321 322 enum 323 { 324 ARM_HWCAP_ARM_SWP = 1 << 0, 325 ARM_HWCAP_ARM_HALF = 1 << 1, 326 ARM_HWCAP_ARM_THUMB = 1 << 2, 327 ARM_HWCAP_ARM_26BIT = 1 << 3, 328 ARM_HWCAP_ARM_FAST_MULT = 1 << 4, 329 ARM_HWCAP_ARM_FPA = 1 << 5, 330 ARM_HWCAP_ARM_VFP = 1 << 6, 331 ARM_HWCAP_ARM_EDSP = 1 << 7, 332 ARM_HWCAP_ARM_JAVA = 1 << 8, 333 ARM_HWCAP_ARM_IWMMXT = 1 << 9, 334 ARM_HWCAP_ARM_CRUNCH = 1 << 10, 335 ARM_HWCAP_ARM_THUMBEE = 1 << 11, 336 ARM_HWCAP_ARM_NEON = 1 << 12, 337 ARM_HWCAP_ARM_VFPv3 = 1 << 13, 338 ARM_HWCAP_ARM_VFPv3D16 = 1 << 14, 339 ARM_HWCAP_ARM_TLS = 1 << 15, 340 ARM_HWCAP_ARM_VFPv4 = 1 << 16, 341 ARM_HWCAP_ARM_IDIVA = 1 << 17, 342 ARM_HWCAP_ARM_IDIVT = 1 << 18, 343 ARM_HWCAP_ARM_VFPD32 = 1 << 19, 344 ARM_HWCAP_ARM_LPAE = 1 << 20, 345 ARM_HWCAP_ARM_EVTSTRM = 1 << 21, 346 }; 347 348 enum { 349 ARM_HWCAP2_ARM_AES = 1 << 0, 350 ARM_HWCAP2_ARM_PMULL = 1 << 1, 351 ARM_HWCAP2_ARM_SHA1 = 1 << 2, 352 ARM_HWCAP2_ARM_SHA2 = 1 << 3, 353 ARM_HWCAP2_ARM_CRC32 = 1 << 4, 354 }; 355 356 /* The commpage only exists for 32 bit kernels */ 357 358 #define TARGET_HAS_VALIDATE_GUEST_SPACE 359 /* Return 1 if the proposed guest space is suitable for the guest. 360 * Return 0 if the proposed guest space isn't suitable, but another 361 * address space should be tried. 362 * Return -1 if there is no way the proposed guest space can be 363 * valid regardless of the base. 364 * The guest code may leave a page mapped and populate it if the 365 * address is suitable. 366 */ 367 static int validate_guest_space(unsigned long guest_base, 368 unsigned long guest_size) 369 { 370 unsigned long real_start, test_page_addr; 371 372 /* We need to check that we can force a fault on access to the 373 * commpage at 0xffff0fxx 374 */ 375 test_page_addr = guest_base + (0xffff0f00 & qemu_host_page_mask); 376 377 /* If the commpage lies within the already allocated guest space, 378 * then there is no way we can allocate it. 379 */ 380 if (test_page_addr >= guest_base 381 && test_page_addr <= (guest_base + guest_size)) { 382 return -1; 383 } 384 385 /* Note it needs to be writeable to let us initialise it */ 386 real_start = (unsigned long) 387 mmap((void *)test_page_addr, qemu_host_page_size, 388 PROT_READ | PROT_WRITE, 389 MAP_ANONYMOUS | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 390 391 /* If we can't map it then try another address */ 392 if (real_start == -1ul) { 393 return 0; 394 } 395 396 if (real_start != test_page_addr) { 397 /* OS didn't put the page where we asked - unmap and reject */ 398 munmap((void *)real_start, qemu_host_page_size); 399 return 0; 400 } 401 402 /* Leave the page mapped 403 * Populate it (mmap should have left it all 0'd) 404 */ 405 406 /* Kernel helper versions */ 407 __put_user(5, (uint32_t *)g2h(0xffff0ffcul)); 408 409 /* Now it's populated make it RO */ 410 if (mprotect((void *)test_page_addr, qemu_host_page_size, PROT_READ)) { 411 perror("Protecting guest commpage"); 412 exit(-1); 413 } 414 415 return 1; /* All good */ 416 } 417 418 #define ELF_HWCAP get_elf_hwcap() 419 #define ELF_HWCAP2 get_elf_hwcap2() 420 421 static uint32_t get_elf_hwcap(void) 422 { 423 ARMCPU *cpu = ARM_CPU(thread_cpu); 424 uint32_t hwcaps = 0; 425 426 hwcaps |= ARM_HWCAP_ARM_SWP; 427 hwcaps |= ARM_HWCAP_ARM_HALF; 428 hwcaps |= ARM_HWCAP_ARM_THUMB; 429 hwcaps |= ARM_HWCAP_ARM_FAST_MULT; 430 431 /* probe for the extra features */ 432 #define GET_FEATURE(feat, hwcap) \ 433 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 434 /* EDSP is in v5TE and above, but all our v5 CPUs are v5TE */ 435 GET_FEATURE(ARM_FEATURE_V5, ARM_HWCAP_ARM_EDSP); 436 GET_FEATURE(ARM_FEATURE_VFP, ARM_HWCAP_ARM_VFP); 437 GET_FEATURE(ARM_FEATURE_IWMMXT, ARM_HWCAP_ARM_IWMMXT); 438 GET_FEATURE(ARM_FEATURE_THUMB2EE, ARM_HWCAP_ARM_THUMBEE); 439 GET_FEATURE(ARM_FEATURE_NEON, ARM_HWCAP_ARM_NEON); 440 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPv3); 441 GET_FEATURE(ARM_FEATURE_V6K, ARM_HWCAP_ARM_TLS); 442 GET_FEATURE(ARM_FEATURE_VFP4, ARM_HWCAP_ARM_VFPv4); 443 GET_FEATURE(ARM_FEATURE_ARM_DIV, ARM_HWCAP_ARM_IDIVA); 444 GET_FEATURE(ARM_FEATURE_THUMB_DIV, ARM_HWCAP_ARM_IDIVT); 445 /* All QEMU's VFPv3 CPUs have 32 registers, see VFP_DREG in translate.c. 446 * Note that the ARM_HWCAP_ARM_VFPv3D16 bit is always the inverse of 447 * ARM_HWCAP_ARM_VFPD32 (and so always clear for QEMU); it is unrelated 448 * to our VFP_FP16 feature bit. 449 */ 450 GET_FEATURE(ARM_FEATURE_VFP3, ARM_HWCAP_ARM_VFPD32); 451 GET_FEATURE(ARM_FEATURE_LPAE, ARM_HWCAP_ARM_LPAE); 452 453 return hwcaps; 454 } 455 456 static uint32_t get_elf_hwcap2(void) 457 { 458 ARMCPU *cpu = ARM_CPU(thread_cpu); 459 uint32_t hwcaps = 0; 460 461 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP2_ARM_AES); 462 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP2_ARM_PMULL); 463 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP2_ARM_SHA1); 464 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP2_ARM_SHA2); 465 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP2_ARM_CRC32); 466 return hwcaps; 467 } 468 469 #undef GET_FEATURE 470 471 #else 472 /* 64 bit ARM definitions */ 473 #define ELF_START_MMAP 0x80000000 474 475 #define ELF_ARCH EM_AARCH64 476 #define ELF_CLASS ELFCLASS64 477 #define ELF_PLATFORM "aarch64" 478 479 static inline void init_thread(struct target_pt_regs *regs, 480 struct image_info *infop) 481 { 482 abi_long stack = infop->start_stack; 483 memset(regs, 0, sizeof(*regs)); 484 485 regs->pc = infop->entry & ~0x3ULL; 486 regs->sp = stack; 487 } 488 489 #define ELF_NREG 34 490 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 491 492 static void elf_core_copy_regs(target_elf_gregset_t *regs, 493 const CPUARMState *env) 494 { 495 int i; 496 497 for (i = 0; i < 32; i++) { 498 (*regs)[i] = tswapreg(env->xregs[i]); 499 } 500 (*regs)[32] = tswapreg(env->pc); 501 (*regs)[33] = tswapreg(pstate_read((CPUARMState *)env)); 502 } 503 504 #define USE_ELF_CORE_DUMP 505 #define ELF_EXEC_PAGESIZE 4096 506 507 enum { 508 ARM_HWCAP_A64_FP = 1 << 0, 509 ARM_HWCAP_A64_ASIMD = 1 << 1, 510 ARM_HWCAP_A64_EVTSTRM = 1 << 2, 511 ARM_HWCAP_A64_AES = 1 << 3, 512 ARM_HWCAP_A64_PMULL = 1 << 4, 513 ARM_HWCAP_A64_SHA1 = 1 << 5, 514 ARM_HWCAP_A64_SHA2 = 1 << 6, 515 ARM_HWCAP_A64_CRC32 = 1 << 7, 516 }; 517 518 #define ELF_HWCAP get_elf_hwcap() 519 520 static uint32_t get_elf_hwcap(void) 521 { 522 ARMCPU *cpu = ARM_CPU(thread_cpu); 523 uint32_t hwcaps = 0; 524 525 hwcaps |= ARM_HWCAP_A64_FP; 526 hwcaps |= ARM_HWCAP_A64_ASIMD; 527 528 /* probe for the extra features */ 529 #define GET_FEATURE(feat, hwcap) \ 530 do { if (arm_feature(&cpu->env, feat)) { hwcaps |= hwcap; } } while (0) 531 GET_FEATURE(ARM_FEATURE_V8_AES, ARM_HWCAP_A64_AES); 532 GET_FEATURE(ARM_FEATURE_V8_PMULL, ARM_HWCAP_A64_PMULL); 533 GET_FEATURE(ARM_FEATURE_V8_SHA1, ARM_HWCAP_A64_SHA1); 534 GET_FEATURE(ARM_FEATURE_V8_SHA256, ARM_HWCAP_A64_SHA2); 535 GET_FEATURE(ARM_FEATURE_CRC, ARM_HWCAP_A64_CRC32); 536 #undef GET_FEATURE 537 538 return hwcaps; 539 } 540 541 #endif /* not TARGET_AARCH64 */ 542 #endif /* TARGET_ARM */ 543 544 #ifdef TARGET_UNICORE32 545 546 #define ELF_START_MMAP 0x80000000 547 548 #define ELF_CLASS ELFCLASS32 549 #define ELF_DATA ELFDATA2LSB 550 #define ELF_ARCH EM_UNICORE32 551 552 static inline void init_thread(struct target_pt_regs *regs, 553 struct image_info *infop) 554 { 555 abi_long stack = infop->start_stack; 556 memset(regs, 0, sizeof(*regs)); 557 regs->UC32_REG_asr = 0x10; 558 regs->UC32_REG_pc = infop->entry & 0xfffffffe; 559 regs->UC32_REG_sp = infop->start_stack; 560 /* FIXME - what to for failure of get_user()? */ 561 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */ 562 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */ 563 /* XXX: it seems that r0 is zeroed after ! */ 564 regs->UC32_REG_00 = 0; 565 } 566 567 #define ELF_NREG 34 568 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 569 570 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUUniCore32State *env) 571 { 572 (*regs)[0] = env->regs[0]; 573 (*regs)[1] = env->regs[1]; 574 (*regs)[2] = env->regs[2]; 575 (*regs)[3] = env->regs[3]; 576 (*regs)[4] = env->regs[4]; 577 (*regs)[5] = env->regs[5]; 578 (*regs)[6] = env->regs[6]; 579 (*regs)[7] = env->regs[7]; 580 (*regs)[8] = env->regs[8]; 581 (*regs)[9] = env->regs[9]; 582 (*regs)[10] = env->regs[10]; 583 (*regs)[11] = env->regs[11]; 584 (*regs)[12] = env->regs[12]; 585 (*regs)[13] = env->regs[13]; 586 (*regs)[14] = env->regs[14]; 587 (*regs)[15] = env->regs[15]; 588 (*regs)[16] = env->regs[16]; 589 (*regs)[17] = env->regs[17]; 590 (*regs)[18] = env->regs[18]; 591 (*regs)[19] = env->regs[19]; 592 (*regs)[20] = env->regs[20]; 593 (*regs)[21] = env->regs[21]; 594 (*regs)[22] = env->regs[22]; 595 (*regs)[23] = env->regs[23]; 596 (*regs)[24] = env->regs[24]; 597 (*regs)[25] = env->regs[25]; 598 (*regs)[26] = env->regs[26]; 599 (*regs)[27] = env->regs[27]; 600 (*regs)[28] = env->regs[28]; 601 (*regs)[29] = env->regs[29]; 602 (*regs)[30] = env->regs[30]; 603 (*regs)[31] = env->regs[31]; 604 605 (*regs)[32] = cpu_asr_read((CPUUniCore32State *)env); 606 (*regs)[33] = env->regs[0]; /* XXX */ 607 } 608 609 #define USE_ELF_CORE_DUMP 610 #define ELF_EXEC_PAGESIZE 4096 611 612 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64) 613 614 #endif 615 616 #ifdef TARGET_SPARC 617 #ifdef TARGET_SPARC64 618 619 #define ELF_START_MMAP 0x80000000 620 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 621 | HWCAP_SPARC_MULDIV | HWCAP_SPARC_V9) 622 #ifndef TARGET_ABI32 623 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS ) 624 #else 625 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC ) 626 #endif 627 628 #define ELF_CLASS ELFCLASS64 629 #define ELF_ARCH EM_SPARCV9 630 631 #define STACK_BIAS 2047 632 633 static inline void init_thread(struct target_pt_regs *regs, 634 struct image_info *infop) 635 { 636 #ifndef TARGET_ABI32 637 regs->tstate = 0; 638 #endif 639 regs->pc = infop->entry; 640 regs->npc = regs->pc + 4; 641 regs->y = 0; 642 #ifdef TARGET_ABI32 643 regs->u_regs[14] = infop->start_stack - 16 * 4; 644 #else 645 if (personality(infop->personality) == PER_LINUX32) 646 regs->u_regs[14] = infop->start_stack - 16 * 4; 647 else 648 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS; 649 #endif 650 } 651 652 #else 653 #define ELF_START_MMAP 0x80000000 654 #define ELF_HWCAP (HWCAP_SPARC_FLUSH | HWCAP_SPARC_STBAR | HWCAP_SPARC_SWAP \ 655 | HWCAP_SPARC_MULDIV) 656 657 #define ELF_CLASS ELFCLASS32 658 #define ELF_ARCH EM_SPARC 659 660 static inline void init_thread(struct target_pt_regs *regs, 661 struct image_info *infop) 662 { 663 regs->psr = 0; 664 regs->pc = infop->entry; 665 regs->npc = regs->pc + 4; 666 regs->y = 0; 667 regs->u_regs[14] = infop->start_stack - 16 * 4; 668 } 669 670 #endif 671 #endif 672 673 #ifdef TARGET_PPC 674 675 #define ELF_MACHINE PPC_ELF_MACHINE 676 #define ELF_START_MMAP 0x80000000 677 678 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 679 680 #define elf_check_arch(x) ( (x) == EM_PPC64 ) 681 682 #define ELF_CLASS ELFCLASS64 683 684 #else 685 686 #define ELF_CLASS ELFCLASS32 687 688 #endif 689 690 #define ELF_ARCH EM_PPC 691 692 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP). 693 See arch/powerpc/include/asm/cputable.h. */ 694 enum { 695 QEMU_PPC_FEATURE_32 = 0x80000000, 696 QEMU_PPC_FEATURE_64 = 0x40000000, 697 QEMU_PPC_FEATURE_601_INSTR = 0x20000000, 698 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000, 699 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000, 700 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000, 701 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000, 702 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000, 703 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000, 704 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000, 705 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000, 706 QEMU_PPC_FEATURE_NO_TB = 0x00100000, 707 QEMU_PPC_FEATURE_POWER4 = 0x00080000, 708 QEMU_PPC_FEATURE_POWER5 = 0x00040000, 709 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000, 710 QEMU_PPC_FEATURE_CELL = 0x00010000, 711 QEMU_PPC_FEATURE_BOOKE = 0x00008000, 712 QEMU_PPC_FEATURE_SMT = 0x00004000, 713 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000, 714 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000, 715 QEMU_PPC_FEATURE_PA6T = 0x00000800, 716 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400, 717 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200, 718 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100, 719 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080, 720 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040, 721 722 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002, 723 QEMU_PPC_FEATURE_PPC_LE = 0x00000001, 724 725 /* Feature definitions in AT_HWCAP2. */ 726 QEMU_PPC_FEATURE2_ARCH_2_07 = 0x80000000, /* ISA 2.07 */ 727 QEMU_PPC_FEATURE2_HAS_HTM = 0x40000000, /* Hardware Transactional Memory */ 728 QEMU_PPC_FEATURE2_HAS_DSCR = 0x20000000, /* Data Stream Control Register */ 729 QEMU_PPC_FEATURE2_HAS_EBB = 0x10000000, /* Event Base Branching */ 730 QEMU_PPC_FEATURE2_HAS_ISEL = 0x08000000, /* Integer Select */ 731 QEMU_PPC_FEATURE2_HAS_TAR = 0x04000000, /* Target Address Register */ 732 }; 733 734 #define ELF_HWCAP get_elf_hwcap() 735 736 static uint32_t get_elf_hwcap(void) 737 { 738 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 739 uint32_t features = 0; 740 741 /* We don't have to be terribly complete here; the high points are 742 Altivec/FP/SPE support. Anything else is just a bonus. */ 743 #define GET_FEATURE(flag, feature) \ 744 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 745 #define GET_FEATURE2(flag, feature) \ 746 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 747 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64); 748 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU); 749 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC); 750 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE); 751 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE); 752 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE); 753 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE); 754 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC); 755 GET_FEATURE2(PPC2_DFP, QEMU_PPC_FEATURE_HAS_DFP); 756 GET_FEATURE2(PPC2_VSX, QEMU_PPC_FEATURE_HAS_VSX); 757 GET_FEATURE2((PPC2_PERM_ISA206 | PPC2_DIVE_ISA206 | PPC2_ATOMIC_ISA206 | 758 PPC2_FP_CVT_ISA206 | PPC2_FP_TST_ISA206), 759 QEMU_PPC_FEATURE_ARCH_2_06); 760 #undef GET_FEATURE 761 #undef GET_FEATURE2 762 763 return features; 764 } 765 766 #define ELF_HWCAP2 get_elf_hwcap2() 767 768 static uint32_t get_elf_hwcap2(void) 769 { 770 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); 771 uint32_t features = 0; 772 773 #define GET_FEATURE(flag, feature) \ 774 do { if (cpu->env.insns_flags & flag) { features |= feature; } } while (0) 775 #define GET_FEATURE2(flag, feature) \ 776 do { if (cpu->env.insns_flags2 & flag) { features |= feature; } } while (0) 777 778 GET_FEATURE(PPC_ISEL, QEMU_PPC_FEATURE2_HAS_ISEL); 779 GET_FEATURE2(PPC2_BCTAR_ISA207, QEMU_PPC_FEATURE2_HAS_TAR); 780 GET_FEATURE2((PPC2_BCTAR_ISA207 | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207 | 781 PPC2_ISA207S), QEMU_PPC_FEATURE2_ARCH_2_07); 782 783 #undef GET_FEATURE 784 #undef GET_FEATURE2 785 786 return features; 787 } 788 789 /* 790 * The requirements here are: 791 * - keep the final alignment of sp (sp & 0xf) 792 * - make sure the 32-bit value at the first 16 byte aligned position of 793 * AUXV is greater than 16 for glibc compatibility. 794 * AT_IGNOREPPC is used for that. 795 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC, 796 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined. 797 */ 798 #define DLINFO_ARCH_ITEMS 5 799 #define ARCH_DLINFO \ 800 do { \ 801 PowerPCCPU *cpu = POWERPC_CPU(thread_cpu); \ 802 NEW_AUX_ENT(AT_DCACHEBSIZE, cpu->env.dcache_line_size); \ 803 NEW_AUX_ENT(AT_ICACHEBSIZE, cpu->env.icache_line_size); \ 804 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \ 805 /* \ 806 * Now handle glibc compatibility. \ 807 */ \ 808 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 809 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \ 810 } while (0) 811 812 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop) 813 { 814 _regs->gpr[1] = infop->start_stack; 815 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32) 816 if (get_ppc64_abi(infop) < 2) { 817 uint64_t val; 818 get_user_u64(val, infop->entry + 8); 819 _regs->gpr[2] = val + infop->load_bias; 820 get_user_u64(val, infop->entry); 821 infop->entry = val + infop->load_bias; 822 } else { 823 _regs->gpr[12] = infop->entry; /* r12 set to global entry address */ 824 } 825 #endif 826 _regs->nip = infop->entry; 827 } 828 829 /* See linux kernel: arch/powerpc/include/asm/elf.h. */ 830 #define ELF_NREG 48 831 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 832 833 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUPPCState *env) 834 { 835 int i; 836 target_ulong ccr = 0; 837 838 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) { 839 (*regs)[i] = tswapreg(env->gpr[i]); 840 } 841 842 (*regs)[32] = tswapreg(env->nip); 843 (*regs)[33] = tswapreg(env->msr); 844 (*regs)[35] = tswapreg(env->ctr); 845 (*regs)[36] = tswapreg(env->lr); 846 (*regs)[37] = tswapreg(env->xer); 847 848 for (i = 0; i < ARRAY_SIZE(env->crf); i++) { 849 ccr |= env->crf[i] << (32 - ((i + 1) * 4)); 850 } 851 (*regs)[38] = tswapreg(ccr); 852 } 853 854 #define USE_ELF_CORE_DUMP 855 #define ELF_EXEC_PAGESIZE 4096 856 857 #endif 858 859 #ifdef TARGET_MIPS 860 861 #define ELF_START_MMAP 0x80000000 862 863 #ifdef TARGET_MIPS64 864 #define ELF_CLASS ELFCLASS64 865 #else 866 #define ELF_CLASS ELFCLASS32 867 #endif 868 #define ELF_ARCH EM_MIPS 869 870 static inline void init_thread(struct target_pt_regs *regs, 871 struct image_info *infop) 872 { 873 regs->cp0_status = 2 << CP0St_KSU; 874 regs->cp0_epc = infop->entry; 875 regs->regs[29] = infop->start_stack; 876 } 877 878 /* See linux kernel: arch/mips/include/asm/elf.h. */ 879 #define ELF_NREG 45 880 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 881 882 /* See linux kernel: arch/mips/include/asm/reg.h. */ 883 enum { 884 #ifdef TARGET_MIPS64 885 TARGET_EF_R0 = 0, 886 #else 887 TARGET_EF_R0 = 6, 888 #endif 889 TARGET_EF_R26 = TARGET_EF_R0 + 26, 890 TARGET_EF_R27 = TARGET_EF_R0 + 27, 891 TARGET_EF_LO = TARGET_EF_R0 + 32, 892 TARGET_EF_HI = TARGET_EF_R0 + 33, 893 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34, 894 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35, 895 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36, 896 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37 897 }; 898 899 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 900 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMIPSState *env) 901 { 902 int i; 903 904 for (i = 0; i < TARGET_EF_R0; i++) { 905 (*regs)[i] = 0; 906 } 907 (*regs)[TARGET_EF_R0] = 0; 908 909 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) { 910 (*regs)[TARGET_EF_R0 + i] = tswapreg(env->active_tc.gpr[i]); 911 } 912 913 (*regs)[TARGET_EF_R26] = 0; 914 (*regs)[TARGET_EF_R27] = 0; 915 (*regs)[TARGET_EF_LO] = tswapreg(env->active_tc.LO[0]); 916 (*regs)[TARGET_EF_HI] = tswapreg(env->active_tc.HI[0]); 917 (*regs)[TARGET_EF_CP0_EPC] = tswapreg(env->active_tc.PC); 918 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapreg(env->CP0_BadVAddr); 919 (*regs)[TARGET_EF_CP0_STATUS] = tswapreg(env->CP0_Status); 920 (*regs)[TARGET_EF_CP0_CAUSE] = tswapreg(env->CP0_Cause); 921 } 922 923 #define USE_ELF_CORE_DUMP 924 #define ELF_EXEC_PAGESIZE 4096 925 926 #endif /* TARGET_MIPS */ 927 928 #ifdef TARGET_MICROBLAZE 929 930 #define ELF_START_MMAP 0x80000000 931 932 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD) 933 934 #define ELF_CLASS ELFCLASS32 935 #define ELF_ARCH EM_MICROBLAZE 936 937 static inline void init_thread(struct target_pt_regs *regs, 938 struct image_info *infop) 939 { 940 regs->pc = infop->entry; 941 regs->r1 = infop->start_stack; 942 943 } 944 945 #define ELF_EXEC_PAGESIZE 4096 946 947 #define USE_ELF_CORE_DUMP 948 #define ELF_NREG 38 949 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 950 951 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */ 952 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUMBState *env) 953 { 954 int i, pos = 0; 955 956 for (i = 0; i < 32; i++) { 957 (*regs)[pos++] = tswapreg(env->regs[i]); 958 } 959 960 for (i = 0; i < 6; i++) { 961 (*regs)[pos++] = tswapreg(env->sregs[i]); 962 } 963 } 964 965 #endif /* TARGET_MICROBLAZE */ 966 967 #ifdef TARGET_OPENRISC 968 969 #define ELF_START_MMAP 0x08000000 970 971 #define ELF_ARCH EM_OPENRISC 972 #define ELF_CLASS ELFCLASS32 973 #define ELF_DATA ELFDATA2MSB 974 975 static inline void init_thread(struct target_pt_regs *regs, 976 struct image_info *infop) 977 { 978 regs->pc = infop->entry; 979 regs->gpr[1] = infop->start_stack; 980 } 981 982 #define USE_ELF_CORE_DUMP 983 #define ELF_EXEC_PAGESIZE 8192 984 985 /* See linux kernel arch/openrisc/include/asm/elf.h. */ 986 #define ELF_NREG 34 /* gprs and pc, sr */ 987 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 988 989 static void elf_core_copy_regs(target_elf_gregset_t *regs, 990 const CPUOpenRISCState *env) 991 { 992 int i; 993 994 for (i = 0; i < 32; i++) { 995 (*regs)[i] = tswapreg(env->gpr[i]); 996 } 997 998 (*regs)[32] = tswapreg(env->pc); 999 (*regs)[33] = tswapreg(env->sr); 1000 } 1001 #define ELF_HWCAP 0 1002 #define ELF_PLATFORM NULL 1003 1004 #endif /* TARGET_OPENRISC */ 1005 1006 #ifdef TARGET_SH4 1007 1008 #define ELF_START_MMAP 0x80000000 1009 1010 #define ELF_CLASS ELFCLASS32 1011 #define ELF_ARCH EM_SH 1012 1013 static inline void init_thread(struct target_pt_regs *regs, 1014 struct image_info *infop) 1015 { 1016 /* Check other registers XXXXX */ 1017 regs->pc = infop->entry; 1018 regs->regs[15] = infop->start_stack; 1019 } 1020 1021 /* See linux kernel: arch/sh/include/asm/elf.h. */ 1022 #define ELF_NREG 23 1023 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1024 1025 /* See linux kernel: arch/sh/include/asm/ptrace.h. */ 1026 enum { 1027 TARGET_REG_PC = 16, 1028 TARGET_REG_PR = 17, 1029 TARGET_REG_SR = 18, 1030 TARGET_REG_GBR = 19, 1031 TARGET_REG_MACH = 20, 1032 TARGET_REG_MACL = 21, 1033 TARGET_REG_SYSCALL = 22 1034 }; 1035 1036 static inline void elf_core_copy_regs(target_elf_gregset_t *regs, 1037 const CPUSH4State *env) 1038 { 1039 int i; 1040 1041 for (i = 0; i < 16; i++) { 1042 (*regs[i]) = tswapreg(env->gregs[i]); 1043 } 1044 1045 (*regs)[TARGET_REG_PC] = tswapreg(env->pc); 1046 (*regs)[TARGET_REG_PR] = tswapreg(env->pr); 1047 (*regs)[TARGET_REG_SR] = tswapreg(env->sr); 1048 (*regs)[TARGET_REG_GBR] = tswapreg(env->gbr); 1049 (*regs)[TARGET_REG_MACH] = tswapreg(env->mach); 1050 (*regs)[TARGET_REG_MACL] = tswapreg(env->macl); 1051 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */ 1052 } 1053 1054 #define USE_ELF_CORE_DUMP 1055 #define ELF_EXEC_PAGESIZE 4096 1056 1057 enum { 1058 SH_CPU_HAS_FPU = 0x0001, /* Hardware FPU support */ 1059 SH_CPU_HAS_P2_FLUSH_BUG = 0x0002, /* Need to flush the cache in P2 area */ 1060 SH_CPU_HAS_MMU_PAGE_ASSOC = 0x0004, /* SH3: TLB way selection bit support */ 1061 SH_CPU_HAS_DSP = 0x0008, /* SH-DSP: DSP support */ 1062 SH_CPU_HAS_PERF_COUNTER = 0x0010, /* Hardware performance counters */ 1063 SH_CPU_HAS_PTEA = 0x0020, /* PTEA register */ 1064 SH_CPU_HAS_LLSC = 0x0040, /* movli.l/movco.l */ 1065 SH_CPU_HAS_L2_CACHE = 0x0080, /* Secondary cache / URAM */ 1066 SH_CPU_HAS_OP32 = 0x0100, /* 32-bit instruction support */ 1067 SH_CPU_HAS_PTEAEX = 0x0200, /* PTE ASID Extension support */ 1068 }; 1069 1070 #define ELF_HWCAP get_elf_hwcap() 1071 1072 static uint32_t get_elf_hwcap(void) 1073 { 1074 SuperHCPU *cpu = SUPERH_CPU(thread_cpu); 1075 uint32_t hwcap = 0; 1076 1077 hwcap |= SH_CPU_HAS_FPU; 1078 1079 if (cpu->env.features & SH_FEATURE_SH4A) { 1080 hwcap |= SH_CPU_HAS_LLSC; 1081 } 1082 1083 return hwcap; 1084 } 1085 1086 #endif 1087 1088 #ifdef TARGET_CRIS 1089 1090 #define ELF_START_MMAP 0x80000000 1091 1092 #define ELF_CLASS ELFCLASS32 1093 #define ELF_ARCH EM_CRIS 1094 1095 static inline void init_thread(struct target_pt_regs *regs, 1096 struct image_info *infop) 1097 { 1098 regs->erp = infop->entry; 1099 } 1100 1101 #define ELF_EXEC_PAGESIZE 8192 1102 1103 #endif 1104 1105 #ifdef TARGET_M68K 1106 1107 #define ELF_START_MMAP 0x80000000 1108 1109 #define ELF_CLASS ELFCLASS32 1110 #define ELF_ARCH EM_68K 1111 1112 /* ??? Does this need to do anything? 1113 #define ELF_PLAT_INIT(_r) */ 1114 1115 static inline void init_thread(struct target_pt_regs *regs, 1116 struct image_info *infop) 1117 { 1118 regs->usp = infop->start_stack; 1119 regs->sr = 0; 1120 regs->pc = infop->entry; 1121 } 1122 1123 /* See linux kernel: arch/m68k/include/asm/elf.h. */ 1124 #define ELF_NREG 20 1125 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG]; 1126 1127 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUM68KState *env) 1128 { 1129 (*regs)[0] = tswapreg(env->dregs[1]); 1130 (*regs)[1] = tswapreg(env->dregs[2]); 1131 (*regs)[2] = tswapreg(env->dregs[3]); 1132 (*regs)[3] = tswapreg(env->dregs[4]); 1133 (*regs)[4] = tswapreg(env->dregs[5]); 1134 (*regs)[5] = tswapreg(env->dregs[6]); 1135 (*regs)[6] = tswapreg(env->dregs[7]); 1136 (*regs)[7] = tswapreg(env->aregs[0]); 1137 (*regs)[8] = tswapreg(env->aregs[1]); 1138 (*regs)[9] = tswapreg(env->aregs[2]); 1139 (*regs)[10] = tswapreg(env->aregs[3]); 1140 (*regs)[11] = tswapreg(env->aregs[4]); 1141 (*regs)[12] = tswapreg(env->aregs[5]); 1142 (*regs)[13] = tswapreg(env->aregs[6]); 1143 (*regs)[14] = tswapreg(env->dregs[0]); 1144 (*regs)[15] = tswapreg(env->aregs[7]); 1145 (*regs)[16] = tswapreg(env->dregs[0]); /* FIXME: orig_d0 */ 1146 (*regs)[17] = tswapreg(env->sr); 1147 (*regs)[18] = tswapreg(env->pc); 1148 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */ 1149 } 1150 1151 #define USE_ELF_CORE_DUMP 1152 #define ELF_EXEC_PAGESIZE 8192 1153 1154 #endif 1155 1156 #ifdef TARGET_ALPHA 1157 1158 #define ELF_START_MMAP (0x30000000000ULL) 1159 1160 #define ELF_CLASS ELFCLASS64 1161 #define ELF_ARCH EM_ALPHA 1162 1163 static inline void init_thread(struct target_pt_regs *regs, 1164 struct image_info *infop) 1165 { 1166 regs->pc = infop->entry; 1167 regs->ps = 8; 1168 regs->usp = infop->start_stack; 1169 } 1170 1171 #define ELF_EXEC_PAGESIZE 8192 1172 1173 #endif /* TARGET_ALPHA */ 1174 1175 #ifdef TARGET_S390X 1176 1177 #define ELF_START_MMAP (0x20000000000ULL) 1178 1179 #define ELF_CLASS ELFCLASS64 1180 #define ELF_DATA ELFDATA2MSB 1181 #define ELF_ARCH EM_S390 1182 1183 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop) 1184 { 1185 regs->psw.addr = infop->entry; 1186 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32; 1187 regs->gprs[15] = infop->start_stack; 1188 } 1189 1190 #endif /* TARGET_S390X */ 1191 1192 #ifdef TARGET_TILEGX 1193 1194 /* 42 bits real used address, a half for user mode */ 1195 #define ELF_START_MMAP (0x00000020000000000ULL) 1196 1197 #define elf_check_arch(x) ((x) == EM_TILEGX) 1198 1199 #define ELF_CLASS ELFCLASS64 1200 #define ELF_DATA ELFDATA2LSB 1201 #define ELF_ARCH EM_TILEGX 1202 1203 static inline void init_thread(struct target_pt_regs *regs, 1204 struct image_info *infop) 1205 { 1206 regs->pc = infop->entry; 1207 regs->sp = infop->start_stack; 1208 1209 } 1210 1211 #define ELF_EXEC_PAGESIZE 65536 /* TILE-Gx page size is 64KB */ 1212 1213 #endif /* TARGET_TILEGX */ 1214 1215 #ifndef ELF_PLATFORM 1216 #define ELF_PLATFORM (NULL) 1217 #endif 1218 1219 #ifndef ELF_MACHINE 1220 #define ELF_MACHINE ELF_ARCH 1221 #endif 1222 1223 #ifndef elf_check_arch 1224 #define elf_check_arch(x) ((x) == ELF_ARCH) 1225 #endif 1226 1227 #ifndef ELF_HWCAP 1228 #define ELF_HWCAP 0 1229 #endif 1230 1231 #ifdef TARGET_ABI32 1232 #undef ELF_CLASS 1233 #define ELF_CLASS ELFCLASS32 1234 #undef bswaptls 1235 #define bswaptls(ptr) bswap32s(ptr) 1236 #endif 1237 1238 #include "elf.h" 1239 1240 struct exec 1241 { 1242 unsigned int a_info; /* Use macros N_MAGIC, etc for access */ 1243 unsigned int a_text; /* length of text, in bytes */ 1244 unsigned int a_data; /* length of data, in bytes */ 1245 unsigned int a_bss; /* length of uninitialized data area, in bytes */ 1246 unsigned int a_syms; /* length of symbol table data in file, in bytes */ 1247 unsigned int a_entry; /* start address */ 1248 unsigned int a_trsize; /* length of relocation info for text, in bytes */ 1249 unsigned int a_drsize; /* length of relocation info for data, in bytes */ 1250 }; 1251 1252 1253 #define N_MAGIC(exec) ((exec).a_info & 0xffff) 1254 #define OMAGIC 0407 1255 #define NMAGIC 0410 1256 #define ZMAGIC 0413 1257 #define QMAGIC 0314 1258 1259 /* Necessary parameters */ 1260 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE 1261 #define TARGET_ELF_PAGESTART(_v) ((_v) & \ 1262 ~(abi_ulong)(TARGET_ELF_EXEC_PAGESIZE-1)) 1263 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1)) 1264 1265 #define DLINFO_ITEMS 14 1266 1267 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n) 1268 { 1269 memcpy(to, from, n); 1270 } 1271 1272 #ifdef BSWAP_NEEDED 1273 static void bswap_ehdr(struct elfhdr *ehdr) 1274 { 1275 bswap16s(&ehdr->e_type); /* Object file type */ 1276 bswap16s(&ehdr->e_machine); /* Architecture */ 1277 bswap32s(&ehdr->e_version); /* Object file version */ 1278 bswaptls(&ehdr->e_entry); /* Entry point virtual address */ 1279 bswaptls(&ehdr->e_phoff); /* Program header table file offset */ 1280 bswaptls(&ehdr->e_shoff); /* Section header table file offset */ 1281 bswap32s(&ehdr->e_flags); /* Processor-specific flags */ 1282 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */ 1283 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */ 1284 bswap16s(&ehdr->e_phnum); /* Program header table entry count */ 1285 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */ 1286 bswap16s(&ehdr->e_shnum); /* Section header table entry count */ 1287 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */ 1288 } 1289 1290 static void bswap_phdr(struct elf_phdr *phdr, int phnum) 1291 { 1292 int i; 1293 for (i = 0; i < phnum; ++i, ++phdr) { 1294 bswap32s(&phdr->p_type); /* Segment type */ 1295 bswap32s(&phdr->p_flags); /* Segment flags */ 1296 bswaptls(&phdr->p_offset); /* Segment file offset */ 1297 bswaptls(&phdr->p_vaddr); /* Segment virtual address */ 1298 bswaptls(&phdr->p_paddr); /* Segment physical address */ 1299 bswaptls(&phdr->p_filesz); /* Segment size in file */ 1300 bswaptls(&phdr->p_memsz); /* Segment size in memory */ 1301 bswaptls(&phdr->p_align); /* Segment alignment */ 1302 } 1303 } 1304 1305 static void bswap_shdr(struct elf_shdr *shdr, int shnum) 1306 { 1307 int i; 1308 for (i = 0; i < shnum; ++i, ++shdr) { 1309 bswap32s(&shdr->sh_name); 1310 bswap32s(&shdr->sh_type); 1311 bswaptls(&shdr->sh_flags); 1312 bswaptls(&shdr->sh_addr); 1313 bswaptls(&shdr->sh_offset); 1314 bswaptls(&shdr->sh_size); 1315 bswap32s(&shdr->sh_link); 1316 bswap32s(&shdr->sh_info); 1317 bswaptls(&shdr->sh_addralign); 1318 bswaptls(&shdr->sh_entsize); 1319 } 1320 } 1321 1322 static void bswap_sym(struct elf_sym *sym) 1323 { 1324 bswap32s(&sym->st_name); 1325 bswaptls(&sym->st_value); 1326 bswaptls(&sym->st_size); 1327 bswap16s(&sym->st_shndx); 1328 } 1329 #else 1330 static inline void bswap_ehdr(struct elfhdr *ehdr) { } 1331 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { } 1332 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { } 1333 static inline void bswap_sym(struct elf_sym *sym) { } 1334 #endif 1335 1336 #ifdef USE_ELF_CORE_DUMP 1337 static int elf_core_dump(int, const CPUArchState *); 1338 #endif /* USE_ELF_CORE_DUMP */ 1339 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias); 1340 1341 /* Verify the portions of EHDR within E_IDENT for the target. 1342 This can be performed before bswapping the entire header. */ 1343 static bool elf_check_ident(struct elfhdr *ehdr) 1344 { 1345 return (ehdr->e_ident[EI_MAG0] == ELFMAG0 1346 && ehdr->e_ident[EI_MAG1] == ELFMAG1 1347 && ehdr->e_ident[EI_MAG2] == ELFMAG2 1348 && ehdr->e_ident[EI_MAG3] == ELFMAG3 1349 && ehdr->e_ident[EI_CLASS] == ELF_CLASS 1350 && ehdr->e_ident[EI_DATA] == ELF_DATA 1351 && ehdr->e_ident[EI_VERSION] == EV_CURRENT); 1352 } 1353 1354 /* Verify the portions of EHDR outside of E_IDENT for the target. 1355 This has to wait until after bswapping the header. */ 1356 static bool elf_check_ehdr(struct elfhdr *ehdr) 1357 { 1358 return (elf_check_arch(ehdr->e_machine) 1359 && ehdr->e_ehsize == sizeof(struct elfhdr) 1360 && ehdr->e_phentsize == sizeof(struct elf_phdr) 1361 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN)); 1362 } 1363 1364 /* 1365 * 'copy_elf_strings()' copies argument/envelope strings from user 1366 * memory to free pages in kernel mem. These are in a format ready 1367 * to be put directly into the top of new user memory. 1368 * 1369 */ 1370 static abi_ulong copy_elf_strings(int argc, char **argv, char *scratch, 1371 abi_ulong p, abi_ulong stack_limit) 1372 { 1373 char *tmp; 1374 int len, offset; 1375 abi_ulong top = p; 1376 1377 if (!p) { 1378 return 0; /* bullet-proofing */ 1379 } 1380 1381 offset = ((p - 1) % TARGET_PAGE_SIZE) + 1; 1382 1383 while (argc-- > 0) { 1384 tmp = argv[argc]; 1385 if (!tmp) { 1386 fprintf(stderr, "VFS: argc is wrong"); 1387 exit(-1); 1388 } 1389 len = strlen(tmp) + 1; 1390 tmp += len; 1391 1392 if (len > (p - stack_limit)) { 1393 return 0; 1394 } 1395 while (len) { 1396 int bytes_to_copy = (len > offset) ? offset : len; 1397 tmp -= bytes_to_copy; 1398 p -= bytes_to_copy; 1399 offset -= bytes_to_copy; 1400 len -= bytes_to_copy; 1401 1402 memcpy_fromfs(scratch + offset, tmp, bytes_to_copy); 1403 1404 if (offset == 0) { 1405 memcpy_to_target(p, scratch, top - p); 1406 top = p; 1407 offset = TARGET_PAGE_SIZE; 1408 } 1409 } 1410 } 1411 if (offset) { 1412 memcpy_to_target(p, scratch + offset, top - p); 1413 } 1414 1415 return p; 1416 } 1417 1418 /* Older linux kernels provide up to MAX_ARG_PAGES (default: 32) of 1419 * argument/environment space. Newer kernels (>2.6.33) allow more, 1420 * dependent on stack size, but guarantee at least 32 pages for 1421 * backwards compatibility. 1422 */ 1423 #define STACK_LOWER_LIMIT (32 * TARGET_PAGE_SIZE) 1424 1425 static abi_ulong setup_arg_pages(struct linux_binprm *bprm, 1426 struct image_info *info) 1427 { 1428 abi_ulong size, error, guard; 1429 1430 size = guest_stack_size; 1431 if (size < STACK_LOWER_LIMIT) { 1432 size = STACK_LOWER_LIMIT; 1433 } 1434 guard = TARGET_PAGE_SIZE; 1435 if (guard < qemu_real_host_page_size) { 1436 guard = qemu_real_host_page_size; 1437 } 1438 1439 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE, 1440 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1441 if (error == -1) { 1442 perror("mmap stack"); 1443 exit(-1); 1444 } 1445 1446 /* We reserve one extra page at the top of the stack as guard. */ 1447 target_mprotect(error, guard, PROT_NONE); 1448 1449 info->stack_limit = error + guard; 1450 1451 return info->stack_limit + size - sizeof(void *); 1452 } 1453 1454 /* Map and zero the bss. We need to explicitly zero any fractional pages 1455 after the data section (i.e. bss). */ 1456 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot) 1457 { 1458 uintptr_t host_start, host_map_start, host_end; 1459 1460 last_bss = TARGET_PAGE_ALIGN(last_bss); 1461 1462 /* ??? There is confusion between qemu_real_host_page_size and 1463 qemu_host_page_size here and elsewhere in target_mmap, which 1464 may lead to the end of the data section mapping from the file 1465 not being mapped. At least there was an explicit test and 1466 comment for that here, suggesting that "the file size must 1467 be known". The comment probably pre-dates the introduction 1468 of the fstat system call in target_mmap which does in fact 1469 find out the size. What isn't clear is if the workaround 1470 here is still actually needed. For now, continue with it, 1471 but merge it with the "normal" mmap that would allocate the bss. */ 1472 1473 host_start = (uintptr_t) g2h(elf_bss); 1474 host_end = (uintptr_t) g2h(last_bss); 1475 host_map_start = REAL_HOST_PAGE_ALIGN(host_start); 1476 1477 if (host_map_start < host_end) { 1478 void *p = mmap((void *)host_map_start, host_end - host_map_start, 1479 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); 1480 if (p == MAP_FAILED) { 1481 perror("cannot mmap brk"); 1482 exit(-1); 1483 } 1484 } 1485 1486 /* Ensure that the bss page(s) are valid */ 1487 if ((page_get_flags(last_bss-1) & prot) != prot) { 1488 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot | PAGE_VALID); 1489 } 1490 1491 if (host_start < host_map_start) { 1492 memset((void *)host_start, 0, host_map_start - host_start); 1493 } 1494 } 1495 1496 #ifdef CONFIG_USE_FDPIC 1497 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp) 1498 { 1499 uint16_t n; 1500 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs; 1501 1502 /* elf32_fdpic_loadseg */ 1503 n = info->nsegs; 1504 while (n--) { 1505 sp -= 12; 1506 put_user_u32(loadsegs[n].addr, sp+0); 1507 put_user_u32(loadsegs[n].p_vaddr, sp+4); 1508 put_user_u32(loadsegs[n].p_memsz, sp+8); 1509 } 1510 1511 /* elf32_fdpic_loadmap */ 1512 sp -= 4; 1513 put_user_u16(0, sp+0); /* version */ 1514 put_user_u16(info->nsegs, sp+2); /* nsegs */ 1515 1516 info->personality = PER_LINUX_FDPIC; 1517 info->loadmap_addr = sp; 1518 1519 return sp; 1520 } 1521 #endif 1522 1523 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc, 1524 struct elfhdr *exec, 1525 struct image_info *info, 1526 struct image_info *interp_info) 1527 { 1528 abi_ulong sp; 1529 abi_ulong sp_auxv; 1530 int size; 1531 int i; 1532 abi_ulong u_rand_bytes; 1533 uint8_t k_rand_bytes[16]; 1534 abi_ulong u_platform; 1535 const char *k_platform; 1536 const int n = sizeof(elf_addr_t); 1537 1538 sp = p; 1539 1540 #ifdef CONFIG_USE_FDPIC 1541 /* Needs to be before we load the env/argc/... */ 1542 if (elf_is_fdpic(exec)) { 1543 /* Need 4 byte alignment for these structs */ 1544 sp &= ~3; 1545 sp = loader_build_fdpic_loadmap(info, sp); 1546 info->other_info = interp_info; 1547 if (interp_info) { 1548 interp_info->other_info = info; 1549 sp = loader_build_fdpic_loadmap(interp_info, sp); 1550 } 1551 } 1552 #endif 1553 1554 u_platform = 0; 1555 k_platform = ELF_PLATFORM; 1556 if (k_platform) { 1557 size_t len = strlen(k_platform) + 1; 1558 sp -= (len + n - 1) & ~(n - 1); 1559 u_platform = sp; 1560 /* FIXME - check return value of memcpy_to_target() for failure */ 1561 memcpy_to_target(sp, k_platform, len); 1562 } 1563 1564 /* 1565 * Generate 16 random bytes for userspace PRNG seeding (not 1566 * cryptically secure but it's not the aim of QEMU). 1567 */ 1568 for (i = 0; i < 16; i++) { 1569 k_rand_bytes[i] = rand(); 1570 } 1571 sp -= 16; 1572 u_rand_bytes = sp; 1573 /* FIXME - check return value of memcpy_to_target() for failure */ 1574 memcpy_to_target(sp, k_rand_bytes, 16); 1575 1576 /* 1577 * Force 16 byte _final_ alignment here for generality. 1578 */ 1579 sp = sp &~ (abi_ulong)15; 1580 size = (DLINFO_ITEMS + 1) * 2; 1581 if (k_platform) 1582 size += 2; 1583 #ifdef DLINFO_ARCH_ITEMS 1584 size += DLINFO_ARCH_ITEMS * 2; 1585 #endif 1586 #ifdef ELF_HWCAP2 1587 size += 2; 1588 #endif 1589 size += envc + argc + 2; 1590 size += 1; /* argc itself */ 1591 size *= n; 1592 if (size & 15) 1593 sp -= 16 - (size & 15); 1594 1595 /* This is correct because Linux defines 1596 * elf_addr_t as Elf32_Off / Elf64_Off 1597 */ 1598 #define NEW_AUX_ENT(id, val) do { \ 1599 sp -= n; put_user_ual(val, sp); \ 1600 sp -= n; put_user_ual(id, sp); \ 1601 } while(0) 1602 1603 sp_auxv = sp; 1604 NEW_AUX_ENT (AT_NULL, 0); 1605 1606 /* There must be exactly DLINFO_ITEMS entries here. */ 1607 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff)); 1608 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr))); 1609 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum)); 1610 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(MAX(TARGET_PAGE_SIZE, getpagesize()))); 1611 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0)); 1612 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0); 1613 NEW_AUX_ENT(AT_ENTRY, info->entry); 1614 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid()); 1615 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid()); 1616 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid()); 1617 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid()); 1618 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP); 1619 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK)); 1620 NEW_AUX_ENT(AT_RANDOM, (abi_ulong) u_rand_bytes); 1621 1622 #ifdef ELF_HWCAP2 1623 NEW_AUX_ENT(AT_HWCAP2, (abi_ulong) ELF_HWCAP2); 1624 #endif 1625 1626 if (k_platform) 1627 NEW_AUX_ENT(AT_PLATFORM, u_platform); 1628 #ifdef ARCH_DLINFO 1629 /* 1630 * ARCH_DLINFO must come last so platform specific code can enforce 1631 * special alignment requirements on the AUXV if necessary (eg. PPC). 1632 */ 1633 ARCH_DLINFO; 1634 #endif 1635 #undef NEW_AUX_ENT 1636 1637 info->saved_auxv = sp; 1638 info->auxv_len = sp_auxv - sp; 1639 1640 sp = loader_build_argptr(envc, argc, sp, p, 0); 1641 /* Check the right amount of stack was allocated for auxvec, envp & argv. */ 1642 assert(sp_auxv - sp == size); 1643 return sp; 1644 } 1645 1646 #ifndef TARGET_HAS_VALIDATE_GUEST_SPACE 1647 /* If the guest doesn't have a validation function just agree */ 1648 static int validate_guest_space(unsigned long guest_base, 1649 unsigned long guest_size) 1650 { 1651 return 1; 1652 } 1653 #endif 1654 1655 unsigned long init_guest_space(unsigned long host_start, 1656 unsigned long host_size, 1657 unsigned long guest_start, 1658 bool fixed) 1659 { 1660 unsigned long current_start, real_start; 1661 int flags; 1662 1663 assert(host_start || host_size); 1664 1665 /* If just a starting address is given, then just verify that 1666 * address. */ 1667 if (host_start && !host_size) { 1668 if (validate_guest_space(host_start, host_size) == 1) { 1669 return host_start; 1670 } else { 1671 return (unsigned long)-1; 1672 } 1673 } 1674 1675 /* Setup the initial flags and start address. */ 1676 current_start = host_start & qemu_host_page_mask; 1677 flags = MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE; 1678 if (fixed) { 1679 flags |= MAP_FIXED; 1680 } 1681 1682 /* Otherwise, a non-zero size region of memory needs to be mapped 1683 * and validated. */ 1684 while (1) { 1685 unsigned long real_size = host_size; 1686 1687 /* Do not use mmap_find_vma here because that is limited to the 1688 * guest address space. We are going to make the 1689 * guest address space fit whatever we're given. 1690 */ 1691 real_start = (unsigned long) 1692 mmap((void *)current_start, host_size, PROT_NONE, flags, -1, 0); 1693 if (real_start == (unsigned long)-1) { 1694 return (unsigned long)-1; 1695 } 1696 1697 /* Ensure the address is properly aligned. */ 1698 if (real_start & ~qemu_host_page_mask) { 1699 munmap((void *)real_start, host_size); 1700 real_size = host_size + qemu_host_page_size; 1701 real_start = (unsigned long) 1702 mmap((void *)real_start, real_size, PROT_NONE, flags, -1, 0); 1703 if (real_start == (unsigned long)-1) { 1704 return (unsigned long)-1; 1705 } 1706 real_start = HOST_PAGE_ALIGN(real_start); 1707 } 1708 1709 /* Check to see if the address is valid. */ 1710 if (!host_start || real_start == current_start) { 1711 int valid = validate_guest_space(real_start - guest_start, 1712 real_size); 1713 if (valid == 1) { 1714 break; 1715 } else if (valid == -1) { 1716 return (unsigned long)-1; 1717 } 1718 /* valid == 0, so try again. */ 1719 } 1720 1721 /* That address didn't work. Unmap and try a different one. 1722 * The address the host picked because is typically right at 1723 * the top of the host address space and leaves the guest with 1724 * no usable address space. Resort to a linear search. We 1725 * already compensated for mmap_min_addr, so this should not 1726 * happen often. Probably means we got unlucky and host 1727 * address space randomization put a shared library somewhere 1728 * inconvenient. 1729 */ 1730 munmap((void *)real_start, host_size); 1731 current_start += qemu_host_page_size; 1732 if (host_start == current_start) { 1733 /* Theoretically possible if host doesn't have any suitably 1734 * aligned areas. Normally the first mmap will fail. 1735 */ 1736 return (unsigned long)-1; 1737 } 1738 } 1739 1740 qemu_log_mask(CPU_LOG_PAGE, "Reserved 0x%lx bytes of guest address space\n", host_size); 1741 1742 return real_start; 1743 } 1744 1745 static void probe_guest_base(const char *image_name, 1746 abi_ulong loaddr, abi_ulong hiaddr) 1747 { 1748 /* Probe for a suitable guest base address, if the user has not set 1749 * it explicitly, and set guest_base appropriately. 1750 * In case of error we will print a suitable message and exit. 1751 */ 1752 const char *errmsg; 1753 if (!have_guest_base && !reserved_va) { 1754 unsigned long host_start, real_start, host_size; 1755 1756 /* Round addresses to page boundaries. */ 1757 loaddr &= qemu_host_page_mask; 1758 hiaddr = HOST_PAGE_ALIGN(hiaddr); 1759 1760 if (loaddr < mmap_min_addr) { 1761 host_start = HOST_PAGE_ALIGN(mmap_min_addr); 1762 } else { 1763 host_start = loaddr; 1764 if (host_start != loaddr) { 1765 errmsg = "Address overflow loading ELF binary"; 1766 goto exit_errmsg; 1767 } 1768 } 1769 host_size = hiaddr - loaddr; 1770 1771 /* Setup the initial guest memory space with ranges gleaned from 1772 * the ELF image that is being loaded. 1773 */ 1774 real_start = init_guest_space(host_start, host_size, loaddr, false); 1775 if (real_start == (unsigned long)-1) { 1776 errmsg = "Unable to find space for application"; 1777 goto exit_errmsg; 1778 } 1779 guest_base = real_start - loaddr; 1780 1781 qemu_log_mask(CPU_LOG_PAGE, "Relocating guest address space from 0x" 1782 TARGET_ABI_FMT_lx " to 0x%lx\n", 1783 loaddr, real_start); 1784 } 1785 return; 1786 1787 exit_errmsg: 1788 fprintf(stderr, "%s: %s\n", image_name, errmsg); 1789 exit(-1); 1790 } 1791 1792 1793 /* Load an ELF image into the address space. 1794 1795 IMAGE_NAME is the filename of the image, to use in error messages. 1796 IMAGE_FD is the open file descriptor for the image. 1797 1798 BPRM_BUF is a copy of the beginning of the file; this of course 1799 contains the elf file header at offset 0. It is assumed that this 1800 buffer is sufficiently aligned to present no problems to the host 1801 in accessing data at aligned offsets within the buffer. 1802 1803 On return: INFO values will be filled in, as necessary or available. */ 1804 1805 static void load_elf_image(const char *image_name, int image_fd, 1806 struct image_info *info, char **pinterp_name, 1807 char bprm_buf[BPRM_BUF_SIZE]) 1808 { 1809 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf; 1810 struct elf_phdr *phdr; 1811 abi_ulong load_addr, load_bias, loaddr, hiaddr, error; 1812 int i, retval; 1813 const char *errmsg; 1814 1815 /* First of all, some simple consistency checks */ 1816 errmsg = "Invalid ELF image for this architecture"; 1817 if (!elf_check_ident(ehdr)) { 1818 goto exit_errmsg; 1819 } 1820 bswap_ehdr(ehdr); 1821 if (!elf_check_ehdr(ehdr)) { 1822 goto exit_errmsg; 1823 } 1824 1825 i = ehdr->e_phnum * sizeof(struct elf_phdr); 1826 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) { 1827 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff); 1828 } else { 1829 phdr = (struct elf_phdr *) alloca(i); 1830 retval = pread(image_fd, phdr, i, ehdr->e_phoff); 1831 if (retval != i) { 1832 goto exit_read; 1833 } 1834 } 1835 bswap_phdr(phdr, ehdr->e_phnum); 1836 1837 #ifdef CONFIG_USE_FDPIC 1838 info->nsegs = 0; 1839 info->pt_dynamic_addr = 0; 1840 #endif 1841 1842 /* Find the maximum size of the image and allocate an appropriate 1843 amount of memory to handle that. */ 1844 loaddr = -1, hiaddr = 0; 1845 for (i = 0; i < ehdr->e_phnum; ++i) { 1846 if (phdr[i].p_type == PT_LOAD) { 1847 abi_ulong a = phdr[i].p_vaddr - phdr[i].p_offset; 1848 if (a < loaddr) { 1849 loaddr = a; 1850 } 1851 a = phdr[i].p_vaddr + phdr[i].p_memsz; 1852 if (a > hiaddr) { 1853 hiaddr = a; 1854 } 1855 #ifdef CONFIG_USE_FDPIC 1856 ++info->nsegs; 1857 #endif 1858 } 1859 } 1860 1861 load_addr = loaddr; 1862 if (ehdr->e_type == ET_DYN) { 1863 /* The image indicates that it can be loaded anywhere. Find a 1864 location that can hold the memory space required. If the 1865 image is pre-linked, LOADDR will be non-zero. Since we do 1866 not supply MAP_FIXED here we'll use that address if and 1867 only if it remains available. */ 1868 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE, 1869 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE, 1870 -1, 0); 1871 if (load_addr == -1) { 1872 goto exit_perror; 1873 } 1874 } else if (pinterp_name != NULL) { 1875 /* This is the main executable. Make sure that the low 1876 address does not conflict with MMAP_MIN_ADDR or the 1877 QEMU application itself. */ 1878 probe_guest_base(image_name, loaddr, hiaddr); 1879 } 1880 load_bias = load_addr - loaddr; 1881 1882 #ifdef CONFIG_USE_FDPIC 1883 { 1884 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs = 1885 g_malloc(sizeof(*loadsegs) * info->nsegs); 1886 1887 for (i = 0; i < ehdr->e_phnum; ++i) { 1888 switch (phdr[i].p_type) { 1889 case PT_DYNAMIC: 1890 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias; 1891 break; 1892 case PT_LOAD: 1893 loadsegs->addr = phdr[i].p_vaddr + load_bias; 1894 loadsegs->p_vaddr = phdr[i].p_vaddr; 1895 loadsegs->p_memsz = phdr[i].p_memsz; 1896 ++loadsegs; 1897 break; 1898 } 1899 } 1900 } 1901 #endif 1902 1903 info->load_bias = load_bias; 1904 info->load_addr = load_addr; 1905 info->entry = ehdr->e_entry + load_bias; 1906 info->start_code = -1; 1907 info->end_code = 0; 1908 info->start_data = -1; 1909 info->end_data = 0; 1910 info->brk = 0; 1911 info->elf_flags = ehdr->e_flags; 1912 1913 for (i = 0; i < ehdr->e_phnum; i++) { 1914 struct elf_phdr *eppnt = phdr + i; 1915 if (eppnt->p_type == PT_LOAD) { 1916 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em; 1917 int elf_prot = 0; 1918 1919 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ; 1920 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE; 1921 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC; 1922 1923 vaddr = load_bias + eppnt->p_vaddr; 1924 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr); 1925 vaddr_ps = TARGET_ELF_PAGESTART(vaddr); 1926 1927 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po, 1928 elf_prot, MAP_PRIVATE | MAP_FIXED, 1929 image_fd, eppnt->p_offset - vaddr_po); 1930 if (error == -1) { 1931 goto exit_perror; 1932 } 1933 1934 vaddr_ef = vaddr + eppnt->p_filesz; 1935 vaddr_em = vaddr + eppnt->p_memsz; 1936 1937 /* If the load segment requests extra zeros (e.g. bss), map it. */ 1938 if (vaddr_ef < vaddr_em) { 1939 zero_bss(vaddr_ef, vaddr_em, elf_prot); 1940 } 1941 1942 /* Find the full program boundaries. */ 1943 if (elf_prot & PROT_EXEC) { 1944 if (vaddr < info->start_code) { 1945 info->start_code = vaddr; 1946 } 1947 if (vaddr_ef > info->end_code) { 1948 info->end_code = vaddr_ef; 1949 } 1950 } 1951 if (elf_prot & PROT_WRITE) { 1952 if (vaddr < info->start_data) { 1953 info->start_data = vaddr; 1954 } 1955 if (vaddr_ef > info->end_data) { 1956 info->end_data = vaddr_ef; 1957 } 1958 if (vaddr_em > info->brk) { 1959 info->brk = vaddr_em; 1960 } 1961 } 1962 } else if (eppnt->p_type == PT_INTERP && pinterp_name) { 1963 char *interp_name; 1964 1965 if (*pinterp_name) { 1966 errmsg = "Multiple PT_INTERP entries"; 1967 goto exit_errmsg; 1968 } 1969 interp_name = malloc(eppnt->p_filesz); 1970 if (!interp_name) { 1971 goto exit_perror; 1972 } 1973 1974 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) { 1975 memcpy(interp_name, bprm_buf + eppnt->p_offset, 1976 eppnt->p_filesz); 1977 } else { 1978 retval = pread(image_fd, interp_name, eppnt->p_filesz, 1979 eppnt->p_offset); 1980 if (retval != eppnt->p_filesz) { 1981 goto exit_perror; 1982 } 1983 } 1984 if (interp_name[eppnt->p_filesz - 1] != 0) { 1985 errmsg = "Invalid PT_INTERP entry"; 1986 goto exit_errmsg; 1987 } 1988 *pinterp_name = interp_name; 1989 } 1990 } 1991 1992 if (info->end_data == 0) { 1993 info->start_data = info->end_code; 1994 info->end_data = info->end_code; 1995 info->brk = info->end_code; 1996 } 1997 1998 if (qemu_log_enabled()) { 1999 load_symbols(ehdr, image_fd, load_bias); 2000 } 2001 2002 close(image_fd); 2003 return; 2004 2005 exit_read: 2006 if (retval >= 0) { 2007 errmsg = "Incomplete read of file header"; 2008 goto exit_errmsg; 2009 } 2010 exit_perror: 2011 errmsg = strerror(errno); 2012 exit_errmsg: 2013 fprintf(stderr, "%s: %s\n", image_name, errmsg); 2014 exit(-1); 2015 } 2016 2017 static void load_elf_interp(const char *filename, struct image_info *info, 2018 char bprm_buf[BPRM_BUF_SIZE]) 2019 { 2020 int fd, retval; 2021 2022 fd = open(path(filename), O_RDONLY); 2023 if (fd < 0) { 2024 goto exit_perror; 2025 } 2026 2027 retval = read(fd, bprm_buf, BPRM_BUF_SIZE); 2028 if (retval < 0) { 2029 goto exit_perror; 2030 } 2031 if (retval < BPRM_BUF_SIZE) { 2032 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval); 2033 } 2034 2035 load_elf_image(filename, fd, info, NULL, bprm_buf); 2036 return; 2037 2038 exit_perror: 2039 fprintf(stderr, "%s: %s\n", filename, strerror(errno)); 2040 exit(-1); 2041 } 2042 2043 static int symfind(const void *s0, const void *s1) 2044 { 2045 target_ulong addr = *(target_ulong *)s0; 2046 struct elf_sym *sym = (struct elf_sym *)s1; 2047 int result = 0; 2048 if (addr < sym->st_value) { 2049 result = -1; 2050 } else if (addr >= sym->st_value + sym->st_size) { 2051 result = 1; 2052 } 2053 return result; 2054 } 2055 2056 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr) 2057 { 2058 #if ELF_CLASS == ELFCLASS32 2059 struct elf_sym *syms = s->disas_symtab.elf32; 2060 #else 2061 struct elf_sym *syms = s->disas_symtab.elf64; 2062 #endif 2063 2064 // binary search 2065 struct elf_sym *sym; 2066 2067 sym = bsearch(&orig_addr, syms, s->disas_num_syms, sizeof(*syms), symfind); 2068 if (sym != NULL) { 2069 return s->disas_strtab + sym->st_name; 2070 } 2071 2072 return ""; 2073 } 2074 2075 /* FIXME: This should use elf_ops.h */ 2076 static int symcmp(const void *s0, const void *s1) 2077 { 2078 struct elf_sym *sym0 = (struct elf_sym *)s0; 2079 struct elf_sym *sym1 = (struct elf_sym *)s1; 2080 return (sym0->st_value < sym1->st_value) 2081 ? -1 2082 : ((sym0->st_value > sym1->st_value) ? 1 : 0); 2083 } 2084 2085 /* Best attempt to load symbols from this ELF object. */ 2086 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias) 2087 { 2088 int i, shnum, nsyms, sym_idx = 0, str_idx = 0; 2089 struct elf_shdr *shdr; 2090 char *strings = NULL; 2091 struct syminfo *s = NULL; 2092 struct elf_sym *new_syms, *syms = NULL; 2093 2094 shnum = hdr->e_shnum; 2095 i = shnum * sizeof(struct elf_shdr); 2096 shdr = (struct elf_shdr *)alloca(i); 2097 if (pread(fd, shdr, i, hdr->e_shoff) != i) { 2098 return; 2099 } 2100 2101 bswap_shdr(shdr, shnum); 2102 for (i = 0; i < shnum; ++i) { 2103 if (shdr[i].sh_type == SHT_SYMTAB) { 2104 sym_idx = i; 2105 str_idx = shdr[i].sh_link; 2106 goto found; 2107 } 2108 } 2109 2110 /* There will be no symbol table if the file was stripped. */ 2111 return; 2112 2113 found: 2114 /* Now know where the strtab and symtab are. Snarf them. */ 2115 s = malloc(sizeof(*s)); 2116 if (!s) { 2117 goto give_up; 2118 } 2119 2120 i = shdr[str_idx].sh_size; 2121 s->disas_strtab = strings = malloc(i); 2122 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) { 2123 goto give_up; 2124 } 2125 2126 i = shdr[sym_idx].sh_size; 2127 syms = malloc(i); 2128 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) { 2129 goto give_up; 2130 } 2131 2132 nsyms = i / sizeof(struct elf_sym); 2133 for (i = 0; i < nsyms; ) { 2134 bswap_sym(syms + i); 2135 /* Throw away entries which we do not need. */ 2136 if (syms[i].st_shndx == SHN_UNDEF 2137 || syms[i].st_shndx >= SHN_LORESERVE 2138 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) { 2139 if (i < --nsyms) { 2140 syms[i] = syms[nsyms]; 2141 } 2142 } else { 2143 #if defined(TARGET_ARM) || defined (TARGET_MIPS) 2144 /* The bottom address bit marks a Thumb or MIPS16 symbol. */ 2145 syms[i].st_value &= ~(target_ulong)1; 2146 #endif 2147 syms[i].st_value += load_bias; 2148 i++; 2149 } 2150 } 2151 2152 /* No "useful" symbol. */ 2153 if (nsyms == 0) { 2154 goto give_up; 2155 } 2156 2157 /* Attempt to free the storage associated with the local symbols 2158 that we threw away. Whether or not this has any effect on the 2159 memory allocation depends on the malloc implementation and how 2160 many symbols we managed to discard. */ 2161 new_syms = realloc(syms, nsyms * sizeof(*syms)); 2162 if (new_syms == NULL) { 2163 goto give_up; 2164 } 2165 syms = new_syms; 2166 2167 qsort(syms, nsyms, sizeof(*syms), symcmp); 2168 2169 s->disas_num_syms = nsyms; 2170 #if ELF_CLASS == ELFCLASS32 2171 s->disas_symtab.elf32 = syms; 2172 #else 2173 s->disas_symtab.elf64 = syms; 2174 #endif 2175 s->lookup_symbol = lookup_symbolxx; 2176 s->next = syminfos; 2177 syminfos = s; 2178 2179 return; 2180 2181 give_up: 2182 free(s); 2183 free(strings); 2184 free(syms); 2185 } 2186 2187 int load_elf_binary(struct linux_binprm *bprm, struct image_info *info) 2188 { 2189 struct image_info interp_info; 2190 struct elfhdr elf_ex; 2191 char *elf_interpreter = NULL; 2192 char *scratch; 2193 2194 info->start_mmap = (abi_ulong)ELF_START_MMAP; 2195 2196 load_elf_image(bprm->filename, bprm->fd, info, 2197 &elf_interpreter, bprm->buf); 2198 2199 /* ??? We need a copy of the elf header for passing to create_elf_tables. 2200 If we do nothing, we'll have overwritten this when we re-use bprm->buf 2201 when we load the interpreter. */ 2202 elf_ex = *(struct elfhdr *)bprm->buf; 2203 2204 /* Do this so that we can load the interpreter, if need be. We will 2205 change some of these later */ 2206 bprm->p = setup_arg_pages(bprm, info); 2207 2208 scratch = g_new0(char, TARGET_PAGE_SIZE); 2209 bprm->p = copy_elf_strings(1, &bprm->filename, scratch, 2210 bprm->p, info->stack_limit); 2211 bprm->p = copy_elf_strings(bprm->envc, bprm->envp, scratch, 2212 bprm->p, info->stack_limit); 2213 bprm->p = copy_elf_strings(bprm->argc, bprm->argv, scratch, 2214 bprm->p, info->stack_limit); 2215 g_free(scratch); 2216 2217 if (!bprm->p) { 2218 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG)); 2219 exit(-1); 2220 } 2221 2222 if (elf_interpreter) { 2223 load_elf_interp(elf_interpreter, &interp_info, bprm->buf); 2224 2225 /* If the program interpreter is one of these two, then assume 2226 an iBCS2 image. Otherwise assume a native linux image. */ 2227 2228 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0 2229 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) { 2230 info->personality = PER_SVR4; 2231 2232 /* Why this, you ask??? Well SVr4 maps page 0 as read-only, 2233 and some applications "depend" upon this behavior. Since 2234 we do not have the power to recompile these, we emulate 2235 the SVr4 behavior. Sigh. */ 2236 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC, 2237 MAP_FIXED | MAP_PRIVATE, -1, 0); 2238 } 2239 } 2240 2241 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex, 2242 info, (elf_interpreter ? &interp_info : NULL)); 2243 info->start_stack = bprm->p; 2244 2245 /* If we have an interpreter, set that as the program's entry point. 2246 Copy the load_bias as well, to help PPC64 interpret the entry 2247 point as a function descriptor. Do this after creating elf tables 2248 so that we copy the original program entry point into the AUXV. */ 2249 if (elf_interpreter) { 2250 info->load_bias = interp_info.load_bias; 2251 info->entry = interp_info.entry; 2252 free(elf_interpreter); 2253 } 2254 2255 #ifdef USE_ELF_CORE_DUMP 2256 bprm->core_dump = &elf_core_dump; 2257 #endif 2258 2259 return 0; 2260 } 2261 2262 #ifdef USE_ELF_CORE_DUMP 2263 /* 2264 * Definitions to generate Intel SVR4-like core files. 2265 * These mostly have the same names as the SVR4 types with "target_elf_" 2266 * tacked on the front to prevent clashes with linux definitions, 2267 * and the typedef forms have been avoided. This is mostly like 2268 * the SVR4 structure, but more Linuxy, with things that Linux does 2269 * not support and which gdb doesn't really use excluded. 2270 * 2271 * Fields we don't dump (their contents is zero) in linux-user qemu 2272 * are marked with XXX. 2273 * 2274 * Core dump code is copied from linux kernel (fs/binfmt_elf.c). 2275 * 2276 * Porting ELF coredump for target is (quite) simple process. First you 2277 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for 2278 * the target resides): 2279 * 2280 * #define USE_ELF_CORE_DUMP 2281 * 2282 * Next you define type of register set used for dumping. ELF specification 2283 * says that it needs to be array of elf_greg_t that has size of ELF_NREG. 2284 * 2285 * typedef <target_regtype> target_elf_greg_t; 2286 * #define ELF_NREG <number of registers> 2287 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG]; 2288 * 2289 * Last step is to implement target specific function that copies registers 2290 * from given cpu into just specified register set. Prototype is: 2291 * 2292 * static void elf_core_copy_regs(taret_elf_gregset_t *regs, 2293 * const CPUArchState *env); 2294 * 2295 * Parameters: 2296 * regs - copy register values into here (allocated and zeroed by caller) 2297 * env - copy registers from here 2298 * 2299 * Example for ARM target is provided in this file. 2300 */ 2301 2302 /* An ELF note in memory */ 2303 struct memelfnote { 2304 const char *name; 2305 size_t namesz; 2306 size_t namesz_rounded; 2307 int type; 2308 size_t datasz; 2309 size_t datasz_rounded; 2310 void *data; 2311 size_t notesz; 2312 }; 2313 2314 struct target_elf_siginfo { 2315 abi_int si_signo; /* signal number */ 2316 abi_int si_code; /* extra code */ 2317 abi_int si_errno; /* errno */ 2318 }; 2319 2320 struct target_elf_prstatus { 2321 struct target_elf_siginfo pr_info; /* Info associated with signal */ 2322 abi_short pr_cursig; /* Current signal */ 2323 abi_ulong pr_sigpend; /* XXX */ 2324 abi_ulong pr_sighold; /* XXX */ 2325 target_pid_t pr_pid; 2326 target_pid_t pr_ppid; 2327 target_pid_t pr_pgrp; 2328 target_pid_t pr_sid; 2329 struct target_timeval pr_utime; /* XXX User time */ 2330 struct target_timeval pr_stime; /* XXX System time */ 2331 struct target_timeval pr_cutime; /* XXX Cumulative user time */ 2332 struct target_timeval pr_cstime; /* XXX Cumulative system time */ 2333 target_elf_gregset_t pr_reg; /* GP registers */ 2334 abi_int pr_fpvalid; /* XXX */ 2335 }; 2336 2337 #define ELF_PRARGSZ (80) /* Number of chars for args */ 2338 2339 struct target_elf_prpsinfo { 2340 char pr_state; /* numeric process state */ 2341 char pr_sname; /* char for pr_state */ 2342 char pr_zomb; /* zombie */ 2343 char pr_nice; /* nice val */ 2344 abi_ulong pr_flag; /* flags */ 2345 target_uid_t pr_uid; 2346 target_gid_t pr_gid; 2347 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid; 2348 /* Lots missing */ 2349 char pr_fname[16]; /* filename of executable */ 2350 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */ 2351 }; 2352 2353 /* Here is the structure in which status of each thread is captured. */ 2354 struct elf_thread_status { 2355 QTAILQ_ENTRY(elf_thread_status) ets_link; 2356 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */ 2357 #if 0 2358 elf_fpregset_t fpu; /* NT_PRFPREG */ 2359 struct task_struct *thread; 2360 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */ 2361 #endif 2362 struct memelfnote notes[1]; 2363 int num_notes; 2364 }; 2365 2366 struct elf_note_info { 2367 struct memelfnote *notes; 2368 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */ 2369 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */ 2370 2371 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list; 2372 #if 0 2373 /* 2374 * Current version of ELF coredump doesn't support 2375 * dumping fp regs etc. 2376 */ 2377 elf_fpregset_t *fpu; 2378 elf_fpxregset_t *xfpu; 2379 int thread_status_size; 2380 #endif 2381 int notes_size; 2382 int numnote; 2383 }; 2384 2385 struct vm_area_struct { 2386 target_ulong vma_start; /* start vaddr of memory region */ 2387 target_ulong vma_end; /* end vaddr of memory region */ 2388 abi_ulong vma_flags; /* protection etc. flags for the region */ 2389 QTAILQ_ENTRY(vm_area_struct) vma_link; 2390 }; 2391 2392 struct mm_struct { 2393 QTAILQ_HEAD(, vm_area_struct) mm_mmap; 2394 int mm_count; /* number of mappings */ 2395 }; 2396 2397 static struct mm_struct *vma_init(void); 2398 static void vma_delete(struct mm_struct *); 2399 static int vma_add_mapping(struct mm_struct *, target_ulong, 2400 target_ulong, abi_ulong); 2401 static int vma_get_mapping_count(const struct mm_struct *); 2402 static struct vm_area_struct *vma_first(const struct mm_struct *); 2403 static struct vm_area_struct *vma_next(struct vm_area_struct *); 2404 static abi_ulong vma_dump_size(const struct vm_area_struct *); 2405 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2406 unsigned long flags); 2407 2408 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t); 2409 static void fill_note(struct memelfnote *, const char *, int, 2410 unsigned int, void *); 2411 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int); 2412 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *); 2413 static void fill_auxv_note(struct memelfnote *, const TaskState *); 2414 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t); 2415 static size_t note_size(const struct memelfnote *); 2416 static void free_note_info(struct elf_note_info *); 2417 static int fill_note_info(struct elf_note_info *, long, const CPUArchState *); 2418 static void fill_thread_info(struct elf_note_info *, const CPUArchState *); 2419 static int core_dump_filename(const TaskState *, char *, size_t); 2420 2421 static int dump_write(int, const void *, size_t); 2422 static int write_note(struct memelfnote *, int); 2423 static int write_note_info(struct elf_note_info *, int); 2424 2425 #ifdef BSWAP_NEEDED 2426 static void bswap_prstatus(struct target_elf_prstatus *prstatus) 2427 { 2428 prstatus->pr_info.si_signo = tswap32(prstatus->pr_info.si_signo); 2429 prstatus->pr_info.si_code = tswap32(prstatus->pr_info.si_code); 2430 prstatus->pr_info.si_errno = tswap32(prstatus->pr_info.si_errno); 2431 prstatus->pr_cursig = tswap16(prstatus->pr_cursig); 2432 prstatus->pr_sigpend = tswapal(prstatus->pr_sigpend); 2433 prstatus->pr_sighold = tswapal(prstatus->pr_sighold); 2434 prstatus->pr_pid = tswap32(prstatus->pr_pid); 2435 prstatus->pr_ppid = tswap32(prstatus->pr_ppid); 2436 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp); 2437 prstatus->pr_sid = tswap32(prstatus->pr_sid); 2438 /* cpu times are not filled, so we skip them */ 2439 /* regs should be in correct format already */ 2440 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid); 2441 } 2442 2443 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo) 2444 { 2445 psinfo->pr_flag = tswapal(psinfo->pr_flag); 2446 psinfo->pr_uid = tswap16(psinfo->pr_uid); 2447 psinfo->pr_gid = tswap16(psinfo->pr_gid); 2448 psinfo->pr_pid = tswap32(psinfo->pr_pid); 2449 psinfo->pr_ppid = tswap32(psinfo->pr_ppid); 2450 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp); 2451 psinfo->pr_sid = tswap32(psinfo->pr_sid); 2452 } 2453 2454 static void bswap_note(struct elf_note *en) 2455 { 2456 bswap32s(&en->n_namesz); 2457 bswap32s(&en->n_descsz); 2458 bswap32s(&en->n_type); 2459 } 2460 #else 2461 static inline void bswap_prstatus(struct target_elf_prstatus *p) { } 2462 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {} 2463 static inline void bswap_note(struct elf_note *en) { } 2464 #endif /* BSWAP_NEEDED */ 2465 2466 /* 2467 * Minimal support for linux memory regions. These are needed 2468 * when we are finding out what memory exactly belongs to 2469 * emulated process. No locks needed here, as long as 2470 * thread that received the signal is stopped. 2471 */ 2472 2473 static struct mm_struct *vma_init(void) 2474 { 2475 struct mm_struct *mm; 2476 2477 if ((mm = g_malloc(sizeof (*mm))) == NULL) 2478 return (NULL); 2479 2480 mm->mm_count = 0; 2481 QTAILQ_INIT(&mm->mm_mmap); 2482 2483 return (mm); 2484 } 2485 2486 static void vma_delete(struct mm_struct *mm) 2487 { 2488 struct vm_area_struct *vma; 2489 2490 while ((vma = vma_first(mm)) != NULL) { 2491 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link); 2492 g_free(vma); 2493 } 2494 g_free(mm); 2495 } 2496 2497 static int vma_add_mapping(struct mm_struct *mm, target_ulong start, 2498 target_ulong end, abi_ulong flags) 2499 { 2500 struct vm_area_struct *vma; 2501 2502 if ((vma = g_malloc0(sizeof (*vma))) == NULL) 2503 return (-1); 2504 2505 vma->vma_start = start; 2506 vma->vma_end = end; 2507 vma->vma_flags = flags; 2508 2509 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link); 2510 mm->mm_count++; 2511 2512 return (0); 2513 } 2514 2515 static struct vm_area_struct *vma_first(const struct mm_struct *mm) 2516 { 2517 return (QTAILQ_FIRST(&mm->mm_mmap)); 2518 } 2519 2520 static struct vm_area_struct *vma_next(struct vm_area_struct *vma) 2521 { 2522 return (QTAILQ_NEXT(vma, vma_link)); 2523 } 2524 2525 static int vma_get_mapping_count(const struct mm_struct *mm) 2526 { 2527 return (mm->mm_count); 2528 } 2529 2530 /* 2531 * Calculate file (dump) size of given memory region. 2532 */ 2533 static abi_ulong vma_dump_size(const struct vm_area_struct *vma) 2534 { 2535 /* if we cannot even read the first page, skip it */ 2536 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE)) 2537 return (0); 2538 2539 /* 2540 * Usually we don't dump executable pages as they contain 2541 * non-writable code that debugger can read directly from 2542 * target library etc. However, thread stacks are marked 2543 * also executable so we read in first page of given region 2544 * and check whether it contains elf header. If there is 2545 * no elf header, we dump it. 2546 */ 2547 if (vma->vma_flags & PROT_EXEC) { 2548 char page[TARGET_PAGE_SIZE]; 2549 2550 copy_from_user(page, vma->vma_start, sizeof (page)); 2551 if ((page[EI_MAG0] == ELFMAG0) && 2552 (page[EI_MAG1] == ELFMAG1) && 2553 (page[EI_MAG2] == ELFMAG2) && 2554 (page[EI_MAG3] == ELFMAG3)) { 2555 /* 2556 * Mappings are possibly from ELF binary. Don't dump 2557 * them. 2558 */ 2559 return (0); 2560 } 2561 } 2562 2563 return (vma->vma_end - vma->vma_start); 2564 } 2565 2566 static int vma_walker(void *priv, target_ulong start, target_ulong end, 2567 unsigned long flags) 2568 { 2569 struct mm_struct *mm = (struct mm_struct *)priv; 2570 2571 vma_add_mapping(mm, start, end, flags); 2572 return (0); 2573 } 2574 2575 static void fill_note(struct memelfnote *note, const char *name, int type, 2576 unsigned int sz, void *data) 2577 { 2578 unsigned int namesz; 2579 2580 namesz = strlen(name) + 1; 2581 note->name = name; 2582 note->namesz = namesz; 2583 note->namesz_rounded = roundup(namesz, sizeof (int32_t)); 2584 note->type = type; 2585 note->datasz = sz; 2586 note->datasz_rounded = roundup(sz, sizeof (int32_t)); 2587 2588 note->data = data; 2589 2590 /* 2591 * We calculate rounded up note size here as specified by 2592 * ELF document. 2593 */ 2594 note->notesz = sizeof (struct elf_note) + 2595 note->namesz_rounded + note->datasz_rounded; 2596 } 2597 2598 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine, 2599 uint32_t flags) 2600 { 2601 (void) memset(elf, 0, sizeof(*elf)); 2602 2603 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG); 2604 elf->e_ident[EI_CLASS] = ELF_CLASS; 2605 elf->e_ident[EI_DATA] = ELF_DATA; 2606 elf->e_ident[EI_VERSION] = EV_CURRENT; 2607 elf->e_ident[EI_OSABI] = ELF_OSABI; 2608 2609 elf->e_type = ET_CORE; 2610 elf->e_machine = machine; 2611 elf->e_version = EV_CURRENT; 2612 elf->e_phoff = sizeof(struct elfhdr); 2613 elf->e_flags = flags; 2614 elf->e_ehsize = sizeof(struct elfhdr); 2615 elf->e_phentsize = sizeof(struct elf_phdr); 2616 elf->e_phnum = segs; 2617 2618 bswap_ehdr(elf); 2619 } 2620 2621 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset) 2622 { 2623 phdr->p_type = PT_NOTE; 2624 phdr->p_offset = offset; 2625 phdr->p_vaddr = 0; 2626 phdr->p_paddr = 0; 2627 phdr->p_filesz = sz; 2628 phdr->p_memsz = 0; 2629 phdr->p_flags = 0; 2630 phdr->p_align = 0; 2631 2632 bswap_phdr(phdr, 1); 2633 } 2634 2635 static size_t note_size(const struct memelfnote *note) 2636 { 2637 return (note->notesz); 2638 } 2639 2640 static void fill_prstatus(struct target_elf_prstatus *prstatus, 2641 const TaskState *ts, int signr) 2642 { 2643 (void) memset(prstatus, 0, sizeof (*prstatus)); 2644 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; 2645 prstatus->pr_pid = ts->ts_tid; 2646 prstatus->pr_ppid = getppid(); 2647 prstatus->pr_pgrp = getpgrp(); 2648 prstatus->pr_sid = getsid(0); 2649 2650 bswap_prstatus(prstatus); 2651 } 2652 2653 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts) 2654 { 2655 char *base_filename; 2656 unsigned int i, len; 2657 2658 (void) memset(psinfo, 0, sizeof (*psinfo)); 2659 2660 len = ts->info->arg_end - ts->info->arg_start; 2661 if (len >= ELF_PRARGSZ) 2662 len = ELF_PRARGSZ - 1; 2663 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len)) 2664 return -EFAULT; 2665 for (i = 0; i < len; i++) 2666 if (psinfo->pr_psargs[i] == 0) 2667 psinfo->pr_psargs[i] = ' '; 2668 psinfo->pr_psargs[len] = 0; 2669 2670 psinfo->pr_pid = getpid(); 2671 psinfo->pr_ppid = getppid(); 2672 psinfo->pr_pgrp = getpgrp(); 2673 psinfo->pr_sid = getsid(0); 2674 psinfo->pr_uid = getuid(); 2675 psinfo->pr_gid = getgid(); 2676 2677 base_filename = g_path_get_basename(ts->bprm->filename); 2678 /* 2679 * Using strncpy here is fine: at max-length, 2680 * this field is not NUL-terminated. 2681 */ 2682 (void) strncpy(psinfo->pr_fname, base_filename, 2683 sizeof(psinfo->pr_fname)); 2684 2685 g_free(base_filename); 2686 bswap_psinfo(psinfo); 2687 return (0); 2688 } 2689 2690 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts) 2691 { 2692 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv; 2693 elf_addr_t orig_auxv = auxv; 2694 void *ptr; 2695 int len = ts->info->auxv_len; 2696 2697 /* 2698 * Auxiliary vector is stored in target process stack. It contains 2699 * {type, value} pairs that we need to dump into note. This is not 2700 * strictly necessary but we do it here for sake of completeness. 2701 */ 2702 2703 /* read in whole auxv vector and copy it to memelfnote */ 2704 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0); 2705 if (ptr != NULL) { 2706 fill_note(note, "CORE", NT_AUXV, len, ptr); 2707 unlock_user(ptr, auxv, len); 2708 } 2709 } 2710 2711 /* 2712 * Constructs name of coredump file. We have following convention 2713 * for the name: 2714 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core 2715 * 2716 * Returns 0 in case of success, -1 otherwise (errno is set). 2717 */ 2718 static int core_dump_filename(const TaskState *ts, char *buf, 2719 size_t bufsize) 2720 { 2721 char timestamp[64]; 2722 char *filename = NULL; 2723 char *base_filename = NULL; 2724 struct timeval tv; 2725 struct tm tm; 2726 2727 assert(bufsize >= PATH_MAX); 2728 2729 if (gettimeofday(&tv, NULL) < 0) { 2730 (void) fprintf(stderr, "unable to get current timestamp: %s", 2731 strerror(errno)); 2732 return (-1); 2733 } 2734 2735 filename = strdup(ts->bprm->filename); 2736 base_filename = strdup(basename(filename)); 2737 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S", 2738 localtime_r(&tv.tv_sec, &tm)); 2739 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core", 2740 base_filename, timestamp, (int)getpid()); 2741 free(base_filename); 2742 free(filename); 2743 2744 return (0); 2745 } 2746 2747 static int dump_write(int fd, const void *ptr, size_t size) 2748 { 2749 const char *bufp = (const char *)ptr; 2750 ssize_t bytes_written, bytes_left; 2751 struct rlimit dumpsize; 2752 off_t pos; 2753 2754 bytes_written = 0; 2755 getrlimit(RLIMIT_CORE, &dumpsize); 2756 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) { 2757 if (errno == ESPIPE) { /* not a seekable stream */ 2758 bytes_left = size; 2759 } else { 2760 return pos; 2761 } 2762 } else { 2763 if (dumpsize.rlim_cur <= pos) { 2764 return -1; 2765 } else if (dumpsize.rlim_cur == RLIM_INFINITY) { 2766 bytes_left = size; 2767 } else { 2768 size_t limit_left=dumpsize.rlim_cur - pos; 2769 bytes_left = limit_left >= size ? size : limit_left ; 2770 } 2771 } 2772 2773 /* 2774 * In normal conditions, single write(2) should do but 2775 * in case of socket etc. this mechanism is more portable. 2776 */ 2777 do { 2778 bytes_written = write(fd, bufp, bytes_left); 2779 if (bytes_written < 0) { 2780 if (errno == EINTR) 2781 continue; 2782 return (-1); 2783 } else if (bytes_written == 0) { /* eof */ 2784 return (-1); 2785 } 2786 bufp += bytes_written; 2787 bytes_left -= bytes_written; 2788 } while (bytes_left > 0); 2789 2790 return (0); 2791 } 2792 2793 static int write_note(struct memelfnote *men, int fd) 2794 { 2795 struct elf_note en; 2796 2797 en.n_namesz = men->namesz; 2798 en.n_type = men->type; 2799 en.n_descsz = men->datasz; 2800 2801 bswap_note(&en); 2802 2803 if (dump_write(fd, &en, sizeof(en)) != 0) 2804 return (-1); 2805 if (dump_write(fd, men->name, men->namesz_rounded) != 0) 2806 return (-1); 2807 if (dump_write(fd, men->data, men->datasz_rounded) != 0) 2808 return (-1); 2809 2810 return (0); 2811 } 2812 2813 static void fill_thread_info(struct elf_note_info *info, const CPUArchState *env) 2814 { 2815 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2816 TaskState *ts = (TaskState *)cpu->opaque; 2817 struct elf_thread_status *ets; 2818 2819 ets = g_malloc0(sizeof (*ets)); 2820 ets->num_notes = 1; /* only prstatus is dumped */ 2821 fill_prstatus(&ets->prstatus, ts, 0); 2822 elf_core_copy_regs(&ets->prstatus.pr_reg, env); 2823 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus), 2824 &ets->prstatus); 2825 2826 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link); 2827 2828 info->notes_size += note_size(&ets->notes[0]); 2829 } 2830 2831 static void init_note_info(struct elf_note_info *info) 2832 { 2833 /* Initialize the elf_note_info structure so that it is at 2834 * least safe to call free_note_info() on it. Must be 2835 * called before calling fill_note_info(). 2836 */ 2837 memset(info, 0, sizeof (*info)); 2838 QTAILQ_INIT(&info->thread_list); 2839 } 2840 2841 static int fill_note_info(struct elf_note_info *info, 2842 long signr, const CPUArchState *env) 2843 { 2844 #define NUMNOTES 3 2845 CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2846 TaskState *ts = (TaskState *)cpu->opaque; 2847 int i; 2848 2849 info->notes = g_new0(struct memelfnote, NUMNOTES); 2850 if (info->notes == NULL) 2851 return (-ENOMEM); 2852 info->prstatus = g_malloc0(sizeof (*info->prstatus)); 2853 if (info->prstatus == NULL) 2854 return (-ENOMEM); 2855 info->psinfo = g_malloc0(sizeof (*info->psinfo)); 2856 if (info->prstatus == NULL) 2857 return (-ENOMEM); 2858 2859 /* 2860 * First fill in status (and registers) of current thread 2861 * including process info & aux vector. 2862 */ 2863 fill_prstatus(info->prstatus, ts, signr); 2864 elf_core_copy_regs(&info->prstatus->pr_reg, env); 2865 fill_note(&info->notes[0], "CORE", NT_PRSTATUS, 2866 sizeof (*info->prstatus), info->prstatus); 2867 fill_psinfo(info->psinfo, ts); 2868 fill_note(&info->notes[1], "CORE", NT_PRPSINFO, 2869 sizeof (*info->psinfo), info->psinfo); 2870 fill_auxv_note(&info->notes[2], ts); 2871 info->numnote = 3; 2872 2873 info->notes_size = 0; 2874 for (i = 0; i < info->numnote; i++) 2875 info->notes_size += note_size(&info->notes[i]); 2876 2877 /* read and fill status of all threads */ 2878 cpu_list_lock(); 2879 CPU_FOREACH(cpu) { 2880 if (cpu == thread_cpu) { 2881 continue; 2882 } 2883 fill_thread_info(info, (CPUArchState *)cpu->env_ptr); 2884 } 2885 cpu_list_unlock(); 2886 2887 return (0); 2888 } 2889 2890 static void free_note_info(struct elf_note_info *info) 2891 { 2892 struct elf_thread_status *ets; 2893 2894 while (!QTAILQ_EMPTY(&info->thread_list)) { 2895 ets = QTAILQ_FIRST(&info->thread_list); 2896 QTAILQ_REMOVE(&info->thread_list, ets, ets_link); 2897 g_free(ets); 2898 } 2899 2900 g_free(info->prstatus); 2901 g_free(info->psinfo); 2902 g_free(info->notes); 2903 } 2904 2905 static int write_note_info(struct elf_note_info *info, int fd) 2906 { 2907 struct elf_thread_status *ets; 2908 int i, error = 0; 2909 2910 /* write prstatus, psinfo and auxv for current thread */ 2911 for (i = 0; i < info->numnote; i++) 2912 if ((error = write_note(&info->notes[i], fd)) != 0) 2913 return (error); 2914 2915 /* write prstatus for each thread */ 2916 QTAILQ_FOREACH(ets, &info->thread_list, ets_link) { 2917 if ((error = write_note(&ets->notes[0], fd)) != 0) 2918 return (error); 2919 } 2920 2921 return (0); 2922 } 2923 2924 /* 2925 * Write out ELF coredump. 2926 * 2927 * See documentation of ELF object file format in: 2928 * http://www.caldera.com/developers/devspecs/gabi41.pdf 2929 * 2930 * Coredump format in linux is following: 2931 * 2932 * 0 +----------------------+ \ 2933 * | ELF header | ET_CORE | 2934 * +----------------------+ | 2935 * | ELF program headers | |--- headers 2936 * | - NOTE section | | 2937 * | - PT_LOAD sections | | 2938 * +----------------------+ / 2939 * | NOTEs: | 2940 * | - NT_PRSTATUS | 2941 * | - NT_PRSINFO | 2942 * | - NT_AUXV | 2943 * +----------------------+ <-- aligned to target page 2944 * | Process memory dump | 2945 * : : 2946 * . . 2947 * : : 2948 * | | 2949 * +----------------------+ 2950 * 2951 * NT_PRSTATUS -> struct elf_prstatus (per thread) 2952 * NT_PRSINFO -> struct elf_prpsinfo 2953 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()). 2954 * 2955 * Format follows System V format as close as possible. Current 2956 * version limitations are as follows: 2957 * - no floating point registers are dumped 2958 * 2959 * Function returns 0 in case of success, negative errno otherwise. 2960 * 2961 * TODO: make this work also during runtime: it should be 2962 * possible to force coredump from running process and then 2963 * continue processing. For example qemu could set up SIGUSR2 2964 * handler (provided that target process haven't registered 2965 * handler for that) that does the dump when signal is received. 2966 */ 2967 static int elf_core_dump(int signr, const CPUArchState *env) 2968 { 2969 const CPUState *cpu = ENV_GET_CPU((CPUArchState *)env); 2970 const TaskState *ts = (const TaskState *)cpu->opaque; 2971 struct vm_area_struct *vma = NULL; 2972 char corefile[PATH_MAX]; 2973 struct elf_note_info info; 2974 struct elfhdr elf; 2975 struct elf_phdr phdr; 2976 struct rlimit dumpsize; 2977 struct mm_struct *mm = NULL; 2978 off_t offset = 0, data_offset = 0; 2979 int segs = 0; 2980 int fd = -1; 2981 2982 init_note_info(&info); 2983 2984 errno = 0; 2985 getrlimit(RLIMIT_CORE, &dumpsize); 2986 if (dumpsize.rlim_cur == 0) 2987 return 0; 2988 2989 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0) 2990 return (-errno); 2991 2992 if ((fd = open(corefile, O_WRONLY | O_CREAT, 2993 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0) 2994 return (-errno); 2995 2996 /* 2997 * Walk through target process memory mappings and 2998 * set up structure containing this information. After 2999 * this point vma_xxx functions can be used. 3000 */ 3001 if ((mm = vma_init()) == NULL) 3002 goto out; 3003 3004 walk_memory_regions(mm, vma_walker); 3005 segs = vma_get_mapping_count(mm); 3006 3007 /* 3008 * Construct valid coredump ELF header. We also 3009 * add one more segment for notes. 3010 */ 3011 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0); 3012 if (dump_write(fd, &elf, sizeof (elf)) != 0) 3013 goto out; 3014 3015 /* fill in the in-memory version of notes */ 3016 if (fill_note_info(&info, signr, env) < 0) 3017 goto out; 3018 3019 offset += sizeof (elf); /* elf header */ 3020 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */ 3021 3022 /* write out notes program header */ 3023 fill_elf_note_phdr(&phdr, info.notes_size, offset); 3024 3025 offset += info.notes_size; 3026 if (dump_write(fd, &phdr, sizeof (phdr)) != 0) 3027 goto out; 3028 3029 /* 3030 * ELF specification wants data to start at page boundary so 3031 * we align it here. 3032 */ 3033 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE); 3034 3035 /* 3036 * Write program headers for memory regions mapped in 3037 * the target process. 3038 */ 3039 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3040 (void) memset(&phdr, 0, sizeof (phdr)); 3041 3042 phdr.p_type = PT_LOAD; 3043 phdr.p_offset = offset; 3044 phdr.p_vaddr = vma->vma_start; 3045 phdr.p_paddr = 0; 3046 phdr.p_filesz = vma_dump_size(vma); 3047 offset += phdr.p_filesz; 3048 phdr.p_memsz = vma->vma_end - vma->vma_start; 3049 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0; 3050 if (vma->vma_flags & PROT_WRITE) 3051 phdr.p_flags |= PF_W; 3052 if (vma->vma_flags & PROT_EXEC) 3053 phdr.p_flags |= PF_X; 3054 phdr.p_align = ELF_EXEC_PAGESIZE; 3055 3056 bswap_phdr(&phdr, 1); 3057 dump_write(fd, &phdr, sizeof (phdr)); 3058 } 3059 3060 /* 3061 * Next we write notes just after program headers. No 3062 * alignment needed here. 3063 */ 3064 if (write_note_info(&info, fd) < 0) 3065 goto out; 3066 3067 /* align data to page boundary */ 3068 if (lseek(fd, data_offset, SEEK_SET) != data_offset) 3069 goto out; 3070 3071 /* 3072 * Finally we can dump process memory into corefile as well. 3073 */ 3074 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) { 3075 abi_ulong addr; 3076 abi_ulong end; 3077 3078 end = vma->vma_start + vma_dump_size(vma); 3079 3080 for (addr = vma->vma_start; addr < end; 3081 addr += TARGET_PAGE_SIZE) { 3082 char page[TARGET_PAGE_SIZE]; 3083 int error; 3084 3085 /* 3086 * Read in page from target process memory and 3087 * write it to coredump file. 3088 */ 3089 error = copy_from_user(page, addr, sizeof (page)); 3090 if (error != 0) { 3091 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n", 3092 addr); 3093 errno = -error; 3094 goto out; 3095 } 3096 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0) 3097 goto out; 3098 } 3099 } 3100 3101 out: 3102 free_note_info(&info); 3103 if (mm != NULL) 3104 vma_delete(mm); 3105 (void) close(fd); 3106 3107 if (errno != 0) 3108 return (-errno); 3109 return (0); 3110 } 3111 #endif /* USE_ELF_CORE_DUMP */ 3112 3113 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop) 3114 { 3115 init_thread(regs, infop); 3116 } 3117